ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (2,726)
  • BioMed Central  (2,726)
  • Institute of Electrical and Electronics Engineers (IEEE)
  • BMC Systems Biology  (670)
  • 81325
  • Biology  (2,726)
  • Architecture, Civil Engineering, Surveying
  • Energy, Environment Protection, Nuclear Power Engineering
Collection
  • Articles  (2,726)
Publisher
  • BioMed Central  (2,726)
  • Institute of Electrical and Electronics Engineers (IEEE)
Years
Topic
  • Biology  (2,726)
  • Architecture, Civil Engineering, Surveying
  • Energy, Environment Protection, Nuclear Power Engineering
  • 1
    Publication Date: 2015-08-08
    Description: Background: Rhodococcus jostii RHA1 growing on different substrates is capable of accumulating simultaneously three types of carbon storage compounds: glycogen, polyhydroxyalkanoates (PHA), and triacylglycerols (TAG). Under nitrogen-limited (N-limited) condition, the level of storage increases as is commonly observed for other bacteria. The proportion of each storage compound changes with substrate, but it remains unclear what modelling approach should be adopted to predict the relative composition of the mixture of the storage compounds. We analyzed the growth of R. jostii RHA1 under N-limited conditions using a genome-scale metabolic modelling approach to determine which global metabolic objective function could be used for the prediction. Results: The R. jostii RHA1 model (iMT1174) produced during this study contains 1,243 balanced metabolites, 1,935 unique reactions, and 1,174 open reading frames (ORFs).Seven objective functions used with flux balance analysis (FBA) were compared for their capacity to predict the mixture of storage compounds accumulated after the sudden onset of N-limitation. Predictive abilities were determined using a Bayesian approach. Experimental data on storage accumulation mixture (glycogen, polyhydroxyalkanoates, and triacylglycerols) were obtained for batch cultures grown on glucose or acetate. The best FBA simulation results were obtained using a novel objective function for the N-limited condition which combined the maximization of the storage fluxes and the minimization of metabolic adjustments (MOMA) with the preceding non-limited conditions (max storage + environmental MOMA). The FBA solutions for the non-limited growth conditions were simply constrained by the objective function of growth rate maximization. Measurement of central metabolic fluxes by 13 C-labelling experiments of amino acids further supported the application of the environmental MOMA principle in the context of changing environment. Finally, it was found that the quantitative predictions of the storage mixture during N-limited storage accumulation were fairly sensitive to the biomass composition, as expected. Conclusions: The genome-scale metabolic model analysis of R. jostii RHA1 cultures suggested that the intracellular reaction flux profile immediately after the onset of N-limited condition are impacted by the values of the same fluxes during the period of non-limited growth. PHA turned out to be the main storage pool of the mixture in R. jostii RHA1.
    Electronic ISSN: 1752-0509
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-08-20
    Description: Background: Constraint-based analysis of genome-scale metabolic models has become a key methodology to gain insights into functions, capabilities, and properties of cellular metabolism. Since their inception, the size and complexity of genome-scale metabolic reconstructions has significantly increased, with a concomitant increase in computational effort required for their analysis. Many stoichiometric methods cannot be applied to large networks comprising several thousand reactions. Furthermore, basic principles of an organism’s metabolism can sometimes be easier studied in smaller models focusing on central metabolism. Therefore, an automated and unbiased reduction procedure delivering meaningful core networks from well-curated genome-scale reconstructions is highly desirable. Results: Here we present NetworkReducer, a new algorithm for an automated reduction of metabolic reconstructions to obtain smaller models capturing the central metabolism or other metabolic modules of interest. The algorithm takes as input a network model and a list of protected elements and functions (phenotypes) and applies a pruning step followed by an optional compression step. Network pruning removes elements of the network that are dispensable for the protected functions and delivers a subnetwork of the full system. Loss-free network compression further reduces the network size but not the complexity (dimension) of the solution space. As a proof of concept, we applied NetworkReducer to the iAF1260 genome-scale model of Escherichia coli (2384 reactions, 1669 internal metabolites) to obtain a reduced model that (i) allows the same maximal growth rates under aerobic and anaerobic conditions as in the full model, and (ii) preserves a protected set of reactions representing the central carbon metabolism. The reduced representation comprises 85 metabolites and 105 reactions which we compare to a manually derived E. coli core model. As one particular strength of our approach, NetworkReducer derives a condensed biomass synthesis reaction that is consistent with the full genome-scale model. In a second case study, we reduced a genome-scale model of the cyanobacterium Synechocystis sp. PCC 6803 to obtain a small metabolic module comprising photosynthetic core reactions and the Calvin-Benson cycle allowing synthesis of both biomass and a biofuel (ethanol). Conclusion: Although only genome-scale models provide a complete description of an organism’s metabolic capabilities, an unbiased stoichiometric reduction of large-scale metabolic models is highly useful. We are confident that the NetworkReducer algorithm provides a valuable tool for the application of computationally expensive analyses, for educational purposes, as well to identify core models for kinetic modeling and isotopic tracer experiments.
    Electronic ISSN: 1752-0509
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-08-15
    Description: Background: Visualization and analysis of molecular profiling data together with biological networks are able to provide new mechanistic insights into biological functions. Currently, it is possible to visualize high-throughput data on top of pre-defined network layouts, but they are not always adapted to a given data analysis task. A network layout based simultaneously on the network structure and the associated multidimensional data might be advantageous for data visualization and analysis in some cases. Results: We developed a Cytoscape app, which allows constructing biological network layouts based on the data from molecular profiles imported as values of node attributes. DeDaL is a Cytoscape 3 app, which uses linear and non-linear algorithms of dimension reduction to produce data-driven network layouts based on multidimensional data (typically gene expression). DeDaL implements several data pre-processing and layout post-processing steps such as continuous morphing between two arbitrary network layouts and aligning one network layout with respect to another one by rotating and mirroring. The combination of all these functionalities facilitates the creation of insightful network layouts representing both structural network features and correlation patterns in multivariate data. We demonstrate the added value of applying DeDaL in several practical applications, including an example of a large protein-protein interaction network. Conclusions: DeDaL is a convenient tool for applying data dimensionality reduction methods and for designing insightful data displays based on data-driven layouts of biological networks, built within Cytoscape environment. DeDaL is freely available for downloading at http://bioinfo-out.curie.fr/projects/dedal/.
    Electronic ISSN: 1752-0509
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-08-16
    Description: Background: As suggested by the origin of the word, sphingolipids are mysterious molecules with various roles in antagonistic cellular processes such as autophagy, apoptosis, proliferation and differentiation. Moreover, sphingolipids have recently been recognized as important messengers in cellular signaling pathways. Notably, sphingolipid metabolism disorders have been observed in various pathological conditions such as cancer and neurodegeneration. Results: The existing formal models of sphingolipid metabolism focus mainly on de novo ceramide synthesis or are limited to biochemical transformations of particular subspecies. Here, we propose the first comprehensive computational model of sphingolipid metabolism in human tissue. Contrary to the previous approaches, we use a model that reflects cell compartmentalization thereby highlighting the differences among individual organelles. Conclusions: The model that we present here was validated using recently proposed methods of model analysis, allowing to detect the most sensitive and experimentally non-identifiable parameters and determine the main sources of model variance. Moreover, we demonstrate the usefulness of our model in the study of molecular processes underlying Alzheimer’s disease, which are associated with sphingolipid metabolism.
    Electronic ISSN: 1752-0509
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-08-12
    Description: Background: Cellular decision-making is governed by molecular networks that are highly complex. An integrative understanding of these networks on a genome wide level is essential to understand cellular health and disease. In most cases however, such an understanding is beyond human comprehension and requires computational modeling. Mathematical modeling of biological networks at the level of biochemical details has hitherto relied on state transition models. These are typically based on enumeration of all relevant model states, and hence become very complex unless severely – and often arbitrarily – reduced. Furthermore, the parameters required for genome wide networks will remain underdetermined for the conceivable future. Alternatively, networks can be simulated by Boolean models, although these typically sacrifice molecular detail as well as distinction between different levels or modes of activity. However, the modeling community still lacks methods that can simulate genome scale networks on the level of biochemical reaction detail in a quantitative or semi quantitative manner. Results: Here, we present a probabilistic bipartite Boolean modeling method that addresses these issues. The method is based on the reaction-contingency formalism, and enables fast simulation of large networks. We demonstrate its scalability by applying it to the yeast mitogen-activated protein kinase (MAPK) network consisting of 140 proteins and 608 nodes. Conclusion: The probabilistic Boolean model can be generated and parameterized automatically from a rxncon network description, using only two global parameters, and its qualitative behavior is robust against order of magnitude variation in these parameters. Our method can hence be used to simulate the outcome of large signal transduction network reconstruction, with little or no overhead in model creation or parameterization.
    Electronic ISSN: 1752-0509
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-08-12
    Description: Background: The combination of domains in multidomain proteins enhances their function and structure but lengthens the molecules and increases their cost at cellular level. Methods: The dependence of domain length on the number of domains a protein holds was surveyed for a set of 60 proteomes representing free-living organisms from all kingdoms of life. Distributions were fitted using non-linear functions and fitted parameters interpreted with a formulation of decreasing returns. Results: We find that domain length decreases with increasing number of domains in proteins, following the Menzerath-Altmann (MA) law of language. Highly significant negative correlations exist for the set of proteomes examined. Mathematically, the MA law expresses as a power law relationship that unfolds when molecular persistence P is a function of domain accretion. P holds two terms, one reflecting the matter-energy cost of adding domains and extending their length, the other reflecting how domain length and number impinges on information and biophysics. The pattern of diminishing returns can therefore be explained as a frustrated interplay between the strategies of economy, flexibility and robustness, matching previously observed trade-offs in the domain makeup of proteomes. Proteomes of Archaea, Fungi and to a lesser degree Plants show the largest push towards molecular economy, each at their own economic stratum. Fungi increase domain size in single domain proteins while reinforcing the pattern of diminishing returns. In contrast, Metazoa, and to lesser degrees Protista and Bacteria, relax economy. Metazoa achieves maximum flexibility and robustness by harboring compact molecules and complex domain organization, offering a new functional vocabulary for molecular biology. Conclusions: The tendency of parts to decrease their size when systems enlarge is universal for language and music, and now for parts of macromolecules, extending the MA law to natural systems.
    Electronic ISSN: 1752-0509
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-09-17
    Description: Background: Social interactions have been increasingly recognized as one of the major factors that contribute to the dynamics and function of bacterial communities. To understand their functional roles and enable the design of robust synthetic consortia, one fundamental step is to determine the relationship between the social interactions of individuals and the spatiotemporal structures of communities. Results: We present a systematic computational survey on this relationship for two-species communities by developing and utilizing a hybrid computational framework that combines discrete element techniques with reaction-diffusion equations. We found that deleterious interactions cause an increased variance in relative abundance, a drastic decrease in surviving lineages, and a rough expanding front. In contrast, beneficial interactions contribute to a reduced variance in relative abundance, an enhancement in lineage number, and a smooth expanding front. We also found that mutualism promotes spatial homogeneity and population robustness while competition increases spatial segregation and population fluctuations. To examine the generality of these findings, a large set of initial conditions with varying density and species abundance was tested and analyzed. In addition, a simplified mathematical model was developed to provide an analytical interpretation of the findings. Conclusions: This work advances our fundamental understanding of bacterial social interactions and population structures and, simultaneously, benefits synthetic biology for facilitated engineering of artificial microbial consortia.
    Electronic ISSN: 1752-0509
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-09-17
    Description: Background: Joint modeling and analysis of phenotypic, genotypic and transcriptomic data have the potential to uncover the genetic control of gene activity and phenotypic variation, as well as shed light on the manner and extent of connectedness among these variables. Current studies mainly report associations, i.e. undirected connections among variables without causal interpretation. Knowledge regarding causal relationships among genes and phenotypes can be used to predict the behavior of complex systems, as well as to optimize management practices and selection strategies. Here, we performed a multistep procedure for inferring causal networks underlying carcass fat deposition and muscularity in pigs using multi-omics data obtained from an F 2 Duroc x Pietrain resource pig population. Results: We initially explored marginal associations between genotypes and phenotypic and expression traits through whole-genome scans, and then, in genomic regions with multiple significant hits, we assessed gene-phenotype network reconstruction using causal structural learning algorithms. One genomic region on SSC6 showed significant associations with three relevant phenotypes, off-midline10th-rib backfat thickness, loin muscle weight, and average intramuscular fat percentage, and also with the expression of seven genes, including ZNF24, SSX2IP, and AKR7A2. The inferred network indicated that the genotype affects the three phenotypes mainly through the expression of several genes. Among the phenotypes, fat deposition traits negatively affected loin muscle weight. Conclusions: Our findings shed light on the antagonist relationship between carcass fat deposition and lean meat content in pigs. In addition, the procedure described in this study has the potential to unravel gene-phenotype networks underlying complex phenotypes.
