ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (7,838)
  • Wiley  (7,838)
  • 2010-2014  (3,269)
  • 1995-1999  (2,347)
  • 1985-1989  (1,325)
  • 1950-1954  (532)
  • 1945-1949  (365)
  • Ecology  (1,492)
  • 6124
Collection
  • Articles  (7,838)
Publisher
  • Wiley  (7,838)
Years
Year
Topic
  • 1
    Publication Date: 2014-01-22
    Description: Ecology, Volume 95, Issue 1, Page 68-77, January 2014. Delayed life history effects (DLHEs) occur when fitness in one life stage affects fitness in subsequent life stages. Given their biphasic life cycle, pond-breeding amphibians provide a natural system for studying DLHEs, although these effects are not restricted to species with biphasic life histories. In this study, we used multiple mark–recapture techniques enabled by a large trapping array to monitor components of fitness and resulting DLHEs in a population of the endangered California tiger salamander (Ambystoma californiense). We found that DLHEs are prominent across all life stage transitions and that there is variation in whether selection acts primarily at the individual or cohort level. We also demonstrated that there is more than an order of magnitude variation in mean cohort fitness, providing tremendous variation for DLHEs to act upon. We documented an evolutionary trade-off between mass at emergence and date of emergence, which may play a role in maintaining the variation in mass (fitness) at emergence. A literature review revealed that such high levels of intercohort variation occur in many other pond-breeding amphibians, and that appropriately documenting the magnitude of intercohort variation requires long-term studies (roughly two population turnovers). Given the profound effect that DLHEs can have on population dynamics, quantifying intercohort variation in mean fitness and the level(s) at which selection acts will be very important for developing accurate models of population dynamics. In general, when developing models of population dynamics, more attention should be paid to variation in mean fitness and not just variation in total numbers.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-01-22
    Description: Ecology, Volume 95, Issue 1, Page 30-36, January 2014. Competition plays an important role in structuring the community dynamics of phytophagous insects. As the number and impact of biological invasions increase, it has become increasingly important to determine whether competitive differences exist between native and exotic insects. We conducted a meta-analysis to test the hypothesis that native/exotic status affects the outcome of herbivore competition. Specifically, we used data from 160 published studies to assess plant-mediated competition in phytophagous insects. For each pair of competing herbivores, we determined the native range and coevolutionary history of each herbivore and host plant. Plant-mediated competition occurred frequently, but neither native nor exotic insects were consistently better competitors. Spatial separation reduced competition in native insects but showed little effect on exotics. Temporal separation negatively impacted native insects but did not affect competition in exotics. Insects that coevolved with their host plant were more affected by interspecific competition than herbivores that lacked a coevolutionary history. Insects that have not coevolved with their host plant may be at a competitive advantage if they overcome plant defenses. As native/exotic status does not consistently predict outcomes of competitive interactions, plant–insect coevolutionary history should be considered in studies of competition.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-01-24
    Description: Ecology, Volume 0, Issue 0, Ahead of Print. Predicting the future trend and viability of populations is an essential task in ecology. Because many populations respond to changing environments, uncertainty surrounding environmental responses must be incorporated into population assessments. However, understanding the effects of environmental variation on population dynamics requires information on several important demographic parameters which are often difficult to estimate. Integrated population models facilitate the integration of time-series data on population size and all existing demographic information from a species, allowing the estimation of demographic parameters for which limited or no empirical data exist. Although these models are ideal for assessments of population viability, they have so far not included environmental uncertainty. We incorporated environmental variation in an integrated population model to account for both demographic and environmental uncertainty in an assessment of population viability. In addition, we used this model to estimate true juvenile survival, an important demographic parameter for population dynamics that is difficult to estimate empirically. We applied this model to assess the past and future population trend of a rare island endemic songbird, the Montserrat Oriole Icterus oberi, which is threatened by volcanic activity. Montserrat Orioles experienced lower survival in years with volcanic ash-fall, causing periodic population declines that were compensated by higher seasonal fecundity in years with high pre-breeding season rainfall. Due to the inclusion of both demographic and environmental uncertainty in the model, the estimated population growth rate in the immediate future was highly imprecise (95% credible interval 0.844 - 1.105), and the probability of extinction after three generations (in the year 2028) was low (2.1%). This projection demonstrates that accounting for both demographic and environmental sources of uncertainty provides a more realistic assessment of the viability of populations under unknown future environmental conditions.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-01-24
    Description: Ecology, Volume 0, Issue 0, Ahead of Print. Evidence of age-dependent changes in foraging behavior of free-ranging individuals is scarce, especially at older stages. Using the isotopic niche as a proxy of the trophic niche during both the breeding (blood) and inter-nesting (feather) periods, we report here empirical evidence for age-, gender- and breeding status-dependent foraging ecology and examine its potential consequences on subsequent reproduction and survival in an extremely long-lived species, the wandering albatross. Immature wandering albatrosses of both sexes forage in the subtropics (δ13C) and feed at the same trophic position (δ15N) than the adults. In contrast to immature birds, adult females forage on average at northern latitudes than males, with both sexes feeding in the subtropics during the inter-nesting period, and males, not females, favouring subantartic waters during incubation. In contrast to adult females, males showed a unique pattern among birds and mammals of a continuous change with age in their main feeding habitat by foraging progressively further south in colder waters during both the breeding and inter-nesting periods. In males, foraging at higher latitudes (lower feather δ13C values) is associated with a lower probability to breed during the following years compared to other birds, but with no effect on their probability to survive. Foraging in cold and windy waters may be linked to foraging impairment that might explain different life history trade-offs and lower investment in reproduction with age. This key point requires further longitudinal investigations and/or studies examining foraging success and energy budget of birds feeding in different water masses.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-01-12
    Description: Ecology, Volume 0, Issue 0, Ahead of Print. Interactions between plants and scatterhoarding animals may shift from mutualism to predation as a function of resources available to those animals. Because seed species differ in their nutrient content and defenses to predation, resource selection and cache management by scatterhoarders, and thus seed fate, may also depend on the relative availability of different seed types. We tracked the fates of tagged Castanea dentata, Quercus alba, and Q. rubra seeds presented to rodents in pairwise combinations and found that C. dentata, which has moderate dormancy prior to germination, survived better in the presence of Q. alba (no dormancy) than with Q. rubra (longer dormancy). Decisions made by scatterhoarders in response to the composition of available seed resources can alter the relationship between masting and seed dispersal effectiveness in individual tree species and may have influenced the evolution of asynchrony among species-specific masting patterns in temperate forests. In theory, preferential allocation of certain seed species to storage or consumption may also result in indirect apparent predation by one seed species on another.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-01-22
    Description: Ecology, Volume 95, Issue 1, Page 98-109, January 2014. Grazing, fire, and climate shape mesic grassland communities. With global change altering all three factors, understanding how grasslands respond to changes in these combined drivers may aid in projecting future changes in grassland ecosystems. We manipulated rainfall and simulated grazing (clipping) in two long-term fire experiments in mesic grasslands in North America (NA) and South Africa (SA). Despite their common drivers, grasslands in NA and SA differ in evolutionary history. Therefore, we expected community structure and production in NA and SA to respond differently to fire, grazing, and drought. Specifically, we hypothesized that NA plant community composition and production would be more responsive than the SA plant communities to changes in the drivers and their interactions, and that despite this expected stability of SA grasslands, drought would be the dominant factor controlling production, but grazing would play the primary role in determining community composition at both sites. Contrary to our hypothesis, NA and SA grasslands generally responded similarly to grazing, drought, and fire. Grazing increased diversity, decreased grass cover and production, and decreased belowground biomass at both sites. Drought alone minimally impacted plant community structure, and we saw similar treatment interactions at the two sites. Drought was not the primary driver of grassland productivity, but instead drought effects were similar to or less than grazing and fire. Even though these grasslands differed in evolutionary history, they responded similarly to our fire, grazing, and climate manipulations. Overall, we found community and ecosystem convergence in NA and SA grasslands. Grazing and fire are as important as climate in controlling mesic grassland ecosystems on both continents.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-01-22
