ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-09-27
    Description: The precipitates, magnetism, and corrosion resistance of Fe 78 Si 9 B 13 glassy samples fabricated in vacuum and air atmospheres (labeled as VAC and AIR samples, respectively) were studied. The findings show that the fraction of the amorphous phase in VAC samples is lower than that in the AIR counterparts. The Fe phase in VAC samples grows preferentially along the 〈200〉 orientation. The distribution of magnetization M 4000 of VAC samples oriented parallel and orthogonal to the field ( H // and H ⊥ ) at H = 4000 Oe is more scattered than AIR samples. The corrosion resistance of VAC samples is lower than AIR counterparts, which can be attributed to the minor alloying effect of oxygen and the passive effect of silicon atoms supplied from the amorphous phase.
    Electronic ISSN: 1543-1940
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-09-27
    Description: Al-Si alloy A356 was modified by TiC nanoparticles. First, the nanoparticles were mechanochemically activated together with aluminum powder. Next, the activated particles were hot extruded in a home-made extruder. Finally, nanoparticles thus prepared in the aluminum matrix were added to the liquid Al-Si alloy, which was then cast into sand molds. A comparison of the microstructure and mechanical properties of the modified alloy thus produced with those of the alloy without the nanoparticles demonstrated that the grain size of the modified alloy decreased. The mechanical properties determined after T6 heat treatment indicated unusual behavior, where the elongation of the modified alloys increased by 20 to 50 pct in different regions of the cast, while the tensile strength remained unchanged and the hardness increased by 18 pct. An electron microscopy study revealed concentration of dislocations near grain boundaries in the modified alloy samples. These grain boundaries serve as obstacles to dislocation motion. It was therefore concluded that the improvement in the mechanical properties of the aluminum alloy modified by TiC nanoparticles was caused by the grain-size-strengthening mechanism.
    Electronic ISSN: 1543-1940
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-09-27
    Description: Martensite pole figures from three different steels have been studied using electron backscatter diffraction (EBSD) and mathematical models to show that the two stage transformation theory is not necessary for correct prediction of pole figure and popular orientation relationships, like Kurdjumov–Sachs. These theories can give misleading prediction. It has been proved that the use of correct crystallographic data can lead to a better texture prediction. The typical features of a pole figure in a {2 5 2} γ habit system have been studied in detail.
    Electronic ISSN: 1543-1940
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-09-27
    Description: Friction stir welding (FSW) of Al - Li alloy 2195 plate produces strong texture gradients. The microstructural characteristics evolve from the base plate, through the thermomechanically affected zone (TMAZ), to the weld nugget interface. In the current study, electron backscattered diffraction (EBSD) analyses were employed to quantify the spatial distribution of texture gradients associated with the evolution of texture within the TMAZ. The strong texture of the base plate enabled the texture evolution to be characterized as a function of location. Systematic partitioning of EBSD data relative to the degree of lattice rotation at each point accurately captured the crystallographic transitions across the advancing side TMAZ. Over a large section of this region, the texture evolves as a result of continuous rigid body rotations. The rigid body rotations were correlated with the complex material flow patterns commonly associated with the FSW process and prior observations of shear-related textures. Finally, a correlation between texture and fracture in a subscale tensile specimen is observed, where failure occurs within a visible band of low-Taylor factor grains.
    Electronic ISSN: 1543-1940
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-09-27
    Description: Sulfidation may occur even in an overall oxidizing environment beneath a corrosion product which assumes the role of a diffusion barrier allowing sulfur species transport at a faster rate when compared with that of oxygen species. The current paper presents sulfidation characteristics of an advanced single-crystal nickel-based superalloy (ANS) and compares performance with IN 792 and CMSX-4 superalloys. The results showed that all the superalloys were highly vulnerable to sulfidation and their lives were significantly reduced. Among them, the ANS was more susceptible to sulfidation and its life was reduced considerably. This is attributed to the changed chemistry of the advanced alloy. The results for ANS are compared with its oxidation data and the difference in its behavior is discussed. A degradation mechanism, which represents the deterioration of ANS under sulfidation conditions, is proposed based on the results obtained from different techniques. Finally, the necessity of protective coatings for shielding against high temperature sulfidation for potential application in enhanced efficiency of gas turbine engines is emphasized.
    Electronic ISSN: 1543-1940
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-09-27
    Description: A model is proposed to predict the room temperature austenite volume fraction as a function of the intercritical annealing temperature for medium Mn transformation-induced plasticity steel. The model takes into account the influence of the austenite composition on the martensite transformation kinetics and the influence of the intercritical annealing temperature dependence of the austenite grain size on the martensite start temperature. A maximum room temperature austenite volume fraction was obtained at a specific intercritical annealing temperature T M . Ultrafine-grained ferrite and austenite were observed in samples intercritically annealed below the T M temperature. The microstructure contained a large volume fraction of athermal martensite in samples annealed at an intercritical temperature higher than the T M temperature.
    Electronic ISSN: 1543-1940
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-09-27
    Description: Controlled rolling followed by accelerated cooling was carried out in-house to study the microstructure and mechanical properties of a low carbon dual-phase steel. The objective of the study described here was to explore the effect of cooling schedule, such as air cooling temperature and coiling temperature, on the final microstructure and mechanical properties of dual-phase steels. Furthermore, the precipitation behavior and yield ratio are discussed. The study demonstrates that it is possible to obtain tensile strength and elongation of 780 MPa and 22 pct, respectively, at the two cooling schedules investigated. The microstructure consists of 90 pct ferrite and 10 pct martensite when subjected to moderate air cooling and low temperature coiling, such that the yield ratio is a low 0.69. The microstructure consists of 75 pct ferrite and 25 pct granular bainite with a high yield ratio of 0.84 when the steel is directly cooled to the coiling temperature. Compared to the conventional dual-phase steels, the high yield strength is attributed to precipitation hardening induced by nanoscale TiC particles and solid solution strengthening by high Si content. The interphase precipitates form at a suitable ledge mobility, and the row spacing changes with the rate of ferrite transformation. There are different orientations of the rows in the same grain because of the different growth directions of the ferrite grain boundaries, and the interface of the two colonies is devoid of precipitates because of the competitive mechanisms of the two orientations.
    Electronic ISSN: 1543-1940
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-09-27
    Description: The goal of this work was to identify the inclusions in lamellar graphite cast iron in an effort to explain the nucleation of the phases of interest. Four samples of approximately the same carbon equivalent but different levels of sulfur and titanium were studied. The Ti/S ratios were from 0.15 to 29.2 and the Mn/S ratios from 4.2 to 48.3. Light and electron microscopy were used to examine the unetched, color-etched, and deep-etched samples. It was confirmed that in irons with high sulfur content (0.12 wt pct) nucleation of type-A and type-D graphite occurs on Mn sulfides that have a core of complex Al, Ca, Mg oxide. An increased titanium level of 0.35 pct produced superfine interdendritic graphite (~10  μ m) at low (0.012 wt pct) as well as at high-S contents. Ti also caused increased segregation in the microstructure of the analyzed irons and larger eutectic grains (cells). TiC did not appear to be a nucleation site for the primary austenite as it was found mostly at the periphery of the secondary arms of the austenite, in the last region to solidify. The effect of titanium in refining the graphite and increasing the austenite fraction can be explained through the widening of the liquidus-eutectic temperature interval (more time for austenite growth) and the decrease in the growth rate of the graphite because of Ti absorption on the graphite. The fact that Ti addition produced larger eutectic cells supports the theory that Ti is not producing finer graphite because of a change in the nucleation potential, but because of lower growth rate of the graphite in between the dendrite arms of a larger fraction of austenite. In the presence of high-Ti and S, (MnTi)S star-like and rib-like inclusions precipitate and act as nuclei for the austenite.
    Electronic ISSN: 1543-1940
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-09-27
    Description: This research work studied the effect of boron additions (14, 33, 82, 126, and 214 ppm) on the hot ductility behavior of a low carbon advanced ultra-high strength steel. For this purpose, specimens were subjected to a hot tensile test at different temperatures [923 K, 973 K, 1023 K, 1073 K, 1173 K, and 1273 K (650 °C, 700 °C, 750 °C, 800 °C, 900 °C, and 1000 °C)] under a constant true strain rate of 10 −3  s −1 . The reduction of area (RA) of the tested samples until fracture was taken as a measure of the hot ductility. In general, results revealed a marked improvement in hot ductility from 82 ppm B when the stoichiometric composition for BN (0.8:1) was exceeded. By comparing the ductility curve of the steel with the highest boron content (B5, 214 ppm B) and the curve for the steel without boron (B0), the increase of hot ductility in terms of RA is over 100 pct. In contrast, the typical recovery of hot ductility at temperatures below the Ar 3 , where large amounts of normal transformation ferrite usually form in the structure, was not observed in these steels. On the other hand, the fracture surfaces indicated that the fracture mode tends to be more ductile as the boron content increases. It was shown that precipitates and/or inclusions coupled with voids play a meaningful role on the crack nucleation mechanism, which in turn causes hot ductility loss. In general, results are discussed in terms of boron segregation and precipitation on austenitic grain boundaries during cooling from the austenitic range and subsequent plastic deformation.
    Electronic ISSN: 1543-1940
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-09-27
    Description: Intergranular cracking and void nucleation occur over extended periods of time in alloy 617 when subjected to stress at high temperatures. Damage occurs inhomogeneously with some boundaries suffering failure, while others are seemingly immune to creep. Crack propagation associated with grain size, and grain boundary character was investigated to determine which types of grain boundaries are susceptible to damage and which are more resistant. Electron backscatter diffraction and a stereological approach to obtain the five-parameter grain boundary distribution were used to measure the proportions of each type of boundary in the initial and damaged structures. The samples were crept at 1273.15 K (1000 °C) at 25 MPa until fracture. It was found that in addition to low-angle and coherent twin boundaries, other low index boundary plane grain boundaries with twist character are relatively resistant to creep.
    Electronic ISSN: 1543-1940
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2013-09-27
    Description: Microstructural characterization was used to examine the changes that occur in an Mg-6Sn-5Zn-0.3Na alloy from casting to extrusion at either 623 K or 723 K (350 °C or 450 °C) followed by artificial aging at 473 K (200 °C). In particular, the partitioning of Na was examined at each step using STEM-EDS mapping. Na atoms were found to preferentially partition to the Mg-Zn phase when present. After extrusion, when no Mg-Zn was observed, the spherical Mg 2 Sn particles were found to be enriched in Na, particularly at the higher extrusion temperature. Artificial aging following extrusion resulted in a change in Na partitioning, and a coarse distribution of Mg-Zn precipitate rods. Na microadditions led to a high as-extruded hardness, but a significant tension–compression yield asymmetry was still observed at room temperature. The compressive yield strength was found to decrease significantly after 1000 hours of aging.
