ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Journals
  • Articles  (194)
  • Oxford University Press  (194)
  • American Chemical Society (ACS)
  • Frontiers Media
  • PeerJ
  • 2015-2019  (194)
  • 1985-1989
  • 2016  (194)
  • Journal of Biochemistry  (105)
  • 740
  • Biology  (194)
  • Natural Sciences in General
  • Energy, Environment Protection, Nuclear Power Engineering
Collection
  • Journals
  • Articles  (194)
Publisher
  • Oxford University Press  (194)
  • American Chemical Society (ACS)
  • Frontiers Media
  • PeerJ
Years
  • 2015-2019  (194)
  • 1985-1989
Year
Topic
  • 1
    Publication Date: 2016-07-30
    Description: Importin α performs the indispensable role of ferrying proteins from the cytoplasm into the nucleus with a transport carrier, importin β1. Mammalian cells from mouse or human contain either six or seven importin α subtypes, respectively, each with a tightly regulated expression. Therefore, the combination of subtype expression in a cell defines distinct signaling pathways to achieve progressive changes in gene expression essential for cellular events, such as differentiation. Recent studies reveal that, in addition to nucleocytoplasmic transport, importin αs also serve non-transport functions. In this review, we first discuss the physiological significance of importin α as a nuclear transport regulator, and then focus on the functional diversities of importin αs based on their specific subcellular and cellular localizations, such as the nucleus and plasma membrane. These findings enrich our knowledge of how importin αs actively contribute to various cellular events.
    Print ISSN: 0021-924X
    Electronic ISSN: 1756-2651
    Topics: Biology , Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-07-30
    Description: The structure of the complex of maize sulfite reductase (SiR) and ferredoxin (Fd) has been determined by X-ray crystallography. Co-crystals of the two proteins prepared under different conditions were subjected to the diffraction analysis and three possible structures of the complex were solved. Although topological relationship of SiR and Fd varied in each of the structures, two characteristics common to all structures were found in the pattern of protein-protein interactions and positional arrangements of redox centres; (i) a few negative residues of Fd contact with a narrow area of SiR with positive electrostatic surface potential and (ii) [2Fe-2S] cluster of Fd and [4Fe-4S] cluster of SiR are in a close proximity with the shortest distance around 12 Å. Mutational analysis of a total of seven basic residues of SiR distributed widely at the interface of the complex showed their importance for supporting an efficient Fd-dependent activity and a strong physical binding to Fd. These combined results suggest that the productive electron transfer complex of SiR and Fd could be formed through multiple processes of the electrostatic intermolecular interaction and this implication is discussed in terms of the multi-functionality of Fd in various redox metabolisms.
    Print ISSN: 0021-924X
    Electronic ISSN: 1756-2651
    Topics: Biology , Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-06-25
    Description: Analysis of replicating mammalian mitochondrial DNA (mtDNA) suggested that initiation of the replication occurs not only at the specific position, Ori-H but also across a broad zone in mtDNA. We investigated relationship of mitochondrial transcription initiation which takes place upstream of Ori-H and mtDNA replication initiation through analysing the effect of knockdown of mitochondrial transcription factor B2, TFB2M and mitochondrial RNA polymerase, POLRMT, components of the transcription initiation complexes in cultured human cells. Under the conditions where suppression of the transcription initiation complexes was achieved by simultaneous depletion of TFB2M and POLRMT, decrease of replication intermediates of mtDNA RITOLS replication mode accompanied reduction in mtDNA copy number. On the other hand, replication intermediates of coupled leading and lagging strand DNA replication, another proposed replication mode, appeared to be less affected. The findings support the view that the former mode involves transcription from the light strand promoter (LSP), and suggest that initiation of the latter mode is independent from the transcription and has distinct regulation. Further, knockdown of TFB2M alone caused significant decrease of 7S DNA, which implies that transcription initiation complexes formed at the LSP engage 7S DNA synthesis more frequently than the initiation of productive replication and transcription.
