ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (3,542)
  • 2010-2014  (3,086)
  • 2000-2004  (456)
  • 1980-1984
  • 1950-1954
  • Climate Dynamics  (1,376)
  • 862
  • Geosciences  (3,542)
  • 1
    Publication Date: 2013-09-14
    Description: By using the monthly ERA-40 reanalysis data and observed rainfall data, we investigated the effect of the Indian summer monsoon (ISM) on the South Asian High (SAH) at 200 hPa, and the role played by the SAH in summer rainfall variation over China. It is found that in the interannual timescale the east–west shift is a prominent feature of the SAH, with its center either over the Iranian Plateau or over the Tibetan Plateau. When the ISM is stronger (weaker) than normal, the SAH shifts westward (eastward) to the Iranian Plateau (Tibetan Plateau). The east–west position of SAH has close relation to the summer rainfall over China. A westward (eastward) location of SAH corresponds to less (more) rainfall in the Yangtze-Huai River Valley and more (less) rainfall in North China and South China. A possible physical process that the ISM affects the summer rainfall over China via the SAH is proposed. A stronger (weaker) ISM associated with more (less) rainfall over India corresponds to more (less) condensation heat release and anomalous heating (cooling) in the upper troposphere over the northern Indian peninsula. The anomalous heating (cooling) stimulates positive (negative) height anomalies to its northwest and negative (positive) height anomalies to its northeast in the upper troposphere, causing a westward (eastward) shift of the SAH with its center over the Iranian Plateau (Tibetan Plateau). As a result, an anomalous cyclone (anticyclone) is formed over the eastern Tibetan Plateau and eastern China in the upper troposphere. The anomalous vertical motions in association with the circulation anomalies are responsible for the rainfall anomalies over China. Our present study reveals that the SAH may play an important role in the effect of ISM on the East Asian summer monsoon.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-09-17
    Description: National Centers for Environmental Prediction recently upgraded its operational seasonal forecast system to the fully coupled climate modeling system referred to as CFSv2. CFSv2 has been used to make seasonal climate forecast retrospectively between 1982 and 2009 before it became operational. In this study, we evaluate the model’s ability to predict the summer temperature and precipitation over China using the 120 9-month reforecast runs initialized between January 1 and May 26 during each year of the reforecast period. These 120 reforecast runs are evaluated as an ensemble forecast using both deterministic and probabilistic metrics. The overall forecast skill for summer temperature is high while that for summer precipitation is much lower. The ensemble mean reforecasts have reduced spatial variability of the climatology. For temperature, the reforecast bias is lead time-dependent, i.e., reforecast JJA temperature become warmer when lead time is shorter. The lead time dependent bias suggests that the initial condition of temperature is somehow biased towards a warmer condition. CFSv2 is able to predict the summer temperature anomaly in China, although there is an obvious upward trend in both the observation and the reforecast. Forecasts of summer precipitation with dynamical models like CFSv2 at the seasonal time scale and a catchment scale still remain challenge, so it is necessary to improve the model physics and parameterizations for better prediction of Asian monsoon rainfall. The probabilistic skills of temperature and precipitation are quite limited. Only the spatially averaged quantities such as averaged summer temperature over the Northeast China of CFSv2 show higher forecast skill, of which is able to discriminate between event and non-event for three categorical forecasts. The potential forecast skill shows that the above and below normal events can be better forecasted than normal events. Although the shorter the forecast lead time is, the higher deterministic prediction skill appears, the probabilistic prediction skill does not increase with decreased lead time. The ensemble size does not play a significant role in affecting the overall probabilistic forecast skill although adding more members improves the probabilistic forecast skill slightly.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-09-21
    Description: The south peninsular part of India gets maximum amount of rainfall during the northeast monsoon (NEM) season [October to November (OND)] which is the primary source of water for the agricultural activities in this region. A nonlinear method viz., Extreme learning machine (ELM) has been employed on general circulation model (GCM) products to make the multi-model ensemble (MME) based estimation of NEM rainfall (NEMR). The ELM is basically is an improved learning algorithm for the single feed-forward neural network (SLFN) architecture. The 27 year (1982–2008) lead-1 (using initial conditions of September for forecasting the mean rainfall of OND) hindcast runs (1982–2008) from seven GCM has been used to make MME. The improvement of the proposed method with respect to other regular MME (simple arithmetic mean of GCMs (EM) and singular value decomposition based multiple linear regressions based MME) has been assessed through several skill metrics like Spread distribution, multiplicative bias, prediction errors, the yield of prediction, Pearson’s and Kendal’s correlation coefficient and Wilmort’s index of agreement. The efficiency of ELM estimated rainfall is established by all the stated skill scores. The performance of ELM in extreme NEMR years, out of which 4 years are characterized by deficit rainfall and 5 years are identified as excess, is also examined. It is found that the ELM could expeditiously capture these extremes reasonably well as compared to the other MME approaches.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-09-22
    Description: The sea surface temperature anomaly pattern differs between the central Pacific (CP) and eastern Pacific (EP) El Niños during boreal summer. It is expected that the respective atmospheric response will be different. In order to identify differences in the responses to these two phenomena, we examine the Community Atmosphere Model Version 4 simulations forced with observed monthly sea surface temperature during 1979–2010 and compare with the corresponding observations. For CP El Niño, a triple precipitation anomaly pattern appears over East Asia. During EP El Niño, the triple pattern is not as significant as and shifts eastward and southward compared to CP El Niño. We also examine the influence of CP La Niña and EP La Niña on East Asia. In general, the impact of CP (EP) La Niña on tropics and East Asia seems to be opposite to that of CP (EP) El Niño. However, the impacts between the two types of La Niña are less independent compared to the two types of warm events. Both types of El Niño (La Niña) correspond to a stronger (weaker) western North Pacific summer monsoon. The sensitivity experiments support this result. But the CP El Niño (La Niña) may have more significant influence on East Asia summer climate than EP El Niño (La Niña), as the associated low-level anomalous wind pattern is more distinct and closer to the Asian continent compared to EP El Niño (La Niña).
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-09-22
    Description: Since the Mediterranean Sea is halfway between subtropical and middle latitudes, and it represents a marginal oceanic region, research has tended to focus on how large-scale modes of atmospheric variability modulate its surface temperature. Conversely, the present study examines the potential influence of the Mediterranean Sea surface temperature (SST) anomalies on the Northern Hemisphere atmospheric circulation. In particular, this work explores the large-scale changes in the global circulation forced/influenced by the eastern Mediterranean summer-autumn SST pattern. To isolate the atmospheric response, AGCM sensitivity experiments with prescribed SST over the Mediterranean Sea and climatology elsewhere are analysed. Observational diagnostics upon the period used to define the boundary conditions (1979–2002) are also interpreted. Our results support the hypothesis of an atmospheric pattern initiated in the Mediterranean basin, pointing out both a local baroclinic response and a barotropic circumglobal anomaly. This atmospheric teleconnection pattern projects onto a hemispheric wave-like structure, reflecting the waveguide effect of the westerly jets. Results suggest, thereby, that the recurrent summer-autumn circumglobal teleconnection pattern can be excited locally by changes in the atmosphere over the Mediterranean region. A linear behaviour is found upon a regional impact over northeastern Africa. The remote impacts present however a nonlinear signature: anomalous warm conditions influencing on northern Europe and Euro–Asia, whereas anomalous cold conditions impacting more on the North Pacific basin. Limitations in our model setup are also discussed.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-09-27
    Description: Atlantic Multidecadal Variability (AMV) is investigated in a millennial control simulation with the Kiel Climate Model (KCM), a coupled atmosphere–ocean–sea ice model. An oscillatory mode with approximately 60 years period and characteristics similar to observations is identified with the aid of three-dimensional temperature and salinity joint empirical orthogonal function analysis. The mode explains 30 % of variability on centennial and shorter timescales in the upper 2,000 m of the North Atlantic. It is associated with changes in the Atlantic Meridional Overturning Circulation (AMOC) of ±1–2 Sv and Atlantic Sea Surface Temperature (SST) of ±0.2 °C. AMV in KCM results from an out-of-phase interaction between horizontal and vertical ocean circulation, coupled through Irminger Sea convection. Wintertime convection in this region is mainly controlled by salinity anomalies transported by the Subpolar Gyre (SPG). Increased (decreased) dense water formation in this region leads to a stronger (weaker) AMOC after 15 years, and this in turn leads to a weaker (stronger) SPG after another 15 years. The key role of salinity variations in the subpolar North Atlantic for AMV is confirmed in a 1,000 year long simulation with salinity restored to model climatology: No low frequency variations in convection are simulated, and the 60 year mode of variability is absent.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-09-27
    Description: Based on a generated time series for the central pressure of the Siberian High, and on defining a robust Siberian High Index (SHI), the behavior of this atmospheric center of action is examined from 1949 to 2010 with regard to inter-annual variations, persistence, trends, abrupt changes, spectral analysis and interactions. The interannual variability in the central pressure of the Siberian High is considerable. The mean downward linear and non-linear trend over the entire period (1949–2010) is estimated and is found to be statistically significant at the 95 % confidence level. Low frequency variation and linearity within the SHI time series are found from the persistence analysis. Using spectral analysis, the center of action of the Siberian High is characterized by non-periodic behavior; the peaks occur only at the lowest frequency and may be related to the Sea Surface Temperature (SST) over the El Niño region. The Siberian High is affected by the Hadley circulation cell; there is no detectable connection between the Walker circulation cell and the Siberian High. SSTs over the El Niño region may affect the Siberian High. Interactions between the Siberian High and the SSTs over the tropical Atlantic Ocean are absent. The SHI is positively correlated to surface air temperatures over Saudi Arabia, and this is statistically significant in the western and north-western regions.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-09-27
    Description: This study investigates the spatial and temporal characteristics of cold surges that propagates northward along the eastern flank of the Andes from subtropical to tropical South America analysing wintertime in situ daily minimum temperature observations from Argentina, Bolivia and Peru and ERA-40 reanalysis over the 1975–2001 period. Cold surges usually last 2 or 3 days but are generally less persistent in the southern La Plata basin compared to tropical regions. On average, three to four cold surges are reported each year. Our analysis reveals that 52 % of cold episodes registered in the south of La Plata basin propagate northward to the northern Peruvian Amazon at a speed of around 20 m s −1 . In comparison to cold surges that do not reach the tropical region, we demonstrate that these cold surges are characterized, before they reach the tropical region, by a higher occurrence of a specific circulation pattern associated to southern low-level winds progression toward low latitudes combined with subsidence and dry condition in the middle and low troposphere that reinforce the cold episode through a radiative effect. Finally, the relationship between cold surges and atmosphere dynamics is illustrated for the two most severe cold intrusions that reached the Peruvian and Bolivian Amazon in the last 20 years.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-09-27
    Description: The Greenland ice sheet is projected to be strongly affected by global warming. These projections are either issued from downscaling methods (such as Regional Climate Models) or they come directly from General Circulation Models (GCMs). In this context, it is necessary to evaluate the accuracy of the daily atmospheric circulation simulated by the GCMs, since it is used as forcing for downscaling methods. Thus, we use an automatic circulation type classification based on two indices (Euclidean distance and Spearman rank correlation using the daily 500 hPa geopotential height) to evaluate the ability of the GCMs from both CMIP3 and CMIP5 databases to simulate the main circulation types over Greenland during summer. For each circulation type, the GCMs are compared to three reanalysis datasets on the basis of their frequency and persistence differences. For the current climate (1961–1990), we show that most of the GCMs do not reproduce the expected frequency and the persistence of the circulation types and that they simulate poorly the observed daily variability of the general circulation. Only a few GCMs can be used as reliable forcings for downscaling methods over Greenland. Finally, when applying the same approach to the future projections of the GCMs, no significant change in the atmospheric circulation over Greenland is detected, besides a generalised increase of the geopotential height due to a uniform warming of the atmosphere.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-09-27
    Description: The East Asian summer monsoon (EASM) features strong humid low-level southerly flows and abundant rainfall over the subtropical East Asia. This study identified how condensational heating generated by the EASM rainfall can affect the EASM circulation by contrasting two 10-member ensembles of atmospheric General Circulation Model experiments with Community Climate Model version 3/National Center for Atmospheric Research respectively with and without feedback of condensational heating over the East Asian domain. Major results inferred from the experiments are as follows. Condensational heating is found to absolutely dominate diabatic heating over East Asia. Exclusion of the feedback of condensational heating leads to a significant weakening of summertime tropospheric warming over land and thus a large reduction of the land-sea thermal contrast between entire Asian continent and surrounding oceans. Associated with this, the lower-level EASM flows are weakened, South Asian High at 200 hPa migrates southward with reduced intensity and breaks over East Asia with southerly flows prevailing in the upper troposphere, in contrast to northerly flows in reality. Consequently, local EASM meridional cell disappears and the baroclinic structure featured by the EASM circulation that is dynamically determined by convective condensational heating over East Asia is altered to a barotropic structure. Therefore, it is concluded that the feedback of condensational heating acts to largely enhance lower-level flows of the EASM and essentially determine its baroclinic structure and meridional cell, once the solar radiation and inhomogeneity of the Earth’s surface form low-level monsoon flows in East Asia by enhancing land-sea thermal contrast.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    facet.materialart.
    Unknown
    Springer
    Publication Date: 2013-09-27
    Description: Based on experiments using a coupled general circulation model which resolves tropical ocean–atmosphere coupled phenomena such as El Niño/Southern Oscillation (ENSO) and the Indian Ocean Dipole, forcing mechanisms of the Indian Ocean subtropical dipole (IOSD) are investigated. In the control experiment, as in the observation, several types of the IOSD are generated by the variations in the Mascarene High during austral summer and characterized by a dipole pattern of sea surface temperature (SST) anomalies in the northeastern and southwestern parts of the southern Indian Ocean. In another experiment, where the SST outside the southern Indian Ocean is nudged toward the monthly climatology of the simulated SST, one type of the IOSD occurs, but it is less frequent and associated with the zonal wavenumber four pattern of equivalently barotropic geopotential height anomalies in high latitudes, suggesting an interesting link with the Antarctic Circumpolar Wave. This indicates that, even without the atmospheric teleconnection from tropical coupled climate modes, the IOSD may develop in association with the atmospheric variability in high latitudes of the Southern Hemisphere. In the other experiment, where only the southern Indian Ocean and the tropical Pacific are freely interactive with the atmosphere, two types of both positive and negative IOSD occur. Since the occurrence frequency of the IOSD significantly increases as compared to the second experiment, this result confirms that the atmospheric teleconnection from ocean-atmosphere coupled modes in the tropical Pacific such as ENSO may also induce the variations in the Mascarene High that generate the IOSD. The present research, even within the realm of model studies, shows clearly that the predictability of the IOSD in mid-latitudes is related to both low and high-latitudes climate variations.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2013-10-03
    Description: Previous studies have linked the rapid sea level rise (SLR) in the western tropical Pacific (WTP) since the early 1990s to the Pacific decadal climate modes, notably the Pacific Decadal Oscillation in the north Pacific or Interdecadal Pacific Oscillation (IPO) considering its basin wide signature. Here, the authors investigate the changing patterns of decadal (10–20 years) and multidecadal (〉20 years) sea level variability (global mean SLR removed) in the Pacific associated with the IPO, by analyzing satellite and in situ observations, together with reconstructed and reanalysis products, and performing ocean and atmosphere model experiments. Robust intensification is detected for both decadal and multidecadal sea level variability in the WTP since the early 1990s. The IPO intensity, however, did not increase and thus cannot explain the faster SLR. The observed, accelerated WTP SLR results from the combined effects of Indian Ocean and WTP warming and central-eastern tropical Pacific cooling associated with the IPO cold transition. The warm Indian Ocean acts in concert with the warm WTP and cold central-eastern tropical Pacific to drive intensified easterlies and negative Ekman pumping velocity in western-central tropical Pacific, thereby enhancing the western tropical Pacific SLR. On decadal timescales, the intensified sea level variability since the late 1980s or early 1990s results from the “out of phase” relationship of sea surface temperature anomalies between the Indian and central-eastern tropical Pacific since 1985, which produces “in phase” effects on the WTP sea level variability.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2013-09-09
    Description: The goal of this study is to develop a high-resolution atmospheric hindcast over the Mediterranean area using the WRF-ARW model, focusing on offshore surface wind fields. In order to choose the most adequate model configuration, the study provides details on the calibration of the experimental saet-up through a sensitivity test considering the October–December 2001 period (the 2001 super-storm event in the West Mediterranean). A daily forecast outperforms the spectral technique of previous products and the boundary data from ERA-Interim reanalysis produces the most accurate estimates in terms of wind variability and hour-to-hour correspondence. According to the sensitivity test, two data sets of wind hindcast are produced: the SeaWind I (30-km horizontal resolution for a period of 60 years) and the SeaWind II (15-km horizontal resolution for 20 years). The validation of the resulting surface winds is undertaken considering two offshore observational datasets. On the one hand, hourly surface buoy stations are used to validate wind time series at specific locations; on the other hand, wind altimeter satellite observations are considered for spatial validation in the whole Mediterranean Sea. The results obtained from this validation process show a very good agreement with observations for the southern Europe region. Finally, SeaWind I and II are used to characterize offshore wind fields in the Mediterranean Sea. The statistical structure of sea surface wind is analyzed and the agreement with Weibull probability distribution is discussed. In addition, wind persistence and extreme wind speed (50 year return period) are characterized and relevant areas of wind power generation are described by estimating wind energy quantities.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2013-09-11
    Description: Proxy-data suggest that the Last Interglacial (LIG; ~130–116 ka BP) climate was characterized by higher temperatures, a partially melted Greenland Ice Sheet (GIS) and a changed Atlantic meridional overturning circulation (AMOC). Notwithstanding the uncertainties in LIG palaeoclimatic reconstructions, this setting potentially provides an opportunity to evaluate the relation between GIS melt and the AMOC as simulated by climate models. However, first we need to assess the extent to which a causal relation between early LIG GIS melt and the weakened AMOC is plausible. With a series of transient LIG climate simulations with the LOVECLIM earth system model, we quantify the importance of the major known uncertainties involved in early LIG GIS melt scenarios. Based on this we construct a specific scenario that is within the parameter space of uncertainties and show that it is physically consistent that early LIG GIS melting kept the AMOC weakened. Notwithstanding, this scenario is at the extreme end of the parameter space. Assuming that proxy-based reconstructions of early LIG AMOC weakening offer a realistic representation of its past state, this indicates that either (1) the AMOC weakening was caused by other forcings than early LIG GIS melt or (2) the early LIG AMOC was less stable than indicated by our simulations and a small amount of GIS melt was sufficient to keep the AMOC in the weak state of a bi-stable regime. We argue that more intensive research is required because of the high potential of the early LIG to evaluate model performance in relation to the AMOC response to GIS melt.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2013-09-17
    Description: We measured the annual variation in the stable isotopes of oxygen (δ 18 O) and hydrogen (δD) in tree rings of Abies georgei on the Batang–Litang Plateau of western China. Although correlations between tree-ring δ 18 O and δD are relatively weak in semi-arid regions, we found a strong correlation between the δ 18 O and δD time series from 1755 to 2009 under the wetter environment. Tree-ring δ 18 O and δD time series are both significantly and negatively correlated with moisture conditions from June to August, including relative humidity and total precipitation, respectively, from 1960 to 2009. Considering the difference in low-frequency domain between the two isotopes, the relative humidity histories from June to August, reconstructed separately from the tree-ring δ 18 O and δD data with instrumental climate data, reveal a persistent drying trend since 1850s, especially since the early 1970s. There is an obvious offset of reconstructed relative humidity from tree-ring δ 18 O and δD in the period 1755–1820, despite the strong similarity in their 21-year moving averages. The decreased relative humidity since the 1850s may be associated with the thermal contrast between the sea surface temperature of the Indian Ocean and the Qinghai-Tibetan Plateau, which determines the strength of moisture transfer via the Indian summer monsoon.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2013-09-19
    Description: Observations show a multidecadal signal in the North Atlantic ocean, but the underlying mechanism and cause of its timescale remain unknown. Previous studies have suggested that it may be driven by the North Atlantic Oscillation (NAO), which is the dominant pattern of winter atmospheric variability. To further address this issue, the global ocean general circulation model, Nucleus for European Modelling of the Ocean (NEMO), is driven using a 2,000 years long white noise forcing associated with the NAO. Focusing on key ocean circulation patterns, we show that the Atlantic Meridional Overturning Circulation (AMOC) and Sub-polar gyre (SPG) strength both have enhanced power at low frequencies but no dominant timescale, and thus provide no evidence for a oscillatory ocean-only mode of variability. Instead, both indices respond linearly to the NAO forcing, but with different response times. The variability of the AMOC at 30°N is strongly enhanced on timescales longer than 90 years, while that of the SPG strength starts increasing at 15 years. The different response characteristics are confirmed by constructing simple statistical models that show AMOC and SPG variability can be related to the NAO variability of the previous 53 and 10 winters, respectively. Alternatively, the AMOC and the SPG strength can be reconstructed with Auto-regressive (AR) models of order seven and five, respectively. Both statistical models reconstruct interannual and multidecadal AMOC variability well, while on the other hand, the AR(5) reconstruction of the SPG strength only captures multidecadal variability. Using these methods to reconstruct ocean variables can be useful for prediction and model intercomparision.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2013-09-22
