ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-09-17
    Description: Can we determine what controls the spatio-temporal distribution of d-excess and 17 O-excess in precipitation using the LMDZ general circulation model? Climate of the Past, 9, 2173-2193, 2013 Author(s): C. Risi, A. Landais, R. Winkler, and F. Vimeux Combined measurements of the H 2 18 O and HDO isotopic ratios in precipitation, leading to second-order parameter D-excess, have provided additional constraints on past climates compared to the H 2 18 O isotopic ratio alone. More recently, measurements of H 2 17 O have led to another second-order parameter: 17 O-excess. Recent studies suggest that 17 O-excess in polar ice may provide information on evaporative conditions at the moisture source. However, the processes controlling the spatio-temporal distribution of 17 O-excess are still far from being fully understood. We use the isotopic general circulation model (GCM) LMDZ to better understand what controls d-excess and 17 O-excess in precipitation at present-day (PD) and during the last glacial maximum (LGM). The simulation of D-excess and 17 O-excess is evaluated against measurements in meteoric water, water vapor and polar ice cores. A set of sensitivity tests and diagnostics are used to quantify the relative effects of evaporative conditions (sea surface temperature and relative humidity), Rayleigh distillation, mixing between vapors from different origins, precipitation re-evaporation and supersaturation during condensation at low temperature. In LMDZ, simulations suggest that in the tropics convective processes and rain re-evaporation are important controls on precipitation D-excess and 17 O-excess. In higher latitudes, the effect of distillation, mixing between vapors from different origins and supersaturation are the most important controls. For example, the lower d-excess and 17 O-excess at LGM simulated at LGM are mainly due to the supersaturation effect. The effect of supersaturation is however very sensitive to a parameter whose tuning would require more measurements and laboratory experiments. Evaporative conditions had previously been suggested to be key controlling factors of d-excess and 17 O-excess, but LMDZ underestimates their role. More generally, some shortcomings in the simulation of 17 O-excess by LMDZ suggest that general circulation models are not yet the perfect tool to quantify with confidence all processes controlling 17 O-excess.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-10-03
    Description: Global and regional sea surface temperature trends during Marine Isotope Stage 11 Climate of the Past, 9, 2231-2252, 2013 Author(s): Y. Milker, R. Rachmayani, M. F. G. Weinkauf, M. Prange, M. Raitzsch, M. Schulz, and M. Kučera The Marine Isotope Stage (MIS) 11 (424–374 ka) was characterized by a protracted deglaciation and an unusually long climatic optimum. It remains unclear to what degree the climate development during this interglacial reflects the unusually weak orbital forcing or greenhouse gas trends. Previously, arguments about the duration and timing of the MIS11 climatic optimum and about the pace of the deglacial warming were based on a small number of key records, which appear to show regional differences. In order to obtain a global signal of climate evolution during MIS11, we compiled a database of 78 sea surface temperature (SST) records from 57 sites spanning MIS11, aligned these individually on the basis of benthic ( N = 28) or planktonic ( N = 31) stable oxygen isotope curves to a common time frame and subjected 48 of them to an empirical orthogonal function (EOF) analysis. The analysis revealed a high commonality among all records, with the principal SST trend explaining almost 49% of the variability. This trend indicates that on the global scale, the surface ocean underwent rapid deglacial warming during Termination V, in pace with carbon dioxide rise, followed by a broad SST optimum centered at ~410 kyr. The second EOF, which explained ~18% of the variability, revealed the existence of a different SST trend, characterized by a delayed onset of the temperature optimum during MIS11 at ~398 kyr, followed by a prolonged warm period lasting beyond 380 kyr. This trend is most consistently manifested in the mid-latitude North Atlantic and Mediterranean Sea and is here attributed to the strength of the Atlantic meridional overturning circulation. A sensitivity analysis indicates that these results are robust to record selection and to age-model uncertainties of up to 3–6 kyr, but more sensitive to SST seasonal attribution and SST uncertainties 〉1 °C. In order to validate the CCSM3 (Community Climate System Model, version 3) predictive potential, the annual and seasonal SST anomalies recorded in a total of 74 proxy records were compared with runs for three time slices representing orbital configuration extremes during the peak interglacial of MIS11. The modeled SST anomalies are characterized by a significantly lower variance compared to the reconstructions. Nevertheless, significant correlations between proxy and model data are found in comparisons on the seasonal basis, indicating that the model captures part of the long-term variability induced by astronomical forcing, which appears to have left a detectable signature in SST trends.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-03-22
    Description: Skill and reliability of climate model ensembles at the Last Glacial Maximum and mid-Holocene Climate of the Past, 9, 811-823, 2013 Author(s): J. C. Hargreaves, J. D. Annan, R. Ohgaito, A. Paul, and A. Abe-Ouchi Paleoclimate simulations provide us with an opportunity to critically confront and evaluate the performance of climate models in simulating the response of the climate system to changes in radiative forcing and other boundary conditions. Hargreaves et al. (2011) analysed the reliability of the Paleoclimate Modelling Intercomparison Project, PMIP2 model ensemble with respect to the MARGO sea surface temperature data synthesis (MARGO Project Members, 2009) for the Last Glacial Maximum (LGM, 21 ka BP). Here we extend that work to include a new comprehensive collection of land surface data (Bartlein et al., 2011), and introduce a novel analysis of the predictive skill of the models. We include output from the PMIP3 experiments, from the two models for which suitable data are currently available. We also perform the same analyses for the PMIP2 mid-Holocene (6 ka BP) ensembles and available proxy data sets. Our results are predominantly positive for the LGM, suggesting that as well as the global mean change, the models can reproduce the observed pattern of change on the broadest scales, such as the overall land–sea contrast and polar amplification, although the more detailed sub-continental scale patterns of change remains elusive. In contrast, our results for the mid-Holocene are substantially negative, with the models failing to reproduce the observed changes with any degree of skill. One cause of this problem could be that the globally- and annually-averaged forcing anomaly is very weak at the mid-Holocene, and so the results are dominated by the more localised regional patterns in the parts of globe for which data are available. The root cause of the model-data mismatch at these scales is unclear. If the proxy calibration is itself reliable, then representativity error in the data-model comparison, and missing climate feedbacks in the models are other possible sources of error.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-04-09
    Description: Stable isotopic evidence of El Niño-like atmospheric circulation in the Pliocene western United States Climate of the Past, 9, 903-912, 2013 Author(s): M. J. Winnick, J. M. Welker, and C. P. Chamberlain Understanding how the hydrologic cycle has responded to warmer global temperatures in the past is especially important today as concentrations of CO 2 in the atmosphere continue to increase due to human activities. The Pliocene offers an ideal window into a climate system that has equilibrated with current atmospheric p CO 2 . During the Pliocene the western United States was wetter than modern, an observation at odds with our current understanding of future warming scenarios, which involve the expansion and poleward migration of the subtropical dry zone. Here we compare Pliocene oxygen isotope profiles of pedogenic carbonates across the western US to modern isotopic anomalies in precipitation between phases of the El Niño–Southern Oscillation (ENSO). We find that when accounting for seasonality of carbonate formation, isotopic changes through the late Pliocene match modern precipitation isotopic anomalies in El Niño years. Furthermore, isotopic shifts through the late Pliocene mirror changes through the early Pleistocene, which likely represents the southward migration of the westerly storm track caused by growth of the Laurentide ice sheet. We propose that the westerly storm track migrated northward through the late Pliocene with the development of the modern cold tongue in the east equatorial Pacific, then returned southward with widespread glaciation in the Northern Hemisphere – a scenario supported by terrestrial climate proxies across the US. Together these data support the proposed existence of background El Niño-like conditions in western North America during the warm Pliocene. If the earth behaves similarly with future warming, this observation has important implications with regard to the amount and distribution of precipitation in western North America.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-03-22
    Description: Mass-movement and flood-induced deposits in Lake Ledro, southern Alps, Italy: implications for Holocene palaeohydrology and natural hazards Climate of the Past, 9, 825-840, 2013 Author(s): A. Simonneau, E. Chapron, B. Vannière, S. B. Wirth, A. Gilli, C. Di Giovanni, F. S. Anselmetti, M. Desmet, and M. Magny High-resolution seismic profiles and sediment cores from Lake Ledro combined with soil and riverbed samples from the lake's catchment area are used to assess the recurrence of natural hazards (earthquakes and flood events) in the southern Italian Alps during the Holocene. Two well-developed deltas and a flat central basin are identified on seismic profiles in Lake Ledro. Lake sediments have been finely laminated in the basin since 9000 cal. yr BP and frequently interrupted by two types of sedimentary events (SEs): light-coloured massive layers and dark-coloured graded beds. Optical analysis (quantitative organic petrography) of the organic matter present in soil, riverbed and lacustrine samples together with lake sediment bulk density and grain-size analysis illustrate that light-coloured layers consist of a mixture of lacustrine sediments and mainly contain algal particles similar to the ones observed in background sediments. Light-coloured layers thicker than 1.5 cm in the main basin of Lake Ledro are synchronous to numerous coeval mass-wasting deposits remoulding the slopes of the basin. They are interpreted as subaquatic mass-movements triggered by historical and pre-historical regional earthquakes dated to AD 2005, AD 1891, AD 1045 and 1260, 2545, 2595, 3350, 3815, 4740, 7190, 9185 and 11 495 cal. yr BP. Dark-coloured SEs develop high-amplitude reflections in front of the deltas and in the deep central basin. These beds are mainly made of terrestrial organic matter (soils and lignocellulosic debris) and are interpreted as resulting from intense hyperpycnal flood event. Mapping and quantifying the amount of soil material accumulated in the Holocene hyperpycnal flood deposits of the sequence allow estimating that the equivalent soil thickness eroded over the catchment area reached up to 5 mm during the largest Holocene flood events. Such significant soil erosion is interpreted as resulting from the combination of heavy rainfall and snowmelt. The recurrence of flash flood events during the Holocene was, however, not high enough to affect pedogenesis processes and highlight several wet regional periods during the Holocene. The Holocene period is divided into four phases of environmental evolution. Over the first half of the Holocene, a progressive stabilization of the soils present through the catchment of Lake Ledro was associated with a progressive reforestation of the area and only interrupted during the wet 8.2 event when the soil destabilization was particularly important. Lower soil erosion was recorded during the mid-Holocene climatic optimum (8000–4200 cal. yr BP) and associated with higher algal production. Between 4200 and 3100 cal. yr BP, both wetter climate and human activities within the drainage basin drastically increased soil erosion rates. Finally, from 3100 cal. yr BP to the present-day, data suggest increasing and changing human land use.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-04-04
    Description: Using data assimilation to investigate the causes of Southern Hemisphere high latitude cooling from 10 to 8 ka BP Climate of the Past, 9, 887-901, 2013 Author(s): P. Mathiot, H. Goosse, X. Crosta, B. Stenni, M. Braida, H. Renssen, C. J. Van Meerbeeck, V. Masson-Delmotte, A. Mairesse, and S. Dubinkina From 10 to 8 ka BP (thousand years before present), paleoclimate records show an atmospheric and oceanic cooling in the high latitudes of the Southern Hemisphere. During this interval, temperatures estimated from proxy data decrease by 0.8 °C over Antarctica and 1.2 °C over the Southern Ocean. In order to study the causes of this cooling, simulations covering the early Holocene have been performed with the climate model of intermediate complexity LOVECLIM constrained to follow the signal recorded in climate proxies using a data assimilation method based on a particle filtering approach. The selected proxies represent oceanic and atmospheric surface temperature in the Southern Hemisphere derived from terrestrial, marine and glaciological records. Two mechanisms previously suggested to explain the 10–8 ka BP cooling pattern are investigated using the data assimilation approach in our model. The first hypothesis is a change in atmospheric circulation, and the second one is a cooling of the sea surface temperature in the Southern Ocean, driven in our experimental setup by the impact of an increased West Antarctic melting rate on ocean circulation. For the atmosphere hypothesis, the climate state obtained by data assimilation produces a modification of the meridional atmospheric circulation leading to a 0.5 °C Antarctic cooling from 10 to 8 ka BP compared to the simulation without data assimilation, without congruent cooling of the atmospheric and sea surface temperature in the Southern Ocean. For the ocean hypothesis, the increased West Antarctic freshwater flux constrainted by data assimilation (+100 mSv from 10 to 8 ka BP) leads to an oceanic cooling of 0.7 °C and a strengthening of Southern Hemisphere westerlies (+6%). Thus, according to our experiments, the observed cooling in Antarctic and the Southern Ocean proxy records can only be reconciled with the reconstructions by the combination of a modified atmospheric circulation and an enhanced freshwater flux.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-04-11
    Description: Model sensitivity to North Atlantic freshwater forcing at 8.2 ka Climate of the Past, 9, 955-968, 2013 Author(s): C. Morrill, A. N. LeGrande, H. Renssen, P. Bakker, and B. L. Otto-Bliesner We compared four simulations of the 8.2 ka event to assess climate model sensitivity and skill in responding to North Atlantic freshwater perturbations. All of the simulations used the same freshwater forcing, 2.5 Sv for one year, applied to either the Hudson Bay (northeastern Canada) or Labrador Sea (between Canada's Labrador coast and Greenland). This freshwater pulse induced a decadal-mean slowdown of 10–25% in the Atlantic Meridional Overturning Circulation (AMOC) of the models and caused a large-scale pattern of climate anomalies that matched proxy evidence for cooling in the Northern Hemisphere and a southward shift of the Intertropical Convergence Zone. The multi-model ensemble generated temperature anomalies that were just half as large as those from quantitative proxy reconstructions, however. Also, the duration of AMOC and climate anomalies in three of the simulations was only several decades, significantly shorter than the duration of ~150 yr in the paleoclimate record. Possible reasons for these discrepancies include incorrect representation of the early Holocene climate and ocean state in the North Atlantic and uncertainties in the freshwater forcing estimates.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-09-10
    Description: A mid-Holocene climate reconstruction for eastern South America Climate of the Past, 9, 2117-2133, 2013 Author(s): L. F. Prado, I. Wainer, C. M. Chiessi, M.-P. Ledru, and B. Turcq The mid-Holocene (6000 calibrated years before present) is a key period in palaeoclimatology because incoming summer insolation was lower than during the late Holocene in the Southern Hemisphere, whereas the opposite happened in the Northern Hemisphere. However, the effects of the decreased austral summer insolation over South American climate have been poorly discussed by palaeodata syntheses. In addition, only a few of the regional studies have characterised the mid-Holocene climate in South America through a multiproxy approach. Here, we present a multiproxy compilation of mid-Holocene palaeoclimate data for eastern South America. We compiled 120 palaeoclimatological datasets, which were published in 84 different papers. The palaeodata analysed here suggest a water deficit scenario in the majority of eastern South America during the mid-Holocene if compared to the late Holocene, with the exception of northeastern Brazil. Low mid-Holocene austral summer insolation caused a reduced land–sea temperature contrast and hence a weakened South American monsoon system circulation. This scenario is represented by a decrease in precipitation over the South Atlantic Convergence Zone area, saltier conditions along the South American continental margin, and lower lake levels.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-09-13
    Description: Glacial fluctuations of the Indian monsoon and their relationship with North Atlantic climate: new data and modelling experiments Climate of the Past, 9, 2135-2151, 2013 Author(s): C. Marzin, N. Kallel, M. Kageyama, J.-C. Duplessy, and P. Braconnot Several paleoclimate records such as from Chinese loess, speleothems or upwelling indicators in marine sediments present large variations of the Asian monsoon system during the last glaciation. Here, we present a new record from the northern Andaman Sea (core MD77-176) which shows the variations of the hydrological cycle of the Bay of Bengal. The high-resolution record of surface water δ 18 O dominantly reflects salinity changes and displays large millennial-scale oscillations over the period 40 000 to 11 000 yr BP. Their timing and sequence suggests that events of high (resp. low) salinity in the Bay of Bengal, i.e. weak (resp. strong) Indian monsoon, correspond to cold (resp. warm) events in the North Atlantic and Arctic, as documented by the Greenland ice core record. We use the IPSL_CM4 Atmosphere-Ocean coupled General Circulation Model to study the processes that could explain the teleconnection between the Indian monsoon and the North Atlantic climate. We first analyse a numerical experiment in which such a rapid event in the North Atlantic is obtained under glacial conditions by increasing the freshwater flux in the North Atlantic, which results in a reduction of the intensity of the Atlantic meridional overturning circulation. This freshwater hosing results in a weakening of the Indian monsoon rainfall and circulation. The changes in the continental runoff and local hydrological cycle are responsible for an increase in salinity in the Bay of Bengal. This therefore compares favourably with the new sea water δ 18 O record presented here and the hypothesis of synchronous cold North Atlantic and weak Indian monsoon events. Additional sensitivity experiments are produced with the LMDZ atmospheric model to analyse the teleconnection mechanisms between the North Atlantic and the Indian monsoon. The changes over the tropical Atlantic are shown to be essential in triggering perturbations of the subtropical jet over Africa and Eurasia, that in turn affect the intensity of the Indian monsoon. These relationships are also found to be valid in additional coupled model simulations in which the Atlantic meridional overturning circulation (AMOC) is forced to resume.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-09-14
    Description: Mid-Holocene ocean and vegetation feedbacks over East Asia Climate of the Past, 9, 2153-2171, 2013 Author(s): Z. Tian and D. Jiang Mid-Holocene ocean and vegetation feedbacks over East Asia are investigated by a set of numerical experiments performed with the version 4 of the Community Climate System Model (CCSM4). With reference to the pre-industrial period, most of the mid-Holocene annual and seasonal surface-air temperature and precipitation changes are found to result from a direct response of the atmosphere to insolation forcing, while dynamic ocean and vegetation modulate regional climate of East Asia to some extent. Because of its thermal inertia, the dynamic ocean induced an additional warming of 0.2 K for the annual mean, 0.5 K in winter (December–February), 0.0003 K in summer (June–August), and 1.0 K in autumn (September–November), but a cooling of 0.6 K in spring (March–May) averaged over China, and it counteracted (amplified) the direct effect of insolation forcing for the annual mean and in winter and autumn (spring) for that period. The dynamic vegetation had an area-average impact of no more than 0.4 K on the mid-Holocene annual and seasonal temperatures over China, with an average cooling of 0.2 K for the annual mean. On the other hand, ocean feedback induced a small increase of precipitation in winter (0.04 mm day −1 ) and autumn (0.05 mm day −1 ), but a reduction for the annual mean (0.14 mm day −1 ) and in spring (0.29 mm day −1 ) and summer (0.34 mm day −1 ) over China, while it also suppressed the East Asian summer monsoon rainfall. The effect of dynamic vegetation on the mid-Holocene annual and seasonal precipitation was comparatively small, ranging from −0.03 mm day −1 to 0.06 mm day −1 averaged over China. In comparison, the CCSM4 simulated annual and winter cooling over China agrees with simulations within the Paleoclimate Modeling Intercomparison Project (PMIP), but the results are contrary to the warming reconstructed from multiple proxy data for the mid-Holocene. Ocean feedback narrows this model–data mismatch, whereas vegetation feedback plays an opposite role but with a level of uncertainty.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2013-09-17
    Description: Water-soluble organic carbon in snow and ice deposited at Alpine, Greenland, and Antarctic sites: a critical review of available data and their atmospheric relevance Climate of the Past, 9, 2195-2211, 2013 Author(s): M. Legrand, S. Preunkert, B. Jourdain, J. Guilhermet, X. Fa{ï}n, I. Alekhina, and J. R. Petit While it is now recognized that organic matter dominates the present-day atmospheric aerosol load over continents, its sources remain poorly known. The studies of organic species or organic fractions trapped in ice cores may help to overcome this lack of knowledge. Available data on the dissolved (or total) organic carbon (DOC or TOC) content of snow and ice often appear largely inconsistent, and, until now, no critical review has been conducted to understand the causes of these inconsistencies. To draw a more consistent picture of the organic carbon amount present in solid precipitation that accumulates on cold glaciers, we here review available data and, when needed, complete the data set with analyses of selected samples. The different data sets are then discussed by considering the age (modern versus pre-industrial, Holocene versus Last glacial Maximum) and type (surface snow, firn, or ice) of investigated samples, the deployed method, and the applied contamination control. Finally, the OC (DOC or TOC) levels of Antarctic, Greenland, and Alpine ice cores are compared and discussed with respect to natural (biomass burning, vegetation emissions) and anthropogenic sources (fossil fuel combustion) contributing to atmospheric OC aerosol.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2013-09-27
    Description: Major dust events in Europe during marine isotope stage 5 (130–74 ka): a climatic interpretation of the "markers" Climate of the Past, 9, 2213-2230, 2013 Author(s): D.-D. Rousseau, M. Ghil, G. Kukla, A. Sima, P. Antoine, M. Fuchs, C. Hatté, F. Lagroix, M. Debret, and O. Moine At present, major dust storms are occurring at mid-latitudes in the Middle East and Asia, as well as at low latitudes in Northern Africa and in Australia. Western Europe, though, does not experience such dramatic climate events, except for some African dust reaching it from the Sahara. This modern situation is of particular interest, in the context of future climate projections, since the present interglacial is usually interpreted, in this context, as an analog of the warm Eemian interval. European terrestrial records show, however, major dust events during the penultimate interglacial and early glacial. These events are easily observed in loess records by their whitish-color deposits, which lie above and below dark chernozem paleosols in Central European records of Marine Isotope Stage (MIS) 5 age. We describe here the base of the Dolni Vestonice (DV) loess sequence, Czech Republic, as the reference of such records. The dust is deposited during intervals that are characterized by poor vegetation – manifested by high δ 13 C values and low magnetic susceptibility – while the fine sand and clay in the deposits shows grain sizes that are clearly different from the overlying pleniglacial loess deposits. Some of these dust events have been previously described as "Markers" or Marker Silts (MS) by one of us (G. Kukla), and are dated at about 111–109 ka and 93–92 ka, with a third and last one slightly visible at about 75–73 ka. Other events correspond to the loess material of Kukla's cycles, and are described as eolian silts (ES); they are observed in the same DV sequence and are dated at about 106–105 ka, 88–86 ka, and 78.5–77 ka. These dates are determined by considering the OSL ages with their errors measured on the studied sequence, and the comparison with Greenland ice-core and European speleothem chronologies. The fine eolian deposits mentioned above, MS as well as ES, correspond to short events that lasted about 2 ka; they are synchronous with re-advances of the polar front over the North Atlantic, as observed in marine sediment cores. These deposits also correlate with important changes observed in European vegetation. Some ES and MS events appear to be coeval with significant dust peaks recorded in the Greenland ice cores, while others are not. This decoupling between the European eolian and Greenland dust depositions is of considerable interest, as it differs from the fully glacial situation, in which the Eurasian loess sedimentation mimics the Greenland dust record. Previous field observations supported an interpretation of MS events as caused by continental dust storms. We show here, by a comparison with speleothems of the same age found in the northern Alps, that different atmospheric-circulation modes seem to be responsible for the two categories of dust events, MS vs. ES.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2013-01-17
    Description: Climate, people, fire and vegetation: new insights into vegetation dynamics in the Eastern Mediterranean since the 1st century AD Climate of the Past, 9, 57-87, 2013 Author(s): J. Bakker, E. Paulissen, D. Kaniewski, J. Poblome, V. De Laet, G. Verstraeten, and M. Waelkens Anatolia forms a bridge between Europe, Africa and Asia and is influenced by all three continents in terms of climate, vegetation and human civilisation. Unfortunately, well-dated palynological records focussing on the period from the end of the classical Roman period until subrecent times are rare for Anatolia and completely absent for southwest Turkey, resulting in a lacuna in knowledge concerning the interactions of climatic change, human impact, and environmental change in this important region. Two well-dated palaeoecological records from the Western Taurus Mountains, Turkey, provide a first relatively detailed record of vegetation dynamics from late Roman times until the present in SW Turkey. Combining pollen, non-pollen palynomorphs, charcoal, sedimentological, archaeological data, and newly developed multivariate numerical analyses allows for the disentangling of climatic and anthropogenic influences on vegetation change. Results show changes in both the regional pollen signal as well as local soil sediment characteristics match shifts in regional climatic conditions. Both climatic as well as anthropogenic change had a strong influence on vegetation dynamics and land use. A moist environmental trend during the late-3rd century caused an increase in marshes and wetlands in the moister valley floors, limiting possibilities for intensive crop cultivation at such locations. A mid-7th century shift to pastoralism coincided with a climatic deterioration as well as the start of Arab incursions into the region, the former driving the way in which the vegetation developed afterwards. Resurgence in agriculture was observed in the study during the mid-10th century AD, coinciding with the Medieval Climate Anomaly. An abrupt mid-12th century decrease in agriculture is linked to socio-political change, rather than the onset of the Little Ice Age. Similarly, gradual deforestation occurring from the 16th century onwards has been linked to changes in land use during Ottoman times. The pollen data reveal that a fast rise in Pinus pollen after the end of the Beyşehir Occupation Phase need not always occur. The notion of high Pinus pollen percentages indicating an open landscape incapable of countering the influx of pine pollen is also deemed unrealistic. While multiple fires occurred in the region through time, extended fire periods, as had occurred during the Bronze Age and Beyşehir Occupation Phase, did not occur, and no signs of local fire activity were observed. Fires were never a major influence on vegetation dynamics. While no complete overview of post-BO Phase fire events can be presented, the available data indicates that fires in the vicinity of Gravgaz may have been linked to anthropogenic activity in the wider surroundings of the marsh. Fires in the vicinity of Bereket appeared to be linked to increased abundance of pine forests. There was no link with specifically wet or dry environmental conditions at either site. While this study reveals much new information concerning the impact of climate change and human occupation on the environment, more studies from SW Turkey are required in order to properly quantify the range of the observed phenomena and the magnitude of their impacts.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2013-02-23
