ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Journals
  • Articles  (208)
  • Wiley  (208)
  • American Association for the Advancement of Science
  • De Gruyter
  • Molecular Diversity Preservation International
  • 2015-2019  (208)
  • 2005-2009
  • 2019  (94)
  • 2017  (114)
  • 2006
  • Global Biogeochemical Cycles  (208)
  • 7532
  • Biology  (208)
  • Law
  • Mathematics
  • Natural Sciences in General
  • Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
  • Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
Collection
  • Journals
  • Articles  (208)
Publisher
  • Wiley  (208)
  • American Association for the Advancement of Science
  • De Gruyter
  • Molecular Diversity Preservation International
  • American Geophysical Union  (296)
Years
  • 2015-2019  (208)
  • 2005-2009
Year
Topic
  • Biology  (208)
  • Law
  • Mathematics
  • Natural Sciences in General
  • Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
  • +
  • 1
    Publication Date: 2019
    Description: Abstract Oxygen deficient zones (ODZs) in the tropical ocean exert a profound influence on global biogeochemical cycles, but the factors that regulate their long‐term structure and sensitivity to oceanic change remain poorly understood. We analyzed hydrographic observations and a high‐resolution physical/biogeochemical model to diagnose the primary pathways that ventilate the tropical Pacific ODZs. Historical and recent autonomous observations reveal pronounced and widespread O2 peaks, termed secondary oxygen maxima (SOMs), within the depths of the broader O2 minimum layer, especially at the equatorward edge of both northern and southern ODZs. In the northern ODZ, Lagrangian particle tracking in an eddy‐permitting numerical model simulation attributes these features to intrusions of the Northern Subsurface Countercurrent along the equatorial edge of the ODZ. Zonal subsurface jets also ventilate the poleward edge of the northern ODZ but induce a smaller O2 flux and do not yield detectable SOMs. Along the ODZ's eastern boundary, oxygenation is achieved by the seasonal cycle of upwelling of low‐O2 water onto the continental shelf, followed by downwelling of O2‐replenished near‐surface waters back into the ODZ. Waters entering the northern Pacific ODZ originate from the extratropics in both hemispheres, but two thirds are from the Southern Hemisphere and arrive later and with a wider range of transit times. These results suggest that predicting future changes in the large Pacific ODZs will require a better understanding of the climate sensitivity of the narrow zonal jets and seasonal dynamics of coastal upwelling that supply their O2.
    Print ISSN: 0886-6236
    Electronic ISSN: 1944-9224
    Topics: Biology , Chemistry and Pharmacology , Geography , Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019
    Description: Abstract Nitrification is susceptible to changes in light and pH and, thus, could be influenced by recent sea ice reductions and acidification in the Arctic Ocean. We investigated the sensitivity of nitrification to light, pH, and substrate availability in a natural nitrifier community of the Arctic Ocean. Nitrification was active near the bottom of the shelf region (〈60 m) and in the halocline layer (50–200 m) of the Arctic basin, where ammonium was abundant, but was low in the ammonium‐depleted Atlantic layer (〉250 m). In pH control experiments, nitrification rates significantly declined when the pH was manipulated to be 0.22 lower than the controls. However, nitrification was relatively insensitive to changes in pH compared to changes in light. Light control experiments showed that nitrification was inhibited by a light intensity above 0.11 mol photons m−2 day−1, which was presumably the light threshold. A light intensity greater than the light threshold extended to the shelf bottom and upper halocline layer, limiting nitrification in these waters. Satellite data analyses indicated that the area where light levels inhibit nitrification has increased throughout the Arctic Ocean due to the recent sea ice reduction, which may lead to a declining trend in nitrification. Our results suggest that stronger light levels in the future Arctic Ocean could further suppress nitrification and alter the composition of inorganic nitrogen, with implications for the structure of ecosystems.
