ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (1,840)
  • 2010-2014  (1,840)
  • 2014  (1,198)
  • 2012  (642)
  • International Journal of Photoenergy  (392)
  • 84236
  • 8745
  • Energy, Environment Protection, Nuclear Power Engineering  (1,840)
  • 1
    Publication Date: 2014-03-01
    Print ISSN: 1748-9318
    Electronic ISSN: 1748-9326
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Institute of Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-12-15
    Description: The combination of inorganic nanoparticles semiconductor, conjugated polymer, and dye-sensitized in a layer of solar cell is now recognized as potential application in developing flexible, large area, and low cost photovoltaic devices. Several conjugated low bandgap polymers, dyes, and underlayer materials based on the previous studies are quoted in this paper, which can provide guidelines in designing low cost photovoltaic solar cells. All of these materials are designed to help harvest more sunlight in a wider range of the solar spectrum besides enhancing the rate of charge transfer in a device structure. This review focuses on developing solid-state dye-synthesized, polymer, and hybrid solar cells.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-11-07
    Description: Near infrared radiation (NIR) has been used to enable the sintering of TiO2 films on fluorine-doped tin oxide (FTO) glass in 12.5 s. The 9 µm thick TiO2 films were constructed into working electrodes for dye-sensitized solar cells (DSCs) achieving similar photovoltaic performance to TiO2 films prepared by heating for 30 min in a convection oven. The ability of the FTO glass to heat upon 12.5 s exposure of NIR radiation was measured using an IR camera and demonstrated a peak temperature of 680°C; glass without the 600 nm FTO layer reached 350°C under identical conditions. In a typical DSC heating step, a TiO2 based paste is heated until the polymeric binder is removed leaving a mesoporous film. The weight loss associated with this step, as measured using thermogravimetric analysis, has been used to assess the efficacy of the FTO glass to heat sufficiently. Heat induced interparticle connectivity in the TiO2 film has also been assessed using optoelectronic transient measurements that can identify electron lifetime through the TiO2 film. An NIR treated device produced in 12.5 seconds shows comparable binder removal, electron lifetime, and efficiency to a device manufactured over 30 minutes in a conventional oven.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-11-07
    Description: Band gap engineering provides an opportunity to not only provide higher overall conversion efficiencies of the reference AM1.5 spectra but also customize PV device design for specific geographic locations and microenvironments based on atmospheric conditions characteristic to that particular location. Indium gallium nitride and other PV materials offer the opportunity for limited bandgap engineering to match spectra. The effects of atmospheric conditions such as aerosols, cloud cover, water vapor, and air mass have been shown to cause variations in spectral radiance that alters PV system performance due to both overrating and underrating. Designing PV devices optimized for spectral radiance of a particular region can result in improved PV system performance. This paper presents a new method for designing geographically optimized PV cells with using a numerical model for bandgap optimization. The geographic microclimate spectrally resolved solar flux for twelve representative atmospheric conditions for the incident radiation angle (zenith angle) of 48.1° and fixed array angle of 40° is used to iteratively optimize the band gap for tandem, triple, and quad-layer of InGaN-based multijunction cells. The results of this method are illustrated for the case study of solar farms in the New York region and discussed.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-11-08
    Description: Global land acquisitions, often dubbed ‘land grabbing’ are increasingly becoming drivers of land change. We use the tools of network science to describe the connectivity of the global acquisition system. We find that 126 countries participate in this form of global land trade. Importers are concentrated in the Global North, the emerging economies of Asia, and the Middle East, while exporters are confined to the Global South and Eastern Europe. A small handful of countries account for the majority of land acquisitions (particularly China, the UK, and the US), the cumulative distribution of which is best described by a power law. We also find that countries with many land trading partners play a disproportionately central role in providing connectivity across the network with the shortest trading path between any two countries traversing either China, the US, or the UK over a third of the time. The land acquisition network is characterized by very few trading cliques and therefore ...
    Print ISSN: 1748-9318
    Electronic ISSN: 1748-9326
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-12-16
    Description: Possible future changes of clustering and return periods (RPs) of European storm series with high potential losses are quantified. Historical storm series are identified using 40 winters of reanalysis. Time series of top events (1, 2 or 5 year return levels (RLs)) are used to assess RPs of storm series both empirically and theoretically. Additionally, 800 winters of general circulation model simulations for present (1960–2000) and future (2060–2100) climate conditions are investigated. Clustering is identified for most countries, and estimated RPs are similar for reanalysis and present day simulations. Future changes of RPs are estimated for fixed RLs and fixed loss index thresholds. For the former, shorter RPs are found for Western Europe, but changes are small and spatially heterogeneous. For the latter, which combines the effects of clustering and event ranking shifts, shorter RPs are found everywhere except for Mediterranean countries. These changes are generally not statisti...
    Print ISSN: 1748-9318
    Electronic ISSN: 1748-9326
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-12-16
    Description: The 2012 drought in Northeast Brazil was the harshest in decades, with potentially significant impacts on the vegetation of the unique semi-arid caatinga biome and on local livelihoods. Here, we use a coupled climate–vegetation model (CCM3-IBIS) to: (1) investigate the role of the Pacific and Atlantic oceans in the 2012 drought, and; (2) evaluate the response of the caatinga vegetation to the 2012 climate extreme. Our results indicate that anomalous sea surface temperatures (SSTs) in the Atlantic Ocean were the primary factor forcing the 2012 drought, with Pacific Ocean SST having a larger role in sustaining typical climatic conditions in the region. The drought strongly influenced net primary production in the caatinga, causing a reduction in annual net ecosystem exchange indicating a reduction in amount of CO 2 released to the atmosphere.
    Print ISSN: 1748-9318
    Electronic ISSN: 1748-9326
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-12-16
    Description: Peatlands in Amazonian Peru are known to store large quantities of carbon, but there is high uncertainty in the spatial extent and total carbon stocks of these ecosystems. Here, we use a multi-sensor (Landsat, ALOS PALSAR and SRTM) remote sensing approach, together with field data including 24 forest census plots and 218 peat thickness measurements, to map the distribution of peatland vegetation types and calculate the combined above- and below-ground carbon stock of peatland ecosystems in the Pastaza-Marañon foreland basin in Peru. We find that peatlands cover 35 600 ± 2133 km 2 and contain 3.14 (0.44–8.15) Pg C. Variation in peat thickness and bulk density are the most important sources of uncertainty in these values. One particular ecosystem type, peatland pole forest, is found to be the most carbon-dense ecosystem yet identified in Amazonia (1391 ± 710 Mg C ha −1 ). The novel approach of combining optical and radar remote sensing with above- and below-groun...
    Print ISSN: 1748-9318
    Electronic ISSN: 1748-9326
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-12-09
    Description: A number of commercially available art protection products have been compared and assessed for their suitability as UV blocking filters in the application of “visible light” photocatalytic research. Many groups claiming visible light photocatalytic success employ filters to block out stray UV radiation in order to justify that their photocatalysts are indeed visible light photocatalysts and not UV light photocatalysts. These filters come in varying degrees of ability and price and many authors fail to correctly characterise their filters in individual papers. The use of effective filters to prevent both false positive and false negative results is important to maintain scientific rigor and create accurate understanding of the subject. The optimum UV filter would have the highest UV blocking properties (
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-12-19
    Description: We introduce a simplified version of the soccer ball model (SBM) developed by Niedermeier et al (2014 Geophys. Res. Lett. 41 [http://dx.doi.org/10.1002/2013GL058684] 736–741 ) into the Community Atmospheric Model version 5 (CAM5). It is the first time that SBM is used in an atmospheric model to parameterize the heterogeneous ice nucleation. The SBM, which was simplified for its suitable application in atmospheric models, uses the classical nucleation theory to describe the immersion/condensation freezing by dust in the mixed-phase cloud regime. Uncertain parameters (mean contact angle, standard deviation of contact angle probability distribution, and number of surface sites) in the SBM are constrained by fitting them to recent natural dust (Saharan dust) datasets. With the SBM in CAM5, we investigate the sensitivity of modeled cloud properties to the SBM parameters, and find significant seasonal and regional differences in the sensitivity among the...
    Print ISSN: 1748-9318
    Electronic ISSN: 1748-9326
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2014-12-19
    Description: Despite a large body of legislation, high nutrient loads are still emitted in European inland waters. In the present study we evaluate a set of alternative scenarios aiming at reducing nitrogen and phosphorus emissions from anthropogenic activities to all European Seas. In particular, we tested the full implementation of the European Urban Waste Water Directive, which controls emissions from point source. In addition, we associated the full implementation of this Directive with a ban of phosphorus-based laundry detergents. Then we tested two human diet scenarios and their impacts on nutrient emissions. We also developed a scenario based on an optimal use of organic manure. The impacts of all our scenarios were evaluated using a statistical model of nitrogen and phosphorus fate (GREEN) linked to an agro-economic model (CAPRI). We show that the ban of phosphorus-based laundry detergents coupled with the full implementation of the Urban Waste Water Directive is the most effective ap...
    Print ISSN: 1748-9318
    Electronic ISSN: 1748-9326
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2014-12-19
    Description: Description unavailable
    Print ISSN: 1748-9318
    Electronic ISSN: 1748-9326
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2014-12-19
    Description: In the Alberta oil sands region, insufficient knowledge of pre-disturbance reference conditions has undermined the ability of the Regional Aquatics Monitoring Program (RAMP) to detect pollution of the Athabasca River, because sampling began three decades after the industry started and the river naturally erodes oil-bearing strata. Here, we apply a novel approach to characterize pre-industrial reference metal concentrations in river sediment downstream of Alberta oil sands development by analyzing metal concentrations in sediments deposited in floodplain lakes of the Athabasca Delta during 1700–1916, when they were strongly influenced by Athabasca River floodwaters. We compared results to metal concentrations in surficial bottom sediments sampled by RAMP (2010–2013) at downstream sites of the Athabasca River and distributaries. When normalized to lithium content, concentrations of vanadium (a metal of concern in the oil sands region) and other priority pollutants (Be, Cd, Cr, Cu, ...
    Print ISSN: 1748-9318
    Electronic ISSN: 1748-9326
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2014-12-19
    Description: Amazon forests represent nearly half of all tropical vegetation biomass and, through photosynthesis and respiration, annually process more than twice the amount of estimated carbon (CO 2 ) from fossil fuel emissions. Yet the seasonality of Amazon canopy cover, and the extent to which seasonal fluctuations in water availability and photosynthetically available radiation influence these processes, is still poorly understood. Implementing six remotely sensed data sets spanning nine years (2003–2011), with reported field and flux tower data, we show that southern equatorial Amazon forests exhibit a distinctive seasonal signal. Seasonal timing of water availability, canopy biomass growth and net leaf flush are asynchronous in regions with short dry seasons and become more synchronous across a west-to-east longitudinal moisture gradient of increasing dry season. Forest cover is responsive to seasonal disparities in both water and solar radiation availability, temporally adjust...