    Description: Multi-periodic climate dynamics: spectral analysis of long-term instrumental and proxy temperature records Climate of the Past, 9, 447-452, 2013 Author(s): H.-J. Lüdecke, A. Hempelmann, and C. O. Weiss The longest six instrumental temperature records of monthly means reach back maximally to 1757 AD and were recorded in Europe. All six show a V-shape, with temperature drop in the 19th and rise in the 20th century. Proxy temperature time series of Antarctic ice cores show this same characteristic shape, indicating this pattern as a global phenomenon. We used the mean of the six instrumental records for analysis by discrete Fourier transform (DFT), wavelets, and the detrended fluctuation analysis (DFA). For comparison, a stalagmite record was also analyzed by DFT. The harmonic decomposition of the abovementioned mean shows only six significant frequencies above periods over 30 yr. The Pearson correlation between the mean, smoothed by a 15-yr running average (boxcar) and the reconstruction using the six significant frequencies, yields r = 0.961. This good agreement has a 〉 99.9% confidence level confirmed by Monte Carlo simulations. It shows that the climate dynamics is governed at present by periodic oscillations. We find indications that observed periodicities result from intrinsic dynamics.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2013-02-26
    Description: The East Asian Summer Monsoon at mid-Holocene: results from PMIP3 simulations Climate of the Past, 9, 453-466, 2013 Author(s): W. Zheng, B. Wu, J. He, and Y. Yu Ten Coupled General Circulation Models (CGCMs) participated in the third phase of Paleoclimate Modelling Intercomparison Project (PMIP3) are assessed for the East Asian Summer Monsoon (EASM) in both the pre-Industrial (PI, 0 ka) and mid-Holocene (MH, 6 ka) simulations. Results show that the PMIP3 model median captures well the large-scale characteristics of the EASM, including the two distinct features of the Meiyu rainbelt and the stepwise meridional displacement of the monsoonal rainbelt. At mid-Holocene, the PMIP3 model median shows significant warming (cooling) during boreal summer (winter) over Eurasia continent that are dominated by the changes of insolation. However, the PMIP3 models fail to simulate a warmer annual mean and winter surface air temperature (TAS) over eastern China as derived from proxy records. The EASM at MH are featured by the changes of large-scale circulation over Eastern China while the changes of precipitation are not significant over its sub-domains of the Southern China and the lower reaches of Yangzi River. The inter-model differences for the monsoon precipitation can be associated with different configurations of the changes in large-scale circulation and the water vapour content, of which the former determines the sign of precipitation changes. The large model spread for the TAS over Tibetan Plateau has a positive relationship with the precipitation in the lower reaches of Yangzi River, yet this relationship does not apply to those PMIP3 models in which the monsoonal precipitation is more sensitive to the changes of large-scale circulation. Except that the PMIP3 model median captured the warming of annual mean TAS over Tibetan Plateau, no significant improvements can be concluded when compared with the PMIP2 models results.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2013-03-01
    Description: Paleohydrology reconstruction and Holocene climate variability in the South Adriatic Sea Climate of the Past, 9, 499-515, 2013 Author(s): G. Siani, M. Magny, M. Paterne, M. Debret, and M. Fontugne Holocene paleohydrology reconstruction is derived combining planktonic and benthic stable oxygen and carbon isotopes, sea surface temperatures (SSTs) and oxygen isotope composition of seawater (δ 18 O w ) from a high sedimentation core collected in the South Adriatic Sea (SAS). Core chronology is based on 10 AMS 14 C measures on planktonic foraminifera and tephra layers. Results reveal two contrasted paleohydrological periods that reflect (i) a marked lowering of δ 18 O w /salinity during the early to mid-Holocene (11.5 ka to 6.3 ka), including the two-step sapropel S1 deposition, followed during the mid- to upper Holocene by (ii) a prevailing period of increased salinity and enhanced arid conditions in the South Adriatic Basin. Superimposed on these trends, short-term centennial-scale hydrological events punctuated the Holocene period in the SAS. During the early to mid-Holocene, two main SST coolings together with prominent δ 18 O w /salinity lowering delineate the sapropel S1 interruption and the post-sapropel phase between 7.3 to 6.3 ka. After 6 ka, centennial-scale δ 18 O w and G. bulloides δ 13 C lowering, mostly centered between 3 to 0.6 ka, reflect short-term hydrological changes related to more intensive runoff of the Po and/or Apennine rivers. These short-term events, even of lesser amplitude compared to the early to mid-Holocene period, may have induced a lowering of sea surface density and consequently reduced and/or inhibited the formation of deep bottom waters in the SAS. Comparison of the emerging centennial- to millennial-scale hydrological record with previous climatic records from the central Mediterranean area and north of the Alps reveal possible synchronicities (within the radiocarbon-dating uncertainty) between phases of lower salinity in the SAS and periods of wetter climatic conditions around the north-central Adriatic Sea. Finally, wavelet analyses provide new clues about the potential origin of climate variability in the SAS, confirming the evidence for a mid-Holocene transition in the central Mediterranean climate and the dominance of a ~1670-yr periodicity after 6 ka, reflecting a plausible connection with the North Atlantic climate system.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2013-03-05
    Description: Variability of the ocean heat content during the last millennium – an assessment with the ECHO-g Model Climate of the Past, 9, 547-565, 2013 Author(s): P. Ortega, M. Montoya, F. González-Rouco, H. Beltrami, and D. Swingedouw Studies addressing climate variability during the last millennium generally focus on variables with a direct influence on climate variability, like the fast thermal response to varying radiative forcing, or the large-scale changes in atmospheric dynamics (e.g. North Atlantic Oscillation). The ocean responds to these variations by slowly integrating in depth the upper heat flux changes, thus producing a delayed influence on ocean heat content (OHC) that can later impact low frequency SST (sea surface temperature) variability through reemergence processes. In this study, both the externally and internally driven variations of the OHC during the last millennium are investigated using a set of fully coupled simulations with the ECHO-G (coupled climate model ECHAMA4 and ocean model HOPE-G) atmosphere–ocean general circulation model (AOGCM). When compared to observations for the last 55 yr, the model tends to overestimate the global trends and underestimate the decadal OHC variability. Extending the analysis back to the last one thousand years, the main impact of the radiative forcing is an OHC increase at high latitudes, explained to some extent by a reduction in cloud cover and the subsequent increase of short-wave radiation at the surface. This OHC response is dominated by the effect of volcanism in the preindustrial era, and by the fast increase of GHGs during the last 150 yr. Likewise, salient impacts from internal climate variability are observed at regional scales. For instance, upper temperature in the equatorial Pacific is controlled by ENSO (El Niño Southern Oscillation) variability from interannual to multidecadal timescales. Also, both the Pacific Decadal Oscillation (PDO) and the Atlantic Multidecadal Oscillation (AMO) modulate intermittently the interdecadal OHC variability in the North Pacific and Mid Atlantic, respectively. The NAO, through its influence on North Atlantic surface heat fluxes and convection, also plays an important role on the OHC at multiple timescales, leading first to a cooling in the Labrador and Irminger seas, and later on to a North Atlantic warming, associated with a delayed impact on the AMO.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2013-03-05
    Description: Modulation of Late Cretaceous and Cenozoic climate by variable drawdown of atmospheric p CO 2 from weathering of basaltic provinces on continents drifting through the equatorial humid belt Climate of the Past, 9, 525-546, 2013 Author(s): D. V. Kent and G. Muttoni The small reservoir of carbon dioxide in the atmosphere ( p CO 2 ) that modulates climate through the greenhouse effect reflects a delicate balance between large fluxes of sources and sinks. The major long-term source of CO 2 is global outgassing from sea-floor spreading, subduction, hotspot activity, and metamorphism; the ultimate sink is through weathering of continental silicates and deposition of carbonates. Most carbon cycle models are driven by changes in the source flux scaled to variable rates of ocean floor production, but ocean floor production may not be distinguishable from being steady since 180 Ma. We evaluate potential changes in sources and sinks of CO 2 for the past 120 Ma in a paleogeographic context. Our new calculations show that decarbonation of pelagic sediments by Tethyan subduction contributed only modestly to generally high p CO 2 levels from the Late Cretaceous until the early Eocene, and thus shutdown of this CO 2 source with the collision of India and Asia at the early Eocene climate optimum at around 50 Ma was inadequate to account for the large and prolonged decrease in p CO 2 that eventually allowed the growth of significant Antarctic ice sheets by around 34 Ma. Instead, variation in area of continental basalt terranes in the equatorial humid belt (5° S–5° N) seems to be a dominant factor controlling how much CO 2 is retained in the atmosphere via the silicate weathering feedback. The arrival of the highly weatherable Deccan Traps in the equatorial humid belt at around 50 Ma was decisive in initiating the long-term slide to lower atmospheric p CO 2 , which was pushed further down by the emplacement of the 30 Ma Ethiopian Traps near the equator and the southerly tectonic extrusion of SE Asia, an arc terrane that presently is estimated to account for 1/4 of CO 2 consumption from all basaltic provinces that account for ~1/3 of the total CO 2 consumption by continental silicate weathering (Dessert et al., 2003). A negative climate-feedback mechanism that (usually) inhibits the complete collapse of atmospheric p CO 2 is the accelerating formation of thick cation-deficient soils that retard chemical weathering of the underlying bedrock. Nevertheless, equatorial climate seems to be relatively insensitive to p CO 2 greenhouse forcing and thus with availability of some rejuvenating relief as in arc terranes or thick basaltic provinces, silicate weathering in this venue is not subject to a strong negative feedback, providing an avenue for ice ages. The safety valve that prevents excessive atmospheric p CO 2 levels is the triggering of silicate weathering of continental areas and basaltic provinces in the temperate humid belt. Excess organic carbon burial seems to have played a negligible role in atmospheric p CO 2 over the Late Cretaceous and Cenozoic.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2013-02-20
    Description: Palynological evidence for gradual vegetation and climate changes during the African Humid Period termination at 13°N from a Mega-Lake Chad sedimentary sequence Climate of the Past, 9, 223-241, 2013 Author(s): P. G. C. Amaral, A. Vincens, J. Guiot, G. Buchet, P. Deschamps, J.-C. Doumnang, and F. Sylvestre Located at the transition between the Saharan and Sahelian zones, at the center of one of the largest endorheic basins, Lake Chad is ideally located to record regional environmental changes that occurred in the past. However, until now, no Holocene archive was directly cored in this lake. In this paper, we present pollen data from the first sedimentary sequence collected in Lake Chad (13° N; 14° E; Sahel region). Dated between ca. 6700 and ca. 5000 cal yr BP, this record is continuous and encompasses part of the termination of the African Humid Period (AHP). Vegetation reconstructions are based on standard analyses of pollen diagrams and are strengthened by quantitative approaches. Potential biomes are reconstructed using the biomization method and mean annual precipitation ( P ann ) is estimated using the modern analogues technique. Results show that, between ca. 6700 and ca. 6050 cal yr BP, a vegetation close to humid woodland or humid savanna, including elements currently found further southward, thrived in the vicinity of the Mega-Lake Chad in place of the modern dry woodland, steppe and desert vegetation. At the same time, montane forest populations extended further southward on the Adamawa Plateau. The high abundance of lowland humid pollen taxa, particularly of Uapaca , is interpreted as the result of a northward migration of the corresponding plants during the AHP. This preferential zonal occurrence of these taxa in Lake Chad Basin (LCB) (rather than extrazonal) is driven by more humid local and regional climate conditions at this latitude, as shown by mean P ann estimated values of ca. 800 (−400/+700) mm during this period. However, we cannot rule out that an increase of the Chari–Logone inputs into the Mega-Lake Chad might have also contributed to control the abundance of these taxa. Changes in the structure and floristic composition of the vegetation towards more open and drier formations occurred after ca. 6050 cal yr BP, following a decrease in mean P ann estimates to approximately 600 (−230/+600) mm. But, the constant significant presence of lowland humid taxa until ca. 5000 cal yr BP, contemporaneous with a slight increase in steppic taxa, demonstrates that at this date, the modern vegetation was not yet established in the vicinity of Lake Chad. Our data indicate that between ca. 6700 and ca. 5000 cal yr BP vegetation and climate changes must have occurred progressively, but that century-scale climate variability was superimposed on this long-term mid-Holocene drying trend as observed around ca. 6300 cal yr BP, where pollen data indicate more humid conditions.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2013-02-20
    Description: What could have caused pre-industrial biomass burning emissions to exceed current rates? Climate of the Past, 9, 289-306, 2013 Author(s): G. R. van der Werf, W. Peters, T. T. van Leeuwen, and L. Giglio Recent studies based on trace gas mixing ratios in ice cores and charcoal data indicate that biomass burning emissions over the past millennium exceeded contemporary emissions by up to a factor of 4 for certain time periods. This is surprising because various sources of biomass burning are linked with population density, which has increased over the past centuries. We have analysed how emissions from several landscape biomass burning sources could have fluctuated to yield emissions that are in correspondence with recent results based on ice core mixing ratios of carbon monoxide (CO) and its isotopic signature measured at South Pole station (SPO). Based on estimates of contemporary landscape fire emissions and the TM5 chemical transport model driven by present-day atmospheric transport and OH concentrations, we found that CO mixing ratios at SPO are more sensitive to emissions from South America and Australia than from Africa, and are relatively insensitive to emissions from the Northern Hemisphere. We then explored how various landscape biomass burning sources may have varied over the past centuries and what the resulting emissions and corresponding CO mixing ratio at SPO would be, using population density variations to reconstruct sources driven by humans (e.g., fuelwood burning) and a new model to relate savanna emissions to changes in fire return times. We found that to match the observed ice core CO data, all savannas in the Southern Hemisphere had to burn annually, or bi-annually in combination with deforestation and slash and burn agriculture exceeding current levels, despite much lower population densities and lack of machinery to aid the deforestation process. While possible, these scenarios are unlikely and in conflict with current literature. However, we do show the large potential for increased emissions from savannas in a pre-industrial world. This is mainly because in the past, fuel beds were probably less fragmented compared to the current situation; satellite data indicates that the majority of savannas have not burned in the past 10 yr, even in Africa, which is considered "the burning continent". Although we have not considered increased charcoal burning or changes in OH concentrations as potential causes for the elevated CO concentrations found at SPO, it is unlikely they can explain the large increase found in the CO concentrations in ice core data. Confirmation of the CO ice core data would therefore call for radical new thinking about causes of variable global fire rates over recent centuries.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2013-02-20
    Description: High-temperature thermomagnetic properties of vivianite nodules, Lake El'gygytgyn, Northeast Russia Climate of the Past, 9, 433-446, 2013 Author(s): P. S. Minyuk, T. V. Subbotnikova, L. L. Brown, and K. J. Murdock Vivianite, a hydrated iron phosphate, is abundant in sediments of Lake El'gygytgyn, located in the Anadyr Mountains of central Chukotka, northeastern Russia (67°30′ N, 172°05′ E). Magnetic measurements, including mass-specific low-field AC magnetic susceptibility, field-dependent magnetic susceptibility, hysteresis parameters, temperature dependence of the induced magnetization, as well as susceptibility in different heating media, provide ample information on vivianite nodules. Electron microprobe analyses, electron microscopy and energy dispersive spectroscopy were used to identify diagnostic minerals. Vivianite nodules are abundant in both sediments of cold (anoxic) and warm (oxic) stages. Magnetic susceptibility of the nodules varies from 0.78 × 10 −6 m 3 kg −1 to 1.72 × 10 −6 m 3 kg −1 (average = 1.05 × 10 −6 m 3 kg −1 ) and is higher than the susceptibility of sediments from the cold intervals. Magnetic properties of vivianite are due to the respective product of oxidation as well as sediment and mineral inclusions. Three types of curves for high-temperature dependent susceptibility of vivianite indicate different degrees of oxidation and inclusions in the nodules. Vivianite acts as a reductant and reduces hematite to magnetite and masks the goethite–hematite transition during heating. Heating vivianite and sulfur mixtures stimulates the formation of monoclinic pyrrhotite. An additive of arsenic inhibits the formation of magnetite prior to its Curie temperature. Heating selective vivianite and pyrite mixtures leads to formation of several different minerals – magnetite, monoclinic pyrrhotite, and hexagonal pyrrhotite, and makes it difficult to interpret the thermomagnetic curves.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2013-02-20
    Description: Large-scale features of Pliocene climate: results from the Pliocene Model Intercomparison Project Climate of the Past, 9, 191-209, 2013 Author(s): A. M. Haywood, D. J. Hill, A. M. Dolan, B. L. Otto-Bliesner, F. Bragg, W.-L. Chan, M. A. Chandler, C. Contoux, H. J. Dowsett, A. Jost, Y. Kamae, G. Lohmann, D. J. Lunt, A. Abe-Ouchi, S. J. Pickering, G. Ramstein, N. A. Rosenbloom, U. Salzmann, L. Sohl, C. Stepanek, H. Ueda, Q. Yan, and Z. Zhang Climate and environments of the mid-Pliocene warm period (3.264 to 3.025 Ma) have been extensively studied. Whilst numerical models have shed light on the nature of climate at the time, uncertainties in their predictions have not been systematically examined. The Pliocene Model Intercomparison Project quantifies uncertainties in model outputs through a coordinated multi-model and multi-model/data intercomparison. Whilst commonalities in model outputs for the Pliocene are clearly evident, we show substantial variation in the sensitivity of models to the implementation of Pliocene boundary conditions. Models appear able to reproduce many regional changes in temperature reconstructed from geological proxies. However, data/model comparison highlights that models potentially underestimate polar amplification. To assert this conclusion with greater confidence, limitations in the time-averaged proxy data currently available must be addressed. Furthermore, sensitivity tests exploring the known unknowns in modelling Pliocene climate specifically relevant to the high latitudes are essential (e.g. palaeogeography, gateways, orbital forcing and trace gasses). Estimates of longer-term sensitivity to CO 2 (also known as Earth System Sensitivity; ESS), support previous work suggesting that ESS is greater than Climate Sensitivity (CS), and suggest that the ratio of ESS to CS is between 1 and 2, with a "best" estimate of 1.5.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2013-02-20
    Description: Response of methane emissions from wetlands to the Last Glacial Maximum and an idealized Dansgaard–Oeschger climate event: insights from two models of different complexity Climate of the Past, 9, 149-171, 2013 Author(s): B. Ringeval, P. O. Hopcroft, P. J. Valdes, P. Ciais, G. Ramstein, A. J. Dolman, and M. Kageyama The role of different sources and sinks of CH 4 in changes in atmospheric methane ([CH 4 ]) concentration during the last 100 000 yr is still not fully understood. In particular, the magnitude of the change in wetland CH 4 emissions at the Last Glacial Maximum (LGM) relative to the pre-industrial period (PI), as well as during abrupt climatic warming or Dansgaard–Oeschger (D–O) events of the last glacial period, is largely unconstrained. In the present study, we aim to understand the uncertainties related to the parameterization of the wetland CH 4 emission models relevant to these time periods by using two wetland models of different complexity (SDGVM and ORCHIDEE). These models have been forced by identical climate fields from low-resolution coupled atmosphere–ocean general circulation model (FAMOUS) simulations of these time periods. Both emission models simulate a large decrease in emissions during LGM in comparison to PI consistent with ice core observations and previous modelling studies. The global reduction is much larger in ORCHIDEE than in SDGVM (respectively −67 and −46%), and whilst the differences can be partially explained by different model sensitivities to temperature, the major reason for spatial differences between the models is the inclusion of freezing of soil water in ORCHIDEE and the resultant impact on methanogenesis substrate availability in boreal regions. Besides, a sensitivity test performed with ORCHIDEE in which the methanogenesis substrate sensitivity to the precipitations is modified to be more realistic gives a LGM reduction of −36%. The range of the global LGM decrease is still prone to uncertainty, and here we underline its sensitivity to different process parameterizations. Over the course of an idealized D–O warming, the magnitude of the change in wetland CH 4 emissions simulated by the two models at global scale is very similar at around 15 Tg yr −1 , but this is only around 25% of the ice-core measured changes in [CH 4 ]. The two models do show regional differences in emission sensitivity to climate with much larger magnitudes of northern and southern tropical anomalies in ORCHIDEE. However, the simulated northern and southern tropical anomalies partially compensate each other in both models limiting the net flux change. Future work may need to consider the inclusion of more detailed wetland processes (e.g. linked to permafrost or tropical floodplains), other non-wetland CH 4 sources or different patterns of D–O climate change in order to be able to reconcile emission estimates with the ice-core data for rapid CH 4 events.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2013-02-20
    Description: Tephrostratigraphic studies on a sediment core from Lake Prespa in the Balkans Climate of the Past, 9, 267-287, 2013 Author(s): M. Damaschke, R. Sulpizio, G. Zanchetta, B. Wagner, A. Böhm, N. Nowaczyk, J. Rethemeyer, and A. Hilgers A detailed tephrostratigraphic record, which dates back to Marine Isotope Stage (MIS) 5b (ca. 91 kyr), has been established from a 17.76 m long core (Co1215) from Lake Prespa (Macedonia, Albania and Greece). A total of eleven tephra and cryptotephra layers (PT0915-1 to PT0915-11) were identified, using XRF scanning, magnetic susceptibility measurements, and macro- and microscopic inspection of the sediments. The major element composition of glass shards and/or micro-pumice fragments indicates that the tephras and cryptotephras originate from the explosive volcanism of Italy. Eight tephra and cryptotephra layers were correlated with specific volcanic eruptions: the AD 512 eruption of Somma-Vesuvius (1438 cal yr BP), the Mercato eruption of Somma-Vesuvius (8890 ± 90 cal yr BP), the Tufi Biancastri/LN1-LN2 eruption of the Campi Flegrei (14 749 ± 523 cal yr BP and 15 551 ± 621 cal yr BP), the SMP1-e/Y-3 eruption of the Campi Flegrei (30 000–31 000 cal yr BP), the Campanian Ignimbrite/Y-5 eruption of the Campi Flegrei (39 280 ± 110 cal yr BP), the SMP1-a event of Ischia Island (around 44 000 cal yr BP) and the Green Tuff/Y-6 eruption of Pantelleria Island (around 45 000 cal yr BP). One tephra could be attributed to the volcanic activity of Mount Etna, but probably represents an unknown eruption at ca. 60 000 cal yr BP. Cryptotephras PT0915-6 and PT0915-10 remain unclassified so far, but according to the presented age-depth model these would have been deposited around 35 000 and 48 500 cal yr BP, respectively. Some of the tephras and cryptotephras are recognised for the first time in the Balkan region. The tephrostratigraphic work provides important information about ash dispersal and explosion patterns of source volcanoes and can be used to correlate and date geographically distant paleoenvironmental and archaeological archives in the central Mediterranean region. Moreover, the tephrostratigraphic work in combination with radiocarbon and electron spin resonance (ESR) dating is a precondition for paleoclimatic reconstructions inferred from the sediment succession Co1215.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2013-02-20
    Description: Tree-ring–based summer mean temperature variations in the Adamello–Presanella Group (Italian Central Alps), 1610–2008 AD Climate of the Past, 9, 211-221, 2013 Author(s): A. Coppola, G. Leonelli, M. C. Salvatore, M. Pelfini, and C. Baroni Climate records from remote mountain sites and for century-long periods are usually lacking for most continents and also for the European Alps. However, detailed reconstructions of climate parameters for pre-instrumental periods in mountain areas, suffering of glacial retreat caused by recent global warming, are needed in the view of a better comprehension of the environmental dynamics. We present here the first annually-resolved reconstruction of summer (JJA) mean temperature for the Adamello–Presanella Group (Central European Alps), one of the most glaciated mountain groups of the Italian Central Alps. The reconstruction has been based on four larch tree-ring width chronologies derived from living trees sampled in four valleys surrounding the Group. The reconstruction spans from 1610 to 2008 and the statistical verification of the reconstruction demonstrates the positive skill of the tree-ring dataset in tracking summer temperature variability also in the recent period.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2013-02-20
    Description: A new global reconstruction of temperature changes at the Last Glacial Maximum Climate of the Past, 9, 367-376, 2013 Author(s): J. D. Annan and J. C. Hargreaves Some recent compilations of proxy data both on land and ocean (MARGO Project Members, 2009; Bartlein et al., 2011; Shakun et al., 2012), have provided a new opportunity for an improved assessment of the overall climatic state of the Last Glacial Maximum. In this paper, we combine these proxy data with the ensemble of structurally diverse state of the art climate models which participated in the PMIP2 project (Braconnot et al., 2007) to generate a spatially complete reconstruction of surface air (and sea surface) temperatures. We test a variety of approaches, and show that multiple linear regression performs well for this application. Our reconstruction is significantly different to and more accurate than previous approaches and we obtain an estimated global mean cooling of 4.0 ± 0.8 °C (95% CI).
