ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (4,456)
  • Other Sources
  • Springer  (4,456)
  • American Chemical Society
  • American Geophysical Union (AGU)
  • American Meteorological Society
  • Wiley-Blackwell
  • 2020-2024  (10)
  • 2020-2022  (682)
  • 2015-2019  (3,764)
  • 1980-1984
  • 1950-1954
  • 1935-1939
  • 1925-1929
  • Climate Dynamics  (1,172)
  • 862
Collection
  • Articles  (4,456)
  • Other Sources
Publisher
  • Springer  (4,456)
  • American Chemical Society
  • American Geophysical Union (AGU)
  • American Meteorological Society
  • Wiley-Blackwell
Years
Year
Topic
  • 101
    Publication Date: 2016-07-27
    Description: Climate models robustly project a strong overall summer warming across Europe showing a characteristic north-south gradient with enhanced warming and drying in southern Europe. However, the processes that are responsible for this pattern are not fully understood. We here employ an extended surrogate or pseudo-warming approach to disentangle the contribution of different mechanisms to this response pattern. The basic idea of the surrogate technique is to use a regional climate model and apply a large-scale warming to the lateral boundary conditions of a present-day reference simulation, while maintaining the relative humidity (and thus implicitly increasing the specific moisture content). In comparison to previous studies, our approach includes two important extensions: first, different vertical warming profiles are applied in order to separate the effects of a mean warming from lapse-rate effects. Second, a twin-design is used, in which the climate change signals are not only added to present-day conditions, but also subtracted from a scenario experiment. We demonstrate that these extensions provide an elegant way to separate the full climate change signal into contributions from large-scale thermodynamic (TD), lapse-rate (LR), and circulation and other remaining effects (CO). The latter in particular include changes in land-ocean contrast and spatial variations of the SST warming patterns. We find that the TD effect yields a large-scale warming across Europe with no distinct latitudinal gradient. The LR effect, which is quantified for the first time in our study, leads to a stronger warming and some drying in southern Europe. It explains about 50 % of the warming amplification over the Iberian Peninsula, thus demonstrating the important role of lapse-rate changes. The effect is linked to an extending Hadley circulation. The CO effect as inherited from the driving GCM is shown to further amplify the north-south temperature change gradient. In terms of mean summer precipitation the TD effect leads to a significant overall increase in precipitation all across Europe, which is compensated and regionally reversed by the LR and CO effects in particular in southern Europe.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 102
    Publication Date: 2016-07-27
    Description: The present study examines climatology and interannual variability of South Asian high (SAH) and its connection with the ENSO based on 38 coupled models from the Coupled Model Intercomparison Project phase 5 (CMIP5). Results show that multi-model ensemble (MME) can reasonably capture the climatological spatial pattern of the SAH, although its intensity is slightly underestimated. The CCSM4, CESM1-BGC and CESM1-FASTCHEM can well simulate the climatological location and intensity of the SAH. The interannual variability of the SAH is investigated by calculating ratio of the standard deviation of the ten parameters in models with those in observations. The results indicate that the MME can reasonably capture magnitudes of the interannual variability of the area index, intensity index, and longitude of the SAH center. Quasi-4-year period of the SAH intensity index can be well simulated by CMCC-CESM, CMCC-CMS and GFDL-ESM2G, and quasi-5-year period of north–south movement index can be captured by CanCM4, CESM1-CAM5, CESM1-FASTCHEM, CNRM-CM5-2, GFDL-ESM2G and HadCM3. Furthermore, MME can reasonably reproduce seasonal evolution of intensity and location of the SAH except for its east–west movement. The ENSO-SAH relationship is further evaluated. It is found that about two-thirds of the CMIP5 models can capture the observed ENSO-SAH relationship, although the relationship is distinctly exaggerated by several models. The success of these models is attributed to the reasonable simulation of both the “charge” process over the tropical Indian Ocean induced by the ENSO-related anomalous sea surface temperature (SST) over the tropical eastern Pacific (TEP) and longitude extension of the western boundary of the ENSO-related anomalous SST over the TEP.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 103
    Publication Date: 2016-07-27
    Description: Sensitivity experiments with an atmospheric general circulation model (AGCM) without a proper stratosphere are performed to locally force a North Atlantic oscillation (NAO)-like response in order to analyse the tropospheric dynamics involved in its hemispheric extent. Results show that the circulation anomalies are not confined to the North Atlantic basin not even within the first 10 days of integration, where the atmospheric response propagates downstream into the westerly jets. At this linear stage, transient-eddy activity dominates the emerging, regional NAO-like pattern while zonal-eddy coupling may add on top of the wave energy propagation. Later at the quasi-equilibrium nonlinear stage, the atmospheric response emphasizes a wavenumber-5 structure embedded in the westerly jets, associated with transient-eddy feedback upon the Atlantic and Pacific storm-tracks. This AGCM waveguided structure rightly projects on the observational NAO-related circumglobal pattern, providing evidence of its non-annular character in the troposphere. These findings support the view on the importance of the circumglobal waveguide pattern on the development of NAO-related anomalies at hemispheric level. It could help to settle a consensus view of the Arctic Oscillation, which has been elusive so far.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 104
    Publication Date: 2016-07-28
    Description: Northern Hemisphere winter precipitation reforecasts from the European Centre for Medium Range Weather Forecast System-4 and six of the models in the North American Multi-Model Ensemble are evaluated, focusing on two regions (Region-A: 20°N–45°N, 10°E–65°E and Region-B: 20°N–55°N, 205°E–255°E) where winter precipitation is a dominant fraction of the annual total and where precipitation from mid-latitude storms is important. Predictability and skill (deterministic and probabilistic) are assessed for 1983–2013 by the multimodel composite (MME) of seven prediction models. The MME climatological mean and variability over the two regions is comparable to observation with some regional differences. The statistically significant decreasing trend observed in Region-B precipitation is captured well by the MME and most of the individual models. El Niño Southern Oscillation is a source of forecast skill, and the correlation coefficient between the Niño3.4 index and precipitation over region A and B is 0.46 and 0.35, statistically significant at the 95 % level. The MME reforecasts weakly reproduce the observed teleconnection. Signal, noise and signal to noise ratio analysis show that the signal variance over two regions is very small as compared to noise variance which tends to reduce the prediction skill. The MME ranked probability skill score is higher than that of individual models, showing the advantage of a multimodel ensemble. Observed Region-A rainfall anomalies are strongly associated with the North Atlantic Oscillation, but none of the models reproduce this relation, which may explain the low skill over Region-A. The superior quality of multimodel ensemble compared with individual models is mainly due to larger ensemble size.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 105
    Publication Date: 2016-07-30
    Description: This study examines the interannual variability of the North Pacific high during boreal summer of 1979–2008 to understand how its leading modes are related to the two types of El Niño–Southern Oscillation (ENSO). In the observations, the first empirical orthogonal function mode (EOF1) is characterized by an in-phase variation between the western Pacific subtropical high (WPSH) and the northeastern Pacific subtropical high (NPSH), while the second mode (EOF2) is characterized by an out-of-phase WPSH–NPSH variation. The EOF1 mode dominates during the post early-1990s period and is a forced response to sea surface temperature (SST) variations over the maritime continent and tropical central Pacific (CP) regions related to developing CP ENSOs. Its in-phase WPSH–NPSH relationship is established through the ENSO-induced meridional atmospheric circulation, Pacific–North American pattern and eddy–zonal flow interaction over the North Pacific. In contrast, the EOF2 mode dominates prior to the early-1990s and is partially a forced response to tropical Indian Ocean (IO) and eastern Pacific (EP) SST variations related to decaying EP ENSOs and partially a coupled atmosphere–ocean response to western North Pacific SST variations. Of the 28 Atmospheric Model Intercomparison Project models, most (71 %) realistically simulate the EOF1 mode but only a few (14 %) simulate the EOF2 mode. The roughly 50 % underestimation in the strength of the EOF2 mode is due to model deficiencies in properly representing the atmospheric circulation responses to the IO and EP SST variations. This deficiency may be related to underestimations of the strength of the mean Walker circulation in the models.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 106
    Publication Date: 2015-05-01
    Description: The objective of this study is to evaluate to what extent the CMIP5 climate model simulations of the climate of the twentieth century can represent observed warm monthly temperature extremes under a changing environment. The biases and spatial patterns of 2-, 10-, 25-, 50- and 100-year return levels of the annual maxima of monthly mean temperature (hereafter, annual temperature maxima) from CMIP5 simulations are compared with those of Climatic Research Unit (CRU) observational data considered under a non-stationary assumption. The results show that CMIP5 climate models collectively underestimate the mean annual maxima over arid and semi-arid regions that are most subject to severe heat waves and droughts. Furthermore, the results indicate that most climate models tend to underestimate the historical annual temperature maxima over the United States and Greenland, while generally disagreeing in their simulations over cold regions. Return level analysis shows that with respect to the spatial patterns of the annual temperature maxima, there are good agreements between the CRU observations and most CMIP5 simulations. However, the magnitudes of the simulated annual temperature maxima differ substantially across individual models. Discrepancies are generally larger over higher latitudes and cold regions.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 107
    Publication Date: 2015-05-04
    Description: The day-to-day variability of the atmospheric circulation over the Caribbean region is investigated in this work through the extraction of frequently occurring atmospheric circulation types. A two-stage cluster analysis technique using Ward’s agglomerative algorithm followed by the k -means algorithm was applied to daily circulation defined by the NCEP/DOE reanalysis wind components at the 850 hPa level for the period 1979–2010. Seven atmospheric circulation types (CTs) were extracted. The daily circulation types are distinguished through the extension and location of the well-known quasi-stationary Atlantic and Pacific anticyclones. However, three of the circulation types show a third anticyclonic feature, a Gulf of Mexico anticyclone which is not observed on monthly scales because it is transient with a mean lifetime of 2–3 days and rarely occurs in the July–September period. Other notable characteristics include the decrease in annual frequency of a circulation type defined by the transient Gulf of Mexico anticyclone, a neutral area over the Greater Antilles islands and weaker than average easterly winds. In addition, a second type with south-easterly winds throughout the Caribbean increases in annual frequency. This latter type also had events lasting as long as 85 days. The monthly frequency of the CTs that prevail during the dry season is correlated with several Atlantic and Pacific based teleconnections. The resulting daily atmospheric circulation types in this work comprise the first atmospheric circulation catalogue, of many to come, for the Caribbean region and may be useful in statistical–dynamical downscaling applications to explain the variability of surface weather variables such as wind speeds.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 108
    Publication Date: 2015-05-08
    Description: In order to understand the influence of a thinner Arctic sea ice on the wintertime atmosphere, idealized ensemble experiments with increased sea ice surface temperature have been carried out with the Integrated Forecast System of the European Centre for Medium-Range Weather Forecasts. The focus is on the fast atmospheric response to a sudden “thinning” of Arctic sea ice to disentangle the role of various different processes. We found that boundary layer turbulence is the most important process that distributes anomalous heat vertically. Anomalous longwave radiation plays an important role within the first few days before temperatures in the lower troposphere had time to adjust. The dynamic response tends to balance that due to boundary layer turbulence while cloud processes and convection play only a minor role. Overall the response of the atmospheric large-scale circulation is relatively small with up to 2 hPa in the mean sea level pressure during the first 15 days; the quasi-equilibrium response reached in the second and third month of the integration is about twice as large. During the first few days the response tends to be baroclinic in the whole Arctic. Already after a few days an anti-cyclonic equivalent-barotropic response develops over north-western Siberia and north-eastern Europe. The structure resembles very much that of the atmospheric equilibrium response indicating that fast tropospheric processes such as fewer quasi-barotropic cyclones entering this continental area are key opposed to slower processes such as those involving, for example, stratosphere-troposphere interaction.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 109
    Publication Date: 2015-05-10
    Description: In an ensemble of Regional Climate Model (RCM) simulations where different members are initialised at different times but driven by identical lateral boundary conditions, the individual members provide different, but equally acceptable, weather sequences. In others words, RCM simulations exhibit the phenomenon of Internal Variability (or inter-member variability—IV), defined as the spread between members in an ensemble of simulations. Our recent studies reveal that RCM’s IV is associated with energy conversions similar to those taking place in weather systems. By analogy with the classical work on global energetics of weather systems, a formulation of an energy cycle for IV has been developed that is applicable over limited-area domains. Prognostic equations for ensemble-mean kinetic energy and available enthalpy are decomposed into contributions due to ensemble-mean variables and those due to deviations from the ensemble mean (IV). Together these equations constitute an energy cycle for IV in ensemble simulations of an RCM. A 50-member ensemble of 1-year simulations that differ only in their initial conditions was performed with the fifth-generation Canadian RCM (CRCM5) over an eastern North America domain. The various energy reservoirs of IV and exchange terms between reservoirs were evaluated; the results show a remarkably close parallel between the energy conversions associated with IV in ensemble simulations of RCM and the energy conversions taking place in weather systems in the real atmosphere.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 110
    Publication Date: 2015-05-12
    Description: Synchronous occurrences of heavy rainfall events and the study of their relation in time and space are of large socio-economical relevance, for instance for the agricultural and insurance sectors, but also for the general well-being of the population. In this study, the spatial synchronization structure is analyzed as a regional climate network constructed from precipitation event series. The similarity between event series is determined by the number of synchronous occurrences. We propose a novel standardization of this number that results in synchronization scores which are not biased by the number of events in the respective time series. Additionally, we introduce a new version of the network measure directionality that measures the spatial directionality of weighted links by also taking account of the effects of the spatial embedding of the network. This measure provides an estimate of heavy precipitation isochrones by pointing out directions along which rainfall events synchronize. We propose a climatological interpretation of this measure in terms of propagating fronts or event traces and confirm it for Germany by comparing our results to known atmospheric circulation patterns.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 111
    Publication Date: 2015-05-14
    Description: A popular perception is that landfalling tropical cyclones help to mitigate droughts in the Southeastern United States (SeUS). However intriguing paradigms on the role of large scale SST variations on continental US including SeUS droughts and seasonal Atlantic tropical cyclone activity confronts us. These paradigms suggest that in the presence of warm (cold) eastern tropical Pacific and cold (warm) Atlantic Ocean sea surface temperature anomaly (SSTA) lead to the increased likelihood of wetter (drier) conditions over the continental US including the SeUS. Juxtaposing this understanding with the fact that landfalling tropical cyclones contribute significantly to the annual mean total rainfall in the SeUS and in El Niño (La Niña) years with cold (warm) tropical Atlantic SSTA lead to reduced (increased) Atlantic tropical cyclone activity raises a conflict on the role of the large-scale SST variations in SeUS hydroclimate. This study attempts to investigate the apparent dichotomous role of the large scale SST variations on the SeUS hydrology by examining the role of rainfall from landfalling tropical cyclones in the SeUS to local seasonal droughts. Our study finds that the contribution of the rainfall from landfalling tropical cyclone on the mitigation of monthly drought in the 28 SeUS watersheds is relatively insignificant. So much so that the hydrological model uncertainty in estimating the drought index over the 28 SeUS watersheds is larger than the sensitivity exhibited by the drought index to the inclusion of rain from landfalling tropical cyclone. The conclusions of this study are justified by the fact that the timing of the landfalling tropical cyclone in relation to overall soil moisture conditions of the watershed does not coincide with a drought like situation in the 1948–2006 time period analyzed in this study. This largely stems from the fact that the large-scale flow pattern resulting in abundant (lack of) advection of moisture for anomalously wet (dry) summer and fall seasons in the SeUS emanating from the source region of the Caribbean Sea and the northwestern tropical Atlantic Ocean coincides with the steering flow of the Atlantic tropical cyclones bound to make landfall in the SeUS (recurving away from the SeUS).