    Print ISSN: 1748-9318
    Electronic ISSN: 1748-9326
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2014-12-19
    Description: Estimates of global thunderstorm activity have been made predominately by direct measurements of lightning discharges around the globe, either by optical measurements from satellites, or using ground-based radio antennas. In this paper we propose a new methodology in which thunderstorm clusters are constructed based on the lightning strokes detected by the World Wide Lightning Location Network (WWLLN) in the very low frequency range. We find that even with low lightning detection efficiency on a global scale, the spatial and temporal distribution of global thunderstorm cells is well reproduced. This is validated by comparing the global diurnal variations of the thunderstorm cells, and the currents produced by these storms, with the well-known Carnegie Curve, which represents the mean diurnal variability of the global atmospheric electric circuit, driven by thunderstorm activity. While the Carnegie Curve agrees well with our diurnal thunderstorm cluster variations, there is little...
    Print ISSN: 1748-9318
    Electronic ISSN: 1748-9326
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2014-12-19
    Description: Climate change might impact crop yields considerably and anticipated transformations of agricultural systems are needed in the coming decades to sustain affordable food provision. However, decision-making on transformational shifts in agricultural systems is plagued by uncertainties concerning the nature and geography of climate change, its impacts, and adequate responses. Locking agricultural systems into inadequate transformations costly to adjust is a significant risk and this acts as an incentive to delay action. It is crucial to gain insight into how much transformation is required from agricultural systems, how robust such strategies are, and how we can defuse the associated challenge for decision-making. While implementing a definition related to large changes in resource use into a global impact assessment modelling framework, we find transformational adaptations to be required of agricultural systems in most regions by 2050s in order to cope with climate change. However,...
    Print ISSN: 1748-9318
    Electronic ISSN: 1748-9326
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2014-12-19
    Description: Subgrid-scale variability is one of the main reasons why parameterizations are needed in large-scale models. Although some parameterizations started to address the issue of subgrid variability by introducing a subgrid probability distribution function for relevant quantities, the spatial structure has been typically ignored and thus the subgrid-scale interactions cannot be accounted for physically. Here we present a new statistical-physics-like approach whereby the spatial autocorrelation function can be used to physically capture the net effects of subgrid cloud interaction with radiation. The new approach is able to faithfully reproduce the Monte Carlo 3D simulation results with several orders less computational cost, allowing for more realistic representation of cloud radiation interactions in large-scale models.
    Print ISSN: 1748-9318
    Electronic ISSN: 1748-9326
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2014-12-09
    Description: Unprecedented wet conditions are reported in the 2014 summer (December–March) in South-western Amazon, with rainfall about 100% above normal. Discharge in the Madeira River (the main southern Amazon tributary) has been 74% higher than normal (58 000 m 3 s −1 ) at Porto Velho and 380% (25 000 m 3 s −1 ) at Rurrenabaque, at the exit of the Andes in summer, while levels of the Rio Negro at Manaus were 29.47 m in June 2014, corresponding to the fifth highest record during the 113 years record of the Rio Negro. While previous floods in Amazonia have been related to La Niña and/or warmer than normal tropical South Atlantic, the 2014 rainfall and flood anomalies are associated with warm condition in the western Pacific-Indian Ocean and with an exceptionally warm Subtropical South Atlantic. Our results suggest that the tropical and subtropical South Atlantic SST gradient is a main driver for moisture transport from the Atlantic toward south-western A...
    Print ISSN: 1748-9318
    Electronic ISSN: 1748-9326
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2014-12-09
    Description: Correcting biases in atmospheric variables prior to impact studies or dynamical downscaling can lead to new biases as dynamical consistency between the ‘corrected’ fields is not maintained. Use of these bias corrected fields for subsequent impact studies and dynamical downscaling provides input conditions that do not appropriately represent intervariable relationships in atmospheric fields. Here we investigate the consequences of the lack of dynamical consistency in bias correction using a measure of model consistency—the potential vorticity (PV). This paper presents an assessment of the biases present in PV using two alternative correction techniques—an approach where bias correction is performed individually on each atmospheric variable, thereby ignoring the physical relationships that exists between the multiple variables that are corrected, and a second approach where bias correction is performed directly on the PV field, thereby keeping the system dynamically coherent throug...
    Print ISSN: 1748-9318
    Electronic ISSN: 1748-9326
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2014-12-09
    Description: Very large-fires (VLFs) have widespread impacts on ecosystems, air quality, fire suppression resources, and in many regions account for a majority of total area burned. Empirical generalized linear models of the largest fires (〉5000 ha) across the contiguous United States (US) were developed at ∼60 km spatial and weekly temporal resolutions using solely atmospheric predictors. Climate−fire relationships on interannual timescales were evident, with wetter conditions than normal in the previous growing season enhancing VLFs probability in rangeland systems and with concurrent long-term drought enhancing VLFs probability in forested systems. Information at sub-seasonal timescales further refined these relationships, with short-term fire weather being a significant predictor in rangelands and fire danger indices linked to dead fuel moisture being a significant predictor in forested lands. Models demonstrated agreement in capturing the observed spatial and temporal variability incl...
    Print ISSN: 1748-9318
    Electronic ISSN: 1748-9326
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2014-12-09
    Description: The IPCC Guidelines propose 3 Tier levels for greenhouse gas monitoring within the forest land category with a hierarchical order in terms of accuracy, data requirements and complexity. Due to missing data and/or capacities, many developing countries, potentially interested in the reducing emissions from deforestation and forest degradation scheme, have to rely on Tier 1 default values with highest uncertainties. A possible way to increase the credibility of uncertain estimates is to apply a conservative approach, for which standard statistical information is needed. However, such information is currently not available for the IPCC values. In our study we combine a recent global forest mask, an ecological zoning map and the pan-tropical AGB datasets of Saatchi and Baccini to derive mean forest AGB values per ecological zone and continent as well as their corresponding confidence intervals. Such analysis can be considered transparent as the datasets/methodologies are well document...
    Print ISSN: 1748-9318
    Electronic ISSN: 1748-9326
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2014-12-09
    Description: In permafrost soils, ‘excess ice’, also referred to as ground ice, exists in amounts exceeding soil porosity in forms such as ice lenses and wedges. Here, we incorporate a simple representation of excess ice in the Community Land Model (CLM4.5) to investigate how excess ice affects projected permafrost thaw and associated hydrologic responses. We initialize spatially explicit excess ice obtained from the Circum-Arctic Map of Permafrost and Ground-Ice Conditions. The excess ice in the model acts to slightly reduce projected soil warming by about 0.35 °C by 2100 in a high greenhouse gas emissions scenario. The presence of excess ice slows permafrost thaw at a given location with about a 10 year delay in permafrost thaw at 3 m depth at most high excess ice locations. The soil moisture response to excess ice melt is transient and depends largely on the timing of thaw with wetter/saturated soil moisture conditions persisting slightly longer due to delayed post-thaw drainage. Based on ...
    Print ISSN: 1748-9318
    Electronic ISSN: 1748-9326
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2014-12-09
    Description: There is increasing concern about water constraints limiting oil and gas production using hydraulic fracturing (HF) in shale plays, particularly in semiarid regions and during droughts. Here we evaluate HF vulnerability by comparing HF water demand with supply in the semiarid Texas Eagle Ford play, the largest shale oil producer globally. Current HF water demand (18 billion gallons, bgal; 68 billion liters, bL in 2013) equates to ∼16% of total water consumption in the play area. Projected HF water demand of ∼330 bgal with ∼62 000 additional wells over the next 20 years equates to ∼10% of historic groundwater depletion from regional irrigation. Estimated potential freshwater supplies include ∼1000 bgal over 20 yr from recharge and ∼10 000 bgal from aquifer storage, with land-owner lease agreements often stipulating purchase of freshwater. However, pumpage has resulted in excessive drawdown locally with estimated declines of ∼100–200 ft in ∼6% of the western play area since HF bega...
    Print ISSN: 1748-9318
    Electronic ISSN: 1748-9326
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2014-11-29
    Description: A nitrogen (N) budget for Denmark has been developed for the years 1990 to 2010, describing the inputs and outputs at the national scale and the internal flows between relevant sectors of the economy. Satisfactorily closing the N budgets for some sectors of the economy was not possible, due to missing or contradictory information. The budgets were nevertheless considered sufficiently reliable to quantify the major flows. Agriculture was responsible for the majority of inputs, though fisheries and energy generation also made significant contributions. Agriculture was the main source of N input to the aquatic environment, whereas agriculture, energy generation and transport all contributed to emissions of reactive N gases to the atmosphere. Significant reductions in inputs of reactive N have been achieved during the 20 years, mainly by restricting the use of N for crop production and improving livestock feeding. This reduction has helped reduce nitrate leaching by about half. Measu...
    Print ISSN: 1748-9318
    Electronic ISSN: 1748-9326
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2014-12-01
    Description: Disordered intermolecular interaction carbon nitride precursor prepared by water-assisted grinding of dicyandiamide was used for synthesis of g-C3N4. The final sample possesses much looser structure and provides a broadening optical window for effective light harvesting and charge separation efficiency, which exhibits significantly improved H2 evolution by photocatalytic water splitting. The bottom-up mechanochemistry method opens new vistas towards the potential applications of weak interactions in the photocatalysis field and may also stimulate novel ideas completely different from traditional ones for the design and optimization of photocatalysts.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2014-12-03
    Description: The 30-year normalized-difference vegetation index (NDVI) time series from AVHRR/MODIS satellite sensors was used in this study to assess the regional vegetation dynamic changes in the Tao River Basin, which cuts across the Eastern Tibetan Plateau (ETP) and the Southwestern Loess Plateau (SLP). First, principal component and correlation analyses were carried out to determine the key climatic variables driving ecological change in the region. Then, regression models were tested to correlate NDVI with the selected climatic variables to determine their predictive power. Finally, Sen’s slope method was used to determine how terrestrial vegetation has responded to regional climate change in the region. The results indicated an average winter season NDVI value of 0.14 in the ETP but only 0.04 in the SLP. Primarily driven by increasing temperature, vegetation growth has generally been enhanced since 1981; spring NDVI increased by 0.03 every 10 years in the ETP and 0.02 in the SLP. Furth...
