ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (610)
  • Copernicus  (610)
  • American Association for the Advancement of Science
  • 2010-2014  (610)
  • 1980-1984
  • 1965-1969
  • 1960-1964
  • 1925-1929
  • 2014  (610)
  • The Cryosphere  (164)
  • Climate of the Past  (141)
  • 62018
  • 92597
  • 1
    Publication Date: 2014-12-17
    Description: Laminated sediments in the Bering Sea reveal atmospheric teleconnections to Greenland climate on millennial to decadal timescales during the last deglaciation Climate of the Past, 10, 2215-2236, 2014 Author(s): H. Kuehn, L. Lembke-Jene, R. Gersonde, O. Esper, F. Lamy, H. Arz, G. Kuhn, and R. Tiedemann During the last glacial termination, the upper North Pacific Ocean underwent dramatic and rapid changes in oxygenation that lead to the transient intensification of oxygen minimum zones (OMZs), recorded by the widespread occurrence of laminated sediments on circum-Pacific continental margins. We present a new laminated sediment record from the mid-depth (1100 m) northern Bering Sea margin that provides insight into these deglacial OMZ maxima with exceptional, decadal-scale detail. Combined ultrahigh-resolution micro-X-ray-fluorescence (micro-XRF) data and sediment facies analysis of laminae reveal an alternation between predominantly terrigenous and diatom-dominated opal sedimentation. The diatomaceous laminae are interpreted to represent spring/summer productivity events related to the retreating sea ice margin. We identified five laminated sections in the deglacial part of our site. Lamina counts were carried out on these sections and correlated with the Bølling–Allerød and Preboreal phases in the North Greenland Ice Core (NGRIP) oxygen isotope record, indicating an annual deposition of individual lamina couplets (varves). The observed rapid decadal intensifications of anoxia, in particular within the Bølling–Allerød, are tightly coupled to short-term warm events through increases in regional export production. This dependence of laminae formation on warmer temperatures is underlined by a correlation with published Bering Sea sea surface temperature records and δ 18 O data of planktic foraminifera from the Gulf of Alaska. The rapidity of the observed changes strongly implies a close atmospheric teleconnection between North Pacific and North Atlantic regions. We suggest that concomitant increases in export production and subsequent remineralization of organic matter in the Bering Sea, in combination with oxygen-poor waters entering the Being Sea, drove down oxygen concentrations to values below 0.1 mL L −1 and caused laminae preservation. Calculated benthic–planktic ventilation ages show no significant variations throughout the last deglaciation, indicating that changes in formation rates or differing sources of North Pacific mid-depth waters are not prime candidates for strengthening the OMZ at our site. The age models established by our correlation procedure allow for the determination of calendar age control points for the Bølling–Allerød and the Preboreal that are independent of the initial radiocarbon-based chronology. Resulting surface reservoir ages range within 730–990 yr during the Bølling–Allerød, 800–1100 yr in the Younger Dryas, and 765–775 yr for the Preboreal.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-12-18
    Description: Implication of methodological uncertainties for mid-Holocene sea surface temperature reconstructions Climate of the Past, 10, 2237-2252, 2014 Author(s): I. Hessler, S. P. Harrison, M. Kucera, C. Waelbroeck, M.-T. Chen, C. Anderson, A. de Vernal, B. Fréchette, A. Cloke-Hayes, G. Leduc, and L. Londeix We present and examine a multi-sensor global compilation of mid-Holocene (MH) sea surface temperatures (SST), based on Mg/Ca and alkenone palaeothermometry and reconstructions obtained using planktonic foraminifera and organic-walled dinoflagellate cyst census counts. We assess the uncertainties originating from using different methodologies and evaluate the potential of MH SST reconstructions as a benchmark for climate-model simulations. The comparison between different analytical approaches (time frame, baseline climate) shows the choice of time window for the MH has a negligible effect on the reconstructed SST pattern, but the choice of baseline climate affects both the magnitude and spatial pattern of the reconstructed SSTs. Comparison of the SST reconstructions made using different sensors shows significant discrepancies at a regional scale, with uncertainties often exceeding the reconstructed SST anomaly. Apparent patterns in SST may largely be a reflection of the use of different sensors in different regions. Overall, the uncertainties associated with the SST reconstructions are generally larger than the MH anomalies. Thus, the SST data currently available cannot serve as a target for benchmarking model simulations. Further evaluations of potential subsurface and/or seasonal artifacts that may contribute to obscure the MH SST reconstructions are urgently needed to provide reliable benchmarks for model evaluations.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-12-17
    Description: Are seasonal calving dynamics forced by buttressing from ice mélange or undercutting by melting? Outcomes from full-Stokes simulations of Store Glacier, West Greenland The Cryosphere, 8, 2353-2365, 2014 Author(s): J. Todd and P. Christoffersen We use a full-Stokes 2-D model (Elmer/Ice) to investigate the flow and calving dynamics of Store Glacier, a fast-flowing outlet glacier in West Greenland. Based on a new, subgrid-scale implementation of the crevasse depth calving criterion, we perform two sets of simulations: one to identify the primary forcing mechanisms and another to constrain future stability. We find that the mixture of icebergs and sea ice, known as ice mélange or sikussak, is principally responsible for the observed seasonal advance of the ice front. On the other hand, the effect of submarine melting on the calving rate of Store Glacier appears to be limited. Sensitivity analysis demonstrates that the glacier's calving dynamics are sensitive to seasonal perturbation, but are stable on interannual timescales due to the strong topographic control on the flow regime. Our results shed light on the dynamics of calving glaciers and may help explain why neighbouring glaciers do not necessarily respond synchronously to changes in atmospheric and oceanic forcing.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-12-17
    Description: Deglaciation of the Caucasus Mountains, Russia/Georgia, in the 21st century observed with ASTER satellite imagery and aerial photography The Cryosphere, 8, 2367-2379, 2014 Author(s): M. Shahgedanova, G. Nosenko, S. Kutuzov, O. Rototaeva, and T. Khromova Changes in the map area of 498 glaciers located on the Main Caucasus ridge (MCR) and on Mt. Elbrus in the Greater Caucasus Mountains (Russia and Georgia) were assessed using multispectral ASTER and panchromatic Landsat imagery with 15 m spatial resolution in 1999/2001 and 2010/2012. Changes in recession rates of glacier snouts between 1987–2001 and 2001–2010 were investigated using aerial photography and ASTER imagery for a sub-sample of 44 glaciers. In total, glacier area decreased by 4.7 ± 2.1% or 19.2 ± 8.7 km 2 from 407.3 ± 5.4 km 2 to 388.1 ± 5.2 km 2 . Glaciers located in the central and western MCR lost 13.4 ± 7.3 km 2 (4.7 ± 2.5%) in total or 8.5 km 2 (5.0 ± 2.4%) and 4.9 km 2 (4.1 ± 2.7%) respectively. Glaciers on Mt. Elbrus, although located at higher elevations, lost 5.8 ± 1.4 km 2 (4.9 ± 1.2%) of their total area. The recession rates of valley glacier termini increased between 1987–2000/01 and 2000/01–2010 (2000 for the western MCR and 2001 for the central MCR and Mt.~Elbrus) from 3.8 ± 0.8, 3.2 ± 0.9 and 8.3 ± 0.8 m yr −1 to 11.9 ± 1.1, 8.7 ± 1.1 and 14.1 ± 1.1 m yr −1 in the central and western MCR and on Mt. Elbrus respectively. The highest rate of increase in glacier termini retreat was registered on the southern slope of the central MCR where it has tripled. A positive trend in summer temperatures forced glacier recession, and strong positive temperature anomalies in 1998, 2006, and 2010 contributed to the enhanced loss of ice. An increase in accumulation season precipitation observed in the northern MCR since the mid-1980s has not compensated for the effects of summer warming while the negative precipitation anomalies, observed on the southern slope of the central MCR in the 1990s, resulted in stronger glacier wastage.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Copernicus
    Publication Date: 2014-11-06
    Description: Glacier-like forms on Mars The Cryosphere, 8, 2047-2061, 2014 Author(s): B. Hubbard, C. Souness, and S. Brough More than 1300 glacier-like forms (GLFs) are located in Mars' mid-latitudes. These GLFs are predominantly composed of ice–dust mixtures and are visually similar to terrestrial valley glaciers, showing signs of downhill viscous deformation and an expanded former extent. However, several fundamental aspects of their behavior are virtually unknown, including temporal and spatial variations in mass balance, ice motion, landscape erosion and deposition, and hydrology. Here, we investigate the physical glaciology of martian GLFs. We use satellite images of specific examples and case studies to build on existing knowledge relating to (i) GLF current and former extent, exemplified via a GLF located in Phlegra Montes; (ii) indicators of GLF motion, focusing on the presence of surface crevasses on several GLFs; (iii) processes of GLF debris transfer, focusing on mapping and interpreting boulder trains on one GLF located in Protonilus Mensae, the analysis of which suggests a best-estimate mean GLF flow speed of 7.5 mm a −1 ; and (iv) GLF hydrology, focusing on supra-GLF gulley networks. On the basis of this information, we summarize the current state of knowledge of the glaciology of martian GLFs and identify future research avenues.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-11-06
    Description: Modeling the elastic transmission of tidal stresses to great distances inland in channelized ice streams The Cryosphere, 8, 2007-2029, 2014 Author(s): J. Thompson, M. Simons, and V. C. Tsai Geodetic surveys suggest that ocean tides can modulate the motion of Antarctic ice streams, even at stations many tens of kilometers inland from the grounding line. These surveys suggest that ocean tidal stresses can perturb ice stream motion at distances about an order of magnitude farther inland than tidal flexure of the ice stream alone. Recent models exploring the role of tidal perturbations in basal shear stress are primarily one- or two-dimensional, with the impact of the ice stream margins either ignored or parameterized. Here, we use two- and three-dimensional finite-element modeling to investigate transmission of tidal stresses in ice streams and the impact of considering more realistic, three-dimensional ice stream geometries. Using Rutford Ice Stream as a real-world comparison, we demonstrate that the assumption that elastic tidal stresses in ice streams propagate large distances inland fails for channelized glaciers due to an intrinsic, exponential decay in the stress caused by resistance at the ice stream margins. This behavior is independent of basal conditions beneath the ice stream and cannot be fit to observations using either elastic or nonlinear viscoelastic rheologies without nearly complete decoupling of the ice stream from its lateral margins. Our results suggest that a mechanism external to the ice stream is necessary to explain the tidal modulation of stresses far upstream of the grounding line for narrow ice streams. We propose a hydrologic model based on time-dependent variability in till strength to explain transmission of tidal stresses inland of the grounding line. This conceptual model can reproduce observations from Rutford Ice Stream.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-11-06
    Description: Fluctuations of a Greenlandic tidewater glacier driven by changes in atmospheric forcing: observations and modelling of Kangiata Nunaata Sermia, 1859–present The Cryosphere, 8, 2031-2045, 2014 Author(s): J. M. Lea, D. W. F. Mair, F. M. Nick, B. R. Rea, D. van As, M. Morlighem, P. W. Nienow, and A. Weidick Many tidewater glaciers in Greenland are known to have undergone significant retreat during the last century following their Little Ice Age maxima. Where it is possible to reconstruct glacier change over this period, they provide excellent records for comparison to climate records, as well as calibration/validation for numerical models. These glacier change records therefore allow for tests of numerical models that seek to simulate tidewater glacier behaviour over multi-decadal to centennial timescales. Here we present a detailed record of behaviour from Kangiata Nunaata Sermia (KNS), SW Greenland, between 1859 and 2012, and compare it against available oceanographic and atmospheric temperature data between 1871 and 2012. We also use these records to evaluate the ability of a well-established one-dimensional flow-band model to replicate behaviour for the observation period. The record of terminus change demonstrates that KNS has advanced/retreated in phase with atmosphere and ocean climate anomalies averaged over multi-annual to decadal timescales. Results from an ensemble of model runs demonstrate that observed dynamics can be replicated. Model runs that provide a reasonable match to observations always require a significant atmospheric forcing component, but do not necessarily require an oceanic forcing component. Although the importance of oceanic forcing cannot be discounted, these results demonstrate that changes in atmospheric forcing are likely to be a primary driver of the terminus fluctuations of KNS from 1859 to 2012. We propose that the detail and length of the record presented makes KNS an ideal site for model validation exercises investigating links between climate, calving rates, and tidewater glacier dynamics.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-11-11
    Description: Oxygen stable isotopes during the Last Glacial Maximum climate: perspectives from data–model ( i LOVECLIM) comparison Climate of the Past, 10, 1939-1955, 2014 Author(s): T. Caley, D. M. Roche, C. Waelbroeck, and E. Michel We use the fully coupled atmosphere–ocean three-dimensional model of intermediate complexity i LOVECLIM to simulate the climate and oxygen stable isotopic signal during the Last Glacial Maximum (LGM, 21 000 years). By using a model that is able to explicitly simulate the sensor (δ 18 O), results can be directly compared with data from climatic archives in the different realms. Our results indicate that i LOVECLIM reproduces well the main feature of the LGM climate in the atmospheric and oceanic components. The annual mean δ 18 O in precipitation shows more depleted values in the northern and southern high latitudes during the LGM. The model reproduces very well the spatial gradient observed in ice core records over the Greenland ice sheet. We observe a general pattern toward more enriched values for continental calcite δ 18 O in the model at the LGM, in agreement with speleothem data. This can be explained by both a general atmospheric cooling in the tropical and subtropical regions and a reduction in precipitation as confirmed by reconstruction derived from pollens and plant macrofossils. Data–model comparison for sea surface temperature indicates that i LOVECLIM is capable to satisfyingly simulate the change in oceanic surface conditions between the LGM and present. Our data–model comparison for calcite δ 18 O allows investigating the large discrepancies with respect to glacial temperatures recorded by different microfossil proxies in the North Atlantic region. The results argue for a strong mean annual cooling in the area south of Iceland and Greenland between the LGM and present (〉 6 °C), supporting the foraminifera transfer function reconstruction but in disagreement with alkenones and dinocyst reconstructions. The data–model comparison also reveals that large positive calcite δ 18 O anomaly in the Southern Ocean may be explained by an important cooling, although the driver of this pattern is unclear. We deduce a large positive δ 18 Osw anomaly for the north Indian Ocean that contrasts with a large negative δ 18 Osw anomaly in the China Sea between the LGM and the present. This pattern may be linked to changes in the hydrological cycle over these regions. Our simulation of the deep ocean suggests that changes in δ 18 Osw between the LGM and the present are not spatially homogeneous. This is supported by reconstructions derived from pore fluids in deep-sea sediments. The model underestimates the deep ocean cooling thus biasing the comparison with benthic calcite δ 18 O data. Nonetheless, our data–model comparison supports a heterogeneous cooling of a few degrees (2–4 °C) in the LGM Ocean.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-11-28
    Description: A new approach to mapping permafrost and change incorporating uncertainties in ground conditions and climate projections The Cryosphere, 8, 2177-2194, 2014 Author(s): Y. Zhang, I. Olthof, R. Fraser, and S. A. Wolfe Spatially detailed information on permafrost distribution and change with climate is important for land use planning, infrastructure development, and environmental assessments. However, the required soil and surficial geology maps in the North are coarse, and projected climate scenarios vary widely. Considering these uncertainties, we propose a new approach to mapping permafrost distribution and change by integrating remote sensing data, field measurements, and a process-based model. Land cover types from satellite imagery are used to capture the general land conditions and to improve the resolution of existing permafrost maps. For each land cover type, field observations are used to estimate the probabilities of different ground conditions. A process-based model is used to quantify the evolution of permafrost for each ground condition under three representative climate scenarios (low, medium, and high warming). From the model results, the probability of permafrost occurrence and the most likely permafrost conditions are determined. We apply this approach at 20 m resolution to a large area in Northwest Territories, Canada. Mapped permafrost conditions are in agreement with field observations and other studies. The data requirements, model robustness, and computation time are reasonable, and this approach may serve as a practical means to mapping permafrost and changes at high resolution in other regions.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-11-29
    Description: Sensitivity of East African savannah vegetation to historical moisture-balance variation Climate of the Past, 10, 2067-2080, 2014 Author(s): I. Ssemmanda, V. Gelorini, and D. Verschuren Fossil pollen records provide key insight into the sensitivity of terrestrial ecosystems to climate change. However, tracing vegetation response to relatively modest historical climate fluctuations is often complicated by the overriding signature of anthropogenic landscape disturbance. Here we use high-resolution pollen data from a ~200-year lake-sediment record in open wooded savannah of Queen Elizabeth National Park (southwestern Uganda) to assess the sensitivity of the tropical lowland grassland–forest transition to historical, decade-scale moisture-balance fluctuations. Specifically we trace vegetation response to three episodes of higher average rainfall dated to the 1820s–1830s, ca. 1865–1890 and from 1962 to around 2000. Our pollen data indeed reveal a sequence of three wet periods, separated by two drier periods. During the inferred wetter episodes we find increases in the percent pollen abundance of trees and shrubs from moist semi-deciduous forest ( Allophylus , Macaranga , Alchornea , Celtis ), riparian forest ( Phoenix reclinata ) and wooded savannah ( Acalypha , Rhus -type vulgaris , Combretaceae/Melastomataceae) as well as taxa common in the local rift-valley grasslands ( Acacia , Ficus ), together creating strong temporary reductions in Poaceae pollen (to 45–55% of the terrestrial pollen sum). During intervening dry periods, Poaceae pollen attained values of 65–75%, and dryland herbs such as Commelina , Justicia -type odora and Chenopodiaceae expanded at the expense of Asteraceae, Solanum -type, Swertia usambarensis -type, and (modestly so) Urticaceae. Noting that the overall richness of arboreal taxa remained high but their combined abundance low, we conclude that the landscape surrounding Lake Chibwera has been an open wooded savannah throughout the past 200 years, with historical moisture-balance variation exerting modest effects on local tree cover (mostly the abundance of Acacia and Ficus ) and the occurrence of damp soil areas promoting Phoenix reclinata . The strong apparent expansion of true forest trees during wet episodes can be explained partly by enhanced pollen input via a temporarily activated upland stream. Pollen from exotic trees and cultural indicators appears from the 1970s onwards, but their combined influence fails to mask the signature of natural vegetation dynamics in the pollen record.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2014-11-29
    Description: CREST (Climate REconstruction SofTware): a probability density function (PDF)-based quantitative climate reconstruction method Climate of the Past, 10, 2081-2098, 2014 Author(s): M. Chevalier, R. Cheddadi, and B. M. Chase Several methods currently exist to quantitatively reconstruct palaeoclimatic variables from fossil botanical data. Of these, probability density function (PDF)-based methods have proven valuable as they can be applied to a wide range of plant assemblages. Most commonly applied to fossil pollen data, their performance, however, can be limited by the taxonomic resolution of the pollen data, as many species may belong to a given pollen type. Consequently, the climate information associated with different species cannot always be precisely identified, resulting in less-accurate reconstructions. This can become particularly problematic in regions of high biodiversity. In this paper, we propose a novel PDF-based method that takes into account the different climatic requirements of each species constituting the broader pollen type. PDFs are fitted in two successive steps, with parametric PDFs fitted first for each species and then a combination of those individual species PDFs into a broader single PDF to represent the pollen type as a unit. A climate value for the pollen assemblage is estimated from the likelihood function obtained after the multiplication of the pollen-type PDFs, with each being weighted according to its pollen percentage. To test its performance, we have applied the method to southern Africa as a regional case study and reconstructed a suite of climatic variables (e.g. winter and summer temperature and precipitation, mean annual aridity, rainfall seasonality). The reconstructions are shown to be accurate for both temperature and precipitation. Predictable exceptions were areas that experience conditions at the extremes of the regional climatic spectra. Importantly, the accuracy of the reconstructed values is independent of the vegetation type where the method is applied or the number of species used. The method used in this study is publicly available in a software package entitled CREST (Climate REconstruction SofTware) and will provide the opportunity to reconstruct quantitative estimates of climatic variables even in areas with high geographical and botanical diversity.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2014-11-29
    Description: Seasonal cycle and long-term trend of solar energy fluxes through Arctic sea ice The Cryosphere, 8, 2219-2233, 2014 Author(s): S. Arndt and M. Nicolaus Arctic sea ice has not only decreased in volume during the last decades, but has also changed in its physical properties towards a thinner and more seasonal ice cover. These changes strongly impact the energy budget, and might affect the ice-associated ecosystems. In this study, we quantify solar shortwave fluxes through sea ice for the entire Arctic during all seasons. To focus on sea-ice-related processes, we exclude fluxes through open water, scaling linearly with sea ice concentration. We present a new parameterization of light transmittance through sea ice for all seasons as a function of variable sea ice properties. The maximum monthly mean solar heat flux under the ice of 30 × 10 5 Jm −2 occurs in June, enough heat to melt 0.3 m of sea ice. Furthermore, our results suggest that 96% of the annual solar heat input through sea ice occurs during only a 4-month period from May to August. Applying the new parameterization to remote sensing and reanalysis data from 1979 to 2011, we find an increase in transmitted light of 1.5% yr −1 for all regions. This corresponds to an increase in potential sea ice bottom melt of 63% over the 33-year study period. Sensitivity studies reveal that the results depend strongly on the timing of melt onset and the correct classification of ice types. Assuming 2 weeks earlier melt onset, the annual transmitted solar radiation to the upper ocean increases by 20%. Continuing the observed transition from a mixed multi-year/first-year sea ice cover to a seasonal ice cover results in an increase in light transmittance by an additional 18%.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2014-12-03
    Description: Post-LIA glacier changes along a latitudinal transect in the Central Italian Alps The Cryosphere, 8, 2235-2252, 2014 Author(s): R. Scotti, F. Brardinoni, and G. B. Crosta The variability of glacier response to atmospheric temperature rise in different topo-climatic settings is still a matter of debate. To address this question in the Central Italian Alps, we compile a post-LIA (Little Ice Age) multitemporal glacier inventory (1860–1954–1990–2003–2007) along a latitudinal transect that originates north of the continental divide in the Livigno Mountains and extends south through the Disgrazia and Orobie ranges, encompassing continental-to-maritime climatic settings. In these sub-regions, we examine the area change of 111 glaciers. Overall, the total glacierized area has declined from 34.1 to 10.1 km 2 , with a substantial increase in the number of small glaciers due to fragmentation. The average annual decrease (AAD) in glacier area has risen by about 1 order of magnitude from 1860–1990 (Livigno: 0.45; Orobie: 0.42; and Disgrazia: 0.39 % a −1 ) to 1990–2007 (Livigno: 3.08; Orobie: 2.44; and Disgrazia: 2.27 % a −1 ). This ranking changes when considering glaciers smaller than 0.5 km 2 only (i.e., we remove the confounding caused by large glaciers in Disgrazia), so that post-1990 AAD follows the latitudinal gradient and Orobie glaciers stand out (Livigno: 4.07; Disgrazia: 3.57; and Orobie: 2.47 % a −1 ). More recent (2007–2013) field-based mass balances in three selected small glaciers confirm post-1990 trends showing the consistently highest retreat in continental Livigno and minimal area loss in maritime Orobie, with Disgrazia displaying transitional behavior. We argue that the recent resilience of glaciers in Orobie is a consequence of their decoupling from synoptic atmospheric temperature trends, a decoupling that arises from the combination of local topographic configuration (i.e., deep, north-facing cirques) and high winter precipitation, which ensures high snow-avalanche supply, as well as high summer shading and sheltering. Our hypothesis is further supported by the lack of correlations between glacier change and glacier attributes in Orobie, as well as by the higher variability in ELA,sub〉0 positioning, post-LIA glacier change, and interannual mass balances, as we move southward along the transect.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2014-01-15