    Description: Driving data and physical parametrizations can significantly impact the performance of regional dynamical atmospheric models in reproducing hydrometeorologically relevant variables. Our study addresses the water budget sensitivity of the Weather Research and Forecasting Model System WRF (WRF-ARW) with respect to two cumulus parametrizations (Kain–Fritsch, Betts–Miller–Janjić), two global driving reanalyses (ECMWF ERA-INTERIM and NCAR/NCEP NNRP), time variant and invariant sea surface temperature and optional gridded nudging. The skill of global and downscaled models is evaluated against different gridded observations for precipitation, 2 m-temperature, evapotranspiration, and against measured discharge time-series on a monthly basis. Multi-year spatial deviation patterns and basin aggregated time series are examined for four globally distributed regions with different climatic characteristics: Siberia, Northern and Western Africa, the Central Australian Plane, and the Amazonian tropics. The simulations cover the period from 2003 to 2006 with a horizontal mesh of 30 km. The results suggest a high sensitivity of the physical parametrizations and the driving data on the water budgets of the regional atmospheric simulations. While the global reanalyses tend to underestimate 2 m-temperature by 0.2–2 K, the regional simulations are typically 0.5–3 K warmer than observed. Many configurations show difficulties in reproducing the water budget terms, e.g. with long-term mean precipitation biases of 150 mm month −1 and higher. Nevertheless, with the water budget analysis viable setups can be deduced for all four study regions.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2013-09-25
    Description: El Niño/Southern Oscillation (ENSO) is the predominant interannual variability of the global climate system. How might ENSO change in a warmer world? The dominant two Combined Empirical Orthogonal Functions (CEOF) of the equatorial ocean temperature and zonal and vertical motion identify two modes that shown a transition in the eastern Pacific from a warming eastward/downward motion to a cooling westward/upward flow. These results also suggest consistent changes to the west and at depths down to 300 m. These dominate CEOFs provide a compact tool for assessing Coupled Model Intercomparison Project Phase 5 ocean model output for both the recent historical period and for the latter part of the twenty first century. Most of the analyzed models replicate well the spatial patterns of the dominant observational CEOF modes, but nearly always underestimate the magnitudes. Comparing model output for the twentieth and twenty first centuries there is very little change between the spatial patterns of the ENSO modes of the two periods. This lack of response to climate change is shown to be partly related to competing influences of climatic changes in the mean ocean circulation.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2013-09-25
    Description: In this work, authors examine the variabilities of precipitation and surface air temperature (T2m) in Northeast China during 1948–2012, and their global connection, as well as the predictability. It is noted that both the precipitation and T2m variations in Northeast China are dominated by interannual and higher frequency variations. However, on interdecadal time scales, T2m is shifted significantly from below normal to above normal around 1987/1988. Statistically, the seasonal mean precipitation and T2m are largely driven by local internal atmospheric variability rather than remote forcing. For the precipitation variation, circulation anomalies in the low latitudes play a more important role in spring and summer than in autumn and winter. For T2m variations, the associated sea surface pressure (SLP) and 850-hPa wind (uv850) anomalies are similar for all seasons in high latitudes with significantly negative correlations for SLP and westerly wind anomaly for uv850, suggesting that a strong zonal circulation in the high latitudes favors warming in Northeast China. The predictability of precipitation and T2m in Northeast China is assessed by using the Atmospheric Model Inter-comparison Project type experiments which are forced by observed sea surface temperature (SST) and time-evolving greenhouse gas (GHG) concentrations. Results suggest that T2m has slightly higher predictability than precipitation in Northeast China. To some extent, the model simulates the interdecadal shift of T2m around 1987/1988, implying a possible connection between SST (and/or GHG forcing) and surface air temperature variation in Northeast China on interdecadal time scales. Nevertheless, the precipitation and T2m variations are mainly determined by the unpredictable components which are caused by the atmospheric internal dynamic processes, suggesting low predictability for the climate variation in Northeast China.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2013-09-27
    Description: A land–sea surface warming ratio (or φ ) that exceeds unity is a robust feature of both observed and modelled climate change. Interestingly, though climate models have differing values for φ , it remains almost time-invariant for a wide range of twenty-first century climate transient warming scenarios, while varying in simulations of the twentieth century. Here, we present an explanation for time-invariant land–sea warming ratio that applies if three conditions on radiative forcing are met: first, spatial variations in the climate forcing must be sufficiently small that the lower free troposphere warms evenly over land and ocean; second, the temperature response must not be large enough to change the global circulation to zeroth order; third, the temperature response must not be large enough to modify the boundary layer amplification mechanisms that contribute to making φ exceed unity. Projected temperature changes over this century are too small to breach the latter two conditions. Hence, the mechanism appears to show why both twenty-first century and time-invariant CO 2 forcing lead to similar values of φ in climate models despite the presence of transient ocean heat uptake, whereas twentieth century forcing—which has a significant spatially confined anthropogenic tropospheric aerosol component that breaches the first condition—leads to modelled values of φ that vary widely amongst models and in time. Our results suggest an explanation for the behaviour of φ when climate is forced by other regionally confined forcing scenarios such as geo-engineered changes to oceanic clouds. Our results show how land–sea contrasts in surface and boundary layer characteristics act in tandem to produce the land–sea surface warming contrast.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2013-09-27
    Description: We present a validation analysis of a regional climate model coupled to a distributed one dimensional (1D) lake model for the Caspian Sea Basin. Two model grid spacings are tested, 50 and 20 km, the simulation period is 1989–2008 and the lateral boundary conditions are from the ERA-Interim reanalysis of observations. The model is validated against atmospheric as well as lake variables. The model performance in reproducing precipitation and temperature mean seasonal climatology, seasonal cycles and interannual variability is generally good, with the model results being mostly within the observational uncertainty range. The model appears to overestimate cloudiness and underestimate surface radiation, although a large observational uncertainty is found in these variables. The 1D distributed lake model (run at each grid point of the lake area) reproduces the observed lake-average sea surface temperature (SST), although differences compared to observations are found in the spatial structure of the SST, most likely as a result of the absence of 3 dimensional lake water circulations. The evolution of lake ice cover and near surface wind over the lake area is also reproduced by the model reasonably well. Improvements resulting from the increase of resolution from 50 to 20 km are most significant in the lake model. Overall the performance of the coupled regional climate—1D lake model system appears to be of sufficient quality for application to climate change scenario simulations over the Caspian Sea Basin.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2013-09-27
    Description: Climate changes over China from the present (1990–1999) to future (2046–2055) under the A1FI (fossil fuel intensive) and A1B (balanced) emission scenarios are projected using the Regional Climate Model version 3 (RegCM3) nests with the National Center for Atmospheric Research (NCAR) Community Climate System Model (CCSM). For the present climate, RegCM3 downscaling corrects several major deficiencies in the driving CCSM, especially the wet and cold biases over the Sichuan Basin. As compared with CCSM, RegCM3 produces systematic higher spatial pattern correlation coefficients with observations for precipitation and surface air temperature except during winter. The projected future precipitation changes differ largely between CCSM and RegCM3, with strong regional and seasonal dependence. The RegCM3 downscaling produces larger regional precipitation trends (both decreases and increases) than the driving CCSM. Contrast to substantial trend differences projected by CCSM, RegCM3 produces similar precipitation spatial patterns under different scenarios except autumn. Surface air temperature is projected to consistently increase by both CCSM and RegCM3, with greater warming under A1FI than A1B. The result demonstrates that different scenarios can induce large uncertainties even with the same RCM-GCM nesting system. Largest temperature increases are projected in the Tibetan Plateau during winter and high-latitude areas in the northern China during summer under both scenarios. This indicates that high elevation and northern regions are more vulnerable to climate change. Notable discrepancies for precipitation and surface air temperature simulated by RegCM3 with the driving conditions of CCSM versus the model for interdisciplinary research on climate under the same A1B scenario further complicated the uncertainty issue. The geographic distributions for precipitation difference among various simulations are very similar between the present and future climate with very high spatial pattern correlation coefficients. The result suggests that the model present climate biases are systematically propagate into the future climate projections. The impacts of the model present biases on projected future trends are, however, highly nonlinear and regional specific, and thus cannot be simply removed by a linear method. A model with more realistic present climate simulations is anticipated to yield future climate projections with higher credibility.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    facet.materialart.
    Unknown
    Springer
    Publication Date: 2013-09-27
    Description: Teleconnections associated with warm El Niño/southern oscillation (ENSO) events in 20 climate model intercomparison project 5 (CMIP5) models have been compared with reanalysis observations. Focus has been placed on compact time and space indices, which can be assigned a specific statistical confidence. Nearly all of the models have surface temperature, precipitation and 250 hPa geopotential height departures in the Tropics that are in good agreement with the observations. Most of the models also have realistic anomalies of Northern Hemisphere near-surface temperature, precipitation and 500 hPa geopotential height. Model skill for these variables is significantly related to the ability of a model to accurately simulate Tropical 250 hPa height departures. Additionally, most models have realistic temperature and precipitation anomalies over North America, which are linked to a model’s ability to simulate Tropical 250 hPa and Northern Hemisphere 500 hPa height departures. The skills of temperature and precipitation departures over the Northern Hemisphere and North America are associated with the ability to realistically simulate realistic ENSO frequency and length. Neither horizontal nor vertical resolution differences for either the model atmosphere or ocean are significantly related at the 95 % level to variations in El Niño simulation quality. Overall, recent versions of earlier models have improved in their ability to simulate El Niño teleconnections. For instance, the average model skills of temperature and precipitation for the Tropics, Northern Hemisphere and North America for 11 CMIP5 models are all larger than those for prior versions.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2013-09-27
    Description: In the eastern Mediterranean in general and in Turkey in particular, temperature reconstructions based on tree rings have not been achieved so far. Furthermore, centennial-long chronologies of stable isotopes are generally also missing. Recent studies have identified the tree species Juniperus excelsa as one of the most promising tree species in Turkey for developing long climate sensitive stable carbon isotope chronologies because this species is long-living and thus has the ability to capture low-frequency climate signals. We were able to develop a statistically robust, precisely dated and annually resolved chronology back to AD 1125. We proved that variability of δ 13 C in tree rings of J. excelsa is mainly dependent on winter-to-spring temperatures (January–May). Low-frequency trends, which were associated with the medieval warm period and the little ice age, were identified in the winter-to-spring temperature reconstruction, however, the twentieth century warming trend found elsewhere could not be identified in our proxy record, nor was it found in the corresponding meteorological data used for our study. Comparisons with other northern-hemispherical proxy data showed that similar low-frequency signals are present until the beginning of the twentieth century when the other proxies derived from further north indicate a significant warming while the winter-to-spring temperature proxy from SW-Turkey does not. Correlation analyses including our temperature reconstruction and seven well-known climate indices suggest that various atmospheric oscillation patterns are capable of influencing the temperature variations in SW-Turkey.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2013-09-27
    Description: The latest version of the state-of-the-art global land–atmosphere–ocean coupled climate forecast system of NCEP has shown considerable improvement in various aspects of the Indian summer monsoon. However, climatological mean dry bias over the Indian sub-continent is further increased as compared to the previous version. Here we have attempted to link this dry bias with climatological mean bias in the Eurasian winter/spring snow, which is one of the important predictors of the Indian summer monsoon rainfall (ISMR). Simulation of interannual variability of the Eurasian snow and its teleconnection with the ISMR are quite reasonable in the model. Using composite analysis it is shown that a positive snow anomaly, which is comparable to the systematic bias in the model, results into significant decrease in the summer monsoon rainfall over the central India and part of the Equatorial Indian Ocean. Decrease in the summer monsoon rainfall is also found to be linked with weaker northward propagation of intraseasonal oscillation (ISO). A barotropic stationary wave triggered by positive snow anomaly over west Eurasia weakens the upper level monsoon circulation, which in turn reduces the zonal wind shear and hence, weakens the northward propagation of summer monsoon ISOs. A sensitivity experiment by reducing snow fall over Eurasian region causes decrease in winter and spring snow depth, which in turn leads to decrease in Indian summer monsoon rainfall. Results from the sensitivity experiment corroborate with those of composite analysis based on long free run. This study suggests that further improvements in the snow parametrization schemes as well as Arctic sea ice are needed to reduce the Eurasian snow bias during winter/spring, which may reduce the dry bias over Indian sub-continent and hence predictability aspect of the model.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2013-09-27
    Description: We examine the influence of the South-American land-mass and its mountains on the significant cyclic diurnal and semidiurnal components of the average circulation in the adjacent area of the southeastern tropical Pacific (SEP). Our approach is based on a number of numerical simulations with the regional atmospheric model weather research and forecasting forced by the National Centers for Environmental Prediction’s final analysis operational analysis data. In the control simulation the model domain covers the SEP and a large part of South America. In several sensitivity experiments the domain is reduced to progressively exclude continental areas. We find that the mean diurnal cycle is sensitive to model domain in ways that reveal the existence of different contributions originating from the Chilean and Peruvian land-masses. The experiments suggest that diurnal variations in circulations and thermal structures over the SEP (mainly forced by local insolation) are influenced by convection over the Peruvian sector of the Andes cordillera, while the mostly dry mountain-breeze circulations force an additional component that results in semi-diurnal variations near the coast. A series of numerical tests, however, reveal sensitivity of the simulations to the choice of vertical grid, limiting the possibility of solid quantitative statements on the amplitudes and phases of the diurnal and semidiurnal components across the domain.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2013-06-07
    Description: The seasonal melt-freeze transitions are fundamental features of the Arctic climate system. The representation of the pan-Arctic melt and freeze onset (north of 60°N) is assessed in two reanalyses and eleven CMIP5 global circulation models (GCMs). The seasonal melt-freeze transitions are retrieved from surface air temperature (SAT) across the land and sea-ice domains and evaluated against surface observations. While monthly averages of SAT are reasonably well represented in models, large model-observation and model–model disparities of timing of melt and freeze onset are evident. The evaluation against surface observations reveals that the ERA-Interim reanalysis performs the best, closely followed by some of the climate models. GCMs and reanalyses capture the seasonal melt-freeze transitions better in the central Arctic than in the marginal seas and across the land areas. The GCMs project that during the 21st century, the summer length—the period between melt and freeze onset—will increase over land by about 1 month at all latitudes, and over sea ice by 1 and 3 months at low and high latitudes, respectively. This larger summer-length increase over sea ice at progressively higher latitudes is related to a retreat of summer sea ice during the 21st century, since open water freezes roughly 40 days later than ice-covered ocean. As a consequence, by the year 2100, the freeze onset is projected to be initiated within roughly 10 days across the whole Arctic Ocean, whereas this transition varies by about 80 days today.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2013-06-07
    Description: The dynamics of a low-order coupled wind-driven ocean–atmosphere system is investigated with emphasis on its predictability properties. The low-order coupled deterministic system is composed of a baroclinic atmosphere for which 12 dominant dynamical modes are only retained (Charney and Straus in J Atmos Sci 37:1157–1176, 1980 ) and a wind-driven, quasi-geostrophic and reduced-gravity shallow ocean whose field is truncated to four dominant modes able to reproduce the large scale oceanic gyres (Pierini in J Phys Oceanogr 41:1585–1604, 2011 ). The two models are coupled through mechanical forcings only. The analysis of its dynamics reveals first that under aperiodic atmospheric forcings only dominant single gyres (clockwise or counterclockwise) appear, while for periodic atmospheric solutions the double gyres emerge. In the present model domain setting context, this feature is related to the level of truncation of the atmospheric fields, as indicated by a preliminary analysis of the impact of higher wavenumber (“synoptic” scale) modes on the development of oceanic gyres. In the latter case, double gyres appear in the presence of a chaotic atmosphere. Second the dynamical quantities characterizing the short-term predictability (Lyapunov exponents, Lyapunov dimension, Kolmogorov–Sinaï (KS) entropy) displays a complex dependence as a function of the key parameters of the system, namely the coupling strength and the external thermal forcing. In particular, the KS-entropy is increasing as a function of the coupling in most of the experiments, implying an increase of the rate of loss of information about the localization of the system on its attractor. Finally the dynamics of the error is explored and indicates, in particular, a rich variety of short term behaviors of the error in the atmosphere depending on the (relative) amplitude of the initial error affecting the ocean, from polynomial ( at 2  +  bt 3  +  ct 4 ) up to exponential-like evolutions. These features are explained and analyzed in the light of the recent findings on error growth (Nicolis et al. in J Atmos Sci 66:766–778, 2009 ).
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2013-06-07
    Description: The ocean heat transport into the Arctic and the heat budget of the Barents Sea are analyzed in an ensemble of historical and future climate simulations performed with the global coupled climate model EC-Earth. The zonally integrated northward heat flux in the ocean at 70°N is strongly enhanced and compensates for a reduction of its atmospheric counterpart in the twenty first century. Although an increase in the northward heat transport occurs through all of Fram Strait, Canadian Archipelago, Bering Strait and Barents Sea Opening, it is the latter which dominates the increase in ocean heat transport into the Arctic. Increased temperature of the northward transported Atlantic water masses are the main reason for the enhancement of the ocean heat transport. The natural variability in the heat transport into the Barents Sea is caused to the same extent by variations in temperature and volume transport. Large ocean heat transports lead to reduced ice and higher atmospheric temperature in the Barents Sea area and are related to the positive phase of the North Atlantic Oscillation. The net ocean heat transport into the Barents Sea grows until about year 2050. Thereafter, both heat and volume fluxes out of the Barents Sea through the section between Franz Josef Land and Novaya Zemlya are strongly enhanced and compensate for all further increase in the inflow through the Barents Sea Opening. Most of the heat transported by the ocean into the Barents Sea is passed to the atmosphere and contributes to warming of the atmosphere and Arctic temperature amplification. Latent and sensible heat fluxes are enhanced. Net surface long-wave and solar radiation are enhanced upward and downward, respectively and are almost compensating each other. We find that the changes in the surface heat fluxes are mainly caused by the vanishing sea ice in the twenty first century. The increasing ocean heat transport leads to enhanced bottom ice melt and to an extension of the area with bottom ice melt further northward. However, no indication for a substantial impact of the increased heat transport on ice melt in the Central Arctic is found. Most of the heat that is not passed to the atmosphere in the Barents Sea is stored in the Arctic intermediate layer of Atlantic water, which is increasingly pronounced in the twenty first century.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2013-04-10
    Description: The three-dimensional structure and evolution characteristics of tropical depression (TD) and mixed Rossby-gravity wave (MRG) type disturbances in the tropical western North Pacific during El Niño and La Niña summers are investigated based on observational and reanalysis data. A clear MRG-to-TD transition was observed during El Niño summers while such a transition is unclear during La Niña summers. The vertical structure of the TD-MRG waves appears equivalent barotropic during El Niño but becomes tilted eastward with height during La Niña. The diagnosis of barotropic energy conversion shows that both the rotational and divergent components of the background flow change associated with E1 Niño-Southern Oscillation (ENSO) are responsible for energy conversion from the mean flow to the TD-MRG perturbations. A further examination of the pure MRG mode shows that its intensity does not vary between El Niño and La Niña while its phase speed does. A faster (slower) westward propagation speed during La Niña (El Niña) is attributed to enhanced (reduced) mean easterlies in the western equatorial Pacific. The heating associated with the MRG wave appears more anti-symmetric during La Niña than during El Niño. In contrast to the MRG waves, the amplitude of the TD waves depends greatly on the ENSO phase. The enhanced (suppressed) TD disturbances during El Niño (La Niña) is attributed to greater (less) barotropic energy conversion associated with the background flow change. The vertical structure of the TD waves appears quasi-barotropic in the geopotential height field but baroclinic in the divergence field.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    facet.materialart.