    Print ISSN: 1748-9318
    Electronic ISSN: 1748-9326
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2014-12-03
    Description: Ammonia emissions from livestock production can have negative impacts on nearby protected sites and ecosystems that are sensitive to eutrophication and acidification. Trees are effective scavengers of both gaseous and particulate pollutants from the atmosphere making tree belts potentially effective landscape features to support strategies aiming to reduce ammonia impacts. This research used the MODDAS-THETIS a coupled turbulence and deposition turbulence model, to examine the relationships between tree canopy structure and ammonia capture for three source types—animal housing, slurry lagoon, and livestock under a tree canopy. By altering the canopy length, leaf area index, leaf area density, and height of the canopy in the model the capture efficiencies varied substantially. A maximum of 27% of the emitted ammonia was captured by tree canopy for the animal housing source, for the slurry lagoon the maximum was 19%, while the livestock under trees attained a maximum of 60% recaptu...
    Print ISSN: 1748-9318
    Electronic ISSN: 1748-9326
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2014-12-03
    Description: It is known that carbon dioxide emissions cause the Earth to warm, but no previous study has focused on examining how long it takes to reach maximum warming following a particular CO 2 emission. Using conjoined results of carbon-cycle and physical-climate model intercomparison projects (Taylor et al 2012, Joos et al 2013), we find the median time between an emission and maximum warming is 10.1 years, with a 90% probability range of 6.6–30.7 years. We evaluate uncertainties in timing and amount of warming, partitioning them into three contributing factors: carbon cycle, climate sensitivity and ocean thermal inertia. If uncertainty in any one factor is reduced to zero without reducing uncertainty in the other factors, the majority of overall uncertainty remains. Thus, narrowing uncertainty in century-scale warming depends on narrowing uncertainty in all contributing factors. Our results indicate that benefit from avoided climate damage from avoided CO 2
    Print ISSN: 1748-9318
    Electronic ISSN: 1748-9326
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2012-02-24
    Description: Novel photocatalysts M2YbSbO7 (M=In, Gd, Y) were synthesized by solid state reaction method for the first time. A comparative study on the structural and photocatalytic properties of M2YbSbO7 M2YbSbO7 (M=In, Gd, Y) was reported. The results showed that In2YbSbO7, Gd2YbSbO7, and Y2YbSbO7 crystallized with the pyrochlore-type structure, cubic crystal system and space group Fd3m. For the photocatalytic water splitting reaction, H2 or O2 evolution was observed from pure water with In2YbSbO7, Gd2YbSbO7, or Y2YbSbO7 as the photocatalyst under visible light irradiation. (wavelength>420 nm). Moreover, under visible light irradiation (λ>420 nm), H2 and O2 were also evolved by using In2YbSbO7, Gd2YbSbO7, or Y2YbSbO7 as catalyst from CH3OH/H2O and AgNO3/H2O solutions respectively. The In2YbSbO7 photocatalyst showed the highest activity compared with Gd2YbSbO7 or Y2YbSbO7. At the same time, The Y2YbSbO7 photocatalyst showed higher activity compared with Gd2YbSbO7. The photocatalytic activities were further improved under visible light irradiation with In2YbSbO7, Gd2YbSbO7, or Y2YbSbO7 being loaded by Pt, NiO, or RuO2. The effect of Pt was better than that of NiO or RuO2 for improving the photocatalytic activity of In2YbSbO7, Gd2YbSbO7, or Y2YbSbO7.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2012-03-13
    Description: ZnO nanostructures are synthesized by low-temperature methods, and they possess polycrystalline hexagonal wurtzite structure with preferential c-axial growth. Morphological study by SEM shows the presence of ~30 nm sized spherical-shaped ZnO nanoparticle, the branched flower-like ZnO composed of many nanorods (length: 1.2 to 4.2 μm and diameter: 0.3 to 0.4 μm), and ~50 nm diameter of individual ZnO nanorods. Reduction in photoemission intensity of nanorods infers the decrease in electron-hole recombination rate, which offers better photovoltaic performance. The dye-sensitized solar cell (DSSC) based on ZnO nanorods sensitized with Eosin yellowish dye exhibits a maximum optimal energy conversion efficiency of 0.163% compared to that of nanoparticles and nanoflowers, due to better dye loading and direct conduction pathway for electron transport.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2012-12-25
    Description: Novel photoinitiator systems working under visible radiation were studied. The photoredox pair constructed with dye derivatives of 12H-quinoxalino-[2,3-b][1,4]-benzothiazine (1–3) and 2,4,6-tris(trichloromethyl)-1,3,5-triazine (Tz) were found to be effective initiators for free radical polymerization of trimethylolpropane triacrylate (TMPTA) using VIS light. Photosensitization occurred through electron transfer, which was confirmed by the observation of a radical cation of the studied dyes. The 1•+ was also characterized in cryogenic matrices (mixture of CH2Cl2 and ionic liquid: 1-butyl-3-methylimidazolium hexafluorophosphate ( −)) and its reactivity was investigated by means of pulse radiolysis in solution at room temperature. In a halogenated solvent and in a mixture of CH2Cl2 and  −, the radical cation 1•+ underwent deprotonation to form a neutral radical 1•, which was stable in the second time scale. During photolysis of the 1/Tz photoredox pair in 1-methyl-2-pyrrolidone and monomer, the formation of a neutral radical 1• was not observed.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2012-10-12
    Description: One inherent advantage of thin-film technology is the possibility of using monolithic integration for series interconnection of individual cells within large-area modules. Polycrystalline silicon thin-film solar cells do not rely on transparent conducting oxide layers as the high sheet conductivity of the emitter and BSF layers enables the lateral flow of current from the film to the metal contacts. This paper presents a new method for the fabrication of e-beam evaporated polycrystalline thin-film photovoltaic minimodules on glass. The method involves electrically isolating minicells, by laser scribing, and then forming an isolation layer on each laser scribe. The main advantage of this metallisation is to have a single aluminium evaporation step for the formation of finger and busbar features, as well as for series interconnection.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2012-10-25
    Description: Light emitting diodes (LEDs) have many positive features, such as long life, low power consumption, and high luminous efficacy. Consequently, they are very attractive for use in many applications. Also, the use of LEDs ensures energy savings. Power LEDs have increasingly been used for general lighting via multichip module technology. The output of power LEDs should be controlled to obtain life and illuminance values in catalog. In this study, the effects of different dimming methods are investigated for single-and multichip LEDs. To achieve this aim, pulse width modulation (PWM) and current variation (CV) dimming methods are applied to single and multichip power LEDs during ten stages of dimming. A current-regulated DC source is used for current variation (CV) dimming, and a driver designed by the researcher is used for pulse width modulation (PWM) dimming. Moreover, all of the applications are made for active and passive cooling. Finally, the results are compared.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2012-04-09
    Description: N-type microcrystalline silicon oxide thin films (n-μc-SiOx:H) have been deposited by VHF-PECVD (40 MHz) with reactant gas mixtures of CO2/SiH4 and H2. N-μc-SiOx thin films exhibiting low refractive index value (n600 nm~2), and medium/high conductivity (≧10-9 S/cm) are suitable to be used as an “n-type reflector” in micromorph tandem solar cells. Transmission electron microscopy (TEM) results show that microstructures of n-μc-SiOx:H thin films contain nanocrystalline Si particles, which are randomly embedded in the a-SiOx matrix. This specific microstructure provides n-μc-SiOx:H thin films excellent optoelectronic properties; therefore, n-μc-SiOx:H thin films are appropriate candidates for “n-type reflector” structures in Si tandem solar cells.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2012-04-09
    Description: With current technology, UV filters are essential to ensure long-term dye-sensitized solar cell (DSC) stability. Blocking photons, however, will have an obvious effect on device performance and upon its incident photon-to-current conversion efficiency (IPCE). Filters have been applied to DSC devices with a range of cut-off wavelengths in order to assess how different levels of filtering affect the performance and IPCE of devices made with three different dyes, namely N719, Z907, and N749. It is shown that dyes that extend their IPCE further into the NIR region suffer lesser relative efficiency losses due to UV filtering than dyes with narrower action spectra. Furthermore, the results are encouraging to those working towards the industrialisation of DSC technology. From the results presented it can be estimated that filtering at a level intended to prevent direct band gap excitation of the TiO2 semiconductor should cause a relative drop in cell efficiency of no more than 10% in forward illuminated devices and no more than 2% in reverse illuminated devices.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2012-08-28
    Description: A review of our work on two- and-three component photoinitiator systems is presented. The emphasis is in on visible light polymerization in aqueous media. The systems discussed comprise a synthetic dye as sensitizer and an onium salt as coinitiator, or a dye-amine-onium salt with the amine as coinitiator and the onium salt as an enhancer of the polymerization efficiency. The effect of the composition of the system on the photopolymerization kinetics was analyzed. To this end, the photophysics and photochemistry of the dye under polymerization conditions was explored by means of stationary and time-resolved spectroscopic methods. Different dyes and onium salts were investigated. The action mechanism of the different photoinitiators systems is discussed.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2012-08-29
    Description: The aim of this paper is to investigate the properties and photocatalytic activity of nanostructured TiO2 layers. The glancing angle deposition method with DC sputtering at low temperature was applied for deposition of the layers with various columnar structures. The thin-film structure and surface morphology were analyzed by XRD, SEM, and AFM analyses. The photocatalytic activity of the films was determined by the rate constant of the decomposition of the Acid Orange 7. In dependence on the glancing angle deposition parameters, three types of columnar structures were obtained. The films feature anatase/rutile and/or amorphous structures depending on the film architecture and deposition method. All the films give the evidence of the photocatalytic activity, even those without proved anatase or rutile structure presence. The impact of columnar boundary in perspective of the photocatalytic activity of nanostructured TiO2 layers was discussed as the possible factor supporting the photocatalytic activity.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2012-08-23
    Description: The passivation process is of significant importance to produce high-efficiency black silicon solar cell due to its unique microstructure. The black silicon has been produced by plasma immersion ion implantation (PIII) process. And the Silicon nitride films were deposited by inline plasma-enhanced chemical vapor deposition (PECVD) to be used as the passivation layer for black silicon solar cell. The microstructure and physical properties of silicon nitride films were characterized by scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR), spectroscopic ellipsometry, and the microwave photoconductance decay (μ-PCD) method. With optimizing the PECVD parameters, the conversion efficiency of black silicon solar cell can reach as high as 16.25%.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2012-07-20