    Description: Ecology, Volume 95, Issue 1, Page 173-184, January 2014. Biodiversity has been shown to increase the temporal stability of community and ecosystem attributes through multiple mechanisms, but these same mechanisms make less consistent predictions about the effects of richness on population stability. The overall effects of biodiversity on population and community stability will therefore depend on the dominant mechanisms that are likely to vary with the nature of biodiversity loss and the degree of environmental variability. We conducted a mesocosm experiment in which we generated a gradient in zooplankton species richness by directly manipulating dominant species and by allowing/preventing immigration from a metacommunity. The mesocosms were maintained under either constant or variable nutrient environments. Population, community, and ecosystem data were collected for five months. We found that zooplankton population and community stability is enhanced in species-rich communities in both constant and variable environments. Species richness increased primarily through the addition of species with low abundance. The communities that were connected to a metacommunity via immigration were the most diverse and the most stable, indicating the importance of both metacommunity dynamics and rare species for stability. We found little evidence for selection effects or overyielding as stabilizing forces. We did find support for asynchronous dynamics and statistical averaging, both of which predict destabilizing effects at the population level. We also found support for weak interactions, which predicts that both populations and communities will become more stable as richness increases. In order to understand the effects of biodiversity loss on stability, we will need to understand when different stabilizing mechanisms tend to operate but also how multiple mechanisms interact.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-01-23
    Description: Ecology, Volume 0, Issue 0, Ahead of Print. Theory of invasion ecology indicates that the number of invading individuals (propagule size) and the timing of invasion are important for invasion success. Propagule size affects establishment success due to an Allee effect and the effect of demographic stochasticity, whereas the timing of invasion does so via niche opportunity produced by fluctuating predation pressure and resource abundance. We propose a synthesis of these two mechanisms by a time-varying dose-response curve where the dose is propagule size and the response is establishment probability. We show an example of the synthesis in a simple predator-prey model where successful invasion occurs as a demographic regime shift because of the bistability of the system. The two mechanisms are not independent, but simultaneously determine invasion success in our model. We found that positive growth rate of an invading species does not ensure its establishment, especially when its propagule size is small or when its growth rate is in a decreasing trend. We suggest the difficulty of understanding invasion process based on a dose-response curve of propagule size as no unique curve can be determined due to the effects of invasion timing (i.e., the threshold of demographic regime shift is time-varying). The results of our model analysis also have an implication on the phase relationship between population cycles of predators and prey.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-01-23
    Description: Ecology, Volume 0, Issue 0, Ahead of Print. Grasslands have been lost and degraded in the USA since Euro-American settlement due to agriculture, development, introduced invasive species, and changes in fire regimes. Fire is frequently used in prairie restoration to control invasion by trees and shrubs, but may have additional consequences. For example, fire might reduce damage by herbivore and pathogen enemies by eliminating litter, which harbors eggs and spores. Less obviously, fire might influence enemy loads differently for native and introduced plant hosts. We used a controlled burn in a Willamette Valley (Oregon) prairie to examine these questions. We expected that without fire, introduced host plants should have less damage than native host plants because the introduced species are likely to have left many of their enemies behind when they were transported to their new range (the enemy release hypothesis, or ERH). If the ERH holds, then fire, which should temporarily reduce enemies on all species, should give an advantage to the natives because they should see greater total reduction in damage by enemies. Prior to the burn, we censused herbivore and pathogen attack on eight plant species (five of non-native origin: Bromus hordaceous, Cynosuros echinatus, Galium divaricatum, Schedonorus arundinaceus (=Festuca arundinacea), Sherardia arvensis; and three natives: Danthonia californica, Epilobium minutum, and Lomatium nudicale). The same plots were monitored for two years post-fire. Prior to the burn, native plants had more kinds of damage and more pathogen damage than introduced plants, consistent with the ERH. Fire reduced pathogen damage relative to the controls more for the native than the introduced species, but the effects on herbivory were negligible. Pathogen attack was correlated with plant reproductive fitness, whereas herbivory was not. These results suggest that fire may be useful for promoting some native plants in prairies due to its negative effects on their pathogens.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-01-15
    Description: Ecology, Volume 0, Issue 0, Ahead of Print. Complementary resource use and redundancy of species that fulfill the same ecological role are two mechanisms that can respectively increase and stabilize process rates in ecosystems. For example, predator complementarity and redundancy can determine prey consumption rates and their stability, yet few studies take into account the multiple predator species attacking multiple prey at different rates in natural communities. Thus, it remains unclear whether these biodiversity mechanisms are important determinants of consumption in entire predator-prey assemblages, such that food-web interaction structure determines community-wide consumption and stability. Here, we use empirical quantitative food-webs to study the community-wide effects of functional complementarity and redundancy of consumers (parasitoids) on herbivore control in temperate forests. We find that complementarity in host resource use by parasitoids was a strong predictor of absolute parasitism rates at the community level, and that redundancy in host-use patterns stabilised community-wide parasitism rates in space, but not through time. These effects can potentially explain previous contradictory results from predator diversity research. Phylogenetic diversity (measured using taxonomic distance) did not explain functional complementarity or parasitism rates, so could not serve as a surrogate measure for functional complementarity. Our study shows that known mechanisms underpinning predator diversity effects on both functioning and stability can easily be extended to link food webs to ecosystem functioning.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2014-01-16
    Description: Ecology, Volume 0, Issue 0, Ahead of Print. Floral nectar of many plant species is prone to colonization by microbial organisms such as yeasts. Their presence and metabolism of nectar chemical components have the potential to modify a suite of floral traits important for pollinator attraction, including nectar quality and scent. However, studies on the direct and indirect effects of nectar-inhabiting microogranisms on pollinator behavior and plant reproductive success remain rare. To determine their potential to affect pollinator behavior and plant fitness, we experimentally manipulated the common nectar-inhabiting yeast Metschnikowia reukaufii in the nectar of Delphinium nuttallianum, a short-lived montane perennial herb. We detected positive indirect, pollinator-mediated effects of yeasts on male plant fitness measured as pollen donation using powdered fluorescent dyes. However, we detected no direct or indirect effects on components of female fitness. Matching effects on male plant fitness, pollinators responded positively to the presence of yeasts, removing more nectar from flowers treated with M. reukaufii. Our results provide evidence of effects of nectar-inhabiting yeasts on male plant fitness and highlight the importance of microorganisms in mediating plant-pollinator interactions and subsequent plant fitness.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2014-01-22
    Description: Ecology, Volume 95, Issue 1, Page 3-8, January 2014. Periodical cicadas (Magicicada spp.) mature in 13 or 17 years, the longest development times for any non-diapausing insects. Selection may favor prolonged development since nymphs experience little mortality and individuals taking 17 years have been shown to have greater fecundity than those taking 13 years. Why don't periodical cicadas take even longer to develop? Nymphs feed on root xylem fluid and move little. Ovipositing females prefer fast-growing trees at forest edges. I hypothesized that (1) adults emerging at edges would be heavier than those from forest interiors and (2) habitat changes could limit development time. I collected newly eclosed females that had neither fed as adults nor moved from their site of development. For M. septendecim, females from edges were 4.9% heavier than those from the interior. I assumed that emergence density indicated habitat quality and measured density at eight sites in 1979, 1996, and 2013. Over three generations, variation in densities was great; densities at two sites crashed, and at one site they exploded to 579/m2. Habitat transience may limit development time because only adults can reassess habitats and reposition offspring. In conclusion, cicadas are affected by habitat characteristics, habitats change over 17 years, and cicadas may emerge, mate, and redistribute their offspring to track habitat dynamics.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2014-01-22
    Description: Ecology, Volume 95, Issue 1, Page 56-67, January 2014. Predation has been suggested to be especially important in simple food webs and less productive ecosystems such as the arctic tundra, but very few data are available to evaluate this hypothesis. We examined the hypothesis that avian predators could drive the population dynamics of two cyclic lemming species in the Canadian Arctic. A dense and diverse suite of predatory birds, including the Snowy Owl (Bubo scandiacus), the Rough-legged Hawk (Buteo lagopus), and the Long-tailed Jaeger (Stercorarius longicaudus), inhabits the arctic tundra and prey on collared (Dicrostonyx groenlandicus) and brown (Lemmus trimucronatus) lemmings during the snow-free period. We evaluated the predation pressure exerted by these predators by combining their numerical (variation in breeding and fledgling numbers) and functional (variation in diet and daily consumption rates) responses to variations in lemming densities over the 2004–2010 period. Breeding density and number of fledglings produced by the three main avian predators increased sharply without delay in response to increasing lemming densities. The proportion of collared lemmings in the diet of those predators was high at low lemming density (both species) but decreased as lemming density increased. However, we found little evidence that their daily consumption rates vary in relation to changes in lemming density. Total consumption rate by avian predators initially increased more rapidly for collared lemming but eventually leveled off at a much higher value for brown lemmings, the most abundant species at our site. The combined daily predation rate of avian predators exceeded the maximum daily potential growth rates of both lemming species except at the highest recorded densities for brown lemmings. We thus show, for the first time, that predation pressure exerted without delay by avian predators can limit populations of coexisting lemming species during the snow-free period, and thus, that predation could play a role in the cyclic dynamic of these species in the tundra.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2014-01-22