    Unknown
    Springer
    Publication Date: 2013-04-10
    Description: Until now, climate model intercomparison has focused primarily on annual and global averages of various quantities or on specific components, not on how well the general dynamics in the models compare to each other. In order to address how well models agree when it comes to the dynamics they generate, we have adopted a new approach based on climate networks. We have considered 28 pre-industrial control runs as well as 70 20th-century forced runs from 23 climate models and have constructed networks for the 500 hPa, surface air temperature (SAT), sea level pressure (SLP), and precipitation fields for each run. We then employed a widely used algorithm to derive the community structure in these networks. Communities separate “nodes” in the network sharing similar dynamics. It has been shown that these communities, or sub-systems, in the climate system are associated with major climate modes and physics of the atmosphere (Tsonis AA, Swanson KL, Wang G, J Clim 21: 2990–3001 in 2008; Tsonis AA, Wang G, Swanson KL, Rodrigues F, da Fontura Costa L, Clim Dyn, 37: 933–940 in 2011; Steinhaeuser K, Ganguly AR, Chawla NV, Clim Dyn 39: 889–895 in 2012). Once the community structure for all runs is derived, we use a pattern matching statistic to obtain a measure of how well any two models agree with each other. We find that, with the possible exception of the 500 hPa field, consistency for the SAT, SLP, and precipitation fields is questionable. More importantly, none of the models comes close to the community structure of the actual observations (reality). This is a significant finding especially for the temperature and precipitation fields, as these are the fields widely used to produce future projections in time and in space.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2013-04-10
    Description: Observational data show that the dominant mode of the boreal winter rainfall anomalies in the tropical Indo-Western Pacific (IWP) is a west-east dipolar pattern, which is called the Indo-Western Pacific Dipole (IWPD) mode and is related to El Niño-Southern Oscillation. It is found that corresponded to the IWPD mode is a new atmospheric teleconnection pattern—a wave train pattern emitted from the IWP toward Asia and the northwest Pacific in winter. During the positive (negative) phase of the IWPD, the teleconnection pattern features the negative (positive) anomalies of 200-hPa geopotential height (H200) centered at 30°N, 110°E and the positive (negative) anomalies of H200 centered at 45°N, 140°E. The teleconnection pattern represents the dominant mode of the boreal winter H200 anomaly over Asia. A series of simple atmospheric model experiments are performed to confirm that this winter teleconnection pattern is induced by the heating anomalies associated with the IWPD, and the heating anomalies over the equatorial central Pacific are not important to this teleconnection pattern from the IWP toward Asia and the northeast Pacific. The IWPD is strengthened after the climate regime shift of the 1970s, which leads to a stronger teleconnection pattern.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2013-04-10
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2013-09-14
    Description: Sea surface temperatures (SSTs) are often used for the development of hydro-climatic variable forecasts based on teleconnection methods. Such methods rely on projections or linear combinations of teleconnection indices [e.g. El Niño-Southern Oscillation (ENSO)] and other predictor fields. This study introduces a new hydro-climatic forecasting method identifying SST “dipole” predictors motivated by major teleconnection patterns. An SST dipole is defined as a function of average SST anomalies over two oceanic areas of specific sizes and geographic locations. An optimization algorithm is developed to search for the most significant SST dipole predictors of an external hydro-climatic series based on the Gerrity Skill Score. The significant dipoles are cross-validated and used to generate multiple forecast values. The new method is applied to the forecasting of seasonal precipitation over the southeast US. Hindcasting results show that significant dipoles related to ENSO as well as other prominent patterns at different lead times can indeed be identified. The dipole method also compares favorably with existing statistical forecasting schemes with respect to multiple skill measures. Furthermore, an operational forecasting framework able to produce ensemble forecast traces and uncertainty intervals that can support regional water resources planning and management is also developed.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2013-09-19
    Description: The equatorial edge of the Western Pacific Warm Pool is operationally identified by one isotherm ranging between 28° and 29 °C, chosen to align with the interannual variability of strong zonal salinity gradients and the convergence of zonal ocean currents. The simulation of this edge is examined in 19 models from the World Climate Research Program Coupled Model Intercomparison Project Phase 5 (CMIP5), over the historical period from 1950 to 2000. The dynamic warm pool edge (DWPE), where the zonal currents converge, is difficult to determine from limited observations and biased models. A new analysis technique is introduced where a proxy for DWPE is determined by the isotherm that most closely correlates with the movements of the strong salinity gradient. It can therefore be a different isotherm in each model. The DWPE is simulated much closer to observations than if a direct temperature-only comparison is made. Aspects of the DWPE remain difficult for coupled models to simulate including the mean longitude, the interannual excursions, and the zonal convergence of ocean currents. Some models have only very weak salinity gradients trapped to the western side of the basin making it difficult to even identify a DWPE. The model’s DWPE are generally 1–2 °C cooler than observed. In line with theory, the magnitude of the zonal migrations of the DWPE are strongly related to the amplitudes of the Nino3.4 SST index. Nevertheless, a better simulation of the mean location of the DWPE does not necessarily improve the amplitude of a model’s ENSO. It is also found that in a few models (CSIROMk3.6, inmcm and inmcm4-esm) the warm pool displacements result from a net heating or cooling rather than a zonal advection of warm water. The simulation of the DWPE has implications for ENSO dynamics when considering ENSO paradigms such as the delayed action oscillator mechanism, the Advective-Reflective oscillator, and the zonal-advective feedback. These are also discussed in the context of the CMIP5 simulations.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2013-09-22
    Description: Winter-spring precipitation in southern China tends to be higher (lower) than normal in El Niño (La Niña) years during 1953–1973. The relationship between the southern China winter-spring precipitation and El Niño-Southern Oscillation (ENSO) is weakened during 1974–1994. During 1953–1973, above-normal southern China rainfall corresponds to warmer sea surface temperature (SST) in the equatorial central Pacific. There are two anomalous vertical circulations with ascent over the equatorial central Pacific and ascent over southern China and a common branch of descent over the western North Pacific that is accompanied by an anomalous lower-level anticyclone. During 1974–1994, above-normal southern China rainfall corresponds to warmer SST in eastern South Indian Ocean and cooler SST in western South Indian Ocean. Two anomalous vertical circulations act to link southern China rainfall and eastern South Indian Ocean SST anomalies, with ascent over eastern South Indian Ocean and southern China and a common branch of descent over the western North Pacific. Present analysis shows that South Indian Ocean SST anomalies can contribute to southern China winter-spring precipitation variability independently. The observed change in the relationship between southern China winter-spring rainfall and ENSO is likely related to the increased SST variability in eastern South Indian Ocean and the modulation of the Pacific decadal oscillation.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2014-11-11
    Description: Following an earlier climatological study of North Pacific Polar Lows by employing dynamical downscaling of NCEP1 reanalysis in the regional climate model COSMO-CLM, the characteristics of Polar Low genesis over the North Pacific under different global warming scenarios are investigated. Simulations based on three scenarios from the Special Report on Emissions Scenarios were conducted using a global climate model (ECHAM5) and used to examine systematic changes in the occurrence of Polar Lows over the twenty first century. The results show that with more greenhouse gas emissions, global air temperature would rise, and the frequency of Polar Lows would decrease. With sea ice melting, the distribution of Polar Low genesis shows a northward shift. In the scenarios with stronger warming there is a larger reduction in the number of Polar Lows.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2014-11-11
    Description: This study aims at assessing the skill of several climate field reconstruction techniques (CFR) to reconstruct past precipitation over continental Europe and the Mediterranean at seasonal time scales over the last two millennia from proxy records. A number of pseudoproxy experiments are performed within the virtual reality of a regional paleoclimate simulation at 45 km resolution to analyse different aspects of reconstruction skill. Canonical Correlation Analysis (CCA), two versions of an Analog Method (AM) and Bayesian hierarchical modeling (BHM) are applied to reconstruct precipitation from a synthetic network of pseudoproxies that are contaminated with various types of noise. The skill of the derived reconstructions is assessed through comparison with precipitation simulated by the regional climate model. Unlike BHM, CCA systematically underestimates the variance. The AM can be adjusted to overcome this shortcoming, presenting an intermediate behaviour between the two aforementioned techniques. However, a trade-off between reconstruction-target correlations and reconstructed variance is the drawback of all CFR techniques. CCA (BHM) presents the largest (lowest) skill in preserving the temporal evolution, whereas the AM can be tuned to reproduce better correlation at the expense of losing variance. While BHM has been shown to perform well for temperatures, it relies heavily on prescribed spatial correlation lengths. While this assumption is valid for temperature, it is hardly warranted for precipitation. In general, none of the methods outperforms the other. All experiments agree that a dense and regularly distributed proxy network is required to reconstruct precipitation accurately, reflecting its high spatial and temporal variability. This is especially true in summer, when a specifically short de-correlation distance from the proxy location is caused by localised summertime convective precipitation events.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2014-11-11
    Description: El Niño-Southern Oscillation (ENSO) plays a dominant role in interannual climate variability in Pacific island countries, directly affecting lives there. Many countries show different rainfall responses depending on the sea surface temperature (SST) structure of different types of El Nino events. El Niño events are classified into three types based on previous studies: those with strongest SST anomalies in the eastern Pacific Cold Tongue region (CTE), in the Western Pacific Warm Pool region (WPE), and those in between, a “Mixed” El Niño (MxE), and results from 30 CMIP5 models are investigated. These models accurately reproduce observed SST and precipitation anomalies for the three El Niño types and La Niña. CMIP5 models simulate much larger ranges in the strength of ENSO events than observed. Results clarify the roles of both the different structures of El Niño SST anomalies and their magnitudes on rainfall in the Pacific, and demonstrate that each of the three El Niño types has different impacts on rainfall in the region. These impacts vary with location, with WPE and CTE producing very different impacts in most Pacific island countries. There is a linear intensification of both the mean and maximum rainfall anomalies in the equatorial Pacific as the events become stronger. Equatorial rainfall shifts eastward in CTE and MxE, westward in La Niña. Both the South Pacific and Intertropical Convergence Zones (SPCZ and ITCZ) shift equatorward in El Niño and poleward in La Niña, the shifts increasing as events strengthen. WPE show different behaviour to other events, with little east-west shift in equatorial rainfall, and the orientation angle of the convergence zones increases. Identification of models with no erroneous westward bias in SST anomalies has clarified the effect of strong CTE events producing “zonal” SPCZ and shifting rainfall away to the east from western equatorial countries.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2014-11-05
    Description: This study investigates the teleconnections between the tropical Atlantic and Pacific Oceans in 15 state-of-the-art fully coupled general circulation models and Earth system models without external SST forcing. In contrast to other studies, the teleconnection is considered in both directions—from the Pacific to the Atlantic and from the Atlantic to the Pacific. The model ensemble is generally able to simulate the propagation of atmospheric and oceanic signals to the adjacent ocean basin, generated by warm sea surface temperature (SST) anomalies in the tropical eastern oceans with Atlantic summer events lagging or leading Pacific boreal winter events. This is investigated by means of time-lagged composite analyses of different atmospheric parameters, including sea level pressure, wind, stream function, velocity potential, vertical air movement and divergent wind at several levels. However, the modelled inter-basin teleconnection and its correct frequency of occurrence depend on the strong warm SST biases in the Atlantic Benguela upwelling region and in the Pacific Ocean.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    facet.materialart.
    Unknown
    Springer
    Publication Date: 2014-11-05
    Description: Precipitation over the tropical Atlantic in 24 atmospheric models is analyzed using an object-based approach, which clusters rainy areas in the models as precipitation objects and calculates their properties such as size, amplitude, and location. Based on the distribution of precipitation objects over land and over ocean, two classes of models emerge. The first class of models has a reasonable representation of objects over land but misplaces the ocean object westward, near the coast of Brazil, instead of the central Atlantic as observed. The second class of models show small-sized objects over land with intense precipitation values; for these models, the ocean object is located eastward, near the coast of Guinea. The Atlantic intertropical convergence zone structure in the models exhibits either the West or the East Atlantic bias. No model matches the observed precipitation distribution. The two distinct model behaviors in the mean state are traced to the coastal precipitation bias of the models in boreal spring. In this season, the two model groups place the main precipitation object on opposite coasts—one group puts it at the south coast of Brazil and the other group places it at the Gulf of Guinea. This west–east partitioning of precipitation is sustained in boreal summer, resulting in the West and East Atlantic bias in the annual mean. It is found that models with the East Atlantic bias tend to be high resolution models which rain excessively over the Gulf of Guinea starting from boreal spring.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2014-11-05
    Description: The response of the Atlantic meridional overturning circulation (AMOC) to an increase of radiative forcing (ramp-up) and a subsequent reversal of radiative forcing (ramp-down) is analyzed for four different global climate models. Due to changes in ocean temperature and hydrological cycle, all models show a weakening of the AMOC during the ramp-up phase. Once the external forcing is reversed, the results become model dependent. For IPSL-CM5A-LR, the AMOC continues its weakening trend for most of the ramp-down experiment. For HadGEM2-ES, the AMOC trend reverses once the external forcing also reverses, without recovering its initial value. For EC-EARTH and MPI-ESM-LR the recovery is anomalously strong yielding an AMOC overshoot. A robust linear dependency can be established between AMOC and density difference between North Atlantic (NA) deep water formation region and South Atlantic (SA). In particular, AMOC evolution is primarily controlled by a meridional salinity contrast between these regions. During the warming scenario, the subtropical Atlantic becomes saltier while the NA experiences a net freshening which favours an AMOC weakening. The different behaviour in the models during the ramp-down is dependent on the response of the ocean at the boundaries of NA and SA. The way in which the positive salinity anomaly stored in the subtropical Atlantic during the ramp-up is subsequently released elsewhere, characterizes the recovery. An out-of-phase response of the salinity transport at \(48^{\circ }\hbox {N}\) and \(34^{\circ }\hbox {S}\) boundaries is able to control the meridional density contrast between NA and SA during the transient experiments. Such a non-synchronized response is mainly controlled by changes in gyre salinity transport rather than by changes in overturning transport, thus suggesting a small role of the salt advection feedback in the evolution of the AMOC.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2014-11-05
    Description: It is well known that the Sahel region of Africa is impacted by decadal scale variability in precipitation, driven by global sea surface temperatures. This work demonstrates that the National Center for Atmospheric Research’s Community Atmosphere Model, version 4 is capable of reproducing relationships between Sahelian precipitation variability and Indian and Atlantic Ocean sea surface temperature variations on such timescales. Further analysis then constructs a moisture budget breakdown using model output and shows that the change in precipitation minus evaporation in the region is dominated by column integrated moisture convergence due to the mean flow, with the convergence of mass in the atmospheric column mainly responsible. It is concluded that the oceanic forcing of atmospheric mass convergence and divergence to a first order explains the moisture balance patterns in the region. In particular, the anomalous circulation patterns, including net moisture divergence by the mean and transient flows combined with negative moisture advection, together explain the drying of the Sahel during the second half of the twentieth century. Diagnosis of moisture budget and circulation components within the main rainbelt and along the monsoon margins show that changes to the mass convergence are related to the magnitude of precipitation that falls in the region, while the advection of dry air is associated with the maximum latitudinal extent of precipitation.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2014-12-19
    Description: The enhanced central and eastern Pacific SST warming and the associated ocean processes under global warming are investigated using the ocean component of the Community Earth System Model (CESM), Parallel Ocean Program version 2 (POP2). The tropical SST warming pattern in the coupled CESM can be faithfully reproduced by the POP2 forced with surface fluxes computed using the aerodynamic bulk formula. By prescribing the wind stress and/or wind speed through the bulk formula, the effects of wind stress change and/or the wind-evaporation-SST (WES) feedback are isolated and their linearity is evaluated in this ocean-alone setting. Result shows that, although the weakening of the equatorial easterlies contributes positively to the El Niño-like SST warming, 80 % of which can be simulated by the POP2 without considering the effects of wind change in both mechanical and thermodynamic fluxes. This result points to the importance of the air–sea thermal interaction and the relative feebleness of the ocean dynamical process in the El Niño-like equatorial Pacific SST response to global warming. On the other hand, the wind stress change is found to play a dominant role in the oceanic response in the tropical Pacific, accounting for most of the changes in the equatorial ocean current system and thermal structures, including the weakening of the surface westward currents, the enhancement of the near-surface stratification and the shoaling of the equatorial thermocline. Interestingly, greenhouse gas warming in the absence of wind stress change and WES feedback also contributes substantially to the changes at the subsurface equatorial Pacific. Further, this warming impact can be largely replicated by an idealized ocean experiment forced by a uniform surface heat flux, whereby, arguably, a purest form of oceanic dynamical thermostat is revealed.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2014-12-17
    Description: Based on daily rainfall data collected at 395 gauge stations over eastern China during 1979–2009, the variation in light rain days with intensities of 0.1–10 mm day −1 in the summer half of the year was analyzed. Results indicate that both the light rain amount and the number of light rain days decline distinctly, with trends of −4.89 mm (10 year) −1 and −2.48 days (10 year) −1 , respectively. The first two principal components of EOF analysis on light rain days not only show a long-term decrease, but also depict regional differences; specifically, light rain days decline more distinctly in northeastern and southern regions of eastern China. Spatial and temporal features, as well as the periods derived from the EOF analysis of temperature, precipitable water content, and relative humidity in the lower troposphere, coincide with those of light rain days. Composite analysis also suggests that there are fewer light rain days in years with lower relative humidity and precipitable water content in the lower troposphere, while there are fewer light rain days in years with higher tropospheric temperatures. According to the Clausius–Clapeyron equation and the relative humidity equations, relative humidity over eastern China during the period studied decreases by 5.5 % due to lower-tropospheric warming, and decreases by 0.16 % because of the decrease in specific humidity in the same period. Both warming and water vapor content are the reasons for light rain reduction, and warming is deemed the primary cause.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2011-06-22
    Description:    The objective of this study is to examine, based on recently available high resolution satellite and observational data, the evolution and role of sea surface temperature (SST) in influencing the intraseasonal variability of the South China Sea (SCS) summer monsoon (SM). The study focuses on the 30–60 day timescale when the northward propagating anomalies are dominant over the SCS. Composite analysis of the SST maximum events during SCS SM shows that increased SST anomalies over the SCS are significantly influenced by the downward shortwave radiation flux anomalies, with the suppressed surface latent heat flux anomalies supplementing to it. A thermal damping of the positive SST anomalies induces positive upward heat fluxes, which then destabilize the lower atmosphere between 1,000 and 700 hPa. The positive SST anomalies lead the positive precipitation anomalies over the SCS by 10 days, with a significant correlation ( r  = 0.44) between the SST-precipitation anomalies. The new findings here indicate an ocean-to-atmosphere effect over the SCS, where underlying SST anomalies tend to form a favorable condition for convective activity and sustain enhanced precipitation during the SCS SM. It is also argued, based on our observations, that the negative sea level pressure anomalies induced by the positive SST anomalies play a role in enhancing the northward propagation of the intraseasonal anomalies over the SCS. Content Type Journal Article Pages 1-10 DOI 10.1007/s00382-011-1118-x Authors Mathew Roxy, Centre for Climate Change Research, Indian Institute of Tropical Meteorology, Pune, 411008 India Youichi Tanimoto, Faculty of Environmental Earth Science and Graduate School of Environmental Science, Hokkaido University, Sapporo, Hokkaido, Japan Journal Climate Dynamics Online ISSN 1432-0894 Print ISSN 0930-7575