    Description: Hindcasting the continuum of Dansgaard–Oeschger variability: mechanisms, patterns and timing Climate of the Past, 10, 63-77, 2014 Author(s): L. Menviel, A. Timmermann, T. Friedrich, and M. H. England Millennial-scale variability associated with Dansgaard–Oeschger events is arguably one of the most puzzling climate phenomena ever discovered in paleoclimate archives. Here, we set out to elucidate the underlying dynamics by conducting a transient global hindcast simulation with a 3-D intermediate complexity earth system model covering the period 50 to 30 ka BP. The model is forced by time-varying external boundary conditions (greenhouse gases, orbital forcing, and ice-sheet orography and albedo) and anomalous North Atlantic freshwater fluxes, which mimic the effects of changing northern hemispheric ice volume on millennial timescales. Together these forcings generate a realistic global climate trajectory, as demonstrated by an extensive model/paleo data comparison. Our results are consistent with the idea that variations in ice-sheet calving and subsequent changes of the Atlantic Meridional Overturning Circulation were the main drivers for the continuum of glacial millennial-scale variability seen in paleorecords across the globe.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2014-01-15
    Description: A decade (2002–2012) of supraglacial lake volume estimates across Russell Glacier, West Greenland The Cryosphere, 8, 107-121, 2014 Author(s): A. A. W. Fitzpatrick, A. L. Hubbard, J. E. Box, D. J. Quincey, D. van As, A. P. B. Mikkelsen, S. H. Doyle, C. F. Dow, B. Hasholt, and G. A. Jones Supraglacial lakes represent an ephemeral storage buffer for meltwater runoff and lead to significant, yet short-lived, episodes of ice-flow acceleration by decanting large meltwater and energy fluxes into the ice sheet's hydrological system. Here, a methodology for calculating lake volume is used to quantify storage and drainage across Russell Glacier, West Greenland, between 2002 and 2012. Using 502 MODIS scenes, water volume at ~200 seasonally occurring lakes was derived using a depth–reflectance relationship, which was independently calibrated and field validated against lake bathymetry. The inland expansion of lakes is strongly correlated with air temperature: during the record melt years of 2010 and 2012, lakes formed and drained earlier, attaining their maximum volume 38 and 20 days earlier than the 11 yr mean, as well as occupying a greater area and forming at higher elevations (〉 1800 m) than previously. Despite occupying under 2% of the study area, lakes delay the transmission of up to 7–13% of the bulk meltwater discharged. Although the results are subject to an observational bias caused by periods of cloud cover, we estimate that across Russell Glacier, 28% of supraglacial lakes drain rapidly ( 〈 4 days). Clustering of such events in space and time suggests a synoptic trigger mechanism. Further, we find no evidence to support a unifying critical size or depth-dependent drainage threshold.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2014-01-17
    Description: Water mass evolution of the Greenland Sea since late glacial times Climate of the Past, 10, 123-136, 2014 Author(s): M. M. Telesiński, R. F. Spielhagen, and H. A. Bauch Four sediment cores from the central and northern Greenland Sea basin, a crucial area for the renewal of North Atlantic deep water, were analyzed for planktic foraminiferal fauna, planktic and benthic stable oxygen and carbon isotopes as well as ice-rafted debris to reconstruct the environmental variability in the last 23 kyr. During the Last Glacial Maximum, the Greenland Sea was dominated by cold and sea-ice bearing surface water masses. Meltwater discharges from the surrounding ice sheets affected the area during the deglaciation, influencing the water mass circulation. During the Younger Dryas interval the last major freshwater event occurred in the region. The onset of the Holocene interglacial was marked by an increase in the advection of Atlantic Water and a rise in sea surface temperatures (SST). Although the thermal maximum was not reached simultaneously across the basin, benthic isotope data indicate that the rate of overturning circulation reached a maximum in the central Greenland Sea around 7 ka. After 6–5 ka a SST cooling and increasing sea-ice cover is noted. Conditions during this so-called "Neoglacial" cooling, however, changed after 3 ka, probably due to enhanced sea-ice expansion, which limited the deep convection. As a result, a well stratified upper water column amplified the warming of the subsurface waters in the central Greenland Sea, which were fed by increased inflow of Atlantic Water from the eastern Nordic Seas. Our data reveal that the Holocene oceanographic conditions in the Greenland Sea did not develop uniformly. These variations were a response to a complex interplay between the Atlantic and Polar water masses, the rate of sea-ice formation and melting and its effect on vertical convection intensity during times of Northern Hemisphere insolation changes.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2014-01-17
    Description: Similarity estimators for irregular and age-uncertain time series Climate of the Past, 10, 107-122, 2014 Author(s): K. Rehfeld and J. Kurths Paleoclimate time series are often irregularly sampled and age uncertain, which is an important technical challenge to overcome for successful reconstruction of past climate variability and dynamics. Visual comparison and interpolation-based linear correlation approaches have been used to infer dependencies from such proxy time series. While the first is subjective, not measurable and not suitable for the comparison of many data sets at a time, the latter introduces interpolation bias, and both face difficulties if the underlying dependencies are nonlinear. In this paper we investigate similarity estimators that could be suitable for the quantitative investigation of dependencies in irregular and age-uncertain time series. We compare the Gaussian-kernel-based cross-correlation (gXCF, Rehfeld et al., 2011) and mutual information (gMI, Rehfeld et al., 2013) against their interpolation-based counterparts and the new event synchronization function (ESF). We test the efficiency of the methods in estimating coupling strength and coupling lag numerically, using ensembles of synthetic stalagmites with short, autocorrelated, linear and nonlinearly coupled proxy time series, and in the application to real stalagmite time series. In the linear test case, coupling strength increases are identified consistently for all estimators, while in the nonlinear test case the correlation-based approaches fail. The lag at which the time series are coupled is identified correctly as the maximum of the similarity functions in around 60–55% (in the linear case) to 53–42% (for the nonlinear processes) of the cases when the dating of the synthetic stalagmite is perfectly precise. If the age uncertainty increases beyond 5% of the time series length, however, the true coupling lag is not identified more often than the others for which the similarity function was estimated. Age uncertainty contributes up to half of the uncertainty in the similarity estimation process. Time series irregularity contributes less, particularly for the adapted Gaussian-kernel-based estimators and the event synchronization function. The introduced link strength concept summarizes the hypothesis test results and balances the individual strengths of the estimators: while gXCF is particularly suitable for short and irregular time series, gMI and the ESF can identify nonlinear dependencies. ESF could, in particular, be suitable to study extreme event dynamics in paleoclimate records. Programs to analyze paleoclimatic time series for significant dependencies are included in a freely available software toolbox.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2014-01-17
    Description: Sediment transport processes across the Tibetan Plateau inferred from robust grain-size end members in lake sediments Climate of the Past, 10, 91-106, 2014 Author(s): E. Dietze, F. Maussion, M. Ahlborn, B. Diekmann, K. Hartmann, K. Henkel, T. Kasper, G. Lockot, S. Opitz, and T. Haberzettl Grain-size distributions offer powerful proxies of past environmental conditions that are related to sediment sorting processes. However, they are often of multimodal character because sediments can get mixed during deposition. To facilitate the use of grain size as palaeoenvironmental proxy, this study aims to distinguish the main detrital processes that contribute to lacustrine sedimentation across the Tibetan Plateau using grain-size end-member modelling analysis. Between three and five robust grain-size end-member subpopulations were distinguished at different sites from similarly–likely end-member model runs. Their main modes were grouped and linked to common sediment transport and depositional processes that can be associated with contemporary Tibetan climate (precipitation patterns and lake ice phenology, gridded wind and shear stress data from the High Asia Reanalysis) and local catchment configurations. The coarse sands and clays with grain-size modes 〉250 μm and
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2014-01-21
    Description: Limited response of peatland CH 4 emissions to abrupt Atlantic Ocean circulation changes in glacial climates Climate of the Past, 10, 137-154, 2014 Author(s): P. O. Hopcroft, P. J. Valdes, R. Wania, and D. J. Beerling Ice-core records show that abrupt Dansgaard–Oeschger (D–O) climatic warming events of the last glacial period were accompanied by large increases in the atmospheric CH 4 concentration (up to 200 ppbv). These abrupt changes are generally regarded as arising from the effects of changes in the Atlantic Ocean meridional overturning circulation and the resultant climatic impact on natural CH 4 sources, in particular wetlands. We use two different ecosystem models of wetland CH 4 emissions to simulate northern CH 4 sources forced with coupled general circulation model simulations of five different time periods during the last glacial to investigate the potential influence of abrupt ocean circulation changes on atmospheric CH 4 levels during D–O events. The simulated warming over Greenland of 7–9 °C in the different time periods is at the lower end of the range of 11–15 °C derived from ice cores, but is associated with strong impacts on the hydrological cycle, especially over the North Atlantic and Europe during winter. We find that although the sensitivity of CH 4 emissions to the imposed climate varies significantly between the two ecosystem emissions models, the model simulations do not reproduce sufficient emission changes to satisfy ice-core observations of CH 4 increases during abrupt events. The inclusion of permafrost physics and peatland carbon cycling in one model (LPJ-WHyMe) increases the climatic sensitivity of CH4 4 emissions relative to the Sheffield Dynamic Global Vegetation Model (SDGVM) model, which does not incorporate these processes. For equilibrium conditions this additional sensitivity is mostly due to differences in carbon cycle processes, whilst the increased sensitivity to the imposed abrupt warmings is also partly due to the effects of freezing on soil thermodynamics. These results suggest that alternative scenarios of climatic change could be required to explain the abrupt glacial CH 4 variations, perhaps with a more dominant role for tropical wetland CH 4 sources.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2014-01-24
    Description: Holocene sub-centennial evolution of Atlantic water inflow and sea ice distribution in the western Barents Sea Climate of the Past, 10, 181-198, 2014 Author(s): S. M. P. Berben, K. Husum, P. Cabedo-Sanz, and S. T. Belt A marine sediment core (JM09-KA11-GC) from the Kveithola Trough at the western Barents Sea margin has been investigated in order to reconstruct sub-surface temperatures and sea ice distribution at a sub-centennial resolution throughout the Holocene. The relationship between past variability of Atlantic water inflow and sea ice distribution has been established by measurement of planktic foraminifera, stable isotopes and biomarkers from sea ice diatoms and phytoplankton. Throughout the early Holocene (11 900–7300 cal yr BP), the foraminiferal fauna is dominated by the polar species Neogloboquadrina pachyderma (sinistral) and the biomarkers show an influence of seasonal sea ice. Between 10 900 and 10 700 cal yr BP, a clear cooling is shown both by fauna and stable isotope data corresponding to the so-called Preboreal Oscillation. After 7300 cal yr BP, the sub-polar Turborotalita quinqueloba becomes the most frequent species, reflecting a stable Atlantic water inflow. Sub-surface temperatures reach 6 °C and biomarker data indicate mainly ice-free conditions. During the last 1100 cal yr BP, biomarker abundances and distributions show the reappearance of low-frequency seasonal sea ice and the planktic fauna show a reduced salinity in the sub-surface water. No apparent temperature decrease is observed during this interval, but the rapidly fluctuating fauna and biomarker distributions indicate more unstable conditions.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2014-01-24
    Description: Late Pliocene lakes and soils: a global data set for the analysis of climate feedbacks in a warmer world Climate of the Past, 10, 167-180, 2014 Author(s): M. J. Pound, J. Tindall, S. J. Pickering, A. M. Haywood, H. J. Dowsett, and U. Salzmann The global distribution of late Pliocene soils and lakes has been reconstructed using a synthesis of geological data. These reconstructions are then used as boundary conditions for the Hadley Centre General Circulation Model (HadCM3) and the BIOME4 mechanistic vegetation model. By combining our novel soil and lake reconstructions with a fully coupled climate model we are able to explore the feedbacks of soils and lakes on the climate of the late Pliocene. Our experiments reveal regionally confined changes of local climate and vegetation in response to the new boundary conditions. The addition of late Pliocene soils has the largest influence on surface air temperatures, with notable increases in Australia, the southern part of northern Africa and in Asia. The inclusion of late Pliocene lakes increases precipitation in central Africa and at the locations of lakes in the Northern Hemisphere. When combined, the feedbacks on climate from late Pliocene lakes and soils improve the data to model fit in western North America and the southern part of northern Africa.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2014-01-16
    Description: Evaluating the dominant components of warming in Pliocene climate simulations Climate of the Past, 10, 79-90, 2014 Author(s): D. J. Hill, A. M. Haywood, D. J. Lunt, S. J. Hunter, F. J. Bragg, C. Contoux, C. Stepanek, L. Sohl, N. A. Rosenbloom, W.-L. Chan, Y. Kamae, Z. Zhang, A. Abe-Ouchi, M. A. Chandler, A. Jost, G. Lohmann, B. L. Otto-Bliesner, G. Ramstein, and H. Ueda The Pliocene Model Intercomparison Project (PlioMIP) is the first coordinated climate model comparison for a warmer palaeoclimate with atmospheric CO 2 significantly higher than pre-industrial concentrations. The simulations of the mid-Pliocene warm period show global warming of between 1.8 and 3.6 °C above pre-industrial surface air temperatures, with significant polar amplification. Here we perform energy balance calculations on all eight of the coupled ocean–atmosphere simulations within PlioMIP Experiment 2 to evaluate the causes of the increased temperatures and differences between the models. In the tropics simulated warming is dominated by greenhouse gas increases, with the cloud component of planetary albedo enhancing the warming in most of the models, but by widely varying amounts. The responses to mid-Pliocene climate forcing in the Northern Hemisphere midlatitudes are substantially different between the climate models, with the only consistent response being a warming due to increased greenhouse gases. In the high latitudes all the energy balance components become important, but the dominant warming influence comes from the clear sky albedo, only partially offset by the increases in the cooling impact of cloud albedo. This demonstrates the importance of specified ice sheet and high latitude vegetation boundary conditions and simulated sea ice and snow albedo feedbacks. The largest components in the overall uncertainty are associated with clouds in the tropics and polar clear sky albedo, particularly in sea ice regions. These simulations show that albedo feedbacks, particularly those of sea ice and ice sheets, provide the most significant enhancements to high latitude warming in the Pliocene.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2014-01-11
    Description: Mending Milankovitch's theory: obliquity amplification by surface feedbacks Climate of the Past, 10, 41-50, 2014 Author(s): C. R. Tabor, C. J. Poulsen, and D. Pollard Milankovitch's theory states that orbitally induced changes in high-latitude summer insolation dictate the waxing and waning of ice sheets. Accordingly, precession should dominate the ice-volume response because it most strongly modulates summer insolation. However, early Pleistocene (2.588–0.781 Ma) ice-volume proxy records vary almost exclusively at the frequency of the obliquity cycle. To explore this paradox, we use an Earth system model coupled with a dynamic ice sheet to separate the climate responses to idealized transient orbits of obliquity and precession that maximize insolation changes. Our results show that positive surface albedo feedbacks between high-latitude annual-mean insolation, ocean heat flux and sea-ice coverage, and boreal forest/tundra exchange enhance the ice-volume response to obliquity forcing relative to precession forcing. These surface feedbacks, in combination with modulation of the precession cycle power by eccentricity, help explain the dominantly 41 kyr cycles in global ice volume of the early Pleistocene.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2014-01-11
    Description: A satellite-based snow cover climatology (1985–2011) for the European Alps derived from AVHRR data The Cryosphere, 8, 73-90, 2014 Author(s): F. Hüsler, T. Jonas, M. Riffler, J. P. Musial, and S. Wunderle Seasonal snow cover is of great environmental and socio-economic importance for the European Alps. Therefore a high priority has been assigned to quantifying its temporal and spatial variability. Complementary to land-based monitoring networks, optical satellite observations can be used to derive spatially comprehensive information on snow cover extent. For understanding long-term changes in alpine snow cover extent, the data acquired by the Advanced Very High Resolution Radiometer (AVHRR) sensors mounted onboard the National Oceanic and Atmospheric Association (NOAA) and Meteorological Operational satellite (MetOp) platforms offer a unique source of information. In this paper, we present the first space-borne 1 km snow extent climatology for the Alpine region derived from AVHRR data over the period 1985–2011. The objective of this study is twofold: first, to generate a new set of cloud-free satellite snow products using a specific cloud gap-filling technique and second, to examine the spatiotemporal distribution of snow cover in the European Alps over the last 27 yr from the satellite perspective. For this purpose, snow parameters such as snow onset day, snow cover duration (SCD), melt-out date and the snow cover area percentage (SCA) were employed to analyze spatiotemporal variability of snow cover over the course of three decades. On the regional scale, significant trends were found toward a shorter SCD at lower elevations in the south-east and south-west. However, our results do not show any significant trends in the monthly mean SCA over the last 27 yr. This is in agreement with other research findings and may indicate a deceleration of the decreasing snow trend in the Alpine region. Furthermore, such data may provide spatially and temporally homogeneous snow information for comprehensive use in related research fields (i.e., hydrologic and economic applications) or can serve as a reference for climate models.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2014-01-18
    Description: Corrigendum to "Boundary conditions of an active West Antarctic subglacial lake: implications for storage of water beneath the ice sheet" published in The Cryosphere, 8, 15–24, 2014 The Cryosphere, 8, 123-123, 2014 Author(s): M. J. Siegert, N. Ross, H. Corr, B. Smith, T. Jordan, R. G. Bingham, F. Ferraccioli, D. M. Rippin, and A. Le Brocq No abstract available.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2014-01-22
    Description: An inter-laboratory investigation of the Arctic sea ice biomarker proxy IP 25 in marine sediments: key outcomes and recommendations Climate of the Past, 10, 155-166, 2014 Author(s): S. T. Belt, T. A. Brown, L. Ampel, P. Cabedo-Sanz, K. Fahl, J. J. Kocis, G. Massé, A. Navarro-Rodriguez, J. Ruan, and Y. Xu We describe the results of an inter-laboratory investigation into the identification and quantification of the Arctic sea ice biomarker proxy IP 25 in marine sediments. Seven laboratories took part in the study, which consisted of the analysis of IP 25 in a series of sediment samples from different regions of the Arctic, sub-Arctic and Antarctic, additional sediment extracts and purified standards. The results obtained allowed 4 key outcomes to be determined. First, IP 25 was identified by all laboratories in sediments from the Canadian Arctic with inter-laboratory variation in IP 25 concentration being substantially larger than within individual laboratories. This greater variation between laboratories was attributed to the difficulty in accurately determining instrumental response factors for IP 25 , even though laboratories were supplied with appropriate standards. Second, the identification of IP 25 by 3 laboratories in sediment from SW Iceland that was believed to represent a blank, was interpreted as representing a better limit of detection or quantification for such laboratories, contamination or mis-identification. These alternatives could not be distinguished conclusively with the data available, although it is noted that the precision of these data was significantly poorer compared with the other IP 25 concentration measurements. Third, 3 laboratories reported the occurrence of IP 25 in a sediment sample from the Antarctic Peninsula even though this biomarker is believed to be absent from the Southern Ocean. This anomaly is attributed to a combined chromatographic and mass spectrometric interference that results from the presence of a di-unsaturated highly branched isoprenoid (HBI) pseudo-homologue of IP 25 that occurs in Antarctic sediments. Finally, data are presented that suggest that extraction of IP 25 is consistent between Accelerated Solvent Extraction (ASE) and sonication methods and that IP 25 concentrations based on 7-hexylnonadecane as an internal standard are comparable using these methods. Recoveries of some more unsaturated HBIs and the internal standard 9-octylheptadecene, however, were lower with the ASE procedure, possibly due to partial degradation of these more reactive chemicals as a result of higher temperatures employed with this method. For future measurements, we recommend the use of reference sediment material with known concentration(s) of IP 25 for determining and routinely monitoring instrumental response factors. Given the significance placed on the presence (or otherwise) of IP 25 in marine sediments, some further recommendations pertaining to quality control are made that should also enable the two main anomalies identified here to be addressed.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2014-01-23
    Description: Updated cloud physics in a regional atmospheric climate model improves the modelled surface energy balance of Antarctica The Cryosphere, 8, 125-135, 2014 Author(s): J. M. van Wessem, C. H. Reijmer, J. T. M. Lenaerts, W. J. van de Berg, M. R. van den Broeke, and E. van Meijgaard In this study the effects of changes in the physics package of the regional atmospheric climate model RACMO2 on the modelled surface energy balance, near-surface temperature and wind speed of Antarctica are presented. The physics package update primarily consists of an improved turbulent and radiative flux scheme and a revised cloud scheme that includes a parameterisation for ice cloud super-saturation. The ice cloud super-saturation has led to more moisture being transported onto the continent, resulting in more and optically thicker clouds and more downward long-wave radiation. Overall, the updated model better represents the surface energy balance, based on a comparison with 〉750 months of data from nine automatic weather stations located in East Antarctica. Especially the representation of the turbulent sensible heat flux and net long-wave radiative flux has improved with a decrease in biases of up to 40%. As a result, modelled surface temperatures have increased and the bias, when compared to 10 m snow temperatures from 64 ice-core observations, has decreased from −2.3 K to −1.3 K. The weaker surface temperature inversion consequently improves the representation of the sensible heat flux, whereas wind speed biases remain unchanged. However, significant model biases remain, partly because RACMO2 at a resolution of 27 km is unable to resolve steep topography.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2014-03-12