    Description: Ecology, Volume 95, Issue 1, Page 238-239, January 2014.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2014-01-22
    Description: Ecology, Volume 95, Issue 1, Page 238-239, January 2014.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2014-03-13
    Description: Ecology, Volume 0, Issue 0, Ahead of Print. Successful dispersal can enhance both individual fitness and population persistence, but the process of dispersal is often inherently risky. The interplay between the costs and benefits of dispersal are poorly documented for species with complex life-histories due to the difficulty of tracking dispersing individuals. Here we investigate variability in dispersal histories of a freshwater fish, Awaous stamineus, across the species' entire geographic range in the Hawaiian archipelago. Like many animals endemic to tropical island streams, these gobies have an amphidromous life cycle in which a brief marine larval phase enables dispersal among isolated freshwater habitats. Using otolith microchemistry, we document three distinct marine dispersal pathways, all of which are observed on every island. Surprisingly, we also find that 62% of individuals complete their life cycle entirely within freshwater, in contrast to the assumption that amphidromy is obligate in Hawaiian stream gobies. Comparing early life history outcomes based on daily otolith growth rings, we find that individuals with marine dispersal have shorter larval durations and faster larval growth, and their growth advantage over purely-freshwater counterparts continues to some degree into adult life. These individual benefits of maintaining a marine dispersal phase presumably balance against the challenge of finding and re-entering an island stream from the ocean. The facultative nature of amphidromy in this species highlights the selective balance between costs and benefits of dispersal in life history evolution. Accounting for alternative dispersal strategies will be essential for conservation of the amphidromous species that often dominate tropical island streams, many of which are at risk of extinction.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2014-03-13
    Description: Ecology, Volume 0, Issue 0, Ahead of Print. Climate change forecasts of more frequent climate extremes suggest that such events will become increasingly important drivers of future ecosystem dynamics and function. Because the rarity and unpredictability of naturally occurring climate extremes limits assessment of their ecological impacts, we experimentally imposed extreme drought and a mid-summer heat wave over two years in a central US grassland. While the ecosystem was resistant to heat waves, it was not resistant to extreme drought, which reduced aboveground net primary productivity (ANPP) below the lowest level measured in this grassland in almost thirty years. This extreme reduction in ecosystem function was a consequence of reduced productivity of both C4 grasses and C3 forbs. However, the dominant forb was negatively impacted by the drought more than the dominant grass, and this led to a reordering of species abundances within the plant community. Although this change in community composition persisted post-drought, ANPP recovered completely the year after drought due to rapid demographic responses by the dominant grass, compensating for loss of the dominant forb. Overall, these results show that an extreme reduction in ecosystem function attributable to climate extremes (e.g., low resistance) does not preclude rapid ecosystem recovery. Given that dominance by a few species is characteristic of most ecosystems, knowledge of the traits of these species and their responses to climate extremes will be key for predicting future ecosystem dynamics and function.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2014-03-13
    Description: Ecology, Volume 0, Issue 0, Ahead of Print. The resource quality of the host has been shown to affect parasite transmission success, prevalence and virulence. Seasonal availability of environmental nutrients alters density and stoichiometric quality (carbon-nutrient ratios) of both producers and consumers, suggesting that nutrient availability may drive fluctuations in parasite prevalence patterns observed in nature. We examined the interactions between the population dynamics of a keystone herbivore Daphnia and its parasites, and their associations with water nutrient concentrations, resource quantity and quality and other environmental variables (temperature, pH, oxygen concentration) in a small lake, using general linear models. We found that the prevalence of two gut endoparasites were positively related to food source and quality as well as nitrogen content of Daphnia - whereas the prevalence of an epibiont and overall parasite species richness were negatively related to phosphorus content of Daphnia. When only endoparasite species richness was considered, no connections to nutrients were found. Daphnia density was not connected to parasites, but we found interactions between Daphnia fecundity and parasite prevalence. Overall, our results suggest that environmental nutrient concentrations and stoichiometric quality of the host have a potential to affect seasonality in parasite epidemics, but the connections between environmental carbon:nutrient ratios and parasite prevalence patterns are diverse and species-specific.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2014-03-13
    Description: Ecology, Volume 0, Issue 0, Ahead of Print. The Tibetan Plateau (TP) is experiencing high rates of climatic change. We present a novel combined mechanistic-bioclimatic modeling approach to determine (i) how changes in precipitation and temperature on the TP may impact net primary production (NPP) in four major biomes (forest, shrub, grass, desert); and (ii) if there exists a maximum rain use efficiency (RUEMAX) that represents a "boundary that constrain(s) site-level productivity and efficiency" (Huxman et al. 2004). We used a daily mechanistic ecosystem model to generate 40-y outputs using observed climatic data for scenarios of (i) decreased precipitation (25 to 100%); (ii) increased air temperature (1 to 6°C); (iii) simultaneous changes in both precipitation ( ± 50%, ± 25%) and air temperature (+1 to +6°C); and (iv) increased interannual variability (IAV) of precipitation (+1σ to +3σ, with fixed means). We fitted model output from these scenarios to Huxman et al.'s RUEMAX bioclimatic model, NPP = α +RUE•PPT (where α = intercept, RUE is rain use efficiency and PPT is annual precipitation). Based on these analyses we conclude that: (i) there is strong support (when not explicit, then trend-wise) for Huxman et al.'s assertion that biomes converge to a common RUEMAX during the driest years at a site, thus representing the boundary for highest rain use efficiency; (ii) the interactive effects of simultaneously decreasing precipitation and increasing temperature on NPP for the TP is smaller than might be expected from additive, single-factor changes in these drivers; and (iii) that increasing IAV of precipitation may ultimately have a larger impact on biomes of the Tibetan Plateau than changing amounts of rainfall and air temperature alone.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2014-03-13
    Description: Ecology, Volume 0, Issue 0, Ahead of Print. Niche differentiation is a major hypothesized determinant of species distributions, but its practical importance is heavily debated and underlying mechanisms are poorly understood. Trait-based approaches have been used to infer niche differentiation and predict species distributions. For understanding underlying mechanisms, individual traits should be scaled up to whole-plant performance, which hardly has been done. We measured seven key traits that are important for carbon and water balance for 37 tropical tree species. We used a process-based plant physiological model to simulate the carbon budget of saplings along gradients of light and water availability, and quantified the performance of the species in terms of their light compensation points (a proxy for shade tolerance), water compensation points (proxy for drought tolerance) and maximum carbon gain rates (proxy for potential growth rate). We linked species performances to their observed distributions (the realized niches) at two spatial scales in Bolivian lowland forests: along a canopy openness gradient at local scale (~1 km2) and along a rainfall gradient (1100-2200 mm/y) at regional (~1000 km) scale. We show that the water compensation point was the best predictor of species distributions along water and light resource gradients within and across tropical forests. A sensitivity analysis suggests that the stomatal regulation of minimum leaf water potentials, rather than stem hydraulic traits (sapwood area and specific conductivity), contributed to the species differences in the water compensation point of saplings. The light compensation point and maximum carbon gain - both driven by leaf area index and the leaf nitrogen concentration - also contributed to differential species distributions at the local scale, but not or only marginally at the regional scale. Trait-and-physiology-based simulations of whole-plant performance thus help to evaluate the possible roles of individual traits in physiological processes underlying species performance along environmental gradients. The development of such whole plant concepts will improve our ability to understand responses of plant communities to shifts in resource availability and stress under global change.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2014-03-13
