ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (274)
  • Copernicus  (274)
  • American Institute of Physics
  • American Meteorological Society
  • Blackwell Publishing Ltd
  • De Gruyter
  • Elsevier
  • Hindawi
  • Institute of Electrical and Electronics Engineers
  • Molecular Diversity Preservation International
  • Springer Nature
  • Taylor & Francis
  • 2020-2022
  • 2010-2014  (274)
  • 1985-1989
  • 1960-1964
  • 2012  (274)
  • 1986
  • 1960
  • Climate of the Past  (137)
  • 62018
  • Geosciences  (274)
  • Sociology
  • Architecture, Civil Engineering, Surveying
Collection
  • Articles  (274)
Publisher
  • Copernicus  (274)
  • American Institute of Physics
  • American Meteorological Society
  • Blackwell Publishing Ltd
  • De Gruyter
  • +
Years
  • 2020-2022
  • 2010-2014  (274)
  • 1985-1989
  • 1960-1964
Year
Topic
  • Geosciences  (274)
  • Sociology
  • Architecture, Civil Engineering, Surveying
  • 1
    Publication Date: 2012-03-10
    Description: Fire history in western Patagonia from paired tree-ring fire-scar and charcoal records Climate of the Past, 8, 451-466, 2012 Author(s): A. Holz, S. Haberle, T. T. Veblen, R. De Pol-Holz, and J. Southon Fire history reconstructions are typically based on tree ages and tree-ring fire scars or on charcoal in sedimentary records from lakes or bogs, but rarely on both. In this study of fire history in western Patagonia (47–48° S) in southern South America (SSA) we compared three sedimentary charcoal records collected in bogs with tree-ring fire-scar data collected at 13 nearby sample sites. We examined the temporal and spatial correspondence between the two fire proxies and also compared them to published charcoal records from distant sites in SSA, and with published proxy reconstructions of regional climate variability and large-scale climate modes. Two of our three charcoal records record fire activity for the last 4 ka yr and one for the last 11 ka yr. For the last ca. 400 yr, charcoal accumulation peaks tend to coincide with high fire activity in the tree-ring fire scar records, but the charcoal records failed to detect some of the fire activity recorded by tree rings. Potentially, this discrepancy reflects low-severity fires that burn in herbaceous and other fine fuels without depositing charcoal in the sedimentary record. Periods of high fire activity tended to be synchronous across sample areas, across proxy types, and with proxy records of regional climatic variability as well as major climate drivers. Fire activity throughout the Holocene in western Patagonia has responded to regional climate variation affecting a broad region of southern South America that is teleconnected to both tropical- and high-latitude climate drivers-El Niño-Southern Oscillation and the Southern Annular Mode. An early Holocene peak in fire activity pre-dates any known human presence in our study area, and consequently implicates lightning as the ignition source. In contrast, the increased fire activity during the 20th century, which was concomitantly recorded by charcoal from all the sampled bogs and at all fire-scar sample sites, is attributed to human-set fires and is outside the range of variability characteristic of these ecosystems over many centuries and probably millennia.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-03-10
    Description: Exploring errors in paleoclimate proxy reconstructions using Monte Carlo simulations: paleotemperature from mollusk and coral geochemistry Climate of the Past, 8, 433-450, 2012 Author(s): M. Carré, J. P. Sachs, J. M. Wallace, and C. Favier Quantitative reconstructions of the past climate statistics from geochemical coral or mollusk records require quantified error bars in order to properly interpret the amplitude of the climate change and to perform meaningful comparisons with climate model outputs. We introduce here a more precise categorization of reconstruction errors, differentiating the error bar due to the proxy calibration uncertainty from the standard error due to sampling and variability in the proxy formation process. Then, we propose a numerical approach based on Monte Carlo simulations with surrogate proxy-derived climate records. These are produced by perturbing a known time series in a way that mimics the uncertainty sources in the proxy climate reconstruction. A freely available algorithm, MoCo, was designed to be parameterized by the user and to calculate realistic