    Description: Forward modelling of tree-ring width and comparison with a global network of tree-ring chronologies Climate of the Past, 10, 437-449, 2014 Author(s): P. Breitenmoser, S. Brönnimann, and D. Frank We investigate relationships between climate and tree-ring data on a global scale using the process-based Vaganov–Shashkin Lite (VSL) forward model of tree-ring width formation. The VSL model requires as inputs only latitude, monthly mean temperature, and monthly accumulated precipitation. Hence, this simple, process-based model enables ring-width simulation at any location where monthly climate records exist. In this study, we analyse the growth response of simulated tree rings to monthly climate conditions obtained from the CRU TS3.1 data set back to 1901. Our key aims are (a) to assess the VSL model performance by examining the relations between simulated and observed growth at 2287 globally distributed sites, (b) indentify optimal growth parameters found during the model calibration, and (c) to evaluate the potential of the VSL model as an observation operator for data-assimilation-based reconstructions of climate from tree-ring width. The assessment of the growth-onset threshold temperature of approximately 4–6 °C for most sites and species using a Bayesian estimation approach complements other studies on the lower temperature limits where plant growth may be sustained. Our results suggest that the VSL model skilfully simulates site level tree-ring series in response to climate forcing for a wide range of environmental conditions and species. Spatial aggregation of the tree-ring chronologies to reduce non-climatic noise at the site level yielded notable improvements in the coherence between modelled and actual growth. The resulting distinct and coherent patterns of significant relationships between the aggregated and simulated series further demonstrate the VSL model's ability to skilfully capture the climatic signal contained in tree-ring series. Finally, we propose that the VSL model can be used as an observation operator in data assimilation approaches to reconstruct past climate.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2014-03-13
    Description: Inorganic geochemistry data from Lake El'gygytgyn sediments: marine isotope stages 6–11 Climate of the Past, 10, 467-485, 2014 Author(s): P. S. Minyuk, V. Y. Borkhodoev, and V. Wennrich Geochemical analyses were performed on sediments recovered by deep drilling at Lake El'gygytgyn in central Chukotka, northeastern Russia (67°30' N; 172°05' E). Major and rare element concentrations were determined using X-ray fluorescence spectroscopy (XRF) on the 〈 250 μm fraction from 617 samples dated to ca. 440 and 125 ka, which approximates marine isotope stages (MIS) 11 to 6. The inorganic geochemistry indicates significant variations in elemental composition between glaciations and interglaciations. Interglacial sediments are characterized by high contents of SiO 2 , Na 2 O, CaO, K 2 O, and Sr and are depleted in Al 2 O 3 , Fe 2 O 3 , TiO 2 , and MgO. An extreme SiO 2 enrichment during MIS 11.3 and 9.3 was caused by an enhanced flux of biogenic silica (BSi). The geochemical structure of MIS 11 shows similar characteristics as seen in MIS 11 records from Lake Baikal (southeastern Siberia) and Antarctic ice cores, thereby arguing for the influence of global forcings on these records. High sediment content of TiO 2 , Fe 2 O 3 , MgO, Al 2 O 3 , LOI, Ni, Cr, and Zr typifies glacial stages, with the most marked increases during MIS 7.4 and 6.6. Reducing conditions during glacial times are indicated by peaks in the Fe 2 O 3 content and coinciding low Fe 2 O 3 /MnO ratios. This conclusion also is supported by P 2 O 5 and MnO enrichment, indicating an increased abundance of authigenic, fine-grained vivianite. Elemental ratios (CIA, CIW, PIA, and Rb/Sr) indicate that glacial sediments are depleted in mobile elements, like Na, Ca, K and Sr. This depletion was caused by changes in the sedimentation regime and thus reflects environmental changes.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2014-03-14
    Description: Reconstruction of the March–August PDSI since 1703 AD based on tree rings of Chinese pine ( Pinus tabulaeformis Carr.) in the Lingkong Mountain, southeast Chinese loess Plateau Climate of the Past, 10, 509-521, 2014 Author(s): Q. Cai, Y. Liu, Y. Lei, G. Bao, and B. Sun We utilised tree-ring cores, collected from three sites at Lingkong Mountain located in the southeast part of the Chinese Loess Plateau (CLP), to develope a regional ring-width chronology. Significant positive correlations between the tree-ring index and the monthly Palmer drought severity index (PDSI) were identified, indicating that the radial growth of trees in this region was moisture-limited. The March–August mean PDSI was quantitatively reconstructed from 1703 to 2008 with an explained variance of 46.4%. Seven dry periods during 1719–1726, 1742–1748, 1771–1778, 1807–1818, 1832–1848, 1867–1932 and 1993–2008 and six wet periods during 1727–1741, 1751–1757, 1779–1787, 1797–1805, 1853–1864 and 1934–1957 were revealed in our reconstruction. Among them, 1867–1932 and 1934–1957 were identified as the longest dry and wet periods, respectively. On the centennial scale, the 19th century was recognised as the driest century. The drying tendency since 1960s was evident. However, recent drought in 1993–2008 was still within the frame of natural climate variability based on the 306 yr PDSI reconstruction. The dry and wet phases of Lingkong Mountain were in accordance with changes in the summer Asian-Pacific oscillation ( I APO ) and sunspot numbers, they also showed strong similarity to other tree-ring based moisture indexes in large areas in and around the CLP, indicating the moisture variability in the CLP was almost synchronous and closely related with large-scale land–ocean–atmospheric circulation and solar activity. Spatial correlation analysis suggested that this PDSI reconstruction could represent the moisture variations for most parts of the CLP, and even larger area of northern China and east Mongolia. Multi-taper spectral analysis revealed significant cycles at the inter-annual (2–7 yr), inter-decadal (37.9 yr) and centennial (102 yr) scales. Results of this study are very helpful for us to improve the knowledge of past climate change in the CLP and enable us to prevent and manage future natural disasters.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2014-03-14
    Description: Assessing the impact of Laurentide Ice Sheet topography on glacial climate Climate of the Past, 10, 487-507, 2014 Author(s): D. J. Ullman, A. N. LeGrande, A. E. Carlson, F. S. Anslow, and J. M. Licciardi Simulations of past climates require altered boundary conditions to account for known shifts in the Earth system. For the Last Glacial Maximum (LGM) and subsequent deglaciation, the existence of large Northern Hemisphere ice sheets caused profound changes in surface topography and albedo. While ice-sheet extent is fairly well known, numerous conflicting reconstructions of ice-sheet topography suggest that precision in this boundary condition is lacking. Here we use a high-resolution and oxygen-isotope-enabled fully coupled global circulation model (GCM) (GISS ModelE2-R), along with two different reconstructions of the Laurentide Ice Sheet (LIS) that provide maximum and minimum estimates of LIS elevation, to assess the range of climate variability in response to uncertainty in this boundary condition. We present this comparison at two equilibrium time slices: the LGM, when differences in ice-sheet topography are maximized, and 14 ka, when differences in maximum ice-sheet height are smaller but still exist. Overall, we find significant differences in the climate response to LIS topography, with the larger LIS resulting in enhanced Atlantic Meridional Overturning Circulation and warmer surface air temperatures, particularly over northeastern Asia and the North Pacific. These up- and downstream effects are associated with differences in the development of planetary waves in the upper atmosphere, with the larger LIS resulting in a weaker trough over northeastern Asia that leads to the warmer temperatures and decreased albedo from snow and sea-ice cover. Differences between the 14 ka simulations are similar in spatial extent but smaller in magnitude, suggesting that climate is responding primarily to the larger difference in maximum LIS elevation in the LGM simulations. These results suggest that such uncertainty in ice-sheet boundary conditions alone may significantly impact the results of paleoclimate simulations and their ability to successfully simulate past climates, with implications for estimating climate sensitivity to greenhouse gas forcing utilizing past climate states.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2014-03-14
    Description: The challenge of simulating the warmth of the mid-Miocene climatic optimum in CESM1 Climate of the Past, 10, 523-536, 2014 Author(s): A. Goldner, N. Herold, and M. Huber The mid-Miocene climatic optimum (MMCO) is an intriguing climatic period due to its above-modern temperatures in mid-to-high latitudes in the presence of close-to-modern CO 2 concentrations. We use the recently released Community Earth System Model (CESM1.0) with a slab ocean to simulate this warm period, incorporating recent Miocene CO 2 reconstructions of 400 ppm (parts per million). We simulate a global mean annual temperature (MAT) of 18 °C, ~4 °C above the preindustrial value, but 4 °C colder than the global Miocene MAT we calculate from climate proxies. Sensitivity tests reveal that the inclusion of a reduced Antarctic ice sheet, an equatorial Pacific temperature gradient characteristic of a permanent El Niño, increased CO 2 to 560 ppm, and variations in obliquity only marginally improve model–data agreement. All MMCO simulations have an Equator to pole temperature gradient that is at least ~10 °C larger than that reconstructed from proxies. The MMCO simulation most comparable to the proxy records requires a CO 2 concentration of 800 ppm. Our results illustrate that MMCO warmth is not reproducible using the CESM1.0 forced with CO 2 concentrations reconstructed for the Miocene or including various proposed Earth system feedbacks; the remaining discrepancy in the MAT is comparable to that introduced by a CO 2 doubling. The model's tendency to underestimate proxy derived global MAT and overestimate the Equator to pole temperature gradient suggests a major climate problem in the MMCO akin to those in the Eocene. Our results imply that this latest model, as with previous generations of climate models, is either not sensitive enough or additional forcings remain missing that explain half of the anomalous warmth and pronounced polar amplification of the MMCO.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2014-03-14
    Description: Simulation of wind-induced snow transport and sublimation in alpine terrain using a fully coupled snowpack/atmosphere model The Cryosphere, 8, 395-415, 2014 Author(s): V. Vionnet, E. Martin, V. Masson, G. Guyomarc'h, F. Naaim-Bouvet, A. Prokop, Y. Durand, and C. Lac In alpine regions, wind-induced snow transport strongly influences the spatio-temporal evolution of the snow cover throughout the winter season. To gain understanding on the complex processes that drive the redistribution of snow, a new numerical model is developed. It directly couples the detailed snowpack model Crocus with the atmospheric model Meso-NH. Meso-NH/Crocus simulates snow transport in saltation and in turbulent suspension and includes the sublimation of suspended snow particles. The coupled model is evaluated against data collected around the experimental site of Col du Lac Blanc (2720 m a.s.l., French Alps). First, 1-D simulations show that a detailed representation of the first metres of the atmosphere is required to reproduce strong gradients of blowing snow concentration and compute mass exchange between the snowpack and the atmosphere. Secondly, 3-D simulations of a blowing snow event without concurrent snowfall have been carried out. Results show that the model captures the main structures of atmospheric flow in alpine terrain. However, at 50 m grid spacing, the model reproduces only the patterns of snow erosion and deposition at the ridge scale and misses smaller scale patterns observed by terrestrial laser scanning. When activated, the sublimation of suspended snow particles causes a reduction of deposited snow mass of 5.3% over the calculation domain. Total sublimation (surface + blowing snow) is three times higher than surface sublimation in a simulation neglecting blowing snow sublimation.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2014-05-06
    Description: Seasonal thaw settlement at drained thermokarst lake basins, Arctic Alaska The Cryosphere, 8, 815-826, 2014 Author(s): L. Liu, K. Schaefer, A. Gusmeroli, G. Grosse, B. M. Jones, T. Zhang, A. D. Parsekian, and H. A. Zebker Drained thermokarst lake basins (DTLBs) are ubiquitous landforms on Arctic tundra lowland. Their dynamic states are seldom investigated, despite their importance for landscape stability, hydrology, nutrient fluxes, and carbon cycling. Here we report results based on high-resolution Interferometric Synthetic Aperture Radar (InSAR) measurements using space-borne data for a study area located on the North Slope of Alaska near Prudhoe Bay, where we focus on the seasonal thaw settlement within DTLBs, averaged between 2006 and 2010. The majority (14) of the 18 DTLBs in the study area exhibited seasonal thaw settlement of 3–4 cm. However, four of the DTLBs examined exceeded 4 cm of thaw settlement, with one basin experiencing up to 12 cm. Combining the InSAR observations with the in situ active layer thickness measured using ground penetrating radar and mechanical probing, we calculated thaw strain, an index of thaw settlement strength along a transect across the basin that underwent large thaw settlement. We found thaw strains of 10–35% at the basin center, suggesting the seasonal melting of ground ice as a possible mechanism for the large settlement. These findings emphasize the dynamic nature of permafrost landforms, demonstrate the capability of the InSAR technique to remotely monitor surface deformation of individual DTLBs, and illustrate the combination of ground-based and remote sensing observations to estimate thaw strain. Our study highlights the need for better description of the spatial heterogeneity of landscape-scale processes for regional assessment of surface dynamics on Arctic coastal lowlands.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2014-04-29
    Description: Empirical estimation of present-day Antarctic glacial isostatic adjustment and ice mass change The Cryosphere, 8, 743-760, 2014 Author(s): B. C. Gunter, O. Didova, R. E. M. Riva, S. R. M. Ligtenberg, J. T. M. Lenaerts, M. A. King, M. R. van den Broeke, and T. Urban This study explores an approach that simultaneously estimates Antarctic mass balance and glacial isostatic adjustment (GIA) through the combination of satellite gravity and altimetry data sets. The results improve upon previous efforts by incorporating a firn densification model to account for firn compaction and surface processes as well as reprocessed data sets over a slightly longer period of time. A range of different Gravity Recovery and Climate Experiment (GRACE) gravity models were evaluated and a new Ice, Cloud, and Land Elevation Satellite (ICESat) surface height trend map computed using an overlapping footprint approach. When the GIA models created from the combination approach were compared to in situ GPS ground station displacements, the vertical rates estimated showed consistently better agreement than recent conventional GIA models. The new empirically derived GIA rates suggest the presence of strong uplift in the Amundsen Sea sector in West Antarctica (WA) and the Philippi/Denman sectors, as well as subsidence in large parts of East Antarctica (EA). The total GIA-related mass change estimates for the entire Antarctic ice sheet ranged from 53 to 103 Gt yr −1 , depending on the GRACE solution used, with an estimated uncertainty of ±40 Gt yr −1 . Over the time frame February 2003–October 2009, the corresponding ice mass change showed an average value of −100 ± 44 Gt yr −1 (EA: 5 ± 38, WA: −105 ± 22), consistent with other recent estimates in the literature, with regional mass loss mostly concentrated in WA. The refined approach presented in this study shows the contribution that such data combinations can make towards improving estimates of present-day GIA and ice mass change, particularly with respect to determining more reliable uncertainties.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2014-04-30
    Description: Sea ice and the ocean mixed layer over the Antarctic shelf seas The Cryosphere, 8, 761-783, 2014 Author(s): A. A. Petty, P. R. Holland, and D. L. Feltham An ocean mixed-layer model has been incorporated into the Los Alamos sea ice model CICE to investigate regional variations in the surface-driven formation of Antarctic shelf waters. This model captures well the expected sea ice thickness distribution, and produces deep (〉 500 m) mixed layers in the Weddell and Ross shelf seas each winter. This results in the complete destratification of the water column in deep southern coastal regions leading to high-salinity shelf water (HSSW) formation, and also in some shallower regions (no HSSW formation) of these seas. Shallower mixed layers are produced in the Amundsen and Bellingshausen seas. By deconstructing the surface processes driving the mixed-layer depth evolution, we show that the net salt flux from sea ice growth/melt dominates the evolution of the mixed layer in all regions, with a smaller contribution from the surface heat flux and a negligible input from wind stress. The Weddell and Ross shelf seas receive an annual surplus of mixing energy at the surface; the Amundsen shelf sea energy input in autumn/winter is balanced by energy extraction in spring/summer; and the Bellingshausen shelf sea experiences an annual surface energy deficit, through both a low energy input in autumn/winter and the highest energy loss in spring/summer. An analysis of the sea ice mass balance demonstrates the contrasting mean ice growth, melt and export in each region. The Weddell and Ross shelf seas have the highest annual ice growth, with a large fraction exported northwards each year, whereas the Bellingshausen shelf sea experiences the highest annual ice melt, driven by the advection of ice from the northeast. A linear regression analysis is performed to determine the link between the autumn/winter mixed-layer deepening and several atmospheric variables. The Weddell and Ross shelf seas show stronger spatial correlations (temporal mean – intra-regional variability) between the autumn/winter mixed-layer deepening and several atmospheric variables compared to the Amundsen and Bellingshausen. In contrast, the Amundsen and Bellingshausen shelf seas show stronger temporal correlations (shelf sea mean – interannual variability) between the autumn/winter mixed-layer deepening and several atmospheric variables.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2014-03-20
    Description: Homogenisation of a gridded snow water equivalent climatology for Alpine terrain: methodology and applications The Cryosphere, 8, 471-485, 2014 Author(s): S. Jörg-Hess, F. Fundel, T. Jonas, and M. Zappa Gridded snow water equivalent (SWE) data sets are valuable for estimating the snow water resources and verify different model systems, e.g. hydrological, land surface or atmospheric models. However, changing data availability represents a considerable challenge when trying to derive consistent time series for SWE products. In an attempt to improve the product consistency, we first evaluated the differences between two climatologies of SWE grids that were calculated on the basis of data from 110 and 203 stations, respectively. The "shorter" climatology (2001–2009) was produced using 203 stations (map203) and the "longer" one (1971–2009) 110 stations (map110). Relative to map203, map110 underestimated SWE, especially at higher elevations and at the end of the winter season. We tested the potential of quantile mapping to compensate for mapping errors in map110 relative to map203. During a 9 yr calibration period from 2001 to 2009, for which both map203 and map110 were available, the method could successfully refine the spatial and temporal SWE representation in map110 by making seasonal, regional and altitude-related distinctions. Expanding the calibration to the full 39 yr showed that the general underestimation of map110 with respect to map203 could be removed for the whole winter. The calibrated SWE maps fitted the reference (map203) well when averaged over regions and time periods, where the mean error is approximately zero. However, deviations between the calibrated maps and map203 were observed at single grid cells and years. When we looked at three different regions in more detail, we found that the calibration had the largest effect in the region with the highest proportion of catchment areas above 2000 m a.s.l. and that the general underestimation of map110 compared to map203 could be removed for the entire snow season. The added value of the calibrated SWE climatology is illustrated with practical examples: the verification of a hydrological model, the estimation of snow resource anomalies and the predictability of runoff through SWE.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2014-03-21
    Description: Evaluation of modern and mid-Holocene seasonal precipitation of the Mediterranean and northern Africa in the CMIP5 simulations Climate of the Past, 10, 551-568, 2014 Author(s): A. Perez-Sanz, G. Li, P. González-Sampériz, and S. P. Harrison We analyse the spatial expression of seasonal climates of the Mediterranean and northern Africa in pre-industrial ( piControl ) and mid-Holocene ( midHolocene , 6 yr BP) simulations from the fifth phase of the Coupled Model Intercomparison Project (CMIP5). Modern observations show four distinct precipitation regimes characterized by differences in the seasonal distribution and total amount of precipitation: an equatorial band characterized by a double peak in rainfall, the monsoon zone characterized by summer rainfall, the desert characterized by low seasonality and total precipitation, and the Mediterranean zone characterized by summer drought. Most models correctly simulate the position of the Mediterranean and the equatorial climates in the piControl simulations, but overestimate the extent of monsoon influence and underestimate the extent of desert. However, most models fail to reproduce the amount of precipitation in each zone. Model biases in the simulated magnitude of precipitation are unrelated to whether the models reproduce the correct spatial patterns of each regime. In the midHolocene , the models simulate a reduction in winter rainfall in the equatorial zone, and a northward expansion of the monsoon with a significant increase in summer and autumn rainfall. Precipitation is slightly increased in the desert, mainly in summer and autumn, with northward expansion of the monsoon. Changes in the Mediterranean are small, although there is an increase in spring precipitation consistent with palaeo-observations of increased growing-season rainfall. Comparison with reconstructions shows most models underestimate the mid-Holocene changes in annual precipitation, except in the equatorial zone. Biases in the piControl have only a limited influence on midHolocene anomalies in ocean–atmosphere models; carbon-cycle models show no relationship between piControl bias and midHolocene anomalies. Biases in the prediction of the midHolocene monsoon expansion are unrelated to how well the models simulate changes in Mediterranean climate.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2014-04-25
    Description: Adjoint accuracy for the full Stokes ice flow model: limits to the transmission of basal friction variability to the surface The Cryosphere, 8, 721-741, 2014 Author(s): N. Martin and J. Monnier This work focuses on the numerical assessment of the accuracy of an adjoint-based gradient in the perspective of variational data assimilation and parameter identification in glaciology. Using noisy synthetic data, we quantify the ability to identify the friction coefficient for such methods with a non-linear friction law. The exact adjoint problem is solved, based on second-order numerical schemes, and a comparison with the so-called "self-adjoint" approximation, neglecting the viscosity dependence on the velocity (leading to an incorrect gradient), common in glaciology, is carried out. For data with a noise of 1%, a lower bound of identifiable wavelengths of 10 ice thicknesses in the friction coefficient is established, when using the exact adjoint method, while the "self-adjoint" method is limited, even for lower noise, to a minimum of 20 ice thickness wavelengths. The second-order exact gradient method therefore provides robustness and reliability for the parameter identification process. In another respect, the derivation of the adjoint model using algorithmic differentiation leads to the formulation of a generalization of the "self-adjoint" approximation towards an incomplete adjoint method , adjustable in precision and computational burden.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2014-04-26
    Description: A probabilistic model of chronological errors in layer-counted climate proxies: applications to annually banded coral archives Climate of the Past, 10, 825-841, 2014 Author(s): M. Comboul, J. Emile-Geay, M. N. Evans, N. Mirnateghi, K. M. Cobb, and D. M. Thompson The ability to precisely date climate proxies is central to the reconstruction of past climate variations. To a degree, all climate proxies are affected by age uncertainties, which are seldom quantified. This article proposes a probabilistic age model for proxies based on layer-counted chronologies, and explores its use for annually banded coral archives. The model considers both missing and doubly counted growth increments (represented as independent processes), accommodates various assumptions about error rates, and allows one to quantify the impact of chronological uncertainties on different diagnostics of variability. In the case of a single coral record, we find that time uncertainties primarily affect high-frequency signals but also significantly bias the estimate of decadal signals. We further explore tuning to an independent, tree-ring-based chronology as a way to identify an optimal age model. A synthetic pseudocoral network is used as testing ground to quantify uncertainties in the estimation of spatiotemporal patterns of variability. Even for small error rates, the amplitude of multidecadal variability is systematically overestimated at the expense of interannual variability (El Niño–Southern Oscillation, or ENSO, in this case), artificially flattening its spectrum at periods longer than 10 years. An optimization approach to correct chronological errors in coherent multivariate records is presented and validated in idealized cases, though it is found difficult to apply in practice due to the large number of solutions. We close with a discussion of possible extensions of this model and connections to existing strategies for modeling age uncertainties.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2014-01-25
    Description: Corrigendum to "Quantitative reconstruction of precipitation changes on the NE Tibetan Plateau since the Last Glacial Maximum – extending the concept of pollen source area to pollen-based climate reconstructions from large lakes" published in Clim. Past, 10, 21–39, 2014 Climate of the Past, 10, 207-207, 2014 Author(s): Y. Wang, U. Herzschuh, L. S. Shumilovskikh, S. Mischke, H. J. B. Birks, J. Wischnewski, J. Böhner, F. Schlütz, F. Lehmkuhl, B. Diekmann, B. Wünnemann, and C. Zhang No abstract available.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    facet.materialart.
