ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (256)
  • Copernicus  (256)
  • American Meteorological Society
  • Blackwell Publishing Ltd
  • Hindawi
  • Institute of Electrical and Electronics Engineers
  • Springer Nature
  • Springer Science + Business Media
  • 2020-2022
  • 2010-2014  (256)
  • 1970-1974
  • 1960-1964
  • 2014  (256)
  • 1961
  • 1960
  • Annales Geophysicae  (128)
  • 828
  • Physics  (256)
  • Sociology
  • Economics
  • Geography
  • Mathematics
  • Natural Sciences in General
  • Architecture, Civil Engineering, Surveying
  • Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
Collection
  • Articles  (256)
Publisher
  • Copernicus  (256)
  • American Meteorological Society
  • Blackwell Publishing Ltd
  • Hindawi
  • Institute of Electrical and Electronics Engineers
  • +
Years
  • 2020-2022
  • 2010-2014  (256)
  • 1970-1974
  • 1960-1964
Year
Topic
  • Physics  (256)
  • Sociology
  • Economics
  • Geography
  • Mathematics
  • +
  • 1
    Publication Date: 2014-12-10
    Description: Energy exchange and wave action conservation for magnetohydrodynamic (MHD) waves in a general, slowly varying medium Annales Geophysicae, 32, 1495-1510, 2014 Author(s): A. D. M. Walker Magnetohydrodynamic (MHD) waves in the solar wind and magnetosphere are propagated in a medium whose velocity is comparable to or greater than the wave velocity and which varies in both space and time. In the approximation where the scales of the time and space variation are long compared with the period and wavelength, the ray-tracing equations can be generalized and then include an additional first-order differential equation that determines the variation of frequency. In such circumstances the wave can exchange energy with the background: wave energy is not conserved. In such processes the wave action theorem shows that the wave action, defined as the ratio of the wave energy to the frequency in the local rest frame, is conserved. In this paper we discuss ray-tracing techniques and the energy exchange relation for MHD waves. We then provide a unified account of how to deal with energy transport by MHD waves in non-uniform media. The wave action theorem is derived directly from the basic MHD equations for sound waves, transverse Alfvén waves, and the fast and slow magnetosonic waves. The techniques described are applied to a number of illustrative cases. These include a sound wave in a medium undergoing a uniform compression, an isotropic Alfvén wave in a steady-state shear layer, and a transverse Alfvén wave in a simple model of the magnetotail undergoing compression. In each case the nature and magnitude of the energy exchange between wave and background is found.
    Print ISSN: 0992-7689
    Electronic ISSN: 1432-0576
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-12-10
    Description: The numerical simulation on ionospheric perturbations in electric field before large earthquakes Annales Geophysicae, 32, 1487-1493, 2014 Author(s): S. F. Zhao, X. M. Zhang, Z. Y. Zhao, and X. H. Shen Many observational results have shown electromagnetic abnormality in the ionosphere before large earthquakes. The theoretical simulation can help us to understand the internal mechanism of these anomalous electromagnetic signals resulted from seismic regions. In this paper, the horizontal and vertical components of electric and magnetic field at the topside ionosphere are simulated by using the full wave method that is based on an improved transfer matrix method in the lossy anisotropic horizontally stratified ionosphere. Taken account into two earthquakes with electric field perturbations recorded by the DEMETER satellite, the numerical results reveal that the propagation and penetration of ULF (ultra-low-frequency) electromagnetic waves into the ionosphere is related to the spatial distribution of electron and ion densities at different time and locations, in which the ion density has less effect than electron density on the field intensity. Compared with different frequency signals, the minimum values of electric and magnetic field excited by earthquakes can be detected by satellite in current detection capability have also been calculated, and the lower frequency wave can be detected easier.
    Print ISSN: 0992-7689
    Electronic ISSN: 1432-0576
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-11-29
    Description: A comparison between VEGA 1, 2 and Giotto flybys of comet 1P/Halley: implications for Rosetta Annales Geophysicae, 32, 1441-1453, 2014 Author(s): M. Volwerk, K.-H. Glassmeier, M. Delva, D. Schmid, C. Koenders, I. Richter, and K. Szegö Three flybys of comet 1P/Halley, by VEGA 1, 2 and Giotto, are investigated with respect to the occurrence of mirror mode waves in the cometosheath and field line draping in the magnetic pile-up region around the nucleus. The time interval covered by these flybys is approximately 8 days, which is also the approximate length of an orbit or flyby of Rosetta around comet 67P/Churyumov–Gerasimenko. Thus any significant changes observed around Halley are changes that might occur for Rosetta during one pass of 67P/CG. It is found that the occurrence of mirror mode waves in the cometosheath is strongly influenced by the dynamical pressure of the solar wind and the outgassing rate of the comet. Field line draping happens in the magnetic pile-up region. Changes in nested draping regions (i.e. regions with different B x directions) can occur within a few days, possibly influenced by changes in the outgassing rate of the comet and thereby the conductivity of the cometary ionosphere.