    Description: A PV power-generation system with a phase-shift pulse-width modulation (PWM) technique for high step-up voltage applications is proposed. The proposed power-generation system consists of two stages. In the input stage, all power switches of the full-bridge converter with phase-shift technique can be operated with zero-current switching (ZCS) at turn-on or turn-off transition. Hence, the switching losses of the power switches can be reduced. Then, in the DC output stage, a voltage-doubler circuit is used to boost a high dc-link bus voltage. To supply a utility power, a dc/ac inverter is connected to induce a sinusoidal source. In order to draw a maximum power from PV arrays source, a microcontroller is incorporated with the perturbation and observation method to implement maximum power point tracking (MPPT) algorithm and power regulating scheme. In this study, a full load power of 300 W prototype has been built. Experimental results are presented to verify the performance and feasibility of the proposed PV power-generation system.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2012-07-26
    Description: Tin oxide SnO2 films were prepared by RF magnetron sputtering. The effects of oxygen partial pressure percentage on the SnO2 property have been investigated to obtain relatively high-resistivity SnO2 films which could be used as buffer layers to optimize the performance of CdTe/CdS solar cells. The oxygen partial pressure percentage varied in the range of 1%~10%. The results show that the introduction of oxygen would suppress the deposition and growth of SnO2 films. Electrical measurement suggests that the film resistivity decreases with the increase of oxygen pressure. The SnO2 films with resistivity of 232 Ω cm were obtained in pure Ar atmosphere. All SnO2 films fabricated with different oxygen partial pressure percentage have almost the same optical band gap.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2012-07-16
    Description: To comprehend the photocatalytic mechanisms of anatase Ti1-xFexO2 with various concentrations of Fe, this study performed first principles calculations based on density functional theory with Hubbard U on-site correction to evaluate the crystal structure, impurity formation energy, and electronic structure. We adopted the effective Hubbard U values of 8.47 eV for Ti 3d and 6.4 eV for Fe 3d. The calculations show that higher concentrations of Fe are easily formed in anatase TiO2 due to a reduction in the formation energy. The band gap of Fe-doped TiO2 decreases Fe doping level increases as a result of the overlap among the Fe 3d, Ti 3d, and O 2p states, which enhances photocatalytic activity in the visible light region. Additionally, a broadening of the valence band and Fe impurity states within the band gap might also contribute to the photocatalytic activity.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2012-09-14
    Description: Photoresponsive fibers based on poly(acrylamide) (PAA) with methylene blue (MB) dye were prepared. All semicircular fibers show bending towards the direction of the flat surface of the fiber when illuminated. The fibers recover their initial shape when the illumination stops. The fiber is heated upon illumination and cooled to room temperature once the illumination is stopped. The fiber also is sensitive to humidity, showing bending behavior towards the direction of the flat surface of the fiber upon changing the humidity. The mechanical energy of the PAA/MB fiber is approximately 0.6 mN for the bending direction when it is illuminated. A possible mechanism for the bending behavior is as follow: (1) the fiber is heated upon illumination because of the photothermal effect, (2) the fiber loses water molecules, (3) the fiber shrinks; bending towards the direction of the flat surface of the fiber occurs because of a difference in the shrinkage for the flat surface and the other side of the fiber. Finally, we demonstrated that a PP ball (1.5 mg) can be moved by the mechanical energy produced by the changing shape of the fiber upon illumination.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2012-06-20
    Description: The present study aimed to examine the current density-voltage (J-V) characteristics of Al/HfO2/p-Si (MOS) structure at temperatures ranging between 100 and 320 K and to determine the structure’s current transport mechanism. The HfO2 film was coated on a single side of the p-Si (111) crystal using the spin coating method. The J-V measurements of the obtained structure at the temperatures between 100 and 320 K revealed that the current transport mechanism in the structure was compatible with the Schottky emission theory. The Schottky emission theory was also used to calculate the structure’s Schottky barrier heights (ϕB), dielectric constants (εr) and refractive index values of the thin films at each temperature value. The dielectric constant and refractive index values were observed to decrease at decreasing temperatures. The capacitance-voltage (C-V) and conductance-voltage (G/ω-V) characteristics of Al/HfO2/p-Si (MOS) structure was measured in the temperature range of 100–320 K. The values of measured C and G/ω decrease in accumulation and depletion regions with decreasing temperature due to localized Nss at Si/HfO2 interface.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2012-07-10
    Description: Polyaniline/n-type Si heterojunctions solar cell are fabricated by spin coating of soluble dodecylbenzene sulfonic acid (DBSA)-doped polyaniline onto n-type Si substrate. The electrical characterization of the Al/n-type Si/polyaniline/Au (Ag) structure was investigated by using current-voltage (I-V), capacitance-voltage (C-V), and impedance spectroscopy under darkness and illumination. The photovoltaic cell parameters, that is, open-circuit voltage (Voc), short-circuit current density (Jsc), fill factor (FF), and energy conversion efficiency (η) were calculated. The highest Jsc, Voc, and efficiency of these heterojunctions obtained using PANI-DBSA as a window layer (wideband gap) and Au as front contact are 1.8 mA/cm2, 0.436 V, and 0.13%, respectively. From Mott-Schottky plots, it was found that order of charge carrier concentrations is 3.5×1014 and 1.0×1015/cm3 for the heterojunctions using Au as front contact under darknessness and illumination, respectively. Impedance study of this type of solar cell showed that the shunt resistance and series resistance decreased under illumination.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2012-06-14
    Description: A study on the influence of alkaline treatment on the properties of poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT: PSS) film is presented in this paper. The treatment is carried out using ammonia water (AW) solutions with various volumes. We have also examined the performance of organic solar cells (OSCs) with the undoped and AW-doped PEDOT:PSS layers. Results show that the acidity of PEDOT:PSS solution can be significantly reduced by adding the AW solution with the optimized volume ratio ≤9%, v/v, while the AW-doped PEDOT:PSS film shows an improved optical transmission and stabilized conductivity. However, compared to the pristine OSC without adding AW to the whole-extraction layer, the AW-doped OSC shows a slight degradation in the power conversion efficiency (from 2.12% to 2.02%), which has been attributed to the decreased Vo c and FF of devices after the addition of AW.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2012-06-25
    Description: A CaO catalyst was prepared by mild calcination (650°C) of facilely precipitated Ca(OH)2 and compared to an NiO-CaO catalyst obtained from an Ni(OH)2/Ca(OH)2 coprecipitate as a precursor. Both catalysts degraded rhodamine B (RB) effectively when exposed to ultraviolet light but exhibited slower degradation under visible light conditions. Under UV light, CaO was more effective than NiO-CaO, while in visible light, the opposite was observed. A mechanistic study revealed no influence of the specific surface area of the catalysts on RB degradation, no adsorption of RB on the positively charged surfaces of the catalysts, and only incomplete degradation of RB. Consequently, both materials represent nonconventional photocatalysts.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2012-06-25
    Description: This paper presents an assessment for the artificial neural network (ANN) based approach for hourly solar radiation prediction. The Four ANNs topologies were used including a generalized (GRNN), a feed-forward backpropagation (FFNN), a cascade-forward backpropagation (CFNN), and an Elman backpropagation (ELMNN). The three statistical values used to evaluate the efficacy of the neural networks were mean absolute percentage error (MAPE), mean bias error (MBE) and root mean square error (RMSE). Prediction results show that the GRNN exceeds the other proposed methods. The average values of the MAPE, MBE and RMSE using GRNN were 4.9%, 0.29% and 5.75%, respectively. FFNN and CFNN efficacies were acceptable in general, but their predictive value was degraded in poor solar radiation conditions. The average values of the MAPE, MBE and RMSE using the FFNN were 23%, −.09% and 21.9%, respectively, while the average values of the MAPE, MBE and RMSE using CFNN were 22.5%, −19.15% and 21.9%, respectively. ELMNN fared the worst among the proposed methods in predicting hourly solar radiation with average MABE, MBE and RMSE values of 34.5%, −11.1% and 34.35%. The use of the GRNN to predict solar radiation in all climate conditions yielded results that were highly accurate and efficient.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2012-06-04
    Description: This paper presents a solar energy prediction method using artificial neural networks (ANNs). An ANN predicts a clearness index that is used to calculate global and diffuse solar irradiations. The ANN model is based on the feed forward multilayer perception model with four inputs and one output. The inputs are latitude, longitude, day number, and sunshine ratio; the output is the clearness index. Data from 28 weather stations were used in this research, and 23 stations were used to train the network, while 5 stations were used to test the network. In addition, the measured solar irradiations from the sites were used to derive an equation to calculate the diffused solar irradiation, a function of the global solar irradiation and the clearness index. The proposed equation has reduced the mean absolute percentage error (MAPE) in estimating the diffused solar irradiation compared with the conventional equation. Based on the results, the average MAPE, mean bias error and root mean square error for the predicted global solar irradiation are 5.92%, 1.46%, and 7.96%. The MAPE in estimating the diffused solar irradiation is 9.8%. A comparison with previous work was done, and the proposed approach was found to be more efficient and accurate than previous methods.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2012-06-11