    Electronic ISSN: 1752-0509
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-09-17
    Description: Background: Mycobacterium tuberculosis (MTB) is the causal agent of the disease tuberculosis (TB). Metabolic adaptations are thought to be critical to the survival of MTB during pathogenesis. Computational tools that can be used to study MTB metabolism in silico and prioritize resource-intensive experimental work could significantly accelerate research. Results: We have developed E-Flux-MFC, an enhancement of our original E-Flux method that enables the prediction of changes in the production of external and internal metabolites corresponding to gene expression measurements. We have used this method to simulate the changes in the metabolic state of Mycobacterium tuberculosis (MTB). We have validated the accuracy of E-Flux-MFC for predicting changes in lipids and metabolites during a hypoxia time course using previously published metabolomics and transcriptomics data. We have further validated the accuracy of the method for predicting changes in MTB lipids following the deletion and induction of two well-studied transcription factors (TFs). We have applied the method to predict the metabolic impact of the induction of each of the approximately 180 MTB TFs using a previously generated and publically available expression data set. Conclusions: E-flux-MFC can be used to study global changes in MTB metabolites from gene expression data associated with environmental and genetic perturbations. The application of this method to a data set of MTB TF perturbations provides a resource for studying the large number of TFs whose functions remain unknown. Most TFs impact metabolites indirectly through the propagation of gene expression changes through the regulatory network rather than through their direct regulons. E-Flux-MFC is also applicable to any organism for which accurate metabolic models are available.
    Electronic ISSN: 1752-0509
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-09-17
    Description: Owing to drug synergy effects, drug combinations have become a new trend in combating complex diseases like cancer, HIV and cardiovascular diseases. However, conventional synergy quantification methods often depend on experimental dose–response data which are quite resource-demanding. In addition, these methods are unable to interpret the explicit synergy mechanism. In this review, we give representative examples of how systems biology modeling offers strategies toward better understanding of drug synergy, including the protein-protein interaction (PPI) network-based methods, pathway dynamic simulations, synergy network motif recognitions, integrative drug feature calculations, and “omic”-supported analyses. Although partially successful in drug synergy exploration and interpretation, more efforts should be put on a holistic understanding of drug-disease interactions, considering integrative pharmacology and toxicology factors. With a comprehensive and deep insight into the mechanism of drug synergy, systems biology opens a novel avenue for rational design of effective drug combinations.
    Electronic ISSN: 1752-0509
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2015-09-25
    Description: Background: The spatial distribution of many genes has been visualized during the embryonic development in the starlet sea anemone Nematostella vectensis in the last decade. In situ hybridization images are available in the Kahi Kai gene expression database, and a method has been developed to quantify spatial gene expression patterns of N. vectensis. In this paper, gene expression quantification is performed on a wide range of gene expression patterns from this database and descriptions of observed expression domains are stored in a separate database for further analysis. Methods: Spatial gene expression from suitable in situ hybridization images has been quantified with the GenExp program. A correlation analysis has been performed on the resulting numerical gene expression profiles for each stage. Based on the correlated clusters of spatial gene expression and detailed descriptions of gene expression domains, various mechanisms for developmental gene expression are proposed. Results: In the blastula and gastrula stages of development in N. vectensis, its continuous sheet of cells is partitioned into correlating gene expression domains. During progressing development, these regions likely correspond to different fates. A statistical analysis shows that genes generally remain expressed during the planula stages in those major regions that they occupy at the end of gastrulation.DiscussionObserved shifts in gene expression domain boundaries suggest that elongation in the planula stage mainly occurs in the vegetal ring under the influence of the gene Rx. The secondary body axis in N. vectensis is proposed to be determined at the mid blastula transition. Conclusions: Early gene expression domains in N. vectensis appear to maintain a positional order along the primary body axis. Early determination in N. vectensis occurs in two stages: expression in broad circles and rings in the blastula is consolidated during gastrulation, and more complex expression patterns appear in the planula within these broad regions. Quantification and comparison of gene expression patterns across a database can generate hypotheses about collective cell movements before these movements are measured directly.
    Electronic ISSN: 1752-0509
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2015-11-21
    Description: Background: Disrupted bile secretion leads to liver damage characterized by inflammation, fibrosis, eventually cirrhosis, and hepatocellular cancer. As obstructive cholestasis often progresses insidiously, markers for the diagnosis and staging of the disease are urgently needed. To this end, we compiled a comprehensive data set of serum markers, histological parameters and transcript profiles at 8 time points of disease progression after bile duct ligation (BDL) in mice, aiming at identifying a set of parameters that could be used as robust biomarkers for transition of different disease progression phases. Results: Statistical analysis of the more than 6,000 data points revealed distinct temporal phases of disease. Time course correlation analysis of biochemical, histochemical and mRNA transcript parameters (=factors) defined 6 clusters for different phases of disease progression. The number of CTGF-positive cells provided the most reliable overall measure for disease progression at histological level, bilirubin at biochemical level, and metalloproteinase inhibitor 1 (Timp1) at transcript level. Prominent molecular events exhibited by strong transcript peaks are found for the transcriptional regulator Nr0b2 (Shp) and 1,25-dihydroxyvitamin D(3) 24-hydroxylase (Cyp24a1) at 6 h. Based on these clusters, we constructed a decision tree of factor combinations potentially useful as markers for different time intervals of disease progression. Best prediction for onset of disease is achieved by fibronectin (Fn1), for early disease phase by Cytochrome P450 1A2 (Cyp1a2), passage to perpetuation phase by collagen1α-1 (Col1a1), and transition to the progression phase by interleukin 17-a (Il17a), with early and late progression separated by Col1a1. Notably, these predictions remained stable even for randomly chosen small sub-sets of factors selected from the clusters. Conclusion: Our detailed time-resolved explorative study of liver homogenates following BDL revealed a well-coordinated response, resulting in disease phase dependent parameter modulations at morphological, biochemical, metabolic and gene expression levels. Interestingly, a small set of selected parameters can be used as diagnostic markers to predict disease stages in mice with cholestatic liver disease.
    Electronic ISSN: 1752-0509
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2015-11-22
    Description: Background: During angiogenesis, the formation of new blood vessels from existing ones, endothelial cells differentiate into tip and stalk cells, after which one tip cell leads the sprout. More recently, this picture has changed. It has become clear that endothelial cells compete for the tip position during angiogenesis: a phenomenon named tip cell overtaking. The biological function of tip cell overtaking is not yet known. From experimental observations, it is unclear to what extent tip cell overtaking is a side effect of sprouting or to what extent it is regulated through a VEGF-Dll4-Notch signaling network and thus might have a biological function. To address this question, we studied tip cell overtaking in computational models of angiogenic sprouting in absence and in presence of VEGF-Dll4-Notch signaling. Results: We looked for tip cell overtaking in two existing Cellular Potts models of angiogenesis. In these simulation models angiogenic sprouting-like behavior emerges from a small set of plausible cell behaviors. In the first model, cells aggregate through contact-inhibited chemotaxis. In the second model the endothelial cells assume an elongated shape and aggregate through (non-inhibited) chemotaxis. In both these sprouting models the endothelial cells spontaneously migrate forwards and backwards within sprouts, suggesting that tip cell overtaking might occur as a side effect of sprouting. In accordance with other experimental observations, in our simulations the cells’ tendency to occupy the tip position can be regulated when two cell lines with different levels of Vegfr2 expression are contributing to sprouting (mosaic sprouting assay), where cell behavior is regulated by a simple VEGF-Dll4-Notch signaling network. Conclusions: Our modeling results suggest that tip cell overtaking can occur spontaneously due to the stochastic motion of cells during sprouting. Thus, tip cell overtaking and sprouting dynamics may be interdependent and should be studied and interpreted in combination. VEGF-Dll4-Notch can regulate the ability of cells to occupy the tip cell position in our simulations. We propose that the function of VEGF-Dll4-Notch signaling might not be to regulate which cell ends up at the tip, but to assure that the cell that randomly ends up at the tip position acquires the tip cell phenotype.
    Electronic ISSN: 1752-0509
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2015-11-22
    Description: Background: Morphogenesis is a developmental process in which cells organize into shapes and patterns. Complex, non-linear and multi-factorial models with images as output are commonly used to study morphogenesis. It is difficult to understand the relation between the uncertainty in the input and the output of such ‘black-box’ models, giving rise to the need for sensitivity analysis tools. In this paper, we introduce a workflow for a global sensitivity analysis approach to study the impact of single parameters and the interactions between them on the output of morphogenesis models. Results: To demonstrate the workflow, we used a published, well-studied model of vascular morphogenesis. The parameters of this cellular Potts model (CPM) represent cell properties and behaviors that drive the mechanisms of angiogenic sprouting. The global sensitivity analysis correctly identified the dominant parameters in the model, consistent with previous studies. Additionally, the analysis provided information on the relative impact of single parameters and of interactions between them. This is very relevant because interactions of parameters impede the experimental verification of the predicted effect of single parameters. The parameter interactions, although of low impact, provided also new insights in the mechanisms of in silico sprouting. Finally, the analysis indicated that the model could be reduced by one parameter. Conclusions: We propose global sensitivity analysis as an alternative approach to study the mechanisms of morphogenesis. Comparison of the ranking of the impact of the model parameters to knowledge derived from experimental data and from manipulation experiments can help to falsify models and to find the operand mechanisms in morphogenesis. The workflow is applicable to all ‘black-box’ models, including high-throughput in vitro models in which output measures are affected by a set of experimental perturbations.
    Electronic ISSN: 1752-0509
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2015-11-22
    Description: Background: Reconstructing gene regulatory networks (GRNs) from expression data is a challenging task that has become essential to the understanding of complex regulatory mechanisms in cells. The major issues are the usually very high ratio of number of genes to sample size, and the noise in the available data. Integrating biological prior knowledge to the learning process is a natural and promising way to partially compensate for the lack of reliable expression data and to increase the accuracy of network reconstruction algorithms. Results: In this manuscript, we present PriorPC, a new algorithm based on the PC algorithm. PC algorithm is one of the most popular methods for Bayesian network reconstruction. The result of PC is known to depend on the order in which conditional independence tests are processed, especially for large networks. PriorPC uses prior knowledge to exclude unlikely edges from network estimation and introduces a particular ordering for the conditional independence tests. We show on synthetic data that the structural accuracy of networks obtained with PriorPC is greatly improved compared to PC. Conclusion: PriorPC improves structural accuracy of inferred gene networks by using soft priors which assign to edges a probability of existence. It is robust to false prior which is not avoidable in the context of biological data. PriorPC is also fast and scales well for large networks which is important for its applicability to real data.
    Electronic ISSN: 1752-0509
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2015-11-24
    Description: Background: A universal feature of metabolic networks is their hourglass or bow-tie structure on cellular level. This architecture reflects the conversion of multiple input nutrients into multiple biomass components via a small set of precursor metabolites. However, it is yet unclear to what extent this structural feature is the result of natural selection. Results: We extend flux balance analysis to account for limited cellular resources. Using this model, optimal structure of metabolic networks can be calculated for different environmental conditions. We observe a significant structural reshaping of metabolic networks for a toy-network and E. coli core metabolism if we increase the share of invested resources for switching between different nutrient conditions. Here, hub nodes emerge and the optimal network structure becomes bow-tie-like as a consequence of limited cellular resource constraint. We confirm this theoretical finding by comparing the reconstructed metabolic networks of bacterial species with respect to their lifestyle. Conclusions: We show that bow-tie structure can give a system-level fitness advantage to organisms that live in highly competitive and fluctuating environments. Here, limitation of cellular resources can lead to an efficiency-flexibility tradeoff where it pays off for the organism to shorten catabolic pathways if they are frequently activated and deactivated. As a consequence, generalists that shuttle between diverse environmental conditions should have a more predominant bow-tie structure than specialists that visit just a few isomorphic habitats during their life cycle.