    Description: Ecology, Volume 0, Issue 0, Ahead of Print. Birds and their population dynamics are often used to understand and document anthropogenic effects on biodiversity. Nest success is a critical component of the breeding output of birds in different environments; but to obtain the complete picture of how bird populations respond to perturbations, we also need an estimate of nest abundance or density. The problem is that raw counts generally underestimate actual nest numbers because detection is imperfect and because some nests may fail or fledge before being subjected to detection efforts. Here we develop a state-space superpopulation capture-recapture approach in which inference about detection probability is based on the age at first detection, as opposed to the sequence of re-detections in standard capture-recapture models. We apply the method to ducks in which 1) the age of the nests and their initiation dates can be determined upon detection and 2) the duration of the different stages of the breeding cycle is a priori known. We fit three model variants with or without assumptions about the phenology of nest initiation dates, and use simulations to evaluate the performance of the approach in challenging situations. In an application to blue-winged teal Anas discors breeding at study sites in North and South Dakota, USA, nesting stage (egg-laying or incubation) markedly influenced nest survival and detection probabilities. Two individual covariates (one binary covariate: presence of grazing cattle at the nest site, and one continuous covariate: Robel index of vegetation) had only weak effects. We estimated that 5-10% of the total number of nests were available for detection but missed by field crews. An additional 6-15% were never available for detection. These proportions are expected to be larger in less intense, more typical sampling designs. User-friendly software nestAbund is provided to assist users in implementing the method.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2014-03-14
    Description: Ecology, Volume 0, Issue 0, Ahead of Print. Disease is often expected to limit host populations, but diseases do not always dramatically reduce host numbers and often have no effect. The impact of a fungal pathogen (Entomophaga grylli pathotype 1) on grasshopper (Camnula pellucida) populations was studied in a field experiment. We tested whether the effects of disease on grasshopper survival were 1) additive, with disease mortality summing with other mortality sources to determine the total population mortality rate or 2) compensatory, where disease mortality simply replaces mortality from other sources so that the total population mortality rate remains unchanged. We examined grasshopper survival in relation to differences in disease exposure, host density levels, and host developmental stage. The effects of disease varied with grasshopper developmental stage and density. Disease mortality increased by 60% at high grasshopper density compared to low density treatments, and decreased when grasshoppers fully matured. Despite increased rates of disease mortality at high densities, the total mortality rate was not notably higher in diseased grasshoppers (87%) compared to disease-free counterparts at high densities (83%), indicating that a large proportion of disease mortality simply replaced mortality from food limitation. Additive responses were supported in early and late instars, with disease exposure resulting in decreased grasshopper survival. In contrast, the effect of disease on adults was inconclusive. Yet, the disease did not affect adult survival suggesting that adult disease mortality is compensatory. Therefore, disease reduction of grasshopper populations (additive mortality) is more likely to occur during earlier developmental stages when hosts are most vulnerable to disease and at low host densities when food is abundant. Combined, our results emphasize the importance of host dynamics and food availability in how this host-pathogen system responds to disease. Accordingly, compensatory versus additive mortality may need to be considered when examining how disease ultimately affects host population dynamics.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2014-03-14
    Description: Ecology, Volume 0, Issue 0, Ahead of Print. Urbanization and global climate change can profoundly alter biological systems, yet scientists often analyze their effects separately. We test how the timing of life cycle events (phenology) is jointly influenced by these two components of global change. To do so, we use a long-term phenological dataset of 20 common butterfly species from 83 sites across the state of Ohio, USA, with sites that range from rural undeveloped areas to moderately sized cities. These sites span a several °C latitudinal gradient in mean temperature, mimicking the range of projected global climate warming effects through the end of the century. Although shifts toward earlier phenology are typical of species' responses to either global climate change or urbanization, we found that their interaction delayed several Ohio butterfly species' first appearance and peak abundance phenology. Exploitative species exhibited smaller delays in first appearance and peak abundance phenology in areas that were urbanized and geographically warm. Our results show that phenological responses to urbanization are contingent upon geographic variation in temperature, and that the impacts of urbanization and global climate change should be considered simultaneously when developing forecasts of biological responses to environmental change.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2014-03-14
    Description: Ecology, Volume 0, Issue 0, Ahead of Print. Fertilization via agricultural inputs and nutrient deposition is one of the major threats to global terrestrial plant richness, yet we still do not fully understand the mechanisms by which fertilization decreases plant richness. Tall clonal species have recently been proposed to cause declines in plant species richness by increasing in abundance in response to fertilization and competing strongly with other species. We tested this hypothesis in a fertilization experiment in a low productivity grassland by using a novel experimental manipulation of the presence vs. absence of clonal species and by examining the role of height within these treatments. We found that fertilization decreased species richness more in the presence than absence of clonal species. We also found that only tall species increased in biomass in response to fertilization. In the absence of clonal species, fertilization increased biomass of tall non-clonal species. However, in the presence of clonal species, fertilization decreased tall non-clonal biomass and only tall clonal biomass increased. Fertilization caused almost all short species to be lost in the presence, but not the absence, of clonal species and caused greater declines in the mean and variance of light levels in the presence of clonal species. These results show that the traits of species in a community can determine the magnitude of species loss due to fertilization. The strongly negative effect of tall clonals on species richness in fertilized plots is likely a result of their capacity to decrease light levels to a greater extent and more uniformly than non-clonal species, and thereby drive the exclusion of short species. These results help clarify the mechanisms whereby fertilization decreases grassland plant species richness and suggest that efforts to prevent the loss of species under fertilized conditions may be most effective when they focus on controlling the biomass of tall clonal species.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2014-05-06
    Description: Ecology, Ahead of Print. Predicting the future trend and viability of populations is an essential task in ecology. Because many populations respond to changing environments, uncertainty surrounding environmental responses must be incorporated into population assessments. However, understanding the effects of environmental variation on population dynamics requires information on several important demographic parameters which are often difficult to estimate. Integrated population models facilitate the integration of time-series data on population size and all existing demographic information from a species, allowing the estimation of demographic parameters for which limited or no empirical data exist. Although these models are ideal for assessments of population viability, they have so far not included environmental uncertainty. We incorporated environmental variation in an integrated population model to account for both demographic and environmental uncertainty in an assessment of population viability. In addition, we used this model to estimate true juvenile survival, an important demographic parameter for population dynamics that is difficult to estimate empirically. We applied this model to assess the past and future population trend of a rare island endemic songbird, the Montserrat Oriole Icterus oberi, which is threatened by volcanic activity. Montserrat Orioles experienced lower survival in years with volcanic ash-fall, causing periodic population declines that were compensated by higher seasonal fecundity in years with high pre-breeding season rainfall. Due to the inclusion of both demographic and environmental uncertainty in the model, the estimated population growth rate in the immediate future was highly imprecise (95% credible interval 0.844 - 1.105), and the probability of extinction after three generations (in the year 2028) was low (2.1%). This projection demonstrates that accounting for both demographic and environmental sources of uncertainty provides a more realistic assessment of the viability of populations under unknown future environmental conditions.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2014-05-06
    Description: Ecology, Ahead of Print. Grasslands have been lost and degraded in the USA since Euro-American settlement due to agriculture, development, introduced invasive species, and changes in fire regimes. Fire is frequently used in prairie restoration to control invasion by trees and shrubs, but may have additional consequences. For example, fire might reduce damage by herbivore and pathogen enemies by eliminating litter, which harbors eggs and spores. Less obviously, fire might influence enemy loads differently for native and introduced plant hosts. We used a controlled burn in a Willamette Valley (Oregon) prairie to examine these questions. We expected that without fire, introduced host plants should have less damage than native host plants because the introduced species are likely to have left many of their enemies behind when they were transported to their new range (the enemy release hypothesis, or ERH). If the ERH holds, then fire, which should temporarily reduce enemies on all species, should give an advantage to the natives because they should see greater total reduction in damage by enemies. Prior to the burn, we censused herbivore and pathogen attack on eight plant species (five of non-native origin: Bromus hordaceous, Cynosuros echinatus, Galium divaricatum, Schedonorus arundinaceus (=Festuca arundinacea), Sherardia arvensis; and three natives: Danthonia californica, Epilobium minutum, and Lomatium nudicale). The same plots were monitored for two years post-fire. Prior to the burn, native plants had more kinds of damage and more pathogen damage than introduced plants, consistent with the ERH. Fire reduced pathogen damage relative to the controls more for the native than the introduced species, but the effects on herbivory were negligible. Pathogen attack was correlated with plant reproductive fitness, whereas herbivory was not. These results suggest that fire may be useful for promoting some native plants in prairies due to its negative effects on their pathogens.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2014-05-06