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2013-02-20
    Description: Reconstruction of drip-water δ 18 O based on calcite oxygen and clumped isotopes of speleothems from Bunker Cave (Germany) Climate of the Past, 9, 377-391, 2013 Author(s): T. Kluge, H. P. Affek, T. Marx, W. Aeschbach-Hertig, D. F. C. Riechelmann, D. Scholz, S. Riechelmann, A. Immenhauser, D. K. Richter, J. Fohlmeister, A. Wackerbarth, A. Mangini, and C. Spötl The geochemical signature of many speleothems used for reconstruction of past continental climates is affected by kinetic isotope fractionation. This limits quantitative paleoclimate reconstruction and, in cases where the kinetic fractionation varies with time, also affects relative paleoclimate interpretations. In carbonate archive research, clumped isotope thermometry is typically used as proxy for absolute temperatures. In the case of speleothems, however, clumped isotopes provide a sensitive indicator for disequilibrium effects. The extent of kinetic fractionation co-varies in Δ 47 and δ 18 O so that it can be used to account for disequilibrium in δ 18 O and to extract the past drip-water composition. Here we apply this approach to stalagmites from Bunker Cave (Germany) and calculate drip-water δ 18 O w values for the Eemian, MIS3, and the Holocene, relying on independent temperature estimates and accounting for disequilibrium. Applying the co-variation method to modern calcite precipitates yields drip-water δ 18 O w values in agreement with modern cave drip-water δ 18 O w of −7.9 ± 0.3‰, despite large and variable disequilibrium effects in both calcite δ 18 O c and Δ 47 . Reconstructed paleo-drip-water δ 18 O w values are lower during colder periods (e.g., MIS3: −8.6 ± 0.4‰ and the early Holocene at 11 ka: −9.7 ± 0.2‰) and show higher values during warmer climatic periods (e.g., the Eemian: −7.6 ± 0.2‰ and the Holocene Climatic Optimum: −7.2 ± 0.3‰). This new approach offers a unique possibility for quantitative climate reconstruction including the assessment of past hydrological conditions while accounting for disequilibrium effects.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2013-02-20
    Description: Proxy benchmarks for intercomparison of 8.2 ka simulations Climate of the Past, 9, 423-432, 2013 Author(s): C. Morrill, D. M. Anderson, B. A. Bauer, R. Buckner, E. P. Gille, W. S. Gross, M. Hartman, and A. Shah The Paleoclimate Modelling Intercomparison Project (PMIP3) now includes the 8.2 ka event as a test of model sensitivity to North Atlantic freshwater forcing. To provide benchmarks for intercomparison, we compiled and analyzed high-resolution records spanning this event. Two previously-described anomaly patterns that emerge are cooling around the North Atlantic and drier conditions in the Northern Hemisphere tropics. Newer to this compilation are more robustly-defined wetter conditions in the Southern Hemisphere tropics and regionally-limited warming in the Southern Hemisphere. Most anomalies around the globe lasted on the order of 100 to 150 yr. More quantitative reconstructions are now available and indicate cooling of ~ 1 °C and a ~ 20% decrease in precipitation in parts of Europe as well as spatial gradients in δ 18 O from the high to low latitudes. Unresolved questions remain about the seasonality of the climate response to freshwater forcing and the extent to which the bipolar seesaw operated in the early Holocene.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2013-02-20
    Description: Large-scale temperature response to external forcing in simulations and reconstructions of the last millennium Climate of the Past, 9, 393-421, 2013 Author(s): L. Fernández-Donado, J. F. González-Rouco, C. C. Raible, C. M. Ammann, D. Barriopedro, E. García-Bustamante, J. H. Jungclaus, S. J. Lorenz, J. Luterbacher, S. J. Phipps, J. Servonnat, D. Swingedouw, S. F. B. Tett, S. Wagner, P. Yiou, and E. Zorita Understanding natural climate variability and its driving factors is crucial to assessing future climate change. Therefore, comparing proxy-based climate reconstructions with forcing factors as well as comparing these with paleoclimate model simulations is key to gaining insights into the relative roles of internal versus forced variability. A review of the state of modelling of the climate of the last millennium prior to the CMIP5–PMIP3 (Coupled Model Intercomparison Project Phase 5–Paleoclimate Modelling Intercomparison Project Phase 3) coordinated effort is presented and compared to the available temperature reconstructions. Simulations and reconstructions broadly agree on reproducing the major temperature changes and suggest an overall linear response to external forcing on multidecadal or longer timescales. Internal variability is found to have an important influence at hemispheric and global scales. The spatial distribution of simulated temperature changes during the transition from the Medieval Climate Anomaly to the Little Ice Age disagrees with that found in the reconstructions. Thus, either internal variability is a possible major player in shaping temperature changes through the millennium or the model simulations have problems realistically representing the response pattern to external forcing. A last millennium transient climate response (LMTCR) is defined to provide a quantitative framework for analysing the consistency between simulated and reconstructed climate. Beyond an overall agreement between simulated and reconstructed LMTCR ranges, this analysis is able to single out specific discrepancies between some reconstructions and the ensemble of simulations. The disagreement is found in the cases where the reconstructions show reduced covariability with external forcings or when they present high rates of temperature change.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2013-02-20
    Description: Greenland ice sheet contribution to sea level rise during the last interglacial period: a modelling study driven and constrained by ice core data Climate of the Past, 9, 353-366, 2013 Author(s): A. Quiquet, C. Ritz, H. J. Punge, and D. Salas y Mélia As pointed out by the forth assessment report of the Intergovernmental Panel on Climate Change, IPCC-AR4 (Meehl et al., 2007), the contribution of the two major ice sheets, Antarctica and Greenland, to global sea level rise, is a subject of key importance for the scientific community. By the end of the next century, a 3–5 °C warming is expected in Greenland. Similar temperatures in this region were reached during the last interglacial (LIG) period, 130–115 ka BP, due to a change in orbital configuration rather than to an anthropogenic forcing. Ice core evidence suggests that the Greenland ice sheet (GIS) survived this warm period, but great uncertainties remain about the total Greenland ice reduction during the LIG. Here we perform long-term simulations of the GIS using an improved ice sheet model. Both the methodologies chosen to reconstruct palaeoclimate and to calibrate the model are strongly based on proxy data. We suggest a relatively low contribution to LIG sea level rise from Greenland melting, ranging from 0.7 to 1.5 m of sea level equivalent, contrasting with previous studies. Our results suggest an important contribution of the Antarctic ice sheet to the LIG highstand.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2013-02-20
    Description: Dansgaard–Oeschger events: bifurcation points in the climate system Climate of the Past, 9, 323-333, 2013 Author(s): A. A. Cimatoribus, S. S. Drijfhout, V. Livina, and G. van der Schrier Dansgaard–Oeschger events are a prominent mode of variability in the records of the last glacial cycle. Various prototype models have been proposed to explain these rapid climate fluctuations, and no agreement has emerged on which may be the more correct for describing the palaeoclimatic signal. In this work, we assess the bimodality of the system, reconstructing the topology of the multi-dimensional attractor over which the climate system evolves. We use high-resolution ice core isotope data to investigate the statistical properties of the climate fluctuations in the period before the onset of the abrupt change. We show that Dansgaard–Oeschger events have weak early warning signals if the ensemble of events is considered. We find that the statistics are consistent with the switches between two different climate equilibrium states in response to a changing external forcing (e.g. solar, ice sheets), either forcing directly the transition or pacing it through stochastic resonance. These findings are most consistent with a model that associates Dansgaard–Oeschger with changing boundary conditions, and with the presence of a bifurcation point.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2013-02-20
    Description: Reconstruction of northeast Asia spring temperature 1784–1990 Climate of the Past, 9, 261-266, 2013 Author(s): M. Ohyama, H. Yonenobu, J.-N. Choi, W.-K. Park, M. Hanzawa, and M. Suzuki We describe a first attempt of wide-area dendroclimatic reconstruction, based upon seven spring temperature-sensitive chronologies from the ring widths of living trees, in Japan and Korea. Mean March–May temperature derived from a gridded land air temperature dataset (CRUTEM4) between 35–40° N and 125–140° E was reconstructed for the period of AD 1784–1990. Of the seven, two Japanese chronologies were eliminated during the calibration trials. The reconstruction accounted for 19.4% of the temperature variance in the calibration period, and is considered to be skillful for estimating interannual-to-interdecadal variations and not for long-term change. This reconstruction showed remarkably similar fluctuations to regional dendroclimatic reconstructions in Japan and Korea, indicating the past spatial coherency of spring temperatures in the region. The reconstruction was validated against other climate proxies. A fairly good agreement was found with cold periods as estimated from documentary records in southeast China and Japan. The west Japan temperature series recovered from instrumental records also showed a reasonable agreement with the reconstruction. On the other hand, the reconstruction did not show clear abrupt depressions after the Laki and the Tambora eruptions. These comparisons revealed that dendroclimatic spatial reconstruction in this area offers a good potential for reconstructing long-term and large-scale past temperature patterns for northeast Asia.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2013-02-20
    Description: The Medieval Climate Anomaly and the Little Ice Age in the eastern Ecuadorian Andes Climate of the Past, 9, 307-321, 2013 Author(s): M.-P. Ledru, V. Jomelli, P. Samaniego, M. Vuille, S. Hidalgo, M. Herrera, and C. Ceron To better characterize the climate variability of the last millennium in the high Andes, we analyzed the pollen content of a 1150-yr-old sediment core collected in a bog located at 3800 m a.s.l. in the páramo in the eastern Cordillera in Ecuador. An upslope convective index based on the ratio between cloud transported pollen from the Andean forest to the bog (T) and Poaceae pollen frequencies, related to the edaphic moisture of the páramo (P), was defined. This index was used to distinguish changes in the atmospheric moisture from the soil moisture content of the páramo and their associated patterns of interdecadal El Niño–Southern Oscillation (ENSO) variability and South American summer monsoon (SASM) activity. Results show that between 850 and 1250 AD, the Medieval Climate Anomaly interval was warm and moist with a high transported pollen/Poaceae pollen (T/P) index linked to high ENSO variability and weak SASM activity. Between 1250 and 1550 AD, a dry climate prevailed, characterized by an abrupt decrease in the T/P index and therefore no upslope cloud convection, related to lower ENSO variability and with significant impact on the floristic composition of the páramo. During the Little Ice Age, two phases were observed: first, a wet phase between 1550 and 1750 AD linked to low ENSO variability in the Pacific and warm south equatorial Atlantic sea surface temperatures (SSTs) favored the return of a wet páramo, and then a cold and dry phase between 1750 and 1800 AD associated with low ENSO variability and weak SASM activity resulted in drying of the páramo. The current warm period marks the beginning of a climate characterized by high convective activity – the highest in the last millennium – and weaker SASM activity modifying the water storage of the páramo. Our results show that the páramo is progressively losing its capacity for water storage and that the interdecadal variability of both tropical Pacific and Atlantic SSTs matter for Andean climate patterns, although many teleconnection mechanisms are still poorly understood.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2013-02-20
    Description: Modern isotope hydrology and controls on δD of plant leaf waxes at Lake El'gygytgyn, NE Russia Climate of the Past, 9, 335-352, 2013 Author(s): K. M. K. Wilkie, B. Chapligin, H. Meyer, S. Burns, S. Petsch, and J. Brigham-Grette Stable isotope data from lipid biomarkers and diatom silica recovered from lake sediment cores hold great promise for paleoclimate and paleohydrological reconstructions. However, these records rely on accurate calibration with modern precipitation and hydrologic processes and only limited data exist on the controls on the δD values for n -alkanoic acids from plant leaf waxes. Here we investigate the stable isotopic composition of modern precipitation, streams, lake water and ice cover, and use these data to constrain isotope systematics of the Lake El'gygytgyn Basin hydrology. Compound-specific hydrogen isotope ratios determined from n -alkanoic acids from modern vegetation are compared with modern precipitation and lake core top sediments. Multi-species net (apparent) fractionation values between source water (precipitation) and modern vegetation (e.g., ϵ wax/precip mean value is −107 ± 12‰) agree with previous results and suggest a consistent offset between source waters and the δD values of alkanoic acids. We conclude that although there may be some bias towards a winter precipitation signal, overall δD values from leaf wax n -alkanoic acids record annual average precipitation within the El'gygytgyn Basin. A net fractionation calculated for 200-yr-integrated lake sediments yields ϵ 30/precip = −96 ± 8‰ and can provide robust net "apparent" fractionation to be used in future paleohydrological reconstructions.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    facet.materialart.