    Description: The aim of this work was to evaluate the association of low-level laser therapy (LLLT, 830 nm) and calcitonin in bone repair considering that bone healing remains a challenge to health professionals. Calcitonin has antiosteoclastic action and LLLT is a treatment that uses low-level lasers or light-emitting diodes to alter cellular function. Both are used to improve bone healing. Densitometry is a clinical noninvasive valuable tool used to evaluate bone mineral density (BMD). Sixty male rats were submitted to bone defect with a trephine bur, randomly divided into four groups of 15 animals each: control (C); synthetic salmon calcitonin (Ca); LLLT (La); LLLT combined with calcitonin (LaCa). Animals from Ca and LaCa received 2 UI/Kg synthetic salmon calcitonin intramuscularly on alternate days after surgery. Animals from groups La and LaCa were treated with infrared LLLT (830 nm, 10 mW, 20 J/cm2, 6 s, contact mode). Five animals from each group were euthanized 7, 14, and 21 days after surgery and bone defects were analyzed by densitometry. Statistical analysis showed a significant difference in BMD values in LaCa group at 7 and 21 days (P=0,005). The results of the densitometric study showed that LLLT (830 nm) combined with calcitonin improved bone repair.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2012-04-23
    Description: The influence of pH during hydrolysis of titanium(IV) isopropoxide on the morphological and electronic properties of TiO2 nanoparticles prepared by the sol-gel method is investigated and correlated to the photoelectrochemical parameters of dye-sensitized solar cells (DSCs) based on TiO2 films. Nanoparticles prepared under acid pH exhibit smaller particle size and higher surface area, which result in higher dye loadings and better short-circuit current densities than DSCs based on alkaline TiO2-processed films. On the other hand, the product of charge collection and separation quantum yields in films with TiO2 obtained by alkaline hydrolysis is c.a. 27% higher than for the acid TiO2 films. The combination of acid and alkaline TiO2 nanoparticles as mesoporous layer in DSCs results in a synergic effect with overall efficiencies up to 6.3%, which is better than the results found for devices employing one of the nanoparticles separately. These distinct nanoparticles can be also combined by using the layer-by-layer technique (LbL) to prepare compact TiO2 films applied before the mesoporous layer. DSCs employing photoanodes with 30 TiO2 bilayers have shown efficiencies up to 12% higher than the nontreated photoanode ones. These results can be conveniently used to develop optimized synthetic procedures of TiO2 nanoparticles for several dye-sensitized solar cell applications.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2012-04-23
    Description: CulnS2 thin films were electrochemically deposited onto fluoride-doped tin oxide (FTO) substrate in presence of dodecylbenzene sulphonic acid to adjust pH of the solution and as a suspending agent for the sulfur. Cyclic voltammetry and chronoamperometry were carried out to determine the optimum pH. The composition, crystallinity, and optical properties of the compounds synthesized were studied by energy dispersive X-ray (EDX), X-ray diffraction, and UV-Visible spectra. It was found that the increasing of pH shifts the electrodeposited voltage toward more negative and lowers the deposition current. It was concluded that CuInS2 with atomic stoichiometric ratio was prepared at pH equal to 1.5 and 150 ml of 0.1 M sodium thiosulphate, 5 ml of 0.1 M indium chloride, and 5 ml of 0.1 M cupper chloride. The energy gaps were calculated to be 1.95 and 2.2 eV for CuInS2 prepared at 1.5 and 2.5 of pH, respectively. It was found that Jsc, Voc, and η are 1.02×10−4 A/cm2, 0.52 V, and 1.3×10−2%, respectively, for FTO/CuInS2/ZnO/FTO heterojunction solar cell.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2012-06-05
    Description: The effect of solvents on the absorption and emission spectra of 1,4-bis(5-phenyl-2-oxazolyl)benzene (POPOP) laser dye has been studied in various solvents at 298 K. A bathochromic shift was observed in absorption and fluorescence spectra upon increase of solvent polarity, which indicates that this transition is π-π*. The ground and excited state dipole moments were calculated as 2.23 and 6.34 Debye, respectively. The dye solution in MeOH, n-heptane, and methyl isobutyl ketone gives laser emission in the blue region upon excitation by a 337.1 nm nitrogen pulse; the gain coefficient and emission cross section as well as normalized photostability have been determined. Excitation energy transfer from POPOP to rhodamine B and fluorescine was studied to improve the laser emission from these dyes. Such an energy transfer dye laser system (ETDL) obeys a long range columbic energy transfer mechanism with a critical transfer distance, R0, of 25 and 33 Å and kq equal to 10.4×1012 and 26.2×1012 M−1 s −1 for the POPOP/RB and POPOP/fluorescine pair, respectively. The POPOP dye is highly photostable in polar protic and polar aprotic solvents, while it displays photodecomposition in chloromethane solvent via formation of a contact ion pair. The photochemical quantum yield and rate of photodecomposition depend on the electron affinity of solvent.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2012-06-11
    Description: K-Ta mixed oxides photocatalysts have been prepared by impregnation followed by calcination. The influence of the reaction temperature (450°C–900°C) on the phase formation, crystal morphology, and photocatalytic activity in hydrogen generation of the produced materials was investigated. The detailed analysis has revealed that all products exhibit high crystallinity and irregular structure. Moreover, two different crystal structures of potassium tantalates such as KTaO3 and K2Ta4O11 were obtained. It was also found that the sample composed of KTaO3 and traces of unreacted Ta2O5 (annealed at 600°C) exhibits the highest activity in the reaction of photocatalytic hydrogen generation. The crystallographic phases, optical and vibronic properties were examined by X-ray diffraction (XRD) and diffuse reflectance (DR) UV-vis and resonance Raman spectroscopic methods, respectively. Morphology and chemical composition of the produced samples were studied using a high-resolution transmission electron microscope (HR-TEM) and an energy dispersive X-ray spectrometer (EDX) as its mode.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2012-04-24
    Description: The metallization grid pattern is one of the most important design elements for high-efficiency solar cells. This paper presents a model based on the unit cell approach to accurately quantify the power losses of a specialized interdigitated metallization scheme for polycrystalline silicon thin-film solar cells on glass superstrates. The sum of the power losses can be minimized to produce an optimized grid-pattern design for a cell with specific parameters. The model is simulated with the standard parameters of a polycrystalline silicon solar cell, and areas for efficiency improvements are identified, namely, a reduction in emitter finger widths and a shift toward series-interconnected, high-voltage modules with very small cell sizes. Using the model to optimize future grid-pattern designs, higher cell and module efficiencies of such devices can be achieved.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2012-05-08
    Description: In photopolymerization systems, “shadow cure” may be defined as polymerization which extends into regions which are not illuminated by the incident initiating light source. The objective of this study is to evaluate the use of fluorescent additives for polymerization in masked regions that are unilluminated by the incident initiating light. Two different fluorescent dyes are investigated: fluorescein (FL) and eosin Y spirit soluble (EYss). A systematic series of studies was performed to characterize the effects of fluorescence intensity, the incident light intensity, and the presence of a diphenyl iodonium salt on the observed degree of shadow cure. It was concluded that shadow cure may be enhanced if one or more fluorescent compounds emit fluorescent light at wavelengths absorbed by the dye in a two- or three-component photoinitiator system. The addition of DPI to the two-component systems containing MDEA and FL or EYss led to a significant enhancement in the observed shadow cure. This result was attributed to the fact that DPI will increase both the number of active centers and the mobility of the active centers as a result of the electron transfer reactions in which it participates.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2012-05-08
    Description: A solution-processed organic ultraviolet photodetector (UV-PD) is introduced. The active layer of the UV-PD consists of poly(9,9-dioctyl fluorenyl-2,7–yleneethynylene) (PFE) and N,N′-bis-n-butyl-1,4,5,8- naphthalenediimide (BNDI) with a weight ratio of 3 : 1 in chloroform. The effect of thermal annealing on the device properties was investigated from room temperature to 80°C. The full device structure of ITO/PEDOT:PSS/PFE:BNDI (3 : 1)/Al gave responsivity of 410 mA/W at −4 V under 1 mW/cm2 UV light at 368 nm when 60°C of annealing temperature was used during its preparation. The devices that were annealed over the crystallization temperature of PFE showed a charge transfer resistance increase and a mobility decrease.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2012-05-15
    Description: The improved performance for hydrogenated microcrystalline silicon-germanium (μc-Si1−xGex:H, x~0.1) p-i-n single solar cells with hydrogenated microcrystalline silicon (μc-Si:H) field-enhancement layers (FELs) is demonstrated for the first time. The fill factor (FF) and conversion efficiency (η) increase by about 19% and 28% when the thickness of the μc-Si FEL is increased from 0 to 200 nm, it is attributed to the longer hole life-time and enhanced electric field in the μc-Si0.9Ge0.1:H layer. Therefore, we can successfully manufacture high-performance μc-SiGe:H solar cells with the thickness of absorbers smaller than 1 μm by conducting FELs. Moreover, the simulation tool is used to simulate the current-voltage (J-V) curve, thus we can investigate the carrier transport in the absorber of μc-Si0.9Ge0.1:H solar cells with different EFLs.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2012-05-24
    Description: The effect of coadsorption with deoxycholic acid (DCA) on the performance of dye-sensitized solar cell based on perylene monoimide derivative (PCA) as sensitizer and liquid electrolyte had been investigated. The current-voltage characteristics under illumination and incident photon to current efficiency (IPCE) spectra of the DSSCs showed that the coadsorption of DCA with the PCA dye results in a significant improvement in short circuit photocurrent and slight increase in the open circuit photovoltage, which lead to an overall power conversion efficiency. The enhancement of short circuit current was attributed to the increased electron injection efficiency from the excited state of PCA into the conduction band of TiO2 and charge collection efficiency. The current-voltage characteristics in dark indicates a positive shift in the conduction which also supports the enhancement in the photocurrent. The coadsorption with DCA suppressed charge recombination as indicated from the electrochemical impedance spectra and thus improved the open circuit photovoltage.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2012-03-02
    Description: This study investigates the key issues in the fabrication of CdTe solar cells on metallic substrates, their trends, and characteristics as well as effects on solar cell performance. Previous research works are reviewed while the successes, potentials, and problems of such technology are highlighted. Flexible solar cells offer several advantages in terms of production, cost, and application over glass-based types. Of all the metals studied as substrates for CdTe solar cells, molybdenum appears the most favorable candidate, while close spaced sublimation (CSS), electrodeposition (ED), magnetic sputtering (MS), and high vacuum thermal evaporation (HVE) have been found to be most common deposition technologies used for CdTe on metal foils. The advantages of these techniques include large grain size (CSS), ease of constituent control (ED), high material incorporation (MS), and low temperature process (MS, HVE, ED). These invert-structured thin film CdTe solar cells, like their superstrate counterparts, suffer from problems of poor ohmic contact at the back electrode. Thus similar strategies are applied to minimize this problem. Despite the challenges faced by flexible structures, efficiencies of up to 13.8% and 7.8% have been achieved in superstrate and substrate cell, respectively. Based on these analyses, new strategies have been proposed for obtaining cheaper, more efficient, and viable flexible CdTe solar cells of the future.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2012-03-01