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2011-06-22
    Description:    In this paper, we evaluate several timely, daily air-sea heat flux products (NCEP, NCEP2, ERA-Interim and OAFlux/ISCCP) against observations and present the newly developed TropFlux product. This new product uses bias-corrected ERA-interim and ISCCP data as input parameters to compute air-sea fluxes from the COARE v3.0 algorithm. Wind speed is corrected for mesoscale gustiness. Surface net shortwave radiation is based on corrected ISCCP data. We extend the shortwave radiation time series by using “near real-time” SWR estimated from outgoing longwave radiation. All products reproduce consistent intraseasonal surface net heat flux variations associated with the Madden-Julian Oscillation in the Indian Ocean, but display more disparate interannual heat flux variations associated with El Niño in the eastern Pacific. They also exhibit marked differences in mean values and seasonal cycle. Comparison with global tropical moored buoy array data, I-COADS and fully independent mooring data sets shows that the two NCEP products display lowest correlation to mooring turbulent fluxes and significant biases. ERA-interim data captures well temporal variability, but with significant biases. OAFlux and TropFlux perform best. All products have issues in reproducing observed longwave radiation. Shortwave flux is much better captured by ISCCP data than by any of the re-analyses. Our “near real-time” shortwave radiation performs better than most re-analyses, but tends to underestimate variability over the cold tongues of the Atlantic and Pacific. Compared to independent mooring data, NCEP and NCEP2 net heat fluxes display ~0.78 correlation and 〉65 W m −2 rms-difference, ERA-I performs better (~0.86 correlation and ~48 W m −2 ) while OAFlux and TropFlux perform best (~0.9 correlation and ~43 W m −2 ). TropFlux hence provides a useful option for studying flux variability associated with ocean–atmosphere interactions, oceanic heat budgets and climate fluctuations in the tropics. Content Type Journal Article Pages 1-23 DOI 10.1007/s00382-011-1115-0 Authors B. Praveen Kumar, Physical Oceanography Division, National Institute of Oceanography, Council of Scientific and Industrial Research (CSIR), Dona Paula, Goa 403004, India J. Vialard, Physical Oceanography Division, National Institute of Oceanography, Council of Scientific and Industrial Research (CSIR), Dona Paula, Goa 403004, India M. Lengaigne, Physical Oceanography Division, National Institute of Oceanography, Council of Scientific and Industrial Research (CSIR), Dona Paula, Goa 403004, India V. S. N. Murty, National Institute of Oceanography Regional Centre, Council of Scientific and Industrial Research (CSIR), Visakhapatnam, India M. J. McPhaden, NOAA/Pacific Marine Research Laboratory, Seattle, WA, USA Journal Climate Dynamics Online ISSN 1432-0894 Print ISSN 0930-7575
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2011-06-25
    Description:    The impact of land use change on regional climate can be substantial but also is variable in space and time. Past observational and modeling work suggests that in a ‘Mediterranean’ climate such as in California’s Central Valley, the impact of irrigated agriculture can be large in the dry season but negligible in the wet season due to seasonal variation in surface energy partitioning. Here we report further analysis of regional climate model simulations showing that diurnal variation in the impact of irrigated agriculture on climate similarly reflects variation in surface energy partitioning, as well as smaller changes in net radiation. With conversion of natural vegetation to irrigated agriculture, statistically significant decreases of 4–8 K at 2 m occurred at midday June–September, and small decreases of ~1 K occurred in winter months only in relatively dry years. This corresponded to reduced sensible heat flux of 100–350 W m −2 and increased latent heat fluxes of 200–450 W m −2 at the same times and in the same months. We also observed decreases of up to 1,500 m in boundary layer height at midday in summer months, and marginally significant reductions in surface zonal wind speed in July and August at 19:00 PST. The large decrease in daytime temperature due to shifts in energy partitioning overwhelmed any temperature increase related to the reduced zonal sea breeze. Such changes in climate and atmospheric dynamics from conversion to (or away from) irrigated agriculture could have important implications for regional air quality in California’s Central Valley. Content Type Journal Article Pages 1-13 DOI 10.1007/s00382-011-1123-0 Authors Lara M. Kueppers, School of Natural Sciences and Sierra Nevada Research Institute, University of California, Merced, 5200 N. Lake Rd., Merced, CA 95343, USA Mark A. Snyder, Climate Change and Impacts Laboratory, Department of Earth and Planetary Sciences, University of California, Santa Cruz, 1156 High St., Santa Cruz, CA 95064, USA Journal Climate Dynamics Online ISSN 1432-0894 Print ISSN 0930-7575
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2011-06-25
    Description:    The present study focuses on the leading interannual mode of continental-scale atmospheric variability over South America, which is characterized by an equivalent barotropic vortex (referred to as VOSA in the text) centered over the eastern subtropical coast of the continent. The principal aim is to determine whether and in what season VOSA is the downstream extension of the leading Pacific South American mode (PSA1). Another objective is to examine the extent to which VOSA and PSA1 are forced by El Niño Southern Oscillation (ENSO). The research is based on examination of reanalysis data and output of experiments with an atmospheric general circulation model. The emphasis is on the southern spring, summer and fall seasons, during which VOSA modulates the interannual precipitation variability over the continent. A similar relationship is not found during the southern winter. It is found that VOSA is an integral part of PSA1 during spring and fall. In these seasons, PSA1/VOSA is originated primarily by large-scale atmospheric internal variability with the forcing by ENSO accounting for 14 and 8% of the total variance, respectively. During the southern summer season, when ENSO peaks, PSA1 is not a dominant mode of atmospheric variability, and VOSA primarily results from continental-scale internal variability. Content Type Journal Article Pages 1-15 DOI 10.1007/s00382-011-1116-z Authors Laura Zamboni, Mathematics and Computer Science Division, Argonne National Laboratory, 9700 S.Cass Ave TCS Bldg #240, Argonne, IL 60439, USA Fred Kucharski, Earth System Physics Section, Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34014 Trieste, Italy C. Roberto Mechoso, Department of Atmospheric and Oceanic Sciences, University of California Los Angeles, Los Angeles, CA, USA Journal Climate Dynamics Online ISSN 1432-0894 Print ISSN 0930-7575
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2011-06-25
    Description:    The leading mode of southern hemisphere (SH) climatic variability, the southern annular mode (SAM), has recently seen a shift towards its positive phase due to stratospheric ozone depletion and increasing greenhouse gas (GHG) concentrations. Here we examine how sensitive the SAM (defined as the leading empirical orthogonal function of SH sea level pressure anomalies) is to future GHG concentrations. We determine its likely evolution for three intergovernmental panel on climate change (IPCC) special report on emission scenarios (SRES) for austral summer and winter, using a multi-model ensemble of IPCC fourth assessment report models which resolve stratospheric ozone recovery. During the period of summer ozone recovery (2000–2050), the SAM index exhibits weakly negative, statistically insignificant trends due to stratospheric ozone recovery which offsets the positive forcing imposed by increasing GHG concentrations. Thereafter, positive SAM index trends occur with magnitudes that show sensitivity to the SRES scenario utilised, and thus future GHG emissions. Trends are determined to be strongest for SRES A2, followed by A1B and B1, respectively. The winter SAM maintains a similar dependency upon GHG as summer, but over the entire twenty-first century and to a greater extent. We also examine the influence of ozone recovery by comparing results to models that exclude stratospheric ozone recovery. Projections are shown to be statistically different from the aforementioned results, highlighting the importance of ozone recovery in governing SAM-evolution. We therefore demonstrate that the future SAM will depend both upon GHG emissions and stratospheric ozone recovery. Content Type Journal Article Pages 1-10 DOI 10.1007/s00382-011-1121-2 Authors Graham R. Simpkins, Climatic Research Unit, School of Environmental Science, University of East Anglia, Norwich, UK Alexey Yu. Karpechko, Climatic Research Unit, School of Environmental Science, University of East Anglia, Norwich, UK Journal Climate Dynamics Online ISSN 1432-0894 Print ISSN 0930-7575
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    facet.materialart.
    Unknown
    Springer
    Publication Date: 2011-06-25
    Description:    The El Niño Southern Oscillation (ENSO) is known as the strongest natural inter-annual climate signal, having widespread consequences on the global weather, climate, ecology and even on societies. Understanding ENSO variations in a changing climate is therefore of primordial interest to both the climate community and policy makers. In this study, we focus on the change in ENSO nonlinearity due to climate change. We first analysed high statistical moments of observed Sea Surface Temperatures (SST) timeseries of the tropical Pacific based on the measurement of the tails of their Probability Density Function (PDF). This allows defining relevant metrics for the change in nonlinearity observed over the last century. Based on these metrics, a zonal “see-saw” (oscillation) in nonlinearity patterns is highlighted that is associated with the change in El Niño characteristics observed in recent years. Taking advantage of the IPCC database and the different projection scenarios, it is showed that changes in El Niño statistics (or “flavour”) from a present-day climate to a warmer climate are associated with a significant change in nonlinearity patterns. In particular, in the twentieth century climate, the “conventional” eastern Pacific El Niño relates more to changes in nonlinearity than to changes in mean state whereas the central Pacific El Niño (or Modoki El Niño) is more sensitive to changes in mean state than to changes in nonlinearity. An opposite behaviour is found in a warmer climate, namely the decreasing nonlinearity in the eastern Pacific tends to make El Niño less frequent but more sensitive to mean state, whereas the increasing nonlinearity in the west tends to trigger Central Pacific El Niño more frequently. This suggests that the change in ENSO statistics due to climate change might result from changes in the zonal contrast of nonlinearity characteristics across the tropical Pacific. Content Type Journal Article Pages 1-21 DOI 10.1007/s00382-011-1119-9 Authors J. Boucharel, Université de Toulouse; UPS (OMP-PCA), LEGOS, 14 Av. Edouard Belin, 31400 Toulouse, France B. Dewitte, Université de Toulouse; UPS (OMP-PCA), LEGOS, 14 Av. Edouard Belin, 31400 Toulouse, France Y. du Penhoat, Université de Toulouse; UPS (OMP-PCA), LEGOS, 14 Av. Edouard Belin, 31400 Toulouse, France B. Garel, Institut de Mathématiques de Toulouse (UPS), Université de Toulouse, INP-ENSEEIHT, Toulouse, France S.-W. Yeh, Department of Environmental Marine Science, Hanyang University, Ansan, South Korea J.-S. Kug, Korea Ocean Research and Development Institute, Ansan, South Korea Journal Climate Dynamics Online ISSN 1432-0894 Print ISSN 0930-7575
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2011-06-27
    Description: Erratum to: Climate change under aggressive mitigation: the ENSEMBLES multi-model experiment Content Type Journal Article Pages 1-2 DOI 10.1007/s00382-011-1102-5 Authors T. C. Johns, Hadley Centre, Met Office, FitzRoy Road, Exeter, EX1 3PB UK J.-F. Royer, Centre National de Recherches Météorologiques-Groupe d’Etude de l’Atmosphère Météorologique (CNRM-GAME Meteo-France CNRS), 42 Avenue G. Coriolis, 31057 Toulouse, France I. Höschel, Institute for Meteorology, Freie Universität Berlin, Carl-Heinrich-Becker-Weg 6-10, 12165 Berlin, Germany H. Huebener, Hessian Agency for the Environment and Geology, Rheingaustraße 186, 65203 Wiesbaden, Germany E. Roeckner, Max Planck Institute for Meteorology, Bundesstrasse 53, 20146 Hamburg, Germany E. Manzini, Max Planck Institute for Meteorology, Bundesstrasse 53, 20146 Hamburg, Germany W. May, Danish Climate Centre, Danish Meteorological Institute, Lyngbyvej 100, 2100 Copenhagen, Denmark J.-L. Dufresne, UMR 8539 CNRS, ENS, UPMC, Ecole Polytechnique, Laboratoire de Météorologie Dynamique (LMD/IPSL), 75252 Paris Cedex 05, France O. H. Otterå, Nansen Environmental and Remote Sensing Center, Thormøhlensgt. 47, 5006 Bergen, Norway D. P. van Vuuren, Utrech University, Utrech, The Netherlands D. Salas y Melia, Centre National de Recherches Météorologiques-Groupe d’Etude de l’Atmosphère Météorologique (CNRM-GAME Meteo-France CNRS), 42 Avenue G. Coriolis, 31057 Toulouse, France M. A. Giorgetta, Max Planck Institute for Meteorology, Bundesstrasse 53, 20146 Hamburg, Germany S. Denvil, FR 636 CNRS, UVSQ, UPMC, Institut Pierre Simon Laplace (IPSL), 75252 Paris Cedex 05, France S. Yang, Danish Climate Centre, Danish Meteorological Institute, Lyngbyvej 100, 2100 Copenhagen, Denmark P. G. Fogli, Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), Bologna, Italy J. Körper, Institute for Meteorology, Freie Universität Berlin, Carl-Heinrich-Becker-Weg 6-10, 12165 Berlin, Germany J. F. Tjiputra, Department of Geophysics, University of Bergen, Allegt. 70, 5007 Bergen, Norway E. Stehfest, Planbureau voor de Leefomgeving (PBL), Bilthoven, The Netherlands C. D. Hewitt, Hadley Centre, Met Office, FitzRoy Road, Exeter, EX1 3PB UK Journal Climate Dynamics Online ISSN 1432-0894 Print ISSN 0930-7575
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2011-06-10
    Description:    The evolution of El Niño-Southern Oscillation (ENSO) variability can be characterized by various ocean–atmosphere feedbacks, for example, the influence of ENSO related sea surface temperature (SST) variability on the low-level wind and surface heat fluxes in the equatorial tropical Pacific, which in turn affects the evolution of the SST. An analysis of these feedbacks requires physically consistent observational data sets. Availability of various reanalysis data sets produced during the last 15 years provides such an opportunity. A consolidated estimate of ocean surface fluxes based on multiple reanalyses also helps understand biases in ENSO predictions and simulations from climate models. In this paper, the intensity and the spatial structure of ocean–atmosphere feedback terms (precipitation, surface wind stress, and ocean surface heat flux) associated with ENSO are evaluated for six different reanalysis products. The analysis provides an estimate for the feedback terms that could be used for model validation studies. The analysis includes the robustness of the estimate across different reanalyses. Results show that one of the “coupled” reanalysis among the six investigated is closer to the ensemble mean of the results, suggesting that the coupled data assimilation may have the potential to better capture the overall atmosphere–ocean feedback processes associated with ENSO than the uncoupled ones. Content Type Journal Article Pages 1-14 DOI 10.1007/s00382-011-1104-3 Authors Arun Kumar, Climate Prediction Center, NCEP/NWS/NOAA, 5200 Auth Road (Suite 605), Camp Springs, MD 20746, USA Zeng-Zhen Hu, Climate Prediction Center, NCEP/NWS/NOAA, 5200 Auth Road (Suite 605), Camp Springs, MD 20746, USA Journal Climate Dynamics Online ISSN 1432-0894 Print ISSN 0930-7575
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2011-06-10
    Description:    The GLACIOCLIM-SAMBA (GS) Antarctic accumulation monitoring network, which extends from the coast of Adelie Land to the Antarctic plateau, has been surveyed annually since 2004. The network includes a 156-km stake-line from the coast inland, along which accumulation shows high spatial and interannual variability with a mean value of 362 mm water equivalent a −1 . In this paper, this accumulation is compared with older accumulation reports from between 1971 and 1991. The mean and annual standard deviation and the km-scale spatial pattern of accumulation were seen to be very similar in the older and more recent data. The data did not reveal any significant accumulation trend over the last 40 years. The ECMWF analysis-based forecasts (ERA-40 and ERA-Interim), a stretched-grid global general circulation model (LMDZ4) and three regional circulation models (PMM5, MAR and RACMO2), all with high resolution over Antarctica (27–125 km), were tested against the GS reports. They qualitatively reproduced the meso-scale spatial pattern of the annual-mean accumulation except MAR. MAR significantly underestimated mean accumulation, while LMDZ4 and RACMO2 overestimated it. ERA-40 and the regional models that use ERA-40 as lateral boundary condition qualitatively reproduced the chronology of interannual variability but underestimated the magnitude of interannual variations. Two widely used climatologies for Antarctic accumulation agreed well with the mean GS data. The model-based climatology was also able to reproduce the observed spatial pattern. These data thus provide new stringent constraints on models and other large-scale evaluations of the Antarctic accumulation. Content Type Journal Article Pages 1-12 DOI 10.1007/s00382-011-1103-4 Authors Cécile Agosta, UJF-Grenoble 1 / CNRS, Laboratoire de Glaciologie et de Géophysique de l’Environnement UMR 5183, 54 rue Molière, BP 96, 38402 Saint Martin d’Hères Cedex, France Vincent Favier, UJF-Grenoble 1 / CNRS, Laboratoire de Glaciologie et de Géophysique de l’Environnement UMR 5183, 54 rue Molière, BP 96, 38402 Saint Martin d’Hères Cedex, France Christophe Genthon, CNRS / UJF-Grenoble 1, Laboratoire de Glaciologie et de Géophysique de l’Environnement UMR 5183, 54 rue Molière, BP 96, 38402 Saint Martin d’Hères Cedex, France Hubert Gallée, CNRS / UJF-Grenoble 1, Laboratoire de Glaciologie et de Géophysique de l’Environnement UMR 5183, 54 rue Molière, BP 96, 38402 Saint Martin d’Hères Cedex, France Gerhard Krinner, CNRS / UJF-Grenoble 1, Laboratoire de Glaciologie et de Géophysique de l’Environnement UMR 5183, 54 rue Molière, BP 96, 38402 Saint Martin d’Hères Cedex, France Jan T. M. Lenaerts, Institute for Marine and Atmospheric Research Utrecht, Utrecht University, Utrecht, The Netherlands Michiel R. van den Broeke, Institute for Marine and Atmospheric Research Utrecht, Utrecht University, Utrecht, The Netherlands Journal Climate Dynamics Online ISSN 1432-0894 Print ISSN 0930-7575
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2011-06-15
    Description:    Recent changes in the Arctic hydrological cycle are explored using in situ observations and an improved atmospheric reanalysis data set, ERA-Interim. We document a pronounced decline in summer snowfall over the Arctic Ocean and Canadian Archipelago. The snowfall decline is diagnosed as being almost entirely caused by changes in precipitation form (snow turning to rain) with very little influence of decreases in total precipitation. The proportion of precipitation falling as snow has decreased as a result of lower-atmospheric warming. Statistically, over 99% of the summer snowfall decline is linked to Arctic warming over the past two decades. Based on the reanalysis snowfall data over the ice-covered Arctic Ocean, we derive an estimate for the amount of snow-covered ice. It is estimated that the area of snow-covered ice, and the proportion of sea ice covered by snow, have decreased significantly. We perform a series of sensitivity experiments in which inter-annual changes in snow-covered ice are either unaccounted for, or are parameterized. In the parameterized case, the loss of snow-on-ice results in a substantial decrease in the surface albedo over the Arctic Ocean, that is of comparable magnitude to the decrease in albedo due to the decline in sea ice cover. Accordingly, the solar input to the Arctic Ocean is increased, causing additional surface ice melt. We conclude that the decline in summer snowfall has likely contributed to the thinning of sea ice over recent decades. The results presented provide support for the existence of a positive feedback in association with warming-induced reductions in summer snowfall. Content Type Journal Article Pages 1-14 DOI 10.1007/s00382-011-1105-2 Authors James A. Screen, School of Earth Sciences, University of Melbourne, Melbourne, VIC 3010, Australia Ian Simmonds, School of Earth Sciences, University of Melbourne, Melbourne, VIC 3010, Australia Journal Climate Dynamics Online ISSN 1432-0894 Print ISSN 0930-7575
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2011-06-15
    Description:    This study compares the impacts of El Niño Modoki and El Niño on precipitation over Korea during the boreal winters from 1954 to 2009. Precipitation in Korea tends to be equal to or greater than the normal level during an El Niño Modoki winter, whereas there is no significant change during an El Niño winter. Greater than normal precipitation during El Niño Modoki was also found over the lower reaches of the Yangtze River, China and much of southern Japan. The latitudes of these regions are 5–10° further north than in southern China, where precipitation increases during El Niño. The following two anomalous atmospheric circulations were found to be causes that led to different precipitation distributions over East Asia. First, an atmospheric wave train in the lower troposphere, which propagated from the central tropical Pacific (cyclonic) through the southern Philippine Sea (anticyclonic) to East Asia (cyclonic), reached the southern China and northern Philippine Sea during El Niño, whereas it reached Korea and southern Japan during El Niño Modoki. Second, an anomalous local meridional circulation, which consists of air sinking in the tropics, flowing poleward in the lower troposphere, and rising in the subtropics, developed between the southern Philippine Sea and northern Philippine Sea during El Niño. During El Niño Modoki, however, this circulation expanded further to the north and was formed between the southern Philippine Sea and regions of Korea and southern Japan. Content Type Journal Article Pages 1-12 DOI 10.1007/s00382-011-1114-1 Authors Do-Woo Kim, National Institute of Meteorological Research, Korea Meteorological Administration, Seoul, Korea Ki-Seon Choi, National Typhoon Center, Korea Meteorological Administration, Jeju, Korea Hi-Ryong Byun, Department of Environmental Atmospheric Sciences, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan, 608-737 Republic of Korea Journal Climate Dynamics Online ISSN 1432-0894 Print ISSN 0930-7575
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2011-06-27
    Description:    The result in climate simulations, supported in the observation-based record, is that the ratio f = T L / T O of land-average to ocean-average temperature change is greater than one and varies comparatively modestly as climate changes. This is investigated in results from the CMIP3 data archive of climate change simulations following the B1 and more strongly forced A1B scenarios as well as in 2×CO 2 integrations. The associated precipitation ratio y = P L / P O is also considered briefly. The behaviour of ϕ is analyzed in terms of a forcing-response view of the energy balance over land and ocean regions. The analysis indicates that the value of ϕ  〉 1 is not maintained by separate local balances over land and ocean but by an energetic balance that also involves a change in transport between the regions. The transport change does not restrain the land warming by exporting energy to the ocean region but, rather, the reverse. The anomalous transport is from the ocean to the land region even though the ocean warms less than the land does. Feedbacks in the ocean region, especially in the equatorial Pacific, do not sufficiently counteract the forcing and the result is an excess of energy that is transported to the land. The land warms in order to radiate away both the energy from the forcing over land but also the extra energy imported from the ocean region, thereby maintaining ϕ  〉 1. This situation can be understood to parallel the SST-forced case in model studies where ϕ  〉 1 despite the forcing being confined to the ocean area. The climate system is effective in redistributing forcing so that it is the local feedbacks, rather than the pattern of the forcing, that determine the temperature response. Land and ocean averaged quantities and budgets behave in a consistent manner to provide a simplified representation of the changes in temperature and energetic processes that are occurring. The geographical distributions of the terms do not, however, display a strong land/ocean demarcation. The land/ocean average budgets and balances are the residual of processes that vary considerably within the land and ocean boundaries. Content Type Journal Article Pages 1-18 DOI 10.1007/s00382-011-1112-3 Authors G. J. Boer, Canadian Centre for Climate Modelling and Analysis, Environment Canada, c/o University of Victoria, PO Box 1700, Victoria, BC V8W 2Y2, Canada Journal Climate Dynamics Online ISSN 1432-0894 Print ISSN 0930-7575