    Electronic ISSN: 1752-0509
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2015-11-24
    Description: Background: The quasi steady-state approximation (QSSA) is frequently used to reduce deterministic models of biochemical networks. The resulting equations provide a simplified description of the network in terms of non-elementary reaction functions (e.g. Hill functions). Such deterministic reductions are frequently a basis for heuristic stochastic models in which non-elementary reaction functions are used to define reaction propensities. Despite their popularity, it remains unclear when such stochastic reductions are valid. It is frequently assumed that the stochastic reduction can be trusted whenever its deterministic counterpart is accurate. However, a number of recent examples show that this is not necessarily the case. Results: Here we explain the origin of these discrepancies, and demonstrate a clear relationship between the accuracy of the deterministic and the stochastic QSSA for examples widely used in biological systems. With an analysis of a two-state promoter model, and numerical simulations for a variety of other models, we find that the stochastic QSSA is accurate whenever its deterministic counterpart provides an accurate approximation over a range of initial conditions which cover the likely fluctuations from the quasi steady-state (QSS). We conjecture that this relationship provides a simple and computationally inexpensive way to test the accuracy of reduced stochastic models using deterministic simulations. Conclusions: The stochastic QSSA is one of the most popular multi-scale stochastic simulation methods. While the use of QSSA, and the resulting non-elementary functions has been justified in the deterministic case, it is not clear when their stochastic counterparts are accurate. In this study, we show how the accuracy of the stochastic QSSA can be tested using their deterministic counterparts providing a concrete method to test when non-elementary rate functions can be used in stochastic simulations.
    Electronic ISSN: 1752-0509
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2015-10-27
    Description: Background: Yarrowia lipolytica is a non-conventional yeast that is extensively investigated for its ability to excrete citrate or to accumulate large amounts of storage lipids, which is of great significance for single cell oil production. Both traits are thus of interest for basic research as well as for biotechnological applications but they typically occur simultaneously thus lowering the respective yields. Therefore, engineering of strains with high lipid content relies on novel concepts such as computational simulation to better understand the two competing processes and to eliminate citrate excretion. Results: Using a genome-scale model (GSM) of baker's yeast as a scaffold, we reconstructed the metabolic network of Y. lipolytica and optimized it for use in flux balance analysis (FBA), with the aim to simulate growth and lipid production phases of this yeast. We validated our model and found the predictions of the growth behavior of Y. lipolytica in excellent agreement with experimental data. Based on these data, we successfully designed a fed-batch strategy to avoid citrate excretion during the lipid production phase. Further analysis of the network suggested that the oxygen demand of Y. lipolytica is reduced upon induction of lipid synthesis. According to this finding we hypothesized that a reduced aeration rate might induce lipid accumulation. This prediction was indeed confirmed experimentally. In a fermentation combining these two strategies lipid content of the biomass was increased by 80 %, and lipid yield was improved more than four-fold, compared to standard conditions. Conclusions: Genome scale network reconstructions provide a powerful tool to predict the effects of genetic modifications and the metabolic response to environmental conditions. The high accuracy and the predictive value of a newly reconstructed GSM of Y. lipolytica to optimize growth conditions for lipid accumulation are demonstrated. Based on these findings, further strategies for engineering Y. lipolytica towards higher efficiency in single cell oil production are discussed.
    Electronic ISSN: 1752-0509
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2015-05-29
    Description: Background: Bistability is ubiquitous in biological systems. For example, bistability is found in many reaction networks that involve the control and execution of important biological functions, such as signaling processes. Positive feedback loops, composed of species and reactions, are necessary for bistability, and generally for multi-stationarity, to occur. These loops are therefore often used to illustrate and pinpoint the parts of a multi-stationary network that are relevant (‘responsible’) for the observed multi-stationarity. However positive feedback loops are generally abundant in reaction networks but not all of them are important for understanding the network’s dynamics. Results: We present an automated procedure to determine the relevant positive feedback loops of a multi-stationary reaction network. The procedure only reports the loops that are relevant for multi-stationarity (that is, when broken multi-stationarity disappears) and not all positive feedback loops of the network. We show that the relevant positive feedback loops must be understood in the context of the network (one loop might be relevant for one network, but cannot create multi-stationarity in another). Finally, we demonstrate the procedure by applying it to several examples of signaling processes, including a ubiquitination and an apoptosis network, and to models extracted from the Biomodels database. The procedure is implemented in Maple. Conclusions: We have developed and implemented an automated procedure to find relevant positive feedback loops in reaction networks. The results of the procedure are useful for interpretation and summary of the network’s dynamics.
    Electronic ISSN: 1752-0509
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2016-07-23
    Description: Calcium signalling relies on the flux of calcium ions across membranes yet how signals in different compartments are related remains unclear. In particular, similar calcium signals on both sides of the nuclear...
    Electronic ISSN: 1752-0509
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2016-07-28
    Description: Computational support is essential in order to reason on the dynamics of biological systems. We have developed the software tool ANIMO (Analysis of Networks with Interactive MOdeling) to provide such computati...
    Electronic ISSN: 1752-0509
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2016-08-02
    Description: Simulating protein folding motions is an important problem in computational biology. Motion planning algorithms, such as Probabilistic Roadmap Methods, have been successful in modeling the folding landscape. P...
    Electronic ISSN: 1752-0509
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2016-08-02
    Description: Prediction of de novo protein-protein interaction is a critical step toward reconstructing PPI networks, which is a central task in systems biology. Recent computational approaches have shifted from making PPI pr...
    Electronic ISSN: 1752-0509
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2016-08-02
    Description: Computational modeling is an important tool for the study of complex biochemical processes associated with cell signaling networks. However, it is challenging to simulate processes that involve hundreds of lar...
    Electronic ISSN: 1752-0509
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2016-08-02
    Description: Gene expression is mediated by specialized cis-regulatory modules (CRMs), the most prominent of which are called enhancers. Early experiments indicated that enhancers located far from the gene promoters are often...
    Electronic ISSN: 1752-0509
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2016-08-02
    Description: Networks provide effective models to study complex biological systems, such as gene and protein interaction networks. With the advent of new sequencing technologies, many life scientists are grasping for user-...
    Electronic ISSN: 1752-0509
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2016-07-13
    Description: Metabolic Flux Analysis (MFA) is a methodology that has been successfully applied to estimate metabolic fluxes in living cells. However, traditional frameworks based on this approach have some limitations, par...
    Electronic ISSN: 1752-0509
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2016-07-17
    Description: The concept of reproducibility is a foundation of the scientific method. With the arrival of fast and powerful computers over the last few decades, there has been an explosion of results based on complex compu...
    Electronic ISSN: 1752-0509
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2013-09-17
    Description: Molecular interactions are often represented as network models which have become the common language of many areas of biology. Graphs serve as convenient mathematical representations of network models and have themselves become objects of study. Their topology has been intensively researched over the last decade after evidence was found that they share underlying design principles with many other types of networks.Initial studies suggested that molecular interaction network topology is related to biological function and evolution. However, further whole-network analyses did not lead to a unified view on what this relation may look like, with conclusions highly dependent on the type of molecular interactions considered and the metrics used to study them. It is unclear whether global network topology drives function, as suggested by some researchers, or whether it is simply a byproduct of evolution or even an artefact of representing complex molecular interaction networks as graphs.Nevertheless, network biology has progressed significantly over the last years. We review the literature, focusing on two major developments. First, realizing that molecular interaction networks can be naturally decomposed into subsystems (such as modules and pathways), topology is increasingly studied locally rather than globally. Second, there is a move from a descriptive approach to a predictive one: rather than correlating biological network topology to generic properties such as robustness, it is used to predict specific functions or phenotypes.Taken together, this change in focus from globally descriptive to locally predictive points to new avenues of research. In particular, multi-scale approaches are developments promising to drive the study of molecular interaction networks further.
    Electronic ISSN: 1752-0509
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2013-10-03
    Description: Background: Understanding the topology and dynamics of the human protein-protein interaction (PPI) network will significantly contribute to biomedical research, therefore its systematic reconstruction is required. Several meta-databases integrate source PPI datasets, but the protein node sets of their networks vary depending on the PPI data combined. Due to this inherent heterogeneity, the way in which the human PPI network expands via multiple dataset integration has not been comprehensively analyzed. We aim at assembling the human interactome in a global structured way and exploring it to gain insights of biological relevance. Results: First, we defined the UniProtKB manually reviewed human "complete" proteome as the reference protein-node set and then we mined five major source PPI datasets for direct PPIs exclusively between the reference proteins. We updated the protein and publication identifiers and normalized all PPIs to the UniProt identifier level. The reconstructed interactome covers approximately 60% of the human proteome and has a scale-free structure. No apparent differentiating gene functional classification characteristics were identified for the unrepresented proteins. The source dataset integration augments the network mainly in PPIs. Polyubiquitin emerged as the highest-degree node, but the inclusion of most of the identified PPIs may be reconsidered. The high number (〉300) of connections of the subsequent fifteen proteins correlates well with their essential biological role. According to the power-law network structure, the unrepresented proteins should mainly have up to four connections with equally poorly-connected interactors. Conclusions: Reconstructing the human interactome based on the a priori definition of the protein nodes enabled us to identify the currently included part of the human "complete" proteome, and discuss the role of the proteins within the network topology with respect to their function. As the network expansion has to comply with the scale-free theory, we suggest that the core of the human interactome has essentially emerged. Thus, it could be employed in systems biology and biomedical research, despite the considerable number of currently unrepresented proteins. The latter are probably involved in specialized physiological conditions, justifying the scarcity of related PPI information, and their identification can assist in designing relevant functional experiments and targeted text mining algorithms.
    Electronic ISSN: 1752-0509
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2013-10-04
    Description: Background: Flux Balance Analysis is a theoretically elegant, computationally efficient, genome-scale approach to predicting biochemical reaction fluxes. Yet FBA models exhibit persistent mathematical degeneracy that generally limits their predictive power. Results: We propose a novel objective function for cellular metabolism that accounts for and exploits degeneracy in the metabolic network to improve flux predictions. In our model, regulation drives metabolism toward a region of flux space that allows nearly optimal growth. Metabolic mutants deviate minimally from this region, a function represented mathematically as a convex cone. Near-optimal flux configurations within this region are considered equally plausible and not subject to further optimizing regulation. Consistent with relaxed regulation near optimality, we find that the size of the near-optimal region predicts flux variability under experimental perturbation. Conclusion: Accounting for suboptimal solutions can improve the predictive power of metabolic FBA models. Because fluctuations of enzyme and metabolite levels are inevitable, tolerance for suboptimality may support a functionally robust metabolic network.
    Electronic ISSN: 1752-0509
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2013-09-26
    Description: Background: Cell-to-cell variability in mRNA and proteins has been observed in many biological systems, including the human innate immune response to viral infection. Most of these studies have focused on variability that arises from (a) intrinsic stochastic fluctuations in gene expression and (b) extrinsic sources (e.g. fluctuations in transcription factors). The main focus of our study is the effect of extracellular signaling on enhancing intrinsic stochastic fluctuations. As a new source of noise, the communication between cells with fluctuating numbers of components has received little attention. We use agent-based modeling to study this contribution to noise in a system of human dendritic cells responding to viral infection. Results: Our results, validated by single-cell experiments, show that in the transient state cell-to-cell variability in an interferon-stimulated gene (DDX58) arises from the interplay between the spatial randomness of the cellular sources of the interferon and the temporal stochasticity of its own production. The numerical simulations give insight into the time scales on which autocrine and paracrine signaling act in a heterogeneous population of dendritic cells upon viral infection. We study the effect of different factors that influence the magnitude of the cell-to-cell-variability of the induced gene, including the cell density, multiplicity of infection, and the time scale over which the cellular sources begin producing the cytokine. Conclusions: We propose a mechanism of noise propagation through extracellular communication and establish conditions under which the mechanism is operative. The cellular stochasticity of gene induction, which we investigate, is not limited to the specific interferon-induced gene we have studied; a broad distribution of copy numbers across cells is to be expected for other interferon-stimulated genes. This can lead to functional consequences for the system-level response to a viral challenge.