    Print ISSN: 0021-924X
    Electronic ISSN: 1756-2651
    Topics: Biology , Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-06-25
    Description: Cycas revoluta leaf lectin (CRLL) of mannose-recognizing jacalin-related lectin (mJRL) has two tandem repeated carbohydrate recognition domains, and shows the characteristic sugar-binding specificity toward high mannose-glycans, compared with other mJRLs. We expressed the N-terminal domain and C-terminal domain (CRLL-N and CRLL-C) separately, to determine the fine sugar-binding specificity of each domain, using frontal affinity chromatography, glycan array and equilibrium dialysis. The specificity of CRLL toward high mannose was basically derived from CRLL-N, whereas CRLL-C had affinity for α1-6 extended mono-antennary complex-type glycans. Notably, the affinity of CRLL-N was most potent to one of three Man 8 glycans and Man 9 glycan, whereas the affinity of CRLL-C decreased with the increase in the number of extended α1-2 linked mannose residue. The recognition of the Man 8 glycans by CRLL-N has not been found for other mannose recognizing lectins. Glycan array reflected these specificities of the two domains. Furthermore, it was revealed by equilibrium dialysis method that the each domain had two sugar-binding sites, similar with Banlec, banana mannose-binding Jacalin-related lectin.
    Print ISSN: 0021-924X
    Electronic ISSN: 1756-2651
    Topics: Biology , Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-01-09
    Description: Osteoclasts are giant multinucleated cells that differentiate from hematopoietic cells in the bone marrow and carry out important physiological functions in the regulation of skeletal homeostasis as well as hematopoiesis. Osteoclast biology shares many features and components with cells of the immune system, including cytokine-receptor interactions (RANKL-RANK), intracellular signalling molecules (TRAF6) and transcription factors (NFATc1). Although the roles of these molecules in osteoclast differentiation are well known, fundamental questions remain unsolved, including the exact location of the RANKL-RANK interaction and the in vivo temporal and spatial information on the transformation of hematopoietic cells into bone-resorbing osteoclasts. This review focuses on the importance of cell-cell contact and metabolic adaptation for differentiation, relatively overlooked aspects of osteoclast biology and biochemistry.
    Print ISSN: 0021-924X
    Electronic ISSN: 1756-2651
    Topics: Biology , Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-01-09
    Description: Although monoclonal antibodies have been used not only as analytical tools but also as biologic therapeutics, they cannot target intracellular proteins due to their large molecular size and low membrane permeability, which limit their applications. During previous attempts to delivery antibodies intracellularly, the low efficiency of escape from endosomes to the cytosol reduced the bioavailability of antibodies or antibody-conjugated effectors. Recently, we found that the fusogenic peptides (FPs) B18 and B55 from bindin, a sea urchin gamete recognition protein, facilitated the endosomal escape of FP-fused enhanced green fluorescent protein (eGFP) and/or of co-administered cargos such as dextrans [Niikura et al. A fusogenic peptide from a sea urchin fertilization protein promotes intracellular delivery of biomacromolecules by facilitating endosomal escape. J. Control. Release 2015;212:85-93]. In this study, we constructed FP-fused anti-epidermal growth factor receptor (EGFR) single-chain Fv (αEGFR[scFv]) proteins and evaluated their endosomal escape efficiency by utilizing a nuclear localization signal). When the FP-fused αEGFR[scFv] proteins were incubated with A431 cells, the estimated endosomal escape efficiency of αEGFR[scFv]-B18 was significantly higher than that of αEGFR[scFv] alone, suggesting that the B18 peptide facilitates endosomal escape of the conjugated scFv in cis . Moreover, αEGFR[scFv]-B55 promoted the intracellular uptake of co-administered eGFP and dextrans in trans . These results imply that B18- and B55-fused antibodies may be useful for the cell-specific intracellular delivery of biomacromolecules.
    Print ISSN: 0021-924X
    Electronic ISSN: 1756-2651
    Topics: Biology , Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-01-09
    Description: Methylobacterium extorquens AM1 is an aerobic facultative methylotroph known to secrete pyrroloquinoline quinone (PQQ), a cofactor of a number of bacterial dehydrogenases, into the culture medium. To elucidate the molecular mechanism of PQQ biosynthesis, we are focusing on PqqE which is believed to be the enzyme catalysing the first reaction of the pathway. PqqE belongs to the radical S -adenosyl- l -methionine (SAM) superfamily, in which most, if not all, enzymes are very sensitive to dissolved oxygen and rapidly inactivated under aerobic conditions. We here report that PqqE from M. extorquens AM1 is markedly oxygen-tolerant; it was efficiently expressed in Escherichia coli cells grown aerobically and affinity-purified to near homogeneity. The purified and reconstituted PqqE contained multiple (likely three) iron-sulphur clusters and showed the reductive SAM cleavage activity that was ascribed to the consensus [4Fe-4S] 2+ cluster bound at the N-terminus region. Mössbauer spectrometric analyses of the as-purified and reconstituted enzymes revealed the presence of [4Fe-4S] 2+ and [2Fe-2S] 2+ clusters as the major forms with the former being predominant in the reconstituted enzyme. PqqE from M.extorquens AM1 may serve as a convenient tool for studying the molecular mechanism of PQQ biosynthesis, avoiding the necessity of establishing strictly anaerobic conditions.