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2011-06-30
    Description:    Using coral data, sea surface temperature (SST) reanalysis data, and Climate Model Intercomparison Project III (CMIP3) data, we analyze 20th-century and future warm pool and cold tongue SST trends. For the last 100 years, a broad La Nina-like SST trend, in which the warming trend of the warm pool SST is greater than that of the cold tongue SST, has appeared in reanalysis SST data sets, 20C scenario experiments of the CMIP3 data and less significantly in coral records. However, most Coupled General Circulation Models subjected to scenarios of future high greenhouse gas concentrations produce larger SST warming trends in cold tongues than in warm pools, resembling El Nino-like SST patterns. In other words, warmer tropical climate conditions correspond to stronger El Nino-like response. Heat budget analyses further verify that warmer tropical climates diminish the role of the ocean’s dynamic thermostat, which currently regulates cold tongue temperatures. Therefore, the thermodynamic thermostat, whose efficiency depends on the mean temperature, becomes the main regulator (particularly via evaporative cooling) of both warm pool and cold tongue temperatures in future warm climate conditions. Thus, the warming tendency of the cold tongue SST may lead that of the warm pool SST in near future. Content Type Journal Article Pages 1-11 DOI 10.1007/s00382-011-1129-7 Authors Soon-Il An, Department of Atmospheric Sciences, Yonsei University, Seoul, 120-742 Korea Ji-Won Kim, APEC Climate Center, Pusan, Korea Seul-Hee Im, Department of Atmospheric Sciences, Yonsei University, Seoul, 120-742 Korea Beak-Min Kim, Korea Polar Research Institute, KORDI, Incheon, Korea Jae-Heung Park, Department of Atmospheric Sciences, Yonsei University, Seoul, 120-742 Korea Journal Climate Dynamics Online ISSN 1432-0894 Print ISSN 0930-7575
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2011-06-10
    Description:    A near-global grid-point nudging of the Arpege-Climat atmospheric General Circulation Model towards ECMWF reanalyses is used to diagnose the regional versus remote origin of the summer model biases and variability over West Africa. First part of this study revealed a limited impact on the monsoon climatology compared to a control experiment without nudging, but a significant improvement of interannual variability, although the amplitude of the seasonal anomalies remained underestimated. Focus is given here on intraseasonal variability of monsoon rainfall and dynamics. The reproducible part of these signals is investigated through 30-member ensemble experiments computed for the 1994 rainy season, a year abnormally wet over the Sahel but representative of the model systematic biases. In the control experiment, Arpege-Climat simulates too few rainy days that are associated with too low rainfall amounts over the central and western Sahel, in line with the seasonal dry biases. Nudging the model outside Africa tends to slightly increase the number of rainy days over the Sahel, but has little effect on associated rainfall amounts. However, results do indicate that a significant part of the monsoon intraseasonal variability simulated by Arpege-Climat is controlled by lateral boundary conditions. Parts of the wet/dry spells over the Sahel occur in phase in the 30 members of the nudging experiment, and are therefore embedded in larger-scale variability patterns. Inter-member spread is however not constant across the selected summer season. It is partly controlled by African Easterly Waves, which show dissimilar amplitude from one member to another, but a coherent phasing in all members. A lowpass filtering of the nudging fields suggests that low frequency variations in the lateral boundary conditions can lead to eastward extensions of the African Easterly Jet, creating a favorable environment for easterly waves, while high frequency perturbations seem to control their phasing. Content Type Journal Article Pages 1-22 DOI 10.1007/s00382-011-1106-1 Authors Benjamin Pohl, CNRM-GAME, Météo-France, CNRS, Toulouse, France Hervé Douville, CNRM-GAME, Météo-France, CNRS, Toulouse, France Journal Climate Dynamics Online ISSN 1432-0894 Print ISSN 0930-7575
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2011-06-15
    Description:    The origin and bifurcation structure of abrupt millennial-scale climate transitions under steady external solar forcing and in the absence of atmospheric synoptic variability is studied by means of a global coupled model of intermediate complexity. We show that the origin of Dansgaard-Oeschger type oscillations in the model is caused by the weaker northward oceanic heat transport in the Atlantic basin. This is in agreement with previous studies realized with much simpler models, based on highly idealized geometries and simplified physics. The existence of abrupt millennial-scale climate transitions during glacial times can therefore be interpreted as a consequence of the weakening of the negative temperature-advection feedback. This is confirmed through a series of numerical experiments designed to explore the sensitivity of the bifurcation structure of the Atlantic meridional overturning circulation to increased atmospheric CO 2 levels under glacial boundary conditions. Contrasting with the cold, stadial, phases of millennial oscillations, we also show the emergence of strong interdecadal variability in the North Atlantic sector during warm interstadials. The instability driving these interdecadal-interstadial oscillations is shown to be identical to that found in ocean-only models forced by fixed surface buoyancy fluxes, that is, a large-scale baroclinic instability developing in the vicinity of the western boundary current in the North Atlantic. Comparisons with modern observations further suggest a physical mechanism similar to that driving the 30–40 years time scale associated with the Atlantic multidecadal oscillation. Content Type Journal Article Pages 1-17 DOI 10.1007/s00382-011-1117-y Authors Olivier Arzel, Climate Change Research Centre (CCRC), The University of New South Wales, Sydney, Australia Matthew H. England, Climate Change Research Centre (CCRC), The University of New South Wales, Sydney, Australia Alain Colin de Verdière, Laboratoire de Physique des Océans (LPO), Université de Bretagne Occidentale, Brest, France Thierry Huck, Laboratoire de Physique des Océans (LPO), Université de Bretagne Occidentale, Brest, France Journal Climate Dynamics Online ISSN 1432-0894 Print ISSN 0930-7575
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2011-06-15
    Description:    Generalized frosts (GF) in central-southern South America have a strong impact due to their spatial extension, and they are especially important when they become persistent. This paper aims at identifying the atmospheric circulation features that determine the extreme GF persistence, i.e. very persistent and without persistence, and the differences between them, during the 1961–1990 winters. Since the GF without persistence group outnumbers the other one, two subgroups are composed with events selected from winters with maximum and minimum frequency of GF occurrence, respectively. Additionally, the individual event of July 1988 within the very persistent GF group is analyzed due to its exceptional persistence. GF persistence is mainly conditioned by two large-scale dynamic factors. One is the Rossby wave train propagation across the Pacific Ocean, and the other one is the location with respect to the continent and the magnitude of the confluence in the jet entrance region in subtropical latitudes. A predominantly meridional Rossby wave train propagation with a confluence region to the west of the continent prior to the event favors GF with intermediate (null) persistence depending on the greater (lesser) jet acceleration. This is conditioned by the magnitude of the confluence, which, in turn, depends on the disposition of the wave train propagation pattern. Instead, an essentially zonal propagation with a confluence region to the east of the continent favors the GF persistence for several days, yet if there is no confluence the event does not persist. The greatest persistence of an event combines the confluence/diffluence of the jet entrance/exit region, which depends on the disposition with respect to the continent of the zonally propagating Rossby wave trains. Content Type Journal Article Pages 1-21 DOI 10.1007/s00382-011-1113-2 Authors Gabriela V. Müller, Centro de Investigaciones Científicas y Transferencia de Tecnología a la Producción, Diamante (CICYTTTP-CONICET), Materi y España, s/n, CP 3105 Diamante, Entre Ríos, Argentina Guillermo J. Berri, Servicio Meteorológico Nacional - CONICET, Buenos Aires, Argentina Journal Climate Dynamics Online ISSN 1432-0894 Print ISSN 0930-7575
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2011-06-15
    Description:    The mechanisms controlling the El Niño have been studied by analyzing mixed layer heat budget of daily outputs from a free coupled simulation with the Climate Forecast System (CFS). The CFS is operational at National Centers for Environmental Prediction, and is used by Climate Prediction Center for seasonal-to-interannual prediction, particularly for the prediction of the El Niño and Southern Oscillation (ENSO) in the tropical Pacific. Our analysis shows that the development and decay of El Niño can be attributed to ocean advection in which all three components contribute. Temperature advection associated with anomalous zonal current and mean vertical upwelling contributes to the El Niño during its entire evolutionary cycle in accordance with many observational, theoretical, and modeling studies. The impact of anomalous vertical current is found to be comparable to that of mean upwelling. Temperature advection associated with mean (anomalous) meridional current in the CFS also contributes to the El Niño cycle due to strong meridional gradient of anomalous (mean) temperature. The surface heat flux, non-linearity of temperature advection, and eddies associated with tropical instabilities waves (TIW) have the tendency to damp the El Niño. Possible degradation in the analysis and closure of the heat budget based on the monthly mean (instead of daily) data is also quantified. Content Type Journal Article Pages 1-17 DOI 10.1007/s00382-011-1111-4 Authors Boyin Huang, National Climate Data Center, Climate Prediction Center, NOAA, Asheville, NC 28801, USA Yan Xue, National Climate Data Center, Climate Prediction Center, NOAA, Asheville, NC 28801, USA Hui Wang, National Climate Data Center, Climate Prediction Center, NOAA, Asheville, NC 28801, USA Wanqiu Wang, National Climate Data Center, Climate Prediction Center, NOAA, Asheville, NC 28801, USA Arun Kumar, National Climate Data Center, Climate Prediction Center, NOAA, Asheville, NC 28801, USA Journal Climate Dynamics Online ISSN 1432-0894 Print ISSN 0930-7575
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2011-06-27
    Description:    Variability in the Atlantic Meridional Overturning Circulation (AMOC) has been analysed using a 600-year pre-industrial control simulation with the Bergen Climate Model. The typical AMOC variability has amplitudes of 1 Sverdrup (1 Sv = 10 6  m 3  s −1 ) and time scales of 40–70 years. The model is reproducing the observed dense water formation regions and has very realistic ocean transports and water mass distributions. The dense water produced in the Labrador Sea (1/3) and in the Nordic Seas, including the water entrained into the dense overflows across the Greenland-Scotland Ridge (GSR; 2/3), are the sources of North Atlantic Deep Water (NADW) forming the lower limb of the AMOC’s northern overturning. The variability in the Labrador Sea and the Nordic Seas convection is driven by decadal scale air-sea fluxes in the convective region that can be related to opposite phases of the North Atlantic Oscillation. The Labrador Sea convection is directly linked to the variability in AMOC. Linkages between convection and water mass transformation in the Nordic Seas are more indirect. The Scandinavian Pattern, the third mode of atmospheric variability in the North Atlantic, is a driver of the ocean’s poleward heat transport (PHT), the overall constraint on northern water mass transformation. Increased PHT is both associated with an increased water mass exchange across the GSR, and a stronger AMOC. Content Type Journal Article Pages 1-17 DOI 10.1007/s00382-011-1124-z Authors I. Medhaug, Geophysical Institute, University of Bergen, Allegaten 70, 5007 Bergen, Norway H. R. Langehaug, Nansen Environmental and Remote Sensing Center, Bergen, Norway T. Eldevik, Geophysical Institute, University of Bergen, Allegaten 70, 5007 Bergen, Norway T. Furevik, Geophysical Institute, University of Bergen, Allegaten 70, 5007 Bergen, Norway M. Bentsen, Uni Bjerknes Centre, Uni Research, Bergen, Norway Journal Climate Dynamics Online ISSN 1432-0894 Print ISSN 0930-7575
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2011-06-28
    Description:    In this study, the CERES phenological growth and development functions were implemented into the regional climate model, RegCM3 to give a model denoted as RegCM3_CERES. This model was used to represent interactions between regional climate and crop growth processes. The effects of crop growth and development processes on regional climate were then studied based on two 20-year simulations over the East Asian monsoon area conducted using the original regional climate model RegCM3, and the coupled RegCM3_CERES model. The numerical experiments revealed that incorporating the crop growth and development processes into the regional climate model reduced the root mean squared error of the simulated precipitation by 2.2–10.7% over north China, and the simulated temperature by 5.5–30.9% over the monsoon region in eastern China. Comparison of the simulated results obtained using RegCM3_CERES and RegCM3 showed that the most significant changes associated with crop modeling were the changes in leaf area index which in turn modify the aspects of surface energy and water partitions and lead to moderate changes in surface temperature and, to some extent, rainfall. Further analysis revealed that a robust representation of seasonal changes in plant growth and developmental processes in the regional climate model changed the surface heat and moisture fluxes by modifying the vegetation characteristics, and that these differences in simulated surface fluxes resulted in different structures of the boundary layer and ultimately affected the convection. The variations in leaf area index and fractional vegetation cover changed the distribution of evapotranspiration and heat fluxes, which could potentially lead to anomalies in geopotential height, and consequently influenced the overlying atmospheric circulation. These changes would result in redistribution of the water and energy through advection. Nevertheless, there are significant uncertainties in modeling how monsoon dynamics responds to crop modeling and more research is needed. Content Type Journal Article Pages 1-15 DOI 10.1007/s00382-011-1125-y Authors Feng Chen, LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029 China Zhenghui Xie, LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029 China Journal Climate Dynamics Online ISSN 1432-0894 Print ISSN 0930-7575
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2011-06-10
    Description:    The winter months from December 2009 to February 2010 witnessed extreme conditions affecting lives of millions of people around the globe. During this winter, the El Niño Modoki in the tropical Pacific was a dominant climatic mode. In this study, exclusive impacts of the El Niño Modoki are evaluated with an Atmospheric General Circulation Model. Sensitivity experiments are conducted by selectively specifying anomalies of the observed sea surface temperature in the tropical Pacific. Observed data are also used in the diagnostics to trace the source of forced Rossby waves. Both the observational results and the model simulated results show that the heating associated with the El Niño Modoki in the central tropical Pacific accounted for most of the anomalous conditions observed over southern parts of North America, Europe and over most countries in the Southern Hemisphere viz. Uruguay. Unlike those, the model-simulated results suggest that the anomalously high precipitation observed over Australia and Florida might be associated with the narrow eastern Pacific heating observed during the season. Content Type Journal Article Pages 1-12 DOI 10.1007/s00382-011-1108-z Authors J. V. Ratnam, Research Institute for Global Change, 3173-25 Showa-machi, Kanazawa-ku, Yokohama, 236-0001 Kanagawa, Japan S. K. Behera, Research Institute for Global Change, 3173-25 Showa-machi, Kanazawa-ku, Yokohama, 236-0001 Kanagawa, Japan Y. Masumoto, Research Institute for Global Change, 3173-25 Showa-machi, Kanazawa-ku, Yokohama, 236-0001 Kanagawa, Japan K. Takahashi, Application Laboratory, Yokohama, Japan T. Yamagata, Application Laboratory, Yokohama, Japan Journal Climate Dynamics Online ISSN 1432-0894 Print ISSN 0930-7575
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2011-06-10
    Description:    The influence of the natural variability of the Atlantic meridional overturning circulation (AMOC) on the atmosphere is studied in multi-centennial simulations of six global climate models, using Maximum Covariance Analysis (MCA). In all models, a significant but weak influence of the AMOC changes is found during the Northern Hemisphere cold-season, when the ocean leads the atmosphere by a few years. Although the oceanic pattern slightly varies, an intensification of the AMOC is followed in all models by a weak sea level pressure response that resembles a negative phase of the North Atlantic Oscillation (NAO). The signal amplitude is typically 0.5 hPa and explains about 10% of the yearly variability of the NAO in all models. The atmospheric response seems to be due primarily due to an increase of the heat loss along the North Atlantic Current and the subpolar gyre, associated with an AMOC-driven warming. Sea-ice changes appear to be less important. The stronger heating is associated to a southward shift of the lower-tropospheric baroclinicity and a decrease of the eddy activity in the North Atlantic storm track, which is consistent with the equivalent barotropic perturbation resembling the negative phase of the NAO. This study thus provides some evidence of an atmospheric signature of the AMOC in the cold-season, which may have some implications for the decadal predictability of climate in the North Atlantic region. Content Type Journal Article Pages 1-21 DOI 10.1007/s00382-011-1109-y Authors Guillaume Gastineau, LOCEAN/IPSL, Université Pierre et Marie Curie, 4 place Jussieu, BP100, 75252 Paris Cedex 05, France Claude Frankignoul, LOCEAN/IPSL, Université Pierre et Marie Curie, 4 place Jussieu, BP100, 75252 Paris Cedex 05, France Journal Climate Dynamics Online ISSN 1432-0894 Print ISSN 0930-7575
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2011-06-25
    Description:    It is investigated how the changes of winter sea surface temperature (SST) and mixed layer depth (MLD) under climate change projections are predicted differently in the North Pacific depending on the coupled general circulation models (CGCMs), and how they are related to the dynamical property of the simulated ocean mixed layer. For this purpose the dataset from eleven CGCMs reported to IPCC’s AR4 are used, while detailed analysis is given to the MRI and MIROC models. Analysis of the CGCM data reveals that the increase of SST and the decrease of MLD in response to global warming tend to be smaller for the CGCM in which the ratio of ocean heat transport (OHT) to surface heat flux (SHF), R (=|OHT/SHF|), is larger in the heat budget of the mixed layer. The negative correlation is found between the changes of OHT and SHF under global warming, which may weaken the response to global warming in the CGCM with larger R . It is also found that the models with low horizontal resolution tend to give broader western boundary currents, larger R , and the smaller changes of SST and MLD under global warming. Content Type Journal Article Pages 1-10 DOI 10.1007/s00382-011-1120-3 Authors Bo Young Yim, Department of Atmospheric Sciences, Global Environmental Laboratory, Yonsei University, Seoul, 120-749 South Korea Yign Noh, Department of Atmospheric Sciences, Global Environmental Laboratory, Yonsei University, Seoul, 120-749 South Korea Sang-Wook Yeh, Department of Environmental Marine Science, Hanyang University, Ansan, 426-791 South Korea Journal Climate Dynamics Online ISSN 1432-0894 Print ISSN 0930-7575
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2011-06-27
    Description:    The effects of horizontal resolution and the treatment of convection on simulation of the diurnal cycle of precipitation during boreal summer are analyzed in several innovative weather and climate model integrations. The simulations include: season-long integrations of the Non-hydrostatic Icosahedral Atmospheric Model (NICAM) with explicit clouds and convection; year-long integrations of the operational Integrated Forecast System (IFS) from the European Centre for Medium-range Weather Forecasts at three resolutions (125, 39 and 16 km); seasonal simulations of the same model at 10 km resolution; and seasonal simulations of the National Center for Atmospheric Research (NCAR) low-resolution climate model with and without an embedded two-dimensional cloud-resolving model in each grid box. NICAM with explicit convection simulates best the phase of the diurnal cycle, as well as many regional features such as rainfall triggered by advancing sea breezes or high topography. However, NICAM greatly overestimates mean rainfall and the magnitude of the diurnal cycle. Introduction of an embedded cloud model within the NCAR model significantly improves global statistics of the seasonal mean and diurnal cycle of rainfall, as well as many regional features. However, errors often remain larger than for the other higher-resolution models. Increasing resolution alone has little impact on the timing of daily rainfall in IFS with parameterized convection, yet the amplitude of the diurnal cycle does improve along with the representation of mean rainfall. Variations during the day in atmospheric prognostic fields appear quite similar among models, suggesting that the distinctive treatments of model physics account for the differences in representing the diurnal cycle of precipitation. Content Type Journal Article Pages 1-20 DOI 10.1007/s00382-011-1127-9 Authors Paul A. Dirmeyer, Center for Ocean-Land–Atmosphere Studies, Calverton, MD, USA Benjamin A. Cash, Center for Ocean-Land–Atmosphere Studies, Calverton, MD, USA James L. Kinter, Center for Ocean-Land–Atmosphere Studies, Calverton, MD, USA Thomas Jung, The European Centre for Medium-Range Weather Forecasts, Reading, UK Lawrence Marx, Center for Ocean-Land–Atmosphere Studies, Calverton, MD, USA Masaki Satoh, Research Institute for Global Change/Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan Cristiana Stan, Center for Ocean-Land–Atmosphere Studies, Calverton, MD, USA Hirofumi Tomita, Research Institute for Global Change/Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan Peter Towers, The European Centre for Medium-Range Weather Forecasts, Reading, UK Nils Wedi, The European Centre for Medium-Range Weather Forecasts, Reading, UK Deepthi Achuthavarier, Center for Ocean-Land–Atmosphere Studies, Calverton, MD, USA Jennifer M. Adams, Center for Ocean-Land–Atmosphere Studies, Calverton, MD, USA Eric L. Altshuler, Center for Ocean-Land–Atmosphere Studies, Calverton, MD, USA Bohua Huang, Center for Ocean-Land–Atmosphere Studies, Calverton, MD, USA Emilia K. Jin, Center for Ocean-Land–Atmosphere Studies, Calverton, MD, USA Julia Manganello, Center for Ocean-Land–Atmosphere Studies, Calverton, MD, USA Journal Climate Dynamics Online ISSN 1432-0894 Print ISSN 0930-7575
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    facet.materialart.