systematic and standard errors of the mean and the variance of the annual temperature, and of the mean and the variance of the temperature seasonality reconstructed from marine accretionary archive geochemistry. In this study, the algorithm is used for sensitivity experiments in a case study to characterize and quantitatively evaluate the sensitivity of systematic and standard errors to sampling size, stochastic uncertainty sources, archive-specific biological limitations, and climate non-stationarity. The results of the experiments yield an illustrative example of the range of variations of the standard error and the systematic error in the reconstruction of climate statistics in the Eastern Tropical Pacific. Thus, we show that the sample size and the climate variability are the main sources of the standard error. The experiments allowed the identification and estimation of systematic bias that would not otherwise be detected because of limited modern datasets. Our study demonstrates that numerical simulations based on Monte Carlo analyses are a simple and powerful approach to improve the understanding of the proxy records. We show that the standard error for the climate statistics linearly increases with the climate variability, which means that the accuracy of the error estimated by MoCo is limited by the climate non-stationarity.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-03-16
    Description: Precipitation as the main driver of Neoglacial fluctuations of Gualas glacier, Northern Patagonian Icefield Climate of the Past, 8, 519-534, 2012 Author(s): S. Bertrand, K. A. Hughen, F. Lamy, J.-B. W. Stuut, F. Torrejón, and C. B. Lange Glaciers are frequently used as indicators of climate change. However, the link between past glacier fluctuations and climate variability is still highly debated. Here, we investigate the mid- to late-Holocene fluctuations of Gualas Glacier, one of the northernmost outlet glaciers of the Northern Patagonian Icefield, using a multi-proxy sedimentological and geochemical analysis of a 15 m long fjord sediment core from Golfo Elefantes, Chile, and historical documents from early Spanish explorers. Our results show that the core can be sub-divided into three main lithological units that were deposited under very different hydrodynamic conditions. Between 5400 and 4180 cal yr BP and after 750 cal yr BP, sedimentation in Golfo Elefantes was characterized by the rapid deposition of fine silt, most likely transported by fluvio-glacial processes. By contrast, the sediment deposited between 4130 and 850 cal yr BP is composed of poorly sorted sand that is free of shells. This interval is particularly marked by high magnetic susceptibility values and Zr concentrations, and likely reflects a major advance of Gualas glacier towards Golfo Elefantes during the Neoglaciation. Several thin silt layers observed in the upper part of the core are interpreted as secondary fluctuations of Gualas glacier during the Little Ice Age, in agreement with historical and dendrochronological data. Our interpretation of the Golfo Elefantes glaciomarine sediment record in terms of fluctuations of Gualas glacier is in excellent agreement with the glacier chronology proposed for the Southern Patagonian Icefield, which is based on terrestrial (moraine) deposits. By comparing our results with independent proxy records of precipitation and sea surface temperature, we suggest that the fluctuations of Gualas glacier during the last 5400 yr were mainly driven by changes in precipitation in the North Patagonian Andes.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Copernicus
    Publication Date: 2012-03-16
    Description: A critical humidity threshold for monsoon transitions Climate of the Past, 8, 535-544, 2012 Author(s): J. Schewe, A. Levermann, and H. Cheng Monsoon systems around the world are governed by the so-called moisture-advection feedback. Here we show that, in a minimal conceptual model, this feedback implies a critical threshold with respect to the atmospheric specific humidity q o over the ocean adjacent to the monsoon region. If q o falls short of this critical value q o c , monsoon rainfall over land cannot be sustained. Such a case could occur if evaporation from the ocean was reduced, e.g. due to low sea surface temperatures. Within the restrictions of the conceptual model, we estimate q o c from present-day reanalysis data for four major monsoon systems, and demonstrate how this concept can help understand abrupt variations in monsoon strength on orbital timescales as found in proxy records.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-12-21