    Electronic ISSN: 1752-0509
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2013-09-29
    Description: Background: The complexity and multiscale nature of the mammalian immune response provides an excellent test bed for the potential of mathematical modeling and simulation to facilitate mechanistic understanding. Historically, mathematical models of the immune response focused on subsets of the immune system and/or specific aspects of the response. Mathematical models have been developed for the humoral side of the immune response, or for the cellular side, or for cytokine kinetics, but rarely have they been proposed to encompass the overall system complexity. We propose here a framework for integration of subset models, based on a system biology approach. Results: A dynamic simulator, the Fully-integrated Immune Response Model (FIRM), was built in a stepwise fashion by integrating published subset models and adding novel features. The approach used to build the model includes the formulation of the network of interacting species and the subsequent introduction of rate laws to describe each biological process. The resulting model represents a multi-organ structure, comprised of the target organ where the immune response takes place, circulating blood, lymphoid T, and lymphoid B tissue. The cell types accounted for include macrophages, a few T-cell lineages (cytotoxic, regulatory, helper 1, and helper 2), and B-cell activation to plasma cells. Four different cytokines were accounted for: IFN-gamma, IL-4, IL-10 and IL-12. In addition, generic inflammatory signals are used to represent the kinetics of IL-1, IL-2, and TGF-beta. Cell recruitment, differentiation, replication, apoptosis and migration are described as appropriate for the different cell types. The model is a hybrid structure containing information from several mammalian species. The structure of the network was built to be physiologically and biochemically consistent. Rate laws for all the cellular fate processes, growth factor production rates and half-lives, together with antibody production rates and half-lives, are provided. The results demonstrate how this framework can be used to integrate mathematical models of the immune response from several published sources and describe qualitative predictions of global immune system response arising from the integrated, hybrid model. In addition, we show how the model can be expanded to include novel biological findings. Case studies were carried out to simulate TB infection, tumor rejection, response to a blood borne pathogen and the consequences of accounting for regulatory T-cells. Conclusions: The final result of this work is a postulated and increasingly comprehensive representation of the mammalian immune system, based on physiological knowledge and susceptible to further experimental testing and validation. We believe that the integrated nature of FIRM has the potential to simulate a range of responses under a variety of conditions, from modeling of immune responses after tuberculosis (TB) infection to tumor formation in tissues. FIRM also has the flexibility to be expanded to include both complex and novel immunological response features as our knowledge of the immune system advances.
    Electronic ISSN: 1752-0509
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2013-10-03
    Description: Background: Influenza is a common infectious disease caused by influenza viruses. Annual epidemics cause severe illnesses, deaths, and economic loss around the world. To better defend against influenza viral infection, it is essential to understand its mechanisms and associated host responses. Many studies have been conducted to elucidate these mechanisms, however, the overall picture remains incompletely understood. A systematic understanding of influenza viral infection in host cells is needed to facilitate the identification of influential host response mechanisms and potential drug targets.DescriptionWe constructed a comprehensive map of the influenza A virus ('IAV') life cycle ('FluMap') by undertaking a literature-based, manual curation approach. Based on information obtained from publicly available pathway databases, updated with literature-based information and input from expert virologists and immunologists, FluMap is currently composed of 960 factors (i.e., proteins, mRNAs etc.) and 456 reactions, and is annotated with ~500 papers and curation comments. In addition to detailing the type of molecular interactions, isolate/strain specific data are also available. The FluMap was built with the pathway editor CellDesigner in standard SBML (Systems Biology Markup Language) format and visualized as an SBGN (Systems Biology Graphical Notation) diagram. It is also available as a web service (online map) based on the iPathways+ system to enable community discussion by influenza researchers. We also demonstrate computational network analyses to identify targets using the FluMap. Conclusion: The FluMap is a comprehensive pathway map that can serve as a graphically presented knowledge-base and as a platform to analyze functional interactions between IAV and host factors. Publicly available webtools will allow continuous updating to ensure the most reliable representation of the host-virus interaction network. The FluMap is available at http://www.influenza-x.org/flumap/.
    Electronic ISSN: 1752-0509
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2013-06-06
    Description: Background: In genomics, highly relevant gene interaction (co-expression) networks have been constructed by finding significant pair-wise correlations between genes in expression datasets. These networks are then mined to elucidate biological function at the polygenic level. In some cases networks may be constructed from input samples that measure gene expression under a variety of different conditions, such as for different genotypes, environments, disease states and tissues. When large sets of samples are obtained from public repositories it is often unmanageable to associate samples into condition-specific groups, and combining samples from various conditions has a negative effect on network size. A fixed significance threshold is often applied also limiting the size of the final network. Therefore, we propose pre-clustering of input expression samples to approximate condition-specific grouping of samples and individual network construction of each group as a means for dynamic significance thresholding. The net effect is increase sensitivity thus maximizing the total co-expression relationships in the final co-expression network compendium. Results: A total of 86 Arabidopsis thaliana co-expression networks were constructed after k-means partitioning of 7,105 publicly available ATH1 Affymetrix microarray samples. We term each pre-sorted network a Gene Interaction Layer (GIL). Random Matrix Theory (RMT), an un-supervised thresholding method, was used to threshold each of the 86 networks independently, effectively providing a dynamic (non-global) threshold for the network. The overall gene count across all GILs reached 19,588 genes (94.7% measured gene coverage) and 558,022 unique co-expression relationships. In comparison, network construction without pre-sorting of input samples yielded only 3,297 genes (15.9%) and 129,134 relationships. in the global network. Conclusions: Here we show that pre-clustering of microarray samples helps approximate condition-specific networks and allows for dynamic thresholding using un-supervised methods. Because RMT ensures only highly significant interactions are kept, the GIL compendium consists of 558,022 unique high quality A. thaliana co-expression relationships across almost all of the measurable genes on the ATH1 array. For A. thaliana, these networks represent the largest compendium to date of significant gene co-expression relationships, and are a means to explore complex pathway, polygenic, and pleiotropic relationships for this focal model plant. The networks can be explored at sysbio.genome.clemson.edu. Finally, this method is applicable to any large expression profile collection for any organism and is best suited where a knowledge-independent network construction method is desired.
    Electronic ISSN: 1752-0509
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2013-06-12
    Description: Background: Enterobacteriaceae diversified from an ancestral lineage ~300-500 million years ago (mya) into a wide variety of free-living and host-associated lifestyles. Nutrient availability varies across niches, and evolution of metabolic networks likely played a key role in adaptation. Results: Here we use a paleo systems biology approach to reconstruct and model metabolic networks of ancestral nodes of the enterobacteria phylogeny to investigate metabolism of ancient microorganisms and evolution of the networks. Specifically, we identified orthologous genes across genomes of 72 free-living enterobacteria (16 genera), and constructed core metabolic networks capturing conserved components for ancestral lineages leading to E. coli/Shigella (~10 mya), E. coli/Shigella/Salmonella (~100 mya), and all enterobacteria (~300-500 mya). Using these models we analyzed the capacity for carbon, nitrogen, phosphorous, sulfur, and iron utilization in aerobic and anaerobic conditions, identified conserved and differentiating catabolic phenotypes, and validated predictions by comparison to experimental data from extant organisms. Conclusions: This is a novel approach using quantitative ancestral models to study metabolic network evolution and may be useful for identification of new targets to control infectious diseases caused by enterobacteria.
    Electronic ISSN: 1752-0509
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2013-04-11
    Description: Background: Abnormal synchronization of brain oscillations is found to be associated with various core symptoms of schizophrenia. However, the underlying mechanism of this association remains yet to be elucidated. Results: In this study, we found that coupled local and global feedback (CLGF) circuits in the cortical functional network are related to the abnormal synchronization and also correlated to the negative symptom of schizophrenia. Analysis of the magnetoencephalography data obtained from patients with chronic schizophrenia during rest revealed an increase in beta band synchronization and a reduction in gamma band power compared to healthy controls. Using a feedback identification method based on non-causal impulse responses, we constructed functional feedback networks and found that CLGF circuits were significantly reduced in schizophrenia. From computational analysis on the basis of the Wilson-Cowan model, we unraveled that the CLGF circuits are critically involved in the abnormal synchronization and the dynamical switching between beta and gamma bands power in schizophrenia. Moreover, we found that the abundance of CLGF circuits was negatively correlated with the development of negative symptoms of schizophrenia, suggesting that the negative symptom is closely related to the impairment of this circuit. Conclusions: Our study implicates that patients with schizophrenia might have the impaired coupling of inter- and intra-regional functional feedbacks and that the CLGF circuit might serve as a critical bridge between abnormal synchronization and the negative symptoms of schizophrenia.
    Electronic ISSN: 1752-0509
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2013-09-14
    Description: Background: Improving our understanding of processes at the core of cellular lifestyles can be aided by combining information from genetic analyses, high-throughput experiments and computational predictions. Results: We combined data and predictions derived from phenotypic, physiological, genetic and computational analyses to dissect the metabolic and energetic networks of the facultative photosynthetic bacterium Rhodobacter sphaeroides. We focused our analysis on pathways crucial to the production and recycling of pyridine nucleotides during aerobic respiratory and anaerobic photosynthetic growth in the presence of an organic electron donor. In particular, we assessed the requirement for NADH/NADPH transhydrogenase enzyme, PntAB during respiratory and photosynthetic growth. Using high-throughput phenotype microarrays (PMs), we found that PntAB is essential for photosynthetic growth in the presence of many organic electron donors, particularly those predicted to require its activity to produce NADPH. Utilizing the genome-scale metabolic model iRsp1095, we predicted alternative routes of NADPH synthesis and used gene expression analyses to show that transcripts from a subset of the corresponding genes were conditionally increased in a DeltapntAB mutant. We then used a combination of metabolic flux predictions and mutational analysis to identify flux redistribution patterns utilized in the DeltapntAB mutant to compensate for the loss of this enzyme. Data generated from metabolic and phenotypic analyses of wild type and mutant cells were used to develop iRsp1140, an expanded genome-scale metabolic reconstruction for R. sphaeroides with improved ability to analyze and predict pathways associated with photosynthesis and other metabolic processes. Conclusion: These analyses increased our understanding of key aspects of the photosynthetic lifestyle, highlighting the added importance of NADPH production under these conditions. It also led to a significant improvement in the predictive capabilities of a metabolic model for the different energetic lifestyles of a facultative organism.
    Electronic ISSN: 1752-0509
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2013-09-23
    Description: Background: Function and efficiency of a transcription factor (TF) are often modulated by interactions with other proteins or TFs to achieve finely tuned regulation of target genes. However, complex TF interactions are often not taken into account to identify functionally active TF-targets and characterize their regulatory network. Here, we have developed a computational framework for integrated analysis of genome-wide ChIP-seq and gene expression data to identify the functional interacting partners of a TF and characterize the TF-driven regulatory network. We have applied this methodology in a rat model of macrophage dependent crescentic glomerulonephritis (Crgn) where we have previously identified JunD as a TF gene responsible for enhanced macrophage activation associated with susceptibility to Crgn in the Wistar-Kyoto (WKY) strain. Results: To evaluate the regulatory effects of JunD on its target genes, we analysed data from two rat strains (WKY and WKY.LCrgn2) that show 20-fold difference in their JunD expression in macrophages. We identified 36 TFs interacting with JunD/Jun and JunD/ATF complexes (i.e., AP1 complex), which resulted in strain-dependent gene expression regulation of 1,274 target genes in macrophages. After lipopolysaccharide (LPS) stimulation we found that 2.4 fold more JunD/ATF-target genes were up-regulated as compared with JunD/Jun-target genes. The enriched 314 genes up-regulated by AP1 complex during LPS stimulation were most significantly enriched for immune response (P = 6.9 x 10-4) and antigen processing and presentation functions (P = 2.4 x 10-5), suggesting a role for these genes in macrophage LPS-stimulated activation driven by JunD interaction with Jun/ATF. Conclusions: In summary, our integrated analyses revealed a large network of TFs interacting with JunD and their regulated targets. Our data also suggest a previously unappreciated contribution of the ATF complex to JunD-mediated mechanisms of macrophage activation in a rat model of crescentic glomerulonephritis.
