ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (6,571)
  • Wiley  (6,571)
  • Krefeld : Geologischer Dienst Nordhein-Westfalen
  • National Academy of Sciences
  • 2010-2014  (6,571)
  • 2005-2009
  • 1995-1999
  • 1990-1994
  • Journal of Geophysical Research JGR - Atmospheres  (3,523)
  • Journal of Geophysical Research JGR - Space Physics  (3,048)
  • 7528
  • 7531
Collection
  • Articles  (6,571)
Publisher
Years
  • 2010-2014  (6,571)
  • 2005-2009
  • 1995-1999
  • 1990-1994
  • 2015-2019  (6,464)
Year
Topic
  • 1
    Publication Date: 2014-12-16
    Description: The diurnal variations from a high-resolution regional climate model (Regional Spectral Model; RSM) are analyzed from 6 independent decade long integrations using lateral boundary forcing data separately from the National Centers for Environmental Prediction Reanalysis 2 (NCEPR2), and European Center for Medium-Range Weather Forecasts (ECMWF) 40-year Reanalysis (ERA40) and the 20 th Century Reanalysis (20CR). With each of these lateral boundary forcing data, the RSM is integrated separately using two convection schemes: the Relaxed Arakawa-Schubert (RAS) and Kain-Fritsch (KF) schemes. The results show that RSM integrations forced with 20CR have the least fidelity in depicting the seasonal cycle and diurnal variability of precipitation and surface temperature over the Southeastern United States (SEUS). The remaining four model simulations show comparable skills. The differences in the diurnal amplitude of rainfall during the summer months of the 20CR forced integration from the corresponding NCEPR2 forced integration, for example, is found to be largely from the transient component of the moisture flux convergence. The root mean square error (RMSE) of the seasonal cycle of precipitation and surface temperature of the other four simulations (not forced by 20CR) were comparable to each other and highest in the summer months. But the RMSE of the diurnal amplitude of precipitation and the timing of its diurnal zenith were largest during winter months and least during summer and fall months in the four model simulations (not forced by 20CR). The diurnal amplitude of surface temperature in comparison showed far less fidelity in all models. The phase of the diurnal maximum of surface temperature however showed significantly better validation with corresponding observations in all of the 6 model simulations
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-12-18
    Description: A high-resolution transect of atmospheric soundings across the Kuroshio Current in the East China Sea was conducted onboard a ship in June 2012 with the objective of analyzing the influence of the complex sea surface temperature (SST) distribution on the Baiu frontal zone (BFZ). Expendable bathythermograph castings and continuous surface meteorological observations were also examined. Two distinct mesoscale atmospheric fronts, characterized by changes of wind direction in the lower troposphere and surface air temperature (SAT), were found in the BFZ. One (northern) atmospheric front was observed around the SST front in relation to a warm water tongue extending from the Kuroshio. A high SST region around the northern atmospheric front enhances unstable near surface stratification and intensifies turbulent heat flux. They help modify the marine atmospheric boundary layer in the BFZ. The other (southern) atmospheric front was at the southern end of the BFZ. Intense evaporation over the Kuroshio and moisture transport by southerly winds were important in forming the conditionally unstable air masses in the lower troposphere of the BFZ.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-12-18
    Description: We analyze the variability of mean age of air (AoA) and of the local effects of the stratospheric residual circulation and eddy mixing on AoA within the framework of the isentropic zonal mean continuity equation. AoA for the period 1988–2013 has been simulated with the Lagrangian chemistry transport model CLaMS driven by ERA-Interim winds and diabatic heating rates. Model simulated AoA in the lower stratosphere shows good agreement with both in-situ observations and satellite observations from MIPAS (Michelson Interferometer for Passive Atmospheric Sounding), even regarding interannual variability and changes during the last decade. The interannual variability throughout the lower stratosphere is largely affected by the QBO-induced circulation and mixing anomalies, with year-to-year AoA changes of about 0.5 years. The decadal 2002–2012 change shows decreasing AoA in the lowest stratosphere, below about 450 K. Above, AoA increases in the NH and decreases in the SH. Mixing appears to be crucial for understanding AoA variability, with local AoA changes resulting from a close balance between residual circulation and mixing effects. Locally, mixing increases AoA at low latitudes (40S-40N) and decreases AoA at higher latitudes. Strongest mixing occurs below about 500 K, consistent with the separation between shallow and deep circulation branches. The effect of mixing integrated along the air parcel path, however, significantly increases AoA globally, except in the polar lower stratosphere. Changes of local effects of residual circulation and mixing during the last decade are supportive of a strengthening shallow circulation branch in the lowest stratosphere and a southward shifting circulation pattern above.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-12-18
    Description: The interaction between sea ice and atmosphere depends strongly on the near-surface transfer coefficients for momentum and heat. A parametrization of these coefficients is developed on the basis of an existing parametrization of drag coefficients for neutral stratification that accounts for form drag caused by the edges of ice floes and melt ponds. This scheme is extended to better account for the dependence of surface wind on limiting cases of high and low ice concentration and to include near-surface stability effects over open water and ice on form drag. The stability correction is formulated on the basis of stability functions from Monin-Obukhov similarity theory and also using the Louis concept with stability functions depending on thebulk Richardson numbers. Furthermore, a parametrization is proposed that includes the effect of edge related turbulence also on heat transfer coefficients. The parametrizations are available in different levels of complexity. The lowest level only needs sea ice concentration and surface temperature as input while the more complex level needs additional sea ice characteristics. An important property of our parametrization is that form drag caused by ice edges depends on the stability over both ice and water which is in contrast to the skin drag over ice. Results of the parametrization show that stability has a large impact on form drag and, thereby, determines the value of sea ice concentration for which the transfer coefficients reach their maxima. Depending on the stratification, these maxima can occur anywhere between ice concentrations of 20 and 80%.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-11-05
    Description: ABSTRACT With the objective to understand the generation, propagation and nonlinear evolution of ion cyclotron waves (ICWs) in the corona and solar wind, we use electromagnetic hybrid (kinetic ions, fluid electrons) simulations with a non-uniform magnetic field. ICWs are generated by the temperature anisotropy of O 5+ ions as minority species in a proton-electron plasma with uniform density. A number of magnetic field models are used including radial and spiral with field strength decreasing linearly or with the square of the radial distance. O 5+ ions with perpendicular temperature larger than parallel are initially placed in the high magnetic field regions. These ions are found to expand outward along the magnetic field. Associated with this expansion, ion cyclotron waves propagating along the magnetic field are also seen to expand outward. These waves are generated at frequencies below the local gyro-frequency of O 5+ ions propagating parallel and anti-parallel to the magnetic field. Through analysis of the simulation results we demonstrate that wave generation and absorption takes place at all radial distances. Comparing the simulation results to observations of ICWs in the solar wind shows some of the observed wave characteristics may be explained by the mechanism discussed in this paper.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-11-04
    Description: The characteristics of nighttime medium-scale travelling ionospheric disturbance (MSTID) features observed over Yonaguni (24.5 o N, 123.0 o E; 19.3 o N dip latitude), Japan are studied using all-sky imaging of OI 630.0 nm airglow emission. The uniqueness of these observations is that the area observed by the imager covers the transition region between low to middle latitudes in the ionosphere. Typical low latitude limit of mid-latitude type nighttime MSTIDs possessing phase front alignments along the northwest to the southeast occurs in this region. These MSTID features are rarely sighted at dip latitudes below 15 o . We selected two year period for analysis in which one year corresponded to the solar minimum conditions and another year to the solar maximum conditions. The MSTIDs were observed to extend to farther lower latitudes during the solar minimum conditions than during the solar maximum periods. Their observed range of wavelengths, phase velocities, phase front alignment and propagation directions are similar to those observed at typical mid-latitude sites. However, on many occasions the phase fronts of the observed MSTIDs did not extend over the whole field of view of the imager indicating that some process inhibits their extension to further lower latitudes. Detailed investigation suggests that the poleward propagating enhancement of airglow intensity, probably associated with the midnight pressure bulge, causes the MSTID features to disappear when they reach lower latitudes later in the night. When the MSTIDs reach lower latitudes well before midnight, they are found to be inhibited by the equatorial ionization anomaly crest region.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-11-04
    Description: We study a magnetosphere-ionosphere coupling at low-latitudes during a moderate (CIR/HSS-driven) geomagnetic storm on 22 July 2009. Recently, it has been shown that during major (CME-driven) storms, quasi-trapped 〉30 keV electrons largely enhance below the radiation belt in the forbidden zone and produce an additional ionization in the topside ionosphere. In this work, we examine a case of the recurrent storm when the magnetosphere-ionosphere coupling through the quasi-trapped electrons also may take place. Data from NOAA/POES and Japanese GOSAT satellites were used to identify the forbidden electron enhancement (FEE). We find a positive vertical gradient of the electron fluxes that indicates to the radiation belt as a source of FEE. Using global ionospheric maps (GIM), radiotomography reconstructions from beacon data and COSMIC/FS3 radio occultation measurements, we have observed an unusually large area in the night-time ionosphere with increased total electron content (TEC) and prominent elevation of the F-layer at low-latitudes that coincides with FEEs spatially and temporarily. Ionizing particles are considered as an addition source of ionization along with generally accepted mechanisms for storm time TEC increase (a positive ionospheric storm). We discuss relative contributions of the FEE and disturbance dynamo electric field in the TEC increases during the storm recovery phase.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-12-13
    Description: Bursty bulk flow (BBF) events, frequently observed in the magnetotail, carry significant energy and mass from the tail region at distances that are often greater than 20 R E into the near-Earth plasma sheet at ~10 R E where the flow is slowed and/or diverted. This region at ~10 R E is referred to as the BBF braking region. A number of possible channels are available for the transfer or dissipation of energy in BBF events including adiabatic heating of particles, the propagation of Alfvén waves out of the BBF braking region and into the auroral region, diverted flow out of the braking region, and energy dissipation within the braking region itself. This study investigates the generation of intense high-frequency electric field activity observed within the braking region. When present, these intense electric fields have power above the ion cyclotron frequency and almost always contain nonlinear structures such as electron phase space holes and double layers, which are often associated with field-aligned currents. A hypothesis in which the observed high-frequency electric field activity is generated by field-aligned currents resulting from turbulence in the BBF braking region is considered. Although linear Alfvén waves can generate field-aligned currents, based on theoretical calculations, the required currents are likely not the result of linear waves. Observations from the THEMIS satellites support the picture of a turbulent plasma leading to the generation of nonlinear kinetic structures. This work provides a possible mechanism for energy dissipation in turbulent plasmas.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-12-13
    Description: Dipolarization fronts (DFs) are often associated with the leading edge of Earthward bursty bulk flows in the magnetotail plasma sheet. Here multi-spacecraft THEMIS observations are used to show that a spatially limited region of counter-propagating ion beams, whose existence is not evident in either the plasma moments or the electric field, is observed on the low density side of DFs. The THEMIS magnetic field data are used to establish appropriate comparison cuts through a particle-in-cell (PIC) simulation of reconnection, and very good agreement is found between the observed and simulated ion distributions on both sides of the DF. Self-consistent back-tracing shows that the ion beams originate from the thermal component of the pre-existing high density plasma into which the DF is propagating; they do not originate from the inflow region in the traditional sense. Forward tracing shows that some of these ions can subsequently overtake the DF and pass back into the high density pre-existing plasma sheet with an order-of-magnitude increase in energy; this process is distinct from other ion reflection processes that occur directly at the DF. The interaction of the reconnection jet with the pre-existing plasma sheet therefore occurs over a macroscopic region, rather than simply being limited to the thin DF interface. A more general consequence of this study is the conclusion that reconnection jets are not simply fed by plasma inflow across the separatrices, but are also fed by plasma from the region into which the jet is propagating; the implications of this finding are discussed.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-12-13
    Description: Low energy (1-10 MeV) neutrons emanating from the Sun provide unique information about accelerated ions with steep energy spectra that may be produced in weak solar flares. However, observation of these solar neutrons can only be made in the inner heliosphere where measurement is difficult due to high background rates from neutrons produced by energetic ions interacting in the spacecraft. These ions can be from solar energetic particle events or produced in passing shocks associated with fast coronal mass ejections. Therefore, it is of the utmost importance that investigators rule out these secondary neutrons before making claims about detecting neutrons from the Sun. The MErcury Surface, Space ENvironment, GEochemistry, and Ranging ( tect MESSENGER ) Neutron Spectrometer recorded an hour-long neutron transient beginning at 15:45 UTC on 2011 June 4 for which [13] claim there is “strong evidence" that the neutrons were produced by the interaction of ions in the solar atmosphere. We studied this event in detail using data from the MESSENGER neutron spectrometer, gamma-ray spectrometer, X-ray Spectrometer, and Energetic Particle Spectrometer, and from the particle spectrometers on STEREO A . We demonstrate that the transient neutrons were secondaries produced by energetic ions, probably accelerated by a passing shock, that interacted in the spacecraft. We also identify significant faults with the authors’ arguments in favor of a solar neutron origin for the transient.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2014-12-13
    Description: The response of the D-region low latitude ionosphere has been examined for extreme space weather event of 14-16 December 2006 associated with a X1.5 solar flare and an intense geomagnetic storm ( Dst  = -146 nT) using VLF signals from NWC (19.8 kHz) and NPM (21.4 kHz) transmitters monitored at Suva (Geog. 18.10 ο S, 178.40 ο E), Fiji. Modeling of flare associated amplitude and phase enhancements of NWC (3.6 dB, 223 o ) and NPM (5 dB, 153 o ) using Long Wave Propagation Capability code shows reduction in the D-region reflection height ( H ') by 11.1 km and 9.4 km, and enhancement in ionization gradients described by increases in the exponential sharpness factor ( β ) by 0.122 and 0.126 km -1 , for the NWC and NPM paths, respectively. During the storm the daytime signal strengths of the NWC and NPM signals were reduced by 3.2 dB on 15 and 16 December (for about 46 hrs) and recovered by 17 December. Modelling for the NWC path shows that storm-time values of H ' and β were reduced by 1.2 km and 0.06 km -1 , respectively. Morlet wavelet analysis of signals amplitudes shows no clearly strong signatures of gravity wave propagation to low latitudes during the main and recovery phases. The reduction in VLF signal strength is due to increased signal attenuation and absorption by the Earth-ionosphere waveguide due to storm-induced D-region ionization changes and hence changes in D-region parameters. The long duration of the storm effect results from the slow diffusion of changed composition/ionization at D-region altitudes compared with higher altitudes in the ionosphere.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2014-12-13
    Description: We study the ion density and temperature in the pre- and post-dipolarization plasma sheets in the Earth's magnetotail, using 9 years (2001–2009) of Cluster data. For our study we selected cases when Cluster observed dipolarization fronts (DFs) with an earthward plasma flow greater than 150 km/s. We perform a statistical study of the temperature and density variations during the DF crossings. Earlier studies concluded that on average the temperature increases while the densitydecreases across the DF. Our statistical results show a more diverse picture: While ~53% of the DFs follow this pattern (category A), for ~28% the temperature decreases while the density increases across the DF (category B). We found an overall decrease in thermal pressure for category A DFs with a more pronounced decrease at the DF duskside, while DFs of the category B showed no clear pattern in the pressure change. Both categories are associated with earthward plasma flows, but with some difference: (1) Category A flows are faster than category B flows. (2) The observations indicate that category B flows are directed perpendicular to the current in the near-Earth current sheet while category A flows are tilted slightly duskward from this direction. (3) The background B z of category B is higher than that of category A. Based on these results we hypothesize that after reconnection takes place, a BBF emerges with category A characteristics, and as it travels earthward it further evolves into category B characteristics, which is in a more dipolarized region with slower plasma flow (closer to the flow braking region).