    Description: Ecology, Ahead of Print. Floral nectar of many plant species is prone to colonization by microbial organisms such as yeasts. Their presence and metabolism of nectar chemical components have the potential to modify a suite of floral traits important for pollinator attraction, including nectar quality and scent. However, studies on the direct and indirect effects of nectar-inhabiting microogranisms on pollinator behavior and plant reproductive success remain rare. To determine their potential to affect pollinator behavior and plant fitness, we experimentally manipulated the common nectar-inhabiting yeast Metschnikowia reukaufii in the nectar of Delphinium nuttallianum, a short-lived montane perennial herb. We detected positive indirect, pollinator-mediated effects of yeasts on male plant fitness measured as pollen donation using powdered fluorescent dyes. However, we detected no direct or indirect effects on components of female fitness. Matching effects on male plant fitness, pollinators responded positively to the presence of yeasts, removing more nectar from flowers treated with M. reukaufii. Our results provide evidence of effects of nectar-inhabiting yeasts on male plant fitness and highlight the importance of microorganisms in mediating plant-pollinator interactions and subsequent plant fitness.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2014-05-06
    Description: Ecology, Ahead of Print. Complementary resource use and redundancy of species that fulfill the same ecological role are two mechanisms that can respectively increase and stabilize process rates in ecosystems. For example, predator complementarity and redundancy can determine prey consumption rates and their stability, yet few studies take into account the multiple predator species attacking multiple prey at different rates in natural communities. Thus, it remains unclear whether these biodiversity mechanisms are important determinants of consumption in entire predator-prey assemblages, such that food-web interaction structure determines community-wide consumption and stability. Here, we use empirical quantitative food-webs to study the community-wide effects of functional complementarity and redundancy of consumers (parasitoids) on herbivore control in temperate forests. We find that complementarity in host resource use by parasitoids was a strong predictor of absolute parasitism rates at the community level, and that redundancy in host-use patterns stabilised community-wide parasitism rates in space, but not through time. These effects can potentially explain previous contradictory results from predator diversity research. Phylogenetic diversity (measured using taxonomic distance) did not explain functional complementarity or parasitism rates, so could not serve as a surrogate measure for functional complementarity. Our study shows that known mechanisms underpinning predator diversity effects on both functioning and stability can easily be extended to link food webs to ecosystem functioning.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2014-05-06
    Description: Ecology, Ahead of Print. Understanding the way in which species are associated in communities is a fundamental question in ecology. Yet there remains a tension between communities as highly structured units or as coincidental collections of individualistic species. We explore these ideas using a new statistical approach that clusters species based on their environmental response- a species archetype, rather than clustering sites based on their species composition. We find that there are groups of species, which are consistently highly correlated, but that these groups are not unique to any set of locations and overlap spatially. The species present at a single site are a realisation of species from the (multiple) archetype groups that are likely to be present at that location based on their response to the environment.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2014-05-06
    Description: Ecology, Ahead of Print. Invasive alien predators can impose strong selection on native prey populations and induce rapid evolutionary change in the invaded communities. However, studies on evolutionary responses to invasive predators are often complicated by the lack of replicate populations differing in coexistence time with the predator, which would allow determining how prey traits change during the invasion. The red swamp crayfish Procambarus clarkii has invaded many freshwater areas worldwide, with negative impacts for native fauna. Here, we examined how coexistence time shapes antipredator responses of the Iberian waterfrog (Pelophylax perezi) to the invasive crayfish by raising tadpoles from five populations differing in historical exposure to P. clarkii (30 years, 20 years or no coexistence). Tadpoles from non-invaded populations responded to the presence of P. clarkii with behavioral plasticity (reduced activity), whereas long-term invaded populations showed canalized antipredator behavior (constant low activity level). Tadpoles from one of the long-term invaded populations responded to the crayfish with inducible morphological defenses (deeper tails), reflecting the use of both constitutive and inducible antipredator defenses against the exotic predator by this population. Our results suggest that, while naive P. perezi populations responded behaviorally to P. clarkii, the strong predation pressure imposed by the crayfish has induced the evolution of qualitatively different antipredator defenses in populations with longer coexistence time. These responses suggest that strong selection by invasive predators may drive rapid evolutionary change in invaded communities. Examining responses of prey species to biological invasions using multiple populations will help us better forecast the impact of invasive predators in natural communities.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2014-05-06
    Description: Ecology, Ahead of Print. Imbalances in phosphorus (P) intake relative to demand negatively affect animal growth, but their consequences are less understood for vertebrates, in which bone represents a significant and potentially flexible pool of P. Flexibility in body-P content could buffer vertebrates from the effects of imbalances between P intake and demand, reducing the likelihood of a sharp stoichiometric "knife-edge" in the relationship between growth rate and diet-P level. We conducted a meta-analysis of published aquaculture experiments that tested effects of diet %P on fish growth rate (49 studies, 28 species) and body-P content (27 of the studies in the main data set, 20 species). Our meta-analysis revealed significant P limitation of growth, as well as significant negative effects of excess P on growth rate. Diet-P thresholds for these effects occurred at ecologically relevant levels (mean ± SD optimal diet-P of 1.2 ± 0.45% under experimental conditions of high ration). Finally, the analysis also suggested a pattern of relatively shallow relationships between growth rate and diet-P level, coupled with surprisingly flexible body-P content in fishes. This result is consistent with fish using flexible body-P content (presumably mediated through bone P) to buffer imbalances between P intake and demand. Together, our results provide evidence for a relatively "dull" stoichiometric "knife-edge" in fishes, driven in part by flexible body-P content.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2014-05-06
    Description: Ecology, Ahead of Print. Community ecologists use functional groups based on the rarely tested assumption that within-group responses to ecological processes are similar and thus members are functionally equivalent. However, recent research suggests functional equivalency may break down with human impacts. We tested the equivalency assumption and model predictions of responses to simulated human alterations in nutrients and large herbivores for two models of coral reef algae, the Relative Dominance Model (RDM) and the Functional Group Model (FGM). Results of both mesocosm and field experiments using assembled communities were compared to model predictions and within- and between-group variability were assessed. Both models' predictions of group response to herbivory matched experimental outcomes, but only the RDM predicted response to nutrients. However, within-group variability was dramatic, as the RDM grouped species with opposite responses to herbivory and the FGM grouped species with unique responses to nutrients. These heterogeneous responses resulted in loss of information and masked strong interactions between herbivory and nutrients that were not included in the models. As humans continue to impact major ecological processes in ecosystems globally, we postulate that functional-group models may need to be reformulated to account for shifting baselines.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2014-05-06
    Description: Ecology, Ahead of Print. Flowering plants often occur in mixed-species groups where interactions between them can occur both pre- and post-pollination. In post-pollination interactions conspecific (CP) and heterospecific pollen (HP) interact on the style and previous work indicates that these interactions, often, but not always, lead to reduced fitness. However, over half of insect-pollinated species display a mixed mating system, where both self and outcross CP could interact with HP, yet no study has evaluated the effects on both types of CP. We present and test hypotheses for the differential effects of HP depending on CP source and timing of HP arrival with a mixed-mating plant, M. guttatus, and one of its HP donors (Helianthus exilis). We found H. exilis pollen reduced tube growth and fertilization success of M. guttatus self pollen to a greater degree than outcross pollen, but only when CP and HP were applied simultaneously. Our results indicate that for mixed-mating plants the fitness consequences of HP receipt can be more detrimental than previously thought. Furthermore, our findings suggest that HP receipt, which can be high in biodiverse areas, has the potential to influence mating system and genetic diversity of the plant populations within them.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2014-05-06