    Electronic ISSN: 1752-0509
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2013-09-23
    Description: Background: Understand the process of amino acid fermentation as a comprehensive system is a challenging task. Previously, we developed a literature-based dynamic simulation model, which included transcriptional regulation, transcription, translation, and enzymatic reactions related to glycolysis, the pentose phosphate pathway, the tricarboxylic acid (TCA) cycle, and the anaplerotic pathway of Escherichia coli. During simulation, cell growth was defined such as to reproduce the experimental cell growth profile of fed-batch cultivation in jar fermenters. However, to confirm the biological appropriateness of our model, sensitivity analysis and experimental validation were required. Results: We constructed an l-glutamic acid fermentation simulation model by removing sucAB, a gene encoding alpha-ketoglutarate dehydrogenase. We then performed systematic sensitivity analysis for l-glutamic acid production; the results of this process corresponded with previous experimental data regarding l-glutamic acid fermentation. Furthermore, it allowed us to predicted the possibility that accumulation of 3-phosphoglycerate in the cell would regulate the carbon flux into the TCA cycle and lead to an increase in the yield of l-glutamic acid via fermentation. We validated this hypothesis through a fermentation experiment involving a model l-glutamic acid-production strain, E. coli MG1655 DeltasucA in which the phosphoglycerate kinase gene had been amplified to cause accumulation of 3-phosphoglycerate. The observed increase in l-glutamic acid production verified the biologically meaningful predictive power of our dynamic metabolic simulation model. Conclusions: In this study, dynamic simulation using a literature-based model was shown to be useful for elucidating the precise mechanisms involved in fermentation processes inside the cell. Further exhaustive sensitivity analysis will facilitate identification of novel factors involved in the metabolic regulation of amino acid fermentation.
    Electronic ISSN: 1752-0509
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2013-09-23
    Description: Background: One of the challenging tasks in systems biology is parameter estimation in nonlinear dynamic models. A biological model usually contains a large number of correlated parameters leading to non-identifiability problems. Although many approaches have been developed to address both structural and practical non-identifiability problems, very few studies have been made to systematically investigate parameter correlations. Results: In this study we present an approach that is able to identify both pairwise parameter correlations and higher order interrelationships among parameters in nonlinear dynamic models. Correlations are interpreted as surfaces in the subspaces of correlated parameters. Based on the correlation information obtained in this way both structural and practical non-identifiability can be clarified. Moreover, it can be concluded from the correlation analysis that a minimum number of data sets with different inputs for experimental design are needed to relieve the parameter correlations, which corresponds to the maximum number of correlated parameters among the correlation groups. Conclusions: The information of pairwise and higher order interrelationships among parameters in biological models gives a deeper insight into the cause of non-identifiability problems. The result of our correlation analysis provides a necessary condition for experimental design in order to acquire suitable measurement data for unique parameter estimation.
    Electronic ISSN: 1752-0509
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2015-05-16
    Description: Background: Gene regulatory network (GRN) dynamical models are standard systems biology tools for the mechanistic understanding of developmental processes and are enabling the formalization of the epigenetic landscape (EL) model. Methods: In this work we propose a modeling framework which integrates standard mathematical analyses to extend the simple GRN Boolean model in order to address questions regarding the impact of gene specific perturbations in cell-fate decisions during development. Results: We systematically tested the propensity of individual genes to produce qualitative changes to the EL induced by modification of gene characteristic decay rates reflecting the temporal dynamics of differentiation stimuli. By applying this approach to the flower specification GRN (FOS-GRN) we uncovered differences in the functional (dynamical) role of their genes. The observed dynamical behavior correlates with biological observables. We found a relationship between the propensity of undergoing attractor transitions between attraction basins in the EL and the direction of differentiation during early flower development - being less likely to induce up-stream attractor transitions as the course of development progresses. Our model also uncovered a potential mechanism at play during the transition from EL basins defining inflorescence meristem to those associated to flower organs meristem. Additionally, our analysis provided a mechanistic interpretation of the homeotic property of the ABC genes, being more likely to produce both an induced inter-attractor transition and to specify a novel attractor. Finally, we found that there is a close relationship between a gene’s topological features and its propensity to produce attractor transitions. Conclusions: The study of how the state-space associated with a dynamical model of a GRN can be restructured by modulation of genes’ characteristic expression times is an important aid for understanding underlying mechanisms occurring during development. Our contribution offers a simple framework to approach such problem, as exemplified here by the case of flower development. Different GRN models and the effect of diverse inductive signals can be explored within the same framework. We speculate that the dynamical role of specific genes within a GRN, as uncovered here, might give information about which genes are more likely to link a module to other regulatory circuits and signaling transduction pathways.
    Electronic ISSN: 1752-0509
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2015-05-16
    Description: Background: Urothelial pathogenesis is a complex process driven by an underlying network of interconnected genes. The identification of novel genomic target regions and gene targets that drive urothelial carcinogenesis is crucial in order to improve our current limited understanding of urothelial cancer (UC) on the molecular level. The inference of genome-wide gene regulatory networks (GRN) from large-scale gene expression data provides a promising approach for a detailed investigation of the underlying network structure associated to urothelial carcinogenesis. Methods: In our study we inferred and compared three GRNs by the application of the BC3Net inference algorithm to large-scale transitional cell carcinoma gene expression data sets from Illumina RNAseq (179 samples), Illumina Bead arrays (165 samples) and Affymetrix Oligo microarrays (188 samples). We investigated the structural and functional properties of GRNs for the identification of molecular targets associated to urothelial cancer. Results: We found that the urothelial cancer (UC) GRNs show a significant enrichment of subnetworks that are associated with known cancer hallmarks including cell cycle, immune response, signaling, differentiation and translation. Interestingly, the most prominent subnetworks of co-located genes were found on chromosome regions 5q31.3 (RNAseq), 8q24.3 (Oligo) and 1q23.3 (Bead), which all represent known genomic regions frequently deregulated or aberated in urothelial cancer and other cancer types. Furthermore, the identified hub genes of the individual GRNs, e.g., HID1/DMC1 (tumor development), RNF17/TDRD4 (cancer antigen) and CYP4A11 (angiogenesis/ metastasis) are known cancer associated markers. The GRNs were highly dataset specific on the interaction level between individual genes, but showed large similarities on the biological function level represented by subnetworks. Remarkably, the RNAseq UC GRN showed twice the proportion of significant functional subnetworks. Based on our analysis of inferential and experimental networks the Bead UC GRN showed the lowest performance compared to the RNAseq and Oligo UC GRNs. Conclusion: To our knowledge, this is the first study investigating genome-scale UC GRNs. RNAseq based gene expression data is the data platform of choice for a GRN inference. Our study offers new avenues for the identification of novel putative diagnostic targets for subsequent studies in bladder tumors.
    Electronic ISSN: 1752-0509
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2015-12-26
    Description: Most biomolecular reaction modeling tools allow users to build models with a single list of parameter values. However, a common scenario involves different parameterizations of the model to account for the res...
    Electronic ISSN: 1752-0509
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2016-03-04
    Description: Recent advances in large datasets analysis offer new insights to modern biology allowing system-level investigation of pathologies. Here we describe a novel computational method that exploits the ever-growing ...
    Electronic ISSN: 1752-0509
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2015-12-31
    Description: Budding yeast, S. cerevisiae, has been used extensively as a model organism for studying cellular processes in evolutionarily distant species, including humans. However, different human tissues, while inheriti...
    Electronic ISSN: 1752-0509
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2016-01-12
    Description: Schizophrenia is a severe psychiatric disorder which influences around 1 % of the worldwide population. Differences between male and female patients with schizophrenia have been noted. There is an earlier age ...
    Electronic ISSN: 1752-0509
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2016-01-12
    Description: Cellular responses to extracellular perturbations require signaling pathways to capture and transmit the signals. However, the underlying molecular mechanisms of signal transduction are not yet fully understoo...
    Electronic ISSN: 1752-0509
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2016-01-12
    Description: Expression quantitative trait locus (eQTL) analysis has been widely used to understand how genetic variations affect gene expressions in the biological systems. Traditional eQTL is investigated in a pair-wise ...
    Electronic ISSN: 1752-0509
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2015-06-19
    Description: Background: Estrogen receptor alpha36 (ERalpha36), a variant of estrogen receptor alpha (ER) is expressed in about half of breast tumors, independently of the [ER+]/[ER-] status. In vitro, ERalpha36 triggers mitogenic non-genomic signaling and migration ability in response to 17beta-estradiol and tamoxifen. In vivo, highly ERalpha36 expressing tumors are of poor outcome especially as [ER+] tumors are submitted to tamoxifen treatment which, in turn, enhances ERalpha36 expression. Results: Our study aimed to validate ERalpha36 expression as a reliable prognostic factor for cancer progression from an estrogen dependent proliferative tumor toward an estrogen dispensable metastatic disease. In a retrospective study, we tried to decipher underlying mechanisms of cancer progression by using an original modeling of the relationships between ERalpha36, other estrogen and growth factor receptors and metastatic marker expression. Nonlinear correlation analyses and mutual information computations led to characterize a complex network connecting ERalpha36 to either non-genomic estrogen signaling or to metastatic process. Conclusions: This study identifies ERalpha36 expression level as a relevant classifier which should be taken into account for breast tumors clinical characterization and [ER+] tumor treatment orientation, using a generic approach for the rapid, cheap and relevant evaluation of any candidate gene expression as a predictor of a complex biological process.
    Electronic ISSN: 1752-0509
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2015-06-27
    Description: Background: Thermoanaerobacterium saccharolyticum is a hemicellulose-degrading thermophilic anaerobe that was previously engineered to produce ethanol at high yield. A major project was undertaken to develop this organism into an industrial biocatalyst, but the lack of genome information and resources were recognized early on as a key limitation. Results: Here we present a set of genome-scale resources to enable the systems level investigation and development of this potentially important industrial organism. Resources include a complete genome sequence for strain JW/SL-YS485, a genome-scale reconstruction of metabolism, tiled microarray data showing transcription units, mRNA expression data from 71 different growth conditions or timepoints and GC/MS-based metabolite analysis data from 42 different conditions or timepoints. Growth conditions include hemicellulose hydrolysate, the inhibitors HMF, furfural, diamide, and ethanol, as well as high levels of cellulose, xylose, cellobiose or maltodextrin. The genome consists of a 2.7 Mbp chromosome and a 110 Kbp megaplasmid. An active prophage was also detected, and the expression levels of CRISPR genes were observed to increase in association with those of the phage. Hemicellulose hydrolysate elicited a response of carbohydrate transport and catabolism genes, as well as poorly characterized genes suggesting a redox challenge. In some conditions, a time series of combined transcription and metabolite measurements were made to allow careful study of microbial physiology under process conditions. As a demonstration of the potential utility of the metabolic reconstruction, the OptKnock algorithm was used to predict a set of gene knockouts that maximize growth-coupled ethanol production. The predictions validated intuitive strain designs and matched previous experimental results. Conclusion: These data will be a useful asset for efforts to develop T. saccharolyticum for efficient industrial production of biofuels. The resources presented herein may also be useful on a comparative basis for development of other lignocellulose degrading microbes, such as Clostridium thermocellum.
    Electronic ISSN: 1752-0509
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2015-08-30
    Description: No description available
    Electronic ISSN: 1752-0509
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2015-08-29
    Description: Background: There are increasing efforts to bring high-throughput systems biology techniques to bear on complex animal model systems, often with a goal of learning about underlying regulatory network structures (e.g., gene regulatory networks). However, complex animal model systems typically have significant limitations on cohort sizes, number of samples, and the ability to perform follow-up and validation experiments. These constraints are particularly problematic for many current network learning approaches, which require large numbers of samples and may predict many more regulatory relationships than actually exist. Results: Here, we test the idea that by leveraging the accuracy and efficiency of classifiers, we can construct high-quality networks that capture important interactions between variables in datasets with few samples. We start from a previously-developed tree-like Bayesian classifier and generalize its network learning approach to allow for arbitrary depth and complexity of tree-like networks. Using four diverse sample networks, we demonstrate that this approach performs consistently better at low sample sizes than the Sparse Candidate Algorithm, a representative approach for comparison because it is known to generate Bayesian networks with high positive predictive value. We develop and demonstrate a resampling-based approach to enable the identification of a viable root for the learned tree-like network, important for cases where the root of a network is not known a priori. We also develop and demonstrate an integrated resampling-based approach to the reduction of variable space for the learning of the network. Finally, we demonstrate the utility of this approach via the analysis of a transcriptional dataset of a malaria challenge in a non-human primate model system, Macaca mulatta, suggesting the potential to capture indicators of the earliest stages of cellular differentiation during leukopoiesis. Conclusions: We demonstrate that by starting from effective and efficient approaches for creating classifiers, we can identify interesting tree-like network structures with significant ability to capture the relationships in the training data. This approach represents a promising strategy for inferring networks with high positive predictive value under the constraint of small numbers of samples, meeting a need that will only continue to grow as more high-throughput studies are applied to complex model systems.