    Print ISSN: 0886-6236
    Electronic ISSN: 1944-9224
    Topics: Biology , Chemistry and Pharmacology , Geography , Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019
    Description: Abstract Phaeodaria, which comprise one group of large, single‐celled eukaryotic zooplankton, have been largely ignored by past marine biological studies because Phaeodaria and their delicate skeletons are liable to collapse. As a result, collection and quantification of specimens are difficult, and seasonal changes of phaeodarian abundance have not been thoroughly studied. The transport of biogenic elements by sinking phaeodarians has been estimated for only a few representative species. Sinking particles 〉1 mm in size and swimmers have traditionally been excluded when estimating sinking particle fluxes. The focus of this study is the large number of phaeodarians among the 〉1 mm sinking particles collected in the western North Pacific from June 2014 to July 2015. Careful sorting by microscopic examination and chemical analyses revealed that phaeodarians accounted for up to about 10% of the organic carbon in all sinking particles and accounted for a mean of 33% of the organic carbon in the 〉1 mm sinking particles. The high standing stocks of phaeodarians at depths of 150–1000 m in the mesopelagic twilight zone suggested that particles sinking from the euphotic zone as aggregates and fecal pellets can be efficiently ex to the deep sea by the ballasting effect of large phaeodarian particles rich in organic carbon.
    Print ISSN: 0886-6236
    Electronic ISSN: 1944-9224
    Topics: Biology , Chemistry and Pharmacology , Geography , Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019
    Description: The North Atlantic Ocean is a region of intense uptake of atmospheric CO2. To assess how this CO2 sink has evolved over recent decades, various approaches have been used to estimate basin‐wide uptake from the irregularly sampled in‐situ CO2 observations. Until now, the lack of robust uncertainties associated with observation‐based gap‐filling methods required to produce these estimates has limited the capacity to validate climate model simulated surface ocean CO2 concentrations. After robustly quantifying basin‐wide and annually‐varying interpolation uncertainties using both observational and model data, we show that the North Atlantic surface ocean fugacity of CO2 (fCO2−ocean) increased at a significantly slower rate than that simulated by the latest generation of Earth System Models during the period 1992‐2014. We further show, with initialised model simulations, that the inability of these models to capture the observed trend in surface fCO2−ocean is primarily due to biases in the models' ocean biogeochemistry. Our results imply that current projections may underestimate the contribution of the North Atlantic to mitigating increasing future atmospheric CO2 concentrations.
    Print ISSN: 0886-6236
    Electronic ISSN: 1944-9224
    Topics: Biology , Chemistry and Pharmacology , Geography , Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019
    Description: Abstract We present results from a global inverse marine nitrogen (N) cycle model that include nitrate (NO3−) and nitrite (NO2−) concentrations and their N isotopic compositions as constraints on N cycle process rates in marine oxygen deficient zones (ODZs). NO2− is an important intermediate in the N cycle, particularly in ODZs where it is a substrate in the N loss processes, denitrification, and anammox. Similar to earlier work, our model yields a total water column N loss rate of 61 ± 10 Tg N/year. However, by including NO2− and its N isotopic composition, we are able to assess the relative contributions of denitrification and anammox to N loss and examine some of the potential drivers of that balance. We find that anammox contributes 60% of global water column N loss, dominating N loss along the edges of ODZs, while denitrification is more important in the anoxic ODZ cores. The decoupling of anammox and denitrification is supported by NO2− oxidation, which co‐occurs with NO3− reduction and anammox in ODZs. High rates of NO2− oxidation (up to 400 nM/day), which are tightly coupled to heterotrophic NO3− reduction, are required to match NO3− and NO2− concentration and isotope observations in marine ODZs. Lowering the rate of NO2− oxidation in ODZs by adjusting O2‐sensitive parameters results in higher rates of water column N loss, highlighting the role of NO2− oxidation in maintaining the marine fixed N inventory.