    Unknown
    Copernicus
    Publication Date: 2014-01-25
    Description: A double continuum hydrological model for glacier applications The Cryosphere, 8, 137-153, 2014 Author(s): B. de Fleurian, O. Gagliardini, T. Zwinger, G. Durand, E. Le Meur, D. Mair, and P. Råback The flow of glaciers and ice streams is strongly influenced by the presence of water at the interface between ice and bed. In this paper, a hydrological model evaluating the subglacial water pressure is developed with the final aim of estimating the sliding velocities of glaciers. The global model fully couples the subglacial hydrology and the ice dynamics through a water-dependent friction law. The hydrological part of the model follows a double continuum approach which relies on the use of porous layers to compute water heads in inefficient and efficient drainage systems. This method has the advantage of a relatively low computational cost that would allow its application to large ice bodies such as Greenland or Antarctica ice streams. The hydrological model has been implemented in the finite element code Elmer/Ice, which simultaneously computes the ice flow. Herein, we present an application to the Haut Glacier d'Arolla for which we have a large number of observations, making it well suited to the purpose of validating both the hydrology and ice flow model components. The selection of hydrological, under-determined parameters from a wide range of values is guided by comparison of the model results with available glacier observations. Once this selection has been performed, the coupling between subglacial hydrology and ice dynamics is undertaken throughout a melt season. Results indicate that this new modelling approach for subglacial hydrology is able to reproduce the broad temporal and spatial patterns of the observed subglacial hydrological system. Furthermore, the coupling with the ice dynamics shows good agreement with the observed spring speed-up.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2014-01-25
    Description: Corrigendum to "The relative roles of CO 2 and palaeogeography in determining late Miocene climate: results from a terrestrial model–data comparison" published in Clim. Past, 8, 1257–1285, 2012 Climate of the Past, 10, 199-206, 2014 Author(s): C. D. Bradshaw, D. J. Lunt, R. Flecker, U. Salzmann, M. J. Pound, A. M. Haywood, and J. T. Eronen No abstract available.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2014-01-31
    Description: Effect of uncertainty in surface mass balance–elevation feedback on projections of the future sea level contribution of the Greenland ice sheet The Cryosphere, 8, 195-208, 2014 Author(s): T. L. Edwards, X. Fettweis, O. Gagliardini, F. Gillet-Chaulet, H. Goelzer, J. M. Gregory, M. Hoffman, P. Huybrechts, A. J. Payne, M. Perego, S. Price, A. Quiquet, and C. Ritz We apply a new parameterisation of the Greenland ice sheet (GrIS) feedback between surface mass balance (SMB: the sum of surface accumulation and surface ablation) and surface elevation in the MAR regional climate model (Edwards et al., 2014) to projections of future climate change using five ice sheet models (ISMs). The MAR (Modèle Atmosphérique Régional: Fettweis, 2007) climate projections are for 2000–2199, forced by the ECHAM5 and HadCM3 global climate models (GCMs) under the SRES A1B emissions scenario. The additional sea level contribution due to the SMB–elevation feedback averaged over five ISM projections for ECHAM5 and three for HadCM3 is 4.3% (best estimate; 95% credibility interval 1.8–6.9%) at 2100, and 9.6% (best estimate; 95% credibility interval 3.6–16.0%) at 2200. In all results the elevation feedback is significantly positive, amplifying the GrIS sea level contribution relative to the MAR projections in which the ice sheet topography is fixed: the lower bounds of our 95% credibility intervals (CIs) for sea level contributions are larger than the "no feedback" case for all ISMs and GCMs. Our method is novel in sea level projections because we propagate three types of modelling uncertainty – GCM and ISM structural uncertainties, and elevation feedback parameterisation uncertainty – along the causal chain, from SRES scenario to sea level, within a coherent experimental design and statistical framework. The relative contributions to uncertainty depend on the timescale of interest. At 2100, the GCM uncertainty is largest, but by 2200 both the ISM and parameterisation uncertainties are larger. We also perform a perturbed parameter ensemble with one ISM to estimate the shape of the projected sea level probability distribution; our results indicate that the probability density is slightly skewed towards higher sea level contributions.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2014-01-31
    Description: Response of ice cover on shallow lakes of the North Slope of Alaska to contemporary climate conditions (1950–2011): radar remote-sensing and numerical modeling data analysis The Cryosphere, 8, 167-180, 2014 Author(s): C. M. Surdu, C. R. Duguay, L. C. Brown, and D. Fernández Prieto Air temperature and winter precipitation changes over the last five decades have impacted the timing, duration, and thickness of the ice cover on Arctic lakes as shown by recent studies. In the case of shallow tundra lakes, many of which are less than 3 m deep, warmer climate conditions could result in thinner ice covers and consequently, in a smaller fraction of lakes freezing to their bed in winter. However, these changes have not yet been comprehensively documented. The analysis of a 20 yr time series of European remote sensing satellite ERS-1/2 synthetic aperture radar (SAR) data and a numerical lake ice model were employed to determine the response of ice cover (thickness, freezing to the bed, and phenology) on shallow lakes of the North Slope of Alaska (NSA) to climate conditions over the last six decades. Given the large area covered by these lakes, changes in the regional climate and weather are related to regime shifts in the ice cover of the lakes. Analysis of available SAR data from 1991 to 2011, from a sub-region of the NSA near Barrow, shows a reduction in the fraction of lakes that freeze to the bed in late winter. This finding is in good agreement with the decrease in ice thickness simulated with the Canadian Lake Ice Model (CLIMo), a lower fraction of lakes frozen to the bed corresponding to a thinner ice cover. Observed changes of the ice cover show a trend toward increasing floating ice fractions from 1991 to 2011, with the greatest change occurring in April, when the grounded ice fraction declined by 22% (α = 0.01). Model results indicate a trend toward thinner ice covers by 18–22 cm (no-snow and 53% snow depth scenarios, α = 0.01) during the 1991–2011 period and by 21–38 cm (α = 0.001) from 1950 to 2011. The longer trend analysis (1950–2011) also shows a decrease in the ice cover duration by ~24 days consequent to later freeze-up dates by 5.9 days (α = 0.1) and earlier break-up dates by 17.7–18.6 days (α = 0.001).
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2014-01-31
    Description: Probabilistic parameterisation of the surface mass balance–elevation feedback in regional climate model simulations of the Greenland ice sheet The Cryosphere, 8, 181-194, 2014 Author(s): T. L. Edwards, X. Fettweis, O. Gagliardini, F. Gillet-Chaulet, H. Goelzer, J. M. Gregory, M. Hoffman, P. Huybrechts, A. J. Payne, M. Perego, S. Price, A. Quiquet, and C. Ritz We present a new parameterisation that relates surface mass balance (SMB: the sum of surface accumulation and surface ablation) to changes in surface elevation of the Greenland ice sheet (GrIS) for the MAR (Modèle Atmosphérique Régional: Fettweis, 2007) regional climate model. The motivation is to dynamically adjust SMB as the GrIS evolves, allowing us to force ice sheet models with SMB simulated by MAR while incorporating the SMB–elevation feedback, without the substantial technical challenges of coupling ice sheet and climate models. This also allows us to assess the effect of elevation feedback uncertainty on the GrIS contribution to sea level, using multiple global climate and ice sheet models, without the need for additional, expensive MAR simulations. We estimate this relationship separately below and above the equilibrium line altitude (ELA, separating negative and positive SMB) and for regions north and south of 77° N, from a set of MAR simulations in which we alter the ice sheet surface elevation. These give four "SMB lapse rates", gradients that relate SMB changes to elevation changes. We assess uncertainties within a Bayesian framework, estimating probability distributions for each gradient from which we present best estimates and credibility intervals (CI) that bound 95% of the probability. Below the ELA our gradient estimates are mostly positive, because SMB usually increases with elevation: 0.56 (95% CI: −0.22 to 1.33) kg m −3 a −1 for the north, and 1.91 (1.03 to 2.61) kg m −3 a −1 for the south. Above the ELA, the gradients are much smaller in magnitude: 0.09 (−0.03 to 0.23) kg m −3 a −1 in the north, and 0.07 (−0.07 to 0.59) kg m −3 a −1 in the south, because SMB can either increase or decrease in response to increased elevation. Our statistically founded approach allows us to make probabilistic assessments for the effect of elevation feedback uncertainty on sea level projections (Edwards et al., 2014).
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2014-02-28
    Description: Cyclone impact on sea ice in the central Arctic Ocean: a statistical study The Cryosphere, 8, 303-317, 2014 Author(s): A. Kriegsmann and B. Brümmer This study investigates the impact of cyclones on the Arctic Ocean sea ice for the first time in a statistical manner. We apply the coupled ice–ocean model NAOSIM which is forced by the ECMWF analyses for the period 2006–2008. Cyclone position and radius detected in the ECMWF data are used to extract fields of wind, ice drift, and concentration from the ice–ocean model. Composite fields around the cyclone centre are calculated for different cyclone intensities, the four seasons, and different sub-regions of the Arctic Ocean. In total about 3500 cyclone events are analyzed. In general, cyclones reduce the ice concentration in the order of a few percent increasing towards the cyclone centre. This is confirmed by independent AMSR-E satellite data. The reduction increases with cyclone intensity and is most pronounced in summer and on the Siberian side of the Arctic Ocean. For the Arctic ice cover the cumulative impact of cyclones has climatologic consequences. In winter, the cyclone-induced openings refreeze so that the ice mass is increased. In summer, the openings remain open and the ice melt is accelerated via the positive albedo feedback. Strong summer storms on the Siberian side of the Arctic Ocean may have been important contributions to the recent ice extent minima in 2007 and 2012.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2014-02-08
    Description: Modeling Northern Hemisphere ice-sheet distribution during MIS 5 and MIS 7 glacial inceptions Climate of the Past, 10, 269-291, 2014 Author(s): F. Colleoni, S. Masina, A. Cherchi, A. Navarra, C. Ritz, V. Peyaud, and B. Otto-Bliesner The present manuscript compares Marine Isotope Stage 5 (MIS 5, 125–115 kyr BP) and MIS 7 (236–229 kyr BP) with the aim to investigate the origin of the difference in ice-sheet growth over the Northern Hemisphere high latitudes between these last two inceptions. Our approach combines a low resolution coupled atmosphere–ocean–sea-ice general circulation model and a 3-D thermo-mechanical ice-sheet model to simulate the state of the ice sheets associated with the inception climate states of MIS 5 and MIS 7. Our results show that external forcing (orbitals and GHG) and sea-ice albedo feedbacks are the main factors responsible for the difference in the land-ice initial state between MIS 5 and MIS 7 and that our cold climate model bias impacts more during a cold inception, such as MIS 7, than during a warm inception, such as MIS 5. In addition, if proper ice-elevation and albedo feedbacks are not taken into consideration, the evolution towards glacial inception is hardly simulated, especially for MIS 7. Finally, results highlight that while simulated ice volumes for MIS 5 glacial inception almost fit with paleo-reconstructions, the lack of precipitation over high latitudes, identified as a bias of our climate model, does not allow for a proper simulation of MIS 7 glacial inception.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2014-02-21
    Description: Atmosphere–ice forcing in the transpolar drift stream: results from the DAMOCLES ice-buoy campaigns 2007–2009 The Cryosphere, 8, 275-288, 2014 Author(s): M. Haller, B. Brümmer, and G. Müller During the EU research project Developing Arctic Modelling and Observing Capabilities for Long-term Environmental Studies (DAMOCLES), 18 ice buoys were deployed in the region of the Arctic transpolar drift (TPD). Sixteen of them formed a quadratic grid with 400 km side length. The measurements lasted from 2007 to 2009. The properties of the TPD and the impact of synoptic weather systems on the ice drift are analysed. Within the TPD, the speed increases by a factor of almost three from the North Pole to the Fram Strait region. The hourly buoy position fixes would show that the speed is underestimated by 10–20% if positions were taken at only 1–3 day intervals as it is usually done for satellite drift estimates. The geostrophic wind factor U i / U g (i.e. the ratio of ice speed U i and geostrophic wind speed U g ), in the TPD amounts to 0.012 on average, but with regional and seasonal differences. The constant U i / U g relation breaks down for U g 〈 5 m s −1 . The impact of synoptic weather systems is studied applying a composite method. Cyclones (anticyclones) cause cyclonic (anticyclonic) vorticity and divergence (convergence) of the ice drift. The amplitudes are twice as large for cyclones as for anticyclones. The divergence caused by cyclones corresponds to a 0.1–0.5% per 6 h open water area increase based on the composite averages, but reached almost 4% within one day during a strong August 2007 storm. This storm also caused a long-lasting (over several weeks) rise of U i and U i / U g and changed the ice conditions in a way which allowed large amplitudes of inertial ice motion. The consequences of an increasing Arctic storm activity for the ice cover are discussed.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2014-02-21
    Description: Solving Richards Equation for snow improves snowpack meltwater runoff estimations in detailed multi-layer snowpack model The Cryosphere, 8, 257-274, 2014 Author(s): N. Wever, C. Fierz, C. Mitterer, H. Hirashima, and M. Lehning The runoff from a snow cover during spring snowmelt or rain-on-snow events is an important factor in the hydrological cycle. In this study, three water balance schemes for the 1 dimensional physically-based snowpack model SNOWPACK are compared to lysimeter measurements at two alpine sites with a seasonal snow cover, but with different climatological conditions: Weissfluhjoch (WFJ) and Col de Porte (CDP). The studied period consists of 14 and 17 yr, respectively. The schemes include a simple bucket-type approach, an approximation of Richards Equation (RE), and the full RE. The results show that daily sums of snowpack runoff are strongly related to a positive energy balance of the snow cover and therefore, all water balance schemes show very similar performance in terms of Nash-Sutcliffe efficiency (NSE) coefficients (around 0.63 and 0.72 for WFJ and CDP, respectively) and r 2 values (around 0.83 and 0.72 for WFJ and CDP, respectively). An analysis of the runoff dynamics over the season showed that the bucket-type and approximated RE scheme release meltwater slower than in the measurements, whereas RE provides a better agreement. Overall, solving RE for the snow cover yields the best agreement between modelled and measured snowpack runoff, but differences between the schemes are small. On sub-daily time scales, the water balance schemes behave very differently. In that case, solving RE provides the highest agreement between modelled and measured snowpack runoff in terms of NSE coefficient (around 0.48 at both sites). At WFJ, the other water balance schemes loose most predictive power, whereas at CDP, the bucket-type scheme has an NSE coefficient of 0.39. The shallower and less stratified snowpack at CDP likely reduces the differences between the water balance schemes. Accordingly, it can be concluded that solving RE for the snow cover improves several aspects of modelling snow cover runoff, especially for deep, sub-freezing snow covers and in particular on the sub-daily time scales. The additional computational cost was found to be in the order of a factor of 1.5–2.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2014-02-22
    Description: Accumulation reconstruction and water isotope analysis for 1736–1997 of an ice core from the Ushkovsky volcano, Kamchatka, and their relationships to North Pacific climate records Climate of the Past, 10, 393-404, 2014 Author(s): T. Sato, T. Shiraiwa, R. Greve, H. Seddik, E. Edelmann, and T. Zwinger An ice core was retrieved in June 1998 from the Gorshkov crater glacier at the top of the Ushkovsky volcano, in central Kamchatka. This ice core is one of only two recovered from Kamchatka so far, thus filling a gap in the regional instrumental climate network. Hydrogen isotope (δD) analyses and past accumulation reconstructions were conducted for the top 140.7 m of the core, spanning 1736–1997. Two accumulation reconstruction methods were developed and applied with the Salamatin and the Elmer/Ice firn-ice dynamics models, revealing a slightly increasing or nearly stable trend, respectively. Wavelet analysis shows that the ice core records have significant decadal and multi-decadal variabilities at different times. Around 1880 the multi-decadal variability of δD became lost and its average value increased by 6‰. The multi-decadal variability of reconstructed accumulation rates changed at around 1850. Reconstructed accumulation variations agree with ages of moraines in Kamchatka. Ice core signals were significantly correlated with North Pacific sea surface temperature (SST) and surface temperature (2 m temperature). δD correlates with the North Pacific Gyre Oscillation (NPGO) index after the climate regime shift in 1976/1977, but not before that. Therefore, our findings imply that the ice core record contains various information on the local, regional and large-scale climate variability in the North Pacific region. Understanding all detailed mechanisms behind the time-dependent connections between these climate patterns is challenging and requires further efforts towards multi-proxy analysis and climate modelling.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2014-02-26
    Description: Influence of regional precipitation patterns on stable isotopes in ice cores from the central Himalayas The Cryosphere, 8, 289-301, 2014 Author(s): H. Pang, S. Hou, S. Kaspari, and P. A. Mayewski Several ice cores have been recovered from the Dasuopu (DSP) Glacier and the East Rongbuk (ER) Glacier in the central Himalayas since the 1990s. Although the distance between the DSP and the ER ice core drilling sites is only ~ 125 km, the stable isotopic record (δ 18 O or δD) of the DSP core is interpreted in previous studies as a temperature proxy, while the ER core is interpreted as a precipitation proxy. Thus, the climatological significance of the stable isotopic records of these Himalayan ice cores remains a subject of debate. Based on analysis of regional precipitation patterns over the region, we find that remarkable discrepancy in precipitation seasonality between the two sites may account for their disparate isotopic interpretations. At the ER core site, the Indian summer monsoon (ISM) precipitation is dominating due to topographic blocking of the moisture from westerlies by the high ridges of Mt. Qomolangma (Everest), which results in a negative correlation between the ER Δ 18 O or δD record and precipitation amount along the southern slope of the central Himalayas in response to the "amount effect". At the DSP core site, in comparison with the ISM precipitation, the wintertime precipitation associated with the westerlies is likely more important owing to its local favorable topographic conditions for interacting with the western disturbances. Therefore, the DSP stable isotopic record may be primarily controlled by the westerlies. Our results have important implications for interpreting the stable isotopic ice core records recovered from different climatological regimes of the Himalayas.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2014-03-22
    Description: Pulses of enhanced North Pacific Intermediate Water ventilation from the Okhotsk Sea and Bering Sea during the last deglaciation Climate of the Past, 10, 591-605, 2014 Author(s): L. Max, L. Lembke-Jene, J.-R. Riethdorf, R. Tiedemann, D. Nürnberg, H. Kühn, and A. Mackensen Under modern conditions only North Pacific Intermediate Water is formed in the northwest Pacific Ocean. This situation might have changed in the past. Recent studies with general circulation models indicate a switch to deep-water formation in the northwest Pacific during Heinrich Stadial 1 (17.5–15.0 ka) of the last glacial termination. Reconstructions of past ventilation changes based on paleoceanographic proxy records are still insufficient to test whether a deglacial mode of deep-water formation in the North Pacific Ocean existed. Here we present deglacial ventilation records based on radiocarbon-derived ventilation ages in combination with epibenthic stable carbon isotopes from the northwest Pacific including the Okhotsk Sea and Bering Sea, the two potential source regions for past North Pacific ventilation changes. Evidence for most rigorous ventilation of the intermediate-depth North Pacific occurred during Heinrich Stadial 1 and the Younger Dryas, simultaneous to significant reductions in Atlantic Meridional Overturning Circulation. Concurrent changes in δ 13 C and ventilation ages point to the Okhotsk Sea as driver of millennial-scale changes in North Pacific Intermediate Water ventilation during the last deglaciation. Our records additionally indicate that changes in the δ 13 C intermediate-water (700–1750 m water depth) signature and radiocarbon-derived ventilation ages are in antiphase to those of the deep North Pacific Ocean (〉2100 m water depth) during the last glacial termination. Thus, intermediate- and deep-water masses of the northwest Pacific have a differing ventilation history during the last deglaciation.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2014-03-22
    Description: Preface "The changing Arctic and Subarctic environment: proxy- and model-based reconstructions of Holocene climate variability in the northern North Atlantic" Climate of the Past, 10, 589-590, 2014 Author(s): J. Giraudeau, H. Renssen, J. Knies, and D.-D. Rousseau
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2014-03-22
    Description: Towards an improved organic carbon budget for the western Barents Sea shelf Climate of the Past, 10, 569-587, 2014 Author(s): I. Pathirana, J. Knies, M. Felix, and U. Mann There is generally a lack of knowledge on how marine organic carbon accumulation is linked to vertical export and primary productivity patterns in the Arctic Ocean. Despite the fact that annual primary production in the Arctic has increased as a consequence of shrinking sea ice, its effect on flux, preservation, and accumulation of organic carbon is still not well understood. In this study, a multi-proxy geochemical and organic-sedimentological approach is coupled with organic facies modelling, focusing on regional calculations of carbon cycling and carbon burial on the western Barents Shelf between northern Scandinavia and Svalbard. OF-Mod 3-D, an organic facies modelling software tool, is used to reconstruct and quantify the marine and terrestrial organic carbon fractions and to make inferences about marine primary productivity changes across the marginal ice zone (MIZ). By calibrating the model against an extensive set of sediment surface samples, we improve the Holocene organic carbon budget for ice-free and seasonally ice-covered areas in the western Barents Sea. The results show that higher organic carbon accumulation rates in the MIZ are best explained by enhanced surface water productivity compared to ice-free regions, implying that shrinking sea ice may reveal a significant effect on the overall organic carbon storage capacity of the western Barents Sea shelf.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2014-03-26