    Description: A microwave-assisted hydrothermal method was used to synthesize ZnO and TiO2 nanostructures. The experimental results show that the method resulted in crystalline monodispersed ZnO nanorods that have pointed tips with hexagonal crystal phase. TiO2 nanotubes were also formed with minimum bundles. The mechanism for the formation of the tubes was validated by HRTEM results. The optical properties of both ZnO and TiO2 nanostructures showed characteristics of strong quantum confinement regime. The photoluminescence spectrum of TiO2 nanotubes shows good improvement from previously reported data.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2012-03-01
    Description: Proposed in this paper is the development of a photovoltaic module simulator, one capable of running an output characteristic simulation under normal operation according to various electrical parameters specified and exhibiting multiple advantages of being low cost, small sized, and easy to implement. In comparison with commercial simulation tools, Pspice and Solar Pro, the simulator developed demonstrates a comparable I-V as well as a P-V output characteristic curve. In addition, a series-parallel configuration of individual modules constitutes a photovoltaic module array, which turns into a photovoltaic power generation system with an integrated power conditioner.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2012-03-08
    Description: The paper analyses extremum-seeking control technique for maximum power point tracking circuits in PV systems. Specifically, the paper describes and analyses the sinusoidal extremum-seeking control considering stability issues by means a Lyapunov function. Based on this technique, a new architecture of MPPT for PV generation is proposed. In order to assess the proposed solution, the paper provides some experimental measurements in a 100 W prototype which corroborate the effectiveness of the approach.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2012-03-09
    Description: The compound parabolic concentrator (CPC) is the most efficient reflective geometry to collect light to an exit port. Anyway, to allow its actual use in solar plants or photovoltaic concentration systems, a tradeoff between system efficiency and cost reduction, the two key issues for sunlight exploitation, must be found. In this work, we analyze various methods to model an approximated CPC aimed to be simpler and more cost-effective than the ideal one, as well as to preserve the system efficiency. The manufacturing easiness arises from the use of truncated conic surfaces only, which can be realized by cheap machining techniques. We compare different configurations on the basis of their collection efficiency, evaluated by means of nonsequential ray-tracing software. Moreover, due to the fact that some configurations are beam dependent and for a closer approximation of a real case, the input beam is simulated as nonsymmetric, with a nonconstant irradiance on the CPC internal surface.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2012-03-06
    Description: The use of renewable resources for power supply in family homes has passed the stage of utopia to became a reality, with limits set by technical and economic parameters. This paper presents the results of a project originated from the initiative of a middle-class family to achieve energy independence at home. The starting point was the concept of home with “zero energy” in which the total energy available is equal to the energy consumed. The solution devised to meet the energy demand of the residence in question is a PV wind diesel hybrid system connected to the grid, with the possibility of energy storage in batteries and in the form of heating water and the environment of the house. As a restriction, the family requested that the system would represent little impact to the lifestyle and landscape. This paper aims to assess the consequences of reductions in the cost of the PV modules on the optimization space, as conceived by the software Homer. The results show that for this system, a 50% reduction in the cost of PV modules allows all viable solutions including PV modules.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2014-01-13
    Description: Cu2+ ions were successfully loaded into TiO2 nanotubes using wet impregnation technique in 0.6 M Cu(NO3)2·3H2O solution. The effect of reaction temperatures on the nanotube’s morphology, crystal structure, and their photocatalytic reduction of Pb(II) ions were investigated. The high reaction temperature could improve the crystallinity of anatase phase. However, irregular and corrugated nanotubular surface covered with Cu precipitates was observed. In the present study, incorporation of an optimum content of Cu element (1.3 at%) into TiO2 nanotubes at room temperature has an important function in enhancing the photocatalytic reduction of Pb(II) ions in alkaline condition (pH 11) due to the higher synergistic effects of photocatalytic reaction under UV illumination. The optimum concentration of Pb(II) ions for effective Pb(II) ions removal performance was found in between 20 and 60 ppm.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2014-01-13
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2014-01-20
    Description: The photovoltaic energy can become competitive by the conjugate effort of the researchers and manufacturers. Increasing the amount of electricity supplied by photovoltaic panels is a challenge. The paper briefly presents some methods which can lead to achieving this goal. A simple method to increase the quantity of the electrical energy delivered by the photovoltaic panels is also presented in this paper alongside the experimental setup and the software created in LabVIEW for monitoring the output of the panels.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2014-01-23
    Description: One of the key issues of thin-film silicon solar cells is their limited optical absorptance due to the thin absorber layer and the low absorption coefficient for near-infrared wavelengths. Texturing of one or more interfaces in the layered structure of these cells is an important technique to scatter light and enhance the optical pathlength. This in turn enhances the optical absorption of the solar radiation in the absorber layer and improves the solar cell efficiency. In this paper we investigate the effects of textured glass superstrate surfaces on the optical absorptance of intrinsic a-Si:H films and a-Si:H p-i-n thin-film solar cell precursors deposited onto them. The silicon-facing surface of the glass sheets was textured with the aluminium-induced glass texturing method (AIT method). Absorption in both intrinsic silicon films and solar cell precursor structures is found to increase strongly due to the textured glass superstrate. The increased absorption due to the AIT glass opens up the possibility to reduce the absorber layer thickness of a-Si:H solar cells.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2014-01-24
    Description: We have prepared Ag back electrode by screen printing technique and developed MOCVD ZnO/screen printed Ag back reflector for flexible thin film silicon solar cell application. A discontinuity and poor contact interface between the MOCVD ZnO and screen printed Ag layers caused poor open circuit voltage () and low fill factor (FF); however, an insertion of a thin sputtered ZnO layer at the interface could solve this problem. The n type hydrogenated amorphous silicon (a-Si:H) film is preferable for the deposition on the surface of MOCVD ZnO film rather than the microcrystalline film due to its less sensitivity to textured surface, and this allowed an improvement in the FF. The n-i-p flexible amorphous silicon solar cell using the MOCVD ZnO/screen printed Ag back reflector showed an initial efficiency of 6.2% with  V,  mA/cm2, and FF = 0.58 (1 cm2). The identical quantum efficiency and comparable performance to the cells using conventional sputtered Ag back electrode have verified the potential of the MOCVD ZnO/screen printed Ag back reflector and possible opportunity to use the screen printed Ag thick film for flexible thin film silicon solar cells.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2014-01-24
    Description: The paper illustrates an adaptive approach based on different topologies of artificial neural networks (ANNs) for the power energy output forecasting of photovoltaic (PV) modules. The analysis of the PV module’s power output needed detailed local climate data, which was collected by a dedicated weather monitoring system. The Department of Energy, Information Engineering, and Mathematical Models of the University of Palermo (Italy) has built up a weather monitoring system that worked together with a data acquisition system. The power output forecast is obtained using three different types of ANNs: a one hidden layer Multilayer perceptron (MLP), a recursive neural network (RNN), and a gamma memory (GM) trained with the back propagation. In order to investigate the influence of climate variability on the electricity production, the ANNs were trained using weather data (air temperature, solar irradiance, and wind speed) along with historical power output data available for the two test modules. The model validation was performed by comparing model predictions with power output data that were not used for the network's training. The results obtained bear out the suitability of the adopted methodology for the short-term power output forecasting problem and identified the best topology.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2014-03-13
    Description: The oriented (002) ZnO films were grown on a- and c-face sapphire by pulsed laser deposition. The X-ray diffraction analysis revealed that the oriented (002) ZnO films were epitaxially grown on the substrate successfully. The sample on a-face sapphire had higher crystal quality. However, the photocatalytic activity for Rhodamine B degradation of ZnO film on c-face sapphire was higher than that on a-face sapphire. The Raman spectrum and XPS analysis suggested that the sample on a-face sapphire had higher concentration of defects. The result of the contact angle measurement revealed that the sample on c-face sapphire had higher surface energy. And the investigation of the surface conductance implied that the higher light conductance was helpful for the photocatalytic activity.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2014-03-13
    Description: This work is aimed to design and evaluate different achromatic Fresnel lens solutions capable of operating as concentrators aimed at photovoltaic cells systems. Throughout this study, the theoretical parametric design of the achromatic lens will be shown together with a series of simulations to verify the performance of each lens topology. The results will be compared with a standard Fresnel lens to ascertain the validity and effectiveness of the obtained design. Finally, a novel kind of hybrid lens is proposed, which combines the advantages of each type of lens (standard and Fresnel) according to the optimal operating region of each design. Efficiency and concentration ratios of each particular lens are shown, regarding lens dimension, light’s incidence angle, or wavelength. Through this innovative achromatic design concentration ratios above 1000 suns, which hardly reach standard Fresnel lenses. Furthermore chromatic dispersion is minimized and the efficiency rate is over 85% of efficiency for a wide spectral range (from 350 nm to 1100 nm).