    Electronic ISSN: 1543-1940
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2013-09-27
    Description: A metallographic method was used to determine the solvus temperature of β phase in 5083 aluminum alloy. For a more accurate investigation, experiments were carried out from two directions. Consequently, the first reported actual solvus temperature of the Mg-rich phase in the alloy was determined to be 562.5 ± 1.5 K (289.5 ± 1.5 °C), which was 50 K (50 °C) higher than that of the commonly accepted value of the alloy 5083 deduced from the binary phase diagram. A new Cu-bearing phase in the alloy was also first identified metallographically with scanning electron microscopy and its implications in determining the β solvus temperature were discussed.
    Electronic ISSN: 1543-1940
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2013-09-27
    Description: The durability against electromigration of an annealing twinned Ag-8Au-3Pd wire is about double that of the conventional grained wire under electrical current stressing of 1.23 × 10 5  A/cm 2 . During electromigration, a particular morphology of surface reconstruction comprising a stepwise structure and hillocks can be observed in this annealing twinned wire. The stepwise structure, which has been correlated to longer electromigration life, is postulated to result from dislocation slips driven by electron wind collisions and thermal diffusion of metallic atoms. The simultaneous processes of primary and secondary slips in crossing directions cause hillocks to form at the intersections of both slips. The results also indicated that the electrical current could enhance the grain growth in both wires but had an insignificant effect on the formation of annealing twins.
    Electronic ISSN: 1543-1940
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2013-09-27
    Description: Carbon enrichment in the austenite transformed from martensite during intercritical annealing was measured by electron probe microanalyzer and three-dimensional atom probe microscopy in Fe-2Mn-0.3C and Fe-0.35C alloys. At early stages of the transformation, negligible Mn partitioning occurs, and carbon content in austenite is higher than orthoequilibrium and paraequilibrium predictions. This is presumably attributed to finite intrinsic interface mobility and/or solute drag effect. The resultant free energy dissipation at interface was estimated.
    Electronic ISSN: 1543-1940
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2013-09-27
    Description: Nanocrystalline neodymium-doped ceria solid solutions with Nd 3+ concentrations varying from 4 to 20 mol pct have been synthesized by gel combustion method, using urea-formaldehyde as fuel for Nd doping. The combustion reaction is explained through differential scanning calorimetry (DSC)-differential thermogravimetric analysis (TGA), whereas the synthesized materials are characterized through X-ray diffractometry (XRD), field-emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM). The phase obtained from the exothermic reaction contains Nd-substituted CeO 2 . The deviation of the lattice parameter from Vegard’s law and the decrease in crystallite size with dopant concentration has been explained. The as-synthesized particles are largely nanoporous single crystallites, existing in loosely held spherical-shaped agglomerates. The size of the agglomerates increases with increasing dopant content. High-resolution TEM (HRTEM) reveals the fact that the unit cells are strained.
    Electronic ISSN: 1543-1940
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2013-09-27
    Description: The three-dimensional morphologies of the Fe-bearing intermetallics in a semisolid-processed Al-Mg-Si alloy were examined after extracting the intermetallics. α c -AlFeSi and β -AlFeSi are the major Fe-bearing intermetallics. Addition of Al-Ti-B grain refiner typically promotes β -AlFeSi formation. β -AlFeSi was observed with a flat, plate-like morphology with angular edges in the alloy with and without grain refiner, whereas α c -AlFeSi was observed as “flower”-like morphology in the alloy with grain refiner.
    Electronic ISSN: 1543-1940
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2013-09-27
    Description: The competitive grain growth in bicrystal samples during unidirectional solidification of a Ni-based superalloy was found to depend on secondary dendrites perpendicular to the grain boundary of bicrystal samples, rather than primary dendrites parallel to the thermal gradient as generally recognized. The primary dendrite orientation, however, had significance for the dendrite blocking in overgrowth processes and the resultant overgrowth rate during competitive grain growth.
    Electronic ISSN: 1543-1940
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2013-09-27
    Description: Additive-manufactured aluminum alloy deposits were analyzed using neutron diffraction to characterize the effect of intermediate stress relief anneal heat treatment on bulk residual stresses in the final part. Based on measured interplanar spacing, stresses were calculated at various locations along a single bead, stacked wall deposit. A comparison between an uninterrupted deposited wall and an interrupted, stress-relieved, and annealed deposited wall showed a measureable reduction in residual stress magnitude at the interface with a corresponding shift in stress character into the deposit. This shift changes the interface stresses from purely compressive to partially tensile. The residual stress profile varied along the length of the deposit, and the heat-treatment procedure reduced the overall magnitude of the stress at the interface by 10 through 25 MPa. These results are interpreted in terms of thermal gradients inherent to the process and compared with prior residual stress-characterization studies in additive-manufactured metallic structures.
    Electronic ISSN: 1543-1940
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2013-09-27
    Description: Microstructure, texture, and microtexture in Ti-6Al-2Sn-4Zr-2Mo-0.1Si billet/bar of three different diameters (57, 152, and 209 mm) were quantified using backscattered electron imaging and electron backscatter diffraction. All three billets exhibited a microstructure comprising a large fraction (≥70 pct) of primary alpha particles, the average size of which decreased and aspect ratio increased with increasing reduction/decreasing billet diameter, or trends suggestive of low final hot working temperatures and/or slow cooling rates after deformation. Appreciable radial variations in the volume fraction and aspect ratio of alpha particles were noticeable only for the smallest-diameter billet. Alpha-phase textures were typical of axisymmetric deformation, but were relatively weak (~3× random) for all billet diameters. By contrast, bands of microtexture, which were multiple millimeters in length along the axial direction, were relatively strong for all of the materials. The intensity and radial thickness of the bands tended to decrease with decreasing billet diameter, thus indicating the important influence of imposed strain on the elimination of microtexture and the possible influence of surface preform microstructure following the beta quench on the evolution of microstructure and microtexture.
    Electronic ISSN: 1543-1940
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2013-04-10
    Description: Twin roll casting has been used to produce sheet of Mg 60 Cu 29 Gd 11 bulk metallic glass (BMG). Sheet can be produced with thicknesses between 1 and 4 mm, the width of sheet produced can be between 25 and 75 mm. The dimensional stability of the produced sheet in a cast run is ±1 mm in the width direction and ±0.05 mm in the thickness direction. As with all magnesium-based BMGs the sheet produced is strong yet brittle at room temperature. The maximum flexural stress of a twin roll cast Mg 60 Cu 29 Gd 11 BMG strip is 150 MPa with a flexural strain of 0.005. The Charpy impact energy of a Mg 60 Cu 29 Gd 11 BMG strip is 0.02 J. In order to improve the toughness values of the Mg 60 Cu 29 Gd 11 , BMG strip laminates of BMG and aluminum alloy (UNS A91100) were produced via roll bonding. The introduction of aluminum layers to the sheet structure provides a barrier to shear band movement stopping the sudden catastrophic failure of the sheet. After rolling the BMG was examined via X-ray diffraction (XRD) to confirm that the BMG layer remained amorphous. The flexural stress, flexural strain, and Charpy impact energy properties of BMG-Al laminates are improved when compared to monolithic glass properties. The flexural stress values for laminates compared to the monolithic glass improve by 60 pct from 150 to 250 MPa. The flexural strain values improve by over an order of magnitude from 0.005 to 0.14. The Charpy impact energies increase by 2 orders of magnitude from 0.02 to 2.5 J.
    Electronic ISSN: 1543-1940
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2013-04-10
    Description: Coarse-grained commercially pure Cu was subjected to equal channel angular pressing at room temperature for 2 passes and 12 passes resulting in grain refinement down to the ultrafine scale. Uniaxial tensile testing revealed that as-ECAP Cu samples have very high strength, but low uniform elongation and elongation to failure, whereas small punch testing showed that strain in biaxial stretching of the as-ECAP Cu specimens was comparable to that in the coarse-grained Cu. Analysis of surface relief demonstrated extensive microlocalization of plastic flow into microshear bands during biaxial stretching of the as-ECAP Cu specimens. The effect of microstructure and stress state on formability of the material and the mechanisms governing its plastic deformation are discussed. It is suggested that although the high strength as-ECAP Cu exhibits poor ductility in uniaxial tension, in other strain paths such as biaxial stretching, it can show high formability which is sufficient for metal-forming processes.
    Electronic ISSN: 1543-1940
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2013-04-10
    Description: Two nickel-base superalloys are joined via transient liquid phase (TLP) bonding with boron as the MPD. Boride formation is observed in the parent materials at some distance from the solid/liquid interface. The boron concentration profile over the joint is measured with glow discharge optical emission spectroscopy (GDOES). Boron concentration peaks are observed corresponding to the boride formation. Boron distribution is discussed on the basis of theoretical predictions in the literature. It is concluded that diffusion of another element is necessary to explain the results with the second element influencing the solubility of boron.
    Electronic ISSN: 1543-1940
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2013-04-10
    Description: Microstructure evolution of a low-carbon steel with the initial microstructure of ferrite matrix plus cementite particles during hot compression deformation was investigated at the strain rates of 0.001 s −1 , 0.01 s −1 , and 1 s −1 at 973 K (700 °C) by means of field-emission scanning electron microscope, electron backscattered diffraction, and transmission electron microscopy. The results indicated that dynamic recrystallization (DRX) of ferrite took place at all of three strain rates, which can be classified as discontinuous DRX at 0.001 s −1 , 0.01 s −1 , and as continuous DRX at 1 s −1 . The formation of the nuclei of DRX of ferrite was mainly ascribed to the occurrence of particle-stimulated nucleation (PSN), accompanied with the lattice rotation and the formation of new high-angle boundaries. The occurrence of PSN was dependent on the development of a subgrain in the regions with high density of dislocations around cementite particles, without the need for the formation of the deformation zone.
    Electronic ISSN: 1543-1940
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2013-04-10
    Description: The primary transformation kinetics of nanoicosahedral quasicrystalline (QC) phase formation were investigated in Zr 65 Al 7.5 Ni 10 Cu 12.5 Pd 5 bulk metallic glass (BMG) in various relaxation states. A less relaxed (unrelaxed) BMG exhibited higher activation energy for atomic diffusion in the glassy structure than that of a relaxed one, which represents a change in the nucleation and grain growth kinetics of the primary phase with the relaxation state. Actually, the grain growth rate of a QC particle near the crystallization temperature was approximately 1 × 10 −9  m/s in the less relaxed BMGs, which was less than half of that in the relaxed BMGs. In contrast, the calculated homogeneous nucleation rate significantly increased in the less relaxed samples. It increased with the volume fraction transformed in the early stage. It is concluded that the relaxation state of glassy alloys markedly affects the primary transformation kinetics. The current study also indicates a necessity of development of the relaxation state for structure controlling in industrial applications of BMGs.