    Description: Modelling global-scale climate impacts of the late Miocene Messinian Salinity Crisis Climate of the Past, 10, 607-622, 2014 Author(s): R. F. Ivanovic, P. J. Valdes, R. Flecker, and M. Gutjahr Late Miocene tectonic changes in Mediterranean–Atlantic connectivity and climatic changes caused Mediterranean salinity to fluctuate dramatically, including a ten-fold increase and near-freshening. Recent proxy- and model-based evidence suggests that at times during this Messinian Salinity Crisis (MSC, 5.96–5.33 Ma), highly saline and highly fresh Mediterranean water flowed into the North Atlantic Ocean, whilst at others, no Mediterranean Outflow Water (MOW) reached the Atlantic. By running extreme, sensitivity-type experiments with a fully coupled ocean–atmosphere general circulation model, we investigate the potential of these various MSC MOW scenarios to impact global-scale climate. The simulations suggest that although the effect remains relatively small, MOW had a greater influence on North Atlantic Ocean circulation and climate than it does today. We also find that depending on the presence, strength and salinity of MOW, the MSC could have been capable of cooling mid–high northern latitudes by a few degrees, with the greatest cooling taking place in the Labrador, Greenland–Iceland–Norwegian and Barents seas. With hyper saline MOW, a component of North Atlantic Deep Water formation shifts to the Mediterranean, strengthening the Atlantic Meridional Overturning Circulation (AMOC) south of 35° N by 1.5–6 Sv. With hypo saline MOW, AMOC completely shuts down, inducing a bipolar climate anomaly with strong cooling in the north (mainly −1 to −3 °C, but up to −8 °C) and weaker warming in the south (up to +0.5 to +2.7 °C). These simulations identify key target regions and climate variables for future proxy reconstructions to provide the best and most robust test cases for (a) assessing Messinian model performance, (b) evaluating Mediterranean–Atlantic connectivity during the MSC and (c) establishing whether or not the MSC could ever have affected global-scale climate.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2014-03-26
    Description: A new method for deriving glacier centerlines applied to glaciers in Alaska and northwest Canada The Cryosphere, 8, 503-519, 2014 Author(s): C. Kienholz, J. L. Rich, A. A. Arendt, and R. Hock This study presents a new method to derive centerlines for the main branches and major tributaries of a set of glaciers, requiring glacier outlines and a digital elevation model (DEM) as input. The method relies on a "cost grid–least-cost route approach" that comprises three main steps. First, termini and heads are identified for every glacier. Second, centerlines are derived by calculating the least-cost route on a previously established cost grid. Third, the centerlines are split into branches and a branch order is allocated. Application to 21 720 glaciers in Alaska and northwest Canada (Yukon, British Columbia) yields 41 860 centerlines. The algorithm performs robustly, requiring no manual adjustments for 87.8% of the glaciers. Manual adjustments are required primarily to correct the locations of glacier heads (7.0% corrected) and termini (3.5% corrected). With corrected heads and termini, only 1.4% of the derived centerlines need edits. A comparison of the lengths from a hydrological approach to the lengths from our longest centerlines reveals considerable variation. Although the average length ratio is close to unity, only ~ 50% of the 21 720 glaciers have the two lengths within 10% of each other. A second comparison shows that our centerline lengths between lowest and highest glacier elevations compare well to our longest centerline lengths. For 〉 70% of the 4350 glaciers with two or more branches, the two lengths are within 5% of each other. Our final product can be used for calculating glacier length, conducting length change analyses, topological analyses, or flowline modeling.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2014-03-27
    Description: Magnetostratigraphy of sediments from Lake El'gygytgyn ICDP Site 5011-1: paleomagnetic age constraints for the longest paleoclimate record from the continental Arctic Climate of the Past, 10, 623-642, 2014 Author(s): E. M. Haltia and N. R. Nowaczyk Paleomagnetic measurements were performed on sediments drilled from ICDP Site 5011-1 in Lake El'gygytgyn (67°30' N, 172°05' E) located in Far East Russian Arctic. The lake partly fills a crater formed by a meteorite impact 3.58 ± 0.04 Ma ago. Sediments from three parallel cores (5011-1A, 5011-1B and 5011-1C), recovered from the middle part of the lake, yield a total of 355 m of sediment. Sediments are characterized by a variable lithology, where intervals of homogenous and laminated sediments alternate, and mass movement deposits occur frequently along the sediment profile. Mineral magnetic investigation made on sediments enclosed in core catchers suggests that magnetic carrier in these sediments is partly maghemitized Ti-rich pseudo-single domain magnetite. Its detrital origin can be shown by mineral magnetic measurements and SEM-EDS analyses performed on mini-sized cylindrical rock samples, polished rock sections and creek sediments. The intensity of the natural remanent magnetization in the sediments is high with a range from about 1 to 1000 mA m −1 . Most of the sediments carry a stable magnetization interpreted as primary depositional remanent magnetization. Characteristic inclination data show alternating intervals of steep positive and negative inclinations that are used to assign magnetic polarity to the lake sediment profile. This is a rather straightforward procedure owing to the mainly high quality of data. The Matuyama/Gauss (M/G) (2.608 Ma) and Brunhes/Matuyama (B/M) (0.780 Ma) reversals were recognized in the sediments. The Mammoth and Kaena reversed subchrons were identified during the Gauss chron, and the Olduvai and Jaramillo normal subchrons as well as the Réunion and Cobb Mountain cryptochrons were identified during the Matuyama chron. Sediments also provide a record of the Olduvai precursor and Intra-Jaramillo geomagnetic excursions. Sediment deposition rate is highest at the base of the sequence laid down in the early Gauss chron, when the deposition rate is approximately 44 cm kyr −1 . Sediment deposition decelerates upcore and it is an order of magnitude lower during the Brunhes chron in comparison with the early Gauss chron. Decrease in sediment deposition in the late Pliocene probably relates to atmospheric and oceanic reorganization heralding the onset of Quaternary climate change. The high-quality magnetostratigraphy reconstructed from Lake El'gygytgyn sediments provides 12 first-order tie points to pin down the age of the longest paleoclimate record from the continental Arctic.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2014-03-28
    Description: Climate variability over the last 92 ka in SW Balkans from analysis of sediments from Lake Prespa Climate of the Past, 10, 643-660, 2014 Author(s): K. Panagiotopoulos, A. Böhm, M. J. Leng, B. Wagner, and F. Schäbitz The transboundary Lake Prespa (Albania/former Yugoslav Republic of Macedonia/Greece) has been recognized as a conservation priority wetland. The high biodiversity encountered in the catchment at present points to the refugial character of this mountainous region in the southwestern Balkans. A lake sediment core retrieved from a coring location in the northern part of the lake was investigated through sedimentological, geochemical, and palynological analyses. Based on tephrochronology, radiocarbon and electron spin resonance (ESR) dating, and cross correlation with other Northern Hemisphere records, the age model suggests that the basal part of core Co1215 reaches back to 92 ka cal BP. Here we present the responses of this mid-altitude site (849 m a.s.l.) to climate oscillations during this interval and assess its sensitivity to millennial-scale variability. Endogenic calcite precipitation occurred in marine isotope stages (MIS) 5 and 1 and is synchronous with periods of increased primary production (terrestrial and/or lacustrine). Periods of pronounced phytoplankton blooms (inferred from green algae and dinoflagellate concentrations) are recorded in MIS 5 and MIS 1 and suggest that the trophic state and lake levels underwent substantial fluctuations. Three major phases of vegetation development are distinguished: the forested phases of MIS 5 and MIS 1 dominated by deciduous trees with higher temperatures and moisture availability, the open landscapes of MIS 3 with significant presence of temperate trees, and the pine-dominated open landscapes of MIS 4 and MIS 2 with lower temperatures and moisture availability. Our findings suggest significant changes in forest cover and landscape openness, as well as in the properties of the vegetation belts (composition and distribution) over the period examined. The study area most likely formed the upper limit of several drought-sensitive trees (temperate tree refugium) at these latitudes in the Mediterranean mountains.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2014-03-28
    Description: Near-surface permeability in a supraglacial drainage basin on the Llewellyn Glacier, Juneau Icefield, British Columbia The Cryosphere, 8, 537-546, 2014 Author(s): L. Karlstrom, A. Zok, and M. Manga Supraglacial channel networks link time varying melt production and meltwater routing on temperate glaciers. Such channel networks often include components of both surface transport in streams and subsurface porous flow through near-surface ice, firn or snowpack. Although subsurface transport if present will likely control network transport efficacy, it is the most poorly characterized component of the system. We present measurements of supraglacial channel spacing and network properties on the Juneau Icefield, subsurface water table height, and time variation of hydraulic characteristics including diurnal variability in water temperature. We combine these data with modeling of porous flow in weathered ice to infer near-surface permeability. Estimates are based on an observed phase lag between diurnal water temperature variations and discharge, and independently on measurement of water table surface elevation away from a stream. Both methods predict ice permeability on a 1–10 m scale in the range of 10 −10 –10 −11 m 2 . These estimates are considerably smaller than common parameterizations of surface water flow on bare ice in the literature, as well as smaller than most estimates of snowpack permeability. For supraglacial environments in which porosity/permeability creation in the subsurface is balanced by porous flow of meltwater, our methods provide an estimate of microscale hydraulic properties from observations of supraglacial channel spacing.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2014-03-28
    Description: Modeling bulk density and snow water equivalent using daily snow depth observations The Cryosphere, 8, 521-536, 2014 Author(s): J. L. McCreight and E. E. Small Bulk density is a fundamental property of snow relating its depth and mass. Previously, two simple models of bulk density (depending on snow depth, date, and location) have been developed to convert snow depth observations to snow water equivalent (SWE) estimates. However, these models were not intended for application at the daily time step. We develop a new model of bulk density for the daily time step and demonstrate its improved skill over the existing models. Snow depth and density are negatively correlated at short (10 days) timescales while positively correlated at longer (90 days) timescales. We separate these scales of variability by modeling smoothed, daily snow depth (long timescales) and the observed positive and negative anomalies from the smoothed time series (short timescales) as separate terms. A climatology of fit is also included as a predictor variable. Over half a million daily observations of depth and SWE at 345 snowpack telemetry (SNOTEL) sites are used to fit models and evaluate their performance. For each location, we train the three models to the neighboring stations within 70 km, transfer the parameters to the location to be modeled, and evaluate modeled time series against the observations at that site. Our model exhibits improved statistics and qualitatively more-realistic behavior at the daily time step when sufficient local training data are available. We reduce density root mean square error (RMSE) by 9.9 and 4.5% compared to previous models while increasing R 2 from 0.46 to 0.52 to 0.56 across models. Focusing on the 21-day window around peak SWE in each water year, our model reduces density RMSE by 24 and 17.4% relative to the previous models, with R 2 increasing from 0.55 to 0.58 to 0.71 across models. Removing the challenge of parameter transfer over the full observational record increases R 2 scores for both the existing and new models, but the gain is greatest for the new model ( R 2 = 0.75). Our model shows general improvement over existing models when data are more frequent than once every 5 days and at least 3 stations are available for training.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2014-03-29
    Description: Regional climate model simulations for Europe at 6 and 0.2 k BP: sensitivity to changes in anthropogenic deforestation Climate of the Past, 10, 661-680, 2014 Author(s): G. Strandberg, E. Kjellström, A. Poska, S. Wagner, M.-J. Gaillard, A.-K. Trondman, A. Mauri, B. A. S. Davis, J. O. Kaplan, H. J. B. Birks, A. E. Bjune, R. Fyfe, T. Giesecke, L. Kalnina, M. Kangur, W. O. van der Knaap, U. Kokfelt, P. Kuneš, M. Lata\l owa, L. Marquer, F. Mazier, A. B. Nielsen, B. Smith, H. Seppä, and S. Sugita This study aims to evaluate the direct effects of anthropogenic deforestation on simulated climate at two contrasting periods in the Holocene, ~6 and ~0.2 k BP in Europe. We apply We apply the Rossby Centre regional climate model RCA3, a regional climate model with 50 km spatial resolution, for both time periods, considering three alternative descriptions of the past vegetation: (i) potential natural vegetation (V) simulated by the dynamic vegetation model LPJ-GUESS, (ii) potential vegetation with anthropogenic land use (deforestation) from the HYDE3.1 (History Database of the Global Environment) scenario (V + H3.1), and (iii) potential vegetation with anthropogenic land use from the KK10 scenario (V + KK10). The climate model results show that the simulated effects of deforestation depend on both local/regional climate and vegetation characteristics. At ~6 k BP the extent of simulated deforestation in Europe is generally small, but there are areas where deforestation is large enough to produce significant differences in summer temperatures of 0.5–1 °C. At ~0.2 k BP, extensive deforestation, particularly according to the KK10 model, leads to significant temperature differences in large parts of Europe in both winter and summer. In winter, deforestation leads to lower temperatures because of the differences in albedo between forested and unforested areas, particularly in the snow-covered regions. In summer, deforestation leads to higher temperatures in central and eastern Europe because evapotranspiration from unforested areas is lower than from forests. Summer evaporation is already limited in the southernmost parts of Europe under potential vegetation conditions and, therefore, cannot become much lower. Accordingly, the albedo effect dominates in southern Europe also in summer, which implies that deforestation causes a decrease in temperatures. Differences in summer temperature due to deforestation range from −1 °C in south-western Europe to +1 °C in eastern Europe. The choice of anthropogenic land-cover scenario has a significant influence on the simulated climate, but uncertainties in palaeoclimate proxy data for the two time periods do not allow for a definitive discrimination among climate model results.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2014-04-02
    Description: Holocene changes in African vegetation: tradeoff between climate and water availability Climate of the Past, 10, 681-686, 2014 Author(s): C. Hély, A.-M. Lézine, and APD contributors Although past climate change is well documented in West Africa through instrumental records, modeling activities, and paleo-data, little is known about regional-scale ecosystem vulnerability and long-term impacts of climate on plant distribution and biodiversity. Here we use paleohydrological and paleobotanical data to discuss the relation between available surface water, monsoon rainfall and vegetation distribution in West Africa during the Holocene. The individual patterns of plant migration or community shifts in latitude are explained by differences among tolerance limits of species to rainfall amount and seasonality. Using the probability density function methodology, we show here that the widespread development of lakes, wetlands and rivers at the time of the "Green Sahara" played an additional role in forming a network of topographically defined water availability, allowing for tropical plants to migrate north from 15 to 24° N (reached ca. 9 cal ka BP). The analysis of the spatio–temporal changes in biodiversity, through both pollen occurrence and richness, shows that the core of the tropical rainbelt associated with the Intertropical Convergence Zone was centered at 15–20° N during the early Holocene wet period, with comparatively drier/more seasonal climate conditions south of 15° N.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2014-04-02
    Description: 10 Be in late deglacial climate simulated by ECHAM5-HAM – Part 2: Isolating the solar signal from 10 Be deposition Climate of the Past, 10, 687-696, 2014 Author(s): U. Heikkilä, X. Shi, S. J. Phipps, and A. M. Smith This study investigates the effect of deglacial climate on the deposition of the solar proxy 10 Be globally, and at two specific locations, the GRIP site at Summit, Central Greenland, and the Law Dome site in coastal Antarctica. The deglacial climate is represented by three 30 year time slice simulations of 10 000 BP (years before present = 1950 CE), 11 000 and 12 000 BP, compared with a preindustrial control simulation. The model used is the ECHAM5-HAM atmospheric aerosol–climate model, driven with sea-surface temperatures and sea ice cover simulated using the CSIRO Mk3L coupled climate system model. The focus is on isolating the 10 Be production signal, driven by solar variability, from the weather- or climate-driven noise in the 10 Be deposition flux during different stages of climate. The production signal varies at lower frequencies, dominated by the 11 year solar cycle within the 30 year timescale of these experiments. The climatic noise is of higher frequencies than 11 years during the 30 year period studied. We first apply empirical orthogonal function (EOF) analysis to global 10 Be deposition on the annual scale and find that the first principal component, consisting of the spatial pattern of mean 10 Be deposition and the temporally varying solar signal, explains 64% of the variability. The following principal components are closely related to those of precipitation. Then, we apply ensemble empirical decomposition (EEMD) analysis to the time series of 10 Be deposition at GRIP and at Law Dome, which is an effective method for adaptively decomposing the time series into different frequency components. The low-frequency components and the long-term trend represent production and have reduced noise compared to the entire frequency spectrum of the deposition. The high-frequency components represent climate-driven noise related to the seasonal cycle of e.g. precipitation and are closely connected to high frequencies of precipitation. These results firstly show that the 10 Be atmospheric production signal is preserved in the deposition flux to surface even during climates very different from today's both in global data and at two specific locations. Secondly, noise can be effectively reduced from 10 Be deposition data by simply applying the EOF analysis in the case of a reasonably large number of available data sets, or by decomposing the individual data sets to filter out high-frequency fluctuations.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2014-04-04
    Description: The faint young Sun problem revisited with a 3-D climate–carbon model – Part 1 Climate of the Past, 10, 697-713, 2014 Author(s): G. Le Hir, Y. Teitler, F. Fluteau, Y. Donnadieu, and P. Philippot During the Archaean, the Sun's luminosity was 18 to 25% lower than the present day. One-dimensional radiative convective models (RCM) generally infer that high concentrations of greenhouse gases (CO 2 , CH 4 ) are required to prevent the early Earth's surface temperature from dropping below the freezing point of liquid water and satisfying the faint young Sun paradox (FYSP, an Earth temperature at least as warm as today). Using a one-dimensional (1-D) model, it was proposed in 2010 that the association of a reduced albedo and less reflective clouds may have been responsible for the maintenance of a warm climate during the Archaean without requiring high concentrations of atmospheric CO 2 ( p CO 2 ). More recently, 3-D climate simulations have been performed using atmospheric general circulation models (AGCM) and Earth system models of intermediate complexity (EMIC). These studies were able to solve the FYSP through a large range of carbon dioxide concentrations, from 0.6 bar with an EMIC to several millibars with AGCMs. To better understand this wide range in p CO 2 , we investigated the early Earth climate using an atmospheric GCM coupled to a slab ocean. Our simulations include the ice-albedo feedback and specific Archaean climatic factors such as a faster Earth rotation rate, high atmospheric concentrations of CO 2 and/or CH 4 , a reduced continental surface, a saltier ocean, and different cloudiness. We estimated full glaciation thresholds for the early Archaean and quantified positive radiative forcing required to solve the FYSP. We also demonstrated why RCM and EMIC tend to overestimate greenhouse gas concentrations required to avoid full glaciations or solve the FYSP. Carbon cycle–climate interplays and conditions for sustaining p CO 2 will be discussed in a companion paper.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2014-04-04
    Description: Brief Communication: On the magnitude and frequency of Khurdopin glacier surge events The Cryosphere, 8, 571-574, 2014 Author(s): D. J. Quincey and A. Luckman The return periods of Karakoram glacier surges are poorly quantified. Here, we present evidence of an historic surge of the Khurdopin Glacier that began in the mid-1970s and peaked in 1979. Measured surface displacements reached 〉5 km a −1 , two orders of magnitude faster than during quiescence. The Khurdopin Glacier next surged in the late 1990s, equating to a return period of 20 years. Surge evolution in the two events shows remarkable similarity suggesting a common trigger. Surge activity in the Karakoram needs to be better understood if accurate mass balance assessments of Hindu-Kush–Karakoram–Himalaya glaciers are to be made.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2014-04-04
    Description: Influence of snow depth distribution on surface roughness in alpine terrain: a multi-scale approach The Cryosphere, 8, 547-569, 2014 Author(s): J. Veitinger, B. Sovilla, and R. S. Purves In alpine terrain, the snow-covered winter surface deviates from its underlying summer terrain due to the progressive smoothing caused by snow accumulation. Terrain smoothing is believed to be an important factor in avalanche formation and avalanche dynamics, and it affects surface heat transfer, energy balance as well as snow depth distribution. To assess the effect of snow on terrain, we use an adequate roughness definition. We developed a method to quantify terrain smoothing by combining roughness calculations of snow surfaces and their corresponding underlying terrain with snow depth measurements. To this end, elevation models of winter and summer terrain in three selected alpine basins in the Swiss Alps characterized by low, medium and high terrain roughness were derived from high-resolution measurements performed by airborne and terrestrial lidar. The preliminary results in the selected basins reveal that, at basin scale, terrain smoothing depends not only on mean snow depth in the basin but also on its variability. The multi-temporal analysis over three winter seasons in one basin suggests that terrain smoothing can be modelled as a function of mean snow depth and its standard deviation using a power law. However, a relationship between terrain smoothing and snow depth was not found at pixel scale. Further, we show that snow surface roughness is to some extent persistent, even in-between winter seasons. Those persistent patterns might be very useful to improve the representation of a winter terrain without modelling of the snow cover distribution. This can for example improve avalanche release area definition and, in the long term, natural hazard management strategies.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    facet.materialart.