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 112
    Publication Date: 2015-05-14
    Description: The relationship of Barents–Kara sea ice concentration in October and November with atmospheric circulation in the subsequent winter is examined using reanalysis and observational data. The analyses are performed on data with the 5-year running means removed to reduce the potential effects of slowly-varying external driving factors, such as global warming. We show that positive (negative) Barents–Kara sea ice concentration anomaly in autumn is associated with a positive (negative) North Atlantic Oscillation-like (NAO) pattern with lags of up to 3 months. The month-to-month variations in the lag relationships of the atmospheric anomalies related to November sea ice concentration are presented. Further analysis shows that the stratosphere-troposphere interaction may provide the memory in the system: positive (negative) sea ice concentration anomaly in November is associated with a strengthened (weakened) stratospheric polar vortex and these anomalies propagate downward leading to the positive (negative) NAO-like pattern in the late December to early January. This stratosphere mechanism may also play a role for Barents–Kara sea ice anomaly in December, but not for September and October. Consistently, Eliassen-Palm, eddy heat and momentum fluxes suggest that there is strong forcing of the zonal winds in November.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 113
    Publication Date: 2015-05-04
    Description: The characteristics and causes of inhomogeneous warming of the Tropical Indian Ocean (TIO) sea surface temperature during 1900–2005 are investigated based on observations and 16 Coupled Model Intercomparison Project phase 5 (CMIP5) models. Over the TIO, the observed warming trend has more than doubled since 1965, which is well simulated by the CMIP5 historical runs. However, as to spatial warming pattern, observations manifest a double-peak pattern during 1900–1940 and a non-uniform Indian Ocean Mode (IOBM)-like pattern during 1965–2005, which is not captured by the CMIP5 historical runs. Herein, an optimal detection analysis is employed, which indicates that the double-peak warming pattern can be explained well by a combination of Greenhouse Gas (GHG) and natural forcing, and the non-uniform IOBM-like pattern is mostly attributable to anthropogenic forcing. Further, a mixed-layer heat budget analysis shows that atmospheric and oceanic processes, especially latent heat flux from atmospheric forcing part associated with GHG forcing, are beneficial for the warming patterns formation. Our study supports the claim that intrinsic ocean–atmosphere interaction within the TIO is the key mechanism for maintaining the TIO warming. From the model perspective, during 1900–1940, the weak anti-symmetric atmospheric circulation with easterly (northwesterly) anomalies north (south) of the equator helps to sustain the double-peak warming pattern. During 1965–2005, the intensified anti-symmetric wind pattern is in favor of the non-uniform IOBM-like warming pattern.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 114
    Publication Date: 2015-05-07
    Description: Adding a groundwater component to land surface models affects modeled precipitation. The additional water supply from the subsurface contributes to increased water vapor in the atmosphere, resulting in modifications of atmospheric convection. This study focuses on how groundwater dynamics affect atmospheric convection in the Amazon River basin (ARB) during July, typically the driest month. Coupled groundwater–land–atmosphere model simulations show that groundwater storage increases evapotranspiration rates (latent heat fluxes) and lowers surface temperatures, which increases the surface pressure gradient and thus, anomalous surface divergence. Therefore, the convection over the Southern Hemispheric ARB during the dry season becomes weaker when groundwater dynamics are included in the model. Additionally, the changes in atmospheric vertical water vapor advection are associated with decreases in precipitation that results from downwelling transport anomalies. The results of this study highlight the importance of subsurface hydrological processes in the Amazon climate system, with implications for precipitation changes during the dry season, observed in most current climate models.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 115
    Publication Date: 2015-05-07
    Description: The Indian summer monsoon season is very heterogeneous over Indian land mass from precipitation point of view. The intraseasonal variability of the rainfall during summer is marked by the active and break spells of the rainfall. The regional climate model version 4.0 (RegCM4.0) forced with European centre of medium range weather forecast interim reanalysis (ERA-Int) is used to examine the intraseasonal variability and meteorological processes associated with it. The model rightly represents the climatology of different fields such as the surface temperature, sea level pressure, lower level wind and the precipitation for monsoon season. The model captures the different active and break spells and the results are in agreement with the observed value and previous studies. The major features of the active/break periods, such as the positive/negative rainfall anomaly over the monsoon core region (MCR) and negative/positive rainfall anomaly over the foothills of Himalayas and southern part of India is nicely represented in the model. The model rightly reproduces the evolution of the active and break phase and also the revival from the break period by the northward propagation of active rainfall anomaly. The heat trough type of circulation is analysed in detail along with the atmospheric condition during active and break spell over the MCR. The atmospheric condition over MCR resembles the heat trough type circulation during break spells. The moisture availability, moisture–precipitation relation and their transition during active and break period over the MCR is established.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 116
    Publication Date: 2015-05-07
    Description: During the post-1979 period in which the satellite-based precipitation measurements with global coverage are available, global mean surface temperature rapidly increased up to late 1990s, followed by a period of temperature hiatus after about 1998/1999. Comparing observed surface temperature trends against the simulated ones by the CMIP5 historical experiments especially in the zonal mean context suggests that although the anthropogenic greenhouse-gases (GHG) forcing has played a major role, in addition to the anthropogenic aerosols and various natural forcings, the effects from decadal-to-interdecadal-scale internal modes specifically the Pacific Decadal Oscillation (PDO) are also very strong. Evident temperature changes associated with the PDO’s phase shift are seen in the Pacific basin, with decadal-scale cooling in the tropical central-eastern Pacific and most of the east basin and concurrent warming in the subtropics of both hemispheres, even though the PDO’s net effect on global mean temperature is relatively weak. The Atlantic Multidecadal Oscillation (AMO) also changed its phase in the mid-1990s, and hence its possible impact is estimated and assessed as well. However, comparisons with CMIP5 simulations suggest that the AMO may have not contributed as significantly as the PDO in terms of the changes/trends in global surface temperature, even though the data analysis technique used here suggests otherwise. Long-term precipitation changes or trends during the post-1979 period are further shown to have been modulated by the two major factors: anthropogenic GHG and PDO, in addition to the relatively weak effects from aerosols and natural forcings. The spatial patterns of observed precipitation trends in the Pacific, including reductions in the tropical central-eastern Pacific and increases in the tropical western Pacific and along the South Pacific Convergence Zone, manifest the PDO’s contributions. Removing the PDO effect from the total precipitation trends makes the spatial structures of precipitation trends more similar to those simulated by CMIP5 historical full forcing experiments particularly in the context of zonal-mean results. This also confirms that in spite of the PDO effect specifically on regional scales, the anthropogenic GHG signals are still discernible in observed precipitation during the time period. Following the increase of GHG, precipitation tends to increase roughly along the climatological ITCZ and decrease south of the equator and in the subtropics of both hemispheres.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 117
    Publication Date: 2015-05-07
    Description: The mechanisms of coupled model bias in seasonal ENSO phase locking are investigated using versions 1.0 and 1.3 of the CSIRO–BOM ACCESS coupled model (hereafter, ACCESS1.0 and ACCESS1.3, respectively). The two ACCESS coupled models are mostly similar in construction except for some differences, the most notable of which are in the cloud and land surface schemes used in the models. ACCESS1.0 simulates a realistic seasonal phase locking, with the ENSO variability peaking in December as in observations. On the other hand, the simulated ENSO variability in ACCESS1.3 peaks in March, a bias shown to be shared by many other CMIP5 models. To explore the mechanisms of this model bias, we contrast the atmosphere–ocean feedbacks associated with ENSO in both ACCESS model simulations and also compare the key feedbacks with those in other CMIP5 models. We find evidence that the ENSO phase locking bias in ACCESS1.3 is primarily caused by incorrect simulations of the shortwave feedback and the thermocline feedback in this model. The bias in the shortwave feedback is brought about by unrealistic SST–cloud interactions leading to a positive cloud feedback bias that is largest around March, in contrast to the strongest negative cloud feedback found in ACCESS1.0 simulations and observations at that time. The positive cloud feedback bias in ACCESS1.3 is the result of a dominant role played by the low-level clouds in its modeled SST–cloud interactions in the tropical eastern Pacific. Two factors appear to contribute to the dominance of low-level clouds in ACCESS1.3: the occurrence of a stronger mean descending motion bias and, to a lesser extent, a larger mean SST cold bias during March–April in ACCESS1.3 than in ACCESS1.0. A similar association is found between the positive cloud feedback bias and the biases in spring-time mean descending motion and SST for a group of CMIP5 models that show a seasonal phase locking bias similar to ACCESS1.3. Significant differences are also found between the thermocline feedbacks simulated by ACCESS1.0 and ACCESS1.3 that appear to reinforce the seasonal ENSO phase locking bias in the latter model. We discuss a mechanism by which the thermocline feedback differences could arise from atmospheric forcing differences in the two models.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 118
    Publication Date: 2015-05-08
    Description: This study investigates the relative importance of tropical Indian Ocean warming (IOW) and equatorial central to eastern Pacific cooling (EPC) in sustaining an anomalous Western North Pacific anticyclone (WNPAC) during the transition from an El Niño in the preceding winter to a La Niña in the subsequent summer through a suite of numerical experiments. The numerical results indicate that the WNPAC is maintained by a combined effect of IOW and EPC during the La Niña developing years. The contribution of IOW in maintaining the WNPAC sustains from spring to early summer, but appears to weaken after that as IOW decays. The role of IOW is via an eastward-propagating Kelvin wave induced Ekman divergence mechanism. The decay of IOW is because of reduction in downward solar radiation associated with above normal precipitation in situ. As the cooling develops over central to eastern Pacific from spring to summer, EPC starts to contribute to the maintenance of the WNPAC during summer through stimulating a Rossby wave response to its northwest. In this study, we have identified that the cooling over the central to eastern Pacific plays an important role in sustaining the WNPAC during La Niña developing summers. This finding may help improve the prediction of the East Asian summer monsoon, which is closely associated with the WNPAC.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 119
    facet.materialart.
    Unknown
    Springer
    Publication Date: 2015-05-14
    Description: This study analyzes areal changes and regional climate variations in global semi-arid regions over 61 years (1948–2008) and investigates the dynamics of global semi-arid climate change. The results reveal that the largest expansion of drylands has occurred in semi-arid regions since the early 1960s. This expansion of semi-arid regions accounts for more than half of the total dryland expansion. The area of semi-arid regions in the most recent 15 years studied (1990–2004) is 7 % larger than that during the first 15 years (1948–1962) of the study period; this expansion totaled 0.4 × 10 6 and 1.2 × 10 6 km 2 within the American continents and in the Eastern Hemisphere, respectively. Although semi-arid expansion occurred in both regions, the shifting patterns of the expansion are different. Across the American continents, the newly formed semi-arid regions developed from arid regions, in which the climate became wetter. Conversely, in the continental Eastern Hemisphere, semi-arid regions replaced sub-humid/humid regions, in which the climate became drier. The climate change in drying semi-arid regions over East Asia is primarily dominated by a weakened East Asian summer monsoon, while the wetting of semi-arid regions over North America is primarily controlled by enhanced westerlies.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 120
    Publication Date: 2015-05-16
    Description: An accurate seasonal prediction of Indian summer monsoon rainfall (ISMR) is intriguing as well as the most challenging job for monsoon meteorologists. As there is a cause and effect relationship between clouds and precipitation, the modulation of cloud formation in a dynamical model affects profoundly on ISMR. It has already been established that the critical relative humidity (CRH) plays a crucial role on the realistic cloud formation in a general circulation model. Hence, it may be hypothesized that the proper choice of CRH can be instrumental in driving the large scale Indian monsoon by modulating the cloud formation in a global climate model. An endeavor has been made for the first time to test the above hypothesis on the NCEP-CFSv2 model in the perspective of seasonal prediction of ISMR by modifying the CRH profile. The model sensitivity experiments have been carried out for two different CRH profiles along with the existing profile during the normal (2003) and deficient (2009) monsoon years. First profile is the constant CRH following the existing one but with increased magnitude and the second one is the variable CRH at different cloud levels based on the observations and MERRA reanalysis. The ensemble mean of model runs for four initial conditions of each year has revealed that the variable CRH profile in CFSv2 represents seasonal ISMR and its variability best among the three CRH experiments linking with the thermodynamical and dynamical parameters like precipitable water, tropospheric temperature and its gradient, cloud structure and radiation, water vapour flux, systematic error energy with its nonlinear error growth and the length of the rainy seasons during the contrasting years. It has also been shown that the improved depiction of seasonal ISMR has been achieved without disturbing much the forecast biases at other global tropical regions. The indigenous part of this paper is that the CRH modification can play a seminal role in modulating the large scale system like Indian monsoon by representing the realistic variability of cloud formation in CFSv2 and that proves the hypothesis. This work creates an avenue for further development of CFSv2 approaching towards an accurate seasonal forecast of ISMR.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 121
    Publication Date: 2015-05-16
    Description: Despite the importance of dust aerosol in the Earth system, state-of-the-art models show a large variety for North African dust emission. This study presents a systematic evaluation of dust emitting-winds in 30 years of the historical model simulation with the UK Met Office Earth-system model HadGEM2-ES for the Coupled Model Intercomparison Project Phase 5. Isolating the effect of winds on dust emission and using an automated detection for nocturnal low-level jets (NLLJs) allow an in-depth evaluation of the model performance for dust emission from a meteorological perspective. The findings highlight that NLLJs are a key driver for dust emission in HadGEM2-ES in terms of occurrence frequency and strength. The annually and spatially averaged occurrence frequency of NLLJs is similar in HadGEM2-ES and ERA-Interim from the European Centre for Medium-Range Weather Forecasts. Compared to ERA-Interim, a stronger pressure ridge over northern Africa in winter and the southward displaced heat low in summer result in differences in location and strength of NLLJs. Particularly the larger geostrophic winds associated with the stronger ridge have a strengthening effect on NLLJs over parts of West Africa in winter. Stronger NLLJs in summer may rather result from an artificially increased mixing coefficient under stable stratification that is weaker in HadGEM2-ES. NLLJs in the Bodélé Depression are affected by stronger synoptic-scale pressure gradients in HadGEM2-ES. Wintertime geostrophic winds can even be so strong that the associated vertical wind shear prevents the formation of NLLJs. These results call for further model improvements in the synoptic-scale dynamics and the physical parametrization of the nocturnal stable boundary layer to better represent dust-emitting processes in the atmospheric model. The new approach could be used for identifying systematic behavior in other models with respect to meteorological processes for dust emission. This would help to improve dust emission simulations and contribute to decreasing the currently large uncertainty in climate change projections with respect to dust aerosol.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 122
    facet.materialart.
    Unknown
    Springer
    Publication Date: 2015-01-23
    Description: Marine heat waves along the Western Australian coast are potentially damaging to the marine environment especially coastal fisheries and the Ningaloo Reef. Initiation and amplification mechanisms for marine heat waves (referred to as ‘Ningaloo Niño’ events) are explored using ocean and atmosphere reanalyses for the period 1960–2011. We find that the onset stage from October to November is promoted by wind-evaporation-SST feedback that operates to the northwest of the coast on the north-eastern flank of the Mascarene subtropical high: cyclonic anomalies act to reduce the surface wind speed and warm the ocean surface, thereby driving increased rainfall and stronger cyclonic anomalies. The growth and southward expansion of positive SST anomalies along the Australian west coast is further supplemented by anomalous poleward advection of heat by the Leeuwin Current, which is coupled with the cyclonic anomalies off the coast. The strongest Ningaloo Niño events, such as the record strong 2011 event, occur in conjunction with La Niña conditions in the Pacific, which drives westerly wind anomalies to the northwest of Australia that can promote the WES feedback and accelerate the Leeuwin Current via transmission of thermocline anomalies from the western Pacific onto the west Australian coast. However, many Ningaloo Niño events occur independent of La Niña and some Ningaloo Niño events even occur during certain El Niños. We explain this general independence from ENSO because the triggering of Ningaloo Niño events from the Pacific is most sensitive to antecedent SST anomalies in the far western Pacific, rather than in the central Pacific where ENSO typically has greatest magnitude.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 123
    Publication Date: 2015-01-23
    Description: The main source of sea surface temperature (SST) variability in the Tropical Atlantic at interannual time scales is the Equatorial Mode or Atlantic El Niño. It has been shown to affect the adjacent continents and also remote regions, leading to a weakened Indian Monsoon and promoting La Niña-type anomalies over the Pacific. However, its effects in a warmer climate are unknown. This work analyses the impact of the Equatorial Mode at the end of the twenty first century by means of sensitivity experiments with an atmosphere general circulation model. The prescribed boundary conditions for the future climate are based on the outputs from models participating in the coupled model intercomparison project—phase V. Our results suggest that even if the characteristics of the Equatorial Mode at the end of the twenty first century remained equal to those of the twentieth century, there will be an eastward shift of the main rainfall positive anomalies in the Tropical Atlantic and a weakening of the negative rainfall anomalies over the Asian monsoon due to the change in climatological SSTs. We also show that extratropical surface temperature anomalies over land related to the mode will change in regions like Southwestern Europe, East Australia, Asia or North America due to the eastward shift of the sea level pressure systems and related surface winds.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 124
    Publication Date: 2015-01-23
    Description: The study examines the capability of regional climate models (RCMs) to reproduce spatial and temporal characteristics of severe Central European heat waves. We analysed an ensemble of seven RCM simulations driven by the ERA-40 reanalysis over the 1961–2000 period, in comparison to observed data from the E-OBS gridded dataset. Heat waves were defined based on regionally significant excesses above the model-specific 95 % quantile of summer daily maximum air temperature distribution and their severity was described using the extremity index. The multi-model mean reflected the observed characteristics of heat waves quite well, but considerable differences were found among the individual RCMs. The RCMs had a tendency to simulate too many heat waves that were shorter but their temperature peak was more pronounced on average compared to E-OBS. Deficiencies were found also in reproducing interannual and interdecadal variability of heat waves. Using as an example the most severe Central European heat wave that occurred in 1994, we demonstrate that its magnitude was underestimated in all RCMs and that this bias was linked to overestimation of precipitation during and before the heat wave. By contrast, a simulated precipitation deficit during summer 1967 in the majority of RCMs contributed to an “erroneous” heat wave. This shows that land–atmosphere coupling is crucial for developing severe heat waves and its proper reproduction in climate models is essential for obtaining credible scenarios of future heat waves.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 125
    Publication Date: 2015-01-23