    Print ISSN: 0886-6236
    Electronic ISSN: 1944-9224
    Topics: Biology , Chemistry and Pharmacology , Geography , Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019
    Description: Long‐term data characterizing the oceans’ biological carbon pump are essential for understanding impacts of climate variability on marine ecosystems. The ‘Bakun upwelling intensification hypothesis’ suggests intensified coastal upwelling due to a greater land‐sea temperature gradient influenced by global warming. We present long time‐series of bathypelagic (ca. 1200‐3600m) particle fluxes from a coastal (CBeu: 2003‐2016] and an offshore (CBmeso: 1988‐2016) sediment trap setting located in the Canary Current upwelling. Organic carbon (Corg) and biogenic opal (BSi, diatoms) fluxes were two‐ to three‐fold higher at the coastal upwelling site compared to the offshore site, respectively, and showed higher seasonality with flux maxima in spring. A relationship between winter and spring BSi fluxes to the North Atlantic Oscillation (NAO) index was best expressed at the offshore site CBmeso. Lithogenic (dust) fluxes regularly peaked in winter when frequent low‐altitude dust storms and deposition occurred, decreasing offshore by about three‐fold. We obtained a high temporal match of short‐term peaks of BSi and dust fluxes in winter‐spring at the inner site CBeu. We found synchronous flux variations at both sites and an anomalous year 2005, characterized by high BSi and Corg fluxes under a low NAO. Corg and BSi fluxes revealed a decreasing trend from 2006 to 2016 at the coastal site CBeu, pointing to coastal upwelling relaxation during the last two decades. The permanent offshore upwelling zone of the deflected Canary Current represented by the flux record of CBmeso showed no signs of increasing upwelling as well which contradicts the Bakun hypothesis.
    Print ISSN: 0886-6236
    Electronic ISSN: 1944-9224
    Topics: Biology , Chemistry and Pharmacology , Geography , Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019
    Description: Abstract Copper (Cu) is an unusual micronutrient as it can limit primary production, but can also become toxic for growth and cellular functioning under high concentrations. Cu also displays an atypical linear profile, which will modulate its availability to marine microbes across the ocean. Multiple chemical forms of Cu coexist in seawater as dissolved species and understanding the main processes shaping the Cu biogeochemical cycling is hampered by key knowledge gaps. For instance, the drivers of its specific linear profile in seawater are unknown and the bioavailable form of Cu for marine phytoplankton is debated. Here, we developed a global 3D biogeochemical model of oceanic Cu within the NEMO/PISCES global model, which represents the global distribution of dissolved copper well. Using our model, we find that reversible scavenging of Cu by organic particles drives the dissolved Cu vertical profile and its distribution in the deep ocean. The low modeled inorganic copper (Cu') in the surface ocean means that Cu' cannot maintain phytoplankton cellular copper requirements within observed ranges. The global budget of oceanic Cu from our model suggests that its residence time may be shorter than previously estimated, and provides a global perspective on Cu cycling and the main drivers of Cu biogeochemistry in different regions. Cu scavenging within particle microenvironments and uptake by denitrifying bacteria could be a significant component of Cu cycling in oxygen minimum zones.
    Print ISSN: 0886-6236
    Electronic ISSN: 1944-9224
    Topics: Biology , Chemistry and Pharmacology , Geography , Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019
    Description: Abstract Gravitational sinking of photosynthetically fixed particulate organic carbon (POC) constitutes a key component of the biological carbon pump. The fraction of POC leaving the surface ocean depends on POC sinking velocity (SV) and remineralization rate (Cremin), both of which depend on plankton community structure. However, the key drivers in plankton communities controlling SV and Cremin are poorly constrained. In fall 2014, we conducted a 6‐week mesocosm experiment in the subtropical NE Atlantic Ocean to study the influence of plankton community structure on SV and Cremin. Oligotrophic conditions prevailed for the first 3 weeks, until nutrient‐rich deep water injected into all mesocosms stimulated diatom blooms. SV declined steadily over the course of the experiment due to decreasing CaCO3 ballast and—according to an optical proxy proposed herein—due to increasing aggregate porosity mostly during an aggregation event after the diatom bloom. Furthermore, SV was positively correlated with the contribution of picophytoplankton to the total phytoplankton biomass. Cremin was highest during a Synechococcus bloom under oligotrophic conditions and in some mesocosms during the diatom bloom after the deep water addition, while it was particularly low during harmful algal blooms. The temporal changes were considerably larger in Cremin (max. fifteenfold) than in SV (max. threefold). Accordingly, estimated POC transfer efficiency to 1,000 m was mainly dependent on how the plankton community structure affected Cremin. Our approach revealed key players and interactions in the plankton food web influencing POC export efficiency thereby improving our mechanistic understanding of the biological carbon pump.