    Unknown
    Copernicus
    Publication Date: 2014-09-16
    Description: Changes in Imja Tsho in the Mount Everest region of Nepal The Cryosphere, 8, 1661-1671, 2014 Author(s): M. A. Somos-Valenzuela, D. C. McKinney, D. R. Rounce, and A. C. Byers Imja Tsho, located in the Sagarmatha (Everest) National Park of Nepal, is one of the most studied and rapidly growing lakes in the Himalayan range. Compared with previous studies, the results of our sonar bathymetric survey conducted in September of 2012 suggest that its maximum depth has increased from 90.5 to 116.3 ± 5.2 m since 2002, and that its estimated volume has grown from 35.8 ± 0.7 to 61.7 ± 3.7 million m 3 . Most of the expansion of the lake in recent years has taken place in the glacier terminus–lake interface on the eastern end of the lake, with the glacier receding at about 52 m yr −1 and the lake expanding in area by 0.04 km 2 yr −1 . A ground penetrating radar survey of the Imja–Lhotse Shar glacier just behind the glacier terminus shows that the ice is over 200 m thick in the center of the glacier. The volume of water that could be released from the lake in the event of a breach in the damming moraine on the western end of the lake has increased to 34.1 ± 1.08 million m 3 from the 21 million m 3 estimated in 2002.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2014-09-17
    Description: Observations of a stratospheric aerosol veil from a tropical volcanic eruption in December 1808: is this the Unknown ∼1809 eruption? Climate of the Past, 10, 1707-1722, 2014 Author(s): A. Guevara-Murua, C. A. Williams, E. J. Hendy, A. C. Rust, and K. V. Cashman The Unknown eruption of 1808/1809 was the second most explosive SO 2 -rich volcanic eruption in the last two centuries, eclipsed only by the cataclysmic VEI 7 Tambora eruption in April 1815. However, no eyewitness accounts of the event, and therefore its location, or the atmospheric optical effects associated with its aerosols have been documented from historical records. Here we report on two meteorological observations dating from the end of 1808 that describe phenomena we attribute to volcanic-induced atmospheric effects caused by the Unknown eruption. The observations were made by two highly respected Latin American scientists. The first, Francisco José de Caldas, describes a stratospheric aerosol haze, a "transparent cloud that obstructs the sun's brilliance", that was visible over the city of Bogotá, Colombia, from 11 December 1808 to at least mid-February 1809. The second, made by physician José Hipólito Unanue in Lima, Peru, describes sunset after-glows (akin to well-documented examples known to be caused by stratospheric volcanic aerosols) from mid-December 1808 to February 1809. These two accounts provide direct evidence of a persistent stratospheric aerosol veil that spanned at least 2600 km into both Northern and Southern Hemispheres and establish that the source was a tropical volcano. Moreover, these observations confirm that the Unknown eruption, previously identified and tentatively assigned to February 1809 (±4 months) from analysis of ice core sulfate records, occurred in late November or early December 1808 (4 December 1808 ±7 days). This date has important implications for the associated hemispheric climate impacts and temporal pattern of aerosol dispersal.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    facet.materialart.
    Unknown
    Copernicus
    Publication Date: 2014-09-18
    Description: Present and future variations in Antarctic firn air content The Cryosphere, 8, 1711-1723, 2014 Author(s): S. R. M. Ligtenberg, P. Kuipers Munneke, and M. R. van den Broeke A firn densification model (FDM) is used to assess spatial and temporal (1979–2200) variations in the depth, density and temperature of the firn layer covering the Antarctic ice sheet (AIS). A time-dependent version of the FDM is compared to more commonly used steady-state FDM results. Although the average AIS firn air content (FAC) of both models is similar (22.5 m), large spatial differences are found: in the ice-sheet interior, the steady-state model underestimates the FAC by up to 2 m, while the FAC is overestimated by 5–15 m along the ice-sheet margins, due to significant surface melt. Applying the steady-state FAC values to convert surface elevation to ice thickness (i.e., assuming flotation at the grounding line) potentially results in an underestimation of ice discharge at the grounding line, and hence an underestimation of current AIS mass loss by 23.5% (or 16.7 Gt yr −1 ) with regard to the reconciled estimate over the period 1992–2011. The timing of the measurement is also important, as temporal FAC variations of 1–2 m are simulated within the 33 yr period (1979–2012). Until 2200, the Antarctic FAC is projected to change due to a combination of increasing accumulation, temperature, and surface melt. The latter two result in a decrease of FAC, due to (i) more refrozen meltwater, (ii) a higher densification rate, and (iii) a faster firn-to-ice transition at the bottom of the firn layer. These effects are, however, more than compensated for by increasing snowfall, leading to a 4–14% increase in FAC. Only in melt-affected regions, future FAC is simulated to decrease, with the largest changes (−50 to −80%) on the ice shelves in the Antarctic Peninsula and Dronning Maud Land. Integrated over the AIS, the increase in precipitation results in a similar volume increase due to ice and air (both ~150 km 3 yr −1 until 2100). Combined, this volume increase is equivalent to a surface elevation change of +2.1 cm yr −1 , which shows that variations in firn depth remain important to consider in future mass balance studies using satellite altimetry.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2014-09-18
    Description: Sensitivity of the dynamics of Pine Island Glacier, West Antarctica, to climate forcing for the next 50 years The Cryosphere, 8, 1699-1710, 2014 Author(s): H. Seroussi, M. Morlighem, E. Rignot, J. Mouginot, E. Larour, M. Schodlok, and A. Khazendar Pine Island Glacier, a major contributor to sea level rise in West Antarctica, has been undergoing significant changes over the last few decades. Here, we employ a three-dimensional, higher-order model to simulate its evolution over the next 50 yr in response to changes in its surface mass balance, the position of its calving front and ocean-induced ice shelf melting. Simulations show that the largest climatic impact on ice dynamics is the rate of ice shelf melting, which rapidly affects the glacier speed over several hundreds of kilometers upstream of the grounding line. Our simulations show that the speedup observed in the 1990s and 2000s is consistent with an increase in sub-ice-shelf melting. According to our modeling results, even if the grounding line stabilizes for a few decades, we find that the glacier reaction can continue for several decades longer. Furthermore, Pine Island Glacier will continue to change rapidly over the coming decades and remain a major contributor to sea level rise, even if ocean-induced melting is reduced.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2014-09-19
    Description: Multiproxy reconstruction for Kuroshio responses to northern hemispheric oceanic climate and the Asian Monsoon since Marine Isotope Stage 5.1 (∼88 ka) Climate of the Past, 10, 1735-1750, 2014 Author(s): X. Shi, Y. Wu, J. Zou, Y. Liu, S. Ge, M. Zhao, J. Liu, A. Zhu, X. Meng, Z. Yao, and Y. Han The Kuroshio, a western boundary current in the northwestern Pacific, plays a key role in regulating ocean and climate in East Asia. The evolution of the Kuroshio and its branches has been the focus of paleoceanographic studies. In this study, we applied a multiproxy (grain size, planktonic foraminiferal species, δ 18 O, alkenone sea surface temperature (SST) and salinity) reconstruction from sediment core CSH1, which is located at the main axis of the Tsushima Warm Current, a branch of the Kuroshio, in the northern Okinawa Trough (OT). This study, extended the paleoceanographic record of the Kuroshio to Marine Isotope Stage (MIS) 5.1 (∼88 ka) from the far northern site in the OT. Planktonic foraminiferal species identified from this core contain warm-water species related to the Kuroshio and cold-water species related to subarctic water mass. The relative abundances of the warm-water species are high during MIS 1 and MIS 5.1, while cold-water species are high during MIS 2. An organic biomarker proxy, alkenone SST measured from core CSH1 ranges between 21 and 25 °C, with higher values during interglacials (MIS 1, 3.3, 5.1) and interstadials and lower values during glacials and Heinrich (H)/stadial events. Sea surface salinity (SSS) and the depth of the thermocline (DOT), reconstructed based on foraminifera isotopes and faunas, indicate dominant Kuroshio responses to an abrupt climate change event recorded in Greenland ice cores and in stalagmites in East China since ∼88 ka. The CSH1 SSS appears to be mainly controlled by the local river runoff and the Kuroshio, while the DOT change seems to be closely related to the strength of the Kuroshio and the latitudinal shift of the subarctic frontal zone. Our records suggest that, during MIS 1 and MIS 5.1, while global sea level was high, the Kuroshio was dominant; while during MIS 2, MIS 3 and MIS 4, with a low sea level, stronger winter Asian Monsoon (AM) and a more southerly subarctic front played important roles in governing the hydrographic characteristics in the OT. Spectral analysis of our multiproxy hydrographic records shows a dominant precessional period at ∼24 ka. Our hydrographic records, such as SST, SSS and DOT, from a site near the modern Tsushima Warm Current show regional responses corresponding mainly to the global sea level, the Kuroshio, AM and subarctic front, factors which are consistently invoked in the interpretations of other regional records from the OT.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2014-10-02
    Description: The impact of ice layers on gas transport through firn at the North Greenland Eemian Ice Drilling (NEEM) site, Greenland The Cryosphere, 8, 1801-1806, 2014 Author(s): K. Keegan, M. R. Albert, and I. Baker Typically, gas transport through firn is modeled in the context of an idealized firn column. However, in natural firn, imperfections are present, which can alter transport dynamics and therefore reduce the accuracy of reconstructed climate records. For example, ice layers have been found in several firn cores collected in the polar regions. Here, we examined the effects of two ice layers found in a NEEM, Greenland firn core on gas transport through the firn. These ice layers were found to have permeability values of 3.0 and 4.0 × 10 −10 m 2 , and are therefore not impermeable layers. However, the shallower ice layer was found to be significantly less permeable than the surrounding firn, and can therefore retard gas transport. Large closed bubbles were found in the deeper ice layer, which will have an altered gas composition than that expected because they were closed near the surface after the water phase was present. The bubbles in this layer represent 12% of the expected closed porosity of this firn layer after the firn-ice transition depth is reached, and will therefore bias the future ice core gas record. The permeability and thickness of the ice layers at the North Greenland Eemian Ice Drilling (NEEM) site suggest that they do not disrupt the firn-air concentration profiles and that they do not need to be accounted for in gas transport models at NEEM.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2014-10-08
    Description: Coupled ice sheet–climate modeling under glacial and pre-industrial boundary conditions Climate of the Past, 10, 1817-1836, 2014 Author(s): F. A. Ziemen, C. B. Rodehacke, and U. Mikolajewicz In the standard Paleoclimate Modelling Intercomparison Project (PMIP) experiments, the Last Glacial Maximum (LGM) is modeled in quasi-equilibrium with atmosphere–ocean–vegetation general circulation models (AOVGCMs) with prescribed ice sheets. This can lead to inconsistencies between the modeled climate and ice sheets. One way to avoid this problem would be to model the ice sheets explicitly. Here, we present the first results from coupled ice sheet–climate simulations for the pre-industrial times and the LGM. Our setup consists of the AOVGCM ECHAM5/MPIOM/LPJ bidirectionally coupled with the Parallel Ice Sheet Model (PISM) covering the Northern Hemisphere. The results of the pre-industrial and LGM simulations agree reasonably well with reconstructions and observations. This shows that the model system adequately represents large, non-linear climate perturbations. A large part of the drainage of the ice sheets occurs in ice streams. Most modeled ice stream systems show recurring surges as internal oscillations. The Hudson Strait Ice Stream surges with an ice volume equivalent to about 5 m sea level and a recurrence interval of about 7000 yr. This is in agreement with basic expectations for Heinrich events. Under LGM boundary conditions, different ice sheet configurations imply different locations of deep water formation.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2014-10-09
    Description: Surface velocity and mass balance of Livingston Island ice cap, Antarctica The Cryosphere, 8, 1807-1823, 2014 Author(s): B. Osmanoglu, F. J. Navarro, R. Hock, M. Braun, and M. I. Corcuera The mass budget of the ice caps surrounding the Antarctica Peninsula and, in particular, the partitioning of its main components are poorly known. Here we approximate frontal ablation (i.e. the sum of mass losses by calving and submarine melt) and surface mass balance of the ice cap of Livingston Island, the second largest island in the South Shetland Islands archipelago, and analyse variations in surface velocity for the period 2007–2011. Velocities are obtained from feature tracking using 25 PALSAR-1 images, and used in conjunction with estimates of glacier ice thicknesses inferred from principles of glacier dynamics and ground-penetrating radar observations to estimate frontal ablation rates by a flux-gate approach. Glacier-wide surface mass-balance rates are approximated from in situ observations on two glaciers of the ice cap. Within the limitations of the large uncertainties mostly due to unknown ice thicknesses at the flux gates, we find that frontal ablation (−509 ± 263 Mt yr −1 , equivalent to −0.73 ± 0.38 m w.e. yr −1 over the ice cap area of 697 km 2 ) and surface ablation (−0.73 ± 0.10 m w.e. yr −1 ) contribute similar shares to total ablation (−1.46 ± 0.39 m w.e. yr −1 ). Total mass change (δ M = −0.67 ± 0.40 m w.e. yr −1 ) is negative despite a slightly positive surface mass balance (0.06 ± 0.14 m w.e. yr −1 ). We find large interannual and, for some basins, pronounced seasonal variations in surface velocities at the flux gates, with higher velocities in summer than in winter. Associated variations in frontal ablation (of ~237 Mt yr −1 ; −0.34 m w.e. yr −1 ) highlight the importance of taking into account the seasonality in ice velocities when computing frontal ablation with a flux-gate approach.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2014-10-10
    Description: Influence of stress, temperature and crystal morphology on isothermal densification and specific surface area decrease of new snow The Cryosphere, 8, 1825-1838, 2014 Author(s): S. Schleef, H. Löwe, and M. Schneebeli Laboratory-based, experimental data for the microstructural evolution of new snow are scarce, though applications would benefit from a quantitative characterization of the main influences. To this end, we have analyzed the metamorphism and concurrent densification of new snow under isothermal conditions by means of X-ray microtomography and compiled a comprehensive data set of 45 time series. In contrast to previous measurements on isothermal metamorphism on time scales of weeks to months, we analyzed the initial 24–48 h of snow evolution at a high temporal resolution of 3 hours. The data set comprised natural and laboratory-grown snow, and experimental conditions included systematic variations of overburden stress, temperature and crystal habit to address the main influences on specific surface area (SSA) decrease rate and densification rate in a snowpack. For all conditions, we found a linear relation between density and SSA, indicating that metamorphism has an immediate influence for the densification of new snow. The slope of the linear relation, however, depends on the other parameters which were analyzed individually to derive a best-fit parameterization for the SSA decrease rate and densification rate. In the investigated parameter range, we found that the initial value of the SSA constituted the main morphological influence on the SSA decrease rate. In turn, the SSA decrease rate constituted the main influence on the densification rate.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2014-09-02
    Description: Relative impact of insolation and the Indo-Pacific warm pool surface temperature on the East Asia summer monsoon during the MIS-13 interglacial Climate of the Past, 10, 1645-1657, 2014 Author(s): Q. Z. Yin, U. K. Singh, A. Berger, Z. T. Guo, and M. Crucifix During Marine Isotope Stage (MIS)-13, an interglacial about 500 000 years ago, the East Asian summer monsoon (EASM) was suggested exceptionally strong by different proxies in China. However, MIS-13 is a weak interglacial in marine oxygen isotope records and has relatively low CO 2 and CH 4 concentrations compared to other interglacials of the last 800 000 years. In the meantime, the sea surface temperature (SST) reconstructions have shown that the warm pool was relatively warm during MIS-13. Based on climate modeling experiments, this study aims at investigating whether a warmer Indo-Pacific warm pool (IPWP) can explain the exceptionally strong EASM occurring during the relatively cool interglacial MIS-13. The relative contributions of insolation and of the IPWP SST as well as their synergism are quantified through experiments with the Hadley Centre atmosphere model, HadAM3, and using the factor separation technique. The SST of the IPWP has been increased based on geological reconstructions. Our results show that the pure impact of a strong summer insolation contributes to strengthen significantly the summer precipitation in northern China but only little in southern China. The pure impact of enhanced IPWP SST reduces, slightly, the summer precipitation in both northern and southern China. However, the synergism between insolation and enhanced IPWP SST contributes to a large increase of summer precipitation in southern China but to a slight decrease in northern China. Therefore, the ultimate role of enhanced IPWP SST is to reinforce the impact of insolation in southern China but reduce its impact in northern China. We conclude that a warmer IPWP helps to explain the strong MIS-13 EASM precipitation in southern China as recorded in proxy data, but another explanation is needed for northern China.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2014-10-21
    Description: Sensitivity of Greenland Ice Sheet surface mass balance to perturbations in sea surface temperature and sea ice cover: a study with the regional climate model MAR The Cryosphere, 8, 1871-1883, 2014 Author(s): B. Noël, X. Fettweis, W. J. van de Berg, M. R. van den Broeke, and M. Erpicum During recent summers (2007–2012), several surface melt records were broken over the Greenland Ice Sheet (GrIS). The extreme summer melt resulted in part from a persistent negative phase of the North Atlantic Oscillation (NAO), favoring warmer atmospheric conditions than normal over the GrIS. Simultaneously, large anomalies in sea ice cover (SIC) and sea surface temperature (SST) were observed in the North Atlantic, suggesting a possible connection. To assess the direct impact of 2007–2012 SIC and SST anomalies on GrIS surface mass balance (SMB), a set of sensitivity experiments was carried out with the regional climate model MAR forced by ERA-Interim. These simulations suggest that perturbations in SST and SIC in the seas surrounding Greenland do not considerably impact GrIS SMB, as a result of the katabatic wind blocking effect. These offshore-directed winds prevent oceanic near-surface air, influenced by SIC and SST anomalies, from penetrating far inland. Therefore, the ice sheet SMB response is restricted to coastal regions, where katabatic winds cease. A topic for further investigation is how anomalies in SIC and SST might have indirectly affected the surface melt by changing the general circulation in the North Atlantic region, hence favoring more frequent warm air advection towards the GrIS.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2014-10-24
    Description: Three-phase numerical model for subsurface hydrology in permafrost-affected regions (PFLOTRAN-ICE v1.0) The Cryosphere, 8, 1935-1950, 2014 Author(s): S. Karra, S. L. Painter, and P. C. Lichtner Degradation of near-surface permafrost due to changes in the climate is expected to impact the hydrological, ecological and biogeochemical responses of the Arctic tundra. From a hydrological perspective, it is important to understand the movement of the various phases of water (gas, liquid and ice) during the freezing and thawing of near-surface soils. We present a new non-isothermal, single-component (water), three-phase formulation that treats air as an inactive component. This single component model works well and produces similar results to a more complete and computationally demanding two-component (air, water) formulation, and is able to reproduce results of previously published laboratory experiments. A proof-of-concept implementation in the massively parallel subsurface flow and reactive transport code PFLOTRAN is summarized, and parallel performance of that implementation is demonstrated. When water vapor diffusion is considered, a large effect on soil moisture dynamics is seen, which is due to dependence of thermal conductivity on ice content. A large three-dimensional simulation (with around 6 million degrees of freedom) of seasonal freezing and thawing is also presented.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2014-10-25