    Electronic ISSN: 1543-1940
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2013-04-10
    Electronic ISSN: 1543-1940
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2013-04-10
    Description: It has been well known that the flaking failure in rolling contact fatigue (RCF) originates from nonmetallic inclusions in steels, and their apparent size is one of the important factors affecting RCF life. However, the influence of inclusion shape on the RCF life has not been fully clarified. In this study, attention was paid to the influence of the inclusion shape on the RCF life. This was evaluated by using carburized JIS-SCM420 (SAE4320) steels that contained two different shapes of MnS—stringer type and spheroidized type—as inclusions. Sectional observations were made to investigate the relation between the occurrence of shear crack in the subsurface and the shape of MnS. It was found that the RCF life was well correlated with the length of MnS projected to the load axis, and the initiation of shear crack in subsurface was accelerated as the length of MnS increased.
    Electronic ISSN: 1543-1940
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2013-04-10
    Description: There is a growing demand for single-use disposable polymer devices with features at submicron scales. This requires resilient tooling which can be patterned to scales of the order of hundreds of nanometers. The requisite topology can be imparted to silicon, but it is too brittle to be of use in a die to mold thousands of plastic parts. The polycrystalline nature of tool steel means that it cannot be patterned with submicron detail. Some bulk amorphous alloys have the requisite mechanical properties to be viable as materials for such dies, and can be patterned— e.g. , via embossing as a supercooled liquid into MEMS silicon or using focused ion beam (FIB)—with submicron features which may persevere over many thousands of molding cycles. The composition of the amorphous alloy must be carefully selected to suit the particular molding application (polymer/process). The state-of-the-art methodology is presented, along with results of our recent experimental investigations.
    Electronic ISSN: 1543-1940
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2013-04-10
    Description: The fracture of eutectic Si particles dictates the fracture characteristics of Al-Si based cast alloys. The morphology of these particles is found to play an important role in fracture initiation. In the current study, the effects of strain rate, temperature, strain, and heat treatment on Si particle fracture under compression were investigated. Strain rates ranging from 3 × 10 −4 /s to 10 2 /s and three temperatures RT, 373 K, and 473 K (100 °C and 200 °C) are considered in this study. It is found that the Si particle fracture shows a small increase with increase in strain rate and decreases with increase in temperature at 10 pct strain. The flow stress at 10 pct strain exhibits the trend similar to particle fracture with strain rate and temperature. Particle fracture also increases with increase in strain. Large and elongated particles show a greater tendency for cracking. Most fracture occurs on particles oriented nearly perpendicular to the loading axis, and the cracks are found to occur almost parallel to the loading axis. At any strain rate, temperature, and strain, the Si particle fracture is greater for the heat-treated condition than for the non-heat-treated condition because of higher flow stress in the heat-treated condition. In addition to Si particle fracture, elongated Fe-rich intermetallic particles are also seen to fracture. These particles have specific crystallographic orientations and fracture along their major axis with the cleavage planes for their fracture being (100). Fracture of these particles might also play a role in the overall fracture behavior of this alloy since these particles cleave along their major axis leading to cracks longer than 200 μm.
    Electronic ISSN: 1543-1940
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2013-04-10
    Description: In the present study, surface melting of a magnesium alloy, ZE41, was performed with an Nd:YAG laser using different laser parameters. The microstructure of the laser-treated and untreated specimens was analyzed by optical and scanning electron microscopy and X-ray diffraction. Corrosion resistance of the different laser-treated specimens along with the untreated alloy was characterized using electrochemical impedance spectroscopy and weight loss measurements in 0.001 M sodium chloride solution. Although the laser processing parameters influenced the microstructure and the melt depth of the laser-treated zone, these had little effect on the corrosion resistance of the alloy.
    Electronic ISSN: 1543-1940
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2013-04-10
    Description: In this paper, effects of cooling rates on glass formation and magnetic behavior of the Fe 73.0 C 7.0 Si 3.3 B 5.0 P 8.7 Mo 3.0 (at. pct) alloy were investigated via different purging gases ( i.e. , helium and argon) during suction casting. X-ray diffraction patterns and transmission electron microscopy characterization confirmed that the maximum attainable diameter for glass formation is increased from 5 to 7 mm with the helium as the purging gas, relative to the argon. Meanwhile, the coercivity value ( H c ) of the sample cast in helium is almost 5 times larger than that fabricated in argon, although the magnetization saturation in these two alloys is similar. Our pair distribution function analysis, density, and positron annihilation lifetime spectroscopy measurements indicated that the sample cast in helium possesses more free volume; however, the difference between them is insubstantial. Further, experimental results revealed that the residual stress in the samples cast under helium is much larger than that in those prepared in Argon, which could be responsible for the abrupt change in the coercivity.
    Electronic ISSN: 1543-1940
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2013-04-10
    Description: The effect of annealing temperature on the crystallinity, thermoelectric properties, and surface morphology of the Bi 0.5 Sb 1.5 Te 3 thin films prepared on SiO 2 /Si substrate by radio-frequency (RF) magnetron sputtering was investigated using X-ray diffraction (XRD), the four-point probe method, and scanning electron microscopy (SEM). XRD results show that the crystallite structure of the Bi x Sb 2– x Te 3 thin films belong to Bi 0.5 Sb 1.5 Te 3 . When the Bi x Sb 2– x Te 3 thin films were annealed between 423 K and 523 K (150 °C and 250 °C) for 10  minutes, the crystallinity of the thin films continuously increases with the temperature increase. In addition, the (015) reflection plane as the preferred orientation and the oxidation compound of Bi 3.73 Sb 1.5 O 3 first appeared when the Bi 0.5 Sb 1.5 Te 3 thin films were annealed at 523 K (250 °C) for 10 minutes. An activation energy of 51.66 kJ/mol for crystallite growth of Bi 0.5 Sb 1.5 Te 3 thin films annealed between 423 K and 523 K (150 °C and 250 °C) for 10 minutes was obtained. The resistivity was 2.69 × 10 2 and 5.93 × 10  μ Ω·m, respectively, for the as-deposited Bi 0.5 Sb 1.5 Te 3 thin films and annealed at 523 K (250 °C) for 10 minutes. The maximum values of the Seebeck coefficient and power factor were 256.5  μ V/K and 1.12 × 10 3   μ W/m·K 2 , respectively, for the Bi 0.5 Sb 1.5 Te 3 thin films annealing treatment at 523 K (250 °C) for 10 minutes.
    Electronic ISSN: 1543-1940
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2013-04-10
    Description: The accurate prediction of alloys’ properties introduced by heat treatment has been considered by many researchers. The advantages of such predictions are reduction of test trails and materials’ consumption as well as time and energy saving. One of the most important methods to predict hardness in quenched steel parts is Quench Factor Analysis (QFA). Classical QFA is based on the Johnson–Mehl–Avrami-Kolmogorov (JMAK) equation. In this study, a modified form of the QFA based on the work by Rometsch et al. is compared with the classical QFA, and they are applied to prediction of hardness of steels. For this purpose, samples of CK60 steel were utilized as raw material. They were austenitized at 1103 K (830 °C). After quenching in different environments, they were cut and their hardness was determined. In addition, the hardness values of the samples were fitted using the classical and modified equations for the quench factor analysis and the results were compared. Results showed a significant improvement in fitted values of the hardness and proved the higher efficiency of the new method.
    Electronic ISSN: 1543-1940
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2013-04-10
    Description: In this paper, the evolution of work-hardening and dynamic recovery rates vs the flow stress increase ( σ  −  σ y ) in Al-Mg-Si alloys is presented. The experimental data have been extracted from stress–strain curves. All curves show an initial very rapid decrease in slope of the σ –ε curve, which is associated with the elastic–plastic transition. After the elastic–plastic transition, there are typically two distinctive behaviors. For underaged alloys, there is an approximately linear decrease of work-hardening rate as ( σ  −  σ y ) increases. However, for overaged alloys after elastic–plastic transition, there is a plateau in the work-hardening rate followed by an almost linear decrease. The maximum work-hardening and dynamic recovery rates are found to be dependent on the aging state. In order to investigate these phenomena, a model has been employed to simulate the work-hardening behavior of Al-Mg-Si alloys. The model is based on a modified version of Kocks–Mecking–Estrin (KME) model, in which there are three main components: (1) hardening due to forest dislocations, grain boundaries, and sub-grains; (2) hardening due to the precipitates; and (3) dynamic recovery. The modeling results are discussed and compared with the experimental data.
    Electronic ISSN: 1543-1940
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2013-04-10
    Description: The effect of cobalt on bainite kinetics formation in a 1C-1.5Si wt pct steel is investigated. Two laboratory casts were manufactured with no or 2.5Co wt pct. Bainite transformation kinetics at 493 K, 523 K, and 573 K (220 °C, 250 °C, and 300 °C) were measured using dilatometry. Careful control of the alloy composition, in particular with respect to carbon content, allowed unambiguous identification of the expected accelerating effect of Co. This effect was quantified and compared to that of other possible alloying additions. It is shown that Co has an acceleration effect of around 18 to 29 pct (per wt pct added) for bainite formation between 220 °C and 300 °C. Comparison with published data indicates that this influence is orders of magnitude smaller than that achieved through reduction of C, Mn, or Cr. The influence on hardness is quantified and shown to be significant, and possible origins for hardening are discussed.
    Electronic ISSN: 1543-1940
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2013-04-10
    Description: In the present study, the diffusion bonding of 17-4 precipitation hardening stainless steel to Ti alloy with and without nickel alloy as intermediate material was carried out in the temperature range of 1073 K to 1223 K (800 °C to 950 °C) in steps of 298 K (25 °C) for 60 minutes in vacuum. The effects of bonding temperature on interfaces microstructures of bonded joint were analyzed by light optical and scanning electron microscopy. In the case of directly bonded stainless steel and titanium alloy, the layerwise α -Fe + χ, χ, FeTi + λ, FeTi +  β -Ti phase, and phase mixture were observed at the bond interface. However, when nickel alloy was used as an interlayer, the interfaces indicate that Ni 3 Ti, NiTi, and NiTi 2 are formed at the nickel alloy-titanium alloy interface and the PHSS-nickel alloy interface is free from intermetallics up to 1148 K (875 °C) and above this temperature, intermetallics were formed. The irregular-shaped particles of Fe 5 Cr 35 Ni 40 Ti 15 have been observed within the Ni 3 Ti intermetallic layer. The joint tensile and shear strength were measured; a maximum tensile strength of ~477 MPa and shear strength of ~356.9 MPa along with ~4.2 pct elongation were obtained for the direct bonded joint when processed at 1173 K (900 °C). However, when nickel base alloy was used as an interlayer in the same materials at the bonding temperature of 1148 K (875 °C), the bond tensile and shear strengths increase to ~523.6 and ~389.6 MPa, respectively, along with 6.2 pct elongation.