    Unknown
    Springer
    Publication Date: 2011-05-13
    Description:    The new interactive ensemble modeling strategy is used to diagnose how noise due to internal atmospheric dynamics impacts the forced climate response during the twentieth century (i.e., 1870–1999). The interactive ensemble uses multiple realizations of the atmospheric component model coupled to a single realization of the land, ocean and ice component models in order to reduce the noise due to internal atmospheric dynamics in the flux exchange at the interface of the component models. A control ensemble of so-called climate of the twentieth century simulations of the Community Climate Simulation Model version 3 (CCSM3) are compared with a similar simulation with the interactive ensemble version of CCSM3. Despite substantial differences in the overall mean climate, the global mean trends in surface temperature, 500 mb geopotential and precipitation are largely indistinguishable between the control ensemble and the interactive ensemble. Large differences in the forced response; however, are detected particularly in the surface temperature of the North Atlantic. Associated with the forced North Atlantic surface temperature differences are local differences in the forced precipitation and a substantial remote rainfall response in the deep tropical Pacific. We also introduce a simple variance analysis to separately compare the variance due to noise and the forced response. We find that the noise variance is decreased when external forcing is included. In terms of the forced variance, we find that the interactive ensemble increases this variance relative to the control. Content Type Journal Article Pages 1-28 DOI 10.1007/s00382-011-1084-3 Authors Ben P. Kirtman, Division of Meteorology and Physical Oceanography, Rosenstiel School for Atmospheric and Marine Science, University of Miami, Miami, FL, USA Edwin K. Schneider, Department of Atmospheric, Oceanic and Earth Sciences, George Mason University, Fairfax, VA, USA David M. Straus, Department of Atmospheric, Oceanic and Earth Sciences, George Mason University, Fairfax, VA, USA Dughong Min, Division of Meteorology and Physical Oceanography, Rosenstiel School for Atmospheric and Marine Science, University of Miami, Miami, FL, USA Robert Burgman, Division of Meteorology and Physical Oceanography, Rosenstiel School for Atmospheric and Marine Science, University of Miami, Miami, FL, USA Journal Climate Dynamics Online ISSN 1432-0894 Print ISSN 0930-7575
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2011-05-13
    Description:    The impact of climate warming on the seasonal variability of the Humboldt Current system ocean dynamics is investigated. The IPSL-CM4 large scale ocean circulation resulting from two contrasted climate scenarios, the so-called Preindustrial and quadrupling CO 2 , are downscaled using an eddy-resolving regional ocean circulation model. The intense surface heating by the atmosphere in the quadrupling CO 2 scenario leads to a strong increase of the surface density stratification, a thinner coastal jet, an enhanced Peru–Chile undercurrent, and an intensification of nearshore turbulence. Upwelling rates respond quasi-linearly to the change in wind stress associated with anthropogenic forcing, and show a moderate decrease in summer off Peru and a strong increase off Chile. Results from sensitivity experiments show that a 50% wind stress increase does not compensate for the surface warming resulting from heat flux forcing and that the associated mesoscale turbulence increase is a robust feature. Content Type Journal Article Pages 1-14 DOI 10.1007/s00382-011-1085-2 Authors Vincent Echevin, LOCEAN, Paris, France Katerina Goubanova, LEGOS, Toulouse, France Ali Belmadani, LOCEAN, Paris, France Boris Dewitte, LEGOS, Toulouse, France Journal Climate Dynamics Online ISSN 1432-0894 Print ISSN 0930-7575
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    facet.materialart.
    Unknown
    Springer
    Publication Date: 2011-05-14
    Description:    While large-scale circulation fields from atmospheric reanalyses have been widely used to study the tropical intraseasonal variability, rainfall variations from the reanalyses are less focused. Because of the sparseness of in situ observations available in the tropics and strong coupling between convection and large-scale circulation, the accuracy of tropical rainfall from the reanalyses not only measures the quality of reanalysis rainfall but is also to some extent indicative of the accuracy of the circulations fields. This study analyzes tropical intraseasonal rainfall variability in the recently completed NCEP Climate Forecast System Reanalysis (CFSR) and its comparison with the widely used NCEP/NCAR reanalysis (R1) and NCEP/DOE reanalysis (R2). The R1 produces too weak rainfall variability while the R2 generates too strong westward propagation. Compared with the R1 and R2, the CFSR produces greatly improved tropical intraseasonal rainfall variability with the dominance of eastward propagation and more realistic amplitude. An analysis of the relationship between rainfall and large-scale fields using composites based on Madden-Julian Oscillation (MJO) events shows that, in all three NCEP reanalyses, the moisture convergence leading the rainfall maximum is near the surface in the western Pacific but is above 925 hPa in the eastern Indian Ocean. However, the CFSR produces the strongest large-scale convergence and the rainfall from CFSR lags the column integrated precipitable water by 1 or 2 days while R1 and R2 rainfall tends to lead the respective precipitable water. Diabatic heating related to the MJO variability in the CFSR is analyzed and compared with that derived from large-scale fields. It is found that the amplitude of CFSR-produced total heating anomalies is smaller than that of the derived. Rainfall variability from the other two recently produced reanalyses, the ECMWF Re-Analysis Interim (ERAI), and the Modern Era Retrospective-analysis for Research and Applications (MERRA), is also analyzed. It is shown that both the ERAI and MERRA generate stronger rainfall spectra than the R1 and more realistic dominance of eastward propagating variance than R2. The intraseasonal variability in the MERRA is stronger than that in the ERAI but weaker than that in the CFSR and CMORPH. Content Type Journal Article Pages 1-17 DOI 10.1007/s00382-011-1087-0 Authors Jiande Wang, I.M. System Group Inc. at NOAA/NCEP/EMC, Camp Springs, MD, USA Wanqiu Wang, NOAA/NCEP/CPC, Camp Springs, MD, USA Xiouhua Fu, IPRC, SOEST, University of Hawaii at Manoa, Honolulu, HI, USA Kyong-Hwan Seo, Department of Atmospheric Sciences, Pusan National University, Busan, Korea Journal Climate Dynamics Online ISSN 1432-0894 Print ISSN 0930-7575
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2011-05-22
    Description:    This study shows that the frequency of summer tropical cyclones (TCs) in the areas of Japan, Korea, and Taiwan (JKT), which are located in the middle latitudes of East Asia, has a positive correlation with the Arctic Oscillation (AO) occurring during the preceding spring, while summer TC frequency in the Philippines (PH), located in the low latitudes, has a negative correlation with the AO of the preceding spring. During a positive AO phase, when the anomalous anticyclone forms over the mid-latitudes of East Asia, other anomalous cyclones develop not only in the high latitudes but also in the low latitudes from the preceding spring to the summer months. With this change, while southeasterlies in the JKT area derived from the mid-latitude anticyclone plays a role in steering TCs toward this area, northwesterlies strengthened in the PH area by the low-latitude cyclone plays a role in preventing TC movement toward this area. In addition, because of this pressure systems developed during this AO phase, TCs occur, move, and recurve in further northeastern part of the western North Pacific than they do during a negative AO phase. Content Type Journal Article Pages 1-17 DOI 10.1007/s00382-011-1088-z Authors Ki-Seon Choi, National Typhoon Center, Korea Meteorological Administration, Jeju, Korea Chun-Chieh Wu, Department of Atmospheric Sciences, National Taiwan University, Taipei, 106 Taiwan Hi-Ryong Byun, Department of Environmental Atmospheric Sciences, Pukyong National University, Busan, Korea Journal Climate Dynamics Online ISSN 1432-0894 Print ISSN 0930-7575
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2014-12-09
    Description: Based on observations and a set of Atmospheric Model Intercomparison Project (AMIP)-type simulations, the climatic characteristics and dominant spatial patterns of summer rainfall on tropospheric biennial oscillation (TBO) time scales over the East Asian summer monsoon (EASM) region were examined, and the association with sea surface temperature anomalies (SSTAs) and El Niño-Southern Oscillation were analyzed. It was noted that to some extent, the AMIP run successfully simulated the spatial distribution and amplitude of the observed TBO component. Furthermore, the AMIP ensemble mean increased the fraction of total variance of the TBO component, suggesting that SSTAs may have a rainfall response over the EASM region on TBO time scales. The analysis also indicated that a spatial pattern of rainfall on TBO time scales with opposite variations between northern and southern China showed a consistent and robust relationship with SSTAs in the tropical Pacific Ocean in both the AMIP simulations and observations. Statistically,when an El Niño (La Niña) develops, northern China favors dry (wet) conditions and southern China favors wet (dry) conditions at TBO time scales.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2014-12-19
    Description: We examine the tropical inversion strength, measured by the estimated inversion strength (EIS), and its response to climate change in 18 models associated with phase 5 of the coupled model intercomparison project (CMIP5). While CMIP5 models generally capture the geographic distribution of observed EIS, they systematically underestimate it off the west coasts of continents, due to a warm bias in sea surface temperature. The negative EIS bias may contribute to the low bias in tropical low-cloud cover in the same models. Idealized perturbation experiments reveal that anthropogenic forcing leads directly to EIS increases, independent of “temperature-mediated” EIS increases associated with long-term oceanic warming. This fast EIS response to anthropogenic forcing is strongly impacted by nearly instantaneous continental warming. The temperature-mediated EIS change has contributions from both uniform and non-uniform oceanic warming. The substantial EIS increases in uniform oceanic warming simulations are due to warming with height exceeding the moist adiabatic lapse rate in tropical warm pools. EIS also increases in fully-coupled ocean–atmosphere simulations where \(\hbox {CO}_{2}\) concentration is instantaneously quadrupled, due to both fast and temperature-mediated changes. The temperature-mediated EIS change varies with tropical warming in a nonlinear fashion: The EIS change per degree tropical warming is much larger in the early stage of the simulations than in the late stage, due to delayed warming in the eastern parts of the subtropical oceans. Given the importance of EIS in regulating tropical low-cloud cover, this suggests that the tropical low-cloud feedback may also be nonlinear .
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2014-12-03
    Description: The Mediterranean area is strongly vulnerable to future changes in temperature and precipitation, particularly concerning extreme events, and has been identified as a climate change hot spot. This study performs a comprehensive investigation of present-day and future Mediterranean precipitation extremes based on station data, gridded observations and simulations of the regional climate model (REMO) driven by the coupled global general circulation model ECHAM5/MPI-OM. Extreme value estimates from different statistical methods—quantile-based indices, generalized pareto distribution (GPD) based return values and data from a weather generator—are compared and evaluated. Dynamical downscaling reveals improved small-scale topographic structures and more realistic higher rainfall totals and extremes over mountain ranges and in summer. REMO tends to overestimate gridded observational data in winter but is closer to local station information. The dynamical–statistical weather generator provides virtual station rainfall from gridded REMO data that overcomes typical discrepancies between area-averaged model rainfall and local station information, e.g. overestimated numbers of rainy days and underestimated extreme intensities. Concerning future rainfall amount, strong summer and winter drying over the northern and southern Mediterranean, respectively, is confronted with winter wetting over the northern part. In contrast, precipitation extremes tend to increase in even more Mediterranean areas, implying regions with decreasing totals but intensifying extremes, e.g. southern Europe and Turkey in winter and the Balkans in summer. The GPD based return values reveal slightly larger regions of increasing rainfall extremes than quantile-based indices, and the virtual stations from the weather generator show even stronger increases.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2011-02-24
    Description:    The processes that govern the predictability of decadal variations in the North Atlantic meridional overturning circulation (MOC) are investigated in a long control simulation of the ECHO-G coupled atmosphere–ocean model. We elucidate the roles of local stochastic forcing by the atmosphere, and other potential ocean processes, and use our results to build a predictive regression model. The primary influence on MOC variability is found to come from air–sea heat fluxes over the Eastern Labrador Sea. The maximum correlation between such anomalies and the variations in the MOC occurs at a lead time of 2 years, but we demonstrate that the MOC integrates the heat flux variations over a period of 10 years. The corresponding univariate regression model accounts for 74.5% of the interannual variability in the MOC (after the Ekman component has been removed). Dense anomalies to the south of the Greenland-Scotland ridge are also shown to precede the overturning variations by 4–6 years, and provide a second predictor. With the inclusion of this second predictor the resulting regression model explains 82.8% of the total variance of the MOC. This final bivariate model is also tested during large rapid decadal overturning events. The sign of the rapid change is always well represented by the bivariate model, but the magnitude is usually underestimated, suggesting that other processes are also important for these large rapid decadal changes in the MOC. Content Type Journal Article Pages 1-12 DOI 10.1007/s00382-011-1025-1 Authors Pablo Ortega, Dpto. Astrofísica y Ciencias de la Atmósfera, Facultad de Ciencias Físicas, Universidad Complutense de Madrid, Ciudad Universitaria, 28040 Madrid, Spain Ed Hawkins, NCAS-Climate, Department of Meteorology, University of Reading, Reading, UK Rowan Sutton, NCAS-Climate, Department of Meteorology, University of Reading, Reading, UK Journal Climate Dynamics Online ISSN 1432-0894 Print ISSN 0930-7575
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2011-05-07
    Description:    This paper analyzes the ability of the multi-model simulations from the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) to simulate the main leading modes of variability over the Euro-Atlantic region in winter: the North-Atlantic Oscillation (NAO), the Scandinavian mode (SCAND), the East/Atlantic Oscillation (EA) and the East Atlantic/Western Russia mode (EA/WR). These modes of variability have been evaluated both spatially, by analyzing the intensity and location of their anomaly centres, as well as temporally, by focusing on the probability density functions and e-folding time scales. The choice of variability modes as a tool for climate model assessment can be justified by the fact that modes of variability determine local climatic conditions and their likely change may have important implications for future climate changes. It is found that all the models considered are able to simulate reasonably well these four variability modes, the SCAND being the mode which is best spatially simulated. From a temporal point of view the NAO and SCAND modes are the best simulated. UKMO-HadGEM1 and CGCM3.1(T63) are the models best at reproducing spatial characteristics, whereas CCSM3 and CGCM3.1(T63) are the best ones with regard to the temporal features. GISS-AOM is the model showing the worst performance, in terms of both spatial and temporal features. These results may bring new insight into the selection and use of specific models to simulate Euro-Atlantic climate, with some models being clearly more successful in simulating patterns of temporal and spatial variability than others. Content Type Journal Article Pages 1-13 DOI 10.1007/s00382-011-1077-2 Authors M. J. Casado, Agencia Estatal de Meteorología (AEMET), Leonardo Prieto Castro 8, 28040 Madrid, Spain M. A. Pastor, Agencia Estatal de Meteorología (AEMET), Leonardo Prieto Castro 8, 28040 Madrid, Spain Journal Climate Dynamics Online ISSN 1432-0894 Print ISSN 0930-7575
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2011-05-07
    Description:    Under future scenarios of business-as-usual emissions, the ocean storage of anthropogenic carbon is anticipated to decrease because of ocean chemistry constraints and positive feedbacks in the carbon-climate dynamics, whereas it is still unknown how the oceanic carbon cycle will respond to more substantial mitigation scenarios. To evaluate the natural system response to prescribed atmospheric “target” concentrations and assess the response of the ocean carbon pool to these values, 2 centennial projection simulations have been performed with an Earth System Model that includes a fully coupled carbon cycle, forced in one case with a mitigation scenario and the other with the SRES A1B scenario. End of century ocean uptake with the mitigation scenario is projected to return to the same magnitude of carbon fluxes as simulated in 1960 in the Pacific Ocean and to lower values in the Atlantic. With A1B, the major ocean basins are instead projected to decrease the capacity for carbon uptake globally as found with simpler carbon cycle models, while at the regional level the response is contrasting. The model indicates that the equatorial Pacific may increase the carbon uptake rates in both scenarios, owing to enhancement of the biological carbon pump evidenced by an increase in Net Community Production (NCP) following changes in the subsurface equatorial circulation and enhanced iron availability from extratropical regions. NCP is a proxy of the bulk organic carbon made available to the higher trophic levels and potentially exportable from the surface layers. The model results indicate that, besides the localized increase in the equatorial Pacific, the NCP of lower trophic levels in the northern Pacific and Atlantic oceans is projected to be halved with respect to the current climate under a substantial mitigation scenario at the end of the twenty-first century. It is thus suggested that changes due to cumulative carbon emissions up to present and the projected concentration pathways of aerosol in the next decades control the evolution of surface ocean biogeochemistry in the second half of this century more than the specific pathways of atmospheric CO 2 concentrations. Content Type Journal Article Pages 1-19 DOI 10.1007/s00382-011-1079-0 Authors Marcello Vichi, Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), Viale Aldo Moro 44, 40127 Bologna, Italy Elisa Manzini, Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), Viale Aldo Moro 44, 40127 Bologna, Italy Pier Giuseppe Fogli, Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), Viale Aldo Moro 44, 40127 Bologna, Italy Andrea Alessandri, Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), Viale Aldo Moro 44, 40127 Bologna, Italy Lavinia Patara, Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), Viale Aldo Moro 44, 40127 Bologna, Italy Enrico Scoccimarro, Istituto Nazionale di Geofisica e Vulcanologia, Bologna, Italy Simona Masina, Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), Viale Aldo Moro 44, 40127 Bologna, Italy Antonio Navarra, Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), Viale Aldo Moro 44, 40127 Bologna, Italy Journal Climate Dynamics Online ISSN 1432-0894 Print ISSN 0930-7575
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    facet.materialart.