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2014-03-14
    Description: Design and utilization of a Virtual Photovoltaic Systems Laboratory for undergraduate curriculum are introduced in this paper. The laboratory introduced in this study is developed to teach students the basics and design steps of photovoltaic solar energy systems in a virtual environment before entering the field. The users of the proposed virtual lab will be able to determine the sizing by selecting related parameters of the photovoltaic system to meet DC and AC loading conditions. Besides, the user will be able to analyze the effect of changing solar irradiation and temperature levels on the operating characteristics of the photovoltaic systems. Common DC bus concept and AC loading conditions are also included in the system by utilizing a permanent magnet DC motor and an RLC load as DC and AC loading examples, respectively. The proposed Virtual Photovoltaic Systems Laboratory is developed in Matlab/Simulink GUI environment. The proposed virtual lab has been used in Power Systems Lab in the Department of Electrical and Electronics Engineering at Karadeniz Technical University as a part of undergraduate curriculum. A survey on the students who took the lab has been carried out and responses are included in this paper.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2014-05-01
    Description: A new multiphase hybrid boost converter, with wide conversion ratio as a solution for photovoltaic energy system, is presented in this paper. To ensure that all the phases of the converter operate at the same switching frequency we use interleaving topology. The proposed converter can be used as an interface between the PV system and the DC load/inverter. This multiphase converter has the advantage of reduced value and physical size of the input and output capacitor as well as the effort for the inductors. To validate the operation of the converter we provide the analyses and the simulation results of the converter.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2014-05-05
    Description: 1.5 wt% zinc fluoride (ZnF2) was mixed with zinc oxide powder to form the F-doped ZnO (FZO) composition. At first, the FZO thin films were deposited at room temperature and Torr in pure Ar under different deposition power. Hall measurements of the as-deposited FZO thin films were investigated, and then the electrical properties were used to find the deposition power causing the FZO thin films with minimum resistance. The FZO thin films with minimum resistance were further treated by H2 plasma and then found their variations in the electrical properties by Hall measurements. Hydrochloric (HCl) acid solutions with different concentrations (0.1%, 0.2%, and 0.5%) were used to etch the surfaces of the FZO thin films. Finally, the as-deposited, HCl-etched as-deposited, and HCl-etched H2-plasma-treated FZO thin films were used as transparent electrodes to fabricate the p-i-n α-Si:H thin film solar cells and their characteristics were compared in this study. We would show that using H2-plasma-treated and HCl-etched FZO thin films as transparent electrodes would improve the efficiency of the fabricated thin film solar cells.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2014-05-06
    Description: This paper addresses recent developments in the design, evaluation, and characterization of flexible, uniform polyethylene-TiO2 (PE-TiO2), TiO2-In2O3, and TiO2-polyester able to inactivate bacteria under band gap irradiation and in the dark. The preparation of these bactericide films by sol-gel or by sputtering techniques is reported. The E. coli loss of viability kinetics under low intensity and actinic light is evaluated. Evidence for kinetics of the major steps leading to bacterial disinfection in the dark is presented by electron microscopy (TEM). The film surface properties were characterized by surface techniques like EM, DRS, XPS, ATR-IR, CA, AFM, XRD, and XRF. The surface characterization allows the correlation of the film surface morphology with the self-disinfection performance. The events taking place at the cell wall leading to bacterial inactivation when in contact with the TiO2 films are presented and the steps related to the bond stretching preceding bond scission identified by ATR-IR.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2014-05-06
    Description: A number of important but little-investigated problems connected with III-V/Ge heterostructure in the GaInP/GaInAs/Ge multijunction solar cells grown by MOVPE are considered in the paper. The opportunity for successfully applying the combination of reflectance and reflectance anisotropy spectroscopy in situ methods for investigating III-V structure growth on a Ge substrate has been demonstrated. Photovoltaic properties of the III-V/Ge narrow-band subcell of the triple-junction solar cells have been investigated. It has been shown that there are excess currents in the Ge photovoltaic p-n junctions, and they have the tunneling or thermotunneling character. The values of the diode parameters for these current flow mechanisms have been determined. The potential barrier at the III-V/Ge interface was determined and the origin of this barrier formation during MOVPE heterogrowth was suggested.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2014-05-07
    Description: Zinc aluminum alloy nanowire was fabricated by the vacuum die casting. Zinc aluminum alloy was melted, injected into nanomold under a hydraulic pressure, and solidified as nanowire shape. Nanomold was prepared by etching aluminum sheet with a purity of 99.7 wt.% in oxalic acid solution. A nanochannel within nanomold had a pore diameter of 80 nm and a thickness of 40 μm. Microstructure and characteristic analysis of the alumina nanomold and zinc-aluminum nanowire were performed by scanning electron microscope, X-ray diffraction analysis, and energy dispersive X-ray spectroscopy. Zinc aluminum oxide nanowire array was produced using the thermal oxidation method and designed for the photoelectrode application.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2014-05-07
    Description: Structural, optical, and photocatalytic properties of TiO2 and TiO2:Nd nanopowders and thin films composed of those materials have been compared. Titania nanoparticles with 1, 3, and 6 at. % of Nd-dopant were synthesized by sol-gel method. Additionally, thin films with the same material composition were prepared with the aid of spin-coating method. The analysis of structural investigations revealed that all as-prepared nanopowders were nanocrystalline and had TiO2-anatase structure. The average size of crystallites was ca. 4-5 nm and the correlation between the amount of neodymium and the size of TiO2 crystallites was observed. It was shown that the dopant content influenced the agglomeration of the nanoparticles. The results of photocatalytic decomposition of MO showed that doping with Nd (especially in the amount of 3 at. %) increased self-cleaning activity of the prepared titania nanopowder. Similar effect was received in case of the thin films, but the decomposition rate was lower due to their smaller active surface area. However, the as-prepared TiO2:Nd photocatalyst in the form of thin films or nanopowders seems to be a very attractive material for various applications.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2014-05-06
    Description: Te and Se layers were deposited on 〈glass/FTO/flat-TiO2〉 by electrochemical deposition. The Te-Se-stacked layer was annealed at 200°C, and then, the migration of Te into the Se layer by annealing was confirmed using auger electron spectroscopy (AES), which was performed by Te doping on the Se layer. Au back contact was coated by vacuum deposition on the Te-doped Se layer, resulting in superstrate-structured solar cells of 〈glass/FTO/flat-TiO2/Se-doped Te/Au〉 with a 0.50 V open-circuit voltage, 6.4 mA/cm2 photocurrent density, 0.36 fill factor, and 1.17% conversion efficiency.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2014-04-30
    Description: Cu2ZnSnS4 (CZTS) thin films were deposited on top of Molybdenum (Mo) coated soda lime glass (SLG) substrates using a single target rf magnetron sputtering technique. The sputtering parameters such as base pressure, working pressure, rf power, argon (Ar) gas flow rate, and deposition time were kept consistent throughout the experiment. The effect of different substrate temperatures, for example, room temperature (RT), 300°C, 350°C, 370°C, 400°C, and 450°C, was analyzed by studying their structural, electrical, and optical properties. As-sputtered films were then annealed at 460°C. X-ray diffraction (XRD) measurement revealed the structure to be kesterite with peak of (112) plane in both annealed and as-sputtered CZTS thin films. The crystallinity of the films improved with the increasing substrate temperature until 370°C. Secondary phases of MoS2, , , , and Cu6MoSnS8 (hemusite) were also observed in the annealed CZTS films. Scanning electron microscopy (SEM) shows crystallite size of deposited CZTS thin film to be proportionally related to deposition temperature. The highest surface roughness of 67.318 nm is observed by atomic force microscopy (AFM). The conductivity type of the films was found to be p-type by Hall effect measurement system.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2014-04-30
    Description: Mainly because of the movement in the age pyramid, one can assume that the incidence of Alzheimer’s disease or dementia in general will increase in the coming decades. This paper employs a database analysis to examine the profile of publication activity related to this topic. Two databases were searched: PubMed and Cochrane Library. About 600 papers related to the research area “dementia and laser” and about 450 papers related to the search terms “Alzheimer and laser” were found in these two most commonly used databases. Ten plus one papers are described in detail and are discussed in the context of the laser research performed at the Medical University of Graz. First results concerning the measurement of the transmission factor (TF) through the human skull of a new LED- (light emitting diode-) based system are presented (TF = 0.0434 ± 0.0104 (SD)). The measurements show that this LED system (using the QIT (quantum optical induced transparency) effect) might be used in the treatment of dementia.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2014-05-01
    Description: Alkali digestion of titanium nanoparticles leads, after neutralization, to the formation of titanate nanotubes with long aspect ratio. One salient change in the formation of titanate nanotubes is the observation of an extended visible absorption band up to 550 nm, responsible for their brown colour. Combination of titanate nanotubes with commercial titanium dioxide nanoparticles, either Evonik P25 or Millennium PC500, results in an enhanced photocatalytic activity for hydrogen generation from water-methanol mixtures. This synergy between the two titanium semiconductors has an optimum for a certain proportion of the two components and is observed in both the absence and the presence of platinum or gold nanoparticles. The best efficiency under simulated sunlight irradiation was for a combination of 12 wt.% titanate nanotubes containing 0.32 wt.% platinum in 88 wt.% Millennium PC500, where a two-time increase in the hydrogen generation is observed versus the activity of Millennium PC500 containing platinum. This synergy is proposed to derive from the interfacial electron transfer from titanate nanotubes undergoing photoexcitation at wavelengths in which Millennium PC500 does not absorb this form of titania nanoparticles. Our results illustrate how the combination of several titanium semiconductors can result in an enhancement efficiency with respect to their individual components.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2014-04-30
    Description: Nanostructured porous TiO2 paste was deposited on the FTO conductive glass using squeeze printing technique in order to obtain a TiO2 thin film with a thickness of 10 μm and an area of 4 cm2. Gardenia blue (GB) extracted from Gardenia jasminode Ellis was employed as the natural dye for a dye-sensitized solar cell (DSSC). Adsorption studies indicated that the maximum adsorption capacity of GB on the surface of TiO2 thin film was approximately 417 mg GB/g TiO2 photoelectrode. The commercial and natural dyes, N-719 and GB, respectively, were employed to measure the adsorption kinetic data, which were analyzed by pseudo-first-order and pseudo-second-order models. The energy conversion efficiency of the TiO2 electrode with successive adsorptions of GB dye was about 0.2%.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2014-04-30
    Description: This study aims to develop professional competency indices and their subindices as needed by the solar energy industry, to establish a basis for development of the engineering education curriculum. The methodologies adopted by the study are literature analysis, expert advisories, and focus groups. The study focuses on the establishment of competency indices by experts at stock market-listed companies and then confirms these competencies with focus groups. The study found that the competencies required by the solar industry consist of knowledge, skills, and attitudes in the areas of materials development and applications, photovoltaic technology, cell manufacturing technology, biotechnology, chemical technology, power generation and electricity, process development and improvement, data collection and analysis, industry regulation, green energy beliefs, and working attitudes and values. The results of this study can be used as the basis for the cultivation, selection, and employment of industry professionals.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2014-04-30
    Description: We had successfully fabricated ZnO-based nanowires by vapor transport method in the furnace tube. ZnO nanowire arrays grown in 600°C for 30 minutes, 60 minutes, 90 minutes, and 120 minutes had applied to the dye-sensitized solar cells. The dye loading is proportional to the total equivalent surface area of ZnO nanowire arrays in the cells and plays an important role in improving power conversion efficiency. The highest efficiency was observed in DSSC sample with ZnO nanowires grown for 90 minutes, which had the largest equivalent surface area and also the highest dye loading. According to our experimental results, the enhancement in power conversion efficiency is attributed to the higher light harvesting and reduction of carrier recombination. In addition, ZnO nanowires also contribute to the photocurrent in the UV region.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2014-03-20
    Description: The photocatalytic degradation of Rhodamine B dye was successfully carried out under UV irradiation over porous TiO2-SnO2 nanocomposites with various molar ratios of Ti/Sn (4–12) synthesized by hydrothermal method using polystyrene microspheres as template. The combination of TiO2 with SnO2 can obtain high quantum yield of TiO2, and then achieve the high photocatalytic activity. And its porous structure can provide large surface area, leading to more adsorption and fast transfer of dye pollutant. Structural and textural features of the samples were investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM), and N2 sorption techniques. Both adsorption and UV irradiation contribute to decolorization of about 100% of Rhodamine B dye over the sample TiSn10 after 30 min of the photocatalytic reaction, while the decomposition of Rhodamine B dye is only 62% over pure titania (Degussa P25).