    Electronic ISSN: 1752-0509
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2015-09-30
    Description: Background: Compared to engineering or physics problems, dynamical models in quantitative biology typically depend on a relatively large number of parameters. Progress in developing mathematics to manipulate such multi-parameter models and so enable their efficient interplay with experiments has been slow. Existing solutions are significantly limited by model size. Results: In order to simplify analysis of multi-parameter models a method for clustering of model parameters is proposed. It is based on a derived statistically meaningful measure of similarity between groups of parameters. The measure quantifies to what extend changes in values of some parameters can be compensated by changes in values of other parameters. The proposed methodology provides a natural mathematical language to precisely communicate and visualise effects resulting from compensatory changes in values of parameters. As a results, a relevant insight into identifiability analysis and experimental planning can be obtained. Analysis of NF- κB and MAPK pathway models shows that highly compensative parameters constitute clusters consistent with the network topology. The method applied to examine an exceptionally rich set of published experiments on the NF- κB dynamics reveals that the experiments jointly ensure identifiability of only 60 % of model parameters. The method indicates which further experiments should be performed in order to increase the number of identifiable parameters. Conclusions: We currently lack methods that simplify broadly understood analysis of multi-parameter models. The introduced tools depict mutually compensative effects between parameters to provide insight regarding role of individual parameters, identifiability and experimental design. The method can also find applications in related methodological areas of model simplification and parameters estimation.
    Electronic ISSN: 1752-0509
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2015-07-12
    Description: Background: Systems biology research typically involves the integration and analysis of heterogeneous data types in order to model and predict biological processes. Researchers therefore require tools and resources to facilitate the sharing and integration of data, and for linking of data to systems biology models.There are a large number of public repositories for storing biological data of a particular type, for example transcriptomics or proteomics, and there are several model repositories. However, this silo-type storage of data and models is not conducive to systems biology investigations. Interdependencies between multiple omics datasets and between datasets and models are essential. Researchers require an environment that will allow the management and sharing of heterogeneous data and models in the context of the experiments which created them. Results: The SEEK is a suite of tools to support the management, sharing and exploration of data and models in systems biology. The SEEK platform provides an access-controlled, web-based environment for scientists to share and exchange data and models for day-to-day collaboration and for public dissemination. A plug-in architecture allows the linking of experiments, their protocols, data, models and results in a configurable system that is available 'off the shelf'. Tools to run model simulations, plot experimental data and assist with data annotation and standardisation combine to produce a collection of resources that support analysis as well as sharing. Underlying semantic web resources additionally extract and serve SEEK metadata in RDF (Resource Description Format). SEEK RDF enables rich semantic queries, both within SEEK and between related resources in the web of Linked Open Data. Conclusion: The SEEK platform has been adopted by many systems biology consortia across Europe. It is a data management environment that has a low barrier of uptake and provides rich resources for collaboration. This paper provides an update on the functions and features of the SEEK software, and describes the use of the SEEK in the SysMO consortium (Systems biology for Micro-organisms), and the VLN (virtual Liver Network), two large systems biology initiatives with different research aims and different scientific communities.
    Electronic ISSN: 1752-0509
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2015-07-16
    Description: Background: Understanding the underlying molecular mechanisms in human diseases is important for diagnosis and treatment of complex conditions and has traditionally been done by establishing associations between disorder-genes and their associated diseases. This kind of network analysis usually includes only the interaction of molecular components and shared genes. The present study offers a network and association analysis under a bioinformatics frame involving the integration of HUGO Gene Nomenclature Committee approved gene symbols, KEGG metabolic pathways and ICD-10-CM codes for the analysis of human diseases based on the level of inclusion and hypergeometric enrichment between genes and metabolic pathways shared by the different human disorders. Methods: The present study offers the integration of HGNC approved gene symbols, KEGG metabolic pathways andICD-10-CM codes for the analysis of associations based on the level of inclusion and hypergeometricenrichment between genes and metabolic pathways shared by different diseases. Results: 880 unique ICD-10-CM codes were mapped to the 4315 OMIM phenotypes and 3083 genes with phenotype-causing mutation. From this, a total of 705 ICD-10-CM codes were linked to 1587 genes with phenotype-causing mutations and 801 KEGG pathways creating a tripartite network composed by 15,455 code-gene-pathway interactions. These associations were further used for an inclusion analysis between diseases along with gene-disease predictions based on a hypergeometric enrichment methodology. Conclusions: The results demonstrate that even though a large number of genes and metabolic pathways are shared between diseases of the same categories, inclusion levels between these genes and pathways are directional and independent of the disease classification. However, the gene-disease-pathway associations can be used for prediction of new gene-disease interactions that will be useful in drug discovery and therapeutic applications.
    Electronic ISSN: 1752-0509
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2015-07-18
    Description: Background: Pathological cardiac development is precipitated by dysregulation of calreticulin, an endoplasmic reticulum (ER)-resident calcium binding chaperone and critical contributor to cardiogenesis and embryonic viability. However, pleiotropic phenotype derangements induced by calreticulin deficiency challenge the identification of specific downstream transcriptome elements that direct proper cardiac formation. Here, differential transcriptome navigation was used to diagnose high priority calreticulin domain-specific gene expression changes and decrypt complex cardiac-specific molecular responses elicited by discrete functional regions of calreticulin. Methods: Wild type (WT), calreticulin-deficient (CALR −/− ), and calreticulin truncation variant (CALR −/− -NP and CALR −/− -PC) pluripotent stem cells were used to investigate molecular remodeling underlying a model of cardiopathology. Bioinformatic deconvolution of isolated transcriptomes was performed to identify predominant expression trends, gene ontology prioritizations, and molecular network features characteristic of discrete cell types. Results: Stem cell lines with wild type (WT), calreticulin-deficient (CALR −/− ) genomes, as well as calreticulin truncation variants exclusively expressing either the chaperoning (CALR −/− -NP) or the calcium binding (CALR −/− -PC) domain exhibited characteristic molecular signatures determined by unsupervised agglomerative clustering. Kohonen mapping of RNA expression changes identified transcriptome dynamics that segregated into 12 discrete gene expression meta-profiles which were enriched for regulation of Eukaryotic Initiation Factor 2 (EIF2) signaling. Focused examination of domain-specific gene ontology remodeling revealed a general enrichment of Cardiovascular Development in the truncation variants, with unique prioritization of “Cardiovascular Disease” exclusive to the cohort of down regulated genes of the PC truncation variant. Molecular cartography of genes that comprised this cardiopathological category revealed uncharacterized and novel gene relationships, with identification of Pitx2 as a critical hub within the topology of a CALR −/− compromised network. Conclusions: Diagnostic surveillance, through an algorithm that integrates pluripotent stem cell transcriptomes with advanced high throughput assays and computational bioinformatics, revealed collective gene expression network changes that underlie differential phenotype development. Stem cell transcriptomes provide a deep collective molecular index that reflects ad hoc robustness of the pluripotent gene network. Remodeling events such as monogenic lesions provide a background by which high priority candidate disease effectors and regulators can be identified, demonstrated here by a molecular profiling algorithm that decrypts pluripotent wild type versus disrupted genomes.
    Electronic ISSN: 1752-0509
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2015-07-19
    Description: Background: Sperm-egg interaction defect is a significant cause of in-vitro fertilization failure for infertile cases. Numerous molecular interactions in the form of protein-protein interactions mediate the sperm-egg membrane interaction process. Recent studies have demonstrated that in addition to experimental techniques, computational methods, namely protein interaction network approach, can address protein-protein interactions between human sperm and egg. Up to now, no drugs have been detected to treat sperm-egg interaction disorder, and the initial step in drug discovery research is finding out essential proteins or drug targets for a biological process. The main purpose of this study is to identify putative drug targets for human sperm-egg interaction deficiency and consider if the detected essential proteins are targets for any known drugs using protein-protein interaction network and ingenuity pathway analysis. Results: We have created human sperm-egg protein interaction networks with high confidence, including 106 nodes and 415 interactions. Through topological analysis of the network with calculation of some metrics, such as connectivity and betweenness centrality, we have identified 13 essential proteins as putative drug targets. The potential drug targets are from integrins, fibronectins, epidermal growth factor receptors, collagens and tetraspanins protein families. We evaluated these targets by ingenuity pathway analysis, and the known drugs for the targets have been detected, and the possible effective role of the drugs on sperm-egg interaction defect has been considered. These results showed that the drugs ocriplasmin (Jetrea©), gefitinib (Iressa©), erlotinib hydrochloride (Tarceva©), clingitide, cetuximab (Erbitux©) and panitumumab (Vectibix©) are possible candidates for efficacy testing for the treatment of sperm-egg interaction deficiency. Further experimental validation can be carried out to confirm these results. Conclusion: We have identified the first potential list of drug targets for human sperm-egg interaction defect using the protein interaction network approach. The essential proteins or potential drug targets were found using topological analysis of the protein network. These putative targets are promising for further experimental validation. These study results, if validated, may develop drug discovery techniques for sperm-egg interaction defect and also improve assisted reproductive technologies to avoid in-vitro fertilization failure.
    Electronic ISSN: 1752-0509
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2016-08-13
    Description: Glioma differentiation therapy is a novel strategy that has been used to induce glioma cells to differentiate into glia-like cells. Although some advances in experimental methods for exploring the molecular me...
    Electronic ISSN: 1752-0509
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2016-08-13
    Description: Canonical correlation analysis (CCA) is a multivariate statistical method which describes the associations between two sets of variables. The objective is to find linear combinations of the variables in each d...
    Electronic ISSN: 1752-0509
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2016-08-17
    Description: Ataxia telangiectasia mutated (ATM) is a detector of double-strand breaks (DSBs) and a crucial component of the DNA damage response (DDR) along with p53 and NF- κB transcription factors and Wip1 phosphatase. Desp...
    Electronic ISSN: 1752-0509
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2016-08-24
    Description: Gene expression is known to be an intrinsically stochastic process which can involve single-digit numbers of mRNA molecules in a cell at any given time. The modelling of such processes calls for the use of exa...
    Electronic ISSN: 1752-0509
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2016-07-01
    Description: Cellular barcoding is a recently developed biotechnology tool that enables the familial identification of progeny of individual cells in vivo. In immunology, it has been used to track the burst-sizes of multip...
    Electronic ISSN: 1752-0509
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2016-08-10
    Description: Adipogenesis is the process of cell differentiation by which mesenchymal stem cells become adipocytes. Extensive research is ongoing to identify genes, their protein products, and microRNAs that correlate with...
    Electronic ISSN: 1752-0509
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2016-08-10
    Description: The malarial parasite Plasmodium falciparum undergoes a complex life cycle, including an intraerythrocytic developmental cycle, during which it is metabolically dependent on the infected human red blood cell (RBC...
    Electronic ISSN: 1752-0509
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2016-08-10
    Description: It has been found that microRNAs (miRNAs) can function as a regulatory factor across species. For example, food-derived plant miRNAs may pass through the gastrointestinal (GI) tract, enter into the plasma and ...
    Electronic ISSN: 1752-0509
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2016-08-10
    Description: Cancer is a complex disease. Fundamental cellular based studies as well as modeling provides insight into cancer biology and strategies to treatment of the disease. In silico models complement in vivo models. ...
    Electronic ISSN: 1752-0509
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2016-08-20
    Description: Many large data compendia on context-specific high-throughput genomic and regulatory data have been made available by international research consortia such as ENCODE, TCGA, and Epigenomics Roadmap. The use of ...