    Description: Possible earthquake trigger for 6th century mass wasting deposit at Lake Ohrid (Macedonia/Albania) Climate of the Past, 8, 2069-2078, 2012 Author(s): B. Wagner, A. Francke, R. Sulpizio, G. Zanchetta, K. Lindhorst, S. Krastel, H. Vogel, J. Rethemeyer, G. Daut, A. Grazhdani, B. Lushaj, and S. Trajanovski Lake Ohrid shared by the Republics of Albania and Macedonia is formed by a tectonically active graben within the south Balkans and suggested to be the oldest lake in Europe. Several studies have shown that the lake provides a valuable record of climatic and environmental changes and a distal tephrostratigraphic record of volcanic eruptions from Italy. Fault structures identified in seismic data demonstrate that sediments have also the potential to record tectonic activity in the region. Here, we provide an example of linking seismic and sedimentological information with tectonic activity and historical documents. Historical documents indicate that a major earthquake destroyed the city of Lychnidus (today: city of Ohrid) in the early 6th century AD. Multichannel seismic profiles, parametric sediment echosounder profiles, and a 10.08 m long sediment record from the western part of the lake indicate a 2 m thick mass wasting deposit, which is tentatively correlated with this earthquake. The mass wasting deposit is chronologically well constrained, as it directly overlays the AD 472/AD 512 tephra. Moreover, radiocarbon dates and cross correlation with other sediment sequences with similar geochemical characteristics of the Holocene indicate that the mass wasting event took place prior to the onset of the Medieval Warm Period, and is attributed it to one of the known earthquakes in the region in the early 6th century AD.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2012-12-22
    Description: Sea-ice dynamics strongly promote Snowball Earth initiation and destabilize tropical sea-ice margins Climate of the Past, 8, 2079-2092, 2012 Author(s): A. Voigt and D. S. Abbot The Snowball Earth bifurcation, or runaway ice-albedo feedback, is defined for particular boundary conditions by a critical CO 2 and a critical sea-ice cover (SI), both of which are essential for evaluating hypotheses related to Neoproterozoic glaciations. Previous work has shown that the Snowball Earth bifurcation, denoted as (CO 2 , SI) * , differs greatly among climate models. Here, we study the effect of bare sea-ice albedo, sea-ice dynamics and ocean heat transport on (CO 2 , SI) * in the atmosphere–ocean general circulation model ECHAM5/MPI-OM with Marinoan (~ 635 Ma) continents and solar insolation (94% of modern). In its standard setup, ECHAM5/MPI-OM initiates a~Snowball Earth much more easily than other climate models at (CO 2 , SI) * ≈ (500 ppm, 55%). Replacing the model's standard bare sea-ice albedo of 0.75 by a much lower value of 0.45, we find (CO 2 , SI) * ≈ (204 ppm, 70%). This is consistent with previous work and results from net evaporation and local melting near the sea-ice margin. When we additionally disable sea-ice dynamics, we find that the Snowball Earth bifurcation can be pushed even closer to the equator and occurs at a hundred times lower CO 2 : (CO 2 , SI) * ≈ (2 ppm, 85%). Therefore, the simulation of sea-ice dynamics in ECHAM5/MPI-OM is a dominant determinant of its high critical CO 2 for Snowball initiation relative to other models. Ocean heat transport has no effect on the critical sea-ice cover and only slightly decreases the critical CO 2 . For disabled sea-ice dynamics, the state with 85% sea-ice cover is stabilized by the Jormungand mechanism and shares characteristics with the Jormungand climate states. However, there is no indication of the Jormungand bifurcation and hysteresis in ECHAM5/MPI-OM. The state with 85% sea-ice cover therefore is a soft Snowball state rather than a true Jormungand state. Overall, our results demonstrate that differences in sea-ice dynamics schemes can be at least as important as differences in sea-ice albedo for causing the spread in climate models' estimates of the Snowball Earth bifurcation. A detailed understanding of Snowball Earth initiation therefore requires future research on sea-ice dynamics to determine which model's simulation is most realistic.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2012-12-08