    Unknown
    Copernicus
    Publication Date: 2013-02-20
    Description: Does Antarctic glaciation cool the world? Climate of the Past, 9, 173-189, 2013 Author(s): A. Goldner, M. Huber, and R. Caballero In this study, we compare the simulated climatic impact of adding an Antarctic ice sheet (AIS) to the "greenhouse world" of the Eocene and removing the AIS from the modern world. The modern global mean surface temperature anomaly (Δ T ) induced by Antarctic Glaciation depends on the background CO 2 levels and ranges from −1.22 to −0.18 K. The Eocene Δ T is nearly constant at ~−0.25 K. We calculate an climate sensitivity parameter S [Antarctica] which we define as Δ T divided by the change in effective radiative forcing (Δ Q Antarctica ) which includes some fast feedbacks imposed by prescribing the glacial properties of Antarctica. The main difference between the modern and Eocene responses is that a negative cloud feedback warms much of the Earth's surface as a large AIS is introduced in the Eocene, whereas this cloud feedback is weakly positive and acts in combination with positive sea-ice feedbacks to enhance cooling introduced by adding an ice sheet in the modern. Because of the importance of cloud feedbacks in determining the final temperature sensitivity of the AIS, our results are likely to be model dependent. Nevertheless, these model results suggest that the effective radiative forcing and feedbacks induced by the AIS did not significantly decrease global mean surface temperature across the Eocene–Oligocene transition (EOT −34.1 to 33.6 Ma) and that other factors like declining atmospheric CO 2 are more important for cooling across the EOT. The results illustrate that the efficacy of AIS forcing in the Eocene is not necessarily close to one and is likely to be model and state dependent. This implies that using EOT paleoclimate proxy data by itself to estimate climate sensitivity for future climate prediction requires climate models and consequently these estimates will have large uncertainty, largely due to uncertainties in modelling low clouds.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2013-02-20
    Description: Modern sedimentation patterns in Lake El'gygytgyn, NE Russia, derived from surface sediment and inlet streams samples Climate of the Past, 9, 135-148, 2013 Author(s): V. Wennrich, A. Francke, A. Dehnert, O. Juschus, T. Leipe, C. Vogt, J. Brigham-Grette, P. S. Minyuk, M. Melles, and El'gygytgyn Science Party Lake El'gygytgyn/NE Russia holds a continuous 3.58 Ma sediment record, which is regarded as the most long-lasting climate archive of the terrestrial Arctic. Based on multi-proxy geochemical, mineralogical, and granulometric analyses of surface sediment, inlet stream and bedrock samples, supplemented by statistical methods, major processes influencing the modern sedimentation in the lake were investigated. Grain-size parameters and chemical elements linked to the input of feldspars from acidic bedrock indicate a wind-induced two-cell current system as major driver of sediment transport and accumulation processes in Lake El'gygytgyn. The distribution of mafic rock related elements in the sediment on the lake floor can be traced back to the input of weathering products of basaltic rocks in the catchment. Obvious similarities in the spatial variability of manganese and heavy metals indicate sorption or co-precipitation of these elements with Fe and Mn hydroxides and oxides. But the similar distribution of organic matter and clay contents might also point to a fixation to organic components and clay minerals. An enrichment of mercury in the inlet streams might be indicative of neotectonic activity around the lake. The results of this study add to the fundamental knowledge of the modern lake processes of Lake El'gygytgyn and its lake-catchment interactions, and thus, yield crucial insights for the interpretation of paleo-data from this unique archive.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2013-02-20
    Description: Past climate changes and permafrost depth at the Lake El'gygytgyn site: implications from data and thermal modeling Climate of the Past, 9, 119-133, 2013 Author(s): D. Mottaghy, G. Schwamborn, and V. Rath This study focuses on the temperature field observed in boreholes drilled as part of interdisciplinary scientific campaign targeting the El'gygytgyn Crater Lake in NE Russia. Temperature data are available from two sites: the lake borehole 5011-1 located near the center of the lake reaching 400 m depth, and the land borehole 5011-3 at the rim of the lake, with a depth of 140 m. Constraints on permafrost depth and past climate changes are derived from numerical simulation of the thermal regime associated with the lake-related talik structure. The thermal properties of the subsurface needed for these simulations are based on laboratory measurements of representative cores from the quaternary sediments and the underlying impact-affected rock, complemented by further information from geophysical logs and data from published literature. The temperature observations in the lake borehole 5011-1 are dominated by thermal perturbations related to the drilling process, and thus only give reliable values for the lowermost value in the borehole. Undisturbed temperature data recorded over more than two years are available in the 140 m deep land-based borehole 5011-3. The analysis of these observations allows determination of not only the recent mean annual ground surface temperature, but also the ground surface temperature history, though with large uncertainties. Although the depth of this borehole is by far too insufficient for a complete reconstruction of past temperatures back to the Last Glacial Maximum, it still affects the thermal regime, and thus permafrost depth. This effect is constrained by numerical modeling: assuming that the lake borehole observations are hardly influenced by the past changes in surface air temperature, an estimate of steady-state conditions is possible, leading to a meaningful value of 14 ± 5 K for the post-glacial warming. The strong curvature of the temperature data in shallower depths around 60 m can be explained by a comparatively large amplitude of the Little Ice Age (up to 4 K), with low temperatures prevailing far into the 20th century. Other mechanisms, like varying porosity, may also have an influence on the temperature profile, however, our modeling studies imply a major contribution from recent climate changes.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2013-02-20
    Description: A biomarker record of Lake El'gygytgyn, Far East Russian Arctic: investigating sources of organic matter and carbon cycling during marine isotope stages 1–3 Climate of the Past, 9, 243-260, 2013 Author(s): A. R. Holland, S. T. Petsch, I. S. Castañeda, K. M. Wilkie, S. J. Burns, and J. Brigham-Grette Arctic paleoenvironmental archives serve as sensitive recorders of past climate change. Lake El'gygytgyn (Far East Russian Arctic) is a high-latitude crater impact lake that contains a continuous sediment record influenced by neither glaciation nor glacial erosion since the time of impact 3.58 Ma ago. Prior research on sediments collected from Lake El'gygytgyn suggest times of permanent ice cover and anoxia corresponding to global glacial intervals, during which the sediments are laminated and are characterized by the co-occurrence of high total organic carbon, microscopic magnetite grains that show etching and dissolution, and negative excursions in bulk sediment organic matter carbon isotope (δ 13 C) values. Here we investigate the abundance and carbon isotopic composition of lipid biomarkers recovered from Lake El'gygytgyn sediments spanning marine isotope stages 1–3 to identify key sources of organic matter (OM) to lake sediments, to establish which OM sources drive the negative δ 13 C excursion exhibited by bulk sediment OM, and to explore if there are molecular and isotopic signatures of anoxia in the lake during glaciation. We find that during marine isotope stages 1–3, direct evidence for water column anoxia is lacking. A ~4‰ negative excursion in bulk sediment δ 13 C values during the Local Last Glacial Maximum (LLGM) is accompanied by more protracted, higher magnitude negative excursions in n -alkanoic acid and n -alkanol δ 13 C values that begin 20 kyr in advance of the LLGM. In contrast, n -alkanes and the C 30 n -alkanoic acid do not exhibit a negative δ 13 C excursion at this time. Our results indicate that the C 24 , C 26 and C 28 n -alkanoic acids do not derive entirely from terrestrial OM sources, while the C 30 n -alkanoic acid at Lake El'gygytgyn is a robust indicator of terrestrial OM contributions. Overall, our results strongly support the presence of a nutrient-poor water column, which is mostly isolated from atmospheric carbon dioxide during glaciation at Lake El'gygytgyn.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2013-12-06
    Description: A first chronology for the North Greenland Eemian Ice Drilling (NEEM) ice core Climate of the Past, 9, 2713-2730, 2013 Author(s): S. O. Rasmussen, P. M. Abbott, T. Blunier, A. J. Bourne, E. Brook, S. L. Buchardt, C. Buizert, J. Chappellaz, H. B. Clausen, E. Cook, D. Dahl-Jensen, S. M. Davies, M. Guillevic, S. Kipfstuhl, T. Laepple, I. K. Seierstad, J. P. Severinghaus, J. P. Steffensen, C. Stowasser, A. Svensson, P. Vallelonga, B. M. Vinther, F. Wilhelms, and M. Winstrup A stratigraphy-based chronology for the North Greenland Eemian Ice Drilling (NEEM) ice core has been derived by transferring the annual layer counted Greenland Ice Core Chronology 2005 (GICC05) and its model extension (GICC05modelext) from the NGRIP core to the NEEM core using 787 match points of mainly volcanic origin identified in the electrical conductivity measurement (ECM) and dielectrical profiling (DEP) records. Tephra horizons found in both the NEEM and NGRIP ice cores are used to test the matching based on ECM and DEP and provide five additional horizons used for the timescale transfer. A thinning function reflecting the accumulated strain along the core has been determined using a Dansgaard–Johnsen flow model and an isotope-dependent accumulation rate parameterization. Flow parameters are determined from Monte Carlo analysis constrained by the observed depth-age horizons. In order to construct a chronology for the gas phase, the ice age–gas age difference (Δage) has been reconstructed using a coupled firn densification-heat diffusion model. Temperature and accumulation inputs to the Δage model, initially derived from the water isotope proxies, have been adjusted to optimize the fit to timing constraints from δ 15 N of nitrogen and high-resolution methane data during the abrupt onset of Greenland interstadials. The ice and gas chronologies and the corresponding thinning function represent the first chronology for the NEEM core, named GICC05modelext-NEEM-1. Based on both the flow and firn modelling results, the accumulation history for the NEEM site has been reconstructed. Together, the timescale and accumulation reconstruction provide the necessary basis for further analysis of the records from NEEM.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2013-12-14
    Description: The East Asian winter monsoon variability in response to precession during the past 150 000 yr Climate of the Past, 9, 2777-2788, 2013 Author(s): M. Yamamoto, H. Sai, M.-T. Chen, and M. Zhao The response of the East Asian winter monsoon variability to orbital forcing is still unclear, and hypotheses are controversial. We present a 150 000 yr record of sea surface temperature difference (ΔSST) between the South China Sea and other Western Pacific Warm Pool regions as a proxy for the intensity of the Asian winter monsoon, because the winter cooling of the South China Sea is caused by the cooling of surface water at the northern margin and the southward advection of cooled water due to winter monsoon winds. The ΔSST showed dominant precession cycles during the past 150 000 yr. The ΔSST varies at precessional band and supports the hypothesis that monsoon is regulated by insolation changes at low-latitudes (Kutzbach, 1981), but contradicts previous suggestions based on marine and loess records that eccentricity controls variability on glacial–interglacial timescales. Maximum winter monsoon intensity corresponds to the May perihelion at precessional band, which is not fully consistent with the Kutzbach model of maximum winter monsoon at the June perihelion. Variation in the East Asian winter monsoon was anti-phased with the Indian summer monsoon, suggesting a linkage of dynamics between these two monsoon systems on an orbital timescale.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2013-10-11
    Description: Mid- and late Holocene dust deposition in western Europe: the Misten peat bog (Hautes Fagnes – Belgium) Climate of the Past, 9, 2285-2298, 2013 Author(s): M. Allan, G. Le Roux, N. Piotrowska, J. Beghin, E. Javaux, M. Court-Picon, N. Mattielli, S. Verheyden, and N. Fagel Dust deposition in southern Belgium is estimated from the geochemical signature of an ombrotrophic peatland. The rare earth elements (REE) and lithogenic elements concentrations, as well as Nd isotopes, were determined by HR-ICP-MS and MC-ICP-MS, respectively, along an ~6 m peat section covering 5300 yr, from 2000 to 7300 cal BP, dated by the 14 C method. Changes in REE concentration in the peat correlate with those of Ti, Al, Sc and Zr that are lithogenic conservative elements, suggesting that REE are immobile in the studied peat bogs and can be used as tracers of dust deposition. Peat humification and testate amoebae were used to evaluate hydroclimatic conditions. The range of dust deposition varied from 0.03 to 4.0 g m −2 yr −1 . The highest dust fluxes were observed from 2750 to 2550 cal BP and from 5150 to 4750 cal BP, and correspond to cold periods. The ϵNd values show a large variability from −13 to −5, identifying three major sources of dusts: local soils, distal volcanic and desert particles.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2013-10-11
    Description: Inferred changes in El Niño–Southern Oscillation variance over the past six centuries Climate of the Past, 9, 2269-2284, 2013 Author(s): S. McGregor, A. Timmermann, M. H. England, O. Elison Timm, and A. T. Wittenberg It is vital to understand how the El Niño–Southern Oscillation (ENSO) has responded to past changes in natural and anthropogenic forcings, in order to better understand and predict its response to future greenhouse warming. To date, however, the instrumental record is too brief to fully characterize natural ENSO variability, while large discrepancies exist amongst paleo-proxy reconstructions of ENSO. These paleo-proxy reconstructions have typically attempted to reconstruct ENSO's temporal evolution, rather than the variance of these temporal changes. Here a new approach is developed that synthesizes the variance changes from various proxy data sets to provide a unified and updated estimate of past ENSO variance. The method is tested using surrogate data from two coupled general circulation model (CGCM) simulations. It is shown that in the presence of dating uncertainties, synthesizing variance information provides a more robust estimate of ENSO variance than synthesizing the raw data and then identifying its running variance. We also examine whether good temporal correspondence between proxy data and instrumental ENSO records implies a good representation of ENSO variance. In the climate modeling framework we show that a significant improvement in reconstructing ENSO variance changes is found when combining information from diverse ENSO-teleconnected source regions, rather than by relying on a single well-correlated location. This suggests that ENSO variance estimates derived from a single site should be viewed with caution. Finally, synthesizing existing ENSO reconstructions to arrive at a better estimate of past ENSO variance changes, we find robust evidence that the ENSO variance for any 30 yr period during the interval 1590–1880 was considerably lower than that observed during 1979–2009.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2013-10-16
    Description: Causes of Greenland temperature variability over the past 4000 yr: implications for northern hemispheric temperature changes Climate of the Past, 9, 2299-2317, 2013 Author(s): T. Kobashi, K. Goto-Azuma, J. E. Box, C.-C. Gao, and T. Nakaegawa Precise understanding of Greenland temperature variability is important in two ways. First, Greenland ice sheet melting associated with rising temperature is a major global sea level forcing, potentially affecting large populations in coming centuries. Second, Greenland temperatures are highly affected by North Atlantic Oscillation/Arctic Oscillation (NAO/AO) and Atlantic multidecadal oscillation (AMO). In our earlier study, we found that Greenland temperature deviated negatively (positively) from northern hemispheric (NH) temperature trend during stronger (weaker) solar activity owing to changes in atmospheric/oceanic changes (e.g. NAO/AO) over the past 800 yr (Kobashi et al., 2013). Therefore, a precise Greenland temperature record can provide important constraints on the past atmospheric/oceanic circulation in the region and beyond. Here, we investigated Greenland temperature variability over the past 4000 yr reconstructed from argon and nitrogen isotopes from trapped air in a GISP2 ice core, using a one-dimensional energy balance model with orbital, solar, volcanic, greenhouse gas, and aerosol forcings. The modelled northern Northern Hemisphere (NH) temperature exhibits a cooling trend over the past 4000 yr as observed for the reconstructed Greenland temperature through decreasing annual average insolation. With consideration of the negative influence of solar variability, the modelled and observed Greenland temperatures agree with correlation coefficients of r = 0.34–0.36 ( p = 0.1–0.04) in 21 yr running means (RMs) and r = 0.38–0.45 ( p = 0.1–0.05) on a centennial timescale (101 yr RMs). Thus, the model can explain 14 to 20% of variance of the observed Greenland temperature in multidecadal to centennial timescales with a 90–96% confidence interval, suggesting that a weak but persistent negative solar influence on Greenland temperature continued over the past 4000 yr. Then, we estimated the distribution of multidecadal NH and northern high-latitude temperatures over the past 4000 yr constrained by the climate model and Greenland temperatures. Estimated northern NH temperature and NH average temperature from the model and the Greenland temperature agree with published multi-proxy temperature records with r = 0.35–0.60 in a 92–99% confidence interval over the past 2000 yr. We found that greenhouse gases played two important roles over the past 4000 yr for the rapid warming during the 20th century and slightly cooler temperature during the early period of the past 4000 yr. Lastly, our analysis indicated that the current average temperature (1990–2010) or higher temperatures occurred at a frequency of 1.3 times per 1000 yr for northern high latitudes and 0.36 times per 4000 yr for NH temperatures, respectively, indicating that the current multidecadal NH temperature (1990–2010) is more likely unprecedented than not ( p = 0.36) for the past 4000 yr.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2013-10-16
    Description: Different ocean states and transient characteristics in Last Glacial Maximum simulations and implications for deglaciation Climate of the Past, 9, 2319-2333, 2013 Author(s): X. Zhang, G. Lohmann, G. Knorr, and X. Xu The last deglaciation is one of the best constrained global-scale climate changes documented by climate archives. Nevertheless, understanding of the underlying dynamics is still limited, especially with respect to abrupt climate shifts and associated changes in the Atlantic meridional overturning circulation (AMOC) during glacial and deglacial periods. A fundamental issue is how to obtain an appropriate climate state at the Last Glacial Maximum (LGM, 21 000 yr before present, 21 ka BP) that can be used as an initial condition for deglaciation. With the aid of a comprehensive climate model, we found that initial ocean states play an important role on the equilibrium timescale of the simulated glacial ocean. Independent of the initialization, the climatological surface characteristics are similar and quasi-stationary, even when trends in the deep ocean are still significant, which provides an explanation for the large spread of simulated LGM ocean states among the Paleoclimate Modeling Intercomparison Project phase 2 (PMIP2) models. Accordingly, we emphasize that caution must be taken when alleged quasi-stationary states, inferred on the basis of surface properties, are used as a reference for both model inter-comparison and data model comparison. The simulated ocean state with the most realistic AMOC is characterized by a pronounced vertical stratification, in line with reconstructions. Hosing experiments further suggest that the response of the glacial ocean is dependent on the ocean background state, i.e. only the state with robust stratification shows an overshoot behavior in the North Atlantic. We propose that the salinity stratification represents a key control on the AMOC pattern and its transient response to perturbations. Furthermore, additional experiments suggest that the stratified deep ocean formed prior to the LGM during a time of minimum obliquity (~ 27 ka BP). This indicates that changes in the glacial deep ocean already occur before the last deglaciation. In combination, these findings represent a new paradigm for the LGM and the last deglaciation, which challenges the conventional evaluation of glacial and deglacial AMOC changes based on an ocean state derived from 21 ka BP boundary conditions.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    facet.materialart.
    Unknown
    Copernicus
    Publication Date: 2013-10-10
    Description: Why could ice ages be unpredictable? Climate of the Past, 9, 2253-2267, 2013 Author(s): M. Crucifix It is commonly accepted that the variations of Earth's orbit and obliquity control the timing of Pleistocene glacial–interglacial cycles. Evidence comes from power spectrum analysis of palaeoclimate records and from inspection of the timing of glacial and deglacial transitions. However, we do not know how tight this control is. Is it, for example, conceivable that random climatic fluctuations could cause a delay in deglaciation, bad enough to skip a full precession or obliquity cycle and subsequently modify the sequence of ice ages? To address this question, seven previously published conceptual models of ice ages are analysed by reference to the notion of generalised synchronisation. Insight is being gained by comparing the effects of the astronomical forcing with idealised forcings composed of only one or two periodic components. In general, the richness of the astronomical forcing allows for synchronisation over a wider range of parameters, compared to periodic forcing. Hence, glacial cycles may conceivably have remained paced by the astronomical forcing throughout the Pleistocene. However, all the models examined here show regimes of strong structural dependence on parameters. This means that small variations in parameters or random fluctuations may cause significant shifts in the succession of ice ages. Whether the actual system actually resides in such a regime depends on the amplitude of the effects associated with the astronomical forcing, which significantly differ across the different models studied here. The possibility of synchronisation on eccentricity is also discussed and it is shown that a high Rayleigh number on eccentricity, as recently found in observations, is no guarantee of reliable synchronisation.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2013-10-19
    Description: Using ice-flow models to evaluate potential sites of million year-old ice in Antarctica Climate of the Past, 9, 2335-2345, 2013 Author(s): B. Van Liefferinge and F. Pattyn Finding suitable potential sites for an undisturbed record of million-year old ice in Antarctica requires slow-moving ice (preferably an ice divide) and basal conditions that are not disturbed by large topographic variations. Furthermore, ice should be thick and cold basal conditions should prevail, since basal melting would destroy the bottom layers. However, thick ice (needed to resolve the signal at sufficient high resolution) increases basal temperatures, which is a conflicting condition for finding a suitable drill site. In addition, slow moving areas in the center of ice sheets are also low-accumulation areas, and low accumulation reduces potential cooling of the ice through vertical advection. While boundary conditions such as ice thickness and accumulation rates are relatively well constrained, the major uncertainty in determining basal thermal conditions resides in the geothermal heat flow (GHF) underneath the ice sheet. We explore uncertainties in existing GHF data sets and their effect on basal temperatures of the Antarctic Ice Sheet, and propose an updated method based on Pattyn (2010) to improve existing GHF data sets in agreement with known basal temperatures and their gradients to reduce this uncertainty. Both complementary methods lead to a better comprehension of basal temperature sensitivity and a characterization of potential ice coring sites within these uncertainties. The combination of both modeling approaches show that the most likely oldest ice sites are situated near the divide areas (close to existing deep drilling sites, but in areas of smaller ice thickness) and across the Gamburtsev Subglacial Mountains.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    facet.materialart.