    Description: The role of the northward-directed (sub)surface limb of the Atlantic Meridional Overturning Circulation during the 8.2 ka event Climate of the Past, 10, 1887-1904, 2014 Author(s): A. D. Tegzes, E. Jansen, and R. J. Telford The so-called "8.2 ka event" is widely regarded as a major Holocene climate perturbation. It is most readily identifiable in the oxygen-isotope records from Greenland ice cores as an approximately 160-year-long cold interval between 8250 and 8090 years BP. The prevailing view has been that the cooling over Greenland, and potentially over the northern North Atlantic at least, was triggered by the catastrophic final drainage of the Agassiz–Ojibway proglacial lake as part of the remnant Laurentide Ice Sheet collapsed over Hudson Bay at around 8420 ± 80 years BP. The consequent freshening of surface waters in the northern North Atlantic Ocean and the Nordic Seas resulted in weaker overturning, and hence reduced northward ocean heat transport. We have reconstructed variations in the strength of the eastern branch of the Atlantic Inflow into the Nordic Seas around the time of the lake outbursts. While the initial freshwater forcing may have been even larger than originally thought, as the lake outbursts may have been accompanied by a major iceberg discharge from Hudson Bay, our proxy records from the mid-Norwegian Margin do not evidence a uniquely large slowdown in the eastern branch of the Atlantic Inflow at the time. Therefore, its main role in the 8.2 ka event may have been the (rapid) advection of fresh and cold waters to high northern latitudes, initiating rapid sea-ice expansion and an increase in surface albedo.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2014-10-30
    Description: Fire in ice: two millennia of boreal forest fire history from the Greenland NEEM ice core Climate of the Past, 10, 1905-1924, 2014 Author(s): P. Zennaro, N. Kehrwald, J. R. McConnell, S. Schüpbach, O. J. Maselli, J. Marlon, P. Vallelonga, D. Leuenberger, R. Zangrando, A. Spolaor, M. Borrotti, E. Barbaro, A. Gambaro, and C. Barbante Biomass burning is a major source of greenhouse gases and influences regional to global climate. Pre-industrial fire-history records from black carbon, charcoal and other proxies provide baseline estimates of biomass burning at local to global scales spanning millennia, and are thus useful to examine the role of fire in the carbon cycle and climate system. Here we use the specific biomarker levoglucosan together with black carbon and ammonium concentrations from the North Greenland Eemian (NEEM) ice cores (77.49° N, 51.2° W; 2480 m a.s.l) over the past 2000 years to infer changes in boreal fire activity. Increases in boreal fire activity over the periods 1000–1300 CE and decreases during 700–900 CE coincide with high-latitude NH temperature changes. Levoglucosan concentrations in the NEEM ice cores peak between 1500 and 1700 CE, and most levoglucosan spikes coincide with the most extensive central and northern Asian droughts of the past millennium. Many of these multi-annual droughts are caused by Asian monsoon failures, thus suggesting a connection between low- and high-latitude climate processes. North America is a primary source of biomass burning aerosols due to its relative proximity to the Greenland Ice Cap. During major fire events, however, isotopic analyses of dust, back trajectories and links with levoglucosan peaks and regional drought reconstructions suggest that Siberia is also an important source of pyrogenic aerosols to Greenland.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2014-10-23
    Description: Monitoring of a fast-growing speleothem site from the Han-sur-Lesse cave, Belgium, indicates equilibrium deposition of the seasonal δ 18 O and δ 13 C signals in the calcite Climate of the Past, 10, 1871-1885, 2014 Author(s): M. Van Rampelbergh, S. Verheyden, M Allan, Y. Quinif, E. Keppens, and P. Claeys Speleothems provide paleoclimate information on multimillennial to decadal scales in the Holocene. However, seasonal or even monthly resolved records remain scarce. Such records require fast-growing stalagmites and a good understanding of the proxy system on very short timescales. The Proserpine stalagmite from the Han-sur-Less cave (Belgium) displays well-defined/clearly visible darker and lighter seasonal layers of 0.5 to 2 mm thickness per single layer, which allows a measuring resolution at a monthly scale. Through a regular cave monitoring, we acquired a good understanding of how δ 18 O and δ 13 C signals in modern calcite reflect climate variations on the seasonal scale. From December to June, outside temperatures are cold, inducing low cave air and water temperature, and bio-productivity in the soil is limited, leading to lower p CO 2 and higher δ 13 C values of the CO 2 in the cave air. From June to December, the measured factors display an opposite behavior. The absence of epikarst water recharge between May and October increases prior calcite precipitation (PCP) in the vadose zone, causing drip water to display increasing pH and δ 13 C values over the summer months. Water recharge of the epikarst in winter diminishes the effect of PCP and as a result the pH and δ 13 C of the drip water gradually decrease. The δ 18 O and δ 13 C signals of fresh calcite precipitated on glass slabs also vary seasonally and are both reflecting equilibrium conditions. Lowest δ 18 O values occur during the summer, when the δ 13 C values are high. The δ 18 O values of the calcite display seasonal variations due to changes in the cave air and water temperature. The δ 13 C values reflect the seasonal variation of the δ 13 C DIC of the drip water, which is affected by the intensity of PCP. This same anticorrelation of the δ 18 O versus the δ 13 C signals is seen in the monthly resolved speleothem record that covers the period between 1976 and 1985 AD. Dark layers display lower δ 18 O and higher δ 13 C values. The cave system varies seasonally in response to the activity of the vegetation cover and outside air temperature between a "summer mode" lasting from June to December and a "winter mode" from December to June. The low δ 18 O and high δ 13 C values of the darker speleothem layers indicate that they are formed during summer, while light layers are formed during winter. The darker the color of a layer, the more compact its calcite structure is, and the more negative its δ 18 O signal and the more positive its δ 13 C signal are. Darker layers deposited from summer drip water affected by PCP are suggested to contain lower Ca 2+ concentration. If indeed the calcite saturation represents the main factor driving the Proserpine growth rate, the dark layers should grow slower than the white layers.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2014-10-23
    Description: Late Holocene environmental reconstructions and their implications on flood events, typhoon, and agricultural activities in NE Taiwan Climate of the Past, 10, 1857-1869, 2014 Author(s): L.-C. Wang, H. Behling, T.-Q. Lee, H.-C. Li, C.-A. Huh, L.-J. Shiau, and Y.-P. Chang We reconstructed paleoenvironmental changes from a sediment archive of a lake in the floodplain of the Ilan Plain of NE Taiwan on multi-decadal resolution for the last ca. 1900 years. On the basis of pollen and diatom records, we evaluated past floods, typhoons, and agricultural activities in this area which are sensitive to the hydrological conditions in the western Pacific. Considering the high sedimentation rates with low microfossil preservations in our sedimentary record, multiple flood events were. identified during the period AD 100–1400. During the Little Ice Age phase 1 (LIA 1 – AD 1400–1620), the abundant occurrences of wetland plant (Cyperaceae) and diatom frustules imply less flood events under stable climate conditions in this period. Between AD 500 and 700 and the Little Ice Age phase 2 (LIA 2 – AD 1630–1850), the frequent typhoons were inferred by coarse sediments and planktonic diatoms, which represented more dynamical climate conditions than in the LIA 1. By comparing our results with the reconstructed changes in tropical hydrological conditions, we suggested that the local hydrology in NE Taiwan is strongly influenced by typhoon-triggered heavy rainfalls, which could be influenced by the variation of global temperature, the expansion of the Pacific warm pool, and the intensification of El Niño–Southern Oscillation (ENSO) events.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2014-10-23
    Description: Using daily air temperature thresholds to evaluate snow melting occurrence and amount on Alpine glaciers by T -index models: the case study of the Forni Glacier (Italy) The Cryosphere, 8, 1921-1933, 2014 Author(s): A. Senese, M. Maugeri, E. Vuillermoz, C. Smiraglia, and G. Diolaiuti Glacier melt conditions (i.e., null surface temperature and positive energy budget) can be assessed by analyzing data acquired by a supraglacial automatic weather station (AWS), such as the station installed on the surface of Forni Glacier (Italian Alps). When an AWS is not present, the assessment of actual melt conditions and the evaluation of the melt amount is more difficult and simple methods based on T -index (or degree days) models are generally applied. These models require the choice of a correct temperature threshold. In fact, melt does not necessarily occur at daily air temperatures higher than 0 °C. In this paper, we applied both energy budget and T -index approaches with the aim of solving this issue. We start by distinguishing between the occurrence of snowmelt and the reduction in snow depth due to actual ablation (from snow depth data recorded by a sonic ranger). Then we find the daily average temperature thresholds (by analyzing temperature data acquired by an AWS on Forni Glacier) which, on the one hand, best capture the occurrence of significant snowmelt conditions and, on the other, make it possible, using the T -index, to quantify the actual snow ablation amount. Finally we investigated the applicability of the mean tropospheric lapse rate to reproduce air temperature conditions at the glacier surface starting from data acquired by weather stations located outside the glacier area. We found that the mean tropospheric lapse rate allows for a good and reliable reconstruction of glacier air temperatures and that the choice of an appropriate temperature threshold in T -index models is a very important issue. From our study, the application of the +0.5 °C temperature threshold allows for a consistent quantification of snow ablation while, instead, for detecting the beginning of the snow melting processes a suitable threshold has proven to be at least −4.6 °C.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2014-10-23
    Description: Blowing snow in coastal Adélie Land, Antarctica: three atmospheric-moisture issues The Cryosphere, 8, 1905-1919, 2014 Author(s): H. Barral, C. Genthon, A. Trouvilliez, C. Brun, and C. Amory A total of 3 years of blowing-snow observations and associated meteorology along a 7 m mast at site D17 in coastal Adélie Land are presented. The observations are used to address three atmospheric-moisture issues related to the occurrence of blowing snow, a feature which largely affects many regions of Antarctica: (1) blowing-snow sublimation raises the moisture content of the surface atmosphere close to saturation, and atmospheric models and meteorological analyses that do not carry blowing-snow parameterizations are affected by a systematic dry bias; (2) while snowpack modelling with a parameterization of surface-snow erosion by wind can reproduce the variability of snow accumulation and ablation, ignoring the high levels of atmospheric-moisture content associated with blowing snow results in overestimating surface sublimation, affecting the energy budget of the snowpack; (3) the well-known profile method of calculating turbulent moisture fluxes is not applicable when blowing snow occurs, because moisture gradients are weak due to blowing-snow sublimation, and the impact of measurement uncertainties are strongly amplified in the case of strong winds.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2014-10-28
    Description: 1D-Var multilayer assimilation of X-band SAR data into a detailed snowpack model The Cryosphere, 8, 1975-1987, 2014 Author(s): X. V. Phan, L. Ferro-Famil, M. Gay, Y. Durand, M. Dumont, S. Morin, S. Allain, G. D'Urso, and A. Girard The structure and physical properties of a snowpack and their temporal evolution may be simulated using meteorological data and a snow metamorphism model. Such an approach may meet limitations related to potential divergences and accumulated errors, to a limited spatial resolution, to wind or topography-induced local modulations of the physical properties of a snow cover, etc. Exogenous data are then required in order to constrain the simulator and improve its performance over time. Synthetic-aperture radars (SARs) and, in particular, recent sensors provide reflectivity maps of snow-covered environments with high temporal and spatial resolutions. The radiometric properties of a snowpack measured at sufficiently high carrier frequencies are known to be tightly related to some of its main physical parameters, like its depth, snow grain size and density. SAR acquisitions may then be used, together with an electromagnetic backscattering model (EBM) able to simulate the reflectivity of a snowpack from a set of physical descriptors, in order to constrain a physical snowpack model. In this study, we introduce a variational data assimilation scheme coupling TerraSAR-X radiometric data into the snowpack evolution model Crocus. The physical properties of a snowpack, such as snow density and optical diameter of each layer, are simulated by Crocus, fed by the local reanalysis of meteorological data (SAFRAN) at a French Alpine location. These snowpack properties are used as inputs of an EBM based on dense media radiative transfer (DMRT) theory, which simulates the total backscattering coefficient of a dry snow medium at X and higher frequency bands. After evaluating the sensitivity of the EBM to snowpack parameters, a 1D-Var data assimilation scheme is implemented in order to minimize the discrepancies between EBM simulations and observations obtained from TerraSAR-X acquisitions by modifying the physical parameters of the Crocus-simulated snowpack. The algorithm then re-initializes Crocus with the modified snowpack physical parameters, allowing it to continue the simulation of snowpack evolution, with adjustments based on remote sensing information. This method is evaluated using multi-temporal TerraSAR-X images acquired over the specific site of the Argentière glacier (Mont-Blanc massif, French Alps) to constrain the evolution of Crocus. Results indicate that X-band SAR data can be taken into account to modify the evolution of snowpack simulated by Crocus.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2014-10-28
    Description: Assessment of heat sources on the control of fast flow of Vestfonna ice cap, Svalbard The Cryosphere, 8, 1951-1973, 2014 Author(s): M. Schäfer, F. Gillet-Chaulet, R. Gladstone, R. Pettersson, V. A. Pohjola, T. Strozzi, and T. Zwinger Understanding the response of fast flowing ice streams or outlet glaciers to changing climate is crucial in order to make reliable projections of sea level change over the coming decades. Motion of fast outlet glaciers occurs largely through basal motion governed by physical processes at the glacier bed, which are not yet fully understood. Various subglacial mechanisms have been suggested for fast flow but common to most of the suggested processes is the requirement of presence of liquid water, and thus temperate conditions. We use a combination of modelling, field, and remote observations in order to study links between different heat sources, the thermal regime and basal sliding in fast flowing areas on Vestfonna ice cap. A special emphasis lies on Franklinbreen, a fast flowing outlet glacier which has been observed to accelerate recently. We use the ice flow model Elmer/Ice including a Weertman type sliding law and a Robin inverse method to infer basal friction parameters from observed surface velocities. Firn heating, i.e. latent heat release through percolation of melt water, is included in our model; its parameterisation is calibrated with the temperature record of a deep borehole. We found that strain heating is negligible, whereas friction heating is identified as one possible trigger for the onset of fast flow. Firn heating is a significant heat source in the central thick and slow flowing area of the ice cap and the essential driver behind the ongoing fast flow in all outlets. Our findings suggest a possible scenario of the onset and maintenance of fast flow on the Vestfonna ice cap based on thermal processes and emphasise the role of latent heat released through refreezing of percolating melt water for fast flow. However, these processes cannot yet be captured in a temporally evolving sliding law. In order to simulate correctly fast flowing outlet glaciers, ice flow models not only need to account fully for all heat sources, but also need to incorporate a sliding law that is not solely based on the basal temperature, but also on hydrology and/or sediment physics.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2014-10-29
    Description: Topographic control of snowpack distribution in a small catchment in the central Spanish Pyrenees: intra- and inter-annual persistence The Cryosphere, 8, 1989-2006, 2014 Author(s): J. Revuelto, J. I. López-Moreno, C. Azorin-Molina, and S. M. Vicente-Serrano In this study we analyzed the relations between terrain characteristics and snow depth distribution in a small alpine catchment located in the central Spanish Pyrenees. Twelve field campaigns were conducted during 2012 and 2013, which were years characterized by very different climatic conditions. Snow depth was measured using a long range terrestrial laser scanner and analyses were performed at a spatial resolution of 5 m. Pearson's r correlation, multiple linear regressions (MLRs) and binary regression trees (BRTs) were used to analyze the influence of topography on the snow depth distribution. The analyses were used to identify the topographic variables that best explain the snow distribution in this catchment, and to assess whether their contributions were variable over intra- and interannual timescales. The topographic position index (index that compares the relative elevation of each cell in a digital elevation model to the mean elevation of a specified neighborhood around that cell with a specific shape and searching distance), which has rarely been used in these types of studies, most accurately explained the distribution of snow. The good capability of the topographic position index (TPI) to predict snow distribution has been observed in both, MLRs and BRTs for all analyzed days. Other variables affecting the snow depth distribution included the maximum upwind slope, elevation and northing. The models developed to predict snow distribution in the basin for each of the 12 survey days were similar in terms of the explanatory variables. However, the variance explained by the overall model and by each topographic variable, especially those making a lesser contribution, differed markedly between a year in which snow was abundant (2013) and a year when snow was scarce (2012), and also differed between surveys in which snow accumulation or melting conditions dominated in the preceding days. The total variance explained by the models clearly decreased for those days on which the snowpack was thinner and more patchily. Despite the differences in climatic conditions in the 2012 and 2013 snow seasons, similarities in snow distributions patterns were observed which are directly related to terrain topographic characteristics.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2014-10-30
    Description: The influence of atmospheric circulation on the mid-Holocene climate of Europe: a data–model comparison Climate of the Past, 10, 1925-1938, 2014 Author(s): A. Mauri, B. A. S. Davis, P. M. Collins, and J. O. Kaplan The atmospheric circulation is a key area of uncertainty in climate model simulations of future climate change, especially in mid-latitude regions such as Europe where atmospheric dynamics have a significant role in climate variability. It has been proposed that the mid-Holocene was characterized in Europe by a stronger westerly circulation in winter comparable with a more positive AO/NAO, and a weaker westerly circulation in summer caused by anti-cyclonic blocking near Scandinavia. Model simulations indicate at best only a weakly positive AO/NAO, whilst changes in summer atmospheric circulation have not been widely investigated. Here we use a new pollen-based reconstruction of European mid-Holocene climate to investigate the role of atmospheric circulation in explaining the spatial pattern of seasonal temperature and precipitation anomalies. We find that the footprint of the anomalies is entirely consistent with those from modern analogue atmospheric circulation patterns associated with a strong westerly circulation in winter (positive AO/NAO) and a weak westerly circulation in summer associated with anti-cyclonic blocking (positive SCAND). We find little agreement between the reconstructed anomalies and those from 14 GCMs that performed mid-Holocene experiments as part of the PMIP3/CMIP5 project, which show a much greater sensitivity to top-of-the-atmosphere changes in solar insolation. Our findings are consistent with data–model comparisons on contemporary timescales that indicate that models underestimate the role of atmospheric circulation in recent climate change, whilst also highlighting the importance of atmospheric dynamics in explaining interglacial warming.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2014-08-05
    Description: Importance of basal processes in simulations of a surging Svalbard outlet glacier The Cryosphere, 8, 1393-1405, 2014 Author(s): R. Gladstone, M. Schäfer, T. Zwinger, Y. Gong, T. Strozzi, R. Mottram, F. Boberg, and J. C. Moore The outlet glacier of Basin 3 (B3) of Austfonna ice cap, Svalbard, is one of the fastest outlet glaciers in Svalbard, and shows dramatic changes since 1995. In addition to previously observed seasonal summer speed-up associated with the melt season, the winter speed of B3 has accelerated approximately fivefold since 1995. We use the Elmer/Ice full-Stokes model for ice dynamics to infer spatial distributions of basal drag for the winter seasons of 1995, 2008 and 2011. This "inverse" method is based on minimising discrepancy between modelled and observed surface velocities, using satellite remotely sensed velocity fields. We generate steady-state temperature distributions for 1995 and 2011. Frictional heating caused by basal sliding contributes significantly to basal temperatures of the B3 outlet glacier, with heat advection (a longer-timescale process than frictional heating) also being important in the steady state. We present a sensitivity experiment consisting of transient simulations under present-day forcing to demonstrate that using a temporally fixed basal drag field obtained through inversion can lead to thickness change errors of the order of 2 m year −1 . Hence it is essential to incorporate the evolution of basal processes in future projections of the evolution of B3. Informed by a combination of our inverse method results and previous studies, we hypothesise a system of processes and feedbacks involving till deformation and basal hydrology to explain both the seasonal accelerations (short residence time pooling of meltwater at the ice–till interface) and the ongoing interannual speed-up (gradual penetration of water into the till, reducing till strength).