    Description: Exploring the controls on element ratios in middle Eocene samples of the benthic foraminifera Oridorsalis umbonatus Climate of the Past, 8, 1957-1971, 2012 Author(s): C. F. Dawber and A. K. Tripati Culturing studies and empirically based core top calibrations have been used to infer that elemental ratios in benthic foraminifera can be used as proxies to reconstruct past variations in bottom water temperature and saturation state (Δ [CO 3 2− ]). However the mechanisms linking elemental ratios to these parameters are poorly constrained. Here, we explore the environmental parameters influencing the incorporation of B, Li, Sr and Mg in Oridorsalis umbonatus in early Cenozoic sediments from Ocean Drilling Program Site 1209. We investigate the influence of middle Eocene variations in intermediate water Δ [CO 3 2− ] using relationships developed from core top samples. The fidelity of bottom water Δ[CO 3 2− ] reconstructions based on single element ratios is assessed by comparing the X/Ca-based reconstructions to each other and to carbon cycle proxy records (benthic foraminifera δ 13 C, organic carbon content, foraminifera dissolution indices), and a seawater δ 18 O reconstruction for Site 1209. Discrepancies in the reconstructed Δ[CO 3 2− ] values based on these different metal ratios suggest that there are still gaps in our understanding of the parameters influencing X/Ca and demonstrate that caution is required when interpreting palaeo-reconstructions that are derived from a single elemental ratio. The downcore record of O. umbonatus Mg/Ca does not exhibit any similarities with the Li/Ca, B/Ca and Sr/Ca records, suggesting that the environmental parameters influencing Mg/Ca may be different for this species, consistent with temperature as the strongest control on this elemental ratio. This hypothesis is supported by the coefficients of multiple linear regression models on published Mg/Ca data. An incomplete understanding of the controls on elemental incorporation into benthic foraminifera hinders our ability to confidently quantify changes in saturation state using single X/Ca reconstructions over a range of timescales.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2012-12-08
    Description: An ocean–ice coupled response during the last glacial: a view from a marine isotopic stage 3 record south of the Faeroe Shetland Gateway Climate of the Past, 8, 1997-2017, 2012 Author(s): J. Zumaque, F. Eynaud, S. Zaragosi, F. Marret, K. M. Matsuzaki, C. Kissel, D. M. Roche, B. Malaizé, E. Michel, I. Billy, T. Richter, and E. Palis The rapid climatic variability characterising the Marine Isotopic Stage (MIS) 3 (~60–30 cal ka BP) provides key issues to understand the atmosphere–ocean–cryosphere dynamics. Here we investigate the response of sea-surface paleoenvironments to the MIS3 climatic variability through the study of a high resolution oceanic sedimentological archive (core MD99-2281, 60°21' N; 09°27' W; 1197 m water depth), retrieved during the MD114-IMAGES (International Marine Global Change Study) cruise from the southern part of the Faeroe Bank. This sector was under the proximal influence of European ice sheets (Fennoscandian Ice Sheet to the East, British Irish Ice Sheet to the South) during the last glacial and thus probably responded to the MIS3 pulsed climatic changes. We conducted a multi-proxy analysis of core MD99-2281, including magnetic properties, x-ray fluorescence measurements, characterisation of the coarse (〉150 μm) lithic fraction (grain concentration) and the analysis of selected biogenic proxies (assemblages and stable isotope ratio of calcareous planktonic foraminifera, dinoflagellate cyst – e.g. dinocyst – assemblages). Results presented here are focussed on the dinocyst response, this proxy providing the reconstruction of past sea-surface hydrological conditions, qualitatively as well as quantitatively (e.g. transfer function sensu lato ). Our study documents a very coherent and sensitive oceanic response to the MIS3 rapid climatic variability: strong fluctuations, matching those of stadial/interstadial climatic oscillations as depicted by Greenland ice cores, are recorded in the MD99-2281 archive. Proxies of terrigeneous and detritical material suggest increases in continental advection during Greenland Stadials (including Heinrich events), the latter corresponding also to southward migrations of polar waters. At the opposite, milder sea-surface conditions seem to develop during Greenland Interstadials. After 30 ka, reconstructed paleohydrological conditions evidence strong shifts in SST: this increasing variability seems consistent with the hypothesised coalescence of the British and Fennoscandian ice sheets at that time, which could have directly influenced sea-surface environments in the vicinity of core MD99-2281.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2012-12-11