    Description: Ecology, Ahead of Print. Factors that control tree seedling dynamics are critical determinants of forest diversity. We examined the role of density-dependent mortality and abiotic factors in the differential establishment and survival of tree seedlings at three large mapped forest plots in Indiana, Virginia and Wisconsin, USA. We tested whether seedling densities and seedling survival are related to local biotic and abiotic factors with generalized linear mixed models. Spatial point pattern analyses were utilized to determine if the distribution patterns of seedlings and saplings are consistent with a pattern generated by negative density-dependent mortality with respect to conspecific trees. Initial sampled seedling density for nearly a third of species showed a positive correlation with increasing conspecific basal area indicating dispersal limitation, but few had any association with abiotic variables. By contrast, survival of seedlings over one year significantly declined with increasing conspecific basal area. Point pattern analyses indicated that nearly one third of tree species had significantly over-dispersed point patterns of conspecific seedlings and saplings relative to adult densities; the majority of other species exhibited random spatial arrangements. Our results demonstrate that negative conspecific density-dependent mortality of seedlings could generate the spatial patterns observed at later life stages. By differentially favoring seedlings of other species, this process may contribute to the maintenance of tree diversity in temperate forests, just as others have demonstrated for tropical forests.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2014-05-06
    Description: Ecology, Ahead of Print. Communities are comprised of individual species that respond to changes in their environment depending in part on their niche requirements. These species comprise the biodiversity of any given community. Common biodiversity metrics such as richness, evenness, and the species abundance distribution are frequently used to describe biodiversity across ecosystems and taxonomic groups. While it is increasingly clear that researchers will need to forecast changes in biodiversity, ecology currently lacks a framework for understanding the natural background variability in biodiversity or how biodiversity patterns will respond to environmental change. We predict that while species populations depend on local ecological mechanisms (e.g., niche processes) and should respond strongly to disturbance, community-level properties that emerge from these species should generally be less sensitive to disturbance because they depend on regional mechanisms (e.g., compensatory dynamics). Using published data from terrestrial animal communities, we show that community-level properties were generally resilient under a suite of artificial and natural manipulations. In contrast, species responded readily to manipulation. Our results suggest that community-level measures are poor indicators of change, perhaps because many systems display strong compensatory dynamics maintaining community-level properties. We suggest that ecologists consider using multiple metrics that measure composition and structure in biodiversity response studies.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2014-05-06
    Description: Ecology, Ahead of Print. In colonial-breeding species, prebreeders often emigrate temporarily from natal reproductive colonies then subsequently return for one or more years before producing young. Variation in attendance/nonattendance patterns can have implications for subsequent recruitment. We used open robust-design multi-state models and 27 years of encounter data for prebreeding female Weddell seals (Leptonychotes weddellii Lesson) to evaluate hypotheses about (1) the relationships of temporary emigration (TE) probabilities to environmental and population size covariates, (2) motivations for attendance and consequences of nonattendance for subsequent probability of recruitment to the breeding population. TE probabilities were density-dependent (= 0.66, = 0.17) (βBPOP = 0.66, SE = 0.17)and increased when the fast-ice edge was distant from the breeding colonies (βDIST = 0.75, SE = 0.04), and were strongly age- and state-dependent. These results suggest that tradeoffs between potential benefits and costs of colony attendance vary annually and might influence motivation to attend colonies. Recruitment probabilities were greatest for seals that consistently attended colonies in 2 or more years (e.g.,ψage10 = 0.56, sd = 0.17) and lowest for seals that never or inconsistently attended prior to recruitment (e.g., ψage10 = 0.32, sd = 0.15). In colonial-breeding seabirds repeated colony attendance increases subsequent probability of recruitment to the adult breeding population; our results suggest similar implications for a marine mammal and are consistent with the hypothesis that prebreeders were motivated to attend reproductive colonies to gain reproductive skills or perhaps to optimally synchronize estrus through close association with mature breeding females.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2014-05-06
    Description: Ecology, Ahead of Print. Fertilization via agricultural inputs and nutrient deposition is one of the major threats to global terrestrial plant richness, yet we still do not fully understand the mechanisms by which fertilization decreases plant richness. Tall clonal species have recently been proposed to cause declines in plant species richness by increasing in abundance in response to fertilization and competing strongly with other species. We tested this hypothesis in a fertilization experiment in a low productivity grassland by using a novel experimental manipulation of the presence vs. absence of clonal species and by examining the role of height within these treatments. We found that fertilization decreased species richness more in the presence than absence of clonal species. We also found that only tall species increased in biomass in response to fertilization. In the absence of clonal species, fertilization increased biomass of tall non-clonal species. However, in the presence of clonal species, fertilization decreased tall non-clonal biomass and only tall clonal biomass increased. Fertilization caused almost all short species to be lost in the presence, but not the absence, of clonal species and caused greater declines in the mean and variance of light levels in the presence of clonal species. These results show that the traits of species in a community can determine the magnitude of species loss due to fertilization. The strongly negative effect of tall clonals on species richness in fertilized plots is likely a result of their capacity to decrease light levels to a greater extent and more uniformly than non-clonal species, and thereby drive the exclusion of short species. These results help clarify the mechanisms whereby fertilization decreases grassland plant species richness and suggest that efforts to prevent the loss of species under fertilized conditions may be most effective when they focus on controlling the biomass of tall clonal species.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2014-05-06
    Description: Ecology, Ahead of Print. Nutrient pollution constitutes a major threat to biodiversity - one whose magnitude is predicted to increase greatly in the near future. While the negative effects of excessive nitrogen and phosphorus loading on local species diversity are widely appreciated, a growing body of evidence indicates that increases in productivity (a correlate of nutrient supply) can also reduce predictability in community composition by driving community divergence and increases in beta diversity (or compositional dissimilarity among communities). Stochastic variation in dispersal history has frequently been cited as a cause of such patterns. However, underlying mechanisms have not received strong experimental scrutiny. I present results of a microcosm experiment testing the effects of enrichment and dispersal mode on zooplankton community structure. I show that beta diversity increases with enrichment but only in the presence of sequential dispersal and variation in dispersal history. Sequential dispersal and enrichment enhanced beta diversity by driving increases in temporal compositional turnover (or beta diversity in time). These results suggest that nutrient enrichment and dispersal may have interactive effects on community organization by facilitating persistent compositional flux and reducing our ability to predict the structure of communities in both space and time.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2014-05-06
    Description: Ecology, Ahead of Print. Climate change forecasts of more frequent climate extremes suggest that such events will become increasingly important drivers of future ecosystem dynamics and function. Because the rarity and unpredictability of naturally occurring climate extremes limits assessment of their ecological impacts, we experimentally imposed extreme drought and a mid-summer heat wave over two years in a central US grassland. While the ecosystem was resistant to heat waves, it was not resistant to extreme drought, which reduced aboveground net primary productivity (ANPP) below the lowest level measured in this grassland in almost thirty years. This extreme reduction in ecosystem function was a consequence of reduced productivity of both C4 grasses and C3 forbs. However, the dominant forb was negatively impacted by the drought more than the dominant grass, and this led to a reordering of species abundances within the plant community. Although this change in community composition persisted post-drought, ANPP recovered completely the year after drought due to rapid demographic responses by the dominant grass, compensating for loss of the dominant forb. Overall, these results show that an extreme reduction in ecosystem function attributable to climate extremes (e.g., low resistance) does not preclude rapid ecosystem recovery. Given that dominance by a few species is characteristic of most ecosystems, knowledge of the traits of these species and their responses to climate extremes will be key for predicting future ecosystem dynamics and function.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2014-05-06
    Description: Ecology, Ahead of Print. Thresholds profoundly affect our understanding and management of ecosystem dynamics, but we have yet to develop practical techniques to assess the risk that thresholds will be crossed. Combining ecological knowledge of critical system interdependencies with a large-scale experiment we tested for breaks in the ecosystem interaction network to identify threshold potential in real world ecosystem dynamics. Our experiment on marine sandflats demonstrated that reductions in incident sunlight changed the interaction network between sediment biogeochemical fluxes, productivity and macrofauna. By demonstrating loss of positive feedbacks and changes in the architecture of the network, we provide mechanistic evidence that stressors lead to breakpoints in dynamics, which theory predicts pre-dispose a system to a critical transition.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2014-05-06