    Electronic ISSN: 1543-1940
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2013-04-10
    Description: Bioactive monetite (anhydrous calcium hydrogen phosphate, CaHPO 4 ) has been successfully synthesized using the sonochemical method in the presence of a ternary solvent system of water/ethylene glycol (EG)/ N , N -dimethylformamide (DMF). The morphology and chemical composition of the synthesized powders were characterized using field emission scanning electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy. The results indicated that with increasing sonication time, the morphology changed slightly from a plate-like one to a combination of plates (flower-like). The formation of flower-like nanosheets requires an optimum time of 40 minutes, and the nanosheets have an average thickness of 210 ± 87 nm. The concentration of DMF clearly influences the morphology and crystal phase of the products. The ideal product was obtained using a water/EG DMF ratio of 1:2.
    Electronic ISSN: 1543-1940
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2013-04-10
    Description: The variation of morphology and mechanical properties of Al6061 automotive aluminum alloy due to friction stir welding (FSW) and gas tungsten arc welding (GTAW) was investigated by optical metallography, scanning electron microscopy, microhardness measurement, X-ray diffraction, tensile testing, and fractography. The center-line dendrite emergence and microhardness reduction in the heat-affected zone were observed in the GTAW process. Although similar microhardness reduction with respect to the base metal was observed in the FSW samples, higher HVs were obtained for the FSW rather than the GTAW process at almost all heat-affected locations. Ultimate tensile strengths of the FSW and the GTAW samples in the transverse direction were ~0.57 and ~0.35 of the base metal, respectively. Post-weld aging improved the strength, but reduced the ductility of the welding.
    Electronic ISSN: 1543-1940
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2013-12-12
    Description: Surface A356 aluminum alloy matrix composites containing micro and nanosized Al 2 O 3 are prepared by a new approach utilizing high-velocity oxy-fuel spraying and friction stir processing (FSP). Optical and scanning electron microscopy, microhardness, and wear tests were used to characterize the surface composites. Results indicated that, the presence of Al 2 O 3 in matrix can improve the mechanical properties of specimens. The microhardness of surface composites containing micro and nanosized Al 2 O 3 were 89.8 ± 2.6 HV and 109.7 ± 2.5 HV, respectively, which were higher than those for the as-received (79.6 ± 1.1 HV) and the FSPed A356-T6 with no alumina powder (66.8 ± 0.9 HV). Surface composites revealed low friction coefficients and wear rates, which were significantly lower than those obtained for substrate. The wear mass losses of the as-received, the FSPed, and surface micro and nanocomposite specimens after 500-m sliding distance were 50.5, 55.6, 31, and 17.2 mg, respectively. Scanning electron microscopy tests revealed different wear mechanisms on the surface of the wear test specimens.
    Electronic ISSN: 1543-1940
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2013-12-12
    Description: Electron beam welding of pre-aged cast 718 produced a slender Laves phase, while welds from solutionized cast 718 exhibited a blocky Laves phase with an initial stage of δ precipitation and formation of γ′+γ″ strengtheners after post weld heat treatment (PWHT). The presence of primary strengthener and coarse Laves particles in PWHT weld may cause reduction of the micro-plastic zone ahead of a crack, leading to a significant decrease in Charpy impact toughness at 77 K (−196 °C).
    Electronic ISSN: 1543-1940
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2013-12-12
    Description: This article presents the study of the environment-assisted cracking (EAC) of twinning induced plasticity (TWIP) steels that possess remarkable combination of strength and ductility. EAC of a high-manganese TWIP steel was investigated, using aqueous solutions of different pH, which provided a mechanistic insight into the combined role of the localized deformation due to twinning and the electrochemical characteristic of the steel. Slow strain rate testing in inert environment as well as in acidic, neutral and alkaline solutions, and the fractography of the failed specimens have suggested a profound role of twinning in EAC crack propagation.
    Electronic ISSN: 1543-1940
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2013-12-12
    Description: The effect of thermo-mechanical treatment on the mechanical properties of a novel metastable β -type Ti-30Nb-1Mo-4Sn (wt pct) alloy has been investigated. The solution-treated alloy consists of β and α ″ phases and exhibits a two-stage yielding with a low yield stress (around 100 MPa). After cold rolling at a reduction of 87.5 pct and subsequent annealing treat at 623 K (350 °C) for 30 minutes, a fine microstructure with nano-sized α precipitates distributed in small β grains as well as high density of dislocations was obtained to achieve a yield strength of 954 MPa and an ultimate tensile strength of 999 MPa. With low stability of β phase and small volume fraction of α precipitates, the annealed specimen exhibits a low Young’s modulus of 45 GPa. Such an excellent combination of the low elastic modulus and high strength in mechanical properties indicates a great potential candidate for biomedical applications.
    Electronic ISSN: 1543-1940
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2013-12-12
    Description: The influence of solidification rate on the solution-treatment response has been investigated for an Al-7Si-0.3Mg alloy and an Al-8Si-3Cu-0.5Mg alloy. The concentrations of Mg, Cu, and Si in the matrix after different solution-treatment times were measured using a wavelength dispersive spectrometer. All Mg dissolves into the matrix for the Al-Si-Mg alloy when solution treated at 803 K (530 °C) because the π -Fe phase is unstable and transforms into short β -Fe plates which release Mg. The Q-Al 5 Mg 8 Cu 2 Si 6 phase do not dissolve completely at 768 K (495 °C) in the Al-Si-Cu-Mg alloy and the concentration in the matrix reached 0.22 to 0.25 wt pct Mg. The distance between π -Fe phases and Al 2 Cu phases was found to determine the solution-treatment time needed for dissolution and homogenization for the Al-Si-Mg alloy and Al-Si-Cu-Mg alloy, respectively. From the distance between the phases, a dimensionless diffusion time was calculated which can be used to estimate the solution-treatment times needed for different coarsenesses of the microstructure. A model was developed to describe the dissolution and homogenization processes.
    Electronic ISSN: 1543-1940
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2013-10-24
    Description: The microstructures of the Cu-35wt pct Fe alloys were investigated by melt-fluxing in combination with cyclic superheating and melt-spinning technique, respectively. Using the melt-fluxing with cyclic superheating technique, it was found that a complicated sub-microstructure formed in the separated minor phase, when the undercooling was 120 K (120 °C). The processes of the phase transformation from a liquid state to room temperature for undercooled Cu-35wt pct Fe alloys were discussed, in order to understand the solidification with metastable liquid separation. By means of melt-spinning technique, it was indicated that the microstructure of solidification for Cu-35wt pct Fe alloys could be refined due to the high cooling rate.
    Electronic ISSN: 1543-1940
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2013-10-24
    Description: Fast synchrotron X-ray microtomography was used to directly observe damage accumulation in a semi-solid Al-15 wt pct Cu alloy with a solid fraction of ~0.75 during isothermal tensile deformation. The evolution of damage was quantified in terms of size distribution of internal and surface-connected damage, strain mapping, and volume change to provide an insight into hot tear formation. A combination of existing void growth, void nucleation, and void coalescence all contribute to the final failure, although each dominates during different stages of deformation. Specifically, internal voids are shown to grow and coalesce from the region of high triaxiality at the center of the gage length outward and prove to be the contributing factor to final failure caused by insufficient liquid feeding.
    Electronic ISSN: 1543-1940
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2013-10-24
    Description: Whiskers of pure Ag as long as 10 cm are found in Ag-In-Se alloys. Striations and faceted microstructures are observed, and a [200] preferred growth orientation has been determined. The compositional regime of whisker growth is about 15 to 30 at. pct Se, and is within the miscibility gap. For these alloys at higher temperatures, two liquids are formed, with the more Ag-rich liquid at the bottom. Stress is developed during solidification, and whisker formation is a result of stress release.
    Electronic ISSN: 1543-1940
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2013-10-24
    Description: In the current study, test bars of cast aluminum alloys EN AC-AlSi8Cu3 and EN AC-AlSi7Mg0.3 were produced with a defined amounts of shrinkage pores and oxides. For this purpose, a permanent mold with heating and cooling devices for the generation of pores was constructed. The oxides were produced by contaminating the melt. The specimens and their corresponding defect distributions were examined and quantified by X-ray computer tomography (CT) and quantitative metallography, respectively. A special test algorithm for the simultaneous image analyses of pores and oxides was developed. Fatigue tests were conducted on the defective samples. It was found that the presence of shrinkage pores lowers the fatigue strength, and only few oxide inclusions were found to initiate fatigue cracks when shrinkage pores are present. The results show that the pore volume is not sufficient to characterize the influence of shrinkage pores on fatigue life. A parametric model for the calculation of fatigue life based on the pore parameters obtained from CT scans was implemented. The model accounts for the combined impact of pore location, size, and shape on fatigue life reduction.
    Electronic ISSN: 1543-1940
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2013-10-24
    Description: Heavy hydro turbine castings are made of martensitic stainless steel, which undergoes martensitic transformation during the casting process. Therefore, both residual stress and deformation are affected not only by uneven cooling but also by martensitic transformation. In this paper, a coupled thermo-martensitic phase transformation–stress model was established and it was implemented by further development with ABAQUS, which also incorporated the thermal and mechanical boundaries, and the contact pair between the casting and mold. The system was applied to the analysis of a heavy hydro blade casting. Results of stress, displacement, and martensite phase fraction were obtained. It is found that martensitic transformation has a significant effect on the stress and deformation results. The displacement in the normal direction of local areas was calculated to represent deformation in the x , y , and z directions. The deformation of the blade casting occurred mainly at the two thin corners with 18 and 22 mm in opposite tendency. The simulated results were compared with the measured machining allowance, and they are basically in agreement.
    Electronic ISSN: 1543-1940
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2013-10-24
    Description: The need to reach the mechanical performance of age hardened Al-Mg-Si (6000 series) base alloy of structures, the assemblies of which are processed by laser welding, has required the efficiency evaluation of age hardening heat treatment performed after welding. It has been established that post-laser aging treatments are not efficient enough to give laser welded assemblies the expected performance of hardened Al base alloy in term of micro-hardness, ultimate tensile strength, and failure deformation. This lack of efficiency has been attributed to insufficient cooling kinetic during laser welding rather than to composition deviation of the bead due to the use of Si rich filler. The interposition of solution heat treatment between welding and aging treatment has been proposed and has shown its efficiency to give the laser welded zone a sufficient strength, similar to that of Al base alloy.
    Electronic ISSN: 1543-1940
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2013-10-24
    Description: Shielded metal arc welding was applied to AISI 1045 medium carbon steel. The microstructural changes and electrochemical corrosion behavior of the heat-affected zone (HAZ), base metal (BM), and weld zone (WZ) were investigated. The effect of welding passes on microstructural changes of BM, HAZ, and WZ were elucidated using optical microscopy, potentiodynamic Tafel scan, and linear polarization resistance (LPR) methods in plain water and 3.5 pct (w/v) NaCl solution under standard temperature and pressure using corrosion kinetic parameters. From microstructural observations, the variations in ferrite morphology in the BM and WZ showed dissimilar electrochemical corrosion behavior and a corrosion rate than that of HAZ.