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2014-12-09
    Description: The eruption of Mount Pinatubo in 1991 injected a large amount of SO 2 into the stratosphere, which formed sulfate aerosols. Increased scattering and absorption of UV radiation by the enhanced stratospheric SO 2 and aerosols decreased the amount of UV radiation reaching the troposphere, causing changes in tropospheric photochemistry. These changes affected the oxidizing capacity of the atmosphere and the removal rate of CH 4 in the years following the eruption. We use the three-dimensional chemistry transport model TM5 coupled to the aerosol microphysics module M7 to simulate the evolution of SO 2 and sulfate aerosols from the Pinatubo eruption. Their effect on tropospheric photolysis frequencies and concentrations of OH and CH 4 are quantified for the first time. We find that UV attenuation by stratospheric sulfur decreased the photolysis frequencies of both ozone and NO 2 by about 2% globally, decreasing global OH concentrations by a similar amount in the first two years after the eruption. SO 2 absorption mainly affects OH primary production by ozone photolysis, while aerosol scattering also alters OH recycling. The effect of stratospheric sulfur on global OH and CH 4 is dominated by the effect of aerosol extinction, while SO 2 absorption contributes by 12.5% to the overall effect in the first year after the eruption. The reduction in OH concentrations causes an increase in the CH 4 growth rate of 4 and 2 ppb/yr in the first and second year after the eruption, respectively, contributing 11 Tg to the 27 Tg observed CH 4 burden change in late 1991 and early 1992.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2014-12-09
    Description: Emission source contributions of tropospheric ozone (O 3 ) were comprehensively investigated by using the higher-order decoupled direct method (HDDM) for sensitivity analysis and the ozone source apportionment technology (OSAT) for mass balance analysis in the comprehensive air-quality model with extensions (CAMx). The response of O 3 to emissions reductions at various levels in mainland China, Korea, and Japan were estimated and compared with results calculated by the brute force method (BFM) where one model parameter is varied at a time. Emissions were assessed at three receptor sites in Japan that experienced severe pollution events in May 2009. For emissions from China, HDDM assessed O 3 response with a bias of only up to 3 ppbv (a relative error of 4.5%) even for a 50% reduction, but failed to assess a more extreme reduction. OSAT was reasonably accurate at 100% reduction, with a −4 ppbv (−7%) bias, but was less accurate at moderate ranges of reduction (⊔50-70%). For emissions from Korea and Japan, HDDM captured the nonlinear response at all receptor sites and at all reduction levels to within 1% in all but one case; however, the bias of OSAT increased with the increasing reduction of emissions. One possible reason for this is that OSAT does not account for NO titration. To address this, a term for potential ozone (PO; O 3 and NO 2 together) was introduced. Using of PO instead of O 3 improved the performance of OSAT, especially for emissions reductions from Korea and Japan. The proposed approach with PO refined the OSAT results and did not degrade HDDM performance.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2014-11-06
    Description: Using observed precipitation and the NCEP-NCAR reanalysis, the changes in the metrics of the summer precipitation in China, the dominance of frequency and intensity of daily extreme precipitation, and the linkage with changes in moisture and air temperature are explored. Results show that over the recent 50 years, total summer rainfall increased over the southeast and the west and decreased over the northeast. The changes in the frequency, identified with the 95% threshold and Poisson regression, and rainfall extremes show similar spatial patterns. The relative importance of the changes in frequency and intensity in the variability and changes in extreme precipitation is estimated. It is shown that, while the interannual variability of the rainfall amount is dominated by the frequency change in almost all stations, the long-term change of rainfall amount can be dominated by both frequency and intensity, depending on the station. The change in the rainfall total is linked to changes in atmospheric moisture and temperature. Results show that the variability and change of the rainfall total can be dominated by changes in both moisture and air temperature, and the relative importance depends on the region.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2014-11-06
    Description: We examine variations in water vapor in air entering the stratosphere through the tropical tropopause layer (TTL) over the past three decades in satellite data and in a trajectory model. Most of the variance can be explained by three processes that affect the TTL: the quasi-biennial oscillation, the strength of the Brewer-Dobson circulation, and the temperature of the tropical troposphere. When these factors act in phase, significant variations in water entering the stratosphere are possible. We also find that volcanic eruptions, which inject aerosol into the TTL, affect the amount of water entering the stratosphere. While there is clear decadal variability in the data and models, we find little evidence for a long-term trend in water entering the stratosphere through the TTL over the past 3 decades.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2014-12-09
    Description: Eight months (June 2011-January 2012) of aerosol property data were obtained at the remote site of Alborán Island (35.95 ° N, 3.03 ° W) in the western Mediterranean basin. The aim of this work is to assess the aerosol properties according to air-mass origin and transport over this remote station with a special focus on air mass transport from North Africa. For air masses coming from North Africa, different aerosol properties showed strong contributions from mineral dust lifted from desert areas. Nevertheless, during these desert dust intrusions, some atmospheric aerosol properties are clearly different from pure mineral dust particles. Thus, Angström exponent α(440–870) presents larger values than those reported for pure desert dust measured close to dust source regions. These results combine with α(440,670)-α(670,870) ≥ 0.1 and low single scattering albedo (ω(λ)) values, especially at the largest wavelengths. Most of the desert dust intrusions over Alborán can be described as a mixture of dust and anthropogenic particles. The analyses support that our results apply to North Africa desert dust air masses transported from different source areas. Therefore, our results indicate a significant contribution of fine absorbing particles during desert dust intrusions over Alborán arriving from different source regions. The aerosol optical depth (AOD) data retrieved from sun-photometer measurements have been used to check MODIS retrievals, and they show reasonable agreement, especially for North African air masses.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2014-12-09
    Description: The impact of aircraft type on contrail evolution is assessed using a large-eddy simulation (LES) model with Lagrangian ice microphysics. Six different aircraft ranging from the small regional airliner Bombardier CRJ to the largest aircraft Airbus A380 are taken into account. Differences in wake vortex properties and fuel flow lead to considerable variations in the early contrail geometric depth and ice crystal number. Larger aircraft produce contrails with more ice crystals (assuming that the number of initially generated ice crystals per kg fuel is constant). These initial differences are reduced in the first minutes, as the ice crystal loss during the vortex phase is stronger for larger aircraft. In supersaturated air, contrails of large aircraft are much deeper after 5 minutes than those of small aircraft. A parametrization for the final vertical displacement of the wake vortex system is provided, depending only on the initial vortex circulation and stratification. Cloud resolving simulations are used to examine whether the aircraft-induced initial differences have a long-lasting mark. These simulations suggest that the synoptic scenario controls the contrail-cirrus evolution qualitatively. However, quantitative differences between the contrail-cirrus properties of the various aircraft remain over the total simulation period of six hours. The total extinctions of A380-produced contrails are about 1.5 to 2.5 times higher than those from contrails of a Bombardier CRJ.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2014-12-09
    Description: Quantifying the effects of urban land-use/land-cover with regard to surface radiation and heat-flux regulation is important to ecological planning and heat stress mitigation. To retrieve the spatial pattern of heat fluxes in the Beijing metropolitan area, China, a remote sensing–based energy balance model was calibrated with synchronously measured energy fluxes including net radiation, latent heat flux (LE), and sensible heat flux (H). Our model calibration approach avoided the uncertainties due to subjective judgments in previous empirical parameterization methods. The land surface temperature (LST), H, and Bowen ratio (β) of Beijing were found to increase along the outskirt-suburban-urban gradient, with strong spatial variation. LST and H were negatively correlated with vegetation fraction cover (VFC). For example, the modern high-rise residential areas with relatively higher VFC had lower H and β than the traditional low-rise residential areas. Our findings indicate thermal dissipation through vegetation transpiration might play an important role in urban heat regulation. Notably, the thermal-dissipating strength of vegetation (calculated as LE/VFC) declined exponentially with increased VFC. For the purpose of heat stress regulation, we recommend upgrading the traditional low-rise residential areas to modern high-rise residential areas and focusing urban greenery projects in areas whose VFC 〈 0.1, where the heat-regulating service by urban vegetation could be twice as effective as in other places.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2014-12-09
    Description: ABSTRACT Urban areas have different climatology with respect to their rural surroundings. Though urbanization is a worldwide phenomenon, it is especially prevalent in India, where urban areas have experienced an unprecedented rate of growth over the last 30 years. Here we take up an observational study to understand the influence of urbanization on the characteristics of precipitation (specifically extremes) in India. We identify 42 urban regions, and compare their extreme rainfall characteristics with those of surrounding rural areas. We observe that, on an overall scale, the urban signatures on extreme rainfall are not prominently and consistently visible, but they are spatially non uniform. Zonal analysis reveals significant impacts of urbanization on extreme rainfall in central and western regions of India. An additional examination, to understand the influences of urbanization on heavy rainfall climatology, is carried with station level data using a statistical method, quantile regression. This is performed for the most populated city of India, Mumbai, in pair with a nearby non–urban area, Alibaug; both having similar geographic location. The derived extreme rainfall regression quantiles reveal the sensitivity of extreme rainfall events to the increased urbanization. Overall the study identifies the climatological zones in India, where, increased urbanization affects regional rainfall pattern and extremes, with a detailed case study of Mumbai. This also calls attention to the need of further experimental investigation, for the identification of the key climatological processes, in different regions of India, affected by increased urbanization.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2014-12-09
    Description: The Victoria mode (VM) represents the second dominant mode (EOF2) of North Pacific variability, independent of the Pacific Decadal Oscillation (PDO), and is defined as the EOF2 of SST anomalies (SSTAs) in the North Pacific poleward of 20°N. The present study indicates that the VM is closely linked to the development of El Niño–Southern Oscillation (ENSO). The VM may effectively act as an ocean bridge (or conduit) through which the extratropical atmospheric variability in the North Pacific influences ENSO. The VM can trigger the onset of ENSO via the following two dominant processes: 1) surface air–sea coupling associated with the VM in the subtropical/tropical Pacific and 2) evolution of subsurface ocean temperature anomalies along the equator associated with the VM. These two processes may force sufficient surface warming to occur in the central–eastern equatorial Pacific from spring to summer, which in turn initiates an ENSO event. The VM influence on ENSO relies on a basin-scale air–sea interaction dynamic, as opposed to more local-scale dynamics typically associated with the seasonal footprinting mechanism (SFM) or Pacific meridional mode (PMM). The majority of VM events are followed by ENSO events. These ENSO events triggered by VM include El Niño Modoki (EM) as well as conventional El Niño. There is no evidence that the VM tends to be more conducive to the initialization of EM than conventional El Niño.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2014-11-29
    Description: It has been well documented that there is an anticyclonic anomaly over the western North Pacific (WNPAC, hereafter) during El Niño decaying summer. This El Niño − WNPAC relationship is greatly useful for the seasonal prediction of summer climate in the WNP and East Asia. In this study, we investigate the modification of the El Niño–WNPAC relationship induced by a weakened Atlantic thermohaline circulation (THC) in a water-hosing experiment. The results suggest that the WNPAC during the El Niño decaying summer, as well as the associated precipitation anomaly over the WNP, is intensified under the weakened THC. On the one hand, this intensification is in response to the increased amplitude and frequency of El Niño events in the water-hosing experiment. On the other hand, this intensification is also because of greater climatological humidity over the western to central North Pacific under the weakened THC. We suggest that the increase of climatological humidity over the western to central North Pacific during summer under the weakened THC is favourable for enhanced interannual variability of precipitation, and therefore favourable for the intensification of the WNPAC during El Niño decaying summer. This study suggests a possible modulation of the ENSO–WNP summer monsoon relationship by the low frequency fluctuation of Atlantic sea surface temperature (SST). The results offer an explanation for the observed modification of the multidecadal fluctuation of El Niño–WNPAC relationship by the Atlantic multidecadal oscillation (AMO).