    Print ISSN: 0021-924X
    Electronic ISSN: 1756-2651
    Topics: Biology , Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-01-09
    Description: Pho Pop5 and Pho Rpp30 in the hyperthermophilic archaeon Pyrococcus horikoshii , homologues of human ribonuclease P (RNase P) proteins hPop5 and Rpp30, respectively, fold into a heterotetramer [ Pho Rpp30–( Pho Pop5) 2 – Pho Rpp30], which plays a crucial role in the activation of RNase P RNA ( Pho pRNA). Here, we examined the functional implication of Pho Pop5 and Pho Rpp30 in the tetramer. Surface plasmon resonance (SPR) analysis revealed that the tetramer strongly interacts with an oligonucleotide including the nucleotide sequence of a stem-loop SL3 in Pho pRNA. In contrast, Pho Pop5 had markedly reduced affinity to SL3, whereas Pho Rpp30 had little affinity to SL3. SPR studies of Pho Pop5 mutants further revealed that the C-terminal helix (α4) in Pho Pop5 functions as a molecular recognition element for SL3. Moreover, gel filtration indicated that Pho Rpp30 exists as a monomer, whereas Pho Pop5 is an oligomer in solution, suggesting that Pho Rpp30 assists Pho Pop5 in attaining a functionally active conformation by shielding hydrophobic surfaces of Pho Pop5. These results, together with available data, allow us to generate a structural and mechanistic model for the Pho pRNA activation by Pho Pop5 and Pho Rpp30, in which the two C-terminal helices (α4) of Pho Pop5 in the tetramer whose formation is assisted by Pho Rpp30 act as binding elements and bridge SL3 and SL16 in Pho pRNA.
    Print ISSN: 0021-924X
    Electronic ISSN: 1756-2651
    Topics: Biology , Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-03-23
    Description: Wnt ligands play a central role in the development and homeostasis of various organs through β-catenin-dependent and -independent signalling. The crucial roles of Wnt/β-catenin signals in bone mass have been established by a large number of studies since the discovery of a causal link between mutations in the low-density lipoprotein receptor-related protein 5 ( Lrp5 ) gene and alternations in human bone mass. The activation of Wnt/β-catenin signalling induces the expression of osterix, a transcription factor, which promotes osteoblast differentiation. Furthermore, this signalling induces the expression of osteoprotegerin, an osteoclast inhibitory factor in osteoblast-lineage cells to prevent bone resorption. Recent studies have also shown that Wnt5a, a typical non-canonical Wnt ligand, enhanced osteoclast formation. In contrast, Wnt16 inhibited osteoclast formation through β-catenin-independent signalling. In this review, we discussed the current understanding of the Wnt signalling molecules involved in bone formation and resorption.
    Print ISSN: 0021-924X
    Electronic ISSN: 1756-2651
    Topics: Biology , Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2016-03-23
    Description: Parathyroid hormone-related protein (PTHrP) has two different targeting signals: an N-terminal signal peptide for the endoplasmic reticulum (ER) targeting and an internal nuclear localization signal. The protein not only functions as a secretory protein, but is also found in the nucleus and/or nucleolus under certain conditions. PTHrP signal peptide is less hydrophobic than most signal peptides mainly due to its evolutionarily well-conserved region (QQWS). The substitution of four tandem leucine residues for this conserved region resulted in a significant inhibition of the signal peptide cleavage. At the same time, proportion of nuclear and/or nucleolar localization decreased, probably due to tethering of the protein to the ER membrane by the uncleaved mutant signal peptide. Almost complete cleavage of the signal peptide accompanied by a lack of nuclear/nucleolar localization was achieved by combining the hydrophobic h-region and an optimized sequence of the cleavage site. In addition, mutational modifications of the distribution of charged residues in and around the signal peptide affect its cleavage and/or nuclear/nucleolar localization of the protein. These results indicate that the well-conserved region in the signal peptide plays an essential role in the dual localization of PTHrP through ER targeting and/or the membrane translocation.
    Print ISSN: 0021-924X
    Electronic ISSN: 1756-2651
    Topics: Biology , Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...