    Electronic ISSN: 1543-1940
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2013-12-12
    Description: In the current study, the effect of Sc addition on the interaction of concurrent precipitation and recrystallization in commercial AA3003 aluminum alloy was investigated using optical microscopy, scanning electron microscopy, and transmission electron microscopy. In case of AA3003 alloy, which was cold rolled to a true strain of 2.20 and heated at a heating rate of 150 K/s, the onset of precipitation and ending of recrystallization are signified by the critical temperature, T C ~740 K (467 °C). There is a change in the shape of the recrystallized grains from pancake-like to equiaxed shape, as the annealing temperature increases greater than T C . In case of AA3003 alloy microalloyed with 0.4 wt pct of Sc, the high no. density precipitation of coherent Al 3 Sc precipitates always occurs before recrystallization because of the small nucleation barrier and high rate of decomposition. This leads to extremely coarse pancake-like recrystallization grains with high fraction of low-angle grain boundaries in the entire annealing temperature range, even at a high brazing temperature of 883 K (610 °C).
    Electronic ISSN: 1543-1940
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2013-12-12
    Description: The possibility of tailoring the characteristics of a liquid metal is an important asset in a wide number of processing techniques. For most of these processes, the nature and degree of the interaction between liquid and solid phases are usually a focus of interest since they determine liquid properties such as wettability and infiltration capacity. Particularly, within the powder metallurgy (PM) technology, it is considered one of the key aspects to obtain high performance steels through liquid phase sintering. In this work, it is proved how thermodynamic and kinetics software is a powerful tool to study the liquid/solid interactions. The assessment of different liquid phase promoters for transient liquid phase sintering is addressed through the use of ThermoCalc and DICTRA calculations. Besides melting temperatures, particular attention is given to the solubility phenomena between the phases and the kinetics of these processes. Experimental validation of thermodynamic results is carried out by wetting and infiltration experiments at high temperatures. Compositions presenting different liquid/solid solubility are evaluated and directly correlated to the behavior of the liquid during a real sintering process. Therefore, this work opens the possibility to optimize liquid phase compositions and predict the liquid behavior from the design step, which is considered of high technological value for the PM industry.
    Electronic ISSN: 1543-1940
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2013-07-26
    Description: Time-resolved in situ X-ray tomography combined with scanning electron microscopy was performed on an Al-Fe diffusion system at 973 K (700 °C) to study the formation of the main intermetallic compounds occurring at the interface. After nucleation on the liquid side of the interface, growth occurs in both liquid and solid directions. In the direction of the solid, growth starts with a particular tongue-like feature which then progressively thickens. The thickening is linked to the deformation of the iron matrix during the formation of the intermetallic compound. Growth in the direction of the liquid is slowed down by erosion.
    Electronic ISSN: 1543-1940
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2013-07-26
    Description: This work was carried out to investigate the effect of different Ti concentrations as a modifying agent on the microstructure and tensile properties of an in-situ Al-15 pctMg 2 Si composite. Cast, modified, and homogenized small ingots were extruded at 753 K (480 °C) at the extrusion ratio of 18:1 and ram speed of 1 mm/s. Various techniques including metallography, tensile testing, and scanning electron microscopy were used to characterize the mechanical behavior, microstructural observations, and fracture mechanisms of this composite. The results showed that 0.5 pctTi addition and homogenizing treatment were highly effective in modifying Mg 2 Si particles. The results also exhibited that the addition of Ti up to 0.5 pct increases both ultimate tensile strength (UTS) and tensile elongation values. The highest UTS and elongation values were found to be 245 MPa and 9.5 pct for homogenized and extruded Al-15 pctMg 2 Si-0.5 pctTi composite, respectively. Fracture surface examinations revealed a transition from brittle fracture mode in the as-cast composite to ductile fracture in homogenized and extruded specimens. This can be attributed to the changes in size and morphology of Mg 2 Si intermetallic and porosity content.
    Electronic ISSN: 1543-1940
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2013-07-26
    Description: Highly concentrated zirconia-carbon nanotube (CNT) water suspensions were prepared using an advanced milling technique. The bead-milling operation parameters were optimized for this system and used to prepare zirconia-stabilized water-based suspensions with different CNT contents. The effects of different milling conditions were studied. The particle dispersion was evaluated by SEM observations on dried suspension. Green’s density and SEM observations of compacts were used to follow the colloidal dispersability of the composites. Materials of tetragonal zirconia and CNTs were prepared with a high concentration of CNTs (1, 5, and 10 wt pct CNT). The homogeneous dispersion and distribution of the fibers in the bulk material after slip casting of the suspension were examined. The samples were sintered using spark plasma sintering (SPS) at 1473 K (1200 °C) and finally, fully dense materials were obtained. The mechanical properties were evaluated using the Vickers indentation technique.
    Electronic ISSN: 1543-1940
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2013-07-26
    Description: Co-Cr-Mo alloys are among the most used alloys for orthopedic implants because of their excellent corrosion resistance, mechanical properties, and biocompatibility. Although there is extensive literature on corrosion properties of Co-Cr-Mo alloys, fewer articles are focused on the synergistic effect of corrosion and wear in a simulated physiological solution. It is generally assumed that the current density measured during wear conditions for passive materials comes from the active area. However, there are no clear data supporting this statement. The current article correlates electrochemical measurements with the active area generated during sliding wear tests. Open circuit potential and current measurements, potentiodynamic scans, and electrochemical impedance spectroscopy were carried out on samples under static and sliding wear conditions. These measurements showed the importance of the active area, where the current coming from the surface not being abraded is negligible. Finally, by combining the sliding wear and electrochemical tests, the synergistic effect of wear and corrosion was characterized for this alloy, documenting the metal carbide's detachment from the cobalt alloy matrix, which leads to a significant increase of total wear volume.
    Electronic ISSN: 1543-1940
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2013-07-26
    Description: This letter introduces a method for designing hierarchical cellular metals employing multipass accumulative bundle extrusion and selective dissolving. The method provides several degrees of freedom for manipulating both the cell-wall properties and architecture of cellular materials. Cellular copper was produced and analyzed as an example of implementing the proposed method. The material hierarchy that can be formed and controlled by means of multipass accumulative extrusion assures strength and enables the material to perform the prescribed functions.
    Electronic ISSN: 1543-1940
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2013-07-26
    Description: Commercial grade 17Cr-7Ni precipitation-hardenable stainless steel has been modified by adding boron in the range 0.45 to 1.8 wt pct and using the chill block melt-spinning technique of rapid solidification (RS). Application of RS has been found to increase the solid solubility of boron and hardness of 17Cr-7Ni precipitation-hardenable stainless steel. The hardness of the boron-modified rapidly solidified alloys has been found to increase up to ~280 pct after isochronal aging to peak hardness. A TEM study has been carried out to understand the aging behavior. The presence of M 23 (B,C) 6 and M 2 (B,C) borocarbides and epsilon-carbide in the matrix of austenite and ferrite with a change in heat treatment temperature has been observed. A new equation for Creq is also developed which includes the boron factor on ferrite phase stability. The study also emphasizes that aluminum only takes part in ferrite phase stabilization and remains in the solution.
    Electronic ISSN: 1543-1940
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2013-07-26
    Description: Plastic pre-strain may decrease the yield strength of metallic materials when stressed in the opposite direction, known as Bauschinger’s effect, which could considerably influence the performance of the materials during cyclic loading processes such as fatigue and fretting. In this study, effects of twin boundary (TW) as an ordered obstacle in a nanoscaled Cu crystal on defects’ generation and annihilation during cyclic tension–compression loading processes were investigated, in comparison with those occurring in a single crystal (SC), using a molecular dynamics simulation technique. It was observed that the Bauschinger’s effect in the nanoscaled TW system was weaker with higher residual strain energy, compared to the SC system; and, the ductility of both the SC and TW systems was increased by the cycling loading, but this increase was smaller for the TW system. Efforts were made to elucidate the mechanisms involved.
    Electronic ISSN: 1543-1940
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2013-07-26
    Description: The influence of solid-state diffusion-controlled solute-loss into additive powder particles (APPs), as determined by particles size, during the equilibration stage of wide-gap brazing, on microstructure and fatigue behavior of a brazed aerospace superalloy was studied. The results, which experimentally confirm previously reported numerical model simulation results, show that, in order to avoid degradation of fatigue life of wide-gap brazement, adequate solute-loss into the APPs, which is necessary to prevent their complete melting, but has not been generally considered, is imperative.
    Electronic ISSN: 1543-1940
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2013-07-26
    Description: Furan, epoxy, and their composites were used to modify pitch binder for TiB 2 /C composite cathode in aluminum electrolysis. The physical-chemical properties of the cathodes have been investigated. When the pitch is modified by furan and epoxy composite, the cathode exhibits the lowest electrolysis expansion (0.60 pct), open porosity (28.80 pct), and electrical resistivity (35.91 μ Ω·m); the highest bulk density (2.54 g·cm –3 ); and compressive strength (44.90 MPa). Results of the semicokes from a scanning electron microscope show that cohesion and toughness are effectively improved, especially in the case of the furan and epoxy composite-modified pitch semicokes. Studies using Fourier transform infrared spectroscopy indicate that an aromaticity index of 0.845 and a condensed degree Abs 880 /Abs 1600 of 0.927 of polynuclear aromatic hydrocarbons are obtained, suggesting that a more complete reaction of the cross-linked curing takes place in the pitch binder modified by furan and epoxy composite, which improves cohesion and toughness of the binder and, thus, enhances the performances of TiB 2 /C composite cathode.
    Electronic ISSN: 1543-1940
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2013-07-26
    Description: The effect of both peritectic-forming elements (Cu and Ag) and eutectic-forming elements (Mg and Al) on the grain refinement of cast pure Zn was investigated. It is found that these four alloying elements lead to effective grain refinement of cast pure Zn, although they have different values of growth restriction factor ( Q ). Mg and Al seem to have better grain refining efficiency for cast pure Zn than Cu and Ag. These results raise questions regarding the mechanisms of grain refinement in Zn-based alloys, and therefore further studies are required.
    Electronic ISSN: 1543-1940
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2013-07-26
    Description: The effect of the solidification condition and alloy composition on the formation of cylindrical pores oriented along the solidification direction was investigated in Ni (100− x ) Al x ( x  = 20, 25, 30, and 50 at. pct) alloys that were solidified unidirectionally in hydrogen atmosphere. It was revealed that the uniformity of the pores strongly correlates with the width of the mushy zone ( i.e. , the region of solid–liquid coexistence) in the solidification front. In alloys with x  = 25 and 50 ( i.e. , NiAl and Ni 3 Al intermetallic compounds, respectively), uniform cylindrical pores were formed, reflecting small freezing intervals, which lead to narrow mushy zones. On the other hand, irregular pores were formed in x  = 20 and 30 two-phase alloys comprising Ni solid-solution and Ni 3 Al phases and Ni 3 Al and NiAl phases, respectively, that had large freezing intervals leading to wide mushy zones. This is because the large amount of primary crystals with dendritic structures prevents the growth of directional pores in the mushy zone. For the x  = 20 and 30 alloys, the increase in the temperature gradient of the solidification front, which decreases the mushy zone width, clearly enhances the uniformity of the pores. Consequently, decreasing the mushy zone width results in the growth of uniform cylindrical pores.