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2014-11-29
    Description: Ice cores are archives of climate change and possibly large solar proton events (SPEs). Wolff et al . [2012] used a single event, a nitrate peak in the GISP2-H core, which McCracken et al . [2001a] time associated with the poorly quantified 1859 Carrington event, to discredit SPE-produced, impulsive nitrate deposition in polar ice. This is not the ideal test case. We critique the Wolff et al. analysis and demonstrate that the data they used cannot detect impulsive nitrate events because of resolution limitations. We suggest re-examination of the top of the Greenland ice sheet at key intervals over the last two millennia with attention to fine resolution and replicate sampling of multiple species. This will allow further insight into polar depositional processes on a sub-seasonal scale, including atmospheric sources, transport mechanisms to the ice sheet, post-depositional interactions, and a potential SPE association.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2014-11-29
    Description: Line-by-line radiative transfer computations show that the logarithmic dependence of radiative forcing on gas concentration not only applies to broadband irradiation fluxes such as in the well-known case of the CO 2 forcing, but also applies to the spectral radiance change due to both CO 2 and other gases, such as H 2 O. That the logarithmic relationship holds for monochromatic radiance requires an explanation beyond the conventional ideas based on the spectroscopic features of the gas absorption lines. We show that the phenomenon can be explained by an Emission Layer Displacement Model , which describes the radiance response to gas perturbation under normal atmospheric conditions such as temperature linearly varying with height and gas concentration exponentially decaying with height.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2014-12-04
    Description: Severe geomagnetic storms have a strong impact on space communication and satellite navigation systems. Forecasting the appearance of geomagnetically induced disturbances in the ionosphere is one of the urgent goals of the space weather community. The challenge is that the processes governing the distribution of the crucial ionospheric parameters has a rather poor quantitative description and the models, built using the empirical parameterisations, have limited capabilities for operational purposes. On the other hand, data assimilation techniques are becoming more and more popular for nowcasting the state of the large-scale geophysical systems. We present an example of an ionospheric data assimilation system performance assessment during a strong geomagnetic event, which took place on 26 September 2011. The first-principle model has assimilated slant total electron content measurements from a dense network of ground stations, provided by the Norwegian Mapping Authority. The results have shown satisfactory agreement with independent data and demonstrate that the assimilation model is accurate to about 2–4 TEC units, and can be used for operational purposes in high-latitude regions. The operational system performance assessment is the subject of future work.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2014-12-05
    Description: Seasonal mean rainfall projections for Hawai‘i are given based on statistical downscaling of the latest CMIP5 global model results for two future representative concentration pathways (RCP4.5 and RCP8.5). The spatial information content of our statistical downscaling (SD) method is improved over previous efforts through the inclusion of spatially extensive, high quality monthly rainfall data set and the use of improved large-scale climate predictor information. Predictor variables include moisture transport in the middle atmosphere (700 hPa), vertical temperature gradients, and geopotential height fields of the 1000 and 500 hPa layers. The results allow for the first time to derive a spatially interpolated map with future rainfall change estimates for the main Hawaiian Islands. The statistical downscaling was applied to project wet (November-April) and dry (May-October) season rainfall anomalies for the mid and late 21 st century. Overall, the statistical downscaling gives more reliable results for the wet season than the dry season. The wet season results indicate a pronounced dipole structure between windward-facing mountain slopes and the leeward side of most of the islands. The climatically wet regions on the windward slopes of the mountain regions are expected to become wetter or remain stable in their seasonal precipitation amounts. On the climatically dry leeward sides Kaua‘i, O‘ahu Maui and Hawai‘i Island, future precipitation exhibits the strongest drying trends. The projected future rainfall anomaly pattern is associated with a circulation anomaly that resembles a shift in the position or strength of the subtropical high and the average location of extratropical troughs. These new results suggest that a negative trend dominates the area-averaged changes in the statistical downscaling over the Hawaiian Islands. However, the islands are expected to experience a greater contrast between the wet and dry regions in future.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2014-01-11
    Description: [1]  The last solar minimum period was anomalously extended and low in EUV irradiance compared with previous solar minima. It can readily be expected that the thermosphere and ionosphere must be correspondingly affected by this low solar activity. While there have been unanimous reports on the thermospheric changes, being cooler and lower in its density as expected, the ionospheric responses to low solar activity in previous studies were not consistent with each other, probably due to the limited ionospheric observations used for them. In this study, we utilized the measurements of total electron content (TEC) from TOPEX and JASON-1 satellites during the periods of 1992 to 2010, which includes both the last two solar minimum periods, in order to investigate how the ionosphere responded to the extremely low solar activity during the last solar minimum compared with previous solar minimum. Although the global daily mean TECs show negligible differences between the two solar minimum periods, the global TEC maps reveal that there are significant systematic differences ranging from about -30% to +50% depending on local time, latitude and season. The systematic variations of the ionospheric responses seem to mainly result from the relative effects of reduced solar EUV production and reduced recombination rate due to thermospheric changes during the last solar minimum period.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2014-01-11
    Description: [1]  Some of the potentially most destructive effects of severe space weather storms are caused by the Geomagnetically Induced Currents. GICs can cause failures of electric transformers and result in wide-spread blackouts. GICs are induced by the time variability of the magnetic field, and are closely related to the time derivative of the local magnetic field perturbation. Predicting dB/dt is rather challenging, since the local magnetic perturbations and their time derivatives are both highly fluctuating quantities, especially during geomagnetic storms. The currently available first-principles based and empirical models cannot predict the detailed minute-scale or even faster time variation of the local magnetic field. On the other hand, Pulkkinen et al. [2013] demonstrated recently that several models can predict with positive skill scores whether the horizontal component of dB/dt at a given magnetometer station will exceed some threshold value in a 20-minute time interval. In this paper we investigate if one can improve the efficiency of the prediction further. We find that the Space Weather Modeling Framework, the best performing among the five models compared by Pulkkinen et al. [2013], shows significantly better skill scores in predicting the magnetic perturbation than predicting its time derivative, especially for large deviations. We also find that there is a strong correlation between the magnitude of dB/dt and the magnitude of the horizontal magnetic perturbation itself. Combining these two results one can devise an algorithm that gives better skill scores for predicting dB/dt exceeding various thresholds in 20-minute time intervals than the direct approach.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2014-01-14
    Description: [1]  Acquiring accurate measurements of water vapor at the low mixing ratios (〈 10 ppm) encountered in the upper troposphere and lower stratosphere has proven to be a significant analytical challenge evidenced by persistent disagreements between high-precision hygrometers. These disagreements have caused uncertainties in the description of the physical processes controlling dehydration of air in the tropical tropopause layer and entry of water into the stratosphere, and have hindered validation of satellite water vapor retrievals. A 2011 airborne intercomparison of a large group of in situ hygrometers onboard the NASA WB-57F high-altitude research aircraft and balloons has provided an excellent opportunity to evaluate progress in the scientific community towards improved measurement agreement. In this work we intercompare the measurements from the Mid-latitude Airborne Cirrus Properties Experiment (MACPEX) and discuss the quality of agreement. Differences between values reported by the instruments were reduced in comparison to some prior campaigns, but were non-negligible and on the order of 20% (0.8 ppm). Our analysis suggests that unrecognized errors in the quantification of instrumental background for some or all of the hygrometers are a likely cause. Until these errors are understood, differences at this level will continue to somewhat limit our understanding of cirrus microphysical processes and dehydration in the tropical tropopause layer.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2014-01-14
    Description: [1]  As a weakly magnetized planet, Mars ionosphere/atmosphere interacts directly with the shocked solar wind plasma flow. Even though many numerical studies have been successful in reproducing numerous features of the interaction process, these earlier studies focused mainly on interaction under steady solar wind conditions. Recent observations suggest that plasma escape fluxes are significantly enhanced in response to solar wind dynamic pressure pulses. In this study, we focus on the response of the ionosphere to pressure enhancements in the solar wind. Through modeling of two idealized events using a magnetohydrodynamics model, we find that the upper ionosphere of Mars responds almost instantaneously to solar wind pressure enhancements, while the collision dominated lower ionosphere (below ~150 km) does not have noticeable changes in density. We also find that ionospheric perturbations in density, magnetic field and velocity can last more than an hour after the solar wind returns to the quiet conditions. The topside ionosphere forms complicated transient shapes in response, which may explain unexpected ionospheric behaviors in recent observations. We also find that ionospheric escape fluxes do not correlate directly with simultaneous solar wind dynamic pressure. Rather, their intensities also depend on the earlier solar wind conditions. It takes a few hours for the ionospheric/atmospheric system to reach a new quasi-equilibrium state.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2014-01-15
    Description: [1]  Combining THEMIS wave and particle observations and a quantitative calculation of linear wave growth rate, we demonstrate that magnetosonic (MS) waves can be locally excited by ion ring distributions in the Earth's magnetosphere when the ion ring energy is comparable to the local Alfven energy. MS waves in association with ion ring distributions were observed by THEMIS A on 24 November 2010 in the afternoon sector, both outside the plasmapause where the wave spectrum varied with f LHR and inside the plasmapause where the wave frequency band remained nearly constant. Our plasma instability analysis in three different regions shows that higher and narrow frequency band MS waves are excited locally outside the plasmapause, and lower and broad frequency band MS waves are excited in the region where the density slightly increases. However, there is no evidence for wave excitation inside the plasmapause, and wave propagation from a distant source is needed to explain their existence. The simulation of the MS wave growth rate spectra during this event agrees reasonably well with the observed wave magnetic field power spectra. We also simulated a MS wave event on 19 October 2011 in the dusk sector, and found that the ion ring distribution with an ion ring energy slightly higher than the local Alfven energy can excite the typical broad band MS waves outside the plasmapause.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2014-01-15
    Description: [1]  The second Radio Aurora Explorer (RAX-2) satellite has completed more than 30 conjunction experiments with the AMISR chain of incoherent scatter radars in Alaska, and Resolute Bay, Canada. Coherent radar echoing occurred during four of the passes: three when E region electron drifts exceeded the ion acoustic speed threshold and one during HF heating of the ionosphere by the HAARP heater. In this paper, we present the results for the first three passes associated with backscatter from natural irregularities. We analyze, in detail, the largest drift case because the plasma turbulence was the most intense and because the corresponding ground-to-space bi-static scattering geometry was the most favorable for magnetic aspect sensitivity analysis. A set of data analysis procedures including interference removal, autocorrelation analysis, and the application of a radar beam deconvolution algorithm mapped the distribution of E region backscatter with 3 km resolution in altitude and ∼ 0.1 ∘ in magnetic aspect angle. To our knowledge, these are the highest resolution altitude-resolved magnetic aspect sensitivity measurements made at UHF frequencies in the auroral region. In this paper, we show that, despite the large electron drift speed of ∼ 1500 m/s, the magnetic aspect sensitivity of sub-meter scale irregularities is much higher than previously reported. The root-mean-square of the aspect angle distribution varied monotonically between 0.5-0.1 ∘ for the altitude range 100-110 km. Findings from this single but compelling event suggest that sub-meter scale waves propagating at larger angles from the main E  ×  B flow direction (secondary waves) have parallel electric fields that are too small to contribute to E region electron heating. It is possible anomalous electron heating in the auroral electrojet can be explained by (a) the dynamics of those sub-meter scale waves propagating in the E  ×  B direction (primary waves) or (b) the dynamics of longer wavelengths.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2014-01-19
    Description: [1]  Working toward a physical understanding of how solar-wind/magnetosphere coupling works, four arguments are presented indicating that the solar-wind electric field v sw  × B sw does not control the rate of reconnection between the solar wind and the magnetosphere. Those four arguments are (1) that the derived rate of dayside reconnection is not equal to solar-wind electric field, (2) that electric-field driver functions can be improved by a simple modification that disallows their interpretation as the solar-wind electric field, (3) that the electric field in the magnetosheath is not equal to the electric field in the solar wind, and (4) that the magnetosphere can mass load and reduce the dayside reconnection rate without regard for the solar-wind electric field. The data is more consistent with a coupling function based on local control of the reconnection rate than the Axford conjecture that reconnection is controlled by boundary conditions irrespective of local parameters. Physical arguments that the solar-wind electric field controls dayside reconnection are absent; it is speculated that it is a coincidence that the electric field does so well at correlations with geomagnetic indices.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2014-01-19
    Description: [1]  This paper presents a case study from a single, six-hour observing period to illustrate the application of techniques developed for interferometric radio telescopes to the spectral analysis of observations of ionospheric fluctuations with sparse arrays. We have adapted the deconvolution methods used for making high dynamic range images of cosmic sources with radio arrays to making comparably high dynamic range maps of spectral power of wavelike ionospheric phenomena. In the example presented here, we have used observations of the total electron content (TEC) gradient derived from Very Large Array (VLA) observations of synchrotron emission from two galaxy clusters at 330 MHz as well as GPS-based TEC measurements from a sparse array of 33 receivers located within New Mexico near the VLA. We show that these techniques provide a significant improvement in signal to noise (S/N) of detected wavelike structures by correcting for both measurement inaccuracies and wavefront distortions. This is especially true for the GPS data when combining all available satellite/receiver pairs, which probe a larger physical area and likely have a wider variety of measurement errors than in the single-satellite case. In this instance, we found the peak S/N of the detected waves was improved by more than an order of magnitude. The data products generated by the deconvolution procedure also allow for a reconstruction of the fluctuations as a two-dimensional waveform/phase screen that can be used to correct for their effects.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2014-01-21