    Print ISSN: 0992-7689
    Electronic ISSN: 1432-0576
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-01-17
    Description: Low-latitude scintillation occurrences around the equatorial anomaly crest over Indonesia Annales Geophysicae, 32, 7-17, 2014 Author(s): P. Abadi, S. Saito, and W. Srigutomo We investigated low-latitude ionospheric scintillation in Indonesia using two GPS receivers installed at Bandung (107.6° E, 6.9° S; magnetic latitude 17.5° S) and Pontianak (109.3° E, 0.02° S; magnetic latitude 8.9° S). This study aimed to characterise climatological and directional ionospheric scintillation occurrences, which are useful not only for the physics of ionospheric irregularities but also for practical use in GNSS (global navigation satellite system)-based navigation. We used the deployed instrument's amplitude scintillation (S4 index) data from 2009, 2010, and 2011; the yearly SSN (sunspot-smoothed numbers) were 3.1, 16.5, and 55.9, respectively. In summary, (1) scintillation occurrences in the post-sunset period (18:00–01:00 LT) during equinox months (plasma bubble season) at the two sites can be ascribed to the plasma bubble; (2) using directional analyses of the two sites, we found that the distribution of scintillation occurrences is generally concentrated between the two sites, indicating the average location of the EIA (equatorial ionisation anomaly) crest; (3) scintillation occurrence enhancements for the two sites in field-aligned directions are herein reported for the first time by ground-based observation in a low-latitude region; (4) distribution of scintillation occurrences at Pontianak are concentrated in the southern sky, especially in the southwest direction, which is very likely associated with the plasma bubble tilted westward with increasing latitude; and (5) scintillation occurrence in the post-midnight period in the non-plasma-bubble season is the most intriguing variable occurring between the two sites (i.e. post-midnight scintillations are observed more at Bandung than Pontianak). Most of the post-midnight scintillations observed at Bandung are concentrated in the northern sky, with low elevation angles. This might be due to the amplitude of irregularities in certain directions, which may be effectively enhanced by background density enhancement by the EIA and because satellite–receiver paths are longer in the EIA crest region and in a field-aligned direction.
    Print ISSN: 0992-7689
    Electronic ISSN: 1432-0576
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-03-12
    Description: Automated identification and tracking of polar-cap plasma patches at solar minimum Annales Geophysicae, 32, 197-206, 2014 Author(s): R. Burston, K. Hodges, I. Astin, and P. T. Jayachandran A method of automatically identifying and tracking polar-cap plasma patches, utilising data inversion and feature-tracking methods, is presented. A well-established and widely used 4-D ionospheric imaging algorithm, the Multi-Instrument Data Assimilation System (MIDAS), inverts slant total electron content (TEC) data from ground-based Global Navigation Satellite System (GNSS) receivers to produce images of the free electron distribution in the polar-cap ionosphere. These are integrated to form vertical TEC maps. A flexible feature-tracking algorithm, TRACK, previously used extensively in meteorological storm-tracking studies is used to identify and track maxima in the resulting 2-D data fields. Various criteria are used to discriminate between genuine patches and "false-positive" maxima such as the continuously moving day-side maximum, which results from the Earth's rotation rather than plasma motion. Results for a 12-month period at solar minimum, when extensive validation data are available, are presented. The method identifies 71 separate structures consistent with patch motion during this time. The limitations of solar minimum and the consequent small number of patches make climatological inferences difficult, but the feasibility of the method for patches larger than approximately 500 km in scale is demonstrated and a larger study incorporating other parts of the solar cycle is warranted. Possible further optimisation of discrimination criteria, particularly regarding the definition of a patch in terms of its plasma concentration enhancement over the surrounding background, may improve results.