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2014-08-26
    Description: Late Eocene to middle Miocene (33 to 13 million years ago) vegetation and climate development on the North American Atlantic Coastal Plain (IODP Expedition 313, Site M0027) Climate of the Past, 10, 1523-1539, 2014 Author(s): U. Kotthoff, D. R. Greenwood, F. M. G. McCarthy, K. Müller-Navarra, S. Prader, and S. P. Hesselbo We investigated the palynology of sediment cores from Site M0027 of IODP (Integrated Ocean Drilling Program) Expedition 313 on the New Jersey shallow shelf to examine vegetation and climate dynamics on the east coast of North America between 33 and 13 million years ago and to assess the impact of over-regional climate events on the region. Palynological results are complemented with pollen-based quantitative climate reconstructions. Our results indicate that the hinterland vegetation of the New Jersey shelf was characterized by oak–hickory forests in the lowlands and conifer-dominated vegetation in the highlands from the early Oligocene to the middle Miocene. The Oligocene witnessed several expansions of conifer forest, probably related to cooling events. The pollen-based climate data imply an increase in annual temperatures from ∼11.5 °C to more than 16 °C during the Oligocene. The Mi-1 cooling event at the onset of the Miocene is reflected by an expansion of conifers and mean annual temperature decrease of ∼4 °C, from ∼16 °C to ∼12 °C around 23 million years before present. Relatively low annual temperatures are also recorded for several samples during an interval around ∼20 million years before present, which may reflect the Mi-1a and the Mi-1aa cooling events. Generally, the Miocene ecosystem and climate conditions were very similar to those of the Oligocene. Miocene grasslands, as known from other areas in the USA during that time period, are not evident for the hinterland of the New Jersey shelf, possibly reflecting moisture from the proto-Gulf Stream. The palaeovegetation data reveal stable conditions during the mid-Miocene climatic optimum at ∼15 million years before present, with only a minor increase in deciduous–evergreen mixed forest taxa and a decrease in swamp forest taxa. Pollen-based annual temperature reconstructions show average annual temperatures of ∼14 °C during the mid-Miocene climatic optimum, ∼2 °C higher than today, but ∼1.5 °C lower than preceding and following phases of the Miocene. We conclude that vegetation and regional climate in the hinterland of the New Jersey shelf did not react as sensitively to Oligocene and Miocene climate changes as other regions in North America or Europe due to the moderating effects of the North Atlantic. An additional explanation for the relatively low regional temperatures reconstructed for the mid-Miocene climatic optimum could be an uplift of the Appalachian Mountains during the Miocene, which would also have influenced the catchment area of our pollen record.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2014-08-28
    Description: Factors controlling the last interglacial climate as simulated by LOVECLIM1.3 Climate of the Past, 10, 1541-1565, 2014 Author(s): M. F. Loutre, T. Fichefet, H. Goosse, P. Huybrechts, H. Goelzer, and E. Capron The last interglacial (LIG), also identified to the Eemian in Europe, began at approximately 130 kyr BP and ended at about 115 kyr BP (before present). More and more proxy-based reconstructions of the LIG climate are becoming more available even though they remain sparse. The major climate forcings during the LIG are rather well known and therefore models can be tested against paleoclimatic data sets and then used to better understand the climate of the LIG. However, models are displaying a large range of responses, being sometimes contradictory between them or with the reconstructed data. Here we would like to investigate causes of these differences. We focus on a single climate model, LOVECLIM, and we perform transient simulations over the LIG, starting at 135 kyr BP and run until 115 kyr BP. With these simulations, we test the role of the surface boundary conditions (the time-evolution of the Northern Hemisphere (NH) ice sheets) on the simulated LIG climate and the importance of the parameter sets (internal to the model, such as the albedos of the ocean and sea ice), which affect the sensitivity of the model. The magnitude of the simulated climate variations through the LIG remains too low compared to reconstructions for climate variables such as surface air temperature. Moreover, in the North Atlantic, the large increase in summer sea surface temperature towards the peak of the interglacial occurs too early (at ∼128 kyr BP) compared to the reconstructions. This feature as well as the climate simulated during the optimum of the LIG, between 131 and 121 kyr BP, does not depend on changes in surface boundary conditions and parameter sets. The additional freshwater flux (FWF) from the melting NH ice sheets is responsible for a temporary abrupt weakening of the North Atlantic meridional overturning circulation, which causes a strong global cooling in annual mean. However, the changes in the configuration (extent and albedo) of the NH ice sheets during the LIG only slightly impact the simulated climate. Together, configuration of and FWF from the NH ice sheets greatly increase the magnitude of the temperature variations over continents as well as over the ocean at the beginning of the simulation and reduce the difference between the simulated climate and the reconstructions. Lastly, we show that the contribution from the parameter sets to the climate response is actually very modest.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    facet.materialart.
    Unknown
    Copernicus
    Publication Date: 2014-08-23
    Description: How much snow falls on the Antarctic ice sheet? The Cryosphere, 8, 1577-1587, 2014 Author(s): C. Palerme, J. E. Kay, C. Genthon, T. L'Ecuyer, N. B. Wood, and C. Claud Climate models predict Antarctic precipitation to increase during the 21st century, but their present day Antarctic precipitation differs. A model-independent climatology of the Antarctic precipitation characteristics, such as snowfall rates and frequency, is needed to assess the models, but it is not yet available. Satellite observations of precipitation by active sensors has been possible in the polar regions since the launch of CloudSat in 2006. Here, we use two CloudSat products to generate the first multi-year, model-independent climatology of Antarctic precipitation. The first product is used to determine the frequency and the phase of precipitation, while the second product is used to assess the snowfall rate. The mean snowfall rate from August 2006 to April 2011 is 171 mm year −1 over the Antarctic ice sheet, north of 82° S. While uncertainties on individual precipitation retrievals from CloudSat data are potentially large, the mean uncertainty should be much smaller, but cannot be easily estimated. There are no in situ measurements of Antarctic precipitation to directly assess the new climatology. However, distributions of both precipitation occurrences and rates generally agree with the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-Interim data set, the production of which is constrained by various in situ and satellite observations, but does not use any data from CloudSat. The new data set thus offers unprecedented capability to quantitatively assess Antarctic precipitation statistics and rates in climate models.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2014-08-30
    Description: Arctic Holocene proxy climate database – new approaches to assessing geochronological accuracy and encoding climate variables Climate of the Past, 10, 1605-1631, 2014 Author(s): H. S. Sundqvist, D. S. Kaufman, N. P. McKay, N. L. Balascio, J. P. Briner, L. C. Cwynar, H. P. Sejrup, H. Seppä, D. A. Subetto, J. T. Andrews, Y. Axford, J. Bakke, H. J. B. Birks, S. J. Brooks, A. de Vernal, A. E. Jennings, F. C. Ljungqvist, K. M. Rühland, C. Saenger, J. P. Smol, and A. E. Viau We present a systematic compilation of previously published Holocene proxy climate records from the Arctic. We identified 170 sites from north of 58° N latitude where proxy time series extend back at least to 6 cal ka (all ages in this article are in calendar years before present – BP), are resolved at submillennial scale (at least one value every 400 ± 200 years) and have age models constrained by at least one age every 3000 years. In addition to conventional metadata for each proxy record (location, proxy type, reference), we include two novel parameters that add functionality to the database. First, "climate interpretation" is a series of fields that logically describe the specific climate variable(s) represented by the proxy record. It encodes the proxy–climate relation reported by authors of the original studies into a structured format to facilitate comparison with climate model outputs. Second, "geochronology accuracy score" (chron score) is a numerical rating that reflects the overall accuracy of 14 C-based age models from lake and marine sediments. Chron scores were calculated using the original author-reported 14 C ages, which are included in this database. The database contains 320 records (some sites include multiple records) from six regions covering the circumpolar Arctic: Fennoscandia is the most densely sampled region (31% of the records), whereas only five records from the Russian Arctic met the criteria for inclusion. The database contains proxy records from lake sediment (60%), marine sediment (32%), glacier ice (5%), and other sources. Most (61%) reflect temperature (mainly summer warmth) and are primarily based on pollen, chironomid, or diatom assemblages. Many (15%) reflect some aspect of hydroclimate as inferred from changes in stable isotopes, pollen and diatom assemblages, humification index in peat, and changes in equilibrium-line altitude of glaciers. This comprehensive database can be used in future studies to investigate the spatio-temporal pattern of Arctic Holocene climate changes and their causes. The Arctic Holocene data set is available from NOAA Paleoclimatology.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2014-09-18
    Description: The impacts of deglacial meltwater forcing on the South Atlantic Ocean deep circulation since the Last Glacial Maximum Climate of the Past, 10, 1723-1734, 2014 Author(s): J. M. Marson, I. Wainer, M. M. Mata, and Z. Liu A NCAR-CCSM3 (National Center for Atmospheric Research – Community Climate System Model version 3) state-of-the-art transient paleoclimate simulation with prescribed freshwater inflows is used to investigate the changes and evolution of the South Atlantic water mass structure from the Last Glacial Maximum (LGM) to the present day. Model results show that 21 000 yr ago the water column was substantially stratified due to the presence of a saltier-than-today Antarctic Bottom Water (AABW), forming a salinity barrier that prevented dense waters from the Northern Hemisphere from sinking. This salinity barrier started to erode after the termination of the Heinrich event 1, when its associated meltwater was transported southward, freshening the AABW. The removal of the barrier after 14 ka triggered the production of the North Atlantic Deep Water (NADW), which spread into the deeper layers of the South Atlantic at the onset of the Holocene. At this point, the NADW acquired its modern-day structure, establishing a deeper Atlantic meridional overturning circulation (AMOC).
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2014-09-18
    Description: Time-evolving mass loss of the Greenland Ice Sheet from satellite altimetry The Cryosphere, 8, 1725-1740, 2014 Author(s): R. T. W. L. Hurkmans, J. L. Bamber, C. H. Davis, I. R. Joughin, K. S. Khvorostovsky, B. S. Smith, and N. Schoen Mass changes of the Greenland Ice Sheet may be estimated by the input–output method (IOM), satellite gravimetry, or via surface elevation change rates (d H /d t ). Whereas the first two have been shown to agree well in reconstructing ice-sheet wide mass changes over the last decade, there are few decadal estimates from satellite altimetry and none that provide a time-evolving trend that can be readily compared with the other methods. Here, we interpolate radar and laser altimetry data between 1995 and 2009 in both space and time to reconstruct the evolving volume changes. A firn densification model forced by the output of a regional climate model is used to convert volume to mass. We consider and investigate the potential sources of error in our reconstruction of mass trends, including geophysical biases in the altimetry, and the resulting mass change rates are compared to other published estimates. We find that mass changes are dominated by surface mass balance (SMB) until about 2001, when mass loss rapidly accelerates. The onset of this acceleration is somewhat later, and less gradual, compared to the IOM. Our time-averaged mass changes agree well with recently published estimates based on gravimetry, IOM, laser altimetry, and with radar altimetry when merged with airborne data over outlet glaciers. We demonstrate that, with appropriate treatment, satellite radar altimetry can provide reliable estimates of mass trends for the Greenland Ice Sheet. With the inclusion of data from CryoSat-2, this provides the possibility of producing a continuous time series of regional mass trends from 1992 onward.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2014-09-20
    Description: Natural periodicities and Northern Hemisphere–Southern Hemisphere connection of fast temperature changes during the last glacial period: EPICA and NGRIP revisited Climate of the Past, 10, 1751-1762, 2014 Author(s): T. Alberti, F. Lepreti, A. Vecchio, E. Bevacqua, V. Capparelli, and V. Carbone We investigate both the European Project for Ice Coring in Antarctica Dronning Maud Land (EDML) and North Greenland Ice-Core Project (NGRIP) data sets to study both the time evolution of the so-called Dansgaard–Oeschger events and the dynamics at longer timescales during the last glacial period. Empirical mode decomposition (EMD) is used to extract the proper modes of both the data sets. It is shown that the time behavior at the typical timescales of Dansgaard–Oeschger events is captured through signal reconstructions obtained by summing five EMD modes for NGRIP and four EMD modes for EDML. The reconstructions obtained by summing the successive modes can be used to describe the climate evolution at longer timescales, characterized by intervals in which Dansgaard–Oeschger events happen and intervals when these are not observed. Using EMD signal reconstructions and a simple model based on the one-dimensional Langevin equation, it is argued that the occurrence of a Dansgaard–Oeschger event can be described as an excitation of the climate system within the same state, while the longer timescale behavior appears to be due to transitions between different climate states. Finally, on the basis of a cross-correlation analysis performed on EMD reconstructions, evidence that the Antarctic climate changes lead those of Greenland by a lag of ≈ 3.05 kyr is presented.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2014-08-28
    Description: Expressions of climate perturbations in western Ugandan crater lake sediment records during the last 1000 years Climate of the Past, 10, 1581-1601, 2014 Author(s): K. Mills, D. B. Ryves, N. J. Anderson, C. L. Bryant, and J. J. Tyler Equatorial East Africa has a complex regional patchwork of climate regimes, sensitive to climate fluctuations over a variety of temporal and spatial scales during the late Holocene. Understanding how these changes are recorded in and interpreted from biological and geochemical proxies in lake sedimentary records remains a key challenge to answering fundamental questions regarding the nature, spatial extent and synchroneity of climatic changes seen in East African palaeo-records. Using a paired lake approach, where neighbouring lakes share the same geology, climate and landscape, it might be expected that the systems will respond similarly to external climate forcing. Sediment cores from two crater lakes in western Uganda spanning the last ~1000 years were examined to assess diatom community responses to late Holocene climate and environmental changes, and to test responses to multiple drivers using redundancy analysis (RDA). These archives provide annual to sub-decadal records of environmental change. Lakes Nyamogusingiri and Kyasanduka appear to operate as independent systems in their recording of a similar hydrological response signal via distinct diatom records. However, whilst their fossil diatom records demonstrate an individualistic, indirect response to external (e.g. climatic) drivers, the inferred lake levels show similar overall trends and reflect the broader patterns observed in Uganda and across East Africa. The lakes appear to be sensitive to large-scale climatic perturbations, with evidence of a dry Medieval Climate Anomaly (MCA; ca. AD 1000–1200). The diatom record from Lake Nyamogusingiri suggests a drying climate during the main phase of the Little Ice Age (LIA) (ca. AD 1600–1800), whereas the diatom response from the shallower Lake Kyasanduka is more complex (with groundwater likely playing a key role), and may be driven more by changes in silica and other nutrients, rather than by lake level. The sensitivity of these two Ugandan lakes to regional climate drivers breaks down in ca. AD 1800, when major changes in the ecosystems appear to be a response to increasing cultural impacts within the lake catchments, although both proxy records appear to respond to the drought recorded across East Africa in the mid-20th century. The data highlight the complexity of diatom community responses to external drivers (climate or cultural), even in neighbouring, shallow freshwater lakes. This research also illustrates the importance of, and the need to move towards, a multi-lake, multi-proxy landscape approach to understanding regional hydrological change which will allow for rigorous testing of climate reconstructions, climate forcing and ecosystem response models.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2014-08-28
    Description: Deglacial ice sheet meltdown: orbital pacemaking and CO 2 effects Climate of the Past, 10, 1567-1579, 2014 Author(s): M. Heinemann, A. Timmermann, O. Elison Timm, F. Saito, and A. Abe-Ouchi One hundred thousand years of ice sheet buildup came to a rapid end ∼25–10 thousand years before present (ka BP), when ice sheets receded quickly and multi-proxy reconstructed global mean surface temperatures rose by ∼3–5 °C. It still remains unresolved whether insolation changes due to variations of earth's tilt and orbit were sufficient to terminate glacial conditions. Using a coupled three-dimensional climate–ice sheet model, we simulate the climate and Northern Hemisphere ice sheet evolution from 78 ka BP to 0 ka BP in good agreement with sea level and ice topography reconstructions. Based on this simulation and a series of deglacial sensitivity experiments with individually varying orbital parameters and prescribed CO 2 , we find that enhanced calving led to a slowdown of ice sheet growth as early as ∼8 ka prior to the Last Glacial Maximum (LGM). The glacial termination was then initiated by enhanced ablation due to increasing obliquity and precession, in agreement with the Milankovitch theory. However, our results also support the notion that the ∼100 ppmv rise of atmospheric CO 2 after ∼18 ka BP was a key contributor to the deglaciation. Without it, the present-day ice volume would be comparable to that of the LGM and global mean temperatures would be about 3 °C lower than today. We further demonstrate that neither orbital forcing nor rising CO 2 concentrations alone were sufficient to complete the deglaciation.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2014-08-29
    Description: Sensitivity of lake ice regimes to climate change in the Nordic region The Cryosphere, 8, 1589-1605, 2014 Author(s): S. Gebre, T. Boissy, and K. Alfredsen A one-dimensional process-based multi-year lake ice model, MyLake, was used to simulate lake ice phenology and annual maximum lake ice thickness for the Nordic region comprising Fennoscandia and the Baltic countries. The model was first tested and validated using observational meteorological forcing on a candidate lake (Lake Atnsjøen) and using downscaled ERA-40 reanalysis data set. To simulate ice conditions for the contemporary period of 1961–2000, the model was driven by gridded meteorological forcings from ERA-40 global reanalysis data downscaled to a 25 km resolution using the Rossby Centre Regional Climate Model (RCA). The model was then forced with two future climate scenarios from the RCA driven by two different general circulation models (GCMs) based on the Special Report on Emissions Scenarios (SRES) A1B. The two climate scenarios correspond to two future time periods namely the 2050s (2041–2070) and the 2080s (2071–2100). To take into account the influence of lake morphometry, simulations were carried out for four different hypothetical lake depths (5 m, 10 m, 20 m, 40 m) placed at each of the 3708 grid cells. Based on a comparison of the mean predictions in the future 30-year periods with the control (1961–1990) period, ice cover durations in the region will be shortened by 1 to 11 weeks in 2041–2070, and 3 to 14 weeks in 2071–2100. Annual maximum lake ice thickness, on the other hand, will be reduced by a margin of up to 60 cm by 2041–2070 and up to 70 cm by 2071–2100. The simulated changes in lake ice characteristics revealed that the changes are less dependent on lake depths though there are slight differences. The results of this study provide a regional perspective of anticipated changes in lake ice regimes due to climate warming across the study area by the middle and end of this century.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...