    Description: The double intertropical convergence zone (ITCZ) bias still affects all the models that participate to CMIP5 (Coupled Model Intercomparison Project, phase 5). As an ensemble, general circulation models have improved little between CMIP3 and CMIP5 as far as the double ITCZ is concerned. The present study proposes a new process-oriented metrics that provides a robust statistical relationship between atmospheric processes and the double ITCZ bias, additionally to the existing relationship between the sea surface temperature (SST) and the double ITCZ bias. The SST contribution is examined using the THR-MLT index (Bellucci et al. in J Clim 5:1127–1145, 2010 ), which combines biases on the representation of local SSTs and the SST threshold leading to the onset of ascent in the double ITCZ region. As a metrics of a model’s bias in simulating the interaction between circulation and precipitation, we propose to use the Combined Precipitation Circulation Error (CPCE). It is computed as the quadratic error on the contribution of each vertical regime to the total precipitation over the tropical oceans. CPCE is a global measure of the circulation-precipitation coupling that characterizes the model physical parameterizations rather than the regional characteristics of the eastern Pacific. A linear regression analysis shows that most of the double ITCZ spread among CMIP5 coupled ocean–atmosphere models is attributed to SST biases, and that the precipitation large-scale dynamics relationship explains a significant fraction of the bias in these models, as well as in the atmosphere-only models.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 126
    Publication Date: 2015-01-25
    Description: Based on model output from a multi-model ensemble (MME) of coupled atmosphere-ocean general circulation models, it is shown that prolonged trends in Australian rainfall over the southwest during winter and the monsoonal northwest during summer are associated with trends in the large scale Southern Hemisphere circulation. These trends, in turn, are the result of external radiative forcing, including anthropogenic greenhouse gases, ozone, aerosols and land use change. The MME is used in an analysis of covariance method to separate the internal (natural) variability in the coupled rainfall-atmospheric circulation relationship from influences associated with anomalous external radiative forcing. In both seasons, the leading coupled external mode (singular vector) in the twentieth century runs has rainfall and circulation loading patterns with associated time-series that have statistically significant trends. The associated rainfall loading patterns qualitatively resemble the patterns of observed rainfall trends. The circulation loading patterns reflect the thermal expansion of the tropics and the Hadley Cell. A comparison between similar analyses using the second half of the twenty-first century of the representative concentration pathways (RCP) RCP8.5 and RCP4.5 scenarios show that trends in rainfall and the circulation are projected to continue and intensify under increasing anthropogenic greenhouse gas concentrations. The technique developed here is generally applicable to separate the climate change signal from natural variability in any relevant pair of coupled climate fields.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 127
    Publication Date: 2015-01-25
    Description: In this study role of upper ocean processes in the evolution of sea surface temperature (SST) seasonal variations over the tropical Indian Ocean (TIO) is investigated in climate forecast system version1 (CFSv1) and version2 (CFSv2). Analysis reveals that CFSv2 could capture seasonal evolution of SST, wind speed and mixed layer depth better than CFSv1 with some biases. Discrepancy in reproducing the evolution of seasonal SST in coupled models leads to bias in the spatial and temporal distribution of precipitation. This has motivated to carry out mixed layer heat budget analysis in determining seasonal evolution of TIO SST. Spatial pattern of mixed layer heat budget from observations and models suggest that the processes responsible for SST tendency differ from region to region over the TIO. Further it is found that models underestimated SST tendency compared to the observations. Misrepresentation of advective processes and heat flux (HF) over the TIO is mainly responsible for the distortion of seasonal SST change in the coupled models. Sub-regional heat budget analysis reveals that CFSv1 is unable to reproduce the annual cycle of mixed layer temperature (MLT) tendency over the Arabian Sea, while CFSv2 captured the annual cycle of SST with systematic cold bias. Misrepresentation of the annual cycles of net HF and horizontal advection (Hadv) are accountable for the low rate of change of MLT during most of the year. Hadv during summer season is underestimated by 50 and 25 % respectively in CFSv1 and CFSv2. Further, CFSv1 fails to simulate MLT tendency due to improper evolution of HF annual cycle over the Bay of Bengal. Though annual cycle of HF in CFSv2 is well represented over the Bay of Bengal, its contribution to MLT change is underestimated compared to observations. Over the southern TIO region, MLT tendency is dominated by HF and Hadv terms in both observations and models. Contribution of HF to the annual cycle of MLT tendency is underestimated in CFSv1 whereas it is overestimated in CFSv2. Contribution of Hadv to MLT change is underestimated by about 50 % in CFSv1 and 10–20 % in CFSv2 over southern TIO. These errors in HF and Hadv are associated with biases in HF components and surface wind representation. Evolution of lead–lag relationship between HF and MLT/SST in both the observations and models suggest the importance of HF in SST evolution over the TIO region. Over all, CFSv2 produced better SST seasonal/annual cycle in spite of having cold bias. This improvement in CFSv2  may be attributed to better cloud–aerosol–radiation physics, which reduces radiation biases. Updated land-surface, ocean and sea ice processes and ocean component may be responsible for improved circulation and annual cycle of ocean–atmospheric components (winds and ocean circulation). However, there is a requirement for improved parameterization of turbulent HF and radiation estimates in CFSv2 to reduce the cold SST bias.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 128
    Publication Date: 2015-01-25
    Description: Climate simulations results can be very different when the regional climate model used is driven by different data. In this paper, the fifth generation Canadian Regional Climate Model (CRCM5) response is assessed when driven by various boundary conditions. The latter are provided by outputs from the second-generation Canadian Earth System Model (CanESM2) and the Max Planck Institute for Meteorology’s Earth System Model (MPI-ESM-LR) and also from ERA-Interim reanalysis. Physical and dynamical tendencies are analysed when the regional model is well spun up and is sufficiently affected by the lateral forcing data. The results indicate that the model is very sensitive to those imposed lateral conditions. Compared to observations, the CRCM5 exhibits excessive heating in the lower levels and cooling above when driven by the three driving data. It is also found that the two global models contribute to these anomalies but with different effects. Temperature tendencies revealed a cooling in lower layers when CRCM5 is driven by CanESM2 while a heating is noted when the model is forced by MPI-ESM-LR. Specific humidity tendencies also showed different effects depending on the driving data used.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 129
    Publication Date: 2016-03-28
    Description: In this study we investigate the scaling of precipitation extremes with temperature in the Mediterranean region by assessing against observations the present day and future regional climate simulations performed in the frame of the HyMeX and MED-CORDEX programs. Over the 1979–2008 period, despite differences in quantitative precipitation simulation across the various models, the change in precipitation extremes with respect to temperature is robust and consistent. The spatial variability of the temperature–precipitation extremes relationship displays a hook shape across the Mediterranean, with negative slope at high temperatures and a slope following Clausius–Clapeyron (CC)-scaling at low temperatures. The temperature at which the slope of the temperature–precipitation extreme relation sharply changes (or temperature break), ranges from about 20 °C in the western Mediterranean to 〈10 °C in Greece. In addition, this slope is always negative in the arid regions of the Mediterranean. The scaling of the simulated precipitation extremes is insensitive to ocean–atmosphere coupling, while it depends very weakly on the resolution at high temperatures for short precipitation accumulation times. In future climate scenario simulations covering the 2070–2100 period, the temperature break shifts to higher temperatures by a value which is on average the mean regional temperature change due to global warming. The slope of the simulated future temperature–precipitation extremes relationship is close to CC-scaling at temperatures below the temperature break, while at high temperatures, the negative slope is close, but somewhat flatter or steeper, than in the current climate depending on the model. Overall, models predict more intense precipitation extremes in the future. Adjusting the temperature–precipitation extremes relationship in the present climate using the CC law and the temperature shift in the future allows the recovery of the temperature–precipitation extremes relationship in the future climate. This implies negligible regional changes of relative humidity in the future despite the large warming and drying over the Mediterranean. This suggests that the Mediterranean Sea is the primary source of moisture which counteracts the drying and warming impacts on relative humidity in parts of the Mediterranean region.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 130
    Publication Date: 2016-03-28
    Description: Two distinct modes of snow cover variability over Eurasia are investigated using cyclostationary empirical orthogonal function (CSEOF) analysis. The first mode of Eurasian snow cover extent (SCE) represents a seasonally asymmetric trend between spring and fall. The spring SCE shows a decreasing trend, while the fall SCE particularly in October exhibits a clear increasing trend. This seasonally asymmetric trend of SCE is closely linked to Arctic sea ice decline accompanied by warming in the northern Eurasia. The decreased SCE during spring is primarily attributed to the warm air temperature anomalies, while the increased SCE in October results from the loss of sea ice and the ensuing moisture transport to the atmosphere, which is realized as increased snow in October. The second mode of Eurasian SCE, on the other hand, is closely related to Arctic Oscillation (AO), which is a dominant mode of Northern Hemisphere atmospheric variability. The snow cover variability over Europe during winter is largely affected by AO variability, rather than the warming signal represented by the first CSEOF mode. Detailed descriptions of the two distinct modes of Eurasian SCE and their interactions with oceanic and atmospheric variables are presented along with possible implications for future climate.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 131
    Publication Date: 2016-03-28
    Description: Based on hindcasts of seasonal forecast systems participating in the North American Multi-Model Ensemble, the seasonal dependence of predictability of the El Niño–Southern Oscillation (ENSO) was estimated. The results were consistent with earlier analyses in that the predictability of ENSO was highest in winter and lowest in spring and summer. Further, predictability as measured by the relative amplitude of predictable and unpredictable components was dominated by the ensemble mean instead of the spread (or dispersion) among ensemble members. This result was consistent with previous analysis that most of ENSO predictability resides in the shift of the probability density function (PDF) of ENSO sea surface temperature (SST) anomalies (i.e., changes in the first moment of the PDF that is associated with the ensemble mean of ENSO SST anomalies) rather than due to changes in the spread of the PDF. The analysis establishes our current best estimate of ENSO predictability that can serve as a benchmark for quantifying further improvements resulting from advances in observing, assimilation, and seasonal prediction systems.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 132
    Publication Date: 2016-03-28
    Description: Relationships between daily precipitation and daily maximum and minimum temperature (Tx and Tn, respectively) are analyzed at station level over the Greater Horn of Africa (GHA). Rainfall occurrence is associated with either above normal Tn (mostly in cool highland areas) or below normal Tn (especially lowland, hot environments and early parts of the rainy season). Tx generally displays a more consistent response to rainfall occurrence, with cooling peaking 1 day after the rainfall event. However there is often a persistence of this cooling several days after the rainfall event, and the amplitude of the cooling is also greater for heavy rainfall events. These temperature anomalies are thought to be a response to cloudiness (concurrent reduced Tx and concurrent enhanced Tn) and soil moisture (reduced Tx and Tn, suggested to reflect evaporative cooling). These relationships are of relevance to the interpretation of temperature trends. From 1973 to 2013, the GHA shows a clear warming signal, for both Tn (+0.20 to +0.25 °C/decade depending on seasons) and Tx (+0.17 to +0.22 °C/decade). Rainfall shows both negative (mostly between February and July) and positive trends (mostly in October–December). Given the superimposition of temperature and rainfall trends in parts of the GHA and the covariations between daily rainfall and both Tx and Tn, regression models are used to extract the rainfall influence on temperature, accounting for lag effects up to 4 days. The daily residuals from these models are used to depict temperature variations independent from precipitation variations. At some stations, trends computed on these residuals noticeably differ from the raw Tx trends. When averaged across the GHA, these effects do not exceed −0.06 to +0.03 °C/decade (depending on the month) for Tx, and are marginal for Tn, thus do not strongly modify the magnitude of the warming in the last 40 years. Nevertheless, these results show that precipitation-temperature relationships must be addressed when analyzing temperature changes.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 133
    Publication Date: 2016-03-29
    Description: This study evaluates the sensitivity of summertime rainfall simulations over East-to-southeast Asia and the western north Pacific in the regional climate model version 4 (RegCM4) to cumulus (including Grell with Arakawa–Schubert type closure, Grell with Fritsch–Chappell type closure, and Emanuel), land surface (Biosphere–atmosphere transfer scheme or BATS, and the community land model or CLM) and ocean surface (referred to as Zeng1, Zeng2 and BATS1e in the model) schemes by running the model with different combinations of these parameterization packages. For each of these experiments, ensemble integration of the model was carried out in the extended boreal summer of May–October from 1998 to 2007. The simulated spatial distribution, intensity and inter-annual variation of the precipitation, latent heat flux, position of the subtropical high and tropical cyclone genesis patterns from these numerical experiments were analyzed. Examinations show that the combination of Emanuel, CLM and Zeng2 (E-C-Z2) yields the best overall results, consistent with the fact that physical mechanisms considered in E-C-Z2 tend to be more comprehensive in comparison with the others. Additionally, the rainfall quantity is found very sensitive to sea surface roughness length, and the reduction of the roughness length constant (from 2 × 10 −4 to 5 × 10 −5  m) in our modified BATS1e mitigates the drastic overestimation of latent heat flux and rainfall, and is therefore preferable to the default value for simulations in the western north Pacific region in RegCM4.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 134
    Publication Date: 2016-03-29
    Description: In this paper, we use an observational dataset built from Argo in situ profiles to describe the main large-scale patterns of intraseasonal mixed layer depth (MLD) variations in the Indian Ocean. An eddy permitting (0.25°) regional ocean model that generally agrees well with those observed estimates is then used to investigate the mechanisms that drive MLD intraseasonal variations and to assess their potential impact on the related SST response. During summer, intraseasonal MLD variations in the Bay of Bengal and eastern equatorial Indian Ocean primarily respond to active/break convective phases of the summer monsoon. In the southern Arabian Sea, summer MLD variations are largely driven by seemingly-independent intraseasonal fluctuations of the Findlater jet intensity. During winter, the Madden–Julian Oscillation drives most of the intraseasonal MLD variability in the eastern equatorial Indian Ocean. Large winter MLD signals in northern Arabian Sea can, on the other hand, be related to advection of continental temperature anomalies from the northern end of the basin. In all the aforementioned regions, peak-to-peak MLD variations usually reach 10 m, but can exceed 20 m for the largest events. Buoyancy flux and wind stirring contribute to intraseasonal MLD fluctuations in roughly equal proportions, except for the Northern Arabian Sea in winter, where buoyancy fluxes dominate. A simple slab ocean analysis finally suggests that the impact of these MLD fluctuations on intraseasonal sea surface temperature variability is probably rather weak, because of the compensating effects of thermal capacity and sunlight penetration: a thin mixed-layer is more efficiently warmed at the surface by heat fluxes but loses more solar flux through its lower base.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 135
    Publication Date: 2016-03-29
    Description: Daily rainfall occurrence and amount at 55 stations over New Caledonia (NC, 20°S, 166°E) are examined throughout the calendar year during 1980–2010 using a Hidden Markov Model (HMM). Daily rainfall variability is described in terms of six discrete rainfall states identified by the HMM. Three states are interpreted as trade wind regimes associated with persistent low level anticyclonic conditions and weak to strong easterlies. The most prevalent state (state 1; 36 % of days) is dry everywhere and is characterized by an elongated anticyclone centered around Australia; NC is located on the eastern edge of this anticyclone. This state is predominant from mid-May to mid-December and peaks in September. The second most prevalent state (state 2; 27 % of days) and the last trade regime (state 4; 12 % of days) are most frequent in austral summer. States 2 and 4 are associated with the subtropical anticyclone centered south of NC, close to its climatological location in austral summer, and light (state 2) to moderate (state 4) rainfall mostly along the windward coast. A distinct state (state 3; 11 % of days) is mostly associated with wintertime extratropical eastward traveling troughs between New Caledonia and New Zealand, inducing light rainfall over the SW of the main island of New Caledonia. The two last states 5 and 6 are infrequent (〈15 % of days) but account for almost 70 % of total rainfall across the archipelago. They occur mostly in austral summer with their frequency of occurrence peaking in late February–early March. These states are associated with synoptic wave traveling eastward from eastern Australia leading to a strong influx of moisture from the equatorial latitudes when the associated cyclonic centre is located west of New Caledonia. The wettest state is also strongly modulated by intra-seasonal 15–80 days variability. These events contribute to intermittent southwestward shifts of the South Pacific Convergence Zone from its mean location northeast of New Caledonia. On interannual timescales, the occurrence of the rainfall states is modulated by El Niño Southern Oscillation (ENSO) events. The ENSO impact is strongest from mid-August to March with more (less) frequent trade regimes 1–2 and less (more) frequent unstable trade regime 4 and states 5–6 during central-Pacific warm (cold) ENSO events. Stochastic simulations of daily rainfall occurrence and amount at the 55 stations are generated by using predictors based on Niño 4 sea surface temperature index and a local intra-seasonal (15–80 days) OLR index superimposed on a climatological annual cycle. The cross-validated skill peaks in September–November.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 136
    Publication Date: 2016-03-29
    Description: In this work we reassess the impacts of blocking patterns on precipitation regimes in the Iberian Peninsula, distinguishing between north Atlantic and European blocking. For this we take full advantage of the recently developed high-resolution datasets for the Iberian countries. Precipitation anomalies during blocking events obtained with this dataset allow a much finer regional characterization of the impacts in both average and extreme daily precipitation, particularly when compared to widely used low-resolution reanalysis datasets. Blocked patterns induce a negative-positive dipole of precipitation anomalies from northwest to southeast Iberia. Increases are widespread during Atlantic blocks and pronounced in southern and eastern areas of Iberia, while during European blocks they are more spatially restricted, with increases above 50 % in coastal Mediterranean areas, which represents a considerable fraction of the annual precipitation. Blocking impacts in precipitation are nearly opposite to those found during strong zonal flow situations, but there are also some asymmetries in the precipitation responses. A significant increase in cyclones and cut-off lows frequency southwards of blocking structures is related to precipitation excesses over southern and eastern areas, where dynamical factors and local processes play a crucial role. On the contrary, precipitation deficits in northwest Iberia during blocking episodes are better explained by a reduction in north Atlantic frontal activity and simultaneous decreases in large-scale moisture advection towards northern Iberia. We show that these anomalies during blocking result from changes in precipitation amount rather than from increases in rainy days, pointing to more extreme rainfall regimes, particularly in southeastern Iberia. Finally, an Extreme Value Analysis was performed, fitting Generalized Pareto Distributions to precipitation extremes. Results show that the different extreme precipitation regimes of northwest and Mediterranean regions are partially determined by opposite anomalies of the zonal flow. Thus, heavy precipitation events in Mediterranean areas are usually short-lived and frequently associated with blocking conditions, while in northwest Iberia the total accumulations during rainfall episodes are more important for triggering extreme events and they are mainly related to strong westerly flows.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 137
    Publication Date: 2016-03-29