    Unknown
    Springer
    Publication Date: 2011-05-07
    Description:    Urbanisation has burdened cities with many problems associated with growth and the physical environment. Some of the urban locations in India are becoming increasingly vulnerable to natural hazards related to precipitation and flooding. Thus it becomes increasingly important to study the characteristics of these events and their physical explanation. This work studies rainfall trends in Delhi and Mumbai, the two biggest Metropolitan cities of Republic of India, during the period from 1951 to 2004. Precipitation data was studied on basis of months, seasons and years, and the total period divided in the two different time periods of 1951–1980 and 1981–2004 for detailed analysis. Long-term trends in rainfall were determined by Man-Kendall rank statistics and linear regression. Further this study seeks for an explanation for precipitation trends during monsoon period by different global climate phenomena. Principal component analysis and Singular value decomposition were used to find relation between southwest monsoon precipitation and global climatic phenomena using climatic indices. Most of the rainfall at both the stations was found out to be taking place in Southwest monsoon season. The analysis revealed great degree of variability in precipitation at both stations. There is insignificant decrease in long term southwest monsoon rainfall over Delhi and slight significant decreasing trends for long term southwest monsoon rainfall in Mumbai. Decrease in average maximum rainfall in a day was also indicated by statistical analysis for both stations. Southwest monsoon precipitation in Delhi was found directly related to Scandinavian Pattern and East Atlantic/West Russia and inversely related to Pacific Decadal Oscillation, whereas precipitation in Mumbai was found inversely related to Indian ocean dipole, El Niño- Southern Oscillation and East Atlantic Pattern. Content Type Journal Article Pages 1-12 DOI 10.1007/s00382-011-1083-4 Authors Arun Rana, Department of Water Resources Engineering, LTH, Lund University, Box No. 118, 22100 Lund, Sweden Cintia Bertacchi Uvo, Department of Water Resources Engineering, LTH, Lund University, Box No. 118, 22100 Lund, Sweden Lars Bengtsson, Department of Water Resources Engineering, LTH, Lund University, Box No. 118, 22100 Lund, Sweden P. Parth Sarthi, Center for Environmental Sciences, Central University of Bihar, Camp Office: BIT Campus-Patna, P.O-B.V. College, Patna, Bihar 800014, India Journal Climate Dynamics Online ISSN 1432-0894 Print ISSN 0930-7575
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2011-05-11
    Description:    Seasonal (three-month average) climate forecasts have advanced due in large part to improved modeling of the ENSO phenomenon. Long-range monthly forecasts are more problematic because of internal atmospheric variability. Further, it is often assumed that monthly precipitation anomalies are representative of the overall seasonal anomaly. This is not always the case as, according to the Global Precipitation Climatology Project Version 2.1 data set, up to 20% of areas demonstrating some significant teleconnection to ENSO show El Niño minus La Niña differences of one sign in the middle month and the opposite sign in the adjacent months. Most interestingly, this maximum percentage occurs in December–January–February (DJF), a time when the ENSO boundary forcing is strongest. These oscillatory DJF seasons also cluster in space—with significant positive–negative-positive differences in the western South Tropical Indian Ocean (STIO) and negative–positive–negative differences in the far eastern STIO. Representative gauges confirm that these precipitation patterns have been associated with ENSO events since 1951, and pentad precipitation data confirm that they are confined to DJF and evolve at the monthly scale. The abrupt end of the Indian Ocean Dipole mode in January, an increase in the importance of local SST anomalies in February, and an ENSO-induced mid-latitude Rossby wave during austral summer combine to generate the cross-basin precipitation gradient around 15°S. Content Type Journal Article Pages 1-17 DOI 10.1007/s00382-011-1090-5 Authors Scott Curtis, Atmospheric Science Program, Department of Geography, East Carolina University, Greenville, NC, USA Journal Climate Dynamics Online ISSN 1432-0894 Print ISSN 0930-7575
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2011-08-08
    Description:    This study proposes primary diagnostic metrics to evaluate the integrated structure of interdecadal changes of East Asian climate in mid-summer (July–August) over the recent half-century (1955–2000) in numerical models. The metrics are applied to comprehensively examine the performance of BCC_AGCM (Beijing Climate Center atmospheric general circulation model) version 2.0.1. When forced by historical sea surface temperatures (SST), the ensemble simulation with the BCC_AGCM reasonably reproduced the coherent interdecadal changes of rainfall, temperature and circulation. The main feature of the “southern-flooding-and-northern-drought” rainfall change is captured by the model. Correspondingly, the tropospheric cooling in the upper and middle troposphere, the southward shift of upper level westerly jet and weakening of the low-level southwesterly monsoon flow are also reproduced, as well as their relationships with rainfall changes. One of the main deficiencies of the simulation is that the amplitudes of the changes of tropospheric cooling and large-scale circulation are both much weaker than those in reanalysis, and they are consistent with the rainfall deficiency. Also, the upper and middle troposphere cooling center and decreasing of upper-level westerly jet axis shift westward in the model simulations compared with that in the observations. Overall, although BCC_AGCM shows problems in simulating the interdecadal changes of East Asia climate, especially the amplitude and locations of change centers, it reasonably represents the observed configuration of rainfall variation and the associated coherent temperature and circulation changes. Therefore, it could be further used to discuss the mechanisms of the interdecadal variation in East Asia. Meanwhile, the reasonably reproduced configuration of rainfall and its associated large-scale circulation by SST-forced runs indicate that the interdecadal variations in East Asia could mostly arise from the regional response to the global climate change. Content Type Journal Article Pages 1-9 DOI 10.1007/s00382-011-1154-6 Authors Haoming Chen, Chinese Academy of Meteorological Sciences, China Meteorological Administration, Beijing, China Rucong Yu, National Climate Center, China Meteorological Administration, No 46 Zhongguancun South Street, Beijing, 100081 China Jian Li, Chinese Academy of Meteorological Sciences, China Meteorological Administration, Beijing, China Xiaoge Xin, National Climate Center, China Meteorological Administration, No 46 Zhongguancun South Street, Beijing, 100081 China Zaizhi Wang, National Climate Center, China Meteorological Administration, No 46 Zhongguancun South Street, Beijing, 100081 China Tongwen Wu, National Climate Center, China Meteorological Administration, No 46 Zhongguancun South Street, Beijing, 100081 China Journal Climate Dynamics Online ISSN 1432-0894 Print ISSN 0930-7575
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2011-08-13
    Description:    We present a detailed analysis of summer monsoon rainfall over the Indian peninsular using nonlinear spatial correlations. This analysis is carried out employing the tools of complex networks and a measure of nonlinear correlation for point processes such as rainfall, called event synchronization. This study provides valuable insights into the spatial organization, scales, and structure of the 90th and 94th percentile rainfall events during the Indian summer monsoon (June–September). We furthermore analyse the influence of different critical synoptic atmospheric systems and the impact of the steep Himalayan topography on rainfall patterns. The presented method not only helps us in visualising the structure of the extreme-event rainfall fields, but also identifies the water vapor pathways and decadal-scale moisture sinks over the region. Furthermore a simple scheme based on complex networks is presented to decipher the spatial intricacies and temporal evolution of monsoonal rainfall patterns over the last 6 decades. Content Type Journal Article Pages 1-17 DOI 10.1007/s00382-011-1156-4 Authors Nishant Malik, Potsdam Institute for Climate Impact Research, P.O. Box 60 12 03, 14412 Potsdam, Germany Bodo Bookhagen, Department of Geography, University of California Santa Barbara, 1832 Ellison Hall, Santa Barbara, CA 93106-4060, USA Norbert Marwan, Potsdam Institute for Climate Impact Research, P.O. Box 60 12 03, 14412 Potsdam, Germany Jürgen Kurths, Potsdam Institute for Climate Impact Research, P.O. Box 60 12 03, 14412 Potsdam, Germany Journal Climate Dynamics Online ISSN 1432-0894 Print ISSN 0930-7575
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2011-10-06
    Description:    Proper scoring rules provide a useful means to evaluate probabilistic forecasts. Independent from scoring rules, it has been argued that reliability and resolution are desirable forecast attributes. The mathematical expectation value of the score allows for a decomposition into reliability and resolution related terms, demonstrating a relationship between scoring rules and reliability/resolution. A similar decomposition holds for the empirical (i.e. sample average) score over an archive of forecast–observation pairs. This empirical decomposition though provides a too optimistic estimate of the potential score (i.e. the optimum score which could be obtained through recalibration), showing that a forecast assessment based solely on the empirical resolution and reliability terms will be misleading. The differences between the theoretical and empirical decomposition are investigated, and specific recommendations are given how to obtain better estimators of reliability and resolution in the case of the Brier and Ignorance scoring rule. Content Type Journal Article Pages 1-13 DOI 10.1007/s00382-011-1191-1 Authors Jochen Bröcker, Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Strasse 38, 01187 Dresden, Germany Journal Climate Dynamics Online ISSN 1432-0894 Print ISSN 0930-7575
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2011-10-10
    Description:    A new tree-ring reconstruction of the Palmer Drought Severity Index (PDSI) for Mesoamerica from AD 771 to 2008 identifies megadroughts more severe and sustained than any witnessed during the twentieth century. Correlation analyses indicate strong forcing of instrumental and reconstructed June PDSI over Mesoamerica from the El Niño/Southern Oscillation (ENSO). Spectral analyses of the 1,238-year reconstruction indicate significant concentrations of variance at ENSO, sub-decadal, bi-decadal, and multidecadal timescales. Instrumental and model-based analyses indicate that the Atlantic Multidecadal Oscillation is important to warm season climate variability over Mexico. Ocean-atmospheric variability in the Atlantic is not strongly correlated with the June PDSI reconstruction during the instrumental era, but may be responsible for the strong multidecadal variance detected in the reconstruction episodically over the past millennium. June drought indices in Mesoamerica are negatively correlated with gridded June PDSI over the United States from 1950 to 2005, based on both instrumental and reconstructed data. Interannual variability in this latitudinal moisture gradient is due in part to ENSO forcing, where warm events favor wet June PDSI conditions over the southern US and northern Mexico, but dryness over central and southern Mexico (Mesoamerica). Strong anti-phasing between multidecadal regimes of tree-ring reconstructed June PDSI over Mesoamerica and reconstructed summer (JJA) PDSI over the Southwest has also been detected episodically over the past millennium, including the 1950–1960s when La Niña and warm Atlantic SSTs prevailed, and the 1980–1990s when El Niño and cold Atlantic SSTs prevailed. Several Mesoamerican megadroughts are reconstructed when wetness prevailed over the Southwest, including the early tenth century Terminal Classic Drought, implicating El Niño and Atlantic SSTs in this intense and widespread drought that may have contributed to social changes in ancient Mexico. Content Type Journal Article Pages 1-16 DOI 10.1007/s00382-011-1205-z Authors D. W. Stahle, Department of Geosciences, University of Arkansas, Ozark Hall 113, Fayetteville, AR 72701, USA D. J. Burnette, Department of Geosciences, University of Arkansas, Ozark Hall 113, Fayetteville, AR 72701, USA J. Villanueva Diaz, Laboratorio de Dendrocronologia, Instituto Nacional de Investigaciones Forestales, Agricolas, y Pecuarias, CENID-RESPID Km 6.5 margen derecha canal Sacramento, Gomez Palacio, Durango, Mexico R. R. Heim, National Climatic Data Center, NOAA, Asheville, NC, USA F. K. Fye, Department of Geosciences, University of Arkansas, Ozark Hall 113, Fayetteville, AR 72701, USA J. Cerano Paredes, Laboratorio de Dendrocronologia, Instituto Nacional de Investigaciones Forestales, Agricolas, y Pecuarias, CENID-RESPID Km 6.5 margen derecha canal Sacramento, Gomez Palacio, Durango, Mexico R. Acuna Soto, Departamento Microbiologia y Parastologia, UNAM, Mexico, D.F., Mexico M. K. Cleaveland, Department of Geosciences, University of Arkansas, Ozark Hall 113, Fayetteville, AR 72701, USA Journal Climate Dynamics Online ISSN 1432-0894 Print ISSN 0930-7575
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2011-10-10
    Description:    Various measurements from the Surface Heat Flux of the Arctic Ocean (SHEBA) experiment have been combined to study structures and processes producing the onset and end of summer melt over Arctic sea ice. The analysis links the surface energy budget to free-troposphere synoptic variables, clouds, precipitation, and in-ice temperatures. The key results are (1) SHEBA melt-season transitions are associated with atmospheric synoptic events (2) onset of melt clearly occurs on May 28, while the end of melt is produced by a sequence of three atmospheric storm events over a 28-day period producing step-like reductions in the net surface energy flux. The last one occurs on August 22.; (3) melt onset is primarily due to large increases in the downwelling longwave radiation and modest decreases in the surface albedo; (4) decreases in the downwelling longwave radiation occur for all end-of-melt transition steps, while increases in surface albedo occur for the first two; (5) decreases in downwelling shortwave radiation contribute only to the first end-of-melt transition step; (6) springtime free-tropospheric warming preconditions the atmosphere–ice system for the subsequent melt onset; and (7) melt-season transitions also mark transitions in system responses to radiative energy flux changes because of invariant melt-season surface temperatures. The extensive SHEBA observations enable an understanding of the complex processes not available from other field program data. The analysis provides a basis for future testing of the generality of the results, and contributes to better physical understanding of multi-year analyses of melt-season trends from less extensive data sets. Content Type Journal Article Pages 1-23 DOI 10.1007/s00382-011-1196-9 Authors P. Ola G. Persson, Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado, Boulder, CO 80309-0216, USA Journal Climate Dynamics Online ISSN 1432-0894 Print ISSN 0930-7575
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2011-10-08
    Description:    The ocean and sea ice in both polar regions are important reservoirs of freshwater within the climate system. While the response of these reservoirs to future climate change has been studied intensively, the sensitivity of the polar freshwater balance to natural forcing variations during preindustrial times has received less attention. Using an ensemble of transient simulations from 1500 to 2100 AD we put present-day and future states of the polar freshwater balance in the context of low frequency variability of the past five centuries. This is done by focusing on different multi-decadal periods of characteristic external forcing. In the Arctic, freshwater is shifted from the ocean to sea ice during the Maunder Minimum while the total amount of freshwater within the Arctic domain remains unchanged. In contrast, the subsequent Dalton Minimum does not leave an imprint on the slow-reacting reservoirs of the ocean and sea ice, but triggers a drop in the import of freshwater through the atmosphere. During the twentieth and twenty-first century the build-up of freshwater in the Arctic Ocean leads to a strengthening of the liquid export. The Arctic freshwater balance is shifted towards being a large source of freshwater to the North Atlantic ocean. The Antarctic freshwater cycle, on the other hand, appears to be insensitive to preindustrial variations in external forcing. In line with the rising temperature during the industrial era the freshwater budget becomes increasingly unbalanced and strengthens the high latitude’s Southern Ocean as a source of liquid freshwater to lower latitude oceans. Content Type Journal Article Pages 1-17 DOI 10.1007/s00382-011-1199-6 Authors Flavio Lehner, Climate and Environmental Physics, Physics Institute, and Oeschger Centre for Climate Change Research, University of Bern, Sidlerstrasse 5, 3012 Bern, Switzerland Christoph C. Raible, Climate and Environmental Physics, Physics Institute, and Oeschger Centre for Climate Change Research, University of Bern, Sidlerstrasse 5, 3012 Bern, Switzerland Dominik Hofer, Climate and Environmental Physics, Physics Institute, and Oeschger Centre for Climate Change Research, University of Bern, Sidlerstrasse 5, 3012 Bern, Switzerland Thomas F. Stocker, Climate and Environmental Physics, Physics Institute, and Oeschger Centre for Climate Change Research, University of Bern, Sidlerstrasse 5, 3012 Bern, Switzerland Journal Climate Dynamics Online ISSN 1432-0894 Print ISSN 0930-7575
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2011-10-17
    Description:    Global climate models contain numerous parameters with uncertain values. In the context of climate simulation and prediction, it is relevant to obtain an estimate of the range of climate outcomes given the parameter uncertainty. Instead of randomly perturbing parameters, we determine parameter perturbations from short-term integrations that potentially have a high impact on the climate of the model. For this purpose we consider a dry, spectral quasi-geostrophic, three-level model on the sphere and its tangent linear and adjoint equations. With an empirical forcing, the model produces a fairly realistic simulation of the extra-tropical winter circulation. We allowed perturbations in a 1,449 dimensional parameter space. As a measure of impact on the climate we compute the change in the probability density function of the dominant patterns of variability. We find that the largest climate response in a set of 1,000 simulations with potentially high impact perturbations is much larger than the largest response in a similar set of simulations with randomly picked perturbations. We conclude that parameter sensitivity calculations based on short term integrations contain valuable information about the sensitivity of the model climate to parameter perturbations. The approach is feasible for state-of-the-art climate models provided that the tangent linear and adjoint equations are implemented. Content Type Journal Article Pages 1-11 DOI 10.1007/s00382-011-1207-x Authors Hanneke E. Levine-Moolenaar, Royal Netherlands Meteorological Institute, De Bilt, The Netherlands Frank M. Selten, Royal Netherlands Meteorological Institute, De Bilt, The Netherlands Johan Grasman, Biometris, Wageningen University and Research Centre, P.O. Box 100, 6700AC Wageningen, The Netherlands Journal Climate Dynamics Online ISSN 1432-0894 Print ISSN 0930-7575
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2011-12-08
    Description:    In a context of increased demand for food and of climate change, the water consumptions associated with the agricultural practice of irrigation focuses attention. In order to analyze the global influence of irrigation on the water cycle, the land surface model ORCHIDEE is coupled to the GCM LMDZ to simulate the impact of irrigation on climate. A 30-year simulation which takes into account irrigation is compared with a simulation which does not. Differences are usually not significant on average over all land surfaces but hydrological variables are significantly affected by irrigation over some of the main irrigated river basins. Significant impacts over the Mississippi river basin are shown to be contrasted between eastern and western regions. An increase in summer precipitation is simulated over the arid western region in association with enhanced evapotranspiration whereas a decrease in precipitation occurs over the wet eastern part of the basin. Over the Indian peninsula where irrigation is high during winter and spring, a delay of 6 days is found for the mean monsoon onset date when irrigation is activated, leading to a significant decrease in precipitation during May to July. Moreover, the higher decrease occurs in June when the water requirements by crops are maximum, exacerbating water scarcity in this region. A significant cooling of the land surfaces occurs during the period of high irrigation leading to a decrease of the land-sea heat contrast in June, which delays the monsoon onset. Content Type Journal Article Pages 1-20 DOI 10.1007/s00382-011-1252-5 Authors Matthieu Guimberteau, Laboratoire de Météorologie Dynamique, Université de Paris 6, Tour 45-55, 3ème ét., Case Postale 99, 4, Place Jussieu, 75252 Paris Cedex 05, France Katia Laval, Laboratoire de Météorologie Dynamique, Paris, France Alain Perrier, AgroParisTech, UFR Physique de l’Environnement, Paris, France Jan Polcher, Laboratoire de Météorologie Dynamique, CNRS, Paris, France Journal Climate Dynamics Online ISSN 1432-0894 Print ISSN 0930-7575
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2011-12-08
    Description:    A recent modelling study has shown that precipitation and runoff over land would increase when the reflectivity of marine clouds is increased to counter global warming. This implies that large scale albedo enhancement over land could lead to a decrease in runoff over land. In this study, we perform simulations using NCAR CAM3.1 that have implications for Solar Radiation Management geoengineering schemes that increase the albedo over land. We find that an increase in reflectivity over land that mitigates the global mean warming from a doubling of CO 2 leads to a large residual warming in the southern hemisphere and cooling in the northern hemisphere since most of the land is located in northern hemisphere. Precipitation and runoff over land decrease by 13.4 and 22.3%, respectively, because of a large residual sinking motion over land triggered by albedo enhancement over land. Soil water content also declines when albedo over land is enhanced. The simulated magnitude of hydrological changes over land are much larger when compared to changes over oceans in the recent marine cloud albedo enhancement study since the radiative forcing over land needed (−8.2 W m −2 ) to counter global mean radiative forcing from a doubling of CO 2 (3.3 W m −2 ) is approximately twice the forcing needed over the oceans (−4.2 W m −2 ). Our results imply that albedo enhancement over oceans produce climates closer to the unperturbed climate state than do albedo changes on land when the consequences on land hydrology are considered. Our study also has important implications for any intentional or unintentional large scale changes in land surface albedo such as deforestation/afforestation/reforestation, air pollution, and desert and urban albedo modification. Content Type Journal Article Pages 1-16 DOI 10.1007/s00382-011-1256-1 Authors Govindasamy Bala, Divecha Center for Climate Change and Center for Atmospheric and Oceanic Sciences, Indian Institute of Science, Bangalore, 560012 India Bappaditya Nag, Divecha Center for Climate Change and Center for Atmospheric and Oceanic Sciences, Indian Institute of Science, Bangalore, 560012 India Journal Climate Dynamics Online ISSN 1432-0894 Print ISSN 0930-7575
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2011-12-08