    Print ISSN: 0886-6236
    Electronic ISSN: 1944-9224
    Topics: Biology , Chemistry and Pharmacology , Geography , Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019
    Description: Abstract Marine nitrogen fixation contributes to the budget of biologically available N and thus fuels phytoplankton productivity and carbon cycle through biological pump. Modern N fixation rates are proved to be constrained by oceanographic condition and nutrient supply to the surface waters. However, the paleoceanographic reconstruction of N fixation and its regulation mechanism remain highly uncertain in many regions. Here we present records of N fixation changes in the South China Sea over the past 250,000 years reconstructed by compound‐specific nitrogen isotopes of individual amino acids. The δ15N of source amino acids (δ15NSrc), reflecting the δ15N of the substrate nitrate originating from the subsurface water, is distinctly lower during interglacial periods, indicating intensified N fixation during interglacials. The δ15NSrc of the South China Sea covaries with the thermal gradient between surface and subsurface waters, implying a tight link between the upper water structure and N fixation. It could be hypothesized that stronger mixing during interglacials enhances the supply of excess phosphorous from the subsurface waters and thus encourages the growth of diazotrophs. Furthermore, records of bulk sediment δ15N with relatively high time resolution show dominant precession cycle, probably related to the nutrient supply from subsurface water driven by summer monsoon and associated upper water structure changes. Similar mechanism controlling N fixation is also effective in regions with enough iron supply and low concentrations of nitrogen and phosphorous, like the North Atlantic, supporting that upper water structure can dominate N fixation rates by regulating nutrient stoichiometry supplied to the surface waters.
    Print ISSN: 0886-6236
    Electronic ISSN: 1944-9224
    Topics: Biology , Chemistry and Pharmacology , Geography , Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019
    Description: Estimates of the ocean biological carbon pump are limited by uncertainties in the magnitude of the physical injection of particulate and dissolved organic carbon to the ocean interior. A major challenge is to evaluate the contribution of these physical pumps at small spatial and temporal scales (〈100 km and 〈1 month). Here, we use a submesoscale permitting biophysical model covering a large domain representative of a subpolar and a subtropical gyre to quantify the impact of small‐scale physical carbon pumps.The model successfully simulates intense eddy‐driven subduction hot spots with a magnitude comparable to what has been observed in nature (1,000–6,000 mg C·m−2·day−1). These eddy‐driven subduction events are able to transfer carbon below the mixed‐layer, down to 500‐ to 1,000‐m depth. However, they contribute 〈5% to the annual flux at the scale of the basin, due to strong compensation between upward and downward fluxes. The model also simulates hot spots of export associated with small‐scale heterogeneity of the mixed layer, which intermittently export large amounts of suspended particulate and dissolved organic carbon. The mixed‐layer pump contributes ∼20% to the annual flux. High‐resolution measurements of export flux are needed to test models such as this one and to improve our mechanistic understanding of the biological pump and how it will respond to climate change.
    Print ISSN: 0886-6236
    Electronic ISSN: 1944-9224
    Topics: Biology , Chemistry and Pharmacology , Geography , Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...