    Description: [1]  In this paper, we test whether time periods with hot proton temperature anisotropy are associated with EMIC waves, and whether the plasma conditions during the observed waves satisfy the linear theory threshold condition. We identify 865 events observed by the Composition DIstribution Function (CODIF) instrument onboard Cluster spacecraft 4 (SC4) during 1 January 2001 – 1 January 2011 that exhibit a positive temperature anisotropy ( A hp  =  T ⊥  h / T ∥  h  − 1) in the 10-40 keV protons. The events occur over an L range from 4 to 10 in all magnetic local times and at magnetic latitudes (MLAT) within ±50°. Of these Hot Proton Temperature Anisotropy (HPTA) events, only 68 events have electromagnetic ion cyclotron (EMIC) waves. In these 68 HPTA events, for those at 3.8〈 L  ≤ 5 and |MLAT| ≤ 10 ° , the EMIC waves with powers 〉1.0 nT 2 /Hz mainly appear in the region with f EMIC / f H , eq  〈 0.8. Two stop bands are present, one near the region with f EMIC / f H , eq  ≈ 0.33, the other in the region with 0.8 〈  f EMIC / f H , eq  〈 0.9. Most of the EMIC waves in the He, H, and 〉 H bands satisfy A hp /( A hp  + 1) 〉  f EMIC / f H , lo , A hp /( A hp  + 1) 〉 0.45 *  f EMIC / f H , lo , and A hp /( A hp  + 1) 〈 0.45 *  f EMIC / f H , lo .   f EMIC , f H , eq   and f H , lo are the EMIC wave frequency, the magnetic equatorial and the local proton gyrofrequencies. We also find that the EMIC waves predominantly occur with A hp  〉 0.25. By testing a threshold equation for the EMIC instability based on linear theory, we find that for EMIC waves with |MLAT| ≤ 10 ° in the He, H and 〉 H bands the percentages that satisfy the predicted conditions for wave growth by the threshold equation are 15.2%, 24.6% and 25.6%. For the EMIC waves with |MLAT| 〉 10 ° the percentages that satisfy the wave growth predicted conditions are only 2.8%, 2.6% and 0.0%. Finally, possible reasons for the low forecast accuracies of EMIC waves are suggested.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2014-01-24
    Description: [1]  We analyse the stratospheric Kelvin and Rossby-gravity wave packets with periods of a few days in nine high-top (i.e. with stratosphere) models of the fifth Coupled Model Intercomparison Project (CMIP5). These models simulate realistic aspects of these waves, and represent them better than the tropospheric convectively coupled waves analyzed in previous studies. [2]  There is nevertheless a large spread among the models, and those with a Quasi-Biennial Oscillation (QBO) produce larger amplitude waves than the models without a QBO. For the Rossby-gravity waves this is explained by the fact that models without a QBO never have positive zonal mean zonal winds in the lower stratosphere, a situation that is favorable to the propagation of Rossby-gravity waves. For the Kelvin waves, larger amplitudes in the presence of a QBO is counter intuitive because Kelvin waves are expected to have larger amplitude when the zonal mean zonal wind is negative, and this is always satisfied in models without a QBO. We attribute the larger amplitude to the fact that models tuned to have a QBO require finer vertical resolution in the stratosphere. [3]  We also find that models with large precipitation variability tend to produce larger amplitude waves. However, the effect is not as pronounced as was found in previous studies. In fact, even models with weak precipitation variability still have quite realistic stratospheric waves, indicating either that (i) other sources can be significant or that (ii) the dynamical filtering mitigates the differences in the sources between models.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2014-01-24
    Description: [1]  A high-resolution global atmospheric dataset (DA126) is used to understand the East Asian summer precipitation variability. It is found that a fine resolution of the DA126 precipitation data is able to reveal the detailed structures of the rainfall variability over East Asia and southern China in comparison with global analysis precipitation datasets such as the CMAP. The first two empirical orthogonal functions (EOFs) of the DA126 precipitation data over East Asia accurately reflect a decadal shift in rainfall over southern China in the mid-1990s. Furthermore, the first EOF-related precipitation of the DA126 is related to the tropical Pacific sea surface temperature (SST) variability (i.e., ENSO) and the second EOF-related precipitation is associated with the Indian Ocean SST variability. Consequently, the tropical Pacific and the Indian Ocean SSTs have different associations with the East Asian monsoon precipitation variability. However, it is difficult to find such a relationship in the first two EOFs of the CMAP dataset over East Asia. Using the DA126 precipitation dataset, our further analysis indicates that warming of both the tropical Pacific and the Indian Ocean causes an increase in the rainfall anomaly over southern China after the mid-1990s, which results in a decadal shift in the rainfall anomaly after the mid-1990s. In addition, the first EOF-related precipitation is associated with both the Pacific-Japan-like (PJ-like) pattern and the Eurasian-like pattern. In contrast, the second EOF-related precipitation is only associated with the PJ-like wave trains from the western Pacific to East Asia.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2014-01-24
    Description: [1]  We have diagnosed the lifetimes of long-lived source gases emitted at the surface and removed in the stratosphere using six three-dimensional chemistry-climate models (CCMs) and a two-dimensional model. The models all used the same standard photochemical data. We investigate the effect of different definitions of lifetimes, including running the models with both mixing ratio (MBC) and flux (FBC) boundary conditions. Within the same model, the lifetimes diagnosed by different methods agree very well. Using FBCs versus MBCs leads to a different tracer burden as the implied lifetime contained in the MBC value does not necessarily match a model's own calculated lifetime. In general, there are much larger differences in the lifetimes calculated by different models, the main causes of which are variations in the modelled rates of ascent and horizontal mixing in the tropical mid-lower stratosphere. The model runs have been used to compute instantaneous and steady-state lifetimes. For chlorofluorocarbons (CFCs) their atmospheric distribution was far from steady state in their growth phase through to the 1980s and the diagnosed instantaneous lifetime is accordingly much longer. Following the cessation of emissions, the resulting decay of CFCs is much closer to steady-state. For 2100 conditions the model circulation speeds generally increase, but a thicker ozone layer due to recovery and climate change reduces photolysis rates. These effects compensate so the net impact on modelled lifetimes is small. For future assessments of stratospheric ozone use of FBCs would allow a consistent balance between rate of CFC removal and model circulation rate.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2014-01-11
    Description: [1]  In January 2011, the state of the polar vortex in the midlatitudes changed significantly due to a minor Sudden Stratospheric Warming event. As a result, a bi-directional duct for infrasound propagation developed in the middle atmosphere that persistedfor two weeks. The ducts were due to two zonal wind jets, one between 30-50 km and the other around 70 km altitude. In this paper, using microbarom source modeling, a previously unidentified source region in the eastern Mediterranean is identified,besides the more well known microbarom source regions in the Atlantic Ocean. Infrasound data is then presented in which the above mentioned bi-directional duct is observed in microbarom signals recorded at the IMS station I48TN in Tunisia from the Mediterranean region to the east and from the Atlantic Ocean to the west. While the frequency bands of the two sources overlap, the Mediterranean signal is coherent up to about 0.6 Hz. This observation is consistent with the microbarom source modeling; the discrepancy in the frequency band is related to differences in the ocean wave spectra for the two basins considered. This work demonstrates the sensitivity of infrasound to stratospheric dynamics and illustrates that the classic paradigm of a unidirectional stratospheric duct for infrasound propagation can be broken during a Sudden Stratospheric Warming event.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2014-01-11
    Description: [1]  Clear experimental evidence of the Twomey effect for shallow trade wind cumuli near Barbados is presented. Effective droplet radius ( r eff ) and cloud optical thickness ( τ ), retrieved from helicopter–borne spectral cloud–reflected radiance measurements, and spectral cloud reflectivity ( γ λ ) are correlated with collocated in situ observations of the number concentration of aerosol particles from the sub–cloud layer ( N ). N denotes the concentration of particles larger than 80nm in diameter and represents particles in the activation mode. In situ cloud microphysical and aerosol parameters were sampled by the Airborne Cloud Turbulence Observation System (ACTOS). Spectral cloud–reflected radiance data were collected by the Spectral Modular Airborne Radiation measurements sysTem (SMART-HELIOS). With increasing N a shift in the probability density functions of τ and γ λ towards larger values is observed, while the mean values and observed ranges of retrieved r eff decrease. The relative susceptibilities ( RS ) of r eff , τ and γ λ to N are derived for bins of constant liquid water path ( LWP ). The resulting values of RS are in the range of 0.35 for r eff and τ , and 0.27 for γ λ . These results are close to the maximum susceptibility possible from theory. Overall, the shallow cumuli sampled near Barbados show characteristics of homogeneous, plane–parallel clouds. Comparisons of RS derived from in situ measured r eff and from a microphysical parcel model are in close agreement.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2014-01-11
    Description: [1]  The simultaneous onset of the preliminary impulse (PI) of the geomagnetic sudden commencement at high latitude and dayside dip equator is explained by means of the TM 0 mode waves propagating at the speed of light in the Earth-ionosphere waveguide (EIW) [Kikuchi et al., 1978]. A couple of issues remain to be addressed in the EIW model: (1) How is the TM 0 mode wave is excited by the field-aligned currents in the polar region? (2) How are the quasi-steady ionospheric currents are achieved by the TM 0 mode waves? (3) How simultaneous or delayed are the onset and peak of the equatorial PI with respect to the high latitude PI? To address these issues, we examine the TEM (TM 0 ) mode wave propagation in the finite-length transmission lines replacing the pair of FACs (magnetosphere-ionosphere (MI) transmission line) and the Earth-ionosphere waveguide (ionosphere-ground (IG) transmission line). The issue (1) is addressed by showing that a fraction of the TEM mode wave is transmitted from the MI to IG transmission lines through the polar ionosphere. To address the issues (2) and (3), we examine the properties of the finite-length IG transmission line with finite ionospheric conductivity. It is shown that the ionospheric currents start to grow instantaneously and continue to grow gradually with time constants of 1-10 sec depending on the ionospheric conductivity. The MIG transmission line enables us to explain the instantaneous onset and delayed peak time of the equatorial PI and quick electric field response of the low latitude ionosphere and inner magnetosphere.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2014-01-14
    Description: [1]  The long-term measurements at the Barrow and Atqasuk sites have been processed to develop the climatology of aerosol and cloud properties at interannual, seasonal, and diurnal temporal scales. At the Barrow site, the surface temperature exhibits an increasing trend in both thawed and frozen seasons over the period studied here, about one decade. Corresponding to the warming, the snow melting day arrives earlier and the non-snow-cover duration increases. Aerosol optical depth (AOD) increased during the periods of 2001-2003 and 2005-2009, and decreased during 2003-2005. The liquid water path (LWP), cloud optical depth (COD), and cloud fraction exhibit apparently decreasing trends from 2002 to 2007 and increased significantly after 2008. In the frozen season, the Arctic haze and ice clouds are dominant, while in the thawed season, the oceanic biogenic aerosols and liquid water clouds or mix-phase clouds are dominant. The cloud droplet effective radius during the thawed season is larger than that during the frozen season. The diurnal variations of aerosol and cloud related atmospheric properties are not obvious at these two sites. During the sunshine periods, the aerosol has a cooling effect on the surface through direct aerosol radiative forcing. In the frozen season clouds have a positive impact on the net surface radiation, and the WVP, LWP, and COD have good positive correlations with the surface temperature, suggesting that the cloud–radiation feedback is positive. In the thawed season, clouds have a negative impact on the net surface radiation. The impact of surface temperature on cloud amount is also negative, although the statistics are not as robust in the frozen season.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2014-01-15
    Description: [1]  Differences between stratospheric water vapor measurements by NOAA frost point hygrometers (FPHs) and the Aura Microwave Limb Sounder (MLS) are evaluated for the period August 2004 through December 2012 at Boulder, Colorado (40.0°N, 105.2°W), Hilo, Hawaii (19.7°N, 155.1°W), and Lauder, New Zealand (45.0°S, 169.7°E). Two groups of MLS profiles coincident with the FPH soundings at each site are identified using unique sets of temporal and spatial criteria. Before evaluating the differences between coincident FPH and MLS profiles each FPH profile is convolved with the MLS averaging kernels for 8 pressure levels from 100 to 26 hPa (~16 to 25 km) to reduce its vertical resolution to that of the MLS water vapor retrievals. The mean FPH–MLS differences at every pressure level (100 to 26 hPa) are well within the combined measurement uncertainties of the two instruments. However, the mean differences at 100 and 83 hPa are statistically significant and negative, ranging from –0.46 ± 0.22 ppmv (–10.3 ± 4.8%) to –0.10 ± 0.05 ppmv (–2.2 ± 1.2%). Mean differences at the 6 pressure levels from 68 to 26 hPa are on average 0.8% (0.04 ppmv) and only a few are statistically significant. The FPH–MLS differences at each site are examined for temporal trends using weighted linear regression analyses. The vast majority of trends determined here are not statistically significant and most are smaller than the minimum trends detectable in this analysis. Except at 100 and 83 hPa the average agreement between MLS retrievals and FPH measurements of stratospheric water vapor is better than 1%.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2014-01-15
    Description: [1]  Plasmoids and other reconnection-related signatures have been observed in Jupiter's magnetotail through analysis of magnetic field and energetic particle data. Previous studies have established the spatial distribution and recurrence period of tail reconnection events, and identified the location of a statistical x-line separating inward and outward flow. Here we present new analysis focusing specifically on 43 plasmoid signatures observed in magnetometer data in order to establish the average properties and internal structure of Jovian plasmoids. We present statistics on the observed plasmoid length scale, duration, radial position, and local time distribution. On average, the observed plasmoids have a ~3 R J radial extent and ~7 minute duration, and result in the closure of ~4-8 GWb of open flux from reconnection of open field lines in the post-plasmoid plasma sheet. We also determine the amount of mass released and the magnetic flux closed in order to understand the role of tail reconnection in the transport of mass and flux in Jupiter's magnetosphere. The observed plasmoid properties are consistent with a mass loss rate of ~0.7-120 kg/s and a flux closure rate of ~7-70 GWb/day. We conclude that tail reconnection and plasmoid release is an important method of flux transport at Jupiter but likely cannot account for the mass input from Io, suggesting that additional mass loss mechanisms may be significant. Finally, we examine the plasmoid interior structure through minimum variance analysis and find that most plasmoids lack a core field and are better described by magnetic loops rather than flux ropes.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2014-01-15
    Description: [1]  Hot flow anomalies (HFAs) represent a subset of solar wind discontinuities interacting with collisionless bow shocks. They are typically formed when the normal component of the motional (convective) electric field points toward the embedded current sheet on at least one of its sides. The core region of an HFA contains hot and highly deflected ion flows and rather low and turbulent magnetic field. In this paper, we report observations of possible HFA-like events at Mercury identified over a course of two planetary years. Using data from the orbital phase of the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission, we identify a representative ensemble of active current sheets magnetically connected to Mercury's bow shock. We show that some of these events exhibit magnetic and particle signatures of HFAs similar to those observed at other planets, and present their key physical characteristics. Our analysis suggests that Mercury's bow shock does not only mediate the flow of supersonic solar wind plasma but also provides conditions for local particle acceleration and heating as predicted by previous numerical simulations. Together with earlier observations of HFA activity at Earth, Venus, Mars, and Saturn, our results suggest that hot flow anomalies could be a common property of planetary bow shocks, and show that the characteristic size of these events is controlled by the bow shock standoff distance and/or local solar wind conditions.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2014-01-16
    Description: [1]  This paper investigates the influence of two solar eclipses on the ionosphere complexity measures: Tsallis entropy, Renyi entropy, Hurst exponent, beta exponent, fractal dimension. The study used GPS TEC measured at 3 locations in Japan during the solar eclipses of 22 July 2009 and 21 May 2012.This is the first effort to compare the complexity measures by comparing TEC time series of the eclipse day with those from the day before and day after the eclipse. It was found from analysis of the TEC observations that there were no abnormal variations of the complexity parameters from their expected values for either eclipse. Model calculations also show that TEC deviations during the eclipses are small.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2014-01-17