    Unknown
    Copernicus
    Publication Date: 2013-10-23
    Description: Pre-LGM Northern Hemisphere ice sheet topography Climate of the Past, 9, 2365-2378, 2013 Author(s): J. Kleman, J. Fastook, K. Ebert, J. Nilsson, and R. Caballero We here reconstruct the paleotopography of Northern Hemisphere ice sheets during the glacial maxima of marine isotope stages (MIS) 5b and 4.We employ a combined approach, blending geologically based reconstruction and numerical modeling, to arrive at probable ice sheet extents and topographies for each of these two time slices. For a physically based 3-D calculation based on geologically derived 2-D constraints, we use the University of Maine Ice Sheet Model (UMISM) to calculate ice sheet thickness and topography. The approach and ice sheet modeling strategy is designed to provide robust data sets of sufficient resolution for atmospheric circulation experiments for these previously elusive time periods. Two tunable parameters, a temperature scaling function applied to a spliced Vostok–GRIP record, and spatial adjustment of the climatic pole position, were employed iteratively to achieve a good fit to geological constraints where such were available. The model credibly reproduces the first-order pattern of size and location of geologically indicated ice sheets during marine isotope stages (MIS) 5b (86.2 kyr model age) and 4 (64 kyr model age). From the interglacial state of two north–south obstacles to atmospheric circulation (Rocky Mountains and Greenland), by MIS 5b the emergence of combined Quebec–central Arctic and Scandinavian–Barents-Kara ice sheets had increased the number of such highland obstacles to four. The number of major ice sheets remained constant through MIS 4, but the merging of the Cordilleran and the proto-Laurentide Ice Sheet produced a single continent-wide North American ice sheet at the LGM.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2013-10-24
    Description: Eurasian Arctic climate over the past millennium as recorded in the Akademii Nauk ice core (Severnaya Zemlya) Climate of the Past, 9, 2379-2389, 2013 Author(s): T. Opel, D. Fritzsche, and H. Meyer Understanding recent Arctic climate change requires detailed information on past changes, in particular on a regional scale. The extension of the depth–age relation of the Akademii Nauk (AN) ice core from Severnaya Zemlya (SZ) to the last 1100 yr provides new perspectives on past climate fluctuations in the Barents and Kara seas region. Here, we present the easternmost high-resolution ice-core climate proxy records (δ 18 O and sodium) from the Arctic. Multi-annual AN δ 18 O data as near-surface air-temperature proxies reveal major temperature changes over the last millennium, including the absolute minimum around 1800 and the unprecedented warming to a double-peak maximum in the early 20th century. The long-term cooling trend in δ 18 O is related to a decline in summer insolation but also to the growth of the AN ice cap as indicated by decreasing sodium concentrations. Neither a pronounced Medieval Climate Anomaly nor a Little Ice Age are detectable in the AN δ 18 O record. In contrast, there is evidence of several abrupt warming and cooling events, such as in the 15th and 16th centuries, partly accompanied by corresponding changes in sodium concentrations. These abrupt changes are assumed to be related to sea-ice cover variability in the Barents and Kara seas region, which might be caused by shifts in atmospheric circulation patterns. Our results indicate a significant impact of internal climate variability on Arctic climate change in the last millennium.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2013-10-26
    Description: Re-evaluation of the age model for North Atlantic Ocean Site 982 – arguments for a return to the original chronology Climate of the Past, 9, 2391-2397, 2013 Author(s): K. T. Lawrence, I. Bailey, and M. E. Raymo Recently, the veracity of the published chronology for the Pliocene section of North Atlantic Ocean Drilling Program Site 982 was called into question. Here, we examine the robustness of the original age model as well as the proposed age model revision. The proposed revision is predicated on an apparent misidentification of the depth to the Gauss–Matuyama (G/M) polarity chronozone reversal boundary (2.581 Ma) based on preliminary shipboard paleomagnetic data, and offers a new chronology that includes a hiatus between ~3.2 and 3 Ma. However, an even more accurate shore-based, u-channel-derived polarity chronozone stratigraphy for the past ~2.7 Ma supports the shipboard composite stratigraphy and demonstrates that the original estimate of the depth of the G/M reversal in the Site 982 record is correct. Thus, the main justification forwarded to support the revised chronology no longer exists. We demonstrate that the proposed revision results in a pronounced anomaly in sedimentation rates proximal to the proposed hiatus, erroneous assignment of marine-isotope stages in the Site 982 Pliocene benthic stable oxygen isotope stratigraphy, and a markedly worse correlation of proxy records between this site and other regional paleoclimate data. We conclude that the original chronology for Site 982 is a far more accurate age model than that which arises from the published revision. We strongly recommend the use of the original chronology for all future work at Site 982.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2013-10-23
    Description: Holocene climate variability in the winter rainfall zone of South Africa Climate of the Past, 9, 2347-2364, 2013 Author(s): S. Weldeab, J.-B. W. Stuut, R. R. Schneider, and W. Siebel We established a multi-proxy time series comprising analyses of major elements in bulk sediments, Sr and Nd isotopes, grain size of terrigenous fraction, and δ 18 O and δ 13 C in tests of Neogloboquadrina pachyderma (sinistral) from a marine sediment sequence recovered off the Orange River. The records reveal coherent patterns of variability that reflect changes in wind strength, precipitation over the river catchments, and upwelling of cold and nutrient-rich coastal waters off western South Africa. The wettest episode of the Holocene in the winter rainfall zone (WRZ) of South Africa occurred during the "Little Ice Age" (700–100 cal years BP) most likely in response to a northward shift of the austral westerlies. Wet phases and strengthened coastal water upwellings are companied by a decrease of Agulhas water leakage into the South Atlantic and a reduced dust incursion over Antarctica, as indicated in previous studies. A continuous aridification trend in the WRZ and a weakening of the southern Benguela Upwelling System (BUS) between 9000 and 5500 cal years BP parallel with increase of dust deposition over Antarctica and an enhanced leakage of warm Agulhas water into the eastern South Atlantic. The temporal relationship between precipitation changes in the WRZ, the thermal state of the coastal surface water, and leakage of warm water in the South Atlantic, and variation of dust incursion over Antarctica suggests a causal link that most likely was related to latitudinal shifts of the Southern Hemisphere westerlies. Our results of the mid-Holocene time interval may serve as an analogue to a possible long-term consequence of the current and future southward shift of the westerlies. Furthermore, warming of the coastal surface water as a result of warm Agulhas water incursion into the southern BUS may affect coastal fog formation.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2013-12-07
    Description: Investigating the consistency between proxy-based reconstructions and climate models using data assimilation: a mid-Holocene case study Climate of the Past, 9, 2741-2757, 2013 Author(s): A. Mairesse, H. Goosse, P. Mathiot, H. Wanner, and S. Dubinkina The mid-Holocene (6 kyr BP; thousand years before present) is a key period to study the consistency between model results and proxy-based reconstruction data as it corresponds to a standard test for models and a reasonable number of proxy-based records is available. Taking advantage of this relatively large amount of information, we have compared a compilation of 50 air and sea surface temperature reconstructions with the results of three simulations performed with general circulation models and one carried out with LOVECLIM, a model of intermediate complexity. The conclusions derived from this analysis confirm that models and data agree on the large-scale spatial pattern but the models underestimate the magnitude of some observed changes and that large discrepancies are observed at the local scale. To further investigate the origin of those inconsistencies, we have constrained LOVECLIM to follow the signal recorded by the proxies selected in the compilation using a data-assimilation method based on a particle filter. In one simulation, all the 50 proxy-based records are used while in the other two only the continental or oceanic proxy-based records constrain the model results. As expected, data assimilation leads to improving the consistency between model results and the reconstructions. In particular, this is achieved in a robust way in all the experiments through a strengthening of the westerlies at midlatitude that warms up northern Europe. Furthermore, the comparison of the LOVECLIM simulations with and without data assimilation has also objectively identified 16 proxy-based paleoclimate records whose reconstructed signal is either incompatible with the signal recorded by some other proxy-based records or with model physics.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2013-12-07
    Description: A high-resolution multi-proxy record of late Cenozoic environment change from central Taklimakan Desert, China Climate of the Past, 9, 2731-2739, 2013 Author(s): X. Wang, D. H. Sun, F. Wang, B. F. Li, S. Wu, F. Guo, Z. J. Li, Y. B. Zhang, and F. H. Chen The Taklimakan Desert in the Tarim Basin is the largest desert in Central Asia, and is regarded as one of the main dust sources to the Northern Hemisphere. Late Cenozoic sedimentary sequences with intercalated in-situ aeolian dune sands in this area preserve direct evidence for the Asian desertification. Herein, we report a high-resolution multi-proxy climatic record from the precise magnetostratigraphic dated Hongbaishan section in the central Taklimakan Desert. Our results show that a fundamental climate change, characterised by significant cooling, enhanced aridity, and intensified atmospheric circulation, occurred at 2.8 Ma. Good correlations between paleo-environmental records in the dust sources and downwind areas suggest a broadly consistent climate evolution of northwestern China during the late Cenozoic, which is probably driven by the uplift of the Tibet Plateau and the Northern Hemisphere glaciation.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2013-12-13
    Description: A pollen-based biome reconstruction over the last 3.562 million years in the Far East Russian Arctic – new insights into climate–vegetation relationships at the regional scale Climate of the Past, 9, 2759-2775, 2013 Author(s): P. E. Tarasov, A. A. Andreev, P. M. Anderson, A. V. Lozhkin, C. Leipe, E. Haltia, N. R. Nowaczyk, V. Wennrich, J. Brigham-Grette, and M. Melles The recent and fossil pollen data obtained under the frame of the multi-disciplinary international El'gygytgyn Drilling Project represent a unique archive, which allows the testing of a range of pollen-based reconstruction approaches and the deciphering of changes in the regional vegetation and climate. In the current study we provide details of the biome reconstruction method applied to the late Pliocene and Quaternary pollen records from Lake El'gygytgyn. All terrestrial pollen taxa identified in the spectra from Lake El'gygytgyn were assigned to major vegetation types (biomes), which today occur near the lake and in the broader region of eastern and northern Asia and, thus, could be potentially present in this region during the past. When applied to the pollen spectra from the middle Pleistocene to present, the method suggests (1) a predominance of tundra during the Holocene, (2) a short interval during the marine isotope stage (MIS) 5.5 interglacial distinguished by cold deciduous forest, and (3) long phases of taiga dominance during MIS 31 and, particularly, MIS 11.3. These two latter interglacials seem to be some of the longest and warmest intervals in the study region within the past million years. During the late Pliocene–early Pleistocene interval (i.e., ~3.562–2.200 Ma), there is good correspondence between the millennial-scale vegetation changes documented in the Lake El'gygytgyn record and the alternation of cold and warm marine isotope stages, which reflect changes in the global ice volume and sea level. The biome reconstruction demonstrates changes in the regional vegetation from generally warmer/wetter environments of the earlier (i.e., Pliocene) interval towards colder/drier environments of the Pleistocene. The reconstruction indicates that the taxon-rich cool mixed and cool conifer forest biomes are mostly characteristic of the time prior to MIS G16, whereas the tundra biome becomes a prominent feature starting from MIS G6. These results consistently indicate that the study region supported significant tree populations during most of the interval prior to ~2.730 Ma. The cold- and drought-tolerant steppe biome first appears in the reconstruction ~3.298 Ma during the tundra-dominated MIS M2, whereas the tundra biome initially occurs between ~3.379 and ~3.378 Ma within MIS MG4. Prior to ~2.800 Ma, several other cold stages during this generally warm Pliocene interval were characterized by the tundra biome.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2013-11-29
    Description: The role of eastern Tethys seaway closure in the Middle Miocene Climatic Transition (ca. 14 Ma) Climate of the Past, 9, 2687-2702, 2013 Author(s): N. Hamon, P. Sepulchre, V. Lefebvre, and G. Ramstein The Middle Miocene Climatic Transition (MMCT, approximately 14 Ma) is a key period in Cenozoic cooling and cryospheric expansion. Despite being well documented in isotopic record, the causes of the MMCT are still a matter of debate. Among various hypotheses, some authors suggested that it was due the final closure of the eastern Tethys seaway and subsequent oceanic circulation reorganisation. The aim of the present study is to quantify the impact of varying Tethys seaway depths on middle Miocene ocean and climate, in order to better understand its role in the MMCT. We present four sensitivity experiments with a fully coupled ocean-atmosphere general circulation model. Our results indicate the presence of a warm and salty water source in the northern Indian Ocean when the eastern Tethys is deep open (4000 or 1000 m), which corresponds to the Tethyan Indian Saline Water (TISW) described on the basis of isotopic studies. This water source is absent in the experiments with shallow (250 m) and closed Tethys seaway, inducing strong changes in the latitudinal density gradient and ultimately the reinforcement of the Antarctic Circumpolar Current (ACC). Moreover, when the Tethys seaway is shallow or closed, there is a westward water flow in the Gibraltar Strait that strengthens the Atlantic Meridional Overturning Circulation (AMOC) compared to the experiments with deep-open Tethys seaway. Our results therefore suggest that the shoaling and final closure of the eastern Tethys seaway played a major role in the oceanic circulation reorganisation during the middle Miocene. The results presented here provide new constraints on the timing of the Tethys seaway closure and particularly indicate that, prior to 14 Ma, a deep-open Tethys seaway should have allowed the formation of TISW. Moreover, whereas the final closure of this seaway likely played a major role in the reorganisation of oceanic circulation, we suggest that it was not the main driver of the global cooling and Antarctica ice-sheet expansion during the MMCT. Here we propose that the initiation of the MMCT was caused by an atmospheric p CO 2 drawdown and that the oceanic changes due to the Tethys seaway closure amplified the response of global climate and East Antarctic Ice Sheet.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2013-11-29
    Description: Last Glacial Maximum world ocean simulations at eddy-permitting and coarse resolutions: do eddies contribute to a better consistency between models and palaeoproxies? Climate of the Past, 9, 2669-2686, 2013 Author(s): M. Ballarotta, L. Brodeau, J. Brandefelt, P. Lundberg, and K. Döös Most state-of-the-art climate models include a coarsely resolved oceanic component, which hardly captures detailed dynamics, whereas eddy-permitting and eddy-resolving simulations are developed to reproduce the observed ocean. In this study, an eddy-permitting and a coarse resolution numerical experiment are conducted to simulate the global ocean state for the period of the Last Glacial Maximum (LGM, ~26 500 to 19 000 yr ago) and to investigate the improvements due to taking into account the smaller spatial scales. The ocean state from each simulation is confronted with a data set from the Multiproxy Approach for the Reconstruction of the Glacial Ocean (MARGO) sea surface temperatures (SSTs), some reconstructions of the palaeo-circulations and a number of sea-ice reconstructions. The western boundary currents and the Southern Ocean dynamics are better resolved in the high-resolution experiment than in the coarse simulation, but, although these more detailed SST structures yield a locally improved consistency between model predictions and proxies, they do not contribute significantly to the global statistical score. The SSTs in the tropical coastal upwelling zones are also not significantly improved by the eddy-permitting regime. The models perform in the mid-latitudes but as in the majority of the Paleoclimate Modelling Intercomparison Project simulations, the modelled sea-ice conditions are inconsistent with the palaeo-reconstructions. The effects of observation locations on the comparison between observed and simulated SST suggest that more sediment cores may be required to draw reliable conclusions about the improvements introduced by the high resolution model for reproducing the global SSTs. One has to be careful with the interpretation of the deep ocean state which has not reached statistical equilibrium in our simulations. However, the results indicate that the meridional overturning circulations are different between the two regimes, suggesting that the model parametrizations might also play a key role for simulating past climate states.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2013-11-28
    Description: The impact of early Holocene Arctic shelf flooding on climate in an atmosphere–ocean–sea–ice model Climate of the Past, 9, 2651-2667, 2013 Author(s): M. Blaschek and H. Renssen Glacial terminations are characterized by a strong rise in sea level related to melting ice sheets. This rise in sea level is not uniform all over the world, because regional effects (uplift and subsidence of coastal zones) are superimposed on global trends. During the early Holocene the Siberian Shelf became flooded before 7.5 ka BP and the coastline reached modern-day high stands at 5 ka BP. This area is currently known as a sea-ice production area and contributes significantly to the sea-ice exported from the Arctic through the Fram Strait. This leads to the following hypothesis: during times of rising sea levels, shelves become flooded, increasing sea-ice production on these shelves, increasing sea-ice volume and export through the Fram Strait and causing the sea-ice extent to advance in the Nordic Seas, yielding cooler and fresher sea surface conditions. We have tested this hypothesis in an atmosphere–ocean–sea–ice coupled model of intermediate complexity (LOVECLIM). Our experiment on early Holocene Siberian Shelf flooding shows that in our model sea-ice production in the Northern Hemisphere increases (15%) and that sea-ice extent in the Northern Hemisphere increases (14%) but sea-ice export decreases (−15%) contrary to our hypothesis. The reason of this unexpected behaviour has its origin in a weakened polar vortex, induced by the land–ocean changes due to the shelf flooding, and a resulting decrease of zonality in the Nordic Seas pressure regime. Hence the winter Greenland high and the Icelandic low strengthen, yielding stronger winds on both sides of the Nordic Seas. Increased winds along the East Greenland Current support local sea-ice production and transport towards the South, resulting in a wider sea-ice cover and a southward shift of convection areas. The overall strength of the Atlantic meridional overturning circulation is reduced by 4% and the heat transport in the Atlantic basin by 7%, resulting in an annual cooling pattern over the Nordic Seas by up to −4 °C. We find that the flooding of the Siberian shelf resulting from an orbitally induced warming and related glacioeustatic sea level rise causes a Nordic Seas cooling feedback opposed to this warming.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2013-07-30
    Description: Caspian sea-level changes during the last millennium: historical and geological evidence from the south Caspian Sea Climate of the Past, 9, 1645-1665, 2013 Author(s): A. Naderi Beni, H. Lahijani, R. Mousavi Harami, K. Arpe, S. A. G. Leroy, N. Marriner, M. Berberian, V. Andrieu-Ponel, M. Djamali, A. Mahboubi, and P. J. Reimer Historical literature may constitute a valuable source of information to reconstruct sea-level changes. Here, historical documents and geological records have been combined to reconstruct Caspian sea-level (CSL) changes during the last millennium. In addition to a comprehensive literature review, new data from two short sediment cores were obtained from the south-eastern Caspian coast to identify coastal change driven by water-level changes and to compare the results with other geological and historical findings. The overall results indicate a high-stand during the Little Ice Age, up to −21 m (and extra rises due to manmade river avulsion), with a −28 m low-stand during the Medieval Climate Anomaly, while presently the CSL stands at −26.5 m. A comparison of the CSL curve with other lake systems and proxy records suggests that the main sea-level oscillations are essentially paced by solar irradiance. Although the major controller of the long-term CSL changes is driven by climatological factors, the seismicity of the basin creates local changes in base level. These local base-level changes should be considered in any CSL reconstruction.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2013-08-02
    Description: The Antarctic ice core chronology (AICC2012): an optimized multi-parameter and multi-site dating approach for the last 120 thousand years Climate of the Past, 9, 1733-1748, 2013 Author(s): D. Veres, L. Bazin, A. Landais, H. Toyé Mahamadou Kele, B. Lemieux-Dudon, F. Parrenin, P. Martinerie, E. Blayo, T. Blunier, E. Capron, J. Chappellaz, S. O. Rasmussen, M. Severi, A. Svensson, B. Vinther, and E. W. Wolff The deep polar ice cores provide reference records commonly employed in global correlation of past climate events. However, temporal divergences reaching up to several thousand years (ka) exist between ice cores over the last climatic cycle. In this context, we are hereby introducing the Antarctic Ice Core Chronology 2012 (AICC2012), a new and coherent timescale developed for four Antarctic ice cores, namely Vostok, EPICA Dome C (EDC), EPICA Dronning Maud Land (EDML) and Talos Dome (TALDICE), alongside the Greenlandic NGRIP record. The AICC2012 timescale has been constructed using the Bayesian tool Datice (Lemieux-Dudon et al., 2010) that combines glaciological inputs and data constraints, including a wide range of relative and absolute gas and ice stratigraphic markers. We focus here on the last 120 ka, whereas the companion paper by Bazin et al. (2013) focuses on the interval 120–800 ka. Compared to previous timescales, AICC2012 presents an improved timing for the last glacial inception, respecting the glaciological constraints of all analyzed records. Moreover, with the addition of numerous new stratigraphic markers and improved calculation of the lock-in depth (LID) based on δ 15 N data employed as the Datice background scenario, the AICC2012 presents a slightly improved timing for the bipolar sequence of events over Marine Isotope Stage 3 associated with the seesaw mechanism, with maximum differences of about 600 yr with respect to the previous Datice-derived chronology of Lemieux-Dudon et al. (2010), hereafter denoted LD2010. Our improved scenario confirms the regional differences for the millennial scale variability over the last glacial period: while the EDC isotopic record (events of triangular shape) displays peaks roughly at the same time as the NGRIP abrupt isotopic increases, the EDML isotopic record (events characterized by broader peaks or even extended periods of high isotope values) reached the isotopic maximum several centuries before. It is expected that the future contribution of both other long ice core records and other types of chronological constraints to the Datice tool will lead to further refinements in the ice core chronologies beyond the AICC2012 chronology. For the time being however, we recommend that AICC2012 be used as the preferred chronology for the Vostok, EDC, EDML and TALDICE ice core records, both over the last glacial cycle (this study), and beyond (following Bazin et al., 2013). The ages for NGRIP in AICC2012 are virtually identical to those of GICC05 for the last 60.2 ka, whereas the ages beyond are independent of those in GICC05modelext (as in the construction of AICC2012, the GICC05modelext was included only via the background scenarios and not as age markers). As such, where issues of phasing between Antarctic records included in AICC2012 and NGRIP are involved, the NGRIP ages in AICC2012 should therefore be taken to avoid introducing false offsets. However for issues involving only Greenland ice cores, there is not yet a strong basis to recommend superseding GICC05modelext as the recommended age scale for Greenland ice cores.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2013-08-02
    Description: LGM permafrost distribution: how well can the latest PMIP multi-model ensembles perform reconstruction? Climate of the Past, 9, 1697-1714, 2013 Author(s): K. Saito, T. Sueyoshi, S. Marchenko, V. Romanovsky, B. Otto-Bliesner, J. Walsh, N. Bigelow, A. Hendricks, and K. Yoshikawa Here, global-scale frozen ground distribution from the Last Glacial Maximum (LGM) has been reconstructed using multi-model ensembles of global climate models, and then compared with evidence-based knowledge and earlier numerical results. Modeled soil temperatures, taken from Paleoclimate Modelling Intercomparison Project phase III (PMIP3) simulations, were used to diagnose the subsurface thermal regime and determine underlying frozen ground types for the present day (pre-industrial; 0 kya) and the LGM (21 kya). This direct method was then compared to an earlier indirect method, which categorizes underlying frozen ground type from surface air temperature, applying to both the PMIP2 (phase II) and PMIP3 products. Both direct and indirect diagnoses for 0 kya showed strong agreement with the present-day observation-based map. The soil temperature ensemble showed a higher diversity around the border between permafrost and seasonally frozen ground among the models, partly due to varying subsurface processes, implementation, and settings. The area of continuous permafrost estimated by the PMIP3 multi-model analysis through the direct (indirect) method was 26.0 (17.7) million km 2 for LGM, in contrast to 15.1 (11.2) million km 2 for the pre-industrial control, whereas seasonally frozen ground decreased from 34.5 (26.6) million km 2 to 18.1 (16.0) million km 2 . These changes in area resulted mainly from a cooler climate at LGM, but from other factors as well, such as the presence of huge land ice sheets and the consequent expansion of total land area due to sea-level change. LGM permafrost boundaries modeled by the PMIP3 ensemble – improved over those of the PMIP2 due to higher spatial resolutions and improved climatology – also compared better to previous knowledge derived from geomorphological and geocryological evidence. Combinatorial applications of coupled climate models and detailed stand-alone physical-ecological models for the cold-region terrestrial, paleo-, and modern climates will advance our understanding of the functionality and variability of the frozen ground subsystem in the global eco-climate system.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2013-07-30
    Description: The Holocene thermal maximum in the Nordic Seas: the impact of Greenland Ice Sheet melt and other forcings in a coupled atmosphere–sea-ice–ocean model Climate of the Past, 9, 1629-1643, 2013 Author(s): M. Blaschek and H. Renssen The relatively warm early Holocene climate in the Nordic Seas, known as the Holocene thermal maximum (HTM), is often associated with an orbitally forced summer insolation maximum at 10 ka BP. The spatial and temporal response recorded in proxy data in the North Atlantic and the Nordic Seas reveals a complex interaction of mechanisms active in the HTM. Previous studies have investigated the impact of the Laurentide Ice Sheet (LIS), as a remnant from the previous glacial period, altering climate conditions with a continuous supply of melt water to the Labrador Sea and adjacent seas and with a downwind cooling effect from the remnant LIS. In our present work we extend this approach by investigating the impact of the Greenland Ice Sheet (GIS) on the early Holocene climate and the HTM. Reconstructions suggest melt rates of 13 mSv for 9 ka BP, which result in our model in an ocean surface cooling of up to 2 K near Greenland. Reconstructed summer SST gradients agree best with our simulation including GIS melt, confirming that the impact of the early Holocene GIS is crucial for understanding the HTM characteristics in the Nordic Seas area. This implies that modern and near-future GIS melt can be expected to play an active role in the climate system in the centuries to come.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2013-07-24