    Description: The boreal summer intraseasonal oscillation (BSISO) has two major activity centers, the northern Indian Ocean and tropical Western North Pacific, which dominate the monsoon intraseasonal variability over South Asia and East Asia, respectively. The spatial–temporal structures of BSISO over the Indian Ocean (10°S–30°N, 60°–105°E) (IOISO) and Western Pacific (10°S–30°N, 105°–150°E) (WPISO) are examined by corresponding the leading modes of daily OLR and 850-hPa zonal wind (U850). The IOISO features a northeastward propagation with a 30–45 days energy peak and the first principal component (PC1) has maximum variance in May, while the WPISO propagates northward with a broad spectral peak on 10–60 days and the PC1 has maximum variance in August. Because of the large regional differences, two regional indices, the IOISO index and WPISO index, are defined by their corresponding first two leading PCs. The combined IOISO–WPISO index captures about 30 % (10 %) of U850 (OLR) daily variance over the entire IO–WP region (10°S–30°N, 60°–150°E), which doubles that captured by the Madden–Julian Oscillation (MJO) index (Wheeler and Hendon 2004 ) and is 50 % higher than that captured by the BSISO index (Lee et al. 2013 ). The combined index also shows superior performance in representing biweekly and pentad-mean variations in the Asian-Pacific summer monsoon region (north of 10°N). The predictability/prediction skill and simulated principal modes of two regional BSISO indices are explored by using data derived from the Intraseasonal Variability Hindcast Experiment project. The major regional modes are reasonably well captured, but the forecasted fractional variances of the leading modes and variability center’s locations exhibit significant deficiencies. The multi-model mean estimate of the predictability is 40–45 days for the IOISO index, whereas 33–37 days for the WPISO index. The less predictable WPISO is likely due to the existence of its significant biweekly component. The multi-model mean prediction skill is significantly higher with large initial amplitude (~20 days for two indices) than that with small initial amplitude (~11 days), suggesting that the prediction for development of BSISO is much more difficult than the prediction for mature BSISO disturbances’ propagation.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 138
    Publication Date: 2016-03-29
    Description: A detailed analysis of sensitivity to the initial condition for the simulation of the Indian summer monsoon using retrospective forecast by the latest version of the Climate Forecast System version-2 (CFSv2) is carried out. This study primarily focuses on the tropical region of Indian and Pacific Ocean basin, with special emphasis on the Indian land region. The simulated seasonal mean and the inter-annual standard deviations of rainfall, upper and lower level atmospheric circulations and Sea Surface Temperature (SST) tend to be more skillful as the lead forecast time decreases (5 month lead to 0 month lead time i.e. L5–L0). In general spatial correlation (bias) increases (decreases) as forecast lead time decreases. This is further substantiated by their averaged value over the selected study regions over the Indian and Pacific Ocean basins. The tendency of increase (decrease) of model bias with increasing (decreasing) forecast lead time also indicates the dynamical drift of the model. Large scale lower level circulation (850 hPa) shows enhancement of anomalous westerlies (easterlies) over the tropical region of the Indian Ocean (Western Pacific Ocean), which indicates the enhancement of model error with the decrease in lead time. At the upper level circulation (200 hPa) biases in both tropical easterly jet and subtropical westerlies jet tend to decrease as the lead time decreases. Despite enhancement of the prediction skill, mean SST bias seems to be insensitive to the initialization. All these biases are significant and together they make CFSv2 vulnerable to seasonal uncertainties in all the lead times. Overall the zeroth lead (L0) seems to have the best skill, however, in case of Indian summer monsoon rainfall (ISMR), the 3 month lead forecast time (L3) has the maximum ISMR prediction skill. This is valid using different independent datasets, wherein these maximum skill scores are 0.64, 0.42 and 0.57 with respect to the Global Precipitation Climatology Project, CPC Merged Analysis of Precipitation and the India Meteorological Department precipitation dataset respectively for L3. Despite significant El-Niño Southern Oscillation (ENSO) spring predictability barrier at L3, the ISMR skill score is highest at L3. Further, large scale zonal wind shear (Webster–Yang index) and SST over Niño3.4 region is best at L1 and L0. This implies that predictability aspect of ISMR is controlled by factors other than ENSO and Indian Ocean Dipole. Also, the model error (forecast error) outruns the error acquired by the inadequacies in the initial conditions (predictability error). Thus model deficiency is having more serious consequences as compared to the initial condition error for the seasonal forecast. All the model parameters show the increase in the predictability error as the lead decreases over the equatorial eastern Pacific basin and peaks at L2, then it further decreases. The dynamical consistency of both the forecast and the predictability error among all the variables indicates that these biases are purely systematic in nature and improvement of the physical processes in the CFSv2 may enhance the overall predictability.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 139
    Publication Date: 2016-03-29
    Description: We have used an Atmospheric General Circulation Model with a large ensemble (300) to explore the atmospheric responses during the autumn–winter (September to February) to the projected sea-ice free Arctic in autumn (September to November). The detectability of the responses against the internal variability has also been studied. Three ensemble experiments have been performed, the control (CONT) forced by the simulated present-day Arctic sea-ice concentration (SIC) and sea surface temperature (SST), the second forced by the projected autumn Arctic SIC free and present-day SSTs (SENSICE) and the third forced by the projected autumn Arctic SIC free and projected SSTs (SENS). The results show that the disappearance of autumn Arctic sea-ice can cause significant synchronous near-surface warming and increased precipitation over the regions where the sea-ice is removed. The changes in autumn surface heat flux (sensible plus latent), surface air temperature (SAT) and precipitation averaged over the sea-ice reduction region between the SENS and the CONT are about 46, 43 and 50 % more respectively than the changes between the SENSICE and the CONT, which is consistent with the prescribed boundary setting: the surface temperature warming averaged over the sea-ice reduction region in the SENS relative to the CONT is 48 % higher than that in the SENSICE relative to the CONT. The response shows a significant negative Arctic Oscillation (AO) in the troposphere during autumn and December. However, the negative AO does not persist into January–February (JF). Instead, 500 hPa geopotential height (GH) response presents a wave train like pattern in JF which is related to the downstream propagation of the planetary wave perturbations during November–December. The SAT increases over northern Eurasia in JF in accordance with the atmosphere circulation changes. The comparison of the atmosphere response with the atmosphere internal variability (AIV) shows that the responses of SAT and precipitation in the Arctic far exceed the AIV in autumn and the response of the 500 hPa GH is comparable to the AIV in autumn, but none of the responses during JF exceeds the AIV.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 140
    Publication Date: 2016-03-29
    Description: In the present study sea surface salinity (SSS) biases and seasonal tendency over the Tropical Indian Ocean (TIO) in the coupled models [Climate Forecasting System version 1 (CFSv1) and version 2 (CFSv2)] are examined with respect to observations. Both CFSv1 and CFSv2 overestimate SSS over the TIO throughout the year. CFSv1 displays improper SSS seasonal cycle over the Bay of Bengal (BoB), which is due to weaker model precipitation and improper river runoff especially during summer and fall. Over the southeastern Arabian Sea (AS) weak horizontal advection associated with East Indian coastal current during winter limits the formation of spring fresh water pool. On the other hand, weaker Somali jet during summer results for reduced positive salt tendency in the central and eastern AS. Strong positive precipitation bias in CFSv1 over the region off Somalia during winter, weaker vertical mixing and absence of horizontal salt advection lead to unrealistic barrier layer during winter and spring. The weaker stratification and improper spatial distribution of barrier layer thickness (BLT) in CFSv1 indicate that not only horizontal flux distribution but also vertical salt distribution displays large discrepancies. Absence of fall Wyrtki jet and winter equatorial currents in this model limit the advection of horizontal salt flux to the eastern equatorial Indian Ocean. The associated weaker stratification in eastern equatorial Indian Ocean can lead to deeper mixed layer and negative Sea Surface Temperature (SST) bias, which in turn favor positive Indian Ocean Dipole bias in CFSv1. It is important to note that improper spatial distribution of barrier layer and stratification can alter the air–sea interaction and precipitation in the models. On the other hand CFSv2 could produce the seasonal evolution and spatial distribution of SSS, BLT and stratification better than CFSv1. However CFSv2 displays positive bias in evaporation over the whole domain and negative bias in precipitation over the BoB and equatorial Indian Ocean, resulting net reduction in the fresh water availability. This net reduction in fresh water forcing and the associated weaker stratification lead to deeper (than observed) mixed layer depth and is primarily responsible for the cold SST bias in CFSv2. However overall improvement of mean salinity distribution in CFSv2 is about 30 % and the mean error has reduced by more than 1 psu over the BoB. This improvement is mainly due to better fresh water forcing and model physics. Realistic run off information, better ocean model and high resolution in CFSv2 contributed for the improvement. Further improvement can be achieved by reducing biases in the moisture flux and precipitation.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 141
    Publication Date: 2016-03-29
    Description: An assessment of the predictability and prediction skill of the tropospheric circulation in the Southern Hemisphere was done. The analysis is based on seasonal forecasts of geopotential heights at 200, 500 and 850 hPa, for austral summer and winter from 11 models participating in the Climate Historical Forecast Project. It is found that predictability (signal-to-variance ratio) and prediction skill (anomaly correlation) in the tropics is higher than in the extratropics and is also higher in summer than in winter. Both predictability and skill are higher at high than at low altitudes. Modest values of predictability and skill are found at polar latitudes in the Bellinghausen-Amundsen Seas. The analysis of the changes in predictability and prediction skill in ENSO events reveals that both are slightly higher in the El Niño-Southern Oscillation (ENSO) years than in all years, while the spatial patterns of maxima and minima remain unchanged. Changes in signal-to-noise ratio observed are mainly due to signal changes rather than changes in noise. Composites of geopotential heights anomalies for El Niño and La Niña years are in agreement with observations.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 142
    Publication Date: 2016-04-08
    Description: This paper describes the operational seasonal prediction system of the Japan Meteorological Agency (JMA), the Japan Meteorological Agency/Meteorological Research Institute-Coupled Prediction System version 1 (JMA/MRI-CPS1), which was in operation at JMA during the period between February 2010 and May 2015. The predictive skill of the system was assessed with a set of retrospective seasonal predictions (reforecasts) covering 30 years (1981–2010). JMA/MRI-CPS1 showed reasonable predictive skill for the El Niño–Southern Oscillation, comparable to the skills of other state-of-the-art systems. The one-tiered approach adopted in JMA/MRI-CPS1 improved its overall predictive skills for atmospheric predictions over those of the two-tiered approach of the previous uncoupled system. For 3-month predictions with a 1-month lead, JMA/MRI-CPS1 showed statistically significant skills in predicting 500-hPa geopotential height and 2-m temperature in East Asia in most seasons; thus, it is capable of providing skillful seasonal predictions for that region. Furthermore, JMA/MRI-CPS1 was superior overall to the previous system for atmospheric predictions with longer (4-month) lead times. In particular, JMA/MRI-CPS1 was much better able to predict the Asian Summer Monsoon than the previous two-tiered system. This enhanced performance was attributed to the system’s ability to represent atmosphere–ocean coupled variability over the Indian Ocean and the western North Pacific from boreal winter to summer following winter El Niño events, which in turn influences the East Asian summer climate through the Pacific–Japan teleconnection pattern. These substantial improvements obtained by using an atmosphere–ocean coupled general circulation model underpin its success in providing more skillful seasonal forecasts on an operational basis.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 143
    Publication Date: 2016-04-09
    Description: This study examined the global sea surface temperature (SST) predictions by a so-called multiple-ocean analysis ensemble (MAE) initialization method which was applied in the National Centers for Environmental Prediction (NCEP) Climate Forecast System Version 2 (CFSv2). Different from most operational climate prediction practices which are initialized by a specific ocean analysis system, the MAE method is based on multiple ocean analyses. In the paper, the MAE method was first justified by analyzing the ocean temperature variability in four ocean analyses which all are/were applied for operational climate predictions either at the European Centre for Medium-range Weather Forecasts or at NCEP. It was found that these systems exhibit substantial uncertainties in estimating the ocean states, especially at the deep layers. Further, a set of MAE hindcasts was conducted based on the four ocean analyses with CFSv2, starting from each April during 1982–2007. The MAE hindcasts were verified against a subset of hindcasts from the NCEP CFS Reanalysis and Reforecast (CFSRR) Project. Comparisons suggested that MAE shows better SST predictions than CFSRR over most regions where ocean dynamics plays a vital role in SST evolutions, such as the El Niño and Atlantic Niño regions. Furthermore, significant improvements were also found in summer precipitation predictions over the equatorial eastern Pacific and Atlantic oceans, for which the local SST prediction improvements should be responsible. The prediction improvements by MAE imply a problem for most current climate predictions which are based on a specific ocean analysis system. That is, their predictions would drift towards states biased by errors inherent in their ocean initialization system, and thus have large prediction errors. In contrast, MAE arguably has an advantage by sampling such structural uncertainties, and could efficiently cancel these errors out in their predictions.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 144
    Publication Date: 2016-04-09
    Description: This article deals with the spatio-statistical analysis of temperature trend using Mann–Kendall trend model (MKTM) and Sen’s slope estimator (SSE) in the eastern Hindu Kush, north Pakistan. The climate change has a strong relationship with the trend in temperature and resultant changes in rainfall pattern and river discharge. In the present study, temperature is selected as a meteorological parameter for trend analysis and slope magnitude. In order to achieve objectives of the study, temperature data was collected from Pakistan Meteorological Department for all the seven meteorological stations that falls in the eastern Hindu Kush region. The temperature data were analysed and simulated using MKTM, whereas for the determination of temperature trend and slope magnitude SSE method have been applied to exhibit the type of fluctuations. The analysis reveals that a positive (increasing) trend in mean maximum temperature has been detected for Chitral, Dir and Saidu Sharif met stations, whereas, negative (decreasing) trend in mean minimum temperature has been recorded for met station Saidu Sharif and Timergara. The analysis further reveals that the concern variation in temperature trend and slope magnitude is attributed to climate change phenomenon in the region.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 145
    Publication Date: 2016-04-09
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 146
    Publication Date: 2015-12-31
    Description: Land surface processes play an important role in the East Asian Summer Monsoon (EASM) system. Parameterization schemes of land surface processes may cause uncertainties in regional climate model (RCM) studies for the EASM. In this paper, we investigate the sensitivity of a RCM to land surface parameterization (LSP) schemes for long-term simulation of the EASM. The Weather Research and Forecasting (WRF) Model coupled with four different LSP schemes (Noah-MP, CLM4, Pleim–Xiu and SSiB), hereafter referred to as Sim-Noah, Sim-CLM, Sim-PX and Sim-SSiB respectively, have been applied for 22-summer EASM simulations. The 22-summer averaged spatial distributions and strengths of downscaled large-scale circulation, 2-m temperature and precipitation are comprehensively compared with ERA-Interim reanalysis and dense station observations in China. Results show that the downscaling ability of RCM for the EASM is sensitive to LSP schemes. Furthermore, this study confirms that RCM does add more information to the EASM compared to reanalysis that imposes the lateral boundary conditions (LBC) because it provides 2-m temperature and precipitation that are with higher resolution and more realistic compared to LBC. For 2-m temperature and monsoon precipitation, Sim-PX and Sim-SSiB simulations are more consistent with observation than simulations of Sim-Noah and Sim-CLM. To further explore the physical and dynamic mechanisms behind the RCM sensitivity to LSP schemes, differences in the surface energy budget between simulations of Ens-Noah-CLM (ensemble mean averaging Sim-Noah and Sim-CLM) and Ens-PX-SSiB (ensemble mean averaging Sim-PX and Sim-SSiB) are investigated and their subsequent impacts on the atmospheric circulation are analyzed. It is found that the intensity of simulated sensible heat flux over Asian continent in Ens-Noah-CLM is stronger than that in Ens-PX-SSiB, which induces a higher tropospheric temperature in Ens-Noah-CLM than in Ens-PX-SSiB over land. The adaptive modulation of geopotential height gradients affects wind field (through geostrophic balance) simulation especially at lower levels, which subsequently affects the simulation of large-scale circulation, 2-m temperature and monsoon precipitation as well as RCM’s downscaling ability.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 147
    Publication Date: 2015-12-31
    Description: The winter extratropical cyclone activity in the Southern Hemisphere during the last one thousand years within a global climate simulation was analyzed by tracking cyclones, and then clustering them into ten clusters consecutively for each hundred years. There is very strong year-to-year variability for Southern Hemispheric winter extratropical cyclone numbers and larger variations on centennial time scale, more so than for its Northern Hemispherical counterparts. However, no obvious trend can be found. The mean tracks of clusters over the Southern Indian Ocean and near New Zealand shift poleward from the eleventh to the twentieth century while the clusters in the central Southern Pacific shift equatorward. Storm track clusters with largest deepening rates are found over the Southwestern Indian Ocean. In the twentieth century, rapidly deepening cyclones appear more often while long lifespan cyclones appear less frequently. The winter storm activity in the Southern Hemisphere is closely related to the Antarctic Oscillation. The cyclone frequency over the Indian Ocean and South Pacific Ocean can be associated with the Indian Ocean Dipole and El Nino-Southern Oscillation respectively.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 148
    Publication Date: 2015-12-31
    Description: The winter precipitation (December–February) over northwest India (NWI) is highly variable in terms of time and space. The maximum precipitation occurs over the Himalaya region and decreases towards south of NWI. The winter precipitation is important for water resources and agriculture sectors over the region and for the economy of the country. It is an exigent task to the scientific community to provide a seasonal outlook for the regional scale precipitation. The oceanic heat fluxes are known to have a strong linkage with the ocean and atmosphere. Henceforth, in this study, we obtained the relationship of NWI winter precipitation with total downward ocean heat fluxes at the global ocean surface, 15 regions with significant correlations are identified from August to November at 90 % confidence level. These strong relations encourage developing an empirical model for predicting winter precipitation over NWI. The multiple linear regression (MLR) and principal component regression (PCR) models are developed and evaluated using leave-one-out cross-validation. The developed regression models are able to predict the winter precipitation patterns over NWI with significant (99 % confidence level) index of agreement and correlations. Moreover, these models capture the signals of extremes, but could not reach the peaks (excess and deficit) of the observations. PCR performs better than MLR for predicting winter precipitation over NWI. Therefore, the total downward ocean heat fluxes at surface from August to November are having a significant impact on seasonal winter precipitation over the NWI. It concludes that these interrelationships are more useful for the development of empirical models and feasible to predict the winter precipitation over NWI with sufficient lead-time (in advance) for various risk management sectors.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 149
    Publication Date: 2016-01-05
    Description: Using an Earth System Model and observations we analyze the sequence of events connecting episodes of trade wind strengthening (or weakening) to global mean surface temperature (GMST) cooling (or warming), with tropical ocean wave dynamics partially setting the time scale. In this sequence tropical west Pacific wind stress signals lead equatorial east Pacific thermocline depth signals which lead tropical east Pacific sea surface temperature (SST) signals which lead GMST signals. Using the anthropogenic, natural and tropical wind signals extracted from our simulations in a multivariate linear regression with observed GMST makes clear the balance that exists between anthropogenic warming and tropical wind-induced cooling during the recent warming slowdown, and between volcanic cooling and tropical wind-induced warming during the El Chichón and Pinatubo eruptions. Finally, we find an anticorrelation between global-mean temperatures in the near-surface (upper \(\sim \) 100 m) and subsurface ( \(\sim \) 100–300 m) ocean layers, linked to wind-driven interannual to decadal variations in the strength of the subtropical cell overturning in the upper Pacific Ocean.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 150
    Publication Date: 2016-01-05