    Electronic ISSN: 1543-1940
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2013-07-26
    Description: The high-temperature deformation behavior of the Ni-base superalloy, Waspaloy, using uniaxial isothermal compression testing was investigated at temperatures above the γ ′ solvus, 1333 K, 1373 K, and 1413 K (1060 °C, 1100 °C, and 1140 °C) for constant true strain rates of 0.001, 0.01, 0.1, and 1 s −1 and up to a true strain of 0.83. Flow softening and microstructural investigation indicated that dynamic recrystallization took place during deformation. For the investigated conditions, the strain rate sensitivity factor and the activation energy of hot deformation were 0.199 and 462 kJ/mol, respectively. Constitutive equations relating the dynamic recrystallized grain size to the deformation temperature and strain rate were developed and used to predict the grain size and strain rate in linear friction-welded (LFWed) Waspaloy. The predictions were validated against experimental findings and data reported in the literature. It was found that the equations can reliably predict the grain size of LFWed Waspaloy. Furthermore, the estimated strain rate was in agreement with finite element modeling data reported in the literature.
    Electronic ISSN: 1543-1940
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2013-07-26
    Description: Magnetic materials such as Fe-Si alloys are magnetized by the rearrangement of their magnetic microstructure and domain wall motion. Understanding magnetic microstructures in the interior of a ferromagnet is essential for the control and reduction of energy losses in electrical devices. The three-dimensional magnetic microstructure of solids is still unknown due to the lack of an appropriate observation technique, and the magnetic domain wall structure inside a ferromagnet has never been observed with sufficiently high resolution. The first observation of the 3D magnetic microstructure of an Fe-6.6 pct Si alloy with a high spatial resolution is reported. The domain walls known to exist inside positive anisotropy cubic materials, i.e. , the 180-deg domain walls and the 90-deg domain walls, were analyzed for the first time. The structure and orientation of the domain walls were found to be very different from the prediction of current theoretic models.
    Electronic ISSN: 1543-1940
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2013-07-26
    Description: Nanocrystalline mechanically alloyed powders of 9Cr-1Mo ferritic steels with and without yttria dispersoids were densified using spark plasma sintering (SPS) to near-theoretical density at a temperature of 1073 K (800 °C). Studies on densification behaviour revealed that steels with dispersoids densified faster when compared to Fe-9Cr-1Mo steel. The evaluation of densification mechanisms during SPS reveals that grain boundary and lattice diffusion to be predominant at relative densities ranging from 〉0.7 to 0.9 in both the alloys.
    Electronic ISSN: 1543-1940
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2013-07-26
    Description: In the present investigation, an attempt has been made to study the effect of capping front layers on the ballistic performance of shielded metal arc-welded armor steel joints which were fabricated with a chromium carbide-rich hardfaced middle layer on the buttered/beveled edge. Two different capping front layer materials were chosen for achieving better ballistic performance, namely, low hydrogen ferritic (LHF) and austenitic stainless steel (SS) fillers. On the other hand, the bottom layers are welded with SS filler for both joints. The consequent sandwiched joint served the dual purpose of weld integrity and penetration resistance of the bullet. It is observed that the penetration resistance is due to the high hardness of the hardfacing layer on the one hand and the energy-absorbing capacity of the soft backing SS weld deposits on the other hand. The complementary effect of layers successfully provided resistance to the projectile penetration. On a comparative analysis, the joint fabricated using the LHF filler capping front layer offered superior ballistic performance with respect to depth of penetration. This is mainly due to the presence of acicular ferrite along the bainitic structure in the LHF capping front layer, which caused a shallow hardness gradient along the weld center line.
    Electronic ISSN: 1543-1940
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2013-07-26
    Description: Thermal conductivity variations with temperature for solid phases in the Urea (U)–[ X ] mol pct 4-bromo-2-nitroaniline (BNA) system ( X  = 0, 2, 45, 89.9, and 100) were measured using the radial heat flow method. From graphs of thermal conductivity variations with temperature, the thermal conductivities of the solid phases at their melting temperature and temperature coefficients for the U–[ X ] mol pct BNA system ( X  =  0, 2, 45, 89.9, and 100) were found to be 0.26, 0.55, 0.46, 0.38, and 0.23 W/Km and 0.007781, 0.005552, 0.002058, 0.002188, and 0.002811 K −1 , respectively. The ratios of thermal conductivity of the liquid phase to thermal conductivity of the solid phase in the U–[ X ] mol pct BNA system ( X  =  0, 2, 45, 89.9, and 100) were also measured to be 0.30, 0.44, 0.46, 0.49, and 0.51, respectively, with a Bridgman-type directional solidification apparatus at their melting temperature.
    Electronic ISSN: 1543-1940
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2013-07-26
    Description: Proeutectoid Widmanstätten cementite in a hypereutectoid carbon steel was found to be associated with a surface relief effect. A hot-stage microscope was used for heat treatment and in situ observation. Widmanstätten cementite plates were obtained near the surface of the specimen. The surface relief effect of Widmanstätten cementite plates was quantitatively characterized by atomic force microscopy. It was found that the relief had either a typical tent shape or apex-lost tent shape. The relief tilt angles were of considerable dispersion, ranging from 20 deg to 50 deg.
    Electronic ISSN: 1543-1940
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2013-07-26
    Description: In situ phase transformation behavior of a high strength S690QL1 steel during continuous cooling under different mechanical loading conditions has been used to investigate the effect of small external loads on the transformation-induced plasticity during bainitic and martensitic transformations. The results show that during phase transformations, the untransformed austenite undergoes plastic deformation, thereby retarding further transformation to bainite/martensite. This occurs independent of external load.
    Electronic ISSN: 1543-1940
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2013-07-26
    Description: Ultrafine cellular microstructures around alumina particles in a low-carbon steel were observed, which survived even after cyclic austenitization. This indicates that their formation is closely related to internal stress because of a structural heterogeneity during phase transformation rather than to externally applied forces or deformation. Thermo-elasto-plastic finite element analysis confirmed the evolution of a large hydrostatic pressure around an alumina particle due to thermal mismatch during cooling. Therefore, the fine cellular microstructure might be generated as a result of the hydrostatic pressure, which retards the phase transformation around the particle during cooling. In addition, we observed microstructural similarity with the same steel processed under an ultra-high pressure, which was the evidence for the role of the delay in the transformation caused by the hydrostatic pressure.
    Electronic ISSN: 1543-1940
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2013-07-26
    Description: Non-isothermal compressive deformation was performed on high strength steel 22SiMn2TiB for the study of martensitic phase transformation from deformed austenite. The transformation start temperature M s decreased with the increase of deformation from 0 to 50 pct, and the variation of deformation rate (0.1 and 10 s −1 ) and the appearance of deformation-induced ferrite and bainite showed no influence on the change of M s temperature. The deformation at both the rates increased the volume fraction of retained austenite; however, the carbon content of retained austenite decreased at 10 s −1 and remained basically unchanged at 0.1 s −1 . The yield strength of austenite at M s temperature and the stored energy in deformed austenite were experimentally obtained, with which the relationships between the change of M s temperature and the thermodynamic driving force for martensitic phase transformation from deformed austenite were established by the use of the Fisher-ADP–Hsu model. And finally, the transformation kinetics was analyzed by the Magee–Koistinen–Marhurger equation.
    Electronic ISSN: 1543-1940
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2013-05-25
    Description: The prediction of residual stress in a stress lattice shape casting (stress lattice) has been conducted and discussed by some researchers via the Finite Element Method (FEM). However, most of the previous studies used the first-order tetrahedral element, which has poor analysis accuracy in problems including bending. The use of the first-order tetrahedral element makes the verification of these studies uncertain because the bending deformation essentially occurs in the stress lattice casting. This study first shows that the thermal stress analysis for the stress lattice should use the element that can represent the bending deformation in principle for bending of the thin parts. Second, the simulated residual stress was compared with the measured value. The thermal stress analysis successfully predicted the residual stress of the stress lattice casting with and 11 pct difference. In addition to the prediction of the residual stress, it is important from the viewpoint of the productivity of castings to reveal the effect of the shake-out temperature on the residual stress. However, in the previous studies, conclusions concerning the effect of the shake-out temperature on the residual stress were not consistent ( i.e. , the one study said the higher shake-out temperature decreased the residual stress, and another study said a higher shake-out temperature increased the residual stress). Therefore, the current study first discusses the reason for the inconsistent conclusions in the previous studies. Second, stress lattice castings were cast and shaken out at various shake-out temperatures. Then, the current study validated the effect of the shake-out temperature on the residual stress. Consequently, the experimental results supported the conclusion of Kasch and Mikelonis that the shake-out at higher temperature contributed to the increase of the residual stress in the casting.
    Electronic ISSN: 1543-1940
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2013-05-25
    Description: B and N can be used to increase the creep strength of advanced 9Cr power plant steels by means of microstructural stabilization and precipitation strengthening; however, the formation of boron nitride (BN) particles removes B and N from solution and reduces the strengthening effect of B and N simultaneously. In the current study, the BN precipitation/dissolution conditions in 9Cr-3W-3Co-V-Nb steels have been investigated to understand how to prevent the formation of BN. A series of austenitizing heat treatments have been designed using thermodynamic predictions as a guide in an attempt to dissolve the BN present after the production of 9Cr-3W-3Co-V-Nb type steels and to prevent also the precipitation of BN during the subsequent heat treatments. Advanced electron microscopy has been carried out to investigate the evolution of the BN particles in relation to the austenitization temperature. Energy Dispersive X-ray spectroscopy (EDS) has been used to identify the B-containing phases, and a method has been developed using secondary electron images to quantify the amount of BN present within the microstructure. It has been found that BN solubility is sensitive to the B and N levels in the steel composition, as indicated by thermodynamic calculations. However, it is proposed that austenitizing heat treatments at temperatures ranging from 1448 K to 1473 K (from 1175 °C to 1200 °C) with durations from 1 to 7 hours can effectively prevent the precipitation of BN as well as dissolving most of the BN particles formed during initial steel manufacture.