    Description:    This paper investigates the low-frequency modulation of the Atlantic warm pool (AWP) by the Atlantic multidecadal oscillation (AMO). Consistent with previous study, it shows that the time series of AWP area varies in phase with the AMO on multidecadal timescales. However, the variability of AWP area is out of phase with the AMO: A small (large) variance of AWP area is associated with the AMO warm (cold) phase. In addition, the modulation of AWP area variability by the AMO has a large seasonality, with a small (large) modulation in summer (fall). The modulation of the annual AWP area variability is primarily determined by the low frequency changes in the Pacific ENSO and the local heat flux feedback, and countered by the low frequency changes in the North Atlantic Oscillation and the ocean mixed layer depth. The local heat flux feedback and mixed layer depth change also play important roles in the AMO-modulated seasonality of the AWP area variability. Content Type Journal Article Pages 1-11 DOI 10.1007/s00382-011-1257-0 Authors Liping Zhang, Physical Oceanography Laboratory, Ocean University of China, Qingdao, China Chunzai Wang, NOAA Atlantic Oceanographic and Meteorological Laboratory, 4301 Rickenbacker Causeway, Miami, FL 33149, USA Lixin Wu, Physical Oceanography Laboratory, Ocean University of China, Qingdao, China Journal Climate Dynamics Online ISSN 1432-0894 Print ISSN 0930-7575
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2011-12-07
    Description:    The stratospheric quasi-biennial oscillation (QBO) and its association with the interannual variability in the stratosphere and troposphere, as well as in tropical sea surface temperature anomalies (SSTA), are examined in the context of a QBO life cycle. The analysis is based on the ERA40 and NCEP/NCAR reanalyses, radiosonde observations at Singapore, and other observation-based datasets. Both reanalyses reproduce the QBO life cycle and its associated variability in the stratosphere reasonably well, except that some long-term changes are detected only in the NCEP/NCAR reanalysis. In order to separate QBO from variability on other time scales and to eliminate the long-term changes, a scale separation technique [Ensemble Empirical Mode Decomposition (EEMD)] is applied to the raw data. The QBO component of zonal wind anomalies at 30 hPa, extracted using the EEMD method, is defined as a QBO index. Using this index, the QBO life cycle composites of stratosphere and troposphere variables, as well as SSTA, are constructed and examined. The composite features in the stratosphere are generally consistent with previous investigations. The correlations between the QBO and tropical Pacific SSTA depend on the phase in a QBO life cycle. On average, cold (warm) SSTA peaks about half a year after the maximum westerlies (easterlies) at 30 hPa. The connection of the QBO with the troposphere seems to be associated with the differences of temperature anomalies between the stratosphere and troposphere. While the anomalies in the stratosphere propagate downward systematically, some anomalies in the troposphere develop and expand vertically. Therefore, it is possible that the temperature difference between the troposphere and stratosphere may alter the atmospheric stability and tropical deep convection, which modulates the Walker circulation and SSTA in the equatorial Pacific Ocean. Content Type Journal Article Pages 1-23 DOI 10.1007/s00382-011-1250-7 Authors Bohua Huang, Department of Atmospheric, Oceanic, and Earth Sciences, College of Science, George Mason University, 4400 University Drive, Fairfax, VA 22030, USA Zeng-Zhen Hu, Center for Ocean–Land–Atmosphere Studies, 4041 Powder Mill Road, Suite 302, Calverton, MD 20705, USA James L. Kinter, Department of Atmospheric, Oceanic, and Earth Sciences, College of Science, George Mason University, 4400 University Drive, Fairfax, VA 22030, USA Zhaohua Wu, Department of Earth, Ocean, and Atmospheric Science, and Center for Ocean–Atmospheric Prediction Studies, Florida State University, 2035 E. Paul Dirac Drive, Tallahassee, FL 32306, USA Arun Kumar, Climate Prediction Center (suite 605), NCEP/NWS/NOAA, 5200 Auth Road, Camp Springs, MD 20746, USA Journal Climate Dynamics Online ISSN 1432-0894 Print ISSN 0930-7575
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2011-12-05
    Description:    This paper provides a synoptic view of extreme monsoon floods on all the nine large rivers of South Asia and their association with the excess (above-normal) monsoon rainfall periods. Annual maximum flood series for 18 gauging stations spread over four countries (India, Pakistan, Bangladesh and Nepal) and long-term monsoon rainfall data were analyzed to ascertain whether the extreme floods were clustered in time and whether they coincided with multi-decade excess monsoon rainfall epochs at the basin level. Simple techniques, such as the Cramer’s t -test, regression and Mann–Kendall (MK) tests and Hurst method were used to evaluate the trends and patterns of the flood and rainfall series. MK test reveals absence of any long-term tendency in all the series. However, the Cramer’s t test and Hurst-Mandelbrot rescaled range statistic provide evidence that both rainfall and flood time series are persistent. Using the Cramer’s t -test the excess monsoon epochs for each basin were identified. The excess monsoon periods for different basins were found to be highly asynchronous with respect to duration as well as the beginning and end. Three main conclusions readily emerge from the analyses. Extreme floods (〉90th percentile) in South Asia show a tendency to cluster in time. About three-fourth of the extreme floods have occurred during the excess monsoon periods between ~1840 and 2000 AD, implying a noteworthy link between the two. The frequency of large floods was higher during the post-1940 period in general and during three decades (1940s, 1950s and 1980s) in particular. Content Type Journal Article Pages 1-16 DOI 10.1007/s00382-011-1251-6 Authors Vishwas Kale, Department of Geography, University of Pune, Pune, 411007 India Journal Climate Dynamics Online ISSN 1432-0894 Print ISSN 0930-7575
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2011-12-03
    Description:    A close approximation of key state variables and salt fluxes for both the North Atlantic Deep Water (NADW) “on” and “off” states in a General Circulation Model (GCM) is constructed, yielding a natural stability condition. Here, stability is linked to the effect of feedbacks on infinitesimal salinity anomalies on the average Atlantic salinity. The stability condition simply states that the total advective salt feedback must be negative in each steady state, ensuring stability by damping the growth of infinitesimal salinity perturbations. However, a decomposition of the salt feedback into three components shows that only the interaction between the mean salinity and infinitesimal perturbations of the meridional flow have the potential to render a state unstable, holding the key to state transitions. In contrast, the interaction between the mean meridional flow and infinitesimal salinity perturbations yields a negative (stabilising) component feedback. Similarly, the gyre salt flux also stabilises the overturning states. Furthermore, the nodes limiting the “on” and “off” state regimes in the GCM can be accurately computed based on linear fits of basic state variables and the gyre salt flux. It is shown that the NADW “on” state closest to collapse must be contained within a neighbourhood of fresh water exporting states. Finally, the role of temperature in the bistability structure is elucidated. Content Type Journal Article Pages 1-16 DOI 10.1007/s00382-011-1249-0 Authors Willem P. Sijp, Climate Change Research Centre (CCRC), University of New South Wales, Sydney, NSW 2052, Australia Journal Climate Dynamics Online ISSN 1432-0894 Print ISSN 0930-7575
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2012-03-10
    Description:    This study examines the Indian summer monsoon hydroclimate in the National Centers for Environmental Prediction (NCEP)-Department of Energy (DOE) Reanalysis (R2), the Climate Forecast System Reanalysis (CFSR), and the Modern Era Retrospective-Analysis for Research and Applications (MERRA). The three reanalyses show significant differences in the climatology of evaporation, low-level winds, and precipitable water fields over India. For example, the continental evaporation is significantly less in CFSR compared to R2 and MERRA. Likewise the mean boreal summer 925 hPa westerly winds in the northern Indian Ocean are stronger in R2. Similarly the continental precipitable water in R2 is much less while it is higher and comparable in MERRA and CFSR. Despite these climatological differences between the reanalyses, the climatological evaporative sources for rain events over central India show some qualitative similarities. Major differences however appear when interannual variations of the Indian summer monsoon are analyzed. The anomalous oceanic sources of moisture from the adjacent Bay of Bengal and Arabian Sea play a significant role in determining the wet or dry year of the Indian monsoon in CFSR. However in R2 the local evaporative sources from the continental region play a more significant role. We also find that the interannual variability of the evaporative sources in the break spells of the intraseasonal variations of the Indian monsoon is stronger than in the wet spells. We therefore claim that instead of rainfall, evaporative sources may be a more appropriate metric to observe the relationship between the seasonal monsoon strength and intraseasonal activity. These findings are consistent across the reanalyses and provide a basis to improve the predictability of intraseasonal variability of the Indian monsoon. This study also has a bearing on improving weather prediction for tropical cyclones in that we suggest targeting enhanced observations in the Bay of Bengal (where it is drawing the most moisture from) for improved analysis during active spells of the intraseasonal variability of the Indian monsoon. The analysis suggests that the land–atmosphere interactions contribute significant uncertainty to the Indian monsoon in the reanalyses, which is consistent with the fact that most of the global reanalyses do not assimilate any land-surface data because the data are not available. Therefore, the land–atmosphere interaction in the reanalyses is highly dependent on the land-surface model and it’s coupling with the atmospheric model. Content Type Journal Article Pages 1-20 DOI 10.1007/s00382-012-1319-y Authors Vasubandhu Misra, Department of Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee, FL, USA P. Pantina, Science Systems and Application, Inc., 10210 Greenbelt Road, Ste. 600, Lanham, MD 20706, USA S. C. Chan, School of Civil Engineering and Geosciences, Newcastle University, Newcastle upon Tyne, UK S. DiNapoli, Center for Ocean-Atmospheric Prediction Studies, Florida State University, Tallahassee, FL, USA Journal Climate Dynamics Online ISSN 1432-0894 Print ISSN 0930-7575
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2012-03-10
    Description:    This work uses a WRF numerical simulation from 1960 to 2005 performed at a high horizontal resolution (2 km) to analyze the surface wind variability over a complex terrain region located in northern Iberia. A shorter slice of this simulation has been used in a previous study to demonstrate the ability of the WRF model in reproducing the observed wind variability during the period 1992–2005. Learning from that validation exercise, the extended simulation is herein used to inspect the wind behavior where and when observations are not available and to determine the main synoptic mechanisms responsible for the surface wind variability. A principal component analysis was applied to the daily mean wind. Two principal modes of variation accumulate a large percentage of the wind variability (83.7%). The first mode reflects the channeling of the flow between the large mountain systems in northern Iberia modulated by the smaller topographic features of the region. The second mode further contributes to stress the differentiated wind behavior over the mountains and valleys. Both modes show significant contributions at the higher frequencies during the whole analyzed period, with different contributions at lower frequencies during the different decades. A strong relationship was found between these two modes and the zonal and meridional large scale pressure gradients over the area. This relationship is described in the context of the influence of standard circulation modes relevant in the European region like the North Atlantic Oscillation, the East Atlantic pattern, East Atlantic/Western Russia pattern, and the Scandinavian pattern. Content Type Journal Article Pages 1-14 DOI 10.1007/s00382-012-1326-z Authors Pedro A. Jiménez, Departamento de Astrofísica y CC, de la Atmósfera, Faculatad de CC, Físicas, UCM, Avenida Complutense s/n, 28040 Madrid, Spain J. Fidel González-Rouco, Departamento de Astrofísica y CC, de la Atmósfera, Faculatad de CC, Físicas, UCM, Avenida Complutense s/n, 28040 Madrid, Spain Juan P. Montávez, Departamento de Física, Universidad de Murcia, Murcia, Spain E. García-Bustamante, Department of Geography, Justus-Liebig University of Giessen, Giessen, Germany J. Navarro, División de Energías Renovables, CIEMAT, 28040 Madrid, Spain J. Dudhia, Mesoscale and Microscale Meteorology Division, NCAR, Boulder, CO, USA Journal Climate Dynamics Online ISSN 1432-0894 Print ISSN 0930-7575
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    facet.materialart.
    Unknown
    Springer
    Publication Date: 2012-03-10
    Description:    The water vapour feedback probably makes the largest contribution to climate sensitivity, and the second-largest contribution to its uncertainty, in the sense of disagreement between General Circulation Models (GCMs, the most physically detailed models of climate we have). Yet there has been no quantification of it which allows these differences to be attributed physically with the aim of constraining the true value. This paper develops a new breakdown of the non-cloud LW (longwave) response to climate change, which avoids the problems of the conventional breakdown, and applies it to a set of 4 GCMs. The basic physical differences are that temperature is used as the vertical coordinate, and relative humidity as the humidity variable. In this framework the different GCMs’ feedbacks look more alike, consistent with our understanding that their water vapour responses are physically very similar. Also, in the global mean all the feedback components have the same sign, allowing us to conveniently attribute the overall response fractionally (e.g. about 60% from the “partly-Simpsonian” component). The systematic cancellation between different feedback components in the conventional breakdown is lost, so now a difference in a feedback component actually contributes to a difference in climate sensitivity, and the differences between these GCMs in the non-cloud LW part of this can be traced to differences in formulation, mean climate and climate change response. Physical effects such as those due to variations in the formulation of LW radiative transfer become visible. Differences in the distribution of warming no longer dominate comparison of GCMs. The largest component depends locally only on the GCM’s mean climate, so it can in principle be calculated for the real world and validated. However, components dependent on the climate change response probably account for most of the variation between GCMs. The effect of simply changing the humidity variable in the conventional breakdown is also examined. It gives some of this improvement—the loss of the cancellations that leave the conventional breakdown of no use to understand differences between GCMs’ climate sensitivities—but not the link to mean climate. Content Type Journal Article Pages 1-12 DOI 10.1007/s00382-012-1294-3 Authors William Ingram, Atmospheric, Oceanic and Planetary Physics, Department of Physics, Clarendon Laboratory, Parks Road, Oxford, OX1 3PU UK Journal Climate Dynamics Online ISSN 1432-0894 Print ISSN 0930-7575
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2012-03-13
    Description:    The MJO modulation of sea surface chlorophyll-a (Chl) examined initially by Waliser et al. in Geophys Res Lett, ( 2005 ) is revisited with a significantly longer time-series of observations and a more systematic approach to characterizing the possible mechanisms underlying the MJO-Chl relationships. The MJO composite analysis of Chl and lead-lag correlations between Chl and other physical variables reveal regional variability of Chl and corresponding indicative temporal relationships among variables. Along the path of the MJO convection, wind speed—a proxy for oceanic vertical turbulent mixing and corresponding entrainment—is most strongly correlated with Chl when wind leads Chl by a few days. Composite Chl also displays MJO influences away from the path of the MJO convection. The role of wind speed in those regions is generally the same for Chl variability as that along the path of the MJO convection, although Ekman pumping also plays a role in generating Chl variability in limited regions. However, the wind forcing away from the MJO convection path is less coherent, rendering the temporal link relatively weak. Lastly, the potential for bio-physical feedbacks at the MJO time-scale is examined. The correlation analysis provides tantalizing evidence for local bio-feedbacks to the physical MJO system. Plausible hypothesis for Chl to amplify the MJO phase transition is presented though it cannot be affirmed in this study and will be examined and reported in a future modeling study. Content Type Journal Article Pages 1-20 DOI 10.1007/s00382-012-1321-4 Authors Daeho Jin, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA Duane E. Waliser, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA Charles Jones, Earth Research Institute, University of California, Santa Barbara, CA, USA Raghu Murtugudde, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA Journal Climate Dynamics Online ISSN 1432-0894 Print ISSN 0930-7575
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2012-03-13
    Description:    A principal component decomposition of monthly sea surface temperature (SST) variability in the tropical Pacific Ocean demonstrates that nearly all of the linear trends during 1950–2010 are found in two leading patterns. The first SST pattern is strongly related to the canonical El Niño-Southern Oscillation (ENSO) pattern. The second pattern shares characteristics with the first pattern and its existence solely depends on the presence of linear trends across the tropical Pacific Ocean. The decomposition also uncovers a third pattern, often referred to as ENSO Modoki, but the linear trend is small and dataset dependent over the full 61-year record and is insignificant within each season. ENSO Modoki is also reflected in the equatorial zonal SST gradient between the Niño-4 region, located in the west-central Pacific, and the Niño-3 region in the eastern Pacific. It is only in this zonal SST gradient that a marginally significant trend arises early in the Northern Hemisphere spring (March–May) during El Niño and La Niña and also in the late summer (July–September) during El Niño. Yet these SST trends in the zonal gradient do not unequivocally represent an ENSO Modoki-like dipole because they are exclusively associated with significant positive SST trends in either the eastern or western Pacific, with no corresponding significant negative trends. Insignificant trends in the zonal SST gradient are evident during the boreal wintertime months when ENSO events typically mature. Given the presence of positive SST trends across much of the equatorial Pacific Ocean, using fixed SST anomaly thresholds to define ENSO events likely needs to be reconsidered. Content Type Journal Article Pages 1-14 DOI 10.1007/s00382-012-1331-2 Authors Michelle L. L’Heureux, NOAA Climate Prediction Center, 5200 Auth Rd, Rm 605, Camp Springs, MD 20746, USA Dan C. Collins, NOAA Climate Prediction Center, 5200 Auth Rd, Rm 605, Camp Springs, MD 20746, USA Zeng-Zhen Hu, NOAA Climate Prediction Center, 5200 Auth Rd, Rm 605, Camp Springs, MD 20746, USA Journal Climate Dynamics Online ISSN 1432-0894 Print ISSN 0930-7575
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2012-02-07
    Description:    The impact of climate warming on the upper layer of the Bering Sea is investigated by using a high-resolution coupled global climate model. The model is forced by increasing atmospheric CO 2 at a rate of 1% per year until CO 2 reaches double its initial value (after 70 years), after which it is held constant. In response to this forcing, the upper layer of the Bering Sea warms by about 2°C in the southeastern shelf and by a little more than 1°C in the western basin. The wintertime ventilation to the permanent thermocline weakens in the western Bering Sea. After CO 2 doubling, the southeastern shelf of the Bering Sea becomes almost ice-free in March, and the stratification of the upper layer strengthens in May and June. Changes of physical condition due to the climate warming would impact the pre-condition of spring bio-productivity in the southeastern shelf. Content Type Journal Article Pages 1-14 DOI 10.1007/s00382-012-1301-8 Authors Hyun-Chul Lee, Geophysical Fluid Dynamics Laboratory, Princeton, NJ, USA Thomas L. Delworth, Geophysical Fluid Dynamics Laboratory, Princeton, NJ, USA Anthony Rosati, Geophysical Fluid Dynamics Laboratory, Princeton, NJ, USA Rong Zhang, Geophysical Fluid Dynamics Laboratory, Princeton, NJ, USA Whit G. Anderson, Geophysical Fluid Dynamics Laboratory, Princeton, NJ, USA Fanrong Zeng, Geophysical Fluid Dynamics Laboratory, Princeton, NJ, USA Charles A. Stock, Geophysical Fluid Dynamics Laboratory, Princeton, NJ, USA Anand Gnanadesikan, Johns Hopkins University, Baltimore, MD, USA Keith W. Dixon, Geophysical Fluid Dynamics Laboratory, Princeton, NJ, USA Stephen M. Griffies, Geophysical Fluid Dynamics Laboratory, Princeton, NJ, USA Journal Climate Dynamics Online ISSN 1432-0894 Print ISSN 0930-7575
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    facet.materialart.
    Unknown
    Springer
    Publication Date: 2012-02-11
    Description:    Surface temperatures are projected to increase 3–4°C over much of Africa by the end of the 21st century. Precipitation projections are less certain, but the most plausible scenario given by the Intergovernmental Panel on Climate Change (IPCC) is that the Sahel and East Africa will experience modest increases (~5%) in precipitation by the end of the 21st century. Evapotranspiration (E a ) is an important component of the water, energy, and biogeochemical cycles that impact several climate properties, processes, and feedbacks. The interaction of E a with climate change drivers remains relatively unexplored in Africa. In this paper, we examine the trends in E a , precipitation (P), daily maximum temperature (T max ), and daily minimum temperature (T min ) on a seasonal basis using a 31 year time series of variable infiltration capacity (VIC) land surface model (LSM) E a . The VIC model captured the magnitude, variability, and structure of observed runoff better than other LSMs and a hybrid model included in the analysis. In addition, we examine the inter-correlations of E a , P, T max , and T min to determine relationships and potential feedbacks. Unlike many IPCC climate change simulations, the historical analysis reveals substantial drying over much of the Sahel and East Africa during the primary growing season. In the western Sahel, large increases in daily maximum temperature appear linked to E a declines, despite modest rainfall recovery. The decline in E a and latent heating in this region could lead to increased sensible heating and surface temperature, thus establishing a possible positive feedback between E a and surface temperature. Content Type Journal Article Pages 1-17 DOI 10.1007/s00382-012-1299-y Authors Michael Marshall, Department of Geography, Climate Hazards Group, University of California Santa Barbara, Santa Barbara, CA, USA Christopher Funk, US Geological Survey Earth Resources Observation and Science (EROS) Center, Department of Geography, University of California Santa Barbara, Santa Barbara, CA, USA Joel Michaelsen, Department of Geography, Climate Hazards Group, University of California Santa Barbara, Santa Barbara, CA, USA Journal Climate Dynamics Online ISSN 1432-0894 Print ISSN 0930-7575
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...