    Description: Radiative effects of ozone on the climate of a Snowball Earth Climate of the Past, 8, 2019-2029, 2012 Author(s): J. Yang, Y. Hu, and W. R. Peltier Some geochemical and geological evidence has been interpreted to suggest that the concentration of atmospheric oxygen was only 1–10 % of the present level in the time interval from 750 to 580 million years ago when several nearly global glaciations or Snowball Earth events occurred. This low concentration of oxygen would have been accompanied by a lower ozone concentration than exists at present. Since ozone is a greenhouse gas, this change in ozone concentration would alter surface temperature, and thereby could have an important influence on the climate of the Snowball Earth. Previous works that have focused either on initiation or deglaciation of the proposed Snowball Earth has not taken the radiative effects of ozone changes into account. We address this issue herein by performing a series of simulations using an atmospheric general circulation model with various ozone concentrations. Our simulation results demonstrate that, as ozone concentration is uniformly reduced from 100 % to 50 %, surface temperature decreases by approximately 0.8 K at the Equator, with the largest decreases located in the middle latitudes reaching as high as 2.5 K. When ozone concentration is reduced and its vertical and horizontal distribution is simultaneously modulated, surface temperature decreases by 0.4–1.0 K at the Equator and by 4–7 K in polar regions. These results here have uncertainties, depending on model parameterizations of cloud, surface snow albedo, and relevant feedback processes, while they are qualitatively consistent with radiative-convective model results that do not involve such parameterizations and feedbacks. These results suggest that ozone variations could have had a moderate impact on the climate during the Neoproterozoic glaciations.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2012-10-06
    Description: Mechanisms for European summer temperature response to solar forcing over the last millennium Climate of the Past, 8, 1487-1495, 2012 Author(s): D. Swingedouw, L. Terray, J. Servonnat, and J. Guiot A simulation of the last millennium is compared to a recent spatio-temporal reconstruction of summer temperature over Europe. The focus is on the response to solar forcing over the pre-industrial era. Although the correlation between solar forcing and the reconstruction remains small, the spatial regression over solar forcing shows statistically significant regions. The meridional pattern of this regression is found to be similar in the model and in the reconstruction. This pattern exhibits a large warming over Northern and Mediterranean Europe and a lesser amplitude response over Central and Eastern Europe. The mechanisms explaining this pattern in the simulation are mainly related to evapotranspiration fluxes. It is shown that the evapotranspiration is larger in summer over Central and Eastern Europe when solar forcing increases, while it decreases over the Mediterranean area. The explanation for the evapotranspiration increase over Central and Eastern Europe is found in the increase of winter precipitation there, leading to a soil moisture increase in spring. As a consequence, the evapotranspiration is larger in summer, which leads to an increase in cloud cover over this region, reducing the surface shortwave flux there and leading to less warming. Over the Mediterranean area, the surface shortwave flux increases with solar forcing, the soil becomes dryer and the evapotranspiration is reduced in summer leading to a larger increase in temperature. This effect appears to be overestimated in the model as compared to the reconstruction. Finally, the warming of Northern Europe is related to the albedo feedback due to sea-ice cover retreat with increasing solar forcing.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...