    Description: [1]  Recent observations reveal a seasonally occurring layer of aerosol located from 0 ∘ to 100 ∘ E, 20 ∘ to 45 ∘ N and extending vertically from about 13 km to 18 km; this has been termed the Asian Tropopause Aerosol Layer (ATAL) and its existence is closely associated with the Asian summer monsoon circulation. Observational studies argue that the ATAL is a recent phenomenon, as the layer was not observed in the satellite record prior to 1998. This suggests that the ATAL may be of anthropogenic origin associated with increased emissions, most notably sulfur dioxide (SO 2 ), from increased industrial activity in China and India starting during the same time. Here we test the hypothesis that SO 2 emitted from Asia led to the formation of the ATAL using an aerosol microphysical model coupled to a global chemistry climate model. This is the first modeling study to specifically examine the ATAL and its possible origin. From our results, we conclude that the ATAL is most likely due to anthropogenic emissions, but its source cannot solely be attributed to emissions from Asia. Specifically, the results indicate that Chinese and Indian emissions contribute ∼ 30% of the sulfate aerosol extinction in the ATAL during volcanically quiescent periods. We also show that even small volcanic eruptions preclude our ability to make any conclusions about the existence of the ATAL before 1998 with observations alone.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2014-01-17
    Description: [1]  New observations with a 3D Lightning Mapping Array and high speed video are presented and discussed. The first set of observations show that under certain thunderstorm conditions wind turbine blades can produce electric discharges at regular intervals of ~3 seconds in relation to its rotation, over periods of time that range from a few minutes up to hours. This periodic effect has not been observed in static towers indicating that the effect of rotation is playing a critical role. The repeated discharges can occur tens of kilometers away from electrically active thunderstorm areas, and may or may not precede a fully developed upward lightning discharge from the turbine. Similar to rockets used for triggering lightning the fast movement of the blade tip plays an important role on the initiation of the discharge. The movement of the rotor blades allows the tip to ‘runaway’ from the generated corona charge. The second observation is an uncommon upward/downward flash triggered by a wind turbine. In that flash, a negative upward leader was initiated from a wind turbine without preceding lightning activity. The flash produced a negative cloud-to-ground stroke several kilometers from the initiation point. The third observation corresponds to a high speed video record showing simultaneous upward positive leaders from a group of wind turbines triggered by a preceding intra-cloud flash. The fact that multiple leaders develop simultaneously indicates a poor shielding effect among them. All these observations provide some special features on the initiation of lightning by non-static and complex tall structures.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2014-01-17
    Description: [1]  Tides forced by large-scale weather systems in the tropical troposphere introduce significant longitudinal and local time variability in the upper atmosphere. This paper presents variability of tidal harmonics of the latent heating from 2002–2011 associated with the El Niño-Southern Oscillation (ENSO) and the tidal wind response in the mesosphere/lower thermosphere (MLT) region. Emphasis is on the strong ENSO cycle 2009–2011. Latent tidal heating rates are computed from TRMM satellite precipitation data, with added radiative heating from MERRA reanalysis, as functions of time, latitude, and altitude. The heating rates for the two most affected nonmigrating tides (DE3 and DE2) are examined and compared with MLT tidal wind variability from TIDI/TIMED. Principal component analysis (PCA) is used to identify the tidal modes most affected by ENSO. Our results indicate that the tidal response to ENSO is largest during winter for both of the tides, with the largest response occurring in the DE3 tidal winds during the La Niña phase, with an increase of roughly 70% for the winter months of 2010/2011, and negligible response during the El Niño phase. The ENSO effect in the tidal forcing closely resembles the first symmetric and antisymmetric Hough modes of DE3 and DE2, thus being an efficient mechanism to transmit the ENSO signal into the MLT tides.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2014-01-19
    Description: [1]  We have analyzed the data of the world neutron monitor network for the first ground level enhancement of solar cycle 24, the GLE on May 17, 2012. A newly computed neutron monitor yield function and an inverse method are applied to estimate the energy spectrum, anisotropy axis direction and pitch-angle distribution of the high-energy solar particles in interplanetary space. The method includes the determination of the asymptotic viewing cones of neutron monitor stations through computations of trajectories of cosmic rays in a model magnetosphere. The cosmic ray particle trajectories are determined with the MAGNETOCOSMICS code using Tsyganenko 1989 and IGRF models. Subsequent calculation of the neutron monitor responses with the model function is carried out, that represents an initial guess of the inverse problem. Derivation of the solar energetic particle characteristics is fulfilled by fitting the data of the global neutron monitor network using the Levenberg-Marquardt method over the nine-dimensional parameter space. The pitch-angle distribution and rigidity spectrum of high-energy protons are obtained as function of time in the course of the GLE. The angular distribution appears quite complicated. It comprises a focused beam along the interplanetary magnetic field line from the Sun and a loss-cone feature around the opposite direction, possibly indicative of the particle transport in interplanetary magnetic field structures associated with previous coronal mass ejections.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2014-01-19
    Description: [1]  An important key for the understanding of the dynamic response to large tropical volcanic eruptions is the warming of the tropical lower stratosphere and the concomitant intensification of the polar vortices. Although this mechanism is reproduced by most GCMs today, most models still fail in producing an appropriate winter warming pattern in the Northern Hemisphere. In this study ensemble sensitivity experiments were carried out with a coupled atmosphere–ocean model to assess the influence of different ozone climatologies on the atmospheric dynamics and in particular on the northern hemispheric winter warming. The ensemble experiments were perturbed by a single Tambora-like eruption. Larger meridional gradients in the lower stratospheric ozone favor the coupling of zonal wind anomalies between the stratosphere and the troposphere after the eruption. The associated sea level pressure, temperature, and precipitation patterns are more pronounced and the northern hemispheric winter warming is highly significant. Conversely, weaker meridional ozone gradients lead to a weaker response of the winter warming and the associated patterns. The differences in the number of stratosphere–troposphere coupling events between the ensembles experiments indicate a non-linear response behavior of the dynamics with respect to the ozone and the volcanic forcing.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2014-01-21
    Description: [1]  Geomagnetic activity is strongly controlled by solar wind and Interplanetary Magnetic Field (IMF) conditions, especially the southward component of IMF (IMF Bs). We analyze the statistical properties of IMF Bs at 1 AU using in situ observations for more than a solar cycle (1995 - 2010). IMF Bs-events are defined as continuous IMF Bs intervals with varying thresholds of Bs magnitude and duration, and categorized by different solar wind structures, such as magnetic cloud (MC), interplanetary small-scale magnetic flux rope (ISMFR), interplanetary coronal mass ejection (ICME) without MC signature (ejecta), stream interacting region (SIR), and shock, as well as events unrelated with well-defined solar wind structures. The statistical properties of IMF Bs-events and their geoeffectiveness are investigated in detail based on satellite and ground measurements. We find that the integrated duration and number of Bs-events follow the sunspot number when Bz 〈 -5 nT. We also find that in extreme Bs-events (t 〉 6 hours, Bz 〈 -10 nT), a majority (53 %) are related to MC and 10 % are related with ejecta, but nearly a quarter are not associated with any well-defined solar wind structure. We find different geomagnetic responsesfor Bs-events with comparable duration and magnitude depending on what type of solar wind structures they are associated with. We also find that great Bs-events (t 〉 3 hours, Bz 〈 -10 nT) do not always trigger magnetic storms.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2014-01-21
    Description: [1]  This technique paper describes a novel method for quantitatively and routinely identifying auroral breakup following substorm onset using the Time History of Events and Macroscale Interactions During Substorms (THEMIS) all-sky imagers (ASIs). Substorm onset is characterised by a brightening of the aurora that is followed by auroral poleward expansion and auroral breakup. This breakup can be identified by a sharp increase in the auroral intensity i(t) and the time derivative of auroral intensity i'(t) . Utilising both i(t) and i'(t) we have developed an algorithm for identifying the time interval and spatial location of auroral breakup during the substorm expansion phase within the field of view of ASI data based solely on quantifiable characteristics of the optical auroral emissions. We compare the time interval determined by the algorithm to independently identified auroral onset times from three previously published studies. In each case the time interval determined by the algorithm is within error of the onset independently identified by the prior studies. We further show the utility of the algorithm by comparing the breakup intervals determined using the automated algorithm to an independent list of substorm onset times. We demonstrate that up to 50% of the breakup intervals characterised by the algorithm are within the uncertainty of the times identified in the independent list. The quantitative description and routine identification of an interval of auroral brightening during the substorm expansion phase provides a foundation for unbiased statistical analysis of the aurora to probe the physics of the auroral substorm as a new scientific tool for aiding the identification of the processes leading to auroral substorm onset.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2014-01-21
    Description: [1]  We applied the Grad-Shafranov (GS) reconstruction technique to Martian magnetic flux ropes observed by Mars Global Surveyor in order to estimate their spatial structures. This technique can provide a magnetic field map of their cross section from single spacecraft data, under the assumption that the structure is two-dimensional, magneto-hydrostatic, and time-independent. We succeeded in recovering the spatial structure for 70 events observed between April 1999 and November 2006. The reconstruction results indicate that the flux rope axes were mostly oriented horizontal to the Martian surface, and were randomly distributed with respect to the typical plasma streamline. A subset of events with duration longer than 240 sec was observed at solar zenith angles larger than 75 deg. These events all occur downstream from strong crustal magnetic field in the southern hemisphere, indicating an association between the crustal fields and the detected flux ropes. Using the shape and size of the flux ropes obtained from the GS reconstruction, we estimate lower limits on their volume that span 2–3 orders of magnitude, with larger flux ropes observed downstream from strong crustal magnetic fields. Estimated ion escape rates associated with flux ropes are of the order of 10 22 –10 23 ion/sec, being approximately 10% of previously estimated escape rates during solar minimum.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2014-01-22
    Description: [1]  The skill of seasonal precipitation forecasts is assessed worldwide —grid point by grid point— for the forty-year period 1961-2000, considering the ENSEMBLES multi-model hindcast and applying a tercile-based probabilistic approach in terms of the ROC Skill Score (ROCSS). Although predictability varies with region, season and lead-time, results indicate that 1) significant skill is mainly located in the tropics —20 to 40% of the total land areas,— 2) overall, SON (MAM) is the most (least) skillful season, and 3) the skill weakens (with respect to the one-month lead case) at four-month lead —especially in JJA,— although the ROCSS spatial patterns are broadly preserved —particularly in northern South America and the Malay archipelago.— [2]  The contribution of ENSO events to this forty-year skill is also analyzed, based on the idea that the seasonal predictability may be mainly driven by El Niño and La Niña precipitation teleconnections and, consequently, limited by the ability of the different seasonal forecasting models to accurately reproduce them. Results show that the ROCSS spatial patterns for 1) the full period 1961-2000 and 2) El Niño and La Niña events are highly correlated –over 0.85.— Moreover, the observed teleconnection patterns are properly simulated (predicted) —with spatialcorrelations around 0.8— by most of the models at both one and four months lead-time.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2014-01-22
    Description: [1]  This study analyzes 15 years of Tropical Rainfall Measuring Mission (TRMM) satellite data, together with surface observations of thunderstorms and visibility, to study trends and relationships between aerosols and thunderstorms in Southeast China. TRMM data used are from the lightning imaging sensor (LIS) and the precipitation radar (PR). Surface data are human-observed thunderstorm occurrence and visibility for the period of 1990-2012 at 70 plain stations and 4 mountain stations. Thunderstorm and lightning activity, as well as PR echo-top heights, have all increased significantly over the region during the period under study, while regional mean visibility has decreased greatly at the plain stations. The daily rainfall amount during thunderstorm days has increased significantly, but rainfall without thunderstorms has no trend during this period. In comparison, the four mountain weather stations at elevations greater than 1100 m showed little trend in the number of thunderstorm days during the period of 1990-2012. The ratio of the number of thunderstorm days between plain and mountain stations has increased significantly. The distinct trends seen between plain and mountain stations may originate from large differences in aerosol concentration between the plain and mountain regions. The accumulation of pollution aerosols in the plain region likely invigorates thunderstorms, whereas a lesser, or no, impact on intense convection is found over high-altitude regions.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2014-01-23
    Description: [1]  From a survey of Polar plasma waves conducted over the interval 1 April, 1996 to 4 April, 1997 (during solar minimum) at and inside the plasmasphere, magnetosonic waves were detected at all local times with a slight preference of occurrence in the midnight-postmidnight sector at L = 3 to 4. The waves occurred primarily during heightened geomagnetic (AE) activity. Wave occurrence (and intensities) peaked at ~ ±5° of the magnetic equator, with half-maxima at ~ ±10°. For other wave events, magnetosonic waves were also detected as far from the equator as +20° and -60° MLAT, but at lower intensities. An extreme magnetosonic wave intensity event of amplitude B w  = ~ ± 1 nT and E w  = ~ ± 25 mV/m was detected during the survey period. The event occurred near local midnight (0022 MLT), at the magnetic equator (MLAT = -0.5°), at the plasmapause (L = 3.5), and during an intense substorm/convection event (AE = 624 nT; SYM-H = -33 nT). If more stringent requirements (| MLAT| ≤ 5° and AE 〉 300 nT) are imposed, the wave occurrence rate approaches ~50% for the 23 to 00 MLT bin at L = 3 to 4. This strong local time anisotropy in the location of magnetosonic wave occurrence rate supports the idea of generation by protons injected from the plasmasheet into the midnight sector magnetosphere by substorm electric fields. Magnetosonic waves were also detected near late morning (1031 MLT) during relative geomagnetic quiet (low AE). We mention that one possible generation mechanism is a recovering/expanding plasmasphere engulfing preexisting energetic ions, which in turn leads to an ion instability. The wave magnetic component oscillations are aligned along B 0 , the ambient magnetic field direction, and the electric component oscillations are orthogonal to B 0 , indicating linear polarization. The magnetosonic wave amplitudes decreased at locations further from the magnetic equator, while transverse whistler mode wave amplitudes increased. We argue that intense magnetosonic waves are always present somewhere in the magnetosphere during strong substorm/convection events. We thus suggest that modelers use dynamic particle tracing codes and the maximum (rather than average) wave amplitudes to simulate wave-particle interactions.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2014-01-23
    Description: [1]  During volcanic eruptions, empirical relationships are used to estimate mass eruption rate from plume height. Although simple, such relationships can be inaccurate and can underestimate rates for eruptions in windy conditions. 1-D plume models can incorporate atmospheric conditions and are hypothesized to give potentially more accurate estimates. Here, I present a 1-D model for plumes in cross wind and use it to simulate 25 historical eruptions where plume height H obs was well observed, and where mass eruption rate M obs could be calculated from mapped deposit mass and observed duration. The simulations considered wind, temperature, and phase changes of water. Atmospheric conditions were obtained from the NCEP/NCAR Reanalysis 2.5 degree model. Simulations calculate the minimum, maximum, and average values ( M min , M max , and M avg ) that fit the plume height. Eruption rates were also estimated from the empirical formula M empir  = 140H obs 4.14 ( M empir is in kg s -1 , H obs is in km). For these eruptions, the standard error of the residual in log space is about 0.53 for M avg and 0.50 for M empir . Thus for this dataset, the model is slightly less accurate at predicting M obs than the empirical curve. The inability of this model to improve eruption-rate estimates may lie in the limited accuracy of even well-observed plume heights, inaccurate model formulation, and (or) the fact that most eruptions in the dataset were not highly influenced by wind or moisture. For the low, wind-blown plume of April 14-18, 2010 at Eyjafjallajökull, where an accurate plume-height time series is available, modeled rates do agree better with M obs than M empir .