    Print ISSN: 0992-7689
    Electronic ISSN: 1432-0576
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-03-12
    Description: Influence of water vapour on the height distribution of positive ions, effective recombination coefficient and ionisation balance in the quiet lower ionosphere Annales Geophysicae, 32, 207-222, 2014 Author(s): V. Barabash, A. Osepian, and P. Dalin Mesospheric water vapour concentration effects on the ion composition and electron density in the lower ionosphere under quiet geophysical conditions were examined. Water vapour is an important compound in the mesosphere and the lower thermosphere that affects ion composition due to hydrogen radical production and consequently modifies the electron number density. Recent lower-ionosphere investigations have primarily concentrated on the geomagnetic disturbance periods. Meanwhile, studies on the electron density under quiet conditions are quite rare. The goal of this study is to contribute to a better understanding of the ionospheric parameter responses to water vapour variability in the quiet lower ionosphere. By applying a numerical D region ion chemistry model, we evaluated efficiencies for the channels forming hydrated cluster ions from the NO + and O 2 + primary ions (i.e. NO + .H 2 O and O 2 + .H 2 O, respectively), and the channel forming H + (H 2 O) n proton hydrates from water clusters at different altitudes using profiles with low and high water vapour concentrations. Profiles for positive ions, effective recombination coefficients and electrons were modelled for three particular cases using electron density measurements obtained during rocket campaigns. It was found that the water vapour concentration variations in the mesosphere affect the position of both the Cl 2 + proton hydrate layer upper border, comprising the NO + (H 2 O) n and O 2 + (H 2 O) n hydrated cluster ions, and the Cl 1 + hydrate cluster layer lower border, comprising the H + (H 2 O) n pure proton hydrates, as well as the numerical cluster densities. The water variations caused large changes in the effective recombination coefficient and electron density between altitudes of 75 and 87 km. However, the effective recombination coefficient, α eff , and electron number density did not respond even to large water vapour concentration variations occurring at other altitudes in the mesosphere. We determined the water vapour concentration upper limit at altitudes between 75 and 87 km, beyond which the water vapour concentration ceases to influence the numerical densities of Cl 2 + and Cl 1 + , the effective recombination coefficient and the electron number density in the summer ionosphere. This water vapour concentration limit corresponds to values found in the H 2 O-1 profile that was observed in the summer mesosphere by the Upper Atmosphere Research Satellite (UARS). The electron density modelled using the H 2 O-1 profile agreed well with the electron density measured in the summer ionosphere when the measured profiles did not have sharp gradients. For sharp gradients in electron and positive ion number densities, a water profile that can reproduce the characteristic behaviour of the ionospheric parameters should have an inhomogeneous height distribution of water vapour.
    Print ISSN: 0992-7689
    Electronic ISSN: 1432-0576
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-03-14
    Description: The longitudinal variability of equatorial electrojet and vertical drift velocity in the African and American sectors Annales Geophysicae, 32, 231-238, 2014 Author(s): E. Yizengaw, M. B. Moldwin, E. Zesta, C. M. Biouele, B. Damtie, A. Mebrahtu, B. Rabiu, C. F. Valladares, and R. Stoneback While the formation of equatorial electrojet (EEJ) and its temporal variation is believed to be fairly well understood, the longitudinal variability at all local times is still unknown. This paper presents a case and statistical study of the longitudinal variability of dayside EEJ for all local times using ground-based observations. We found EEJ is stronger in the west American sector and decreases from west to east longitudinal sectors. We also confirm the presence of significant longitudinal difference in the dusk sector pre-reversal drift, using the ion velocity meter (IVM) instrument onboard the C/NOFS satellite, with stronger pre-reversal drift in the west American sector compared to the African sector. Previous satellite observations have shown that the African sector is home to stronger and year-round ionospheric bubbles/irregularities compared to the American and Asian sectors. This study's results raises the question if the vertical drift, which is believed to be the main cause for the enhancement of Rayleigh–Taylor (RT) instability growth rate, is stronger in the American sector and weaker in the African sector – why are the occurrence and amplitude of equatorial irregularities stronger in the African sector?