    Electronic ISSN: 1543-1940
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2013-05-25
    Description: The phase precipitation in industrial AISI 316L stainless steel during aging for up to 80,000 hours between 823 K and 1073 K (550 °C and 800 °C) has been studied using transmission electron microscopy, scanning transmission electron microscopy, and carbon replica energy-dispersive X-ray microanalysis. Three phases were identified: Chromium carbides (M 23 C 6 ), Laves phase ( η ), and σ -phase (Fe-Cr). M 23 C 6 carbide precipitation occurred firstly and was followed by the η and σ -phases at grain boundaries when the aging temperature is higher than 873 K (600 °C). Precipitation and growth of M 23 C 6 create chromium depletion zones at the grain boundaries and also retard the σ -phase formation. Thus, the σ -phase is controlled by the kinetic of chromium bulk diffusion and can appear only when the chromium reaches, at grain boundaries and at the M 23 C 6 / γ and M 23 C 6 / η / γ interfaces, content higher than a critical value obtained by self-healing. An analytical model, based on equivalent chromium content, has been established in this study and successfully validated to predict the time–temperature–precipitation diagram of the σ -phase. The obtained diagram is in good agreement with the experimental results.
    Electronic ISSN: 1543-1940
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2013-05-25
    Description: Material flow during friction stir welding of HSLA-65 steel was investigated by crystallographic texture analysis. During the welding process, the steel deforms primarily by local shear deformation in the austenite phase and then transforms upon cooling. Texture data from three weld specimens were compared to theoretical textures calculated using ideal Euler angles for shear in face centered cubic (FCC) structures transformed by the Kurdjumov–Sacks (KS) relationship. These theoretical textures show similarities to the experimental textures. Texture data from the weld specimens revealed a rotation of the shear direction corresponding to the tangent of the weld tool on both the area directly under the weld tool shoulder and weld cross sections. In addition, texture data showed that while the shear plane of the area under the weld tool shoulder remained constant, the shear plane of the weld cross sections is influenced by the weld tool pin.
    Electronic ISSN: 1543-1940
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2013-05-25
    Electronic ISSN: 1543-1940
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2013-05-25
    Description: In the present study, a two-step surface treatment was employed to produce an iron-rich aluminide surface layer on 9Cr1Mo steel. In the first step, the steel specimen was immersed in a 1073 K (800 °C) aluminizing bath for 90 seconds to obtain an Al-rich iron aluminide/Al double layer. Then, the aluminum-rich layer and some portion of the substrate material underneath were melted using a pulsed Nd:YAG laser with different pulse energies in the range of 4 to 8 J. The surface and cross section of the alloyed layers were studied using optical microscopy, scanning electron microscopy, an electron microprobe, and X-ray diffraction analyses. The results showed that after laser remelting of the hot dipped aluminized steel at a pulse energy of 7 J, an integrated layer of FeAl replaced the primary layer.
    Electronic ISSN: 1543-1940
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2013-05-25
    Description: Good wetting among Al, Al-Ti melts and C (carbon) solid was achieved by ultrasonic couple processing (UCP). Due to the action of interfacial tension of wetting, Al melt and Al-Ti melts climb along the side wall of C solid. The wetting angle at the triple junction of gaseous, liquid, and solid phases is all lower than 15 deg. In the meantime, good wetting between Al melt and C powder was also achieved by the ultrasonic couple processing. Al melt infiltrated into the interior of C powder through the capillarity. When the ultrasonic couple processing was applied in the system of wetting between Al-Ti melts and C powder, owing to the superimposed effect of incident acoustic wave and reflected acoustic wave at Al-Ti melts/C interface, local high temperature occurred in the Al-Ti melts near C interface, and the superimposed effect can effectively obstruct a direct reaction of Al melt and C, inhibit the formation of undesirable Al 4 C 3 , and promote dissolved Ti to react with C and dissociated C to form TiC particle phase.
    Electronic ISSN: 1543-1940
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2013-05-25
    Description: The synthesis of two Cr-free nickel-based alloys designated as 1S with 6.5 pct Mn and 2H without Mn of compositions varying between 40 to 43.5Ni, 20Mo, 22 to 25Fe, 10Cu, 6.5 to 0Mn, 1Ti, and 0.5Al (wt pct) as filler materials for TIG welding application was performed. New filler materials were developed to reduce carcinogenic hexavalent chromium (Cr 6+ ) fumes generated during the welding of 300 series austenitic stainless steel. The Cr-free nickel alloys were characterized for microstructure and mechanical properties. The developed alloys showed good microstructure stability in as-cast and solution-treated conditions. A material properties simulation software JMatPro predicted that 2H alloy has 2 wt pct more γ (solid solution) phase than in 1S but has 2.2 wt pct less γ ′ (strengthening precipitates) phase than in 1S alloy. The tensile strength of 1S alloy was about 2.2 pct more than 2H. The solution treatment of both alloys decreased the hardness, tensile and yield strengths by about 21 pct but ductility improved by about 17 pct. Fracture studies of both alloys showed the ductile mode of failure.
    Electronic ISSN: 1543-1940
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2013-05-25
    Description: Functionally graded steels with graded ferritic and austenitic regions including bainite and martensite intermediate layers produced by electroslag remelting have attracted much attention in recent years. In this article, an empirical model based on the Zener–Hollomon (Z-H) constitutive equation with generalized material constants is presented to investigate the effects of temperature and strain rate on the hot working behavior of functionally graded steels. Next, a theoretical model, generalized by strain compensation, is developed for the flow stress estimation of functionally graded steels under hot compression based on the phase mixture rule and boundary layer characteristics. The model is used for different strains and grading configurations. Specifically, the results for αβγMγ steels from empirical and theoretical models showed excellent agreement with those of experiments of other references within acceptable error.
    Electronic ISSN: 1543-1940
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2013-05-25
    Description: Acoustic emission methods are used to investigate the evolution of internal microfractural damage during uniaxial compression of amorphous Zr-based foams with aligned, elongated pores. The foams are fabricated by means of densifying a blend of crystalline W powders and amorphous Zr-based powders with two oxygen contents (0.078 and 0.144 wt pct) by warm equal channel angular extrusion, followed by dissolution of the elongated W phase from the fully densified amorphous matrix. For the high-oxygen foams, prior powder boundaries in the amorphous struts promote damage that accumulates during compression, resulting in energy-absorbing properties comparable with the low-oxygen foams without stress-concentrating powder boundaries. The influence of pore orientation on the evolution of microfracture damage and the ability of the foams to accumulate damage without catastrophic failure is also investigated: pores oriented from 24 to 68 deg to the loading direction promote wall bending, resulting in foams with more diffuse damage and better energy-absorbing properties.
    Electronic ISSN: 1543-1940
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2013-05-25
    Description: The high-resolution electron backscatter diffraction (EBSD) technique was used to study the grain boundary development and texture evolution during friction stir welding (FSW) in a single-crystal austenitic stainless steel. Strain-induced crystal rotations were found to be induced by simple shear deformation. With the crystal rotations, the single-crystal structure was broken up into a fine-grained polycrystalline aggregate in the stir zone. This process was deduced to be governed by continuous and discontinuous recrystallizations operating during the FSW process. The final texture which evolved in the stir zone was dominated by $ A/\bar{A}\left\{ {111} \right\} \, \langle 110 \rangle $ ideal simple shear orientations.
    Electronic ISSN: 1543-1940
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2013-05-25
    Description: Hot-pressed and arc-melted Mo 76 Si 14 B 10 (at. pct) exhibits α-Mo solid solution, Mo 3 Si, and Mo 5 SiB 2 in microstructures with varying morphologies. Cyclic oxidation tests performed at oxygen partial pressures of 0.21 and 1 atm show the mass loss of the hot-pressed alloy to be ≈1.5 and ≈4 times less, respectively, than that of the arc-melted alloy. The thickness of the protective silicate layer increases with an increase of both Mo ss grain size and oxygen partial pressure in the environment.
    Electronic ISSN: 1543-1940
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2013-05-25
    Description: The effects of process parameters on the crystallization and morphology of hydroxyapatite (Ca 10 (PO 4 ) 6 (OH) 2 , HA) powders synthesized from dicalcium phosphate dihydrate (CaHPO 4 ·2H 2 O, DCPD) using a hydrolysis method have been investigated. X-ray diffraction (XRD), Fourier-transform infrared (FT-IR) spectra, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and selected area electron diffraction (SAED) were used to characterize the synthesized powders. When DCPD underwent hydrolysis in 2.5 NaOH solution (Na (aq) ) at 303 K to 348 K (30 °C to 75 °C) for 1 hour, the XRD results revealed that HA was obtained for all the as-dried samples. The SEM morphology of the HA powders for DCPD hydrolysis produced at 348 K (75 °C) shows regular alignment and a short rod shape with a size of 200 nm in length and 50 nm in width. With DCPD hydrolysis in 2.5 M NaOH (aq) holding at 348 K (75 °C) for 1 to 24 hours, XRD results demonstrated that all samples were HA and no other phases could be detected. Moreover, the XRD results also show that all the as-dried powders still maintained the HA structure when DCPD underwent hydrolysis in 0.1 to 5 M NaOH (aq) at 348 K (75 °C) for 1 hour. Otherwise, the full transformation from HA to octa-calcium phosphate (OCP, Ca 8 H 2 (PO 4 ) 6 ·5H 2 O) occurred when hydrolysis happened in 10 M NaOH (aq) . FT-IR spectra analysis revealed that some carbonated HA (Ca 10 (PO 4 ) 6 (CO 3 ), CHA) had formed. The SEM morphology results show that the 60 to 65 nm width of the uniformly long rods with regular alignment formed in the HA powder aggregates when DCPD underwent hydrolysis in 2.5 M NaOH (aq) at 348 K (75 °C) for 1 hour.
    Electronic ISSN: 1543-1940
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2013-05-25
    Description: The tensile deformation behavior and phase transformation in the weld coarse-grained heat-affected zone (CGHAZ) of a metastable high-nitrogen austenitic stainless steel was explored through tensile tests, nanoindentation experiments, and transmission electron microscopy analysis. True stress–strain response during tensile test was found to be seriously affected by δ -ferrite fraction, which depends on peak temperature of the CGHAZs. The strain-induced martensitic transformation (SIMT) occurred in base steel, whereas the SIMT disappeared and deformation twinning occurred predominantly in the CGHAZs. The relationship among true stress–strain response, nanoindentation hardness, and deformed microstructures was carefully investigated and discussed in terms of changes of stacking fault energy.
    Electronic ISSN: 1543-1940
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2013-05-25
    Electronic ISSN: 1543-1940
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2013-05-25
    Description: The aim of this study is to determine a value for the critical resolved stress for the growth of deformation twins. Loading–unloading tests are performed on extruded magnesium alloy Mg-3Al-1Zn to determine the loads under which twins begin to shrink during unloading. After conversion of the applied stress to mean resolved values, the critical stresses are seen to increase from 6 to 14 MPa as the plastic applied strain is raised from 1 to 6 pct. It is suggested that the “relaxation” dislocations generated to accommodate the twinning strain contribute to building a hard dislocation forest. The effect is analyzed by analogy with accommodation dislocations formed at non-deforming particles.