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2014-01-14
    Description: [1]  Stratospheric water vapor has an important effect on Earth's climate. Considering the significance of overshooting deep convection in modulating the water vapor content (WVC) of the lower stratosphere (LS), we use a three-dimensional convective cloud model to simulate the effects of various silver iodide (AgI) seeding scenarios on tropical overshooting deep convection occurred on 30 November 2005 in Darwin, Australia. The primary motivation for this study is to investigate whether the WVC in the LS can be artificially modified by deliberate cloud seeding. It is found that AgI seeding done at the early stages of clouds produces significant effects on cloud microphysical and dynamical properties, and that further affects the WVC in the LS, while seeding at the mature stages of clouds has only a slight impact. The response of stratospheric water vapor to changes in the amount of seeding agent is nonlinear. The seeding with a small (large) amount of AgI increases (decreases) the WVC in the LS, due to enhanced (reduced) production and vertical transport of cloud ice from the troposphere and subsequent sublimation in the stratosphere. The results show that stratospheric water vapor can be artificially altered by deliberate cloud seeding with proper amount of seeding agent. This study also shows an important role of graupel in regulating cloud microphysics and dynamics, and in modifying the WVC in the LS.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2014-01-14
    Description: [1]  To confirm whether surface winds strengthen above warm waters around oceanic fronts using in-situ data, a field measurement was conducted using both expendable bathythermographs and Global Positioning System sondes released concurrently across the Kuroshio front in the East China Sea in December 2010. In contrast to previous studies mainly based on satellite observations, the finding of the present field survey is the local weakening of surface winds at the northern flank of the Kuroshio front. From the above field observation in conjunction with a regional numerical model experiment, it is suggested that northwesterly winds crossing the Kuroshio front from the cooler side first weaken at the northern flank of the front because of the onset of upward transfer of the “non-slip” condition at the sea surface. Thereafter, as the atmospheric mixed layer with warm and humid air mass develops gradually downwind over the Kuroshio region, the surface winds are gradually accelerated by the momentum mixing with strong winds aloft. The surface winds remain strong over the cool East China Sea shelf, and it is thus considered that the surface winds only weaken at the northern flank of the Kuroshio front. However, numerical modeling indicates that this local weakening of the surface winds occurs as a transient state with a short duration, and such a structure has thus rarely been detected in the long-term averaged wind fields observed by satellites.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2014-01-14
    Description: [1]  On January 9, 2002 and November 14, 2001, the São Luís 30 MHz coherent backscatter radar observed unusual day-time echoes scattered from the equatorial electrojet. The electrojet echoing layers on these days, as seen in the range time intensity (RTI) maps, exhibited quasi-periodic oscillations. Time-frequency decomposition of the magnetic field perturbations ΔH , measured simultaneously by the ground-based magnetometers, also showed evidence of short period waves. The ground-based observations were aided by measurements of the brightness temperature in the water vapor and infrared bands made by the GOES 8 satellite. The GOES 8 satellite measurements indicated evidence of deep tropospheric convection activities, which are favorable for the launch of atmospheric gravity waves (AGW) near São Luís. Our multi-technique investigation, combined with an analysis of the equatorial electric field and current density, indicates that AGW forcing could have been responsible, via coupling with E-region electric fields, for the short-period electrojet oscillations observed over São Luís.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2014-01-15
    Description: [1]  The 222 Radon-tracer method is a powerful tool to estimate local and regional surface emissions of (e.g.) greenhouse gases. In this paper we demonstrate that in practice, the method as it is commonly used, produces inaccurate results in case of non-homogeneously spread emission sources and we propose a different approach to account for this. We have applied the new methodology to ambient observations of CO 2 and 222 Radon to estimate CO 2 surface emissions for the city of Bern, Switzerland. Furthermore, by utilizing combined measurements of CO 2 and δ (O 2 /N 2 ) we obtain valuable information about the spatial and temporal variability of the main emission sources. Mean net CO 2 emissions based on two years of observations are estimated at: (11.2 ± 2.9) kt km -2 a -1 . Oxidative ratios indicate a significant influence from the regional biosphere in summer/spring and fossil fuel combustion processes in winter/autumn. Our data indicate that the emissions from fossil fuels are, to a large degree, related to the combustion of natural gas which is used for heating purposes.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2014-01-15
    Description: [1]  The daily maximum and minimum temperatures observed at the 1897 meteorological stations of China over the past 60 years (1951-2010) are analyzed in this study to examine the interdecadal variation of frequency for record-breaking event (RBE) of temperature in the context of global warming. The results indicate that the frequency of record-breaking high temperature in the first decade of the 21th century is the highest in the three decades from the 1980s to the 2000s, implying a distinct warming trend. Meanwhile, frequencies of record-breaking low temperature in the 1990s and the beginning of the 21th century are also significant. In particular, the RBEs of low temperature occurred over most of China in the 1990s but concentrated in northern China during the 2000s. To understand why the record-low temperatures in northern China are repeatedly broken in the 2000s, the related East Asian Winter Monsoon (EAWM) variability is investigated. The EOF analysis of surface air temperature reveals that the northern mode of the EAWM variability, which is highly associated with the Arctic Oscillation (AO) activities at both interdecadal and interannual timescales, has been intensifying since late 1990s. Corresponding to the intensification of the northern mode of the EAWM variability and the negative phase of AO in the 2000s, the Siberian High and East Asian trough intensify while the polar-front jet stream strengthens and the subtropical westerly jet stream abnormally shifts northward. As a result, anomalously strong cold air masses, originated from Siberia, intrude into East Asia, but are blocked by the enhanced northward subtropical westerly jet and cannot reach low latitudes area. Therefore the extremely strong cold air masses are amassed in mid-high latitudes of East Asia, resulting in RBEs of low temperature in this area.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2014-01-15
    Description: [1]  The diurnal variation of the global electric circuit is investigated using the World Wide Lightning Location Network (WWLLN), which has been shown to identify nearly all thunderstorms ( [16], using WWLLN data from 2005). To create an estimate of global electric circuit activity, a clustering algorithm is applied to the WWLLN dataset to identify global thunderstorms from 2010 – 2013. Annual, seasonal, and regional thunderstorm activity is investigated in this new WWLLN thunderstorm dataset in order to estimate the source behavior of the global electric circuit. Through the clustering algorithm, the total number of active thunderstorms are counted every 30 minutes creating a measure of the global electric circuit source function. The thunderstorm clusters are compared to precipitation radar data from the Tropical Rainfall Measurement Mission satellite and with case studies of thunderstorm evolution. [2]  The clustering algorithm reveals an average of 660 ± 70 thunderstorms active at any given time with a peak-to-peak variation of 36%. The highest number of thunderstorms occurs in November (720 ± 90) and the lowest number occurs in January (610 ± 80). Thunderstorm cluster and electrified storm cloud activity are combined with thunderstorm overflight current measurements to estimate the global electric circuit thunderstorm contribution current to be 1090 ± 70 A with a variation of 24%. By utilizing the global coverage and high time resolution of WWLLN, the total active thunderstorm count and current is shown to be less than previous estimates based on compiled climatologies.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2014-01-15
    Description: [1]  Dynamics of the dayside magnetosphere and proton radiation belt was analyzed during unusual magnetic storm on 21 January 2005. We have found that during the storm from 1712 to 2400 UT, the subsolar magnetopause was continuously located inside geosynchronous orbit due to strong compression. The compression was found to be extremely strong from 1846 to 2035 UT when the dense plasma of fast erupting filament produced the solar wind dynamic pressure Pd peaked up to 〉100 nPa and, in the first time, the upstream solar wind was observed at geosynchronous orbit during almost 2 hours. Under the extreme compression, the outer magnetosphere at L  〉 5 was pushed inward and the outer radiation belt particles with energies of several tens of keV moved earthward, became adiabatically accelerated and accumulated in the inner magnetosphere at L  〈 4 that produced the intensified ring current with an exceptionally long lifetime. The observations were compared with predictions of various empirical and first principles models. All the models failed to predict the magnetospheric dynamics under the extreme compression when the minimal magnetopause distance was estimated to be ~3 Re. The inconsistencies between the model predictions and observations might result from distortions of plasma measurements by extreme heliospheric conditions consisting in very fast solar wind streams (~1000 km/s) and intense fluxes of solar energetic particles. We speculated that anomalous dynamics of the magnetosphere could be well described by the models if the He abundance in the solar wind was assumed to be 〉20%, which is well appropriate for erupting filaments and which is in agreement with the upper 27% threshold for the He/H ratio obtained from Cluster measurements.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2014-01-17
    Description: [1]  The Ice Particle Size Distribution (PSD) is fundamental to the quantitative description of a cloud. It is also crucial in the development of remote sensing retrieval techniques using radar and/or lidar measurements. The PSD allows one to link characteristics of individual particles (area, mass, scattering properties) to characteristics of an ensemble of particles in a sampling volume (e.g. visible extinction ( σ ), Ice Water Content (IWC), radar reflectivity (Z)). The aim of this study is to describe a normalisation technique to represent the PSD. We update an earlier study by including recent in-situ measurements covering a large variety of ice clouds spanning temperatures ranging between -80 °C and 0 °C. This new data set also includes direct measurements of IWC. We demonstrate that is possible to scale the PSD in size space by the volume weighted diameter D m and in the concentration space by the intercept parameter and obtain the intrinsic shape of the PSD. Therefore, by combining , D m and a modified gamma function representing the normalised PSD shape, we are able to approximate key cloud variables (such as IWC) as well as cloud properties which can be remotely observed (such as Z) with an absolute mean relative error smaller than 20%. The underlying idea is to be able to retrieve the PSD using two independent measurements. We also propose parameterizations for ice cloud key parameters derived from the normalised PSD. We also investigate the effects of uncertainty present in the ice crystal mass-size relationships on the parameterizations and the normalised PSD approach.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2014-01-17
    Description: [1]  The MERRA Aerosol Reanalysis (MERRAero) has been recently developed at NASA's Global Modeling Assimilation Office (GMAO). This reanalysis is based on a version of the GEOS-5 model radiatively coupled with GOCART aerosols, and it includes assimilation of bias-corrected Aerosol Optical Thickness (AOT) from the MODIS sensor on both Terra and Aqua satellites. In October over the period 2002-2009, MERRAero showed that AOT was lower over the east of the Ganges basin than over the north-west of the Ganges basin: this was despite the fact that the east of the Ganges basin should have produced higher anthropogenic aerosol emissions because of higher population density, increased industrial output and transportation. This is evidence that higher aerosol emissions do not always correspond to higher AOT over the areas where the effects of meteorological factors on AOT dominate those of aerosol emissions. MODIS AOT assimilation was essential for correcting modeled AOT mainly over the north-west of the Ganges basin, where AOT increments were maximal. Over the east of the Ganges basin and north-west BoB, AOT increments were low and MODIS AOT assimilation did not contribute significantly to modeled AOT. Our analysis showed that increasing AOT trends over north-west BoB (exceeding those over the east of the Ganges basin) were reproduced by GEOS-5, not because of MODIS AOT assimilation, but mainly because of the model capability of reproducing meteorological factors contributing to AOT trends. Moreover, vertically integrated aerosol mass flux was sensitive to wind convergence causing aerosol accumulation over north-west BoB.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2014-01-18
    Description: [1]  Numerous studies have emphasized that climate simulations are subject to various biases and uncertainties. The objective of this study is to cross-validate 34 Coupled Model Intercomparison Project Phase 5 (CMIP5) historical simulations of precipitation against the Global Precipitation Climatology Project (GPCP) data, quantifying model pattern discrepancies and biases for both entire data distributions and their upper tails. The results of the Volumetric Hit Index ( VHI ) analysis of the total monthly precipitation amounts show that most CMIP5 simulations are in good agreement with GPCP patterns in many areas, but that their replication of observed precipitation over arid regions and certain sub-continental regions (e.g., northern Eurasia, eastern Russia, central Australia) is problematical. Overall, the VHI of the multi-model ensemble mean and median also are superior to that of the individual CMIP5 models. However, at high quantiles of reference data (e.g., the 75th and 90th percentiles), all climate models display low skill in simulating precipitation, except over North America, the Amazon, and central Africa. Analyses of total bias ( B ) in CMIP5 simulations reveal that most models overestimate precipitation over regions of complex topography (e.g. western North and South America and southern Africa and Asia), while underestimating it over arid regions. Also, while most climate model simulations show low biases over Europe, inter-model variations in bias over Australia and Amazonia are considerable. The Quantile Bias ( QB ) analyses indicate that CMIP5 simulations are even more biased at high quantiles of precipitation. It is found that a simple mean-field bias removal improves the overall B and VHI values, but does not make a significant improvement in these model performance metrics at high quantiles of precipitation.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2014-01-19
    Description: [1]  Type III radio bursts are produced near the local electron plasma frequency and/or near its harmonic by fast electrons ejected from the solar active regions and moving through the corona and solar wind. These bursts have dynamic spectra with frequency rapidly falling with time. This paper presents two new methods developed to detect type III bursts automatically in the data from High Frequency Receiver (HFR) of the STEREO/WAVES (S/WAVES) radio instrument onboard the STEREO spacecraft. The first technique is applicable to the low frequency band (HFR-1: 125 kHz to 1.975 MHz) only. This technique can possibly be implemented in on-board satellite software aimed at preliminary detection of bursts and identification of time intervals with relatively high solar activity. In the second technique the bursts are detected in both the low frequency band and the high frequency band (HFR-2: 2.025 MHz to 16.025 MHz), with the computational burden being higher by one order of magnitude as compared with that for the first technique. Preliminary tests of the method show that the performance of the first technique is quite high, P dL  = 72 % ± 3 %. The performance of the second technique is considerably higher, P dL  +  H  = 81 % ± 1%, while the number of false alarms does not exceed 10% for one daily spectrum.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2014-01-19
    Description: [1]  A dipolarizing flux bundle (DFB) is a small magnetotail flux tube (typically 〈 ~3 R E in X GSM and Y GSM ) with a significantly more dipolar magnetic field than its background. Dipolarizing flux bundles typically propagate earthward at a high speed from the near-Earth reconnection region. Knowledge of a DFB's flux transport properties leads to better understanding of near-Earth (X = -6 to -30 R E ) magnetotail flux transport and thus conversion of magnetic energy to kinetic and thermal plasma energy following magnetic reconnection. We explore DFB properties with a statistical study using data from the Time History of Events and Macroscale Interactions during Substorms (THEMIS) mission. To establish the importance of DFB flux transport, we compare it with transport by bursty bulk flows (BBFs) that typically envelop DFBs. Because DFBs coexist with flow bursts inside BBFs, they contribute 〉65% of BBF flux transport, even though they last only ~30% as long as BBFs. The rate of DFB flux transport increases with proximity to Earth and to the pre-midnight sector, as well as with geomagnetic activity and distance from the neutral sheet. Under the latter two conditions the total flux transport by a typical DFB also increases. Dipolarizing flux bundles appear more often during increased geomagnetic activity. Since BBFs have been previously shown to be the major flux transporters in the tail, we conclude that DFBs are the dominant drivers of this transport. The occurrence rate of DFBs as a function of location and geomagnetic activity informs us about processes that shape global convection and energy conversion
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2014-01-19
    Description: [1]  The substorm current wedge (SCW) is a fundamental component of geomagnetic substorms. Models tend to describe the SCW as a simple line current flowing into the ionosphere towards dawn and out of the ionosphere towards dusk, linked by a westward electrojet. We use multi-spacecraft observations from perigee passes of the Cluster 1 and 4 spacecraft during a substorm on 15 Jan 2010, in conjunction with ground-based observations, to examine the spatial structuring and temporal variability of the SCW. At this time, the spacecraft travelled east-west azimuthally above the auroral region. We show that the SCW has significant azimuthal sub-structure on scales of 100 km at altitudes of 4,000-7,000 km. We identify 26 individual current sheets in the Cluster 4 data and 34 individual current sheets in the Cluster 1 data, with Cluster 1 passing through the SCW 120-240 s after Cluster 4 at 1,300-2,000 km higher altitude. Both spacecraft observed large-scale regions of net upward and downward field-aligned current, consistent with the large-scale characteristics of the SCW, although sheets of oppositely directed currents were observed within both regions. We show that the majority of these current sheets were closely aligned to a north-south direction,in contrast to the expected east-west orientation of the pre-onset aurora. Comparing our results with observations of the field-aligned current associated with bursty bulk flows (BBFs) we conclude that significant questions remain for the explanation of SCW structuring by BBF driven “wedgelets”. Our results therefore represent constraints on future modelling and theoretical frameworks on the generation of the SCW.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2014-01-19
    Description: [1]  Large horizontal winds and wind shears have been measured in the lower thermosphere by rockets, lidars, and non-specular meteor radars. This paper describes a detailed analysis of 3 multi-hour non-specular meteor radar data sets collected at the Jicamarca Radio Observatory. This provides some of the highest resolution sustained measurements in this part of the atmosphere. These show: (1) intense wind speeds, maintaining 180 m/s for half an hour and 160 m/s for another half an hour; (2) winds structured in layers that move up or, more commonly, down in the pre-dawn hours at rates of a few km/hr; (3) intense wind shears that typically persist at around 50 m/s/km but, in one instance, sustains values approaching 100 m/s/km for a few hours.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2014-01-19
    Description: [1]  We present results from an analysis of high-latitude ionosphere-thermosphere (IT) coupling to the solar wind during a moderate magnetic storm which occurred on 5-6 August 2011. During the storm, a multi-point set of observations of the ionosphere and thermosphere was available. We make use of ionospheric measurements of electromagnetic and particle energy made by the Defense Meteorological Satellite Program (DMSP), and neutral densities measured by the Gravity Recovery and Climate Experiment (GRACE) satellite to infer: (1) the energy budget and (2) timing of the energy transfer process during the storm. We conclude that the primary location for energy input to the IT system may be the extremely high latitude region. We suggest that the total energy available to the IT system is not completely captured either by observation or empirical models.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2014-01-19
    Description: [1]  The level of solar activity varies from cycle to cycle. This variability is probably caused by a combination of nonlinear and random effects. Based on surface flux transport simulations, we show that the observed inflows into active regions and towards the activity belts provide an important nonlinearity in the framework of Babcock-Leighton model for the solar dynamo. Inclusion of these inflows also leads to a reproduction of the observed proportionality between the open heliospheric flux during activity minima and the maximum sunspot number of the following cycle. A substantial component of the random variability of the cycle strength is associated with the cross-equatorial flux plumes that occur when large, highly-tilted sunspot groups emerge close to the equator. We show that the flux transported by these events is important for the amplitude of the polar fields and open flux during activity minima. The combined action of inflows and cross-equatorial flux plumes provides an explanation for the weakness of the polar fields at the end of solar cycle 23 (and hence for the relative weakness of solar cycle 24).