    Print ISSN: 0992-7689
    Electronic ISSN: 1432-0576
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-03-15
    Description: Evidence of transient reconnection in the outflow jet of primary reconnection site Annales Geophysicae, 32, 239-248, 2014 Author(s): R. Wang, R. Nakamura, T. Zhang, A. Du, W. Baumjohann, Q. Lu, and A. N. Fazakerley The precise mechanism for the formation of magnetic islands in the magnetotail and the subsequent evolution are still controversial. New investigations have provided the first observational evidence of secondary reconnection in the earthward outflow jet of primary reconnection in the magnetotail. The secondary reconnection takes place 38 c /ω pi earthward from the primary reconnection site and results in the birth of a magnetic island observed. This generation mechanism is different from the widely used model of multiple reconnection X-lines. The duration of the secondary reconnection was approximate one ion gyration period (5 s). The observations resemble recent numerical simulations where magnetic reconnection could spontaneously and transiently happen in the outflow jet, called secondary reconnection, which was used to explain the formation of the dipolarization fronts. Coincidentally, another magnetic island moving earthward passed through three satellites successively. By this chance we find the magnetic island was accelerated towards Earth with an acceleration of about 9 km s −2 at −19 R E in the magnetotail.
    Print ISSN: 0992-7689
    Electronic ISSN: 1432-0576
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-04-29
    Description: A new inversion algorithm for backscatter ionogram and its experimental validation Annales Geophysicae, 32, 465-472, 2014 Author(s): J. J. Zhao, C. Zhou, G. B. Yang, C. H. Jiang, S. S. Chang, P. Zhu, X. D. Gu, B. B. Ni, and Z. Y. Zhao Oblique backscatter sounding is a powerful tool for detecting and monitoring the ionosphere continuously at a remote distance. High-frequency (HF) backscatter ionograms provide the amplitudes of backscatter signals with respect to group path or time delay against operating frequency. Application of inversion algorithm to a backscatter ionogram can extract useful information regarding the ionospheric electron density along the propagation paths. The present study proposes a new inversion algorithm on basis of simulated annealing method to acquire the leading edge of sweep-frequency ionogram, which is subsequently validated by ionospheric vertical sounding data. Quantitative comparisons between the vertical sounding measurements and the inversion results obtained from oblique backscatter sounding indicate that the new algorithm enables us to overcome the instability issue that traditional inversion algorithm faces and output reliable information of ionospheric inversion with satisfactory efficiency, thus providing a robust alternative for ionospheric detection based on oblique backscatter ionograms especially when the ionosphere is calm with slow changes.
    Print ISSN: 0992-7689
    Electronic ISSN: 1432-0576
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-05-07
    Description: Radiation belt data assimilation of a moderate storm event using a magnetic field configuration from the physics-based RAM-SCB model Annales Geophysicae, 32, 473-483, 2014 Author(s): Y. Yu, J. Koller, V. K. Jordanova, S. G. Zaharia, and H. C. Godinez Data assimilation using Kalman filters provides an effective way of understanding both spatial and temporal variations in the outer electron radiation belt. Data assimilation is the combination of in situ observations and physical models, using appropriate error statistics to approximate the uncertainties in both the data and the model. The global magnetic field configuration is one essential element in determining the adiabatic invariants for the phase space density (PSD) data used for the radiation belt data assimilation. The lack of a suitable global magnetic field model with high accuracy is still a long-lasting problem. This paper employs a physics-based magnetic field configuration for the first time in a radiation belt data assimilation study for a moderate storm event on 19 December 2002. The magnetic field used in our study is the magnetically self-consistent inner magnetosphere model RAM-SCB, developed at Los Alamos National Laboratory (LANL). Furthermore, we apply a cubic spline interpolation method in converting the differential flux measurements within the energy spectrum, to obtain a more accurate PSD input for the data assimilation than the commonly used linear interpolation approach. Finally, the assimilation is done using an ensemble Kalman filter (EnKF), with a localized adaptive inflation (LAI) technique to appropriately account for model errors in the assimilation and improve the performance of the Kalman filter. The assimilative results are compared with results from another assimilation experiment using the Tsyganenko 2001S (T01S) magnetic field model, to examine the dependence on a magnetic field model. Results indicate that the data assimilations using different magnetic field models capture similar features in the radiation belt dynamics, including the temporal evolution of the electron PSD during a storm and the location of the PSD peak. The assimilated solution predicts the energy differential flux to a relatively good degree when compared with independent LANL-GEO in situ observations. A closer examination suggests that for the chosen storm event, the assimilation using the RAM-SCB predicts a better flux at most energy levels during storm recovery phase but is slightly worse in the storm main phase than the assimilation using the T01S model.
    Print ISSN: 0992-7689
    Electronic ISSN: 1432-0576
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...