    Description: Ecology, Ahead of Print. Pendulous lichens dominate canopies of boreal forests, with dark Bryoria species in upper versus light Alectoria and Usnea species in lower canopy. These genera offer important ecosystem services like winter forage for reindeer and caribou. The mechanism behind this niche separation is poorly understood. We tested the hypothesis that species-specific sun-screening fungal pigments protect underlying symbiotic algae differently against high light, and thus shape the vertical canopy gradient of epiphytes. Three pale species with the reflecting pigment usnic acid (Alectoria sarmentosa, Usnea dasypoga, U. longissima) and three with dark, absorbing melanins (Bryoria capillaris, B. fremontii, B. fuscescens) were compared. We subjected the lichens to desiccation stress with and without light, and assessed their performance with chlorophyll fluorescence. Desiccation alone only affected U. longissima. By contrast, light in combination with desiccation caused photoinhibitory damage in all species. Usnic lichens were significantly more susceptible to light during desiccation than melanic ones. Thus, melanin is a more efficient light-screening pigment than usnic acid. Thereby, the vertical gradient of pendulous lichens in forest canopies is consistent with a shift in type and functioning of sun-screening pigments, from high-light tolerant Bryoria in the upper to susceptible Alectoria and Usnea in the lower canopy.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2014-05-06
    Description: Ecology, Ahead of Print. Predicting the effects of climate change on ecological communities requires an understanding of how environmental factors influence both physiological processes and species interactions. Specifically, the net impact of temperature on community structure depends on the relative response of physiological energetic costs (metabolism) and energetic gains (ingestion of resources) that mediate the flow of energy throughout a food web. However, the relative temperature scaling of metabolic and ingestion rates have rarely been measured for multiple species within an ecological assemblage and it is not known how, and to what extent, these relative scaling differences vary among species. To investigate the relative influence of these processes, I measured the temperature scaling of metabolic and ingestion rates for a suite of rocky intertidal species using a multiple regression experimental design. I compared oxygen consumption rates (as a proxy for metabolic rate) and ingestion rates by estimating the temperature scaling parameter of the 'universal temperature dependence' (UTD) model, a theoretical model derived from first principles of biochemical kinetics and allometry. The results show that consumer metabolic rates (energetic costs) tend to be more sensitive to temperature than ingestion rates (energetic gains). Thus, as temperature increases, metabolic rates tend to increase faster relative to ingestion rates, causing the overall energetic efficiencies of these rocky intertidal invertebrates to decline. Metabolic and ingestion rates largely scaled in accordance with the UTD model; however, non-linearity was evident in several cases, particularly at higher temperatures, in which alternative models were more appropriate. There are few studies where multiple rate dependencies are measured on multiple species from the same ecological community. These results indicate that there may be general patterns across species in the temperature scaling of biological rates, with important implications for forecasting temperature effects on ecological communities.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2014-05-06
    Description: Ecology, Ahead of Print. Metacommunity theory generally predicts that regional dispersal of organisms among local habitat patches should influence spatial patterns of species diversity. In particular, increased dispersal rates are generally expected to increase local (α) diversity, yet homogenize local communities across the region (decreasing β-diversity), resulting in no change in regional (γ) diversity. Although the effect of dispersal on α-diversity has garnered much experimental attention, the influence of dispersal rates on diversity at larger spatial scales (β and γ) is poorly understood. Furthermore, these theoretical predictions are not well tested in the field, where other environmental factors (e.g., habitat size, resource density) likely also influence species diversity. Here, we use a system of freshwater rock pools on Appledore Island, Maine, USA to test the effects of dispersal rate on species diversity in metacommunities. The pools exist in clusters (metacommunities) that experience different levels of dispersal imposed by gulls (Larus spp.), which we show to be frequent passive dispersers of rock-pool invertebrates. Although previous research has suggested that waterbirds may disperse aquatic invertebrates, our study is the first to quantify the rate at which such dispersal occurs and determine its effects on species diversity. In accordance with theory, we found that metacommunities experiencing higher dispersal rates had significantly more homogeneous local communities (reduced β-diversity) and that γ-diversity was not influenced by dispersal rate. Contrary to theoretical predictions, however, α-diversity in the rock pools was not significantly influenced by dispersal. Rather, local diversity was significantly positively related to local habitat size and both α- and γ-diversity were influenced by the physicochemical environment of the pools. These results provide an important field test of metacommunity theory, highlighting how local and regional factors interact to drive patterns of species diversity in metacommunities, and demonstrate that waterbirds are indeed important dispersal vectors for aquatic invertebrates.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2014-05-06
    Description: Ecology, Ahead of Print. Given the health and economic burden associated with the widespread occurrence of co-infections in human and agricultural animals, understanding how co-infections contribute to host heterogeneity to infection and transmission is critical if we are to assess risk of infection based on host characteristics. Here, we examine whether host heterogeneity to infection leads to similar heterogeneity in transmission in a population of rabbits single and co-infected with two helminths and monitored monthly for eight years. Compared to single infections, co-infected rabbits carried higher Trichostrongylus retortaeformis intensities, longer worms with fewer eggs in utero and shed a similar numbers of parasite eggs. In contrast, the same co-infected rabbits harbored fewer Graphidium strigosum with longer bodies and more eggs in utero, and shed more eggs of this helminth. A positive density-dependent relationship between fecundity and intensity was found for T. retortaeformis but not G. strigosum in co-infected rabbits. Juvenile rabbits contributed to most of the infection and shedding of T. retortaeformis while adult hosts were more important for G. strigosum dynamics of infection and transmission, and this pattern was consistent in single and co-infected individuals. This host-parasite system suggests that we cannot predict pattern of parasite shedding during co-infections based on intensity of infection alone. We suggest that a mismatching between susceptibility and infectiousness should be expected in helminth co-infections and should not be overlooked.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2014-05-06
    Description: Ecology, Ahead of Print. Large pelagic predators play important roles in oceanic ecosystems and may migrate vast distances to utilize resources in different marine ecoregions. Understanding movement patterns of migratory marine animals is critical for effective management, but often challenging due to the cryptic habitat of pelagic migrators and the difficulty of assessing past movements. Chemical tracers can partially circumvent these challenges by reconstructing recent migration patterns. Pacific bluefin tuna (Thunnus orientalis; PBFT) inhabit the western and eastern Pacific Ocean and are in steep decline due to overfishing. Understanding age-specific eastward trans-Pacific migration patterns can improve management practices but these migratory dynamics remain largely unquantified. Here, we combine a Fukushima-derived radiotracer (134Cs) with bulk tissue- and amino acid-stable isotope analyses of PBFT to distinguish recent migrants from residents of the eastern Pacific Ocean. The proportion of recent migrants to residents decreased in older year classes, though the proportion of older PBFT that recently migrated across the Pacific was greater than previous estimates. This novel toolbox of biogeochemical tracers can be applied to any species that crosses the North Pacific Ocean.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2014-05-06
    Description: Ecology, Ahead of Print. The emission of volatile monoterpenes from coniferous trees impacts the oxidative state of the troposphere and multi-trophic signaling between plants and animals. Previous laboratory studies have revealed that climate anomalies and herbivory alter the rate of tree monoterpene emissions. However, no studies to date have been conducted to test these relations in situ. We conducted a two-year field experiment at two semi-arid sites dominated by pinyon pine (Pinus edulis) during outbreaks of a specialist herbivore, the southwestern tiger moth (Lophocampa ingens: Arctiidae). We discovered that during the early spring, when herbivory rates were highest, monoterpene emission rates were approximately two to six times higher from undamaged needles on damaged trees, with this increase in emissions due to α-pinene, β-pinene, and camphene at both sites. During mid-summer, emission rates did not differ between previously damaged and undamaged trees at the site on the Western Slope of the Rocky Mountains, but rather tracked changes in the temperature and precipitation regime characteristic of the region. As the mid-summer drought progressed at the Eastern Slope site, emission rates were low but differences between previously damaged and undamaged trees were not statistically significant. Despite no difference in emissions, mid-summer tissue monoterpene concentrations were significantly lower in previously damaged trees at both sites. With the onset of monsoon rains during late summer, emission rates from previously damaged trees increased to levels higher than those of undamaged trees despite the lack of herbivory. We conclude (1) herbivory systemically increases the flux of terpenes to the atmosphere during the spring, (2) drought overrides the effect of past herbivory as the primary control over emissions during the mid-summer, and (3) that a release from drought and the onset of late-summer rains is correlated with a secondary increase in emissions, particularly from herbivore-damaged trees, possibly due to a drought-delayed stimulation of induced monoterpene synthesis and/or increases in stomatal conductance. A greater understanding of the interactive effects of seasonality and herbivory on monoterpene emissions provides much needed information regarding the atmospheric and ecological consequences these compounds will have on semi-arid ecosystems.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2014-05-06