    Description: Late Neolithic Mondsee Culture in Austria: living on lakes and living with flood risk? Climate of the Past, 9, 1601-1612, 2013 Author(s): T. Swierczynski, S. Lauterbach, P. Dulski, and A. Brauer Neolithic and Bronze Age lake dwellings in the European Alps became recently protected under the UNESCO World Heritage. However, only little is known about the cultural history of the related pre-historic communities, their adaptation strategies to environmental changes and particularly about the almost synchronous decline of many of these settlements around the transition from the Late Neolithic to the Early Bronze Age. For example, there is an ongoing debate whether the abandonment of Late Neolithic lake dwellings at Lake Mondsee (Upper Austria) was caused by unfavourable climate conditions or a single catastrophic event. Within the varved sediments of Lake Mondsee, we investigated the occurrence of intercalated detrital layers from major floods and debris flows to unravel extreme surface runoff recurrence during the Neolithic settlement period. A combination of detailed sediment microfacies analysis and μXRF element scanning allows distinguishing debris flow and flood deposits. A total of 60 flood and 12 debris flow event layers was detected between 7000 and 4000 varve years (vyr) BP. Compared to the centennial- to millennial-scale average, a period of increased runoff event frequency can be identified between 5900 and 4450 vyr BP. Enhanced flood frequency is accompanied by predominantly siliciclastic sediment supply between ca. 5500 and 5000 vyr BP and enhanced dolomitic sediment supply between 4900 and 4500 vyr BP. A change in the location and the construction technique of the Neolithic lake dwellings at Lake Mondsee can be observed during the period of higher flood frequency. While lake dwellings of the first settlement period (ca. 5800–5250 cal. yr BP) were constructed directly on the wetlands, later constructions (ca. 5400–4700 cal. yr BP) were built on piles upon the water, possibly indicating an adaptation to either increased flood risk or a general increase of the lake level. However, our results also indicate that other than climatic factors (e.g. socio-economic changes) must have influenced the decline of the Mondsee Culture because flood activity generally decreased since 4450 vyr BP, but no new lake dwellings have been established thereafter.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2013-07-23
    Description: Influence of dynamic vegetation on climate change and terrestrial carbon storage in the Last Glacial Maximum Climate of the Past, 9, 1571-1587, 2013 Author(s): R. O'ishi and A. Abe-Ouchi When the climate is reconstructed from paleoevidence, it shows that the Last Glacial Maximum (LGM, ca. 21 000 yr ago) is cold and dry compared to the present-day. Reconstruction also shows that compared to today, the vegetation of the LGM is less active and the distribution of vegetation was drastically different, due to cold temperature, dryness, and a lower level of atmospheric CO 2 concentration (185 ppm compared to a preindustrial level of 285 ppm). In the present paper, we investigate the influence of vegetation change on the climate of the LGM by using a coupled atmosphere-ocean-vegetation general circulation model (AOVGCM, the MIROC-LPJ). The MIROC-LPJ is different from earlier studies in the introduction of a bias correction method in individual running GCM experiments. We examined four GCM experiments (LGM and preindustrial, with and without vegetation feedback) and quantified the strength of the vegetation feedback during the LGM. The result shows that global-averaged cooling during the LGM is amplified by +13.5 % due to the introduction of vegetation feedback. This is mainly caused by the increase of land surface albedo due to the expansion of tundra in northern high latitudes and the desertification in northern middle latitudes around 30° N to 60° N. We also investigated how this change in climate affected the total terrestrial carbon storage by using offline Lund-Potsdam-Jena dynamic global vegetation model (LPJ-DGVM). Our result shows that the total terrestrial carbon storage was reduced by 597 PgC during the LGM, which corresponds to the emission of 282 ppm atmospheric CO 2 . In the LGM experiments, the global carbon distribution is generally the same whether the vegetation feedback to the atmosphere is included or not. However, the inclusion of vegetation feedback causes substantial terrestrial carbon storage change, especially in explaining the lowering of atmospheric CO 2 during the LGM.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2013-07-23
    Description: A 350 ka record of climate change from Lake El'gygytgyn, Far East Russian Arctic: refining the pattern of climate modes by means of cluster analysis Climate of the Past, 9, 1559-1569, 2013 Author(s): U. Frank, N. R. Nowaczyk, P. Minyuk, H. Vogel, P. Rosén, and M. Melles Rock magnetic, biochemical and inorganic records of the sediment cores PG1351 and Lz1024 from Lake El'gygytgyn, Chukotka peninsula, Far East Russian Arctic, were subject to a hierarchical agglomerative cluster analysis in order to refine and extend the pattern of climate modes as defined by Melles et al. (2007). Cluster analysis of the data obtained from both cores yielded similar results, differentiating clearly between the four climate modes warm, peak warm, cold and dry, and cold and moist. In addition, two transitional phases were identified, representing the early stages of a cold phase and slightly colder conditions during a warm phase. The statistical approach can thus be used to resolve gradual changes in the sedimentary units as an indicator of available oxygen in the hypolimnion in greater detail. Based upon cluster analyses on core Lz1024, the published succession of climate modes in core PG1351, covering the last 250 ka, was modified and extended back to 350 ka. Comparison to the marine oxygen isotope (δ 18 O) stack LR04 (Lisiecki and Raymo, 2005) and the summer insolation at 67.5° N, with the extended Lake El'gygytgyn parameter records of magnetic susceptibility (κ LF ), total organic carbon content (TOC) and the chemical index of alteration (CIA; Minyuk et al., 2007), revealed that all stages back to marine isotope stage (MIS) 10 and most of the substages are clearly reflected in the pattern derived from the cluster analysis.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2013-07-23
    Description: Inter-annual tropical Pacific climate variability in an isotope-enabled CGCM: implications for interpreting coral stable oxygen isotope records of ENSO Climate of the Past, 9, 1543-1557, 2013 Author(s): T. Russon, A. W. Tudhope, G. C. Hegerl, M. Collins, and J. Tindall Water isotope-enabled coupled atmosphere–ocean climate models allow for exploration of the relative contributions to coral stable oxygen isotope (δ 18 O coral ) variability arising from sea surface temperature (SST) and the isotopic composition of seawater (δ 18 O sw ). The unforced behaviour of the isotope-enabled HadCM3 coupled general circulation model suggests that the extent to which inter-annual δ 18 O sw variability contributes to that in model δ 18 O coral is strongly spatially dependent, ranging from being negligible in the eastern equatorial Pacific to accounting for 50% of δ 18 O coral variance in parts of the western Pacific. In these latter cases, a significant component of the inter-annual δ 18 O sw variability is correlated to that in SST, meaning that local calibrations of the effective local δ 18 O coral –SST relationships are likely to be essential. Furthermore, the relationship between δ 18 O sw and SST can be non-linear, such that the model interpretation of central and western equatorial Pacific δ 18 O coral in the context of a linear dependence on SST alone leads to overestimation (by up to 20%) of the SST anomalies associated with large El Niño events. Intra-model evaluation of a salinity-based pseudo-coral approach shows that such an approach captures the first-order features of the model δ 18 O sw behaviour. However, the utility of the pseudo-corals is limited by the extent of spatial variability seen within the modelled slopes of the temporal salinity–δ 18 O sw relationship.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2013-07-26
    Description: A comparative study of large-scale atmospheric circulation in the context of a future scenario (RCP4.5) and past warmth (mid-Pliocene) Climate of the Past, 9, 1613-1627, 2013 Author(s): Y. Sun, G. Ramstein, C. Contoux, and T. Zhou The mid-Pliocene warm period (~ 3.3–3.0 Ma) is often considered as the last sustained warm period with close enough geographic configurations compared to the present one associated with atmospheric CO 2 concentration (405 ± 50 ppm) higher than the modern level. For this reason, this period is often considered as a potential analogue for the future climate warming, with the important advantage that for mid-Pliocene many marine and continental data are available. To investigate this issue, we selected the RCP4.5 scenario, one of the current available future projections, to compare the pattern of tropical atmospheric response with the past warm mid-Pliocene climate. We use three Atmosphere-Ocean General Circulation Model (AOGCM) simulations (RCP4.5 scenario, mid-Pliocene and present-day simulation) carried out with the IPSL-CM5A model and investigate atmospheric tropical dynamics through Hadley and Walker cell responses to warmer conditions, considering that the analysis can provide some assessment of how these circulations will change in the future. Our results show that there is a damping of the Hadley cell intensity in the northern tropics and an increase in both subtropics. Moreover, northern and southern Hadley cells expand poleward. The response of the Hadley cells is stronger for the RCP4.5 scenario than for the mid-Pliocene, but in very good agreement with the fact that the atmospheric CO 2 concentration is higher in the future scenario than in the mid-Pliocene (543 versus 405 ppm). Concerning the response of the Walker cell, we show that despite very large similarities, there are also some differences. Common features to both scenarios are: weakening of the ascending branch, leading to a suppression of the precipitation over the western tropical Pacific. The response of the Walker cell is stronger in the RCP4.5 scenario than in the mid-Pliocene but also depicts some major differences, as an eastward shift of its rising branch in the future scenario compared to the mid-Pliocene. In this paper, we explain the dynamics of the Hadley and Walker cells, and show that despite a minor discrepancy, the mid-Pliocene is certainly an interesting analogue for future climate changes in tropical areas.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2013-07-23
    Description: Importance of precipitation seasonality for the interpretation of Eemian ice core isotope records from Greenland Climate of the Past, 9, 1589-1600, 2013 Author(s): W. J. van de Berg, M. R. van den Broeke, E. van Meijgaard, and F. Kaspar The previous interglacial (Eemian, 130–114 kyr BP) had a mean sea level highstand 4 to 7 m above the current level, and, according to climate proxies, a 2 to 6 K warmer Arctic summer climate. Greenland ice cores extending back into the Eemian show a reduced depletion in δ 18 O of about 3‰ for this period, which suggests a significant warming of several degrees over the Greenland ice sheet. Since the depletion in δ 18 O depends, among other factors, on the condensation temperature of the precipitation, we analyze climatological processes other than mean temperature changes that influence condensation temperature, using output of the regional climate model RACMO2. This model is driven by ERA-40 reanalysis and ECHO-G GCM boundaries for present-day, preindustrial and Eemian climate. The processes that affect the condensation temperature of the precipitation are analyzed using 6-hourly model output. Our results show that changes in precipitation seasonality can cause significant changes of up to 2 K in the condensation temperature that are unrelated to changes in mean temperature.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2013-07-04
    Description: Modeling dust emission response to North Atlantic millennial-scale climate variations from the perspective of East European MIS 3 loess deposits Climate of the Past, 9, 1385-1402, 2013 Author(s): A. Sima, M. Kageyama, D.-D. Rousseau, G. Ramstein, Y. Balkanski, P. Antoine, and C. Hatté European loess sequences of the Marine Isotope Stage 3 (~60–25 kyr BP) show periods of strong dust accumulation alternating with episodes of reduced sedimentation, favoring soil development. In the western part of the loess belt centered around 50° N, these variations appear to have been related to the North Atlantic rapid climate changes: the Dansgaard–Oeschger (DO) and Heinrich (H) events. It has been recently suggested that the North Atlantic climate signal can be detected further east, in loess deposits from Stayky (50°05.65' N, 30°53.92' E), Ukraine. Here we use climate and dust emission modeling to investigate this data interpretation. We focus on the areas north and northeast of the Carpathians, where loess deposits can be found, and the corresponding main dust sources must have been located as well. The simulations were performed with the LMDZ atmospheric general circulation model and the ORCHIDEE land surface model. They represent a reference "Greenland stadial" state and two perturbations, seen as sensitivity tests with respect to changes in the North Atlantic surface conditions between 30° and 63° N: a "Greenland interstadial" and an "H event". The main source for the loess deposits in the studied area is identified as a dust deflation band, with two very active spots located west-northwest from our reference site. Emissions only occur between February and June. Differences from one deflation spot to another, and from one climate state to another, are explained by analyzing the relevant meteorological and surface variables. Over most of the source region, the annual emission fluxes in the "interstadial" experiment are 30 to 50% lower than the "stadial" values; they would only be about 20% lower if the inhibition of dust uplift by the vegetation were not taken into account. Assuming that lower emissions result in reduced dust deposition leads us to the conclusion that the loess–paleosol stratigraphic succession in the Stayky area reflects indeed North Atlantic millennial variations. In the main deflation areas of Western Europe, the vegetation effect alone determined most of the (~50% on average) stadial–interstadial flux differences. Even if its impact in Eastern Europe is less pronounced, this effect remains a key factor in modulating aeolian emissions at the millennial timescale. Conditions favorable to initiating particularly strong dust storms within a few hundred kilometers upwind from our reference site, simulated in the month of April of the H event experiment, support the correlation of H events with peaks in grain size index in some very detailed loess profiles, indicating increased coarse sedimentation.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2013-07-16
    Description: Bayesian parameter estimation and interpretation for an intermediate model of tree-ring width Climate of the Past, 9, 1481-1493, 2013 Author(s): S. E. Tolwinski-Ward, K. J. Anchukaitis, and M. N. Evans We present a Bayesian model for estimating the parameters of the VS-Lite forward model of tree-ring width for a particular chronology and its local climatology. The scheme also provides information about the uncertainty of the parameter estimates, as well as the model error in representing the observed proxy time series. By inferring VS-Lite's parameters independently for synthetically generated ring-width series at several hundred sites across the United States, we show that the algorithm is skillful. We also infer optimal parameter values for modeling observed ring-width data at the same network of sites. The estimated parameter values covary in physical space, and their locations in multidimensional parameter space provide insight into the dominant climatic controls on modeled tree-ring growth at each site as well as the stability of those controls. The estimation procedure is useful for forward and inverse modeling studies using VS-Lite to quantify the full range of model uncertainty stemming from its parameterization.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2013-07-16
    Description: Mid-pliocene Atlantic Meridional Overturning Circulation not unlike modern Climate of the Past, 9, 1495-1504, 2013 Author(s): Z.-S. Zhang, K. H. Nisancioglu, M. A. Chandler, A. M. Haywood, B. L. Otto-Bliesner, G. Ramstein, C. Stepanek, A. Abe-Ouchi, W.-L. Chan, F. J. Bragg, C. Contoux, A. M. Dolan, D. J. Hill, A. Jost, Y. Kamae, G. Lohmann, D. J. Lunt, N. A. Rosenbloom, L. E. Sohl, and H. Ueda In the Pliocene Model Intercomparison Project (PlioMIP), eight state-of-the-art coupled climate models have simulated the mid-Pliocene warm period (mPWP, 3.264 to 3.025 Ma). Here, we compare the Atlantic Meridional Overturning Circulation (AMOC), northward ocean heat transport and ocean stratification simulated with these models. None of the models participating in PlioMIP simulates a strong mid-Pliocene AMOC as suggested by earlier proxy studies. Rather, there is no consistent increase in AMOC maximum among the PlioMIP models. The only consistent change in AMOC is a shoaling of the overturning cell in the Atlantic, and a reduced influence of North Atlantic Deep Water (NADW) at depth in the basin. Furthermore, the simulated mid-Pliocene Atlantic northward heat transport is similar to the pre-industrial. These simulations demonstrate that the reconstructed high-latitude mid-Pliocene warming can not be explained as a direct response to an intensification of AMOC and concomitant increase in northward ocean heat transport by the Atlantic.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2013-07-17
    Description: Northward advection of Atlantic water in the eastern Nordic Seas over the last 3000 yr Climate of the Past, 9, 1505-1518, 2013 Author(s): C. V. Dylmer, J. Giraudeau, F. Eynaud, K. Husum, and A. De Vernal Three marine sediment cores distributed along the Norwegian (MD95-2011), Barents Sea (JM09-KA11-GC), and Svalbard (HH11-134-BC) continental margins have been investigated in order to reconstruct changes in the poleward flow of Atlantic waters (AW) and in the nature of upper surface water masses within the eastern Nordic Seas over the last 3000 yr. These reconstructions are based on a limited set of coccolith proxies: the abundance ratio between Emiliania huxleyi and Coccolithus pelagicus , an index of Atlantic vs. Polar/Arctic surface water masses; and Gephyrocapsa muellerae , a drifted coccolith species from the temperate North Atlantic, whose abundance changes are related to variations in the strength of the North Atlantic Current. The entire investigated area, from 66 to 77° N, was affected by an overall increase in AW flow from 3000 cal yr BP (before present) to the present. The long-term modulation of westerlies' strength and location, which are essentially driven by the dominant mode of the North Atlantic Oscillation (NAO), is thought to explain the observed dynamics of poleward AW flow. The same mechanism also reconciles the recorded opposite zonal shifts in the location of the Arctic front between the area off western Norway and the western Barents Sea–eastern Fram Strait region. The Little Ice Age (LIA) was governed by deteriorating conditions, with Arctic/Polar waters dominating in the surface off western Svalbard and western Barents Sea, possibly associated with both severe sea ice conditions and a strongly reduced AW strength. A sudden short pulse of resumed high WSC (West Spitsbergen Current) flow interrupted this cold spell in eastern Fram Strait from 330 to 410 cal yr BP. Our dataset not only confirms the high amplitude warming of surface waters at the turn of the 19th century off western Svalbard, it also shows that such a warming was primarily induced by an excess flow of AW which stands as unprecedented over the last 3000 yr.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2013-07-06
    Description: Holocene climate variations in the western Antarctic Peninsula: evidence for sea ice extent predominantly controlled by changes in insolation and ENSO variability Climate of the Past, 9, 1431-1446, 2013 Author(s): J. Etourneau, L. G. Collins, V. Willmott, J.-H. Kim, L. Barbara, A. Leventer, S. Schouten, J. S. Sinninghe Damsté, A. Bianchini, V. Klein, X. Crosta, and G. Massé The West Antarctic ice sheet is particularly sensitive to global warming and its evolution and impact on global climate over the next few decades remains difficult to predict. In this context, investigating past sea ice conditions around Antarctica is of primary importance. Here, we document changes in sea ice presence, upper water column temperatures (0–200 m) and primary productivity over the last 9000 yr BP (before present) in the western Antarctic Peninsula (WAP) margin from a sedimentary core collected in the Palmer Deep Basin. Employing a multi-proxy approach, based on the combination of two biomarkers proxies (highly branched isoprenoid (HBI) alkenes for sea ice and TEX 86 L for temperature) and micropaleontological data (diatom assemblages), we derived new Holocene records of sea ice conditions and upper water column temperatures. The early Holocene (9000–7000 yr BP) was characterized by a cooling phase with a short sea ice season. During the mid-Holocene (~7000–3800 yr BP), local climate evolved towards slightly colder conditions and a prominent extension of the sea ice season occurred, promoting a favorable environment for intensive diatom growth. The late Holocene (the last ~2100 yr) was characterized by warmer temperatures and increased sea ice presence, accompanied by reduced local primary productivity, likely in response to a shorter growing season compared to the early or mid-Holocene. The gradual increase in annual sea ice duration over the last 7000 yr might have been influenced by decreasing mean annual and spring insolation, despite increasing summer insolation. We postulate that, in addition to precessional changes in insolation, seasonal variability, via changes in the strength of the circumpolar Westerlies and upwelling activity, was further amplified by the increasing frequency/amplitude of the El Niño–Southern Oscillation (ENSO). However, between 3800 and 2100 yr BP, the lack of correlation between ENSO and climate variability in the WAP suggests that other climatic factors might have been more important in controlling WAP climate at this time.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2013-07-16
    Description: Detailed insight into Arctic climatic variability during MIS 11c at Lake El'gygytgyn, NE Russia Climate of the Past, 9, 1467-1479, 2013 Author(s): H. Vogel, C. Meyer-Jacob, M. Melles, J. Brigham-Grette, A. A. Andreev, V. Wennrich, P. E. Tarasov, and P. Rosén Here we present a detailed multi-proxy record of the climate and environmental evolution at Lake El'gygytgyn, Far East Russian Arctic during the period 430–395 ka covering the marine isotope stage (MIS) 12/11 transition and the thermal maximum of super interglacial MIS 11c. The MIS 12/11 transition at Lake El'gygytgyn is characterized by initial warming followed by a cold reversal implying similarities to the last deglaciation. The thermal maximum of MIS 11c is characterized by full and remarkably stable interglacial conditions with mean temperatures of the warmest month (MTWM) ranging between ca. 10–15 °C; annual precipitation (PANN) ranging between ca. 300–600 mm; strong in-lake productivity coinciding with dark coniferous forests in the catchment; annual disintegration of the lake ice cover; and full mixis of the water column. Such conditions persisted, according to our age model, for ca. 27 ± 8 kyr between ca. 425–398 ka. The Lake El'gygytgyn record closely resembles the climate pattern recorded in Lake Baikal (SE Siberia) sediments and Antarctic ice cores, implying interhemispheric climate connectivity during MIS 11c.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2013-06-12
    Description: Vegetation responses to interglacial warming in the Arctic: examples from Lake El'gygytgyn, Far East Russian Arctic Climate of the Past, 9, 1211-1219, 2013 Author(s): A. V. Lozhkin and P. M. Anderson Preliminary analyses of Lake El'gygytgyn sediment indicate a wide range of ecosystem responses to warmer than present climates. While palynological work describing all interglacial vegetation is ongoing, sufficient data exist to compare recent warm events (the postglacial thermal maximum, PGTM, and marine isotope stage, MIS5) with "super" interglaciations (MIS11, MIS31). Palynological assemblages associated with these climatic optima suggest two types of vegetation responses: one dominated by deciduous taxa (PGTM, MIS5) and the second by evergreen conifers (MIS11, MIS31). MIS11 forests show a similarity to modern Picea–Larix–Betula–Alnus forests of Siberia. While dark coniferous forest also characterizes MIS31, the pollen taxa show an affinity to the boreal forest of the lower Amur valley (southern Russian Far East). Despite vegetation differences during these thermal maxima, all glacial–interglacial transitions are alike, being dominated by deciduous woody taxa. Initially Betula shrub tundra established and was replaced by tundra with tree-sized shrubs (PGTM), Betula woodland (MIS5), or Betula–Larix (MIS11, MIS31) forest. The consistent occurrence of deciduous forest and/or high shrub tundra before the incidence of maximum warmth underscores the importance of this biome for modeling efforts. The El'gygytgyn data also suggest a possible elimination or massive reduction of Arctic plant communities under extreme warm-earth scenarios.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2013-04-10
    Description: Climatic impacts of fresh water hosing under Last Glacial Maximum conditions: a multi-model study Climate of the Past, 9, 935-953, 2013 Author(s): M. Kageyama, U. Merkel, B. Otto-Bliesner, M. Prange, A. Abe-Ouchi, G. Lohmann, R. Ohgaito, D. M. Roche, J. Singarayer, D. Swingedouw, and X Zhang Fresh water hosing simulations, in which a fresh water flux is imposed in the North Atlantic to force fluctuations of the Atlantic Meridional Overturning Circulation, have been routinely performed, first to study the climatic signature of different states of this circulation, then, under present or future conditions, to investigate the potential impact of a partial melting of the Greenland ice sheet. The most compelling examples of climatic changes potentially related to AMOC abrupt variations, however, are found in high resolution palaeo-records from around the globe for the last glacial period. To study those more specifically, more and more fresh water hosing experiments have been performed under glacial conditions in the recent years. Here we compare an ensemble constituted by 11 such simulations run with 6 different climate models. All simulations follow a slightly different design, but are sufficiently close in their design to be compared. They all study the impact of a fresh water hosing imposed in the extra-tropical North Atlantic. Common features in the model responses to hosing are the cooling over the North Atlantic, extending along the sub-tropical gyre in the tropical North Atlantic, the southward shift of the Atlantic ITCZ and the weakening of the African and Indian monsoons. On the other hand, the expression of the bipolar see-saw, i.e., warming in the Southern Hemisphere, differs from model to model, with some restricting it to the South Atlantic and specific regions of the southern ocean while others simulate a widespread southern ocean warming. The relationships between the features common to most models, i.e., climate changes over the north and tropical Atlantic, African and Asian monsoon regions, are further quantified. These suggest a tight correlation between the temperature and precipitation changes over the extra-tropical North Atlantic, but different pathways for the teleconnections between the AMOC/North Atlantic region and the African and Indian monsoon regions.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2013-04-10
    Description: Climate and vegetation changes during the Lateglacial and early–middle Holocene at Lake Ledro (southern Alps, Italy) Climate of the Past, 9, 913-933, 2013 Author(s): S. Joannin, B. Vannière, D. Galop, O. Peyron, J. N. Haas, A. Gilli, E. Chapron, S. B. Wirth, F. Anselmetti, M. Desmet, and M. Magny Adding to the on-going debate regarding vegetation recolonisation (more particularly the timing) in Europe and climate change since the Lateglacial, this study investigates a long sediment core (LL081) from Lake Ledro (652 m a.s.l., southern Alps, Italy). Environmental changes were reconstructed using multiproxy analysis (pollen-based vegetation and climate reconstruction, lake levels, magnetic susceptibility and X-ray fluorescence (XRF) measurements) recorded climate and land-use changes during the Lateglacial and early–middle Holocene. The well-dated and high-resolution pollen record of Lake Ledro is compared with vegetation records from the southern and northern Alps to trace the history of tree species distribution. An altitude-dependent progressive time delay of the first continuous occurrence of Abies (fir) and of the Larix (larch) development has been observed since the Lateglacial in the southern Alps. This pattern suggests that the mid-altitude Lake Ledro area was not a refuge and that trees originated from lowlands or hilly areas (e.g. Euganean Hills) in northern Italy. Preboreal oscillations (ca. 11 000 cal BP), Boreal oscillations (ca. 10 200, 9300 cal BP) and the 8.2 kyr cold event suggest a centennial-scale climate forcing in the studied area. Picea (spruce) expansion occurred preferentially around 10 200 and 8200 cal BP in the south-eastern Alps, and therefore reflects the long-lasting cumulative effects of successive boreal and the 8.2 kyr cold event. The extension of Abies is contemporaneous with the 8.2 kyr event, but its development in the southern Alps benefits from the wettest interval 8200–7300 cal BP evidenced in high lake levels, flood activity and pollen-based climate reconstructions. Since ca. 7500 cal BP, a weak signal of pollen-based anthropogenic activities suggest weak human impact. The period between ca. 5700 and ca. 4100 cal BP is considered as a transition period to colder and wetter conditions (particularly during summers) that favoured a dense beech ( Fagus ) forest development which in return caused a distinctive yew ( Taxus ) decline. We conclude that climate was the dominant factor controlling vegetation changes and erosion processes during the early and middle Holocene (up to ca. 4100 cal BP).