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2014-01-19
    Description: [1]  We present the first direct measurement of neutral oxygen in the lunar exosphere, detected by the Chandrayaan-1 Energetic Neutral Analyzer (CENA). With the lunar surface consisting of about 60% of oxygen in number, the neutral oxygen detected in CENA's energy range (11 eV – 3.3 keV) is attributed to have originated from the lunar surface, where it is released through solar wind ion sputtering. We verify this proposition by comparing the measured oxygen content in two different mass spectra groups with ion sputtering theory. One group contains mass spectra that were recorded when the solar wind consisted of almost pure hydrogen and the other group contains mass spectra that were recorded when the helium content in the solar wind was very high (〉3.5%). Since helium is a much more effective sputtering agent than hydrogen (5% of alpha particles present in the solar wind typically contribute 30% of the total sputter yield), these two groups should show clear differences in the oxygen sputter yield. Fitting of CENA's mass spectra with calibration spectra from ground and in-flight data resulted in the detection of a robust oxygen signal, with a flux of 0.2 to 0.4 times the flux of backscattered hydrogen, depending, as expected, on the solar wind helium content and particle velocity. These measurements present the first in-situ detection of oxygen in the lunar exosphere. For the two solar wind types observed, we derive sub-solar surface oxygen atom densities of N 0  = (1.1 ± 0.3) ⋅ 10 7 m − 3 and (1.4 ± 0.4) ⋅ 10 7 m − 3 , respectively, which agree well with earlier model predictions and measured upper limits. From these surface densities we derive, by modeling, column densities of N C  = (1.5 ± 0.5) ⋅ 10 13 m − 2 and (1.6 ± 0.5) ⋅ 10 13 m − 2 . [2]  In addition, in the CENA mass spectra, we identified for the first time a helium component. This helium is attributed to backscattering of solar wind helium (alpha particles) from the lunar surface as neutral energetic helium atoms, which has been observed for the first time. This identification is supported by the characteristic energy of the measured helium atoms, which is roughly four times the energy of reflected solar wind hydrogen, and the correlation with solar wind helium content.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2014-01-19
    Description: [1]  The diffuse aurora is an almost permanent feature in the Earth's upper polar atmosphere, providing the major source of ionizing energy input into the high-latitude region. Previous theoretical and observational studies have demonstrated that whistler-mode chorus scattering primarily accounts for intense nightside diffuse auroral precipitation within ~ 8 R E , but what causes the dayside diffuse aurora remains poorly understood. Using conjugate satellite wave and particle observations on 13 August 2009 from the THEMIS spacecraft and ground-based all-sky imager measurements at the South Pole on the dayside, we perform a quantitative analysis of wave driven diffusion and electron precipitation. Our results demonstrate that the dayside chorus scattering was the dominant contributor to the observed dayside diffuse auroral precipitation and that the chorus wave intensity primarily controlled its brightness, indicating that dayside chorus can be the major driver of the Earth's dayside diffuse aurora. While further investigations are required to bring closure to the origin of the dayside diffuse aurora under differing solar wind conditions and geomagnetic situations, our finding is an important complement to recent work on the formation mechanism of the diffuse aurora and provides improved understanding of the roles of resonant wave-particle interactions in diffuse auroral precipitation pattern on a global scale.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2014-01-19
    Description: [1]  Ultra Low Frequency (ULF: 0.001-5 Hz) magnetic records have recently been used in the search for short term earthquake prediction methods. The separation of local and global effects in the magnetic records is the greatest challenge in this research area. Geomagnetic indices are often used to predict global ULF magnetic behavior where it is assumed that increases in a geomagnetic index correspond with an increase in ULF power. This paper examines the relationships between geomagnetic indices and ULF power, spectral polarization ratio and the relationship between the spectral polarization ratio and solar wind parameters. The power in the ULF, Pc3-5 bands (10-600 s) shows a linear correlation coefficient of  0.2 with the Kp magnetic activity index. The correlation varies with magnetic local time (MLT) and latitude. The correlation coefficient is inversely related to the integrated power in the ULF Pc3 band (10-45 s) over MLT and magnetic latitude. The ratio of spectral powers Z ( ω )/ G ( ω ) is discussed and shown to be a promising parameter in the search for earthquake precursor signals in ULF records.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2014-01-19
    Description: [1]  Recent testing of a quantitative model describing the classical (region-1-sense, referred to as the R1 current loop) substorm current wedge (SCW) revealed systematic discrepancies between the observed and predicted amplitudes, which suggested us to include additional region-2-sense currents (R2-loop) earthward of the dipolarized region (SCW2L model). In this paper we discuss alternative circuit geometries of the 3d substorm current system and interpret simultaneous observations of the magnetic field dipolarizations by NOAA Geostationary Operational Environmental Satellite (GOES) and by NASA Time History of Events and Macroscale Interactions during Substorms (THEMIS) spacecraft, to quantitatively investigate the SCW2L model parameters. During two cases of a dipole-like magnetotail configuration, the dipolarization/injection front fortuitously stopped at r  ∼ 9 Re for the entire duration of ∼ 30 min-long SCW-related dipolarization within a unique, radially-distributed multi-spacecraft constellation, which allowed us to determine the locations and total currents of both SCW2L loops. In addition, we conducted a survey of the dipolarization amplitudes in events, simultaneously observed at 6.6 Re (GOES) and 11 Re (THEMIS) under a wide range of magnetotail conditions. We infer that the ratio I 2 / I 1 varies in the range 0.2 to 0.6 (median value 0.4) and that the equatorial part of the R2 current loop stays at the distance r  〉 6.6 Re in the case of a dipole-like field geometry ( BZ 0  〉 75 nT at 6.6 Re prior to the onset), but it is located at r  〈 6.6 Re in the case of a stretched magnetic field configuration (with BZ 0  〈 60 nT). Since the ground midlatitude perturbations are sensitive to the combined effect of the R1- and R2-sense current loops with the total current roughly equal to I 1  −  I 2 , the ratio I 2 / I 1 becomes an important issue when attempting to monitor the current disruption intensity from ground observations.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2014-03-12
    Description: Conventional global climate models (GCMs) often consider radiation interactions only with small-particle/suspended cloud mass, ignoring large-particle/falling and convective core cloud mass. We characterize the radiation and atmospheric circulation impacts of frozen precipitating hydrometeors (i.e., snow), using the National Center for Atmospheric Research (NCAR)-coupled GCM, by conducting sensitivity experiments that turn off the radiation interaction with snow. The changes associated with the exclusion of precipitating hydrometeors exhibit a number differences consistent with biases in CMIP3 and CMIP5, including more outgoing longwave (LW) flux at the top of atmosphere (TOA) and downward shortwave (SW) flux at the surface in the heavily precipitating regions. Neglecting the radiation interaction of snow increases the net radiative cooling near the cloud top with the resulting increased instability triggering more convection in the heavily precipitating regions of the tropics. In addition, the increased differential vertical heating leads to a weakening of the low-level mean flow and an apparent low-level eastward advection from the warm pool resulting in moisture convergence south of the ITCZ and north of the SPCZ. This westerly bias, with effective warm and moist air transport, might be a contributing factor in the model's northeastward overextension of the SPCZ and the concomitant changes in sea surface temperatures, upward motion, and precipitation. Broader dynamical impacts include a stronger local meridional overturning circulation over the mid- and east Pacific, and commensurate changes in low- and upper-level winds, large-scale ascending motion, with a notable similarity to the systematic bias in this region in CMIP5 upper-level zonal winds.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2014-03-12
    Description: The Visible Infrared Imaging Radiometer Suite (VIIRS) is the next-generation polar-orbiting operational environmental sensor with a capability for global aerosol observations. The VIIRS aerosol Environmental Data Record (EDR) is expected to continue the decade-long successful multi-spectral aerosol retrieval from the NASA's Earth Observing System (EOS) MODerate resolution Imaging Spectroradiometer (MODIS) for scientific research and applications. Since the launch of the Suomi National Polar-orbiting Partnership (S-NPP), the VIIRS aerosol Calibration/Validation team has been continuously monitoring, evaluating and improving the performance of VIIRS aerosol retrievals. In this study, the VIIRS aerosol optical thickness (AOT) at 550 nm EDR at current Provisional maturity level is evaluated by comparing it with MODIS retrievals and measurements from the AErosol RObotic NETwork (AERONET) and the Maritime Aerosol Network (MAN). The VIIRS global mean AOT at 550 nm differs from that of MODIS by approximately -0.01 over ocean and 0.03 over land (0.00 and -0.01 for the collocated retrievals), but shows larger regional biases. Global validation with AERONET and with MAN measurements shows biases of 0.01 over ocean and -0.01 over land, with about 64% and 71% of retrievals falling within the expected uncertainty range established by MODIS over ocean (±(0.03 + 0.05AOT)) and over land (±(0.05 + 0.15AOT)), respectively. The VIIRS retrievals over land exhibit slight overestimation over vegetated surfaces and underestimation over soil-dominated surfaces. These results show that the VIIRS AOT at 550 nm product provides a solid global dataset for quantitative scientific investigations and environmental monitoring.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2014-03-13
    Description: This study is based on the analysis of Measurement of Ozone and Water Vapor by Airbus In-Service Aircraft (MOZAIC) data measured over Hyderabad, India during the years 2006-2008. Tropospheric profiles of O 3 show clear seasonality with high and low values during the pre-monsoon and monsoon seasons, respectively. Analysis of back trajectory and fire count data indicates major roles for long-range transport and biomass burning in the seasonal variation of O 3 . Typically, lower levels of O 3 in the monsoon season were due to the flow of marine air and negligible regional biomass burning, while higher levels in other seasons were due to transport of continental air. In the upper troposphere, relatively low levels of O 3 during the monsoon and post-monsoon seasons were associated with deep convection. In the free troposphere, levels of O 3 also show year-to-year variability as the values in the pre-monsoon of 2006 were higher by about 30 ppbv compared to 2008. The year-to-year variations were mainly due to transition from El Niño (2006) to La Niña (2008). The higher and lower levels of O 3 were associated with strong and weak wind shears, respectively. Typically, vertical variations of O 3 were anti-correlated with the lapse rate profile. The lower O 3 levels were observed in the stable layers, but higher values in the mid-troposphere were caused by long-range transport. In the PBL region, the mixing ratio of O 3 shows strong dependencies on meteorological parameters. The Chemistry Climate Model (CCM2) reasonably reproduced the observed profiles of O 3 except for the pre-monsoon season.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2014-03-13
    Description: Radiative forcing by aerosols and tropospheric ozone could play a significant role in recent Arctic warming. These species are in general poorly accounted for in climate models. We use the GEOS-Chem global chemical transport model to construct a 3-D representation of Arctic aerosols and ozone that is consistent with observations and can be used in climate simulations. We focus on 2008, when extensive observations were made from different platforms as part of the International Polar Year. Comparison to aircraft (ARCTAS), surface, and ship cruise (ICEALOT, ASCOS) observations suggests that GEOS-Chem provides in general a successful year-round simulation of Arctic black carbon (BC), organic carbon (OC), sulfate, and dust aerosol. BC has major fuel combustion and boreal fire sources, OC is mainly from fires, sulfate has a mix of anthropogenic and natural sources, and dust is mostly from the Sahara. The model is successful in simulating aerosol optical depth (AOD) observations from AERONET stations in the Arctic; the sharp drop from spring to summer appears driven in part by the smaller size of sulfate aerosol in summer. The anthropogenic contribution to Arctic AOD is a factor of 4 larger in spring than summer and is mainly sulfate. Simulation of absorbing aerosol optical depth (AAOD) indicates that non-BC aerosol (OC and dust) contributed 24% of Arctic AAOD at 550 nm and 37% of absorbing mass deposited to the snow pack in 2008. Open fires contributed half of AAOD at 550 nm and half of deposition to the snowpack.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2014-03-13
    Description: We present Cluster observations of wave-particle interactions during an earthward-propagating dipolarization front (DF) and associated fast plasma bulk flows detected at the central current sheet in Earth's magnetotail. During this period, flux tubes behind the DF frequently contain more energetic or hotter ions than did the pre-existing flux tubes ahead of the DF. On the other hand, electrons within the DF flux tubes heat less, or are even colder, than were the pre-existing populations, and are often accompanied by superposed isolated beams. At the same time, electrostatic emissions are strongly enhanced over a wide range of frequencies (up to several times the electron cyclotron frequency) behind the DFs. This low-frequency electrostatic wave power is well correlated with ion energization. From linear theory, we find two wave modes: a high-frequency beam mode and a low-frequency whistler mode that are associated with the electron beam component. We attribute the generation of whistlers to electron beams that persist for a while before undergoing rapid thermalization. The existence of isolated beam components behind DFs detected during the 4-sec Cluster spin period indicates that DFs either provide a continuous source of electron beams or facilitate a physical process that maintains the beams against rapid thermalization. Our analysis suggests that the earthward motion of the DF flux tube, via Fermi acceleration as the magnetic field lines behind the DF shorten, can lead to the persistent electron beams that generate whistler mode waves, which in turn can heat ions. This scenario, by which free energy in electron beams generates waves that then heat ions, accounts for the Cluster observations of different energization behaviors between electrons and ions behind DFs.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2014-03-13
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2014-03-13
    Description: We examine a unique data set from seven Hubble Space Telescope (HST) ‘visits’ that imaged Saturn's northern dayside ultraviolet emissions exhibiting usual circumpolar ‘auroral oval’ morphologies, during which Cassini measured the interplanetary magnetic field (IMF) upstream of Saturn's bow shock over intervals of several hours. The auroras generally consist of a dawn arc extending towards noon centered near ~15º co-latitude, together with intermittent patchy forms at ~10º co-latitude and poleward thereof, located between noon and dusk. The dawn arc is a persistent feature, but exhibits variations in position, width, and intensity, which have no clear relationship with the concurrent IMF. However, the patchy post-noon auroras are found to relate to the (suitably lagged and averaged) IMF B z , being present during all four visits with positive B z and absent during all three visits with negative B z . The most continuous such forms occur in the case of strongest positive B z . These results suggest that the post-noon forms are associated with reconnection and open flux production at Saturn's magnetopause, related to the similarly-interpreted bifurcated auroral arc structures previously observed in this LT sector in Cassini UVIS data, whose details remain unresolved in these HST images. One of the intervals with negative IMF B z , however, exhibits a pre-noon patch of very high latitude emission extending poleward of the dawn arc to the magnetic/spin pole, suggestive of the occurrence of lobe reconnection. Overall, these data provide evidence of significant IMF-dependence in the morphology of Saturn's dayside auroras.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2014-03-13
    Description: A three-dimensional (3D) particle-in-cell (PIC) simulation of the whistler anisotropy instability is carried out for a collisionless, homogeneous, magnetized plasma with β e  = 0.10. This is the first 3D PIC simulation of the evolution of enchanced fluctuations from this growing mode driven by an anisotropic electron velocity distribution with T ⊥  e / T ‖ e  〉 1 where ⊥ and ∥ represent directions perpendicular and parallel to the background magnetic field B o , respectively. The early-time magnetic fluctuation spectrum grows with properties reflecting the predictions of linear theory with narrowband maxima at kc / ω e  ≃ 1 and k  ×  B o  = 0, and a wavevector anisotropy in the sense of k ⊥  〈 〈  k ∥ . Here ω e represents the electron plasma frequency. At later times the fluctuations undergo both a forward transfer to shorter wavelengths, also with k ⊥  〈 〈  k ∥ , and an inverse transfer to longer wavelengths with wavevector anisotropy k ⊥  〉 〉  k ∥ . The inverse transfer is consistent with a prediction of nonlinear three-wave coupling theory.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2014-03-13
    Description: Auroral ionospheric F-region density depletions observed by PFISR (Poker Flat Incoherent Scatter Radar) during the MICA (Magnetosphere-Ionosphere Coupling in the Alfvén Resonator) sounding rocket campaign are critically examined alongside complementary numerical simulations. Particular processes of interest include cavity formation due to intense frictional heating and Pedersen drifts, evolution in the presence of structured precipitation, and refilling due to impact ionization and downflows. Our analysis uses an ionospheric fluid model which solves conservation of mass, momentum, and energy equations for all major ionospheric species. These fluid equations are coupled to an electrostatic current continuity equation to self-consistently describe auroral electric fields. Energetic electron precipitation inputs for the model are specified by inverting optical data, and electric field boundary conditions are obtained from direct PFISR measurements. Thus, the model is driven in as realistic a manner as possible. Both ISR data and simulations indicate that the conversion of the F-region plasma to molecular ions and subsequent recombination is the dominant process contributing to the formation of the observed cavities, all of which occur in conjuction with electric fields exceeding ∼ 90 mV/m. Furthermore, the cavities often persist several minutes past the point when the frictional heating stops. Impact ionization and field-aligned plasma flows modulate the cavity depth in a significant way, but are of secondary importance to the molecular generation process. Informal comparisons of the ISR density and temperature fits to the model verify that the simulations reproduce most of the observed cavity features to a reasonable level of detail.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2014-03-13