    Description: Ecology, Ahead of Print. Fires are the major natural disturbance in the boreal forest, and their frequency and intensity will likely increase as the climate warms. Terrestrial nutrients released by fires may be transported to boreal lakes, stimulating increased primary productivity, which may radiate through multiple trophic levels. Using a before-after-control-impact (BACI) design, with pre- and post-fire data from burned and unburned areas, we examined effects of a natural fire across several trophic levels of boreal lakes, from nutrient and chlorophyll levels to macroinvertebrates to waterbirds. Concentrations of total nitrogen and phosphorus were not affected by the fire. Chlorophyll a levels were also unaffected, likely reflecting the stable nutrient concentrations. For aquatic invertebrates, we found that densities of 3 functional feeding groups did not respond to the fire (filterers, gatherers, scrapers), while 2 groups increased (shredders, predators). Amphipods accounted for 98% of shredder numbers, and we hypothesize that fire-mediated habitat changes may have favored their generalist feeding and habitat ecology. This increase in amphipods may have in turn driven increased predator densities, as amphipods were the most numerous invertebrate in our lakes and are commonly taken as prey. Finally, abundance of waterbird young, which feed primarily on aquatic invertebrates, was not affected by the fire. Overall, ecosystems of our study lakes were largely resilient to forest fires, likely due to their high initial nutrient concentrations and small catchment sizes. Moreover, this resilience spanned multiple trophic levels, a significant result for ecologically similar boreal regions, especially given the high potential for increased fires with future climate change.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2014-05-06
    Description: Ecology, Ahead of Print. The importance of terrestrial-derived organic matter for lake zooplankton communities remains debated, partly because little is known about the basic pathways by which allochthonous carbon is transferred to zooplankton, and whether these vary among the major taxonomic and functional groups. We quantified allochthony of three zooplankton groups (Cladocera, Calanoida and Cyclopoida) across 18 lakes in Québec, spanning broad gradients of dissolved organic matter (DOM) and lake trophy, using a multi-isotope (δ2H + δ13C), multi-source (terrestrial, phytoplanktonic, benthic) approach. All three zooplankton groups had significant levels of allochthony, but differed greatly in their respective patterns across lakes. Allochthony in Calanoida and Cyclopoida was linked to detrital food chains based on particulate organic matter (POM) and on DOM, respectively, whereas in Cladocera it appeared related to both pathways; not surprisingly this latter group had the highest mean allochthony (0.31; compared to 0.18 in Cyclopoida and 0.16 in Calanoida). This study highlights the complexity of the pathways of delivery and transfer of terrestrial organic matter in freshwaters, and underscores the role that microbial food webs play in this transfer.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2014-05-06
    Description: Ecology, Ahead of Print. Consumer growth can be affected by imbalances between the nutrient content of the consumer and its food resource. Although ontogenetic-driven changes in animal composition are well-documented, their potential consequences for organism's sensitivity to food quality constraints have remained elusive. Here we show that the potential growth response of the copepod Mixodiaptomus laciniatus (as %RNA and RNA:DNA ratio) to the natural gradient of seston carbon (C):nutrient ratio is unimodal and stage-specific. Solution of the equation given by the first derivative function provided the optimum C:nutrient ratio for maximum stage-specific growth, which increased during ontogeny. The peakedness of the function indicated that animal vulnerability to suboptimal food quality decreased as juveniles reached adulthood. Consistent with these results, a field-experiment demonstrated that potential consumer growth responded to variations in seston C:phosphorus ratio and that early-life stages were particularly vulnerable to suboptimal food quality.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2014-05-06
    Description: Ecology, Ahead of Print. Soils host diverse communities of interacting microbes and the nature of interspecific interactions is increasingly recognised to affect ecosystem-level processes. Antagonistic interactions between bacteria and fungi are of particular relevance for soil functioning. A number of soil bacteria produce secondary metabolites that inhibit eukaryotic growth. Antibiosis may be stimulated in the presence of competing bacteria, and we tested if biodiversity within bacterial communities affects their antagonistic activity against fungi and fungal-like species. We set up Pseudomonas fluorescens communities of increasing diversity and measured the production of the broad spectrum antifungal compound 2,4-DAPG and their antagonistic activity against different eukaryotes. Diversity increased DAPG concentration and antifungal activity, an effect due to a combination of identity and interactions between species. Our results indicate that investment of pseudomonads into broad spectrum anti-eukaryotic traits is determined by both community composition and diversity and this provides new avenues to understand interactions between bacterial and fungal communities.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2014-05-06
    Description: Ecology, Ahead of Print. In some mutualisms cooperation in symbionts is promoted by hosts sanctioning 'cheats' who obtain benefits but fail to reciprocate. In fig-wasp mutualisms agaonid wasps pollinate the trees (Ficus spp.) but are also exploitative by using some flowers as larval food. Ficus can sanction cheats that fail to pollinate by aborting some un-pollinated figs. However, in those un-pollinated figs retained by trees cheats successfully reproduce. When this occurs wasp broods are reduced, suggesting sanctions increase offspring mortality within un-pollinated figs. We investigated sanction mechanisms of abortion and larval mortality against wasp cheats in the monoecious Ficus racemosa, by introducing into figs 1,3,5,7 or 9 female wasps (foundresses) that were either all pollen-laden (P+) or all pollen-free (P-) The abortion rates of P- figs were highest (~60%) when single foundresses were present. Abortion declined with increased foundresses and ceased with seven or more wasps present, irrespective of pollination. In un-aborted figs, wasp fitness (mean offspring per foundress) declined as foundress number increased, especially in P- figs. Reduced broods in P- figs resulted from increased larval mortality of female offspring as foundress number increased, resulting in more male biased sex ratios. Overall sanctions estimated from both abortion rates and reduced offspring production strengthened as the number of cheats increased. In a second experiment we decoupled pollination from wasp oviposition by introducing one pollen-free foundress followed 24h later by seven pollen-laden ovipositor-excised wasps. Compared with P+ and P- single foundress figs, delayed pollination resulted in intermediate larval mortality and wasp fitness, which concurred with patterns of female offspring production. We conclude that fig abortion reflects both pollinator numbers and pollen presence. Sanctions within P- figs initiate soon after oviposition and discriminate against female offspring, thus reducing the benefits to cheats from adaptively biasing their offspring sex ratios. We suggest that costs to cheats via these discriminative sanctions are likely to promote stability in this mutualism.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2014-05-06
    Description: Ecology, Ahead of Print. Plants, bacteria and fungi produce essential amino acids (EAAs) with distinctive patterns of δ13C values that can be used as naturally occurring fingerprints of biosynthetic origin of EAAs in a food web. Because animals cannot synthesize EAAs and must obtain them from food, their tissues reflect δ13CEAA patterns found in diet, but it is not known how microbes responsible for hindgut fermentation in some herbivores influence the δ13C values of EAAs in their host's tissues. We examined whether distinctive δ13C fingerprints of hindgut flora are evident in the tissues of green turtles (Chelonia mydas), which are known to be facultative hindgut fermenters. We determined δ13CEAA values in tissues of green turtles foraging herbivorously in neritic habitats of Hawaii and compared them with those from green, olive ridley and loggerhead turtles foraging carnivorously in oceanic environments of the central and south-east Pacific Ocean. Results of multivariate statistical analysis revealed two distinct groups that could be distinguished based on unique δ13CEAA patterns. A three-end member predictive linear discriminant model indicated that δ13CEAA fingerprints existed in the tissues of carnivorous turtles that resembled patterns found in microalgae, which form the base of an oceanic food web, whereas herbivorous turtles derive EAAs from a bacterial or seagrass source. This study demonstrates the capacity for δ13C fingerprinting to establish the biosynthetic origin of EAAs in higher consumers, and that marine turtles foraging on macroalgal diets appear to receive nutritional supplementation from bacterial symbionts in their digestive system.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2014-05-06
    Description: Ecology, Ahead of Print. A longstanding concept in community ecology is that closely related species compete more strongly than distant relatives. Ecologists have invoked this 'limiting similarity hypothesis' to explain patterns in the structure and function of biological communities and to inform conservation, restoration, and invasive species management. However, few studies have empirically tested the validity of the limiting similarity hypothesis. Here we report the results of a laboratory microcosm experiment in which we used a model system of 23 common, co-occurring North American freshwater green algae to quantify the strength of 216 pair-wise species' interactions (the difference in population density when grown alone vs. in the presence of another species) along a manipulated gradient of evolutionary relatedness (phylogenetic distance, as the sum of branch lengths separating species on a molecular phylogeny). Interspecific interactions varied widely in these bicultures of phytoplankton, ranging from strong competition (relative yield in poly:