    Description: The intraseasonal oscillation (ISO) of air temperature over the mid- and high-latitude Eurasia in boreal winter was investigated by NCEP-NCAR reanalysis data. It is found that the intraseasonal temperature disturbances exhibit maximum variability near the surface in the region of 50°–75°N, 80°‒120°E and they propagate southeastwards at average zonal and meridional phase speeds of 3.2 and 2.5 m s −1 , respectively. The low-level temperature signal is tightly coupled with upper-tropospheric height anomalies, and both propagate southeastward in a similar phase speed. A diagnosis of the temperature budget reveals that the southeastward propagation is primarily attributed to the advection of the temperature anomaly by the mean wind. A wave activity flux analysis indicates that the southeastward propagating wave train is likely a result of Rossby wave energy propagation. The source of the Rossby wave train appears at the high latitude Europe/Atlantic sector, where maximum wave activity flux convergence resides. During its southeastward journey, the ISO perturbation gains energy from the mean flow through both kinetic and potential energy conversions. A physics-based empirical model was constructed to predict the intraseasonal temperature anomaly over southeast China. The major predictability source is the southeastward-propagating ISO signal. The data for 1979‒2003 were used as a training period to construct the empirical model. A 10-yr (2004‒2013) independent forecast shows that the model attains a useful skill of up to 25 days.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 151
    Publication Date: 2016-01-07
    Description: Present study investigates local relationship between surface air temperature and snow water equivalent (SWE) change over mid- and high-latitudes of Eurasia during boreal spring. Positive correlation is generally observed around the periphery of snow covered region, indicative of an effect of snow on surface temperature change. In contrast, negative correlation is usually found over large snow amount area, implying a response of snow change to wind-induced surface temperature anomalies. With the seasonal retreat of snow covered region, region of positive correlation between SWE and surface air temperature shifts northeastward from March to May. A diagnosis of surface heat flux anomalies in April suggests that the snow impact on surface air temperature is dominant in east Europe and west Siberia through modulating surface shortwave radiation. In contrast, atmospheric effect on SWE is important in Siberia and Russia Far East through wind-induced surface sensible heat flux change. Further analysis reveals that atmospheric circulation anomalies in association with snowmelt over east Siberia may be partly attributed to sea surface temperature anomalies in the North Atlantic and the atmospheric circulation anomaly pattern associated with snowmelt over Russia Far East has a close association with the Arctic Oscillation.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 152
    Publication Date: 2016-01-11
    Description: The interdecadal change of the leading mode of the mean winter precipitation over China has been investigated using observational data for the period from 1960 to 2012. The leading empirical orthogonal function (EOF) mode (EOF1) of the winter precipitation over China displays a mono-sign pattern over southeastern China, accounting for 49.7 % of the total variance in the precipitation. Both the El Niño-Southern Oscillation (ENSO) and the East Asian winter monsoon (EAWM) can impact EOF1. A positive (negative) EOF1 is accompanied by warm (cold) ENSO events and weak (strong) EAWM, and the latters can cause anomalous southerlies (northerlies) along the coast of southeastern China, accompanied by the transportation of water vapor from the Bay of Bengal and the South China Sea favoring a wet (dry) winter over southeastern China. An abrupt transition of the EOF1 is observed around the mid-1980s. Therefore, the data are divided into two subperiods, i.e., 1960–1987 (P1) and 1988–2009 (P2). Significant differences in the large scale atmospheric circulation and sea surface temperature anomalies associated with EOF1 during these two subperiods are observed. EOF1 is closely related to the mid- to high-latitude atmospheric circulation in P1, while its relationship to the tropics obviously increases during P2. The partial regression analysis results show that the interdecadal change of EOF1 is caused by both the interdecadal changes of the EAWM and ENSO around the mid-1980s. In P1, the lower-level anomalous southerlies along the coastal southeastern China accompanied by water vapor transportation that causes above-average precipitation are related to an anti-cyclonic system centered over the mid-latitude western North Pacific associated with EAWM. In P2, the influence of the EAWM is weaker, and the southerly anomaly over the coastal southeastern China is mainly caused by the anticyclone over Philippines, which is related to the ENSO.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 153
    Publication Date: 2016-03-04
    Description: This study investigates the role of different areas of the ocean in driving the climate variability. The impact of both global and regional ocean nudging on the climate reconstruction obtained with the climate model EC-Earth v2.3 is studied over the period 1960–2012. Ocean temperature and salinity below the mixed layer are relaxed toward the monthly averages from the ORAS4 ocean reanalysis. Three coupled ocean–atmosphere simulations are considered: (1) global ocean nudging, (2) nudging in the global upper ocean (above 2000 m) and (3) nudging in the mid-latitude ocean and at full ocean depth. The experimental setup allows for identifying local and remote effects of nudging on different geographical areas. The validation is based on the correlation coefficients and the root mean square error skill score and concerns the following variables: ocean heat content, ocean barotropic streamfunction, intensity of the ocean gyres and indexes of convection, sea ice extension, near-surface air and sea surface temperature, and El Niño–Southern Oscillation 3.4 index. The results can be summarized as follows: (1) the positive impact on the reconstruction of the ocean state is found almost everywhere and for most of the analyzed variables, including unconstrained variables and/or regions, (2) deep-ocean nudging shows low impact on sea-surface temperature but a significant impact on the ocean circulation, (3) mid-latitude ocean nudging shows systematically the worst performance pointing at the importance of the poles and tropics in reconstructing the global ocean.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 154
    Publication Date: 2016-03-23
    Description: Various observation-based datasets are employed to robustly quantify changes in ocean heat content (OHC), anomalous ocean–atmosphere energy exchanges and atmospheric energy transports during El Niño-Southern Oscillation (ENSO). These results are used as a benchmark to evaluate the energy pathways during ENSO as simulated by coupled climate model runs from the CMIP3 and CMIP5 archives. The models are able to qualitatively reproduce observed patterns of ENSO-related energy budget variability to some degree, but key aspects are seriously biased. Area-averaged tropical Pacific OHC variability associated with ENSO is greatly underestimated by all models because of strongly biased responses of net radiation at top-of-the-atmosphere to ENSO. The latter are related to biases of mean convective activity in the models and project on surface energy fluxes in the eastern Pacific Intertropical Convergence Zone region. Moreover, models underestimate horizontal and vertical OHC redistribution in association with the generally too weak Bjerknes feedback, leading to a modeled ENSO affecting a too shallow layer of the Pacific. Vertical links between SST and OHC variability are too weak even in models driven with observed winds, indicating shortcomings of the ocean models. Furthermore, modeled teleconnections as measured by tropical Atlantic OHC variability are too weak and the tropical zonal mean ENSO signal is strongly underestimated or even completely missing in most of the considered models. Results suggest that attempts to infer insight about climate sensitivity from ENSO-related variability are likely to be hampered by biases in ENSO in CMIP simulations that do not bear a clear link to future changes.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 155
    Publication Date: 2016-03-23
    Description: The dominant mode of July–August (JA) seasonal variability of Indian summer monsoon rainfall (ISMR) are obtained by performing empirical orthogonal function (EOF) analysis. The first dominant mode of ISMR and its relationships with the sea surface temperature (SST), pressure level wind and geopotential height (GPH) fields are examined using gridded datasets for the period 1979–2014. The principal component of the first leading mode (PC1) obtained in the EOF analysis of JA rainfall over Indian landmass is highly correlated with north-west and central India rainfall, and anti-correlated with east-equatorial Atlantic SST (EEASST). The positive EEASST anomaly intensifies the inter-tropical convergence zone over Atlantic and west equatorial Africa which generates stationary wave meridionally, as meridional transfer of energy is strong, as the influence of background jet-streams are minimal over North Africa and Europe. The anomalous positive and negative GPH are generated over sub-tropics and extra-tropics, respectively, due to the stationary wave. This increases the climatological background steep pressure gradient between sub-tropics and extra-tropics consisting of anomalous negative GPH field over north-west (NW) Europe and vice versa for negative EEASST anomaly. The anomalous positive GPH over NW Europe acts as center of action for the propagation of a Rossby wave train to NW India via Europe consisting of anomalous high over NW of India. This intensifies the Tibetan High westward which reinforces the outbreak of monsoon activities over central and NW India.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 156
    Publication Date: 2016-03-23
    Description: Karst aquifers supply drinking water for 25 % of the world’s population, and they are, however, vulnerable to climate change. This study is aimed to investigate the effects of various monsoons and teleconnection patterns on Niangziguan Karst Spring (NKS) discharge in North China for sustainable exploration of the karst groundwater resources. The monsoons studied include the Indian Summer Monsoon, the West North Pacific Monsoon and the East Asian Summer Monsoon. The climate teleconnection patterns explored include the Indian Ocean Dipole, E1 Niño Southern Oscillation, and the Pacific Decadal Oscillation. The wavelet transform and wavelet coherence methods are used to analyze the karst hydrological processes in the NKS Basin, and reveal the relations between the climate indices with precipitation and the spring discharge. The study results indicate that both the monsoons and the climate teleconnections significantly affect precipitation in the NKS Basin. The time scales that the monsoons resonate with precipitation are strongly concentrated on the time scales of 0.5-, 1-, 2.5- and 3.5-year, and that climate teleconnections resonate with precipitation are relatively weak and diverged from 0.5-, 1-, 2-, 2.5-, to 8-year time scales, respectively. Because the climate signals have to overcome the resistance of heterogeneous aquifers before reaching spring discharge, with high energy, the strong climate signals (e.g. monsoons) are able to penetrate through aquifers and act on spring discharge. So the spring discharge is more strongly affected by monsoons than the climate teleconnections. During the groundwater flow process, the precipitation signals will be attenuated, delayed, merged, and changed by karst aquifers. Therefore, the coherence coefficients between the spring discharge and climate indices are smaller than those between precipitation and climate indices. Further, the fluctuation of the spring discharge is not coincident with that of precipitation in most situations. Karst spring discharge as a proxy can represent groundwater resource variability at a regional scale, and is more strongly influenced by climate variation.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 157
    Publication Date: 2016-03-23
    Description: This paper is a pioneering analysis of past climates in southern South America combining multiproxy reconstructions and the state-of-the-art CMIP5/PMIP3 paleoclimatic models to investigate the time evolution of regional climatic conditions from the Mid-Holocene (MH) to the present. This analysis allows a comparison between the impact of the long term climate variations associated with insolation changes and the more recent effects of anthropogenic forcing on the region. The PMIP3 multimodel experiments suggest that changes in precipitation over almost all southern South America between MH and pre-industrial (PI) times due to insolation variations are significantly larger than those between PI and the present, which are due to changes in greenhouse gas concentrations. Anthropogenic forcing has been particularly intense over western Patagonia inducing reduction of precipitation in summer, autumn and winter as a consequence of progressively weaker westerly winds over the region, which have moved further poleward, between ca. 35–55°S and have become stronger south of about 50°S. Orbital variations between the MH to the PI period increased insolation over southern South America during summer and autumn inducing warmer conditions in the PI, accentuated by the effect of anthropogenic forcing during the last century. On the other hand, changes in orbital parameters from the MH to the PI period reduced insolation during winter and spring inducing colder conditions, which have been reversed by the anthropogenic forcing.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 158
    Publication Date: 2016-03-23
    Description: This paper examined the underlying dynamic mechanisms associated with the meridional displacement of the East Asian trough (EAT), which is closely related to the temperature variability in the southern part of East Asian winter monsoon (EAWM). During the southward displacement of the EAT, the Siberian high is stronger and the Aleutian low is displaced southward. This is due mainly to the anomalous cyclonic flow associated with seasonal eddies over the midlatitude central Pacific, which enhances the horizontal advection of cold (warm) air to the southern (northern) part of the EAT in the lower troposphere. The cold (warm) advection narrows (thickens) the height thickness and results in negative (positive) temperature anomalies in the southern (northern) part of the EAT. These anomalous circulation features can be reasonably explained by the phase of the El Niño–Southern Oscillation (ENSO). The results are also verified by the numerical experiments with prescribing ENSO-like heat source anomalies over the tropical eastern and western Pacific in an anomaly atmospheric general circulation model. All of these results advance our understanding for the linkage between the ENSO and the EAWM via its modulation of the EAT.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 159
    Publication Date: 2016-03-23
    Description: The Arctic cell as a reversed and closed loop next to the Polar cell has been recently revealed in the Northern Hemisphere (NH). In this paper, we study the interannual variability of the Arctic and Polar cell strengths during 1979–2012, and their influence on surface air temperature (SAT), precipitation, and sea-ice concentration (SIC) at mid- and high-latitudes of the NH. We show that there is a significant negative correlation between the Arctic and Polar cell strengths. Both the Arctic and Polar cell strengths can well indicate the recurring climatic anomalies of SAT, precipitation, and SIC in their extreme winters. The surface large-scale cold–warm and dry–wet anomalous patterns in these extreme winters are directly linked with the vertical structure of height and temperature anomalies in the troposphere. Results suggest that the past climatic anomalies are better indicated by the strength anomalies of the Polar and Arctic cells than the traditional indices of mid-high latitude pattern such as the Arctic Oscillation and North Atlantic Oscillation. This study illustrates a three-dimensional picture of atmospheric variable anomalies in the troposphere that result in surface climatic anomalies.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 160
    Publication Date: 2016-03-23
    Description: The purpose of this paper is to elucidate a potential use of the large samples of seasonal means that hindcasts provide for investigating different aspects of climate variability. This use of hindcasts complements their traditional uses in bias correction, real-time forecast calibration, and prediction skill assessment. For seasonal hindcast data from NCEP CFSv2 we show that a sample size 5208 for each target season is achievable. To demonstrate the utility of the proposed concept, we use this large sample dataset to illustrate how it could be used in documenting spatial variability in various moments of seasonal mean precipitation PDF over the US, and further, quantify nuances in the variations in precipitation PDF at different geographical locations with the amplitude of ENSO SSTs. It is our hope that analysis presented in this paper will accelerate utilization of seasonal hindcast datasets in furthering our understanding of different aspects of climate variability. With the advantage of the large sample size, we demonstrated that the precipitation PDF at the each grid of the CONUS can be represented by gamma distribution for a more concise and effective way to summarize precipitation variability. The availability of the large sample dataset also allowed us to analyze the statistical characteristic of the precipitation responses to the different amplitudes of ENSO SSTs. The results show that for strong warm events, enhancement in precipitation has larger amplitude than decrease in precipitation for cold events in the regions of Southern California and southeastern US. The variation of the precipitation signal over the other sub-regions including the southwestern US, mid-northwest, and mid-east shows more linear relationship with the ENSO SSTs. In response to anomalous ENSO SSTs, although the PDF of December–January–February seasonal mean precipitation anomaly is shifted from its climatological PDF, there is still a large overlap between precipitation PDFs for ENSO and its climatological counterpart. This uncertainty in seasonal mean outcomes of precipitation, therefore, limits the seasonal prediction skill.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 161
    Publication Date: 2016-03-23
    Description: The long-term decrease of surface wind speed (SWS) has been revealed by previous studies in China in recent decades, but the reasons for the SWS decrease remain uncertain. In this paper, we evaluated the effects of land use and cover change (LUCC) on the SWS decrease during 1980–2011 over the Eastern China Plain (ECP) region using a combined method of statistical downscaling and observation minus reanalysis data, which was used to improve the climate prediction of general circulation models and to evaluate the influence of LUCC on climate change. To exclude the potential influence of LUCC on SWS observation, a statistical downscaling model (SDM) was established during 1980–1992 because a lower extent of LUCC occurred during this period than in later periods. The skill of the SDM was checked by comparing the results of different predictor combinations. Then, SDM was used to improve the wind speed data at 10 m above the surface in the ERA-Interim reanalysis data (V10m-ERA) during 1993–2011, which decreased the error in the reanalysis wind speed as far as possible. Then, the difference between the station observed SWS (V10m-OBV) and the downscaled SWS (V10m-SDM) during 1993–2011 (SWSD) was considered the quantitative estimation of the influence of the LUCC on SWS in this period. The V10m-SDM can capture both the large-scale and local characteristics in the observation, and their patterns are very similar. V10m-SDM has better performance in the spatial–temporal changes than does V10m-ERA with respect to V10m-OBV. The impact of LUCC on the SWS was pronounced, the SWSD was −0.24 m s −1 in 1993, and the SWSD reached −0.56 m s −1 in 2011. LUCC could induce a 0.17 m s −1 wind speed decrease per 10 year in the ECP region during 1993–2011. Furthermore, each 10 % rise of the urbanization rate could cause an approximately 0.12 m s −1 decrease in wind speed. Additionally, pressure-gradient force was eliminated as the primary cause of the observed long-term decrease of SWS in ECP by composite analysis and temporal serial analysis, and the rise of the surface drag force caused by LUCC was identified as an important factor inducing the SWS decrease during 1993–2011 in ECP region. Moreover, the results from different time lengths used to construct SDM were compared, and the uncertainties in SWSD were evaluated by different SDMs established by different time periods.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 162
    Publication Date: 2016-03-23
    Description: In this study, the intensity, area, and duration of droughts in China are analyzed using the Standardized Precipitation Index (SPI). The SPI was calculated on monthly data for 530 meteorological stations in China for the period 1960–2013. The time series were analyzed for ten major hydrological regions of China, respectively. The relationships between the intensity and the area of droughts for a specific duration were analyzed by the intensity–area–duration method. The results show that areas with a significant trend in dryness can be found in a band reaching from the southwest to the northeast of China, while areas with significant trends in wetness are especially detected in the northern river basins in recent decades. In addition, for recent years (2000–2013), most of the ten major hydrological regions show opposite trends in the SPI when compared to the whole study period (1960–2013) except for the central and southwestern parts of China. This dryness/wetness trends are related to the intensity and duration of drought events, which have been stronger and lasted longer in the detected dryness band except for some northern river basins. A regional shift of drought centers is found from the northwest to the southeast within Central China. Moreover, a decreasing trend in drought area is observed, which might be related to the regional changes in precipitation pattern associated with the atmosphere–ocean interaction. Changes in the SST of the Tropical Pacific and the Tropical Indian Ocean may have resulted in frequent severe drought events of small areal extent in the central and southwestern parts of China. For the study period, the most severe droughts that covered large areas mainly occurred in the north and west of China during the mid-to-late twentieth century. However, in the early twenty-first century, the most severe droughts were located in the southwest of China covering areas less than 0.7 million km 2 . Conclusively, drought areas show a decreasing tendency, while more intense droughts of longer duration have been experienced, especially in the south of China, in the last decades.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 163
    Publication Date: 2016-03-23