    Description: Energetic particle injections in the near-Earth plasma sheet are critical for supplying particles and energy to the inner magnetosphere. Recent case studies have demonstrated a good correlation between injections and transient, narrow, fast flow channels as well as earthward reconnection (dipolarization) fronts in the magnetotail, but statistical observations beyond geosynchronous orbit (GEO) to verify the findings were lacking. By surveying trans-geosynchronous injections using THEMIS, we show that their likely origin is the earthward-traveling, dipolarizing flux bundles following near-Earth reconnection. The good correlation between injections and fast flows, reconnection fronts and impulsive, dawn-dusk electric field increases is not limited to within 12 R E , but extends out to 30 R E . Like near-Earth reconnection, both ion and electron injections are most probable in the pre-midnight sector. Similar to bursty bulk flows (BBFs), injection-time flow speeds are faster with increasing distance from Earth. With faster flows, injection intensity generally increases and extends to higher energy channels. With increased geomagnetic activity, injection occurrence rate increases (akin to that of BBFs) and spectral hardening occurs (κ decreases). The occurrence rate increase within the inner magnetosphere suggests that injections populate the radiation belts more effectively under enhanced geomagnetic activity. Our results are inconsistent with the classical concept of an azimuthally wide injection boundary moving earthward from ~9-12 R E to GEO under an enhanced cross-tail electric field. Rather, particle injection and transport occur along a large range of radial distances due to effects from earthward-penetrating, azimuthally localized, transient, strong electric fields of recently reconnected, dipolarizing flux bundles.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2014-03-13
    Description: A method for estimating the vector neutral wind profiles in the mesosphere and lower thermosphere (MLT) region of the upper atmosphere from Arecibo dual-beam incoherent scatter radar data is presented. The method yields continuous estimates of both the altitude-averaged F -region plasma drifts and all three components of the altitude-resolved neutral wind profiles in the MLT using data taken while the Arecibo feed system swings in azimuth. The problem is mixed determined, and its solution is not inherently unique. Second order Tikhonov regularization is used to find solutions consistent with the available data while being minimally structured, additional structure being unsupported by the data. The solution is found using the method of conjugate gradient least squares and sparse matrix mathematics. Example data acquired during an interval of midlatitude spread F are used to illustrate the method. The estimated wind profiles exhibit characteristics broadly consistent with gravity waves but are impulsive, with features that generally persist for less than one and a half wave periods.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2014-03-14
    Description: [1]  In this study, we investigated spatial and temporal changes in precipitation over the COordinated Regional climate Downscaling EXperiment (CORDEX) East Asia domain, for present (1986–2005) and future (2031–2050) periods using the Regional Climate Model version 4 (RegCM4). Future meteorology produced by the Hadley Center Global Environmental Model version 2 coupled with the Atmosphere–Ocean (HadGEM2-AO) following global climate change scenarios (RCP 4.5 and 8.5) was used as meteorological boundary conditions for the RegCM4. Six sub-regions (South Korea, North China, South China, Japan, Mongolia, and India) in the CORDEX East Asia domain were considered for analysis. The RegCM4 simulated spatial distributions of precipitation over East Asia with a correlation coefficient of 0.7 against CRU data. The simulation skills of its temporal variability varied based on geographical regions and seasons, showing relatively poorer performance (under-estimation in rainfall amount) in summer than in winter, in general. The future climate simulations by the RegCM4 presented that the East Asian continental regions will be warmer and more humid, leading to increased precipitation amounts, especially in the summer. The summer precipitation amount was projected to increase by about 5%, on average, over the East Asian domain, 5 − 15% in most sub-regions, and even higher (44% and 24%) in the South Korean region for the RCP 4.5 and 8.5 scenarios, respectively. It was also expected that heavy rainfall (〉 50 mm/day) events may occur more frequently in the future possibly owing to meteorological changes that are favorable to convective heavy precipitation.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2014-03-14
    Description: Four years of CloudSat data have been analyzed over a region of the East Atlantic Ocean in order to examine the influence of aerosols on deep convection. The satellite data were combined with information about aerosols taken from the Global and Regional Earth-System Monitoring Using Satellite and in-situ Data (GEMS) model. Only those profiles fitting the definition of deep convective clouds were analyzed. Overall, the cloud center of gravity, cloud top, and rain top were all found to increase with increased aerosol loading. These effects were largely independent of the environment, and the differences between the cleanest and most polluted clouds sampled were found to be statistically significant. When examining an even smaller subset of DCCs likely to be part of the convective core, similar trends were seen. These observations suggest that convective invigoration occurs with increased aerosol loading, leading to deeper, stronger storms in polluted environments.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2014-03-14
    Description: The ratio of liquid water to ice in a cloud, largely controlled by the presence of ice nuclei and cloud temperature, alters cloud radiative effects. This study quantitatively examines how the liquid fraction of clouds influences various climate feedbacks using the NCAR Community Atmosphere Model (CAM). Climate feedback parameters were calculated using equilibrated temperature changes in response to increases in the atmospheric concentration of carbon dioxide in CAM Version 3.0 with a slab ocean model. Two sets of model experiments are designed such that cloud liquid fraction linearly decreases with a decrease in temperature down to −20°C (Experiment “C20”) and −40°C (Experiment “C40”). Thus, at the same sub-zero temperature, C20 yields fewer liquid droplets (and more ice crystals) than C40. Comparison of the results of experiments C20 and C40 reveals that experiment C20 is characterized by stronger cloud and temperature feedbacks in the tropics (30°N–30°S) (by 0.25 and –0.28 W m −2  K −1 , respectively), but weaker cloud, temperature and albedo feedbacks (by –0.20, 0.11, and –0.07 W m −2  K −1 ) in the extratropics. Compensation of these climate feedback changes leads to a net climate feedback change of ~7.28% of that of C40 in the model. These results suggest that adjustment of the cloud phase function affects all types of feedbacks (with the smallest effect on water vapor feedback). Although the net change in total climate feedback is small due to the cancellation of positive and negative individual feedback changes, some of the individual changes are relatively large. This illustrates the importance of the influence of cloud phase partitioning for all major climate feedbacks, and by extension, for future climate change predictions.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2014-03-14
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2014-03-14
    Description: We report the peculiar interaction of two type III bursts observed in the solar wind. As electrons beams propagating on the same magnetic field lines cross, a spectacular depletion of the type III radio emission is observed. We combine observations from the WAVES experiment on board the STEREO mission together with kinetic plasma simulations to study the extinction of type III radio emission resulting from the interaction between two electron beams. The remote observations enable to follow the electron beams in the interplanetary medium and show that the level of radiated radio waves is recovered after the beam crossing. The in situ observations of beam-driven Langmuir waves give evidence for Langmuir decay. The density fluctuations are extracted from in situ observations. The velocity of the beams is independently evaluated from in situ observations of decaying Langmuir waves and remote radio observations. The kinetic simulations show that the level of beam-driven Langmuir waves is reduced as the two beams cross. We show that the slow beam induced a strong reduction of the quasilinear relaxation of the fast beam, limiting the amplitude of the generated Langmuir waves. Moreover, in the case of two electron beams, the lack of Langmuir waves coherence reduces the efficiency of the Langmuir parametric decay. We thus conclude that the observed depletion of the type III radio 5 is independent of the radio emission mechanism, as long as it depends on the Langmuir amplitude and coherence.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2014-03-14
    Description: The solar minimum period between solar cycles 23 and 24 was the longest since the beginning of space-based measurements, and many manifestations of solar activity were unusually low. Thermospheric neutral density was about 30% lower than during the previous solar minimum, but changes in the ionosphere between the two solar minima are more controversial. Solar radiation, geomagnetic activity, and anthropogenic increases in greenhouse gases, can all play a role in these changes. In this paper, we address the latter of these potential contributions, the degree to which secular change driven by greenhouse gases, primarily CO 2 , could be responsible for the observed changes. New 3D model simulations find a global mean density decrease at 400 km of 5.8% between the two recent solar minima, which is larger than earlier 1D model results, and in better agreement with observations. From these model simulations and from other observational work, we estimate that the contribution of secular change to global mean neutral density decrease between the two recent solar minima is less than ~6%. The contribution of secular change to the global average decrease of F-region ionosphere peak density ( N m F 2 ) and altitude ( h m F 2 ), near mid-day, is estimated to be 1.5% and 1.5 km, respectively. However, secular changes in the ionosphere exhibit large variations with local time, geographic location, and season. The mid-day change of N m F 2 seen in the model simulations ranged between +6% and -9%, and the change of h m F 2 ranged between +11 km and -11 km, depending on geographic location.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2014-03-14
    Description: Diurnal and seasonal controls on water vapor fluxes were investigated in a subtropical mangrove forest in Everglades National Park, Florida. Energy partitioning between sensible and latent heat fluxes was highly variable during the 2004-2005 study period. During the dry season, the mangrove forest behaved akin to a semiarid ecosystem as most of the available energy was partitioned into sensible heat, which gave Bowen ratio values exceeding 1.0 and minimum latent heat fluxes of 5 MJ day -1 . In contrast, during the wet season the mangrove forest acted as a well-watered, broadleaved deciduous forest, with Bowen ratio values of 0.25 and latent heat fluxes reaching 18 MJ day -1 . During the dry season, high salinity levels (〉 30 parts per thousand, ppt) caused evapotranspiration to decline and correspondingly resulted in reduced canopy conductance. From multiple linear regression, daily average canopy conductance to water vapor declined with increasing salinity, vapor pressure deficit, and daily sums of solar irradiance but increased with air temperature and friction velocity. Using these relationships, appropriately modified Penman-Monteith and Priestley-Taylor models reliably reproduced seasonal trends in daily evapotranspiration. Such numerical models, using site-specific parameters, are crucial for constructing seasonal water budgets, constraining hydrological models, and driving regional climate models over mangrove forests.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2014-05-02
    Description: The relationship between low-level cloud optical depth and atmospheric and surface air temperature is examined in the control climate of thirteen climate models to determine if cloud optical depth-temperature relationships found in observations are replicated in climate models, and if climate model behavior found in control climate simulations provides information about the optical depth feedback in climate warming simulations forced by increasing carbon dioxide. A positive relationship between cloud optical depth and cloud temperature exists in all models for low clouds with relatively cold temperatures at middle and high latitudes, whereas a negative relationship exists for warmer low clouds in the tropics and subtropics. This relationship is qualitatively similar to that in an earlier analysis of satellite observations, although modeled regression slopes tend to be too positive and their inter-model spread is large. In the models, the cold cloud response comes from increases in cloud water content with increasing temperature, while the warm cloud response comes from decreases in physical thickness with increasing cloud temperature. The inter-model and inter-regional spread of low-cloud optical depth feedback in climate warming simulations is well predicted by the corresponding spread in the relationships between optical depth and temperature for the current climate, suggesting that this aspect of cloud feedback may be constrained by observations. Because models have a positive bias relative to observations in the optical depth-temperature relationship, shortwave cloud feedbacks for climate changes may be more positive than climate models currently simulate.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2014-05-02
    Description: In this paper we study the planetary magnetic disturbance during the magnetic storm occurring on 05 April 2010 associated with high speed solar wind stream due to a coronal hole following a CME. We separate the magnetic disturbance associated to the ionospheric disturbance dynamo (Ddyn) from the magnetic disturbance associated to the prompt penetration of magnetospheric electric field (DP2). This event exhibits different responses of ionospheric disturbance dynamo in the different longitude sectors (European-African, Asian and American). The strongest effect is observed in the European-African sector. The Ddyn disturbance reduces the amplitude of the daytime H-component at low latitudes during four consecutive days in agreement with the Blanc and Richmond's model of ionospheric disturbance dynamo. The amplitude of Ddyn decreased with time during the four days. We discuss its diverse worldwide effects. The observed signature of magnetic disturbance process in specific longitude sector is strongly dependent on which Earth's side faces the magnetic storms (i.e., there is a different response depending on which longitude sector is at noon when the SSC hits).Finally we determined an average period of 22 hours for Ddyn using wavelet analysis.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2014-05-02
    Description: Seasonal characteristics of aerosol optical properties (AOP) in SKYNET Hefei site are studied using a sky-radiometer from March 2007 to May 2013. The aerosol optical depth (AOD), Angstrom exponent (AE), volume size distributions, single scattering albedo (SSA), refractive index and asymmetry factor (ASY) of aerosols are simultaneously retrieved using the SKYRAD.pack version 4.2 software. During the study period, the AOD varied seasonally, with the maximum value of 1.02 ± 0.42 at 500 nm occurring in the summer and the highest AOD (1.13 ± 0.42) occurred in June due to stagnant climate conditions and accumulation of polluted aerosols before the East Asian summer monsoon. The variation in AE showed a different pattern, with the minimum (0.97 ± 0.28) and maximum values (1.30 ± 0.22) occurring during the spring and fall seasons, respectively. The relatively low value of AE in spring is related to the emission of Asian dust events. The aerosol volume size distributions can be expressed by the tri-modal patterns for each season, consisting of a fine mode with R 〈 0.6um, a coarse mode with R 〉 2.5um and a middle mode located between them. The real part of the refractive index increased with wavelength (380-870 nm) while the imaginary part of the refractive index decreased for all seasons except for the summer. The seasonal mean values of SSA were 0.97 ± 0.02(summer), 0.95 ± 0.03(spring), 0.93 ± 0.04(autumn), and 0.91 ± 0.04(winter) at 380 nm indicating more absorbing aerosol in the autumn and winter months. Furthermore, aerosol properties were greatly modified by condensation growth as evidenced by the positive dependencies of AOD, SSA and ASY on relative humidity.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2014-05-02
    Description: Complex magnetosphere-ionosphere coupling mechanisms result in high latitude irregularities that are difficult to characterize using only Global Navigation Satellite System (GNSS) scintillation measurements. However, GNSS observations combined with physical parameters derived from modeling can be used to study the physics of these irregularities. We have developed a full three dimensional (3D) electromagnetic (EM) wave propagation model called “Satellite-beacon Ionospheric-scintillation Global Model ofthe upper Atmosphere" (SIGMA), to simulate GNSS scintillations. This model eliminates the most significant approximation made by the previous simulation approaches about the correlation length of the irregularity. Thus, for the first time, using SIGMA wecan accomplish scintillation simulations of significantly high fidelity. While the model is global, it is particularly applicable at high latitudes as it accounts for the complicated geometry of the magnetic field lines in these regions. Using SIGMA wesimulate the spatial and temporal variations in the GNSS signal phase and amplitude on the ground. In this paper, we present the model and results from a study to determine the sensitivity of the SIGMA outputs to different input parameters. We have deduced from our sensitivity study that the peak to peak (P2P) power gets most affected by the spectral index and line of sight (LOS) direction, while the P2P phase and standard deviation of the phase ( σ φ ) are more sensitive to the anisotropy of the irregularity. The sensitivity study of SIGMA narrows the parametric space to investigate when comparing the modeled results to the observations.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...