    Electronic ISSN: 1752-0509
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2016-08-26
    Description: Biological networks keep their functions robust against perturbations. Many previous studies through simulations or experiments have shown that feedback loop (FBL) structures play an important role in controll...
    Electronic ISSN: 1752-0509
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2016-08-27
    Description: Alzheimer’s disease (AD) is complex, with genetic, epigenetic, and environmental factors contributing to disease susceptibility and progression. While significant progress has been made in understanding geneti...
    Electronic ISSN: 1752-0509
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2015-10-10
    Description: Background: The size and complexity of published biochemical network reconstructions are steadily increasing, expanding the potential scale of derived computational models. However, the construction of large biochemical network models is a laborious and error-prone task. Automated methods have simplified the network reconstruction process, but building kinetic models for these systems is still a manually intensive task. Appropriate kinetic equations, based upon reaction rate laws, must be constructed and parameterized for each reaction. The complex test-and-evaluation cycles that can be involved during kinetic model construction would thus benefit from automated methods for rate law assignment. Results: We present a high-throughput algorithm to automatically suggest and create suitable rate laws based upon reaction type according to several criteria. The criteria for choices made by the algorithm can be influenced in order to assign the desired type of rate law to each reaction. This algorithm is implemented in the software package SBMLsqueezer 2. In addition, this program contains an integrated connection to the kinetics database SABIO-RK to obtain experimentally-derived rate laws when desired. Conclusions: The described approach fills a heretofore absent niche in workflows for large-scale biochemical kinetic model construction. In several applications the algorithm has already been demonstrated to be useful and scalable. SBMLsqueezer is platform independent and can be used as a stand-alone package, as an integrated plugin, or through a web interface, enabling flexible solutions and use-case scenarios.
    Electronic ISSN: 1752-0509
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2015-10-23
    Description: Background: A hallmark of chronic liver disease is the impairment of the liver’s innate regenerative ability. In this work we use a computational approach to unravel the principles underlying control of liver repair following an acute physiological challenge. Methods: We used a mathematical model of inter- and intra-cellular interactions during liver regeneration to infer key molecular factors underlying the dysregulation of multiple regeneration modes, including delayed, suppressed, and enhanced regeneration. We used model analysis techniques to identify organizational principles governing the cellular regulation of liver regeneration. We fit our model to several published data sets of deficient regeneration in rats and healthy regeneration in humans, rats, and mice to predict differences in molecular regulation in disease states and across species.  Results: Analysis of the computational model pointed to an important balance involving inflammatory signals and growth factors, largely produced by Kupffer cells and hepatic stellate cells, respectively. Our model analysis results also indicated an organizational principle of molecular regulation whereby production rate of molecules acted to induce coarse-grained control of signaling levels while degradation rate acted to induce fine-tuning control. We used this computational framework to investigate hypotheses concerning molecular regulation of regeneration across species and in several chronic disease states in rats, including fructose-induced steatohepatitis, alcoholic steatohepatitis, toxin-induced cirrhosis, and toxin-induced diabetes. Our results indicate that altered non-parenchymal cell activation is sufficient to explain deficient regeneration caused by multiple disease states. We also investigated liver regeneration across mammalian species. Our results suggest that non-invasive measures of liver regeneration taken at 30 days following resection could differentiate between several hypotheses about how human liver regeneration differs from rat regeneration. Conclusions: Overall, our results provide a new computational platform integrating a wide range of experimental information, with broader utility in exploring the dynamic patterns of liver regeneration across species and over multiple chronic diseases.
    Electronic ISSN: 1752-0509
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2015-10-15
    Description: Background: Methyltransferase (MT) reactions, in which methyl groups are attached to substrates, are fundamental to many aspects of cell biology and human physiology. The universal methyl donor for these reactions is S-adenosylmethionine (SAM) and this presents the cell with an important regulatory problem. If the flux along one pathway is changed then the SAM concentration will change affecting all the other MT pathways, so it is difficult for the cell to regulate the pathways independently. Methods: We created a mathematical model, based on the known biochemistry of the folate and methionine cycles, to study the regulatory mechanisms that enable the cell to overcome this difficulty. Some of the primary mechanisms are long-range allosteric interactions by which substrates in one part of the biochemical network affect the activity of enzymes at distant locations in the network (not distant in the cell). Because of these long-range allosteric interactions, the dynamic behavior of the network is very complicated, and so mathematical modeling is a useful tool for investigating the effects of the regulatory mechanisms and understanding the complicated underlying biochemistry and cell biology. Results: We study the allosteric binding of 5-methyltetrahydrofolate (5mTHF) to glycine-N-methyltransferase (GNMT) and explain why data in the literature implies that when one molecule binds, GNMT retains half its activity. Using the model, we quantify the effects of different regulatory mechanisms and show how cell processes would be different if the regulatory mechanisms were eliminated. In addition, we use the model to interpret and understand data from studies in the literature. Finally, we explain why a full understanding of how competing MTs are regulated is important for designing intervention strategies to improve human health. Conclusions: We give strong computational evidence that once bound GNMT retains half its activity. The long-range allosteric interactions enable the cell to regulate the MT reactions somewhat independently. The low K m values of many MTs also play a role because the reactions then run near saturation and changes in SAM have little effect. Finally, the inhibition of the MTs by the product S-adenosylhomocysteine also stabilizes reaction rates against changes in SAM.
    Electronic ISSN: 1752-0509
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2015-10-20
    Description: Background: The study of cancer therapy is a key issue in the field of oncology research and the development of target therapies is one of the main problems currently under investigation. This is particularly relevant in different types of tumor where traditional chemotherapy approaches often fail, such as lung cancer. Results: We started from the general definition of robustness introduced by Kitano and applied it to the analysis of dynamical biochemical networks, proposing a new algorithm based on moment independent analysis of input/output uncertainty. The framework utilizes novel computational methods which enable evaluating the model fragility with respect to quantitative performance measures and parameters such as reaction rate constants and initial conditions. The algorithm generates a small subset of parameters that can be used to act on complex networks and to obtain the desired behaviors. We have applied the proposed framework to the EGFR-IGF1R signal transduction network, a crucial pathway in lung cancer, as an example of Cancer Systems Biology application in drug discovery. Furthermore, we have tested our framework on a pulse generator network as an example of Synthetic Biology application, thus proving the suitability of our methodology to the characterization of the input/output synthetic circuits. Conclusions: The achieved results are of immediate practical application in computational biology, and while we demonstrate their use in two specific examples, they can in fact be used to study a wider class of biological systems.
    Electronic ISSN: 1752-0509
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2015-12-18
    Description: The radiation-induced bystander effect is a biological response observed in non-irradiated cells surrounding an irradiated cell. The bystander effect is known to be induced by two intercellular signaling pathw...
    Electronic ISSN: 1752-0509
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2015-12-18
    Description: Parameter estimation represents one of the most significant challenges in systems biology. This is because biological models commonly contain a large number of parameters among which there may be functional in...
    Electronic ISSN: 1752-0509
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2015-12-18
    Description: Despite the development of various modeling approaches to predict gene network activity, a time dynamic stochastic model taking into account real-time changes in cell volume and cell cycle stages is still miss...
    Electronic ISSN: 1752-0509
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2015-12-18
    Description: Expression of cell phenotypes highly depends on metabolism that supplies matter and energy. To achieve proper utilisation of the different metabolic pathways, metabolism is tightly regulated by a complex regul...
    Electronic ISSN: 1752-0509
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2015-12-18
    Description: Generalised supply-demand analysis is a conceptual framework that views metabolism as a molecular economy. Metabolic pathways are partitioned into so-called supply and demand blocks that produce and consume a ...
    Electronic ISSN: 1752-0509
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2016-06-14
    Description: Graphical models have long been used to describe biological networks for a variety of important tasks such as the determination of key biological parameters, and the structure of graphical model ultimately det...
    Electronic ISSN: 1752-0509
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2016-06-07
    Description: The mechanistic description of enzyme kinetics in a dynamic model of metabolism requires specifying the numerical values of a large number of kinetic parameters. The parameterization challenge is often address...
    Electronic ISSN: 1752-0509
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2016-06-02
    Description: The insulin signalling pathway (ISP) is an important biochemical pathway, which regulates some fundamental biological functions such as glucose and lipid metabolism, protein synthesis, cell proliferation, cell...
    Electronic ISSN: 1752-0509
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2016-06-07
    Description: Genetic switches are ubiquitous in nature, frequently associated with the control of cellular functions and developmental programs. In the realm of synthetic biology, it is of great interest to engineer geneti...
    Electronic ISSN: 1752-0509
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2016-06-17
    Description: Qualitative dynamics semantics provide a coarse-grain modeling of networks dynamics by abstracting away kinetic parameters. They allow to capture general features of systems dynamics, such as attractors or rea...
    Electronic ISSN: 1752-0509
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2016-09-14
    Description: The estimation of intracellular flux through traditional metabolic flux analysis (MFA) using an overdetermined system of equations is a well established practice in metabolic engineering. Despite the continued...
    Electronic ISSN: 1752-0509
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2016-09-01
    Description: A complex network of gene interactions controls gene regulation throughout development and the life of the organisms. Insights can be made into these processes by studying the functional interactions (or “moti...
    Electronic ISSN: 1752-0509
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2016-09-01
    Description: Micro-organisms play an important role in various industrial sectors (including biochemical, food and pharmaceutical industries). A profound insight in the biochemical reactions inside micro-organisms enables ...
    Electronic ISSN: 1752-0509
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2016-08-25
    Description: Negative feedback in combination with time delay can bring about both sustained oscillations and adaptive behaviour in cellular networks. Here, we study which design features of systems with delayed negative f...
    Electronic ISSN: 1752-0509
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2016-08-27
    Description: The 2015 International Conference on Intelligent Biology and Medicine (ICIBM 2015) was held on November 13–15, 2015 in Indianapolis, Indiana, USA. ICIBM 2015 included eight scientific sessions, three tutorial ...
    Electronic ISSN: 1752-0509
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2016-08-27
    Description: Information about drug–drug interactions (DDIs) supported by scientific evidence is crucial for establishing computational knowledge bases for applications like pharmacovigilance. Since new reports of DDIs are...
    Electronic ISSN: 1752-0509
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2015-06-19
    Description: Background: Stochastic genetic switching driven by intrinsic noise is an important process in gene expression. When the rates of gene activation/inactivation are relatively slow, fast, or medium compared with the synthesis/degradation rates of mRNAs and proteins, the variability of protein and mRNA levels may exhibit very different dynamical patterns. It is desirable to provide a systematic approach to identify their key dynamical features in different regimes, aiming at distinguishing which regime a considered gene regulatory network is in from their phenotypic variations. Results: We studied a gene expression model with positive feedbacks when genetic switching rates vary over a wide range. With the goal of providing a method to distinguish the regime of the switching rates, we first focus on understanding the essential dynamics of gene expression system in different cases. In the regime of slow switching rates, we found that the effective dynamics can be reduced to independent evolutions on two separate layers corresponding to gene activation and inactivation states, and the transitions between two layers are rare events, after which the system goes mainly along deterministic ODE trajectories on a particular layer to reach new steady states. The energy landscape in this regime can be well approximated by using Gaussian mixture model. In the regime of intermediate switching rates, we analyzed the mean switching time to investigate the stability of the system in different parameter ranges. We also discussed the case of fast switching rates from the viewpoint of transition state theory. Based on the obtained results, we made a proposal to distinguish these three regimes in a simulation experiment. We identified the intermediate regime from the fact that the strength of cellular memory is lower than the other two cases, and the fast and slow regimes can be distinguished by their different perturbation-response behavior with respect to the switching rates perturbations. Conclusions: We proposed a simulation experiment to distinguish the slow, intermediate and fast regimes, which is the main point of our paper. In order to achieve this goal, we systematically studied the essential dynamics of gene expression system when the switching rates are in different regimes. Our theoretical understanding provides new insights on the gene expression experiments.