    Description: The extended-range (10–30-day) rainfall forecast over the entire China was carried out using spatial–temporal projection models (STPMs). Using a rotated empirical orthogonal function analysis of intraseasonal (10–80-day) rainfall anomalies, China is divided into ten sub-regions. Different predictability sources were selected for each of the ten regions. The forecast skills are ranked for each region. Based on temporal correlation coefficient (TCC) and Gerrity skill score, useful skills are found for most parts of China at a 20–25-day lead. The southern China and the mid-lower reaches of Yangtze River Valley show the highest predictive skills, whereas southwestern China and Huang-Huai region have the lowest predictive skills. By combining forecast results from ten regional STPMs, the TCC distribution of 8-year (2003–2010) independent forecast for the entire China is investigated. The combined forecast results from ten STPMs show significantly higher skills than the forecast with just one single STPM for the entire China. Independent forecast examples of summer rainfall anomalies around the period of Beijing Olympic Games in 2008 and Shanghai World Expo in 2010 are presented. The result shows that the current model is able to reproduce the gross pattern of the summer intraseasonal rainfall over China at a 20-day lead. The present study provides, for the first time, a guide on the statistical extended-range forecast of summer rainfall anomalies for the entire China. It is anticipated that the ideas and methods proposed here will facilitate the extended-range forecast in China.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 164
    Publication Date: 2016-03-23
    Description: A set of four ensemble simulations has been designed to assess the relative importance of atmospheric, oceanic, and deep ocean initial state uncertainties, as represented by spatial white noise perturbations, on seasonal to decadal prediction skills in a perfect model framework. It is found that a perturbation mimicking random oceanic uncertainties have the same impact as an atmospheric-only perturbation on the future evolution of the ensemble after the first 3 months, even if they are initially only located in the deep ocean. This is due to the fast (1 month) perturbation of the atmospheric component regardless of the initial ensemble generation strategy. The divergence of the ensemble upper-ocean characteristics is then mainly induced by ocean–atmosphere interactions. While the seasonally varying mixed layer depth allows the penetration of the different signals in the thermocline in the mid-high latitudes, the rapid adjustment of the thermocline to wind anomalies followed by Kelvin and Rossby waves adjustment dominates the growth of the ensemble spread in the tropics. These mechanisms result in similar ensemble distribution characteristics for the four ensembles design strategy at the interannual timescale.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 165
    Publication Date: 2016-03-23
    Description: The intensity of interannual variability (IIV) in southern China (SC) summer rainfall experienced a remarkable increase in early 1990s, concurrent with the interdecadal increase in SC summer rainfall. Two factors are proposed for this interdecadal change. One is the interdecadal increase of IIV in tropical eastern Indian Ocean (TEIO) sea surface temperature (SST) after early 1990s. Anomalous warmer (cooler) TEIO SST triggers anomalous ascending (descending) motion and lower-level cyclonic (anticyclone) circulation in situ, which in turn induces anomalous descent (ascent) over SC through an anomalous meridional vertical circulation. This contributes to interannual summer rainfall variability over SC. The increase in the amplitude of TEIO SST anomalies in early 1990s led to an intensified interannual variability of summer rainfall over SC. The other is the strengthened influence of a coupled mode of the North Atlantic Oscillation (NAO) and North Atlantic triple SST anomaly on interannual variability in summer rainfall over SC after early 1990s. The leading EOF mode of the North Atlantic SST is characterized by a stripe pattern during 1979–1992, while during 1993–2008 the dominant mode of the North Atlantic SST is a triple pattern. The triple pattern of North Atlantic SST may exert positive effect on the NAO after early 1990s. Compared to the period 1979–1992, the relationship between the NAO and interannual summer rainfall over SC is enhanced during 1993–2008. The NAO coupled with North Atlantic SST triple exerts an important impact on SC summer rainfall variability through Eurasian wave-like train.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 166
    Publication Date: 2015-12-16
    Description: This paper analyzes the role of the Indian Ocean (IO) and the atmosphere biases in generating and sustaining large-scale precipitation biases over Central India (CI) during the Indian summer monsoon (ISM) in the climate forecast system version 2 (CFSv2) hindcasts that are produced by initializing the system each month from January 1982 to March 2011. The CFSv2 hindcasts are characterized by a systematic dry monsoon bias over CI that deteriorate with forecast lead-times and coexist with a wet bias in the tropical IO suggesting a large-scale interplay between coupled ocean–atmosphere and land biases. The biases evolving from spring-initialized forecasts are analyzed in detail to understand the evolution of summer biases. The northward migration of the Inter Tropical Convergence Zone (ITCZ) that typically crosses the equator in the IO sector during April in nature is delayed in the hindcasts when the forecast system is initialized in early spring. Our analyses show that the delay in the ITCZ coexists with wind and SST biases and the associated processes project onto the seasonal evolution of the coupled ocean–atmosphere features. This delay in conjunction with the SST and the wind biases during late spring and early summer contributes to excessive precipitation over the ocean and leading to a deficit in rainfall over CI throughout the summer. Attribution of bias to a specific component in a coupled forecast system is particularly challenging as seemingly independent biases from one component affect the other components or are affected by their feedbacks. In the spring-initialized forecasts, the buildup of deeper thermocline in association with warmer SSTs due to the enhanced Ekman pumping in the southwest IO inhibits the otherwise typical northward propagation of ITCZ in the month of April. Beyond this deficiency in the forecasts, two key ocean–atmosphere coupled mechanisms are identified; one in the Arabian Sea, where a positive windstress curl bias in conjunction with warmer SSTs lead to a weakening of Findlater jet and the other in the east equatorial IO where a remote forcing by the predominantly westerly bias in the western-central equatorial IO in the summer strengthen the seasonal downwelling Kelvin wave that in turn deepens the thermocline in the eastern IO. The equatorial Kelvin wave continues as a coastal Kelvin wave and disperses as Rossby waves off Sumatra and induces positive SST and precipitation biases in the eastern and southern Bay of Bengal. This study shows that the biases that first appear in winds lead to a cascade of coupled processes that exacerbate the subsequent biases by modulating the evolution of seasonal processes such as the annual Kelvin and Rossby waves and the cross-equatorial vertically integrated moisture transport. While this analysis does not offer any particular insights into improving the ISM forecasts, it is a foundational first step towards this goal.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 167
    Publication Date: 2016-01-01
    Description: The fractional entrainment rate in convective clouds is an important parameter in current convective parameterization schemes of climate models. In this paper, it is estimated using a 1-km-resolution cloud-resolving model (CRM) simulation of convective clouds from TWP-ICE (the Tropical Warm Pool-International Cloud Experiment). The clouds are divided into different types, characterized by cloud-top heights. The entrainment rates and moist static energy that is entrained or detrained are determined by analyzing the budget of moist static energy for each cloud type. Results show that the entrained air is a mixture of approximately equal amount of cloud air and environmental air, and the detrained air is a mixture of ~80 % of cloud air and 20 % of the air with saturation moist static energy at the environmental temperature. After taking into account the difference in moist static energy between the entrained air and the mean environment, the estimated fractional entrainment rate is much larger than those used in current convective parameterization schemes. High-resolution (100 m) large-eddy simulation of TWP-ICE convection was also analyzed to support the CRM results. It is shown that the characteristics of entrainment rates estimated using both the high-resolution data and CRM-resolution coarse-grained data are similar. For each cloud category, the entrainment rate is high near cloud base and top, but low in the middle of clouds. The entrainment rates are best fitted to the inverse of in-cloud vertical velocity by a second order polynomial.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 168
    Publication Date: 2016-01-05
    Description: A lagged regression analysis between an index of observed summertime Atlantic water temperature (AWT) variability at the entrance to the Barents Sea in the period 1982–2005 and year-round atmospheric (NCEP/NCAR) reanalysis data is used to show that subsurface oceanic heat anomalies in high latitudes are significant precursors of wintertime atmospheric variability in middle latitudes. In particular, positive AWT anomalies precede predominantly westerly wind anomalies in high latitudes and easterly wind anomalies in middle latitudes. The mid-latitude wind anomalies, while being generally equivalent barotropic in the upper troposphere, have a strong low-level baroclinic contribution over Eurasia. The near-surface easterly wind anomalies in this area are locally deflected southward, maintaining cold spots near orography. The summertime oceanic anomalies explain about 40 % of the variance in the surface air temperature averaged over Eurasia from 35° to 45°N and about 50 % of the variance in surface winds over the Far East Asia in the following winter. We suggest that the remote connections arise from reorganization of the mid-latitude storm tracks. The AWT anomalies explain about 60 % of the variance in the upper-tropospheric storm track activity averaged over the Pacific and Eurasia from 35° to 55°N and in the lower-tropospheric poleward synoptic eddy heat flux over western Eurasia. Finally, we show that the AWT-associated wintertime atmospheric anomalies appear in quadrature with the concurrent anomalies associated with the North Atlantic Oscillation. These findings suggest that oceanic heat anomalies in high latitudes may be a useful predictor of atmospheric variability.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 169
    Publication Date: 2016-01-09
    Description: Satellite observations and a high-resolution regional ocean–atmosphere coupled model are used to study the air/sea interactions at the oceanic mesoscale in the Peru–Chile upwelling current system. Coupling between mesoscale sea surface temperature (SST) and wind stress (WS) intensity is evidenced and characterized by correlations and regression coefficients. Both the model and the observations display similar spatial and seasonal variability of the coupling characteristics that are stronger off Peru than off Northern Chile, in relation with stronger wind mean speed and steadiness. The coupling is also more intense during winter than during summer in both regions. It is shown that WS intensity anomalies due to SST anomalies are mainly forced by mixing coefficient anomalies and partially compensated by wind shear anomalies. A momentum balance analysis shows that wind speed anomalies are created by stress shear anomalies. Near-surface pressure gradient anomalies have a negligible contribution because of the back-pressure effect related to the air temperature inversion. As mixing coefficients are mainly unchanged between summer and winter, the stronger coupling in winter is due to the enhanced large-scale wind shear that enables a more efficient action of the turbulent stress perturbations. This mechanism is robust as it does not depend on the choice of planetary boundary layer parameterization.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 170
    Publication Date: 2016-01-11
    Description: This paper examines the roles of radiative and non-radiative air–sea coupled thermodynamic processes in modifying sea surface temperature (SST) anomalies driven by (air–sea coupled) oceanic dynamic processes, focusing on their contributions to the key differences between the eastern Pacific (EP) El Niño and the central Pacific (CP) El Niño. The attribution is achieved by decomposing SST anomalies into partial temperature anomalies due to individual processes using a coupled atmosphere-surface climate feedback-response analysis method. Oceanic processes induce warming from the central to the eastern equatorial Pacific and cooling over the western basin with a maximum warming center in the central Pacific for both types of El Niño. The processes that act to oppose the oceanic process-induced SST anomalies are surface latent heat flux, sensible heat flux, cloud, and atmospheric dynamic feedbacks, referred to as negative-feedback processes. The cooling due to each of the four negative-feedback processes is the strongest in the region where the initial warming due to oceanic processes is the largest. Water–vapor feedback is the sole process that acts to enhance the initial warming induced by oceanic processes. The increase in atmospheric water vapor over the eastern Pacific is much stronger for the EP El Niño than for the CP El Niño. It is the strong water–vapor feedback over the eastern Pacific and the strong negative feedbacks over the central equatorial Pacific that help to relocate the maximum warming center from the central Pacific to the eastern basin for the EP El Niño.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 171
    Publication Date: 2016-01-11
    Description: Climate models are our principal tool for generating the projections used to inform climate change policy. Our confidence in projections depends, in part, on how realistically they simulate present day climate and associated variability over a range of time scales. Traditionally, climate models are less commonly assessed at time scales relevant to daily weather systems. Here we explore the utility of a self-organizing maps (SOMs) procedure for evaluating the frequency, persistence and transitions of daily synoptic systems in the Australian region simulated by state-of-the-art global climate models. In terms of skill in simulating the climatological frequency of synoptic systems, large spread was observed between models. A positive association between all metrics was found, implying that relative skill in simulating the persistence and transitions of systems is related to skill in simulating the climatological frequency. Considering all models and metrics collectively, model performance was found to be related to model horizontal resolution but unrelated to vertical resolution or representation of the stratosphere. In terms of the SOM procedure, the timespan over which evaluation was performed had some influence on model performance skill measures, as did the number of circulation types examined. These findings have implications for selecting models most useful for future projections over the Australian region, particularly for projections related to synoptic scale processes and phenomena. More broadly, this study has demonstrated the utility of the SOMs procedure in providing a process-based evaluation of climate models.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 172
    Publication Date: 2016-01-11
    Description: The climate variability on Earth is strongly influenced by the changes in the Sea Surface Temperature (SST) anomalies in the tropical oceans. More specifically, the inter-annual climate variability in the tropics as well as extra-tropical areas has large impact due to the anomalous SSTs in the tropical Pacific coupled with the El Niño Southern Oscillation (ENSO) through atmospheric teleconnections. However, the effect of ENSO on Middle Eastern region, specifically the Arabian Peninsula (AP) is marginally explored in previous studies. Hence, this study explicitly focuses on the assessment of ENSO variability and its winter climate teleconnections to the AP using the Community Atmospheric Model Version 4.0 (CAM4) simulations and Reanalysis datasets. ENSO teleconnections are also evaluated based on two sensitivity experiments (ENSO-related and ENSO-unrelated) using the CAM4 model. It is observed that during El Niño years the peninsular region receives more rainfall through enhanced moisture transport associated with anomalous westerly winds from adjoining Seas. The Rossby wave energy propagation in the atmosphere underlies important teleconnections involving ENSO. It is also noticed that there exist a distinct change in the phase of the Rossby wave pattern during El Niño and La Niña years which further causes the shift in the position of the jet stream over the Middle East.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 173
    Publication Date: 2016-03-28
    Description: Using data from the International Satellite Cloud Climatology Project (ISCCP), we examine how near-global (60°N–60°S) high cloud fraction varies over time in the past three decades. Our focus is on identifying dominant modes of variability and associated spatial patterns, and how they are related to sea surface temperature. By performing the principal component analysis, we find that the first two principal modes of high cloud distribution show strong imprints of the two types of El Niño–Southern Oscillation (ENSO)—the canonical ENSO and the ENSO Modoki. Comparisons between ISCCP data and 14 models from the Atmospheric Model Intercomparison Project Phase 5 (AMIP5) show that models simulate the spatial pattern and the temporal variations of high cloud fraction associated with the canonical ENSO very well but the magnitudes of the canonical ENSO vary among the models. Furthermore, the multi-model mean of the second principal mode in the AMIP5 simulations appears to capture the temporal behavior of the second mode but individual AMIP5 models show large discrepancies in capturing observed temporal variations. A new metric, defined by the relative variances of the first two principal components, suggests that most of the AMIP5 models overestimate the second principal mode of high clouds.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 174
    Publication Date: 2016-03-29
    Description: This study addresses several significant drawbacks in our previous analyses of how Australian summer monsoon onset/retreat may respond to global warming in CMIP3 model simulations. We have analysed daily 850 hPa wind, volumetric precipitable water, precipitation and temperature data from 26 CMIP5 models over a pair of 55-year simulations. Firstly, the CMIP5 models do not show significant improvement in capturing observed features of the monsoon onset/retreat in the region, despite of a slightly reduced bias in multi-model ensemble results. We show that wind–rainfall relationship varies with models and rainfall-based wet season onsets may not adequately represent the monsoon development. Under global warming, although 26-model averages show delayed onset and shortened duration, significant uncertainty exists: 10 models simulated delayed onset but it became earlier in another group of 7 models. Similar model discrepancies are seen in the modelled changes in retreat dates. The range of uncertainty in the projected changes is similar in CMIP3 and CMIP5 models and further analysis re-affirms previously proposed reasons: one is the different influence of a number of drivers in these models and the other is the different changes in these drivers themselves in future climate. Overall, most of the models showed impacts of ENSO and the Indian Ocean on the Australian summer monsoon onset/retreat, but the models differed quite significantly in the magnitude of such impacts. Another factor is different warming patterns and magnitudes in the tropical Pacific and Indian Oceans. When combined, the two provide a better explanation of the scatter among the 26 CMIP5 model results.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 175
    Publication Date: 2016-03-29
    Description: This study presents a climate reconstruction utilizing a seasonally resolved 417-year oxygen-isotope record of tree rings from southern Georgia, United States (1580–1997 CE). Oxygen isotopes within the cellulose predominately reflect moisture source observed on a seasonal scale between earlywood and latewood growth. Signatures of large climate oscillations were captured in modern and subfossil wood. Spectral and wavelet transform analyses of seasonally resolved oxygen isotopes showed distinct periodicities coinciding with the Atlantic multidecadal oscillation and other major climate oscillation phenomena. Oxygen-isotope values in latewood growth revealed a significant correlation with North Atlantic sea surface temperature anomalies. This correlation suggests that the precipitation source was strongly influenced by fluctuations in the Atlantic multidecadal oscillation and teleconnections with other major climate phenomena such as the North Atlantic subtropical high-pressure system, El Niño Southern Oscillation, and Pacific Decadal Oscillation. These results emphasize the utility of oxygen isotopes in tree rings for revealing seasonal influences associated with major climate drivers over centuries and enhance our understanding of long-term climate behavior on a detailed scale.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 176
    Publication Date: 2016-03-29
    Description: A multi-millennial simulation with a coupled global climatic model has been used to investigate extreme rainfall events, mainly droughts, over North America. A rainfall index, based on the US Dust Bowl region, was used to generate a time series from which the extreme events could be identified. A very wide range of drought and pluvial multiyear sequences was obtained, all attributable to internal climatic variability. This time series reproduced the basic characteristics of the corresponding observed time series. Composites of years with negative rainfall anomalies over North America from the simulation replicated the observed rainfall composite for the Dust Bowl era, both in spatial character and intensity. Examination of individual years of a simulated composite revealed not only a wide range of rainfall anomaly patterns, dominated by drought conditions, but also ENSO distributions that included El Niño events as well as the expected La Niña events. Composites for pluvial conditions over North America were associated with composited El Niño events, as expected. Correlation of the simulated Dust Bowl rainfall with global surface temperatures identified a principal connection with the ENSO region. No systematic relationship was obtained in the simulation between the Atlantic multidecadal oscillation and Dust Bowl region rainfall, with the simulated oscillation having a much more variable periodicity than that found in the limited observations. However, a marked connection was found for SST anomalies adjacent to the northeast coast of North America, but this appears to be forced by ENSO events. A scatter diagram of NINO3.4 SST anomalies with the Dust Bowl region rainfall anomalies, for observations and the simulation, revealed inconsistencies between the occurrence of an ENSO event and the “expected” rainfall anomaly. This, and other analysis, resulted in the conclusion that annual or longer term rainfall predictions over North America, with any systematic confidence, are unlikely because of stochastic influences inherent in the climatic system associated with internal climatic variability.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 177
    facet.materialart.