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2013-03-09
    Description: On the origin of multidecadal to centennial Greenland temperature anomalies over the past 800 yr Climate of the Past, 9, 583-596, 2013 Author(s): T. Kobashi, D. T. Shindell, K. Kodera, J. E. Box, T. Nakaegawa, and K. Kawamura The surface temperature of the Greenland ice sheet is among the most important climate variables for assessing how climate change may impact human societies due to its association with sea level rise. However, the causes of multidecadal-to-centennial temperature changes in Greenland temperatures are not well understood, largely owing to short observational records. To examine these, we calculated the Greenland temperature anomalies (GTA [G-NH] ) over the past 800 yr by subtracting the standardized northern hemispheric (NH) temperature from the standardized Greenland temperature. This decomposes the Greenland temperature variation into background climate (NH); polar amplification; and regional variability (GTA [G-NH] ). The central Greenland polar amplification factor as expressed by the variance ratio Greenland/NH is 2.6 over the past 161 yr, and 3.3–4.2 over the past 800 yr. The GTA [G-NH] explains 31–35% of the variation of Greenland temperature in the multidecadal-to-centennial time scale over the past 800 yr. We found that the GTA [G-NH] has been influenced by solar-induced changes in atmospheric circulation patterns such as those produced by the North Atlantic Oscillation/Arctic Oscillation (NAO/AO). Climate modeling and proxy temperature records indicate that the anomaly is also likely linked to solar-paced changes in the Atlantic meridional overturning circulation (AMOC) and associated changes in northward oceanic heat transport.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2013-03-15
    Description: A multi-model assessment of last interglacial temperatures Climate of the Past, 9, 699-717, 2013 Author(s): D. J. Lunt, A. Abe-Ouchi, P. Bakker, A. Berger, P. Braconnot, S. Charbit, N. Fischer, N. Herold, J. H. Jungclaus, V. C. Khon, U. Krebs-Kanzow, P. M. Langebroek, G. Lohmann, K. H. Nisancioglu, B. L. Otto-Bliesner, W. Park, M. Pfeiffer, S. J. Phipps, M. Prange, R. Rachmayani, H. Renssen, N. Rosenbloom, B. Schneider, E. J. Stone, K. Takahashi, W. Wei, Q. Yin, and Z. S. Zhang The last interglaciation (~130 to 116 ka) is a time period with a strong astronomically induced seasonal forcing of insolation compared to the present. Proxy records indicate a significantly different climate to that of the modern, in particular Arctic summer warming and higher eustatic sea level. Because the forcings are relatively well constrained, it provides an opportunity to test numerical models which are used for future climate prediction. In this paper we compile a set of climate model simulations of the early last interglaciation (130 to 125 ka), encompassing a range of model complexities. We compare the simulations to each other and to a recently published compilation of last interglacial temperature estimates. We show that the annual mean response of the models is rather small, with no clear signal in many regions. However, the seasonal response is more robust, and there is significant agreement amongst models as to the regions of warming vs cooling. However, the quantitative agreement of the model simulations with data is poor, with the models in general underestimating the magnitude of response seen in the proxies. Taking possible seasonal biases in the proxies into account improves the agreement, but only marginally. However, a lack of uncertainty estimates in the data does not allow us to draw firm conclusions. Instead, this paper points to several ways in which both modelling and data could be improved, to allow a more robust model–data comparison.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2013-03-15
    Description: Amplified bioproductivity during Transition IV (332 000–342 000 yr ago): evidence from the geochemical record of Lake El'gygytgyn Climate of the Past, 9, 679-686, 2013 Author(s): L. Cunningham, H. Vogel, V. Wennrich, O. Juschus, N. Nowaczyk, and P. Rosén To date, terrestrial archives of long-term climatic change within the Arctic have widely been restricted to ice cores from Greenland and, more recently, sediments from Lake El'gygytgyn in northeast Arctic Russia. Sediments from this lake contain a paleoclimate record of glacial-interglacial cycles during the last three million years. Low-resolution studies at this lake have suggested that changes observed during Transition IV (the transition from marine isotope stage (MIS) 10 to MIS 9) are of greater amplitude than any observed since. In this study, geochemical parameters are used to infer past climatic conditions thus providing the first high-resolution analyses of Transition IV from a terrestrial Arctic setting. These results demonstrate that a significant shift in climate was subsequently followed by a rapid increase in biogenic silica (BSi) production. Following this sharp increase, bioproductivity remained high, but variable, for over a thousand years. This study reveals differences in the timing and magnitude of change within the ratio of silica to titanium (Si/Ti) and BSi records that would not be apparent in lower resolution studies. This has significant implications for the increasingly common use of Si/Ti data as an alternative to traditional BSi measurements.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2013-03-15
    Description: HadISDH: an updateable land surface specific humidity product for climate monitoring Climate of the Past, 9, 657-677, 2013 Author(s): K. M. Willett, C. N. Williams Jr., R. J. H. Dunn, P. W. Thorne, S. Bell, M. de Podesta, P. D. Jones, and D. E. Parker HadISDH is a near-global land surface specific humidity monitoring product providing monthly means from 1973 onwards over large-scale grids. Presented herein to 2012, annual updates are anticipated. HadISDH is an update to the land component of HadCRUH, utilising the global high-resolution land surface station product HadISD as a basis. HadISD, in turn, uses an updated version of NOAA's Integrated Surface Database. Intensive automated quality control has been undertaken at the individual observation level, as part of HadISD processing. The data have been subsequently run through the pairwise homogenisation algorithm developed for NCDC's US Historical Climatology Network monthly temperature product. For the first time, uncertainty estimates are provided at the grid-box spatial scale and monthly timescale. HadISDH is in good agreement with existing land surface humidity products in periods of overlap, and with both land air and sea surface temperature estimates. Widespread moistening is shown over the 1973–2012 period. The largest moistening signals are over the tropics with drying over the subtropics, supporting other evidence of an intensified hydrological cycle over recent years. Moistening is detectable with high (95%) confidence over large-scale averages for the globe, Northern Hemisphere and tropics, with trends of 0.089 (0.080 to 0.098) g kg −1 per decade, 0.086 (0.075 to 0.097) g kg −1 per decade and 0.133 (0.119 to 0.148) g kg −1 per decade, respectively. These changes are outside the uncertainty range for the large-scale average which is dominated by the spatial coverage component; station and grid-box sampling uncertainty is essentially negligible on large scales. A very small moistening (0.013 (−0.005 to 0.031) g kg −1 per decade) is found in the Southern Hemisphere, but it is not significantly different from zero and uncertainty is large. When globally averaged, 1998 is the moistest year since monitoring began in 1973, closely followed by 2010, two strong El Niño years. The period in between is relatively flat, concurring with previous findings of decreasing relative humidity over land.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2013-03-16
    Description: Modeling the climatic implications and indicative senses of the Guliya δ 18 O-temperature proxy record to the ocean–atmosphere system during the past 130 ka Climate of the Past, 9, 735-747, 2013 Author(s): D. Xiao, P. Zhao, Y. Wang, and X. Zhou Using an intermediate-complexity UVic Earth System Climate Model (UVic Model), the geographical and seasonal implications and indicative senses of the Guliya temperature proxy found in the Guliya δ 18 O ice core record (hereinafter, the Guliya δ 18 O-temperature proxy record) are investigated under time-dependent orbital and CO 2 forcings with an acceleration factor of 50 over the past 130 ka. The results reveal that the simulated August–September Guliya surface air temperature (SAT) reproduces the 21-ka precession and 43-ka obliquity cycles of the Guliya δ 18 O-temperature proxy record, showing an in-phase variation with the latter. Moreover, the Guliya δ 18 O-temperature proxy record may be also an indicator of the August–September Northern Hemispheric (NH) SAT. Corresponding to the difference between the extreme warm and cold phases of the precession cycle in the Guliya August–September SAT, there are two anomalous patterns in SAT and sea surface temperature (SST). The first anomalous pattern shows increases of SAT and SST toward the Arctic, which is possibly associated with an increase of the NH incoming solar radiation that is caused by the in-phase superposition between the precession and obliquity cycles. The second anomalous pattern shows increases of SAT and SST toward the equator, which is possibly due to a decrease of incoming solar radiation over the NH polar that results from the anti-phase counteraction between the precession and obliquity cycles. The summer (winter) Guliya and NH temperatures are higher (lower) in the warm phases of the August–September Guliya than in their cold phases. Moreover, in August–September, the Guliya SAT is closely related to the North Atlantic SST, in which the Guliya precipitation might act as a "bridge" linking the Guliya SAT and the North Atlantic SST.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2013-03-20
    Description: Direct linking of Greenland and Antarctic ice cores at the Toba eruption (74 ka BP) Climate of the Past, 9, 749-766, 2013 Author(s): A. Svensson, M. Bigler, T. Blunier, H. B. Clausen, D. Dahl-Jensen, H. Fischer, S. Fujita, K. Goto-Azuma, S. J. Johnsen, K. Kawamura, S. Kipfstuhl, M. Kohno, F. Parrenin, T. Popp, S. O. Rasmussen, J. Schwander, I. Seierstad, M. Severi, J. P. Steffensen, R. Udisti, R. Uemura, P. Vallelonga, B. M. Vinther, A. Wegner, F. Wilhelms, and M. Winstrup The Toba eruption that occurred some 74 ka ago in Sumatra, Indonesia, is among the largest volcanic events on Earth over the last 2 million years. Tephra from this eruption has been spread over vast areas in Asia, where it constitutes a major time marker close to the Marine Isotope Stage 4/5 boundary. As yet, no tephra associated with Toba has been identified in Greenland or Antarctic ice cores. Based on new accurate dating of Toba tephra and on accurately dated European stalagmites, the Toba event is known to occur between the onsets of Greenland interstadials (GI) 19 and 20. Furthermore, the existing linking of Greenland and Antarctic ice cores by gas records and by the bipolar seesaw hypothesis suggests that the Antarctic counterpart is situated between Antarctic Isotope Maxima (AIM) 19 and 20. In this work we suggest a direct synchronization of Greenland (NGRIP) and Antarctic (EDML) ice cores at the Toba eruption based on matching of a pattern of bipolar volcanic spikes. Annual layer counting between volcanic spikes in both cores allows for a unique match. We first demonstrate this bipolar matching technique at the already synchronized Laschamp geomagnetic excursion (41 ka BP) before we apply it to the suggested Toba interval. The Toba synchronization pattern covers some 2000 yr in GI-20 and AIM-19/20 and includes nine acidity peaks that are recognized in both ice cores. The suggested bipolar Toba synchronization has decadal precision. It thus allows a determination of the exact phasing of inter-hemispheric climate in a time interval of poorly constrained ice core records, and it allows for a discussion of the climatic impact of the Toba eruption in a global perspective. The bipolar linking gives no support for a long-term global cooling caused by the Toba eruption as Antarctica experiences a major warming shortly after the event. Furthermore, our bipolar match provides a way to place palaeo-environmental records other than ice cores into a precise climatic context.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2013-03-21
    Description: Deglacial and Holocene vegetation and climatic changes in the southern Central Mediterranean from a direct land–sea correlation Climate of the Past, 9, 767-787, 2013 Author(s): S. Desprat, N. Combourieu-Nebout, L. Essallami, M. A. Sicre, I. Dormoy, O. Peyron, G. Siani, V. Bout Roumazeilles, and J. L. Turon Despite a large number of studies, the long-term and millennial to centennial-scale climatic variability in the Mediterranean region during the last deglaciation and the Holocene is still debated, including in the southern Central Mediterranean. In this paper, we present a new marine pollen sequence (core MD04-2797CQ) from the Siculo-Tunisian Strait documenting the regional vegetation and climatic changes in the southern Central Mediterranean during the last deglaciation and the Holocene. The MD04-2797CQ marine pollen sequence shows that semi-desert plants dominated the vegetal cover in the southern Central Mediterranean between 18.2 and 12.3 ka cal BP, indicating prevailing dry conditions during the deglaciation, even during the Greenland Interstadial (GI)-1. Across the transition Greenland Stadial (GS)-1 – Holocene, Asteraceae-Poaceae steppe became dominant till 10.1 ka cal BP. This record underlines with no chronological ambiguity that even though temperatures increased, deficiency in moisture availability persisted into the early Holocene. Temperate trees and shrubs with heath underbrush or maquis expanded between 10.1 and 6.6 ka, corresponding to Sapropel 1 (S1) interval, while Mediterranean plants only developed from 6.6 ka onwards. These changes in vegetal cover show that the regional climate in southern Central Mediterranean was wetter during S1 and became drier during the mid- to late Holocene. Wetter conditions during S1 were likely due to increased winter precipitation while summers remained dry. We suggest, in agreement with published modeling experiments, that the early Holocene increased melting of the Laurentide Ice Sheet in conjunction with weak winter insolation played a major role in the development of winter precipitation maxima in the Mediterranean region in controlling the strength and position of the North Atlantic storm track. Finally, our data provide evidence for centennial-scale vegetation and climatic changes in the southern Central Mediterranean. During the wet early Holocene, alkenone-derived cooling episodes are synchronous with herbaceous composition changes that indicate muted changes in precipitation. In contrast, enhanced aridity episodes, as detected by strong reduction in trees and shrubs, are recorded during the mid- to late Holocene. We show that the impact of the Holocene cooling events on the Mediterranean hydroclimate depend on baseline climate states, i.e. insolation and ice sheet extent, shaping the response of the mid-latitude atmospheric circulation.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2013-03-21
    Description: Influence of Last Glacial Maximum boundary conditions on the global water isotope distribution in an atmospheric general circulation model Climate of the Past, 9, 789-809, 2013 Author(s): T. Tharammal, A. Paul, U. Merkel, and D. Noone To understand the validity of δ 18 O proxy records as indicators of past temperature change, a series of experiments was conducted using an atmospheric general circulation model fitted with water isotope tracers (Community Atmosphere Model version 3.0, IsoCAM). A pre-industrial simulation was performed as the control experiment, as well as a simulation with all the boundary conditions set to Last Glacial Maximum (LGM) values. Results from the pre-industrial and LGM simulations were compared to experiments in which the influence of individual boundary conditions (greenhouse gases, ice sheet albedo and topography, sea surface temperature (SST), and orbital parameters) were changed each at a time to assess their individual impact. The experiments were designed in order to analyze the spatial variations of the oxygen isotopic composition of precipitation (δ 18 O precip ) in response to individual climate factors. The change in topography (due to the change in land ice cover) played a significant role in reducing the surface temperature and δ 18 O precip over North America. Exposed shelf areas and the ice sheet albedo reduced the Northern Hemisphere surface temperature and δ 18 O precip further. A global mean cooling of 4.1 °C was simulated with combined LGM boundary conditions compared to the control simulation, which was in agreement with previous experiments using the fully coupled Community Climate System Model (CCSM3). Large reductions in δ 18 O precip over the LGM ice sheets were strongly linked to the temperature decrease over them. The SST and ice sheet topography changes were responsible for most of the changes in the climate and hence the δ 18 O precip distribution among the simulations.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2013-05-03
    Description: Glacial–interglacial dynamics of Antarctic firn columns: comparison between simulations and ice core air-δ 15 N measurements Climate of the Past, 9, 983-999, 2013 Author(s): E. Capron, A. Landais, D. Buiron, A. Cauquoin, J. Chappellaz, M. Debret, J. Jouzel, M. Leuenberger, P. Martinerie, V. Masson-Delmotte, R. Mulvaney, F. Parrenin, and F. Prié Correct estimation of the firn lock-in depth is essential for correctly linking gas and ice chronologies in ice core studies. Here, two approaches to constrain the firn depth evolution in Antarctica are presented over the last deglaciation: outputs of a firn densification model, and measurements of δ 15 N of N 2 in air trapped in ice core, assuming that δ 15 N is only affected by gravitational fractionation in the firn column. Since the firn densification process is largely governed by surface temperature and accumulation rate, we have investigated four ice cores drilled in coastal (Berkner Island, BI, and James Ross Island, JRI) and semi-coastal (TALDICE and EPICA Dronning Maud Land, EDML) Antarctic regions. Combined with available ice core air-δ 15 N measurements from the EPICA Dome C (EDC) site, the studied regions encompass a large range of surface accumulation rates and temperature conditions. Our δ 15 N profiles reveal a heterogeneous response of the firn structure to glacial–interglacial climatic changes. While firn densification simulations correctly predict TALDICE δ 15 N variations, they systematically fail to capture the large millennial-scale δ 15 N variations measured at BI and the δ 15 N glacial levels measured at JRI and EDML – a mismatch previously reported for central East Antarctic ice cores. New constraints of the EDML gas–ice depth offset during the Laschamp event (~41 ka) and the last deglaciation do not favour the hypothesis of a large convective zone within the firn as the explanation of the glacial firn model–δ 15 N data mismatch for this site. While we could not conduct an in-depth study of the influence of impurities in snow for firnification from the existing datasets, our detailed comparison between the δ 15 N profiles and firn model simulations under different temperature and accumulation rate scenarios suggests that the role of accumulation rate may have been underestimated in the current description of firnification models.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2013-03-09
    Description: Iron fluxes to Talos Dome, Antarctica, over the past 200 kyr Climate of the Past, 9, 597-604, 2013 Author(s): P. Vallelonga, C. Barbante, G. Cozzi, J. Gabrieli, S. Schüpbach, A. Spolaor, and C. Turetta Atmospheric fluxes of iron (Fe) over the past 200 kyr are reported for the coastal Antarctic Talos Dome ice core, based on acid leachable Fe concentrations. Fluxes of Fe to Talos Dome were consistently greater than those at Dome C, with the greatest difference observed during interglacial climates. We observe different Fe flux trends at Dome C and Talos Dome during the deglaciation and early Holocene, attributed to a combination of deglacial activation of dust sources local to Talos Dome and the reorganisation of atmospheric transport pathways with the retreat of the Ross Sea ice shelf. This supports similar findings based on dust particle sizes and fluxes and Rare Earth Element fluxes. We show that Ca and Fe should not be used as quantitative proxies for mineral dust, as they all demonstrate different deglacial trends at Talos Dome and Dome C. Considering that a 20 ppmv decrease in atmospheric CO 2 at the coldest part of the last glacial maximum occurs contemporaneously with the period of greatest Fe and dust flux to Antarctica, we confirm that the maximum contribution of aeolian dust deposition to Southern Ocean sequestration of atmospheric CO 2 is approximately 20 ppmv.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2013-03-12
    Description: Quantification of the Greenland ice sheet contribution to Last Interglacial sea level rise Climate of the Past, 9, 621-639, 2013 Author(s): E. J. Stone, D. J. Lunt, J. D. Annan, and J. C. Hargreaves During the Last Interglacial period (~ 130–115 thousand years ago) the Arctic climate was warmer than today, and global mean sea level was probably more than 6.6 m higher. However, there are large discrepancies in the estimated contributions to this sea level change from various sources (the Greenland and Antarctic ice sheets and smaller ice caps). Here, we determine probabilistically the likely contribution of Greenland ice sheet melt to Last Interglacial sea level rise, taking into account ice sheet model parametric uncertainty. We perform an ensemble of 500 Glimmer ice sheet model simulations forced with climatologies from the climate model HadCM3, and constrain the results with palaeodata from Greenland ice cores. Our results suggest a 90% probability that Greenland ice melt contributed at least 0.6 m, but less than 10% probability that it exceeded 3.5 m, a value which is lower than several recent estimates. Many of these previous estimates, however, did not include a full general circulation climate model that can capture atmospheric circulation and precipitation changes in response to changes in insolation forcing and orographic height. Our combined modelling and palaeodata approach suggests that the Greenland ice sheet is less sensitive to orbital forcing than previously thought, and it implicates Antarctic melt as providing a substantial contribution to Last Interglacial sea level rise. Future work should assess additional uncertainty due to inclusion of basal sliding and the direct effect of insolation on surface melt. In addition, the effect of uncertainty arising from climate model structural design should be taken into account by performing a multi-climate-model comparison.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2013-03-12
    Description: Last interglacial temperature evolution – a model inter-comparison Climate of the Past, 9, 605-619, 2013 Author(s): P. Bakker, E. J. Stone, S. Charbit, M. Gröger, U. Krebs-Kanzow, S. P. Ritz, V. Varma, V. Khon, D. J. Lunt, U. Mikolajewicz, M. Prange, H. Renssen, B. Schneider, and M. Schulz There is a growing number of proxy-based reconstructions detailing the climatic changes that occurred during the last interglacial period (LIG). This period is of special interest, because large parts of the globe were characterized by a warmer-than-present-day climate, making this period an interesting test bed for climate models in light of projected global warming. However, mainly because synchronizing the different palaeoclimatic records is difficult, there is no consensus on a global picture of LIG temperature changes. Here we present the first model inter-comparison of transient simulations covering the LIG period. By comparing the different simulations, we aim at investigating the common signal in the LIG temperature evolution, investigating the main driving forces behind it and at listing the climate feedbacks which cause the most apparent inter-model differences. The model inter-comparison shows a robust Northern Hemisphere July temperature evolution characterized by a maximum between 130–125 ka BP with temperatures 0.3 to 5.3 K above present day. A Southern Hemisphere July temperature maximum, −1.3 to 2.5 K at around 128 ka BP, is only found when changes in the greenhouse gas concentrations are included. The robustness of simulated January temperatures is large in the Southern Hemisphere and the mid-latitudes of the Northern Hemisphere. For these regions maximum January temperature anomalies of respectively −1 to 1.2 K and −0.8 to 2.1 K are simulated for the period after 121 ka BP. In both hemispheres these temperature maxima are in line with the maximum in local summer insolation. In a number of specific regions, a common temperature evolution is not found amongst the models. We show that this is related to feedbacks within the climate system which largely determine the simulated LIG temperature evolution in these regions. Firstly, in the Arctic region, changes in the summer sea-ice cover control the evolution of LIG winter temperatures. Secondly, for the Atlantic region, the Southern Ocean and the North Pacific, possible changes in the characteristics of the Atlantic meridional overturning circulation are crucial. Thirdly, the presence of remnant continental ice from the preceding glacial has shown to be important when determining the timing of maximum LIG warmth in the Northern Hemisphere. Finally, the results reveal that changes in the monsoon regime exert a strong control on the evolution of LIG temperatures over parts of Africa and India. By listing these inter-model differences, we provide a starting point for future proxy-data studies and the sensitivity experiments needed to constrain the climate simulations and to further enhance our understanding of the temperature evolution of the LIG period.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2013-05-17