    Electronic ISSN: 1752-0509
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2015-06-27
    Description: Background: Given its recent rapid development and the central role that modeling plays in the discipline, systems biology clearly needs methods for automated modeling of dynamical systems. Process-based modeling focuses on explanatory models of dynamical systems; it constructs such models from measured time-course data and formalized modeling knowledge. In this paper, we apply process-based modeling to the practically relevant task of modeling the Rab5-Rab7 conversion switch in endocytosis. The task is difficult due to the limited observability of the system variables and the noisy measurements, which pose serious challenges to the process of model selection. To address these issues, we propose a domain-specific model selection criteria that take into account knowledge about the necessary properties of the simulated model behavior. Results: In a series of modeling experiments, we compare the results of process-based modeling obtained with different model selection criteria. The first is the standard maximum likelihood criterion based solely on least-squares model error. The second one is a parsimony-based criterion that also takes into account model complexity. We also introduce three domain-specific criteria based on domain expert expectations about the simulated behavior of an endocytosis model. According to the first criterion, 90 of the candidate models are indistinguishable. Furthermore, taking into account the complexity of the model does not lead to better model selection. However, the use of domain-specific criteria results in a remarkable improvement over the other two model selection criteria. Conclusions: We demonstrate the applicability of process-based modeling to the task of modeling the Rab5-Rab7 dynamics in endocytosis. Our experiments show that the domain-specific criteria outperform the standard domain-independent criteria for model selection. We also find that some of the model structures discarded as implausible in previous studies lead to the expected Rab5-Rab7 switch behavior.
    Electronic ISSN: 1752-0509
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2015-06-11
    Description: Background: Addictions to alcohol and tobacco, known risk factors for cancer, are complex heritable disorders. Addictive behaviors have a bidirectional relationship with pain. We hypothesize that the associations between alcohol, smoking, and opioid addiction observed in cancer patients have a genetic basis. Therefore, using bioinformatics tools, we explored the underlying genetic basis and identified new candidate genes and common biological pathways for smoking, alcohol, and opioid addiction. Results: Literature search showed 56 genes associated with alcohol, smoking and opioid addiction. Using Core Analysis function in Ingenuity Pathway Analysis software, we found that ERK1/2 was strongly interconnected across all three addiction networks. Genes involved in immune signaling pathways were shown across all three networks. Connect function from IPA My Pathway toolbox showed that DRD2 is the gene common to both the list of genetic variations associated with all three addiction phenotypes and the components of the brain neuronal signaling network involved in substance addiction. The top canonical pathways associated with the 56 genes were: 1) calcium signaling, 2) GPCR signaling, 3) cAMP-mediated signaling, 4) GABA receptor signaling, and 5) G-alpha i signaling.ConlusionsCancer patients are often prescribed opioids for cancer pain thus increasing their risk for opioid abuse and addiction. Our findings provide candidate genes and biological pathways underlying addiction phenotypes, which may be future targets for treatment of addiction. Further study of the variations of the candidate genes could allow physicians to make more informed decisions when treating cancer pain with opioid analgesics.
    Electronic ISSN: 1752-0509
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2015-06-12
    Description: Background: Using immune checkpoint modulators in the clinic to increase the number and activity of cytotoxic T lymphocytes that recognize tumor antigens can prolong survival for metastatic melanoma. Yet, only a fraction of the patient population receives clinical benefit. In short, these clinical trials demonstrate proof-of-principle but optimizing the specific therapeutic strategies remains a challenge. In many fields, CAD (computer-aided design) is a tool used to optimize integrated system behavior using a mechanistic model that is based upon knowledge of constitutive elements. The objective of this study was to develop a predictive simulation platform for optimizing anti-tumor immunity using different treatment strategies. Methods: To better understand the therapeutic role that cytotoxic CD8 + T cells can play in controlling tumor growth, we developed a multi-scale mechanistic model of the biology using impulsive differential equations and calibrated it to a self-consistent data set. Results: The multi-scale model captures the activation and differentiation of naïve CD8 + T cells into effector cytotoxic T cells in the lymph node following adenovirus-mediated vaccination against a tumor antigen, the trafficking of the resulting cytotoxic T cells into blood and tumor microenvironment, the production of cytokines within the tumor microenvironment, and the interactions between tumor cells, T cells and cytokines that control tumor growth. The calibrated model captures the modest suppression of tumor cell growth observed in the B16F10 model, a transplantable mouse model for metastatic melanoma, and was used to explore the impact of multiple vaccinations on controlling tumor growth. Conclusions: Using the calibrated mechanistic model, we found that the cytotoxic CD8 + T cell response was prolonged by multiple adenovirus vaccinations. However, the strength of the immune response cannot be improved enough by multiple adenovirus vaccinations to reduce tumor burden if the cytotoxic activity or local proliferation of cytotoxic T cells in response to tumor antigens is not greatly enhanced. Overall, this study illustrates how mechanistic models can be used for in silico screening of the optimal therapeutic dosage and timing in cancer treatment.
    Electronic ISSN: 1752-0509
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2015-06-12
    Description: Background: Thousands of biological and biomedical investigators study of the functional role of single genes and their protein products in normal physiology and in disease. The findings from these studies are reported in research articles that stimulate new research. It is now established that a complex regulatory networks's is controlling human cellular fate, and this community of researchers are continually unraveling this network topology. Attempts to integrate results from such accumulated knowledge resulted in literature-based protein-protein interaction networks (PPINs) and pathway databases. These databases are widely used by the community to analyze new data collected from emerging genome-wide studies with the assumption that the data within these literature-based databases is the ground truth and contain no biases. While suspicion for research focus biases is growing, a concrete proof for it is still missing. It is difficult to prove because the real PPINs are mostly unknown. Results: Here we analyzed the longitudinal discovery process of literature-based mammalian and yeast PPINs to observe that these networks are discovered non-uniformly. The pattern of discovery is related to a theoretical concept proposed by Kauffman called “expanding the adjacent possible”. We introduce a network discovery model which explicitly includes the space of possibilities in the form of a true underlying PPIN. Conclusions: Our model strongly suggests that research focus biases exist in the observed discovery dynamics of these networks. In summary, more care should be placed when using PPIN databases for analysis of newly acquired data, and when considering prior knowledge when designing new experiments.
    Electronic ISSN: 1752-0509
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2015-06-12
    Description: Background: Cell biology research is fundamentally limited by the number of intracellular components, particularly proteins, that can be co-measured in the same cell. Therefore, cell-to-cell heterogeneity in unmeasured proteins can lead to completely different observed relations between the same measured proteins. Attempts to infer such relations in a heterogeneous cell population can yield uninformative average relations if only one underlying biochemical network is assumed. To address this, we developed a method that recursively couples an iterative unmixing process with a Bayesian analysis of each unmixed subpopulation. Results: Our approach enables to identify the number of distinct cell subpopulations, unmix their corresponding observations and resolve the network structure of each subpopulation. Using simulations of the MAPK pathway upon EGF and NGF stimulations we assess the performance of the method. We demonstrate that the presented method can identify better than clustering approaches the number of subpopulations within a mixture of observations, thus resolving correctly the statistical relations between the proteins. Conclusions: Coupling the unmixing of multiplexed observations with the inference of statistical relations between the measured parameters is essential for the success of both of these processes. Here we present a conceptual and algorithmic solution to achieve such coupling and hence to analyze data obtained from a natural mixture of cell populations. As the technologies and necessity for multiplexed measurements are rising in the systems biology era, this work addresses an important current challenge in the analysis of the derived data.
    Electronic ISSN: 1752-0509
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2015-06-03
    Description: Background: Understanding the mechanisms by which hundreds of diverse cell types develop from a single mammalian zygote has been a central challenge of developmental biology. Conrad H. Waddington, in his metaphoric “epigenetic landscape” visualized the early embryogenesis as a hierarchy of lineage bifurcations. In each bifurcation, a single progenitor cell type produces two different cell lineages. The tristable dynamical systems are used to model the lineage bifurcations. It is also shown that a genetic circuit consisting of two auto-activating transcription factors (TFs) with cross inhibitions can form a tristable dynamical system. Results: We used gene expression profiles of pre-implantation mouse embryos at the single cell resolution to visualize the Waddington landscape of the early embryogenesis. For each lineage bifurcation we identified two clusters of TFs – rather than two single TFs as previously proposed – that had opposite expression patterns between the pair of bifurcated cell types. The regulatory circuitry among each pair of TF clusters resembled a genetic circuit of a pair of single TFs; it consisted of positive feedbacks among the TFs of the same cluster, and negative interactions among the members of the opposite clusters. Our analyses indicated that the tristable dynamical system of the two-cluster regulatory circuitry is more robust than the genetic circuit of two single TFs. Conclusions: We propose that a modular hierarchy of regulatory circuits, each consisting of two mutually inhibiting and auto-activating TF clusters, can form hierarchical lineage bifurcations with improved safeguarding of critical early embryogenesis against biological perturbations. Furthermore, our computationally fast framework for modeling and visualizing the epigenetic landscape can be used to obtain insights from experimental data of development at the single cell resolution.
    Electronic ISSN: 1752-0509
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2015-01-22
    Description: Background: Understanding how cells make decisions, and why they make the decisions they make, is of fundamental interest in systems biology. To address this, we study the decisions made by E. coli on which genes to express when presented with two different sugars. It is well-known that glucose, E. coli?s preferred carbon source, represses the uptake of other sugars by means of global and gene-specific mechanisms. However, less is known about the utilization of glucose-free sugar mixtures which are found in the natural environment of E. coli and in biotechnology. Results: Here, we combine experiment and theory to map the choices of E. coli among 6 different non-glucose carbon sources. We used robotic assays and fluorescence reporter strains to make precise measurements of promoter activity and growth rate in all pairs of these sugars. We find that the sugars can be ranked in a hierarchy: in a mixture of a higher and a lower sugar, the lower sugar system shows reduced promoter activity. The hierarchy corresponds to the growth rate supported by each sugar- the faster the growth rate, the higher the sugar on the hierarchy. The hierarchy is `soft? in the sense that the lower sugar promoters are not completely repressed. Measurement of the activity of the master regulator CRP-cAMP shows that the hierarchy can be quantitatively explained based on differential activation of the promoters by CRP-cAMP. Comparing sugar system activation as a function of time in sugar pair mixtures at sub-saturating concentrations, we find cases of sequential activation, and also cases of simultaneous expression of both systems. Such simultaneous expression is not predicted by simple models of growth rate optimization, which predict only sequential activation. We extend these models by suggesting multi-objective optimization for both growing rapidly now and preparing the cell for future growth on the poorer sugar. Conclusion: We find a defined hierarchy of sugar utilization, which can be quantitatively explained by differential activation by the master regulator cAMP-CRP. The present approach can be used to understand cell decisions when presented with mixtures of conditions.
    Electronic ISSN: 1752-0509
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2015-01-30
    Description: Background: Rho GTPases function as molecular switches in many different signaling pathways and control a wide range of cellular processes. Rho GDP-dissociation inhibitors (RhoGDIs) regulate Rho GTPase signaling and can function as both negative and positive regulators. The role of RhoGDIs as negative regulators of Rho GTPase signaling has been extensively investigated; however, little is known about how RhoGDIs act as positive regulators. Furthermore, it is unclear how this opposing role of GDIs influences the Rho GTPase cycle. We constructed ordinary differential equation models of the Rho GTPase cycle in which RhoGDIs inhibit the regulatory activities of guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs) by interacting with them directly as well as by sequestering the Rho GTPases. Using this model, we analyzed the role of RhoGDIs in Rho GTPase signaling. Results: The model constructed in this study showed that the functions of GEFs and GAPs are integrated into Rho GTPase signaling through the interactions of these regulators with GDIs, and that the negative role of GDIs is to suppress the overall Rho activity by inhibiting GEFs. Furthermore, the positive role of GDIs is to sustain Rho activation by inhibiting GAPs under certain conditions. The interconversion between transient and sustained Rho activation occurs mainly through changes in the affinities of GDIs to GAPs and the concentrations of GAPs. Conclusions: RhoGDIs positively regulate Rho GTPase signaling primarily by interacting with GAPs and may participate in the switching between transient and sustained signals of the Rho GTPases. These findings enhance our understanding of the physiological roles of RhoGDIs and Rho GTPase signaling.
    Electronic ISSN: 1752-0509
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    facet.materialart.
    Unknown
    BioMed Central
    Publication Date: 2015-02-21
    Description: Contributing reviewersThe editors of BMC Systems Biology would like to thank all our reviewers who have contributed to the journal in Volume 8 (2014).
    Electronic ISSN: 1752-0509
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...