    Unknown
    Springer
    Publication Date: 2016-03-29
    Description: This paper investigates the Atlantic Ocean influence on equatorial Pacific decadal variability. Using an ensemble of simulations, where the ICTPAGCM (“SPEEDY”) is coupled to the NEMO/OPA ocean model in the Indo-Pacific region and forced by observed sea surface temperatures in the Atlantic region, it is shown that the Atlantic Multidecadal Oscillation (AMO) has had a substantial influence on the equatorial Pacific decadal variability. According to AMO phases we have identified three periods with strong Atlantic forcing of equatorial Pacific changes, namely (1) 1931–1950 minus 1910–1929, (2) 1970–1989 minus 1931–1950 and (3) 1994–2013 minus 1970–1989. Both observations and the model show easterly surface wind anomalies in the central Pacific, cooling in the central-eastern Pacific and warming in the western Pacific/Indian Ocean region in events (1) and (3) and the opposite signals in event (2). The physical mechanism for these responses is related to a modification of the Walker circulation because a positive (negative) AMO leads to an overall warmer (cooler) tropical Atlantic. The warmer (cooler) tropical Atlantic modifies the Walker circulation, leading to rising (sinking) and upper-level divergence (convergence) motion in the Atlantic region and sinking (rising) motion and upper-level convergence (divergence) in the central Pacific region.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 178
    Publication Date: 2016-03-29
    Description: Sea Surface Temperature (SST) anomalies that develop in spring in the central Pacific are crucial to the El Niño Southern Oscillation (ENSO) development. Here we use a linear, continuously stratified, ocean model, and its impulse response to a typical ENSO wind pattern, to derive a simple equation that relates those SST anomalies to the low frequency evolution of zonal wind stress anomalies τ x over the preceding months. We show that SST anomalies can be approximated as a “causal” filter of τ x ,  τ x ( t  −  t 1 ) −  c τ x ( t  −  t 2 ), where t 1 is ~1–2 months, t 2  − t 1 is ~6 months and c ranges between 0 and 1 depending on τ x location (i.e. SST anomalies are approximately proportional to the wind stress anomalies 1–2 months earlier minus a fraction of the wind stress anomalies 7–8 months earlier). The first term represents the fast oceanic response, while the second one represents the delayed negative feedback associated with wave reflection at both boundaries. This simple approach is then applied to assess the relative influence of the Indian Ocean Dipole (IOD) and of the Indian Ocean Basin-wide warming/cooling (IOB) in favouring the phase transition of ENSO. In agreement with previous studies, Atmospheric General Circulation Model experiments indicate that the equatorial Pacific wind responses to the IOD eastern and (IOB-related) western poles tend to cancel out during autumn. The abrupt demise of the IOD eastern pole thus favours an abrupt development of the IOB-cooling-forced westerly wind anomalies in the western Pacific in winter–spring (vice versa for an IOB warming). As expected from the simple SST equation above, the faster wind change fostered by the IOD enhances the central Pacific SST response as compared to the sole IOB influence. The IOD thereby enhances the IOB tendency to favour ENSO phase transition. As the IOD is more independent of ENSO than the IOB, this external influence could contribute to enhanced ENSO predictability.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 179
    Publication Date: 2016-04-06
    Description: Observing the water transports through the Strait of Gibraltar is a difficult task. Here we present a methodology aimed to obtain the inflow, outflow and net transport of water from the limited set of available observations, currently consisting of an upward looking ADCP deployed at Espartel sill, two tide gauges located at each side of the Strait and radars monitoring the surface velocities. More precisely, we reconstruct the velocity field over a vertical section across the Strait using a reduced order optimal interpolation technique fed with the spatial covariance patterns deduced from high resolution numerical simulations. As a first step we carry out some sensitivity experiments with synthetic data that demonstrate the high potential of the approach. The reconstruction methodology can reproduce very satisfactorily the variability of the transports with estimated correlations for the inflow, outflow and net over 0.9 in all the cases and estimated RMS errors of 0.03, 0.08 and 0.05 Sv, respectively. However, we have also found that the reconstruction is sensible to bias problems, mostly due to the sensitivity of the method to the differences between the statistics of the actual and modeled velocity profiles. The sensitivity experiments have been used to tune the parameters of the method and a reconstruction of actual monthly transports has been performed for the period 2004–2010 along with an estimate of the associated uncertainty. This reconstruction provides for the first time a multiannual time series of the inflow and the net transports solely based on in situ observations. Therefore it can be used as an independent estimate for the validation of numerical models and surface freshwater fluxes in the Mediterranean.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 180
    Publication Date: 2016-04-07
    Description: We propose here a new statistical approach to climate change detection and attribution that is based on additive decomposition and simple hypothesis testing. Most current statistical methods for detection and attribution rely on linear regression models where the observations are regressed onto expected response patterns to different external forcings. These methods do not use physical information provided by climate models regarding the expected response magnitudes to constrain the estimated responses to the forcings. Climate modelling uncertainty is difficult to take into account with regression based methods and is almost never treated explicitly. As an alternative to this approach, our statistical model is only based on the additivity assumption; the proposed method does not regress observations onto expected response patterns. We introduce estimation and testing procedures based on likelihood maximization, and show that climate modelling uncertainty can easily be accounted for. Some discussion is provided on how to practically estimate the climate modelling uncertainty based on an ensemble of opportunity. Our approach is based on the “ models are statistically indistinguishable from the truth ” paradigm, where the difference between any given model and the truth has the same distribution as the difference between any pair of models, but other choices might also be considered. The properties of this approach are illustrated and discussed based on synthetic data. Lastly, the method is applied to the linear trend in global mean temperature over the period 1951–2010. Consistent with the last IPCC assessment report, we find that most of the observed warming over this period (+0.65 K) is attributable to anthropogenic forcings (+0.67  \(\pm\)  0.12 K, 90 % confidence range), with a very limited contribution from natural forcings ( \(-0.01\pm 0.02\)  K).
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 181
    facet.materialart.
    Unknown
    Springer
    Publication Date: 2016-04-08
    Description: Monsoons involve increases in dry static energy (DSE), with primary contributions from increased shortwave radiation and condensation of water vapor, compensated by DSE export via horizontal fluxes in monsoonal circulations. We introduce a simple box-model characterizing evolution of the DSE budget to study nonlinear dynamics of steady-state monsoons. Horizontal fluxes of DSE are stabilizing during monsoons, exporting DSE and hence weakening the monsoonal circulation. By contrast latent heat addition (LHA) due to condensation of water vapor destabilizes, by increasing the DSE budget. These two factors, horizontal DSE fluxes and LHA, are most strongly dependent on the contrast in tropospheric mean temperature between land and ocean. For the steady-state DSE in the box-model to be stable, the DSE flux should depend more strongly on the temperature contrast than LHA; stronger circulation then reduces DSE and thereby restores equilibrium. We present conditions for this to occur. The main focus of the paper is describing conditions for bifurcation behavior of simple models. Previous authors presented a minimal model of abrupt monsoon transitions and argued that such behavior can be related to a positive feedback called the ‘moisture advection feedback’. However, by accounting for the effect of vertical lapse rate of temperature on the DSE flux, we show that bifurcations are not a generic property of such models despite these fluxes being nonlinear in the temperature contrast. We explain the origin of this behavior and describe conditions for a bifurcation to occur. This is illustrated for the case of the July-mean monsoon over India. The default model with mean parameter estimates does not contain a bifurcation, but the model admits bifurcation as parameters are varied.
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 182
    Publication Date: 2019
    Description: 〈h3〉Abstract〈/h3〉 〈p〉Using the sub-seasonal to seasonal forecast model of Beijing Climate Center, several key physical parameters are perturbed by the Latin hypercube sampling method to find a better configuration for representation of Madden–Julian oscillation (MJO) in the free-run simulation. We find that although model simulation is especially sensitive to some parameters, there are overall no significant linear relationships between model skill and any one of the parameters, and the optimum performance can be obtained by combined perturbations of multiple parameters. By optimization, MJO’s spectrum, intensity, spatial structure and propagation, as well as the mean state and variance, are all improved to some extent, suggesting the correspondence and interrelation of model’s performances in simulating different characteristics of MJO. Further, several sets of initialized hindcasts using the optimized parameters are conducted, and their results are compared with the hindcasts using only improved initial conditions. We show that with an optimized model, the forecast of MJO beyond 3-week lead time is not improved, and the maximum useful skill is only slightly increased, implying that a decrease of model error does not always translate into an increase of forecast skill at all lead time. However, the skill is obviously enhanced during lead times of 2–3 weeks for forecasts in most seasons and initial phases except for a few cases. Particularly, the deficiency in forecasting MJO’s propagation from the Indian Ocean to the Pacific is relieved, further highlighting the positive contribution of reducing model error compared to previous work that only reduced initial condition error. In this study, we also show benefits of multi-scheme ensemble strategy in describing uncertainties of model error and initial condition error and thus improving MJO forecast.〈/p〉
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 183
    Publication Date: 2019
    Description: 〈h3〉Abstract〈/h3〉 〈p〉The accurate characterization of seasonal and inter-annual site-level wind energy variability is essential during wind project development. Understanding the features and probability of low-wind years is of particular interest to developers and financers. However, a dearth of long-term, hub-height wind observations makes these characterizations challenging, and thus techniques to improve these characterizations are of great value. To improve resource characterization, we explicitly link wind resource variability (at hub-height, and at specific sites) to regional and synoptic scale wind regimes. Our approach involves statistical clustering of high-resolution modeled wind data, and is applied to California for a period covering 1980–2015. With this approach, we investigate the unique meteorological patterns driving low and high wind years at five separate wind project sites. We also find wind regime changes over the 36-year period consistent with global warming: wind regimes associated with anomalously hot summer days increased at half a day per year and stagnant conditions increased at one-third days per year. Despite these changes, the average annual resource potential remained constant at all project sites. Additionally, we identify correlations between climate modes and wind regime frequency, a linkage valuable for resource characterization and forecasting. Our general approach can be applied in any location and may benefit many aspects of wind energy resource evaluation and forecasting.〈/p〉
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 184
    Publication Date: 2019
    Description: 〈h3〉Abstract〈/h3〉 〈p〉A new set of CORDEX simulations over South America, together with their coarser-resolution driving Global Climate Models (GCMs) are used to investigate added value of Regional Climate Models (RCMs) in reproducing mean climate conditions over the continent. There are two types of simulations with different lateral boundary conditions: five hindcast simulations use re-analysis as boundary conditions, and five other historical simulations use GCMs outputs. Multi-model ensemble means and individual simulations are evaluated against two or three observation-based gridded datasets for 2-m surface air temperature and total precipitation. The analysis is performed for summer and winter, over a common period from 1990 to 2004. Results indicate that added value of RCMs is dependent on driving fields, surface properties of the area, season and variable considered. A robust added value for RCMs driven by ERA-Interim is obtained in reproducing the summer climatology of surface air temperature over tropical and subtropical latitudes. Mixed results can be seen, however, for summer precipitation climatology in both hindcast and historical experiments. For winter, there is no noticeable improvement by the RCMs for the large-scale precipitation and surface air temperature climatology. To further understand the added value of RCMs, models deviations from observation are decomposed according to different terms that reflect the observational uncertainty, the representativeness error, the interpolation error, and the actual performance of the model. Regions where these errors are not negligible, such as in complex terrain regions, among others, can be identified. There is a clear need for complementary assessment to understand better the real value added by RCMs.〈/p〉
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 185
    Publication Date: 2019
    Description: 〈h3〉Abstract〈/h3〉 〈p〉The model fidelity in simulating the Northern Hemisphere storm track interannual variability and the connections of this variability to the low frequency atmospheric variations and oceanic variations are examined based on the atmospheric European Centre for Medium-Range Weather Forecasts (ECMWF) model and coupled NCAR Community Climate System Model (CCSM) systems at different horizontal resolutions. The atmospheric general circulation model (AGCM) runs are forced by observed sea surface temperatures (SST) with varying atmospheric resolutions, while the coupled general circulation model (CGCM) runs have a fixed atmospheric resolution but varying oceanic resolutions. The phases, between the North Pacific (NP) and North Atlantic (NA) sectors, of the simulated hemisphere-scale Empirical Orthogonal Function (EOF) modes of the storm track fluctuations change with the model resolution, suggesting the storm track variability in NP and NA basins are largely independent. The models can qualitatively reproduce the basin-scale EOFs of both NP and NA storm track variability. These EOFs are not sensitive to either atmospheric or oceanic model horizontal resolutions, but their magnitudes from the CGCM runs are substantially underestimated. The storm track variations over NP basin are hybrid of internal atmospheric variations and external forcing from the underlying conditions, but the fluctuations over the NA basin are merely atmospheric internal variability. The NP storm track variability from SST forcing accounts for 4.4% of the total variance in observations, while it only has less than 2% of the total in all AGCM simulations. The external forcing to the storm track variations is more realistically reproduced in the higher atmospheric resolution runs. The air–sea coupling makes the SST feedbacks to the atmospheric internal variability, absent in the atmospheric ECMWF model hindcasts, emerge in the coupled CCSM simulations.〈/p〉
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 186
    Publication Date: 2019
    Description: 〈h3〉Abstract〈/h3〉 〈p〉Urban land use in East China has undergone considerable change since the 1990s. How such change affects both in situ and remote climate conditions is investigated through numerical modelling experiments with the Community Atmosphere Model Version 5.1. The results show that urbanization causes an increase in surface temperature due to reduced surface albedo but a decrease in specific humidity due to locally reduced surface evaporation. The change in specific humidity overwhelms the surface temperature change effect, leading to locally reduced precipitation. It is noted that urbanization causes changes in climate conditions not only locally but also remotely. Anomalous low-level divergence associated with the reduced precipitation in situ prevents the northward progression of the East Asian summer monsoon. As a result, the major monsoon rain band is strengthened and confined over South China and the tropical Asian monsoon zone along 12°–25°N. The increase of rainfall in the tropical zone, on one hand, induces the local overturning cell, leading to anomalous subsidence over mid-latitude Asia and the equatorial zone, and, on the other hand, perturbs the Subtropical Jet, generating a Rossby wave train disseminating along the Jet. Both of these processes cause anomalous dry and hot conditions over mid-latitude Asia.〈/p〉
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 187
    Publication Date: 2019
    Description: 〈h3〉Abstract〈/h3〉 〈p〉Uncertainties in future changes of temperature and precipitation over the homogenous monsoon regions of India are investigated using the CMIP5 and CESM-LE datasets. The uncertainty is partitioned into epistemic (model) and aleatoric (internal variability) components for each season using the RCP8.5 scenario. The uncertainty in temperature change is dominated by epistemic uncertainty that increases over time. The uncertainty in precipitation change shows a more complex picture. Aleatoric uncertainty can remain quite large and comparable to epistemic uncertainty till the latter part of the twenty-first Century especially during the JJA and SON seasons. Much of the rainfall uncertainty is in the more arid Northwest region with the West Central region (part of the core monsoon area) exhibiting lower uncertainties. Considerable increase in rainfall is seen during the SON season indicating an extended monsoon season. During the DJF season aleatoric uncertainty is much larger than epistemic uncertainty over much of the century and shows considerable decadal scale variability. Using the 40-member CESM-LE ensemble to analyze the influence of ensemble size on aleatoric uncertainty we find that low ensemble sizes can lead to an underestimate of the uncertainty.〈/p〉
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 188
    Publication Date: 2019
    Description: 〈h3〉Abstract〈/h3〉 〈p〉In this study, we investigate the role of the Asian summer monsoon (ASM) anticyclone in the distribution of ozone over the southern India and tropical Indian Ocean. We present the horizontal and vertical structure of ozone in the upper troposphere and lower stratosphere (UTLS) region. The analysis shows that the region within the ASM anticyclone has low ozone, and high tropopause altitude, as compared to the region outside the anticyclone during boreal summer. The southern edge of the ASM anticyclone, i.e. the southern India and tropical Indian Ocean show a remarkably high ozone concentration in the UTLS region during summer. Analysis of daily fields shows that ozone concentration in the upper troposphere over the southern India and tropical Indian Ocean increases with the strength of the tropical easterly jet, which is an outcome of ASM circulation. Different mechanisms responsible for the ozone enhancement in the UTLS region over the tropical Indian region have been discussed in this paper. The in situ ozonesonde observations from six Indian stations also support the space-based Aura-MLS observations, concluding that ASM anticyclone effectively transports ozone from the mid-latitude stratosphere to deep tropics. Shear generated turbulence and mixing in the vicinity of easterly jet also likely to play a minor role in the local ozone distribution.〈/p〉
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 189
    Publication Date: 2019
    Description: 〈h3〉Abstract〈/h3〉 〈p〉Global climate is a multi-scale system whose subsystems interact complexly. Notably, the Tropical-Andean region has a strong rainfall variability because of the confluence of many global climate processes altered by morphological features. An approach for a synthetical climate description is the use of global indicators and their regional teleconnections. However, typically this is carried out using filters and correlations, which results in seasonal and inter-annual teleconnections information, which are difficult to integrate into a modeling framework. A new methodology, based on rainfall signal extraction using dynamic-harmonic-regressions (DHR) and stochastic-multiple-linear-regressions (SMLR) between rainfall components and global signals for searching intra-annual and inter-annual teleconnections, is proposed. DHR gives non-stationary inter-annual trends and intra-annual quasi-periodic oscillations for monthly rainfall measurements. Time-variable amplitudes of quasi-periodical oscillations are crucial for finding intra-annual teleconnections using SMLR, while trends are better suited for the case of inter-annual ones. The methodology is tested over a Tropical-Andean region in southern Ecuador. The following results were obtained: (1) trans-Niño-Index (TNI) and Tropical-South-Atlantic signals are strongly connected to inter-annual and intra-annual time-scales. (2) However, TNI progressively weakens its relation with intra-annual components; meanwhile, El-Niño-Southern-Oscillation 3 gains ground for such time-scales. (3) Finally, an inter-annual connection with the North-Atlantic-Oscillation (NAO) is revealed. These results are consistent with previous literature, although the TNI and NAO connections are interesting findings, taking into account the differences in the connected scales. These results show the methodology’s capability of unraveling global teleconnections in different space and time scales using attributes embedded in an integral mathematical framework, which could be interesting for other purposes—such as the analysis of climate mechanisms or climate modeling.〈/p〉
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 190
    Publication Date: 2019
    Description: 〈h3〉Abstract〈/h3〉 〈p〉Decadal changes in the teleconnection between the central tropical Pacific and the Southern Hemisphere extratropics are studied using the NCEP–NCAR reanalysis data. Concurrent and lagged relationships show that teleconnection strength in austral spring was weak (strong) before (after) 1996/1997. This decadal change coincides in time with the climate regime shift in the Pacific in the 1990s known from many studies. We show that, after the regime shift, the concurrent and delayed teleconnection with the Southern Hemisphere extratropics is insignificant in September and abruptly increases in October. Penetration of the stratospheric anomaly into the troposphere in October can indicate interacting tropospheric and stratospheric pathways of the teleconnection to strongly enhance the central tropical Pacific impact since the late 1990s. The results give evidence that the Southern Annular Mode seems to be connecting element between the two pathways in the recent decades. The common tendencies in the eastward shift of the tropical anomalies and zonal wave 1 phase in the Antarctic stratosphere in austral spring have been demonstrated. The difference between the central Pacific and eastern Pacific teleconnections is consistent with that known from previous studies and new tendencies in their decadal changes and delayed effects have been revealed. It has been found that the central Pacific contributions to the Pacific decadal oscillation and to the Northern Hemisphere stratosphere have also increased significantly after the 1990s. This characterizes the central tropical Pacific as one of the key regions impacting climate and teleconnection not only in the Southern Hemisphere, but also in the Northern Hemisphere. Our findings are consistent with and further develop the recent studies of the stratosphere–troposphere coupling in austral spring, and emphasize significant contribution of the delayed tropical signals to the climate variability in austral spring in both hemispheres.〈/p〉
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 191
    Publication Date: 2019
    Description: 〈h3〉Abstract〈/h3〉 〈p〉A simple theoretical model is constructed to understand the cause of a peculiar cooling trend in North Pacific under the background of the greenhouse gases induced global warming during the past 50 years. It is found that the North Pacific cooling is caused by the increase of surface upward latent heat flux due to the atmosphere and the decrease of surface downward shortwave radiative flux. The former is attributed to enhanced low-level westerlies, while the latter is caused by the increase of stratus cloud over North Pacific. An atmosphere general circulation model is utilized to investigate the cause of the wind and low-level cloud changes. It is found that the strengthened westerly in North Pacific is the result of an atmospheric teleconnection pattern forced by the SSTAs warming in the tropical Pacific. The SSTAs warming in other tropical basins, along with the local cooling in North Pacific, tends to reduce the tropical Pacific SSTAs forcing effect. In addition, the increased local low-level cloud response to the tropical Pacific SSTAs forcing is also responsible for the cooling trend in North Pacific. The increased local stratus cloud may enhance the cooling through a positive feedback among the SST, atmospheric static stability and stratus cloud.〈/p〉
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 192
    Publication Date: 2019
    Description: 〈h3〉Abstract〈/h3〉 〈p〉The effect of cumulus parameterization (CP) on simulated climatological tropical cyclone (TC) activity over the CORDEX East Asia domain has been investigated by using the weather research and forecasting model. The simulations were conducted during 1988–2009 with a 25-km horizontal resolution, driven by the ERA-Interim reanalysis. Five experiments were performed and evaluated with different CP schemes including Kain–Fritsch (KF), KF with modified convective trigger function (KFML), multi-scale KF (MsKF), simplified Arakawa–Schubert (SAS) and Betts–Miller–Janjic (BMJ) schemes. Significant differences of TC genesis locations and tracks can be found between the CP schemes, which are attributed to simulated large-scale environment discrepancies. Simulations with the KF, KFML and MsKF schemes produced more TC numbers and stronger intensities than the SAS and BMJ simulations. The eastward extension and enhancement of the monsoon trough (MT) in the KF, KFML and MsKF simulations caused a southeast shift of the main TC genesis region, and provided a suitable environment for TC development. The KFML simulation reduced the excessive rainfall and TC activities that had appeared in the KF simulation and increased the proportion of intense TCs. The reduced tropical surface latent and moisture flux in the MsKF simulation, along with weaker upward vertical motion, contributed to weaker tropical rainfall and TC intensities. The SAS simulation produced less large-scale instabilities, which led to less active convections and weaker TC genesis and intensities. The genesis region in the BMJ simulation was shifted further north due to the northward-shifted reverse-oriented MT together with enhanced wind shear over the tropical ocean, resulting in detrimental environmental conditions for TC development. In addition, the BMJ scheme produced significant upper-tropospheric warming, attributed to enhanced grid-scale convective heat transport and latent heating of condensation in high-level stratiform cloud extending to the south boundary of WPSH, this resulted in the retreat of the subtropical high and caused the TC to recurve earlier.〈/p〉
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 193
    Publication Date: 2019
    Description: 〈h3〉Abstract〈/h3〉 〈p〉Extracting annual cycle properly from climate series is important in the study of annual cycle and anomaly series. However, the extracting approaches are various and may lead to inconsistent results. Since the real annual cycle is unknown in observed records, the reliability and applicability of them are hard to estimate. In this study, five popular decomposition methods used to extract annual cycle in climate series are evaluated through idealized numerical experiments for the first time; i.e., fitting sinusoids, complex demodulation, ensemble empirical mode decomposition (EEMD), nonlinear mode decomposition (NMD) and seasonal trend decomposition procedure based on loess (STL). Their performances are examined by comparing the extracted annual cycles and its amplitude with the preset one. The annual cycles are set with three different changing amplitudes: constant, linear increasing and nonlinearly varying; superposed with fluctuations of different long-term persistence (LTP) strength. Results indicate that (1) NMD performs best in depicting annual cycle and obtaining its amplitude change; (2) fitting sinusoids, complex demodulation and EEMD methods are more sensitive to LTP strength of superimposed fluctuations, which leads to over-fitted annual cycles and noisy amplitude changes, oppositely, the STL are less responsive to the variation of annual cycle; (3) when overall long-time trend of annual cycle change is the main concern, all of these methods performed well. However, over short time scales, the errors on account of noise and LTP are common in the first three methods and STL is too rough to give the details of amplitude change. Those results are also verified by applying them to observed records and the case with both amplitude and phase change.〈/p〉
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 194
    Publication Date: 2019
    Description: 〈h3〉Abstract〈/h3〉 〈p〉A statistical downscaling method (SDM) has been established through multiple stepwise regressions of predictor principal components using the ERA-Interim reanalysis data and the meteorological data collected from 115 stations in the low-latitude plateau in China from 1981 to 2015. The skill of the SDM was checked by comparing the results of the different predictor combinations and the different time lengths used to construct the SDM. In addition, compared to the historical simulation of the coupled Max Planck Institute Earth System Model (MPI-ESM-LR), better performance can be achieved by using the ERA-Interim data to construct the SDM in the low-latitude plateau. The long-term changes in temperature from 1981 to 2015 in the ERA-Interim reanalysis data are calibrated by the SDM over the low-latitude plateau of China. Furthermore, the SDM is projected into the simulation results of the MPI-ESM-LR model to construct a suitable SDM (ERA-SDM), and then the ERA-SDM is implemented to evaluate the future temperature changes in the low-latitude plateau during the period of 2018–2100 using the simulation results of the MPI-ESM-LR model under the RCP2.6, RCP4.5, and RCP8.5 scenarios, respectively. The results showed that an increase in temperature of 0.3 °C decade〈sup〉−1〈/sup〉 was found from 1981 to 2015, in which the fastest increase of 0.4 °C decade〈sup〉−1〈/sup〉 occurred in winter and the slowest increase of 0.2 °C decade〈sup〉−1〈/sup〉 occurred in autumn. Most models in CMIP5 failed to simulate the long-term changes in temperature over the last 30 years in the low-latitude plateau region, and the temperature in the low-latitude plateau was underestimated by 2.4 °C using the 22 models. The SDM improved the annual and seasonal temperature characteristics and inter-annual and seasonal changes simulated by the MPI-ESM-LR. The future temperature predictions by the ERA-SDM indicated that the fastest temperature increase of 0.271 °C decade〈sup〉−1〈/sup〉 was found in spring under the RCP8.5 scenario. A faster rate of temperature increase was found in the northern part of the low-latitude plateau than in the southern part under the RCP8.5 scenario.〈/p〉
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 195
    Publication Date: 2019
    Description: 〈h3〉Abstract〈/h3〉 〈p〉A first systematic analysis was conducted to assess near-term future changes in climate extremes over East Asia during the summer season (June–August) using five regional climate model (RCM) simulations participating in the CORDEX-East Asia project (HadGEM3-RA, RegCM4, SNU-MM5, SNU-WRF, and YSU-RSM). The 20-year return values of extreme temperature and precipitation were compared between the present (1979–2005) and near-term future (2024–2049) periods, which were estimated using the generalized extreme value (GEV) analysis. Multi-RCM mean results show that temperature and precipitation will increase in both means and extremes and that the increase in precipitation extreme will follow the enhanced moisture availability with warming (~ 7% °C〈sup〉−1〈/sup〉, Clausius–Clapeyron relation). It was found that the increases in GEV location parameter (mean intensity) and scale parameter (inter-annual variability) contribute dominantly to the increase in extremes of temperature and precipitation, respectively. Robust inter-RCM relations were observed between mean and extreme projections over East Asia and even on grid scales, more strongly for temperature. Model biases and future projections exhibit a significant relationship for temperature such that RCMs with warmer biases tend to predict stronger warming and vice versa. Results from three sub-regions (South Korea, Southern China, and Mongolia and northern China) consistently indicate that temperature increase involves an overall shift of the daily temperature distribution toward warmer conditions while precipitation increases are due to dominant increases in moderate-heavy rainfall events. Our multi-RCM assessment provides new insights to the uncertainty in future climate extremes over East Asia.〈/p〉
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 196
    Publication Date: 2019
    Description: 〈h3〉Abstract〈/h3〉 〈p〉The secular change of the Asian monsoon (AM)-El Niño–Southern Oscillation (ENSO) relationship has been recognized as a specter for seasonal forecast. The causes of such changes have not been well understood. How the monsoon-ENSO relationship underwent secular changes beyond instrumental period has rarely been discussed. Here we explore the multidecadal to centennial changes of the AM-ENSO relationship with the recently compiled Reconstructed Asian summer Precipitation (RAP) dataset (1470–2013) and multiple ENSO proxy indices. During the past five centuries, two leading modes of interannual variability of RAP are found to be associated with the ENSO developing and decaying phases, respectively. The mechanisms behind the modern monsoon-ENSO relationship can reasonably well explain the past monsoon behavior. In response to a developing ENSO, precipitation anomalies from the Maritime Continent (MC) via India to northern China are in phase, and this “chain reaction” tends to be largely steady since around 1620 AD when the Indian summer monsoon abruptly strengthened. Further, the strengthening of the link between developing-ENSO and Indian-northern China rainfall since 1620 AD concurred with a phase reversal of the Pacific Decadal Oscillation. During the decaying phase, however, the summer rainfall-ENSO relationship over the Yangtze River Valley-southern East China (YRV-SEC), the MC and central Asia, has gone through large multidecadal to centennial changes over the past five centuries. A remarkable reversal of sign in the AM-decaying ENSO relationship occurred roughly from 1740 to 1760 over the YRV-SEC and MC, which may be associated with the long-term strengthening of ENSO intensity. Future research should continue focusing on revealing the possible causes of the low-frequency changes in the monsoon-ENSO relationship using general circulation models and paleoclimate proxy reconstructions.〈/p〉
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 197
    Publication Date: 2019
    Description: 〈h3〉Abstract〈/h3〉 〈p〉Global surface evapotranspiration is one of the most significant components of the response of the water cycle to a warming climate. However, trends in surface evapotranspiration differ considerably from the trend in climate warming according to recent studies, with some studies even showing an opposing trend. The reason for this difference in the response of surface evapotranspiration to climate warming is still not completely understood. We validated the gridded FLUXNET evapotranspiration dataset and the Global Land Surface Assimilation Dataset (GLDAS) against evapotranspiration data observed in northern China using the eddy covariance system. The response of surface evapotranspiration to an increase in temperature varied with the type of climate (classified by the amount of precipitation) and the trend of surface evapotranspiration with warming showed similar features to the transitions between these climate types. The climate type with precipitation in the range of 250–350 mm was the most sensitive to the effects of warming on evapotranspiration. In more humid climates, surface evapotranspiration increased with increasing temperature, whereas in drier climates surface evapotranspiration decreased with increasing temperature. A similar response of evapotranspiration to increasing temperatures was also observed elsewhere in regions of climate transition. There are two main mechanisms of evapotranspiration: (1) an increase in temperature resulting in a direct increase in potential evapotranspiration; and (2) an increase in temperature resulting in a loss of soil moisture due to the increase in evapotranspiration, which in turn will indirectly suppress surface evapotranspiration due to the loss of vegetation.〈/p〉
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 198
    Publication Date: 2019
    Description: 〈h3〉Abstract〈/h3〉 〈p〉The rectification of intraseasonal wind forcing on interannual sea surface temperature anomalies (SSTA) and sea level anomalies (SLA) associated with El Niño–Southern Oscillation (ENSO) during 1993–2016 are investigated using the LICOM ocean general circulation model forced with daily winds. The comparisons of the experiments with and without the intraseasonal wind forcing have shown that the rectified interannual SSTA and SLA by the intraseasonal winds are much weaker than the total interannual SSTA and SLA in the cold tongue, due to the much weaker rectified than the total interannual Kelvin and Rossby waves in the equatorial Pacific Ocean. The dynamics of the rectification are through the nonlinear zonal and vertical advection by the background currents, which produces downwelling equatorial Kelvin waves during El Niño. The meridional advection is much smaller than the zonal and vertical advection, suggesting that the rectification is not induced by the Ekman dynamics or the thermocline rectification. The rectified interannual Kelvin waves are found to be much smaller than reflected at the Pacific western boundary and those forced by the interannual winds, suggesting that the latter two play a much more important role in ENSO dynamics than the intraseasonal winds. The results of this study suggest an unlikely significant role of oceanic nonlinear rectification by intraseasonal winds during the onset and cycling of El Niño.〈/p〉
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 199
    Publication Date: 2019
    Description: 〈h3〉Abstract〈/h3〉 〈p〉Future hydroclimate change is expected to generally follow a wet-get-wetter, dry-get-drier (WWDD) pattern, yet key uncertainties remain regionally and over land. It has been previously hypothesized that lake levels of the Last Glacial Maximum (LGM) could map a reverse analog to future hydroclimate changes due to reduction of CO〈sub〉2〈/sub〉 levels at this time. Potential complications to this approach include, however, the confounding effects of factors such as the Laurentide Ice Sheet and lake evaporation changes. Using the ensemble output of six coupled climate models, lake energy and water balance models, an atmospheric moisture budget analysis, and additional CO〈sub〉2〈/sub〉 sensitivity experiments, we assess the effectiveness of the LGM as a reverse analog for future hydroclimate changes for a transect from the drylands of North America to southern South America. The model ensemble successfully simulates the general pattern of lower tropical lake levels and higher extratropical lake levels at LGM, matching 82% of the lake proxy records. The greatest model-data mismatch occurs in tropical and extratropical South America, potentially as a result of underestimated changes in temperature and surface evaporation. Thermodynamic processes of the mean circulation best explain the direction of lake changes observed in the proxy record, particularly in the tropics and Pacific coasts of the extratropics, and produce a WWDD pattern. CO〈sub〉2〈/sub〉 forcing alone cannot account for LGM lake level changes, however, as the enhanced cooling from the Laurentide ice sheet appears necessary to generate LGM dry anomalies in the tropics and to deepen anomalies in the extratropics. LGM performance as a reverse analog is regionally dependent as anti-correlation between LGM and future P − E is not uniformly observed across the study domain.〈/p〉
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 200
    Publication Date: 2019
    Description: 〈h3〉Abstract〈/h3〉 〈p〉Short-term concurrent droughts and heatwaves accompanied by high temperatures and low soil moisture (or low precipitation) may significantly impact ecosystems, societies, and economies although the individual events involved may not themselves represent severe extremes. There is little known about the potential frequency of short-term concurrent droughts and heatwaves in the future. Here, we use the Gan River Basin as a case study area to assess the effects of different warming levels on drought and heatwave concurrences based on the coupled model intercomparison project phase 5 and variable infiltration capacity (VIC) model. The results show that the VIC model has high reliability in the simulation of soil moisture and evapotranspiration compared with other well-recognized datasets in the Gan River Basin. The warming level over the Gan River Basin is close to the global warming level. Under RCP4.5 and RCP8.5 scenarios, the multi-model ensemble medians of concurrent events increased by 0.08–0.4 pentads/decade from 2006 to 2099. The uncertainty of concurrent events encompasses a wider range as global temperature increases. Compared to the reference period (1961–2005), drought and heatwave concurrences have increased by more than 50% in the most parts of the basin under 1.5 or 2.0 °C of global warming; there is a 20% frequency difference of 0.5 °C from 1.5 to 2.0 °C. The substantial pentad increases (at least greater than 50%) existed in historical low-pentad-value areas in a 1.5 or 2.0 °C world, especially pronounced for a 2.0 °C world. The greatest increase in concurrent event pentads came from the 25th percentile values in 1.5 or 2.0 °C scenarios. Climatological median pentads of concurrent droughts and heatwaves appear likely to be 9.6–17.6% more frequent in a 2.0 °C world than a 1.5 °C world with respect to the reference period.〈/p〉
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...