    Description: Climate of the last millennium: ensemble consistency of simulations and reconstructions Climate of the Past, 9, 1089-1110, 2013 Author(s): O. Bothe, J. H. Jungclaus, D. Zanchettin, and E. Zorita Are simulations and reconstructions of past climate and its variability consistent with each other? We assess the consistency of simulations and reconstructions for the climate of the last millennium under the paradigm of a statistically indistinguishable ensemble. In this type of analysis, the null hypothesis is that reconstructions and simulations are statistically indistinguishable and, therefore, are exchangeable with each other. Ensemble consistency is assessed for Northern Hemisphere mean temperature, Central European mean temperature and for global temperature fields. Reconstructions available for these regions serve as verification data for a set of simulations of the climate of the last millennium performed at the Max Planck Institute for Meteorology. Consistency is generally limited to some sub-domains and some sub-periods. Only the ensemble simulated and reconstructed annual Central European mean temperatures for the second half of the last millennium demonstrates unambiguous consistency. Furthermore, we cannot exclude consistency of an ensemble of reconstructions of Northern Hemisphere temperature with the simulation ensemble mean. If we treat simulations and reconstructions as equitable hypotheses about past climate variability, the found general lack of their consistency weakens our confidence in inferences about past climate evolutions on the considered spatial and temporal scales. That is, our available estimates of past climate evolutions are on an equal footing but, as shown here, inconsistent with each other.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2013-05-17
    Description: Historical and idealized climate model experiments: an intercomparison of Earth system models of intermediate complexity Climate of the Past, 9, 1111-1140, 2013 Author(s): M. Eby, A. J. Weaver, K. Alexander, K. Zickfeld, A. Abe-Ouchi, A. A. Cimatoribus, E. Crespin, S. S. Drijfhout, N. R. Edwards, A. V. Eliseev, G. Feulner, T. Fichefet, C. E. Forest, H. Goosse, P. B. Holden, F. Joos, M. Kawamiya, D. Kicklighter, H. Kienert, K. Matsumoto, I. I. Mokhov, E. Monier, S. M. Olsen, J. O. P. Pedersen, M. Perrette, G. Philippon-Berthier, A. Ridgwell, A. Schlosser, T. Schneider von Deimling, G. Shaffer, R. S. Smith, R. Spahni, A. P. Sokolov, M. Steinacher, K. Tachiiri, K. Tokos, M. Yoshimori, N. Zeng, and F. Zhao Both historical and idealized climate model experiments are performed with a variety of Earth system models of intermediate complexity (EMICs) as part of a community contribution to the Intergovernmental Panel on Climate Change Fifth Assessment Report. Historical simulations start at 850 CE and continue through to 2005. The standard simulations include changes in forcing from solar luminosity, Earth's orbital configuration, CO 2 , additional greenhouse gases, land use, and sulphate and volcanic aerosols. In spite of very different modelled pre-industrial global surface air temperatures, overall 20th century trends in surface air temperature and carbon uptake are reasonably well simulated when compared to observed trends. Land carbon fluxes show much more variation between models than ocean carbon fluxes, and recent land fluxes appear to be slightly underestimated. It is possible that recent modelled climate trends or climate–carbon feedbacks are overestimated resulting in too much land carbon loss or that carbon uptake due to CO 2 and/or nitrogen fertilization is underestimated. Several one thousand year long, idealized, 2 × and 4 × CO 2 experiments are used to quantify standard model characteristics, including transient and equilibrium climate sensitivities, and climate–carbon feedbacks. The values from EMICs generally fall within the range given by general circulation models. Seven additional historical simulations, each including a single specified forcing, are used to assess the contributions of different climate forcings to the overall climate and carbon cycle response. The response of surface air temperature is the linear sum of the individual forcings, while the carbon cycle response shows a non-linear interaction between land-use change and CO 2 forcings for some models. Finally, the preindustrial portions of the last millennium simulations are used to assess historical model carbon-climate feedbacks. Given the specified forcing, there is a tendency for the EMICs to underestimate the drop in surface air temperature and CO 2 between the Medieval Climate Anomaly and the Little Ice Age estimated from palaeoclimate reconstructions. This in turn could be a result of unforced variability within the climate system, uncertainty in the reconstructions of temperature and CO 2 , errors in the reconstructions of forcing used to drive the models, or the incomplete representation of certain processes within the models. Given the forcing datasets used in this study, the models calculate significant land-use emissions over the pre-industrial period. This implies that land-use emissions might need to be taken into account, when making estimates of climate–carbon feedbacks from palaeoclimate reconstructions.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2013-05-16
    Description: Tracking atmospheric and riverine terrigenous supplies variability during the last glacial and the Holocene in central Mediterranean Climate of the Past, 9, 1065-1087, 2013 Author(s): V. Bout-Roumazeilles, N. Combourieu-Nebout, S. Desprat, G. Siani, J.-L. Turon, and L. Essallami A multiproxy study – coupling mineralogical, grain size and geochemical approaches – was used to tentatively retrace eolian and fluvial contributions to sedimentation in the Sicilian–Tunisian Strait since the last glacial. The eolian supply is dominant over the whole interval, excepted during the sapropel S1 when riverine contribution apparently became significant. Saharan contribution increased during the Bølling–Allerød, evidencing the persistence of aridity over North Africa although the northern Mediterranean already experienced moister and warmer conditions. The Younger Dryas is marked by proximal dust inputs, highlighting intense regional eolian activity. A southward migration of dust provenance toward Sahel occurred at the onset of the Holocene, likely resulting from a southward position of the Inter Tropical Convergence Zone that was probably associated with a large-scale atmospheric reorganization. Finally, a peculiar high terrigenous flux associated with drastic modifications of the mineralogical and geochemical sediment signature occurred during the sapropel S1, suggesting the propagation of fine particles derived from major floodings of the Nile River – resulting from enhanced rainfall on northeastern Africa – and their transportation across the Sicilian–Tunisian Strait by intermediate water masses.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2013-05-28
    Description: Temperature changes over the past 2000 yr in China and comparison with the Northern Hemisphere Climate of the Past, 9, 1153-1160, 2013 Author(s): Q. Ge, Z. Hao, J. Zheng, and X. Shao We use principal component regression and partial least squares regression to separately reconstruct a composite series of temperature variations in China, and associated uncertainties, at a decadal resolution over the past 2000 yr. The reconstruction is developed using proxy temperature data with relatively high confidence levels from five regions across China, and using a temperature series from observations by the Chinese Meteorological Administration, covering the period from 1871 to 2000. Relative to the 1851–1950 climatology, our two reconstructions show four warm intervals during AD 1–AD 200, AD 551–AD 760, AD 951–AD 1320, and after AD 1921, and four cold intervals during AD 201–AD 350, AD 441–AD 530, AD 781–AD 950, and AD 1321–AD 1920. The temperatures during AD 981–AD 1100 and AD 1201–AD 1270 are comparable to those of the Present Warm Period, but have an uncertainty of ±0.28 °C to ±0.42 °C at the 95% confidence interval. Temperature variations over China are typically in phase with those of the Northern Hemisphere (NH) after 1000, a period which covers the Medieval Climate Anomaly, the Little Ice Age, and the Present Warm Period. In contrast, a warm period in China during AD 541–AD 740 is not obviously seen in the NH.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2013-05-30
    Description: Abrupt shifts of the Sahara–Sahel boundary during Heinrich stadials Climate of the Past, 9, 1181-1191, 2013 Author(s): J. A. Collins, A. Govin, S. Mulitza, D. Heslop, M. Zabel, J. Hartmann, U. Röhl, and G. Wefer Relict dune fields that are found as far south as 14° N in the modern-day African Sahel are testament to equatorward expansions of the Sahara desert during the Late Pleistocene. However, the discontinuous nature of dune records means that abrupt millennial-timescale climate events are not always resolved. High-resolution marine core studies have identified Heinrich stadials as the dustiest periods of the last glacial in West Africa although the spatial evolution of dust export on millennial timescales has so far not been investigated. We use the major-element composition of four high-resolution marine sediment cores to reconstruct the spatial extent of Saharan-dust versus river-sediment input to the continental margin from West Africa over the last 60 ka. This allows us to map the position of the sediment composition corresponding to the Sahara–Sahel boundary. Our records indicate that the Sahara–Sahel boundary reached its most southerly position (13° N) during Heinrich stadials and hence suggest that these were the periods when the sand dunes formed at 14° N on the continent. Heinrich stadials are associated with cold North Atlantic sea surface temperatures which appear to have triggered abrupt increases of aridity and wind strength in the Sahel. Our study illustrates the influence of the Atlantic meridional overturning circulation on the position of the Sahara–Sahel boundary and on global atmospheric dust loading.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2013-05-18
    Description: An assessment of particle filtering methods and nudging for climate state reconstructions Climate of the Past, 9, 1141-1152, 2013 Author(s): S. Dubinkina and H. Goosse Using the climate model of intermediate complexity LOVECLIM in an idealised framework, we assess three data-assimilation methods for reconstructing the climate state. The methods are a nudging, a particle filter with sequential importance resampling, and a nudging proposal particle filter and the test case corresponds to the climate of the high latitudes of the Southern Hemisphere during the past 150 yr. The data-assimilation methods constrain the model by pseudo-observations of surface air temperature anomalies obtained from the same model, but different initial conditions. All three data-assimilation methods provide with good estimations of surface air temperature and of sea ice concentration, with the nudging proposal particle filter obtaining the highest correlations with the pseudo-observations. When reconstructing variables that are not directly linked to the pseudo-observations such as atmospheric circulation and sea surface salinity, the particle filters have equivalent performance and their correlations are smaller than for surface air temperature reconstructions but still satisfactory for many applications. The nudging, on the contrary, obtains sea surface salinity patterns that are opposite to the pseudo-observations, which is due to a spurious impact of the nudging on vertical exchanges in the ocean.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2013-05-29
    Description: The Irish famine of 1740–1741: famine vulnerability and "climate migration" Climate of the Past, 9, 1161-1179, 2013 Author(s): S. Engler, F. Mauelshagen, J. Werner, and J. Luterbacher The "Great Frost" of 1740 was one of the coldest winters of the eighteenth century and impacted many countries all over Europe. The years 1740–1741 have long been known as a period of general crisis caused by harvest failures, high prices for staple foods, and excess mortality. Vulnerabilities, coping capacities and adaptation processes varied considerably among different countries. This paper investigates the famine of 1740–1741 in Ireland applying a multi-indicator model developed specifically for the integration of an analysis of pre-famine vulnerability, the Famine Vulnerability Analysis Model (FVAM). Our focus is on Ireland, because famine has played a more outstanding role in Irish national history than in any other European country, due to the "Great Famine" of 1845–1852 and its long-term demographic effects. Our analysis shows that Ireland was already particularly vulnerable to famine in the first half of the eighteenth century. During and after the experience of hardship in 1740–1741, many Irish moved within Ireland or left the country entirely. We regard migration as a form of adaptation and argue that Irish migration in 1740–1741 should be considered as a case of climate-induced migration.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2013-06-15
    Description: Contrasting patterns of climatic changes during the Holocene across the Italian Peninsula reconstructed from pollen data Climate of the Past, 9, 1233-1252, 2013 Author(s): O. Peyron, M. Magny, S. Goring, S. Joannin, J.-L. de Beaulieu, E. Brugiapaglia, L. Sadori, G. Garfi, K. Kouli, C. Ioakim, and N. Combourieu-Nebout Lake-level records from Italy suggest that patterns of precipitation in the central Mediterranean during the Holocene were divided between the north and south, but a scarcity of reliable palaeoclimatic records in the north and central-southern Mediterranean means new evidence is needed to validate this hypothesis. We provide robust quantitative estimates of Holocene climate in the Mediterranean region using four high-resolution pollen records from northern (Lakes Ledro and Accesa) and southern (Lakes Trifoglietti and Pergusa) Italy. Multiple methods are used to provide an improved assessment of the palaeoclimatic reconstruction uncertainty. The multi-method approach uses the pollen-based weighted averaging, weighted-average partial least-squares regression, modern analogue technique, and the non-metric multidimensional scaling/generalized additive model methods. We use independent lake-level data to validate the precipitation reconstructions. Our results support a climatic partition between northern and southern Italy during the Holocene, confirming the hypothesis of opposing mid-Holocene summer precipitation regimes in the Mediterranean. The northern sites (Ledro, Accesa) are characterized by minima for summer precipitation and lake levels during the early to mid-Holocene, while the southern sites (Trifoglietti, Pergusa) are marked by maxima for precipitation and lake levels at the same time. Both pollen-inferred precipitation and lake levels indicate the opposite pattern during the late Holocene, a maximum in northern Italy and a minimum in southern Italy/Sicily. Summer temperatures show the same partitioning, with warm conditions in northern Italy and cool conditions in Sicily during the early/mid-Holocene, and a reversal during the late Holocene. Comparison with marine cores from the Aegean Sea suggests that climate trends and gradients observed in Italy show strong similarities with those recognized from the Aegean Sea, and more generally speaking in the eastern Mediterranean.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2013-06-20
    Description: Synoptic climatology and recent climate trends at Lake El'gygytgyn Climate of the Past, 9, 1271-1286, 2013 Author(s): M. Nolan, E. N. Cassano, and J. J. Cassano We developed a synoptic climatology for Lake El'gygytgyn, Chukotka Russia, and explored modern climate trends affecting air temperatures there to aid in paleoclimate reconstructions of a 3.6 million-year-old sediment core taken from the lake. Our self-organized mapping (SOM) approach identified 35 synoptic weather patterns, based on sea level pressure, that span the range of synoptic patterns influencing the study domain over the 1961–2009 NCEP/NCAR analysis period. We found strong seasonality in modern weather patterns, with summer weather primarily characterized by weak low pressure systems over the Arctic Ocean or Siberia and winter weather primarily characterized by strong high pressure over the Arctic Ocean and strong low pressure in the Pacific Ocean. In general, the primary source of variation in air temperatures came from the dominant patterns in each season, which we identify in the text, and nearly all of the dominant weather patterns here have shown increasing temperatures. We found that nearly all of the warming in mean annual temperature over the past 50 yr (about 3 °C) occurred during sub-freezing conditions on either side of summer (that is, spring and fall). Here we found that the most summer-like weather patterns (low pressures to the north) in the shoulder seasons were responsible for much of the change. Finally, we compared the warmest 15 yr of the record (1995–2009) to the coolest (1961–1975) and found that changes in thermodynamics of weather were about 3 to 300 times more important than changes in frequency of weather patterns in controlling temperature variations during spring and fall, respectively. That is, in the modern record, general warming (local or advected) is more important by orders of magnitude than changes in storm tracks in controlling air temperature at Lake El'gygytgyn. We conclude with a discussion of how these results may be relevant to the paleoclimate reconstruction efforts and how this relevancy could be tested further.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2013-06-21
    Description: Transient simulations of the carbon and nitrogen dynamics in northern peatlands: from the Last Glacial Maximum to the 21st century Climate of the Past, 9, 1287-1308, 2013 Author(s): R. Spahni, F. Joos, B. D. Stocker, M. Steinacher, and Z. C. Yu The development of northern high-latitude peatlands played an important role in the carbon (C) balance of the land biosphere since the Last Glacial Maximum (LGM). At present, carbon storage in northern peatlands is substantial and estimated to be 500 ± 100 Pg C (1 Pg C = 10 15 g C). Here, we develop and apply a peatland module embedded in a dynamic global vegetation and land surface process model (LPX-Bern 1.0). The peatland module features a dynamic nitrogen cycle, a dynamic C transfer between peatland acrotelm (upper oxic layer) and catotelm (deep anoxic layer), hydrology- and temperature-dependent respiration rates, and peatland specific plant functional types. Nitrogen limitation down-regulates average modern net primary productivity over peatlands by about half. Decadal acrotelm-to-catotelm C fluxes vary between −20 and +50 g C m −2 yr −1 over the Holocene. Key model parameters are calibrated with reconstructed peat accumulation rates from peat-core data. The model reproduces the major features of the peat core data and of the observation-based modern circumpolar soil carbon distribution. Results from a set of simulations for possible evolutions of northern peat development and areal extent show that soil C stocks in modern peatlands increased by 365–550 Pg C since the LGM, of which 175–272 Pg C accumulated between 11 and 5 kyr BP. Furthermore, our simulations suggest a persistent C sequestration rate of 35–50 Pg C per 1000 yr in present-day peatlands under current climate conditions, and that this C sink could either sustain or turn towards a source by 2100 AD depending on climate trajectories as projected for different representative greenhouse gas concentration pathways.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2013-07-04
    Description: Towards a quasi-complete reconstruction of past atmospheric aerosol load and composition (organic and inorganic) over Europe since 1920 inferred from Alpine ice cores Climate of the Past, 9, 1403-1416, 2013 Author(s): S. Preunkert and M. Legrand Seasonally resolved chemical ice core records available from the Col du Dôme glacier (4250 m elevation, French Alps), are here used to reconstruct past aerosol load and composition of the free European troposphere from before World War II to present. Available ice core records include inorganic (Na + , Ca 2+ , NH 4 + , Cl − , NO 3 − , and SO 4 2− ) and organic (carboxylates, HCHO, humic-like substances, dissolved organic carbon, water-insoluble organic carbon, and black carbon) compounds and fractions that permit reconstructing the key aerosol components and their changes over the past. It is shown that the atmospheric load of submicron aerosol has been increased by a factor of 3 from the 1921–1951 to 1971–1988 years, mainly as a result of a large increase of sulfate (a factor of 5), ammonium and water-soluble organic aerosol (a factor of 3). Thus, not only growing anthropogenic emissions of sulfur dioxide and ammonia have caused the enhancement of the atmospheric aerosol load but also biogenic emissions producing water-soluble organic aerosol. This unexpected change of biospheric source of organic aerosol after 1950 needs to be considered and further investigated in scenarios dealing with climate forcing by atmospheric aerosol.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2013-07-06
    Description: Megalake Chad impact on climate and vegetation during the late Pliocene and the mid-Holocene Climate of the Past, 9, 1417-1430, 2013 Author(s): C. Contoux, A. Jost, G. Ramstein, P. Sepulchre, G. Krinner, and M. Schuster Given the growing evidence for megalakes in the geological record, assessing their impact on climate and vegetation is important for the validation of palaeoclimate simulations and therefore the accuracy of model–data comparison in lacustrine environments. Megalake Chad (MLC) occurrences are documented not only for the mid-Holocene but also for the Mio-Pliocene (Schuster et al., 2009). At this time, the surface covered by water would have reached up to ~350 000 km 2 (Ghienne et al., 2002; Schuster et al., 2005; Leblanc et al., 2006), making it an important evaporation source, possibly modifying climate and vegetation in the Chad Basin. We investigated the impact of such a giant continental water area in two different climatic backgrounds within the Paleoclimate Model Intercomparison Project phase 3 (PMIP3): the late Pliocene (3.3 to 3 Ma, i.e. the mid-Piacenzian warm period) and the mid-Holocene (6 kyr BP). In all simulations including MLC, precipitation is drastically reduced above the lake surface because deep convection is inhibited by overlying colder air. Meanwhile, convective activity is enhanced around MLC because of the wind increase generated by the flat surface of the megalake, transporting colder and moister air towards the eastern shore of the lake. The effect of MLC on precipitation and temperature is not sufficient to widely impact vegetation patterns. Nevertheless, tropical savanna is present in the Chad Basin in all climatic configurations, even without MLC presence, showing that the climate itself is the driver of favourable environments for sustainable hominid habitats.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2013-07-13
    Description: Preface ''Holocene changes in environment and climate in the central Mediterranean as reflected by lake and marine records'' Climate of the Past, 9, 1447-1454, 2013 Author(s): M. Magny and N. Combourieu Nebout
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...