    Electronic ISSN: 1543-1940
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2013-05-25
    Description: The role of uniaxial stress on the precipitation behavior in a Mg-2.6wt pct Nd alloy has been examined by comparing creep-tested and isothermally aged samples using transmission electron microscopy. Both types of samples exhibited precipitation of the β′(orthorhombic) and β 1 (fcc) phases. During creep testing, dynamically formed β 1 precipitates are aligned along favorable slip directions within the α-Mg matrix, presumably influencing the creep response of the Mg-Nd alloy.
    Electronic ISSN: 1543-1940
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2013-05-25
    Description: The objective of the current study is to perform a careful investigation of the (Fe) and (W) solvus and of the intermetallic compounds in the Fe-W system as it could have a significant impact on higher-order systems based on this binary system. Two key alloys, Fe-14 at. pct W and Fe-50 at. pct W, and a diffusion couple were synthesized based on the literature. They were studied by long time annealing experiments with a selected heat treatment route, X-Ray diffraction analysis, and electron microprobe analysis with a careful control of impurity levels of C, Si, and O. The two intermetallic phases μ-Fe 7 W 6 and λ-Fe 2 W are characterized and the composition range of the μ-Fe 7 W 6 phase is specified. The phase previously reported as FeW is most probably a ternary carbide with low carbon content. An accurate determination of the solubility of W in αFe and of Fe in αW is presented.
    Electronic ISSN: 1543-1940
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2013-05-25
    Description: The effects of applied strain on the interface microstructure and atomic interdiffusion in the binary alloy diffusion couples were studied using the phase-field model. In the two-phase diffusion couples, the single-phase regions are formed beside the interface without applied strain, and the width of single-phase regions enlarges as temperature increases. When the strain is applied, the phases are elongated and they are across the initial interface, which makes the diffusion couples to syncretize as the temperature increases or concentration difference decreases. In the diffusion couples formed by single and two phases, the larger composition difference results in the larger movement distance of interface, the atomic diffusion direction is determined by the initial composition difference. Under the applied strain, the elongated two phases are also across the initial interface with the small concentration difference. However, when the concentration difference is large, the two-phase region is recessional as the single-phase region moves forward. When the applied strain makes the morphology parallel to the initial interface of the diffusion couple, the single-phase regions are formed beside the interface.
    Electronic ISSN: 1543-1940
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2013-06-19
    Description: The microstructural factors such as type, area fraction, morphology, distribution, and size of second phases in as-cast and homogenized 7055 aluminum alloy and the influence of impurity content variations have been investigated by using optical microscope (OM), scanning electron microscope (SEM), energy dispersive X-ray analysis (EDS), and X-ray diffraction (XRD). In as-cast microstructures, the dominant second phases of η [Mg(Al, Cu, Zn) 2 ] with extended solubility of Cu and Al, a small amount of impurity phases of Al 7 Cu 2 Fe and Al 3 Fe with a little solubility of Cu and Si, and trace Mg 2 Si are identified. The variations of Fe and Si contents have no significant influence on the area fraction of η phases, but the area fraction of Fe-rich phase decreases from 0.231 to 0.102 pct with Fe content decreasing from 0.080 to 0.038 wt pct. Decreasing Fe contents reduces the size parameters of Fe-rich phases and refines their morphology correspondingly. After being homogenized at 753 K (480 °C) for 24 hours, η phases are largely dissolved, but the coarse impurity phases are insoluble. Compared with as-cast microstructures, the area fraction and composition of Fe-rich phases change a little but their morphologies are slightly coarsened.
    Electronic ISSN: 1543-1940
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2013-06-19
    Description: The fatigue behavior of induction-hardened calcium-treated 4140 steel with three different case depths was evaluated using rotating bending fatigue tests. The as-received microstructure of the steel was banded and the orientation of microstructural banding with respect to the fatigue specimen was varied. Due to the inclusion shape control resulting from the calcium additions, inclusions in the steel were not elongated in the direction of the banding. It was found that microstructure banding does not have a significant influence on the fatigue properties of the steel tested. Furthermore, the fatigue limit increase with case depth is primarily related to the bending stress near the location of crack nucleation.
    Electronic ISSN: 1543-1940
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2013-06-19
    Description: To clarify the mechanism of interphase precipitation of vanadium carbide (VC) in a medium-carbon steel, orientation relationships (ORs) and plane orientations of ferrite/austenite interfaces were investigated. It was found that a large part of grain boundary ferrite holds near-K-S OR with at least one side of austenite adjacent to grain boundary regardless of V addition. By the V addition, a fraction of grain boundary ferrite holding near the K-S OR with both sides of austenite is decreased remarkably. Furthermore, only non-K-S ferrite/austenite interfaces migrate dominantly in the V-added alloy in contrast to the V-free alloy. Ferrite/austenite interface orientations are not fixed crystallographically but are randomly distributed in terms of ferrite and austenite orientations. Those results do not agree with the ledge mechanism originally proposed by Honeycombe. Thus, it is proposed that the ledge mechanism is extended to the non-K-S interface, which partially consists of coherent and less-mobile interfaces.
    Electronic ISSN: 1543-1940
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2013-06-19
    Description: The distribution and morphology of β-Mg 17 Al 12 intermetallic phase in resistance spot-welded AZ80 Mg alloy were investigated by means of optical microscopy, scanning electron microscopy, and X-ray diffraction. The influence of intermetallic phase on mechanical strength was studied by tensile shear testing and fractography. The results showed that continuous networks of β-Mg 17 Al 12 formed along grain boundaries in both the nugget and heat-affected zone of the spot-welded AZ80 Mg alloy. Those continuous grain-boundary β-Mg 17 Al 12 networks acted as effective crack propagation paths, which had negative effects on the weld strength. Post-weld solution heat treatment effectively reduced the amount of β-Mg 17 Al 12 and broke the grain-boundary intermetallic networks in both the nugget and heat-affected zone. This significantly increased the weld strength of AZ80 Mg alloy and changed the fracture mode from nugget pull-out in the as-welded condition to through-thickness after heat treatment.
    Electronic ISSN: 1543-1940
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2013-06-19
    Description: The large recoverable deformation associated with reversible stress-induced martensitic transformation for superelastic TiNi alloys has been widely exploited in many applications. However, to employ superelastic TiNi in applications where high impact loading is expected, as in bearings, the effect of loading rate on superelasticity needs to be understood. In the current article, the effect of indentation loading rate on dent resistance and superelasticity of TiNi is studied. Indentation tests are performed, at different loading rates on superelastic TiNi alloy and correlated to tensile stress–strain data. It is found that the reversible deformation drops as loading rate is increased and superelasticity diminishes. Based on data collected and results analysis it is proposed that the loss in superelastic behavior under high indentation loading rate is related to retardation of the stress-induced martensitic transformation. Furthermore, a simple heat model was proposed and showed that the temperature rise during indentation is not significant.
    Electronic ISSN: 1543-1940
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2013-06-19
    Description: In the present study, the dissimilar aluminum alloys of 5083-H12 and 6061-T6 were joined by friction stir welding (FSW). Then, the design of experiments (DOE), the Box–Benken method, and the response surface methodology (RSM) were used to optimize the effective parameters of the FSW process. The optimized parameters that led to the maximum tensile strength in dissimilar friction stir welded sheets were determined. The predicted results were then compared with those measured experimentally. The results show that there is good agreement between the predicted and measured amounts. By applying the limit dome height (LDH) test, the formability of friction stir welded sheets was studied. During the LDH test, the minimum formability occurred in the heat-affected zone (HAZ) of the 6061-T6 side. The results of microhardness and tensile tests confirm the results of the LDH tests.
    Electronic ISSN: 1543-1940
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2013-11-20
    Description: Dies and tools used in hot metal forming are exposed to elevated temperatures and high contact pressures, and therefore to wear and fatigue. Fracture toughness is thus one of the main material properties used when selecting and optimizing heat treatment of tools. However, fracture toughness data alone is not sufficient and need to be supported by other material properties and features. The aim of the present research work was to correlate fracture toughness properties of hot-work tool steel, especially its variation to the local microstructure, microhardness, and composition and to establish methodology for proper evaluation of tool steel’s fracture toughness. Research was performed on H11-type hot-work tool steel specimens, heat treated under the same conditions but displaying greatly different fracture toughness. Results show that the presence of any weak point, either in a form of non-metallic inclusions and/or large undissolved eutectic carbide clusters, located in the region of positive segregation with high microhardness will lead to considerable reduction in fracture toughness.
    Electronic ISSN: 1543-1940
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2013-11-20
    Description: In this article, the occurrence of secondary cyclic hardening (SCH) and its effect on high-temperature cyclic deformation and fatigue life of 316LN Stainless steel are presented. SCH is found to result from planar slip mode of deformation and enhance the degree of hardening over and above that resulted from dynamic strain aging. The occurrence of SCH is strongly governed by the applied strain amplitude, test temperature, and the nitrogen content in the 316LN SS. Under certain test conditions, SCH is noticed to decrease the low cycle fatigue life with the increasing nitrogen content.
    Electronic ISSN: 1543-1940
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2013-11-20
    Description: In this work, a theoretical model is proposed for heterogeneous nucleation on substrates the size distributions of which can be described by the Weibull statistics. In particular, the proposed model suggests that the size distribution of the various nucleation sites is exponential in nature. It is found that the nuclei density can be given in terms of the maximum undercooling. Measurements of grain count were carried out on single-phase Al-1.3 Si and Al-5.0 Cu (wt pct) alloys inoculated using an Al-5Ti-1B (wt pct) master alloy. In the single-phase alloys, the area of equiaxed dendritic grains was estimated using EBSD analysis and by stereological means on polished and etched surface sections. In addition, maximum undercoolings were determined by thermal analysis. The experimental outcome indicates that the volumetric grain density can be properly described by an exponential expression. Finally, the magnitudes of the nucleation parameters were experimentally determined in this work.
    Electronic ISSN: 1543-1940
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2013-11-20
    Description: Brazing Inconel 625 (IN-625) using the copper foil has been investigated in this research. The brazed joint is composed of nanosized CrNi 3 precipitates and Cr/Mo/Nb/Ni quaternary compound in the Cu/Ni-rich matrix. The copper filler 50 μ m in thickness is enough for the joint filling. However, the application of Cu foil 100 μ m in thickness has little effect on the shear strength of the brazed joint. The specimen brazed at 1433 K (1160 °C) for 1800 seconds demonstrates the best shear strength of 470 MPa, and its fractograph is dominated by ductile dimple fracture with sliding marks. Decreasing the brazing temperature slightly decreases the shear strength of the brazed joint due to the presence of a few isolated solidification shrinkage voids smaller than 15 μ m. Increasing the brazing temperature, especially for the specimen brazed at 1473 K (1200 °C), significantly deteriorates the shear strength of the joint below 260 MPa because of coalescence of isothermal solidification shrinkage voids in the joint. The Cu foil demonstrates potential in brazing IN-625 for industrial application.
    Electronic ISSN: 1543-1940
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...