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2014-03-03
    Description: A three-port converter suitable for standalone applications is proposed in this paper. Each port is used for specific input or output, and its functions depend on the port; they are the renewable source, the battery set, and the output port. This proposed converter is considered for standalone operation, but it is not limited to it. Not only the system is able to deliver energy independently from each input source or in a mixed way for the output, but also the battery system may be charged from the renewable source just in case it is required. The battery port is only used when it is required; this allows increasing battery lifetime. Another important feature is that, in case of a renewable source failure, the energy is automatically demanded from the battery set, like an uninterruptible power supply. The system is able to track the maximum power of the renewable source when it is required. Operation, analysis, simulation, and experimental results are described in detail.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2014-04-28
    Description: First principles calculations were used to evaluate the electronic structure and optical properties of N/Si-monodoped and N/Si-codoped TiO2 to further understand their photocatalytic mechanisms. In accordance with the atomic distance between N and Si dopants, this study considered three N/Si codoping configurations, in which the N dopant had a tendency to bond with the Si dopant. The calculations showed that the bandgaps of the N/Si codoping models were narrow, in the range 3.01–3.05 eV, redshifting the intrinsic absorption edge. The Si 3p orbital of N/Si-codoped TiO2 plays a key role in widening the valence band (VB), thereby increasing carrier mobility. In addition, the N-induced impurity energy level in the forbidden band appears in all three N/Si codoping models, strengthening absorption in the visible region. The bandgap narrowing, VB widening, and impurity energy levels in the forbidden band are beneficial for improving the photocatalytic activity of N/Si-codoped TiO2.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2014-04-28
    Description: Mesoporous nanocrystalline anatase was prepared via EISA employing CTAB as structure directing agent. The drying rate was used as a key synthesis parameter to increase the average pore diameter. The resultant mesoporous crystalline phases exhibited specific surface areas between 55 and 150 m2 g−1, average unimodal pore sizes of about 3.4 to 5.6 nm, and average crystallite size of around 7 to 13 nm. These mesophases were used as photocatalysts for the degradation of 4-chlorophenol (4CP) with UV light. Under the studied conditions, the mesoporous anatase degraded 100% 4CP. This was twice faster than Degussa P-25. 57% reduction of chemical oxygen demand (COD) value was achieved.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2014-04-28
    Description: We demonstrated a fabrication technique to reduce the driving voltage, increase the current efficiency, and extend the operating lifetime of an organic light-emitting diode (OLED) by simply controlling the deposition rate of bis(10-hydroxybenzo[h]qinolinato) beryllium (Bebq2) used as the emitting layer and the electron-transport layer. In our optimized device, 55 nm of Bebq2 was first deposited at a faster deposition rate of 1.3 nm/s, followed by the deposition of a thin Bebq2 (5 nm) layer at a slower rate of 0.03 nm/s. The Bebq2 layer with the faster deposition rate exhibited higher photoluminescence efficiency and was suitable for use in light emission. The thin Bebq2 layer with the slower deposition rate was used to modify the interface between the Bebq2 and cathode and hence improve the injection efficiency and lower the driving voltage. The operating lifetime of such a two-step deposition OLED was 1.92 and 4.6 times longer than that of devices with a single deposition rate, that is, 1.3 and 0.03 nm/s cases, respectively.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2014-04-29
    Description: In optogenetics, targeted illumination is used to control the functions of cells expressing exogenous light-activated proteins. Adoption of the optogenetic methods has expanded rapidly in recent years. In this review, we describe the photosensitive channel proteins involved in these methods, describe techniques for their targeting to neurons and other cell types both within and outside the nervous system, and discuss their applications in the field of neuroscience and beyond. We focus especially on the channelrhodopsin protein ChR2, the photosensitive protein most commonly employed in optogenetics. ChR2 has been used by many groups to control neuronal activity, both in vitro and in vivo, on short time scales and with exquisite anatomical precision. In addition, we describe more recently developed tools such as opsin/G protein-coupled receptor chimeric molecules and a light-activated transgene system. In addition, we discuss the potential significance of optogenetics in the development of clinical therapeutics. Although less than a decade old, optogenetics is already responsible for enormous progress in disparate fields, and its future is unquestionably bright.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2014-03-03
    Description: Nowadays a hot topic among the research community is the harnessing energy from the free sunlight which is abundant and pollution-free. The availability of cheap solar photovoltaic (PV) modules has to harvest solar energy with better efficiency. The nature of solar modules is nonlinear and therefore the proper impedance matching is essential. The proper impedance matching ensures the extraction of the maximum power from solar PV module. Maximum power point tracking (MPPT) algorithm is acting as a significant part in solar power generating system because it varies in the output power from a PV generating set for various climatic conditions. This paper suggested a new improved work for MPPT of PV energy system by using the optimized novel improved fractional order variable step size (FOVSS) incremental conductance (Inc-Cond) algorithm. The new proposed controller combines the merits of both improved fractional order (FO) and variable step size (VSS) Inc-Cond which is well suitable for design control and execution. The suggested controller results in attaining the desired transient reaction under changing operating points. MATLAB simulation effort shows MPPT controller and a DC to DC Luo converter feeding a battery load is achieved. The laboratory experimental results demonstrate that the new proposed MPPT controller in the photovoltaic generating system is valid.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2014-03-03
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2014-03-03
    Description: Copper-indium-gallium-diselenide (CIGS) thin films were fabricated using precursor nanoparticle ink and sintering technology. The precursor was a Cu-poor quaternary compound with constituent ratios of , , and . Cu-poor CIGS nanoparticles of chalcopyrite for solar cells were successfully synthesized using a relatively simple and convenient elemental solvothermal route. After a fixed reaction time of 36 h at 180°C, CIGS nanocrystals with diameters in the range of 20–70 nm were observed. The nanoparticle ink was fabricated by mixing CIGS nanoparticles, a solvent, and an organic polymer. Analytical results reveal that the Cu-poor CIGS absorption layer prepared from a nanoparticle-ink polymer by sintering has a chalcopyrite structure and a favorable composition. For this kind of sample, its mole ratio of Cu : In : Ga : Se is equal to 0.617 : 0.410 : 0.510 : 2.464 and related ratios of and are 0.554 and 0.671, respectively. Under the condition of standard air mass 1.5 global illumination, the conversion efficiency of the solar cell fabricated by this kind of sample is 4.05%.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2014-03-03
    Description: Sn- or Ge-doped hematite thin films were fabricated by annealing alloyed films for the purpose of photoelectrochemical (PEC) water splitting. The alloyed films were deposited on FTO glass by magnetron sputtering and their compositions were controlled by the target. The morphology, crystalline structure, optical properties, and photocatalytic activities have been investigated. The SEM observation showed that uniform, large area arrays of nanoflakes formed after thermal oxidation. The incorporation of doping elements into the hematite structure was confirmed by XRD. The photocurrent density-voltage characterization illustrated that the nanoflake films of Sn-doped hematite exhibited high PEC performance and the Sn concentration was optimized about 5%. The doped ions were proposed to occupy the empty octahedral holes and their effect on PEC performance of hematite is smaller than that of tin ions.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2014-01-30
    Description: Bulk heterojunction (BHJ) structure based active layers of PCDTBT/PC71BM were prepared by using different organic solvents for fabrication of organic solar cell (OSC) devices. Mixture of precursor solutions of PCDTBT/PC71BM in three different organic solvents was prepared to fabricate composite active layers by spin-coating process: chloroform; chlorobenzene; o-dichlorobenzene. Four different blend ratios (1 : 3–1 : 6) of PCDTBT: PC71BM were adopted for each organic solvent to clarify the effect on the resulting OSC device characteristics. Surface morphology of the active layers was distinctively affected by the blend ratio of PCDTBT/PC71BM in organic solvents. Influence of the blend ratio of PCDTBT/PC71BM on the OSC device parameters was discussed. Performance parameters of the resulting OSC devices with different composite active layers were comparatively investigated. Appropriate blend ratio and organic solvent to achieve better OSC device performance were proposed. Furthermore, from the UV-Vis spectrum of each active layer prepared using the PCDTBT/PC71BM mixed solution dissolved with different organic solvents, a possibility that the nanophase separation structure inside their active layer could appear was suggested.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2014-02-28
    Description: A mathematical simulation method was developed for visualization of the diffuse reflected light on a surface of 3-layered models of urinary bladder wall. Five states, from normal to precancerous, of the urinary bladder epithelium were simulated. With the use of solutions of classical electrodynamics equations, scattering coefficients and asymmetry parameters of the bladder epithelium were found in order to perform Monte Carlo calculations. The results, compared with the experimental studies, has revealed the influence of the changes in absorption and scattering properties on diffuse-reflectance signal distributions on the surfaces of the modelled media.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2014-02-10
    Description: Dye sensitized solar cells (DSSCs) have attracted numerous research, especially in the context of enhancing their efficiency and durability, due to the low-cost and environmentally friendly nature of photovoltaic (PV) technology. The materials in DSSCs are vital towards the realization of these goals, since many of the important components are influenced by their respective preparation and deposition methods. This review aims to detail the research and development aspects of the different physical methods with the purpose of evaluating their prospects and corresponding limitations. The diversity of consideration and criteria includes thin film applications, material characteristics, and process technology that need to be taken into account when selecting a specific deposition method. Choosing a deposition method is not as simple as it seems and is rendered quite complicated due to various factors. Usually, a researcher will evaluate techniques based on factors such as the different preparations and deposition technology with materials’ and substrates’ type, specified applications, costs, and efficiencies.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2014-02-14
    Description: The photosensitizing ability of C60/2-hydroxypropyl-β-cyclodextrin (HP-β-CyD) nanoparticles under visible light irradiation was studied by electron spin resonance (ESR) and phototoxicity on cancer cells. In addition, the photoinduced antitumor effect to the tumor-bearing mice was evaluated. C60 nanoparticles were prepared by grinding a mixture of HP-β-CyD. The resulting C60/HP-β-CyD nanoparticles were highly-sensitive to visible light and generated higher levels of 1O2 than protoporphyrin IX (PpIX). C60/HP-β-CyD reduced the viability of cancer cells (HeLa cells and A549 cells) in response to irradiation by visible light in a dose-dependent manner. The IC50 values of the C60/HP-β-CyD nanoparticles was 10 μM for HeLa cells and 60 μM for A549 cells at an irradiation level of 35 mW/cm2. The photodynamic effect of C60/HP-β-CyD nanoparticles on the in vivo growth of mouse sarcoma S-180 cells was evaluated after intratumor injection. The outcome of PDT by C60/HP-β-CyD was directly dependent on the dose of irradiated light. Treatment with C60/HP-β-CyD nanoparticles at a C60 dose of 2.0 mg/kg under visible light irradiation at 350 mW/cm2 (63 J/cm2) markedly suppressed tumor growth, whereas that at 30 J/cm2 was less effective. These findings suggest that C60/HP-β-CyD nanoparticles represent a promising candidate for use in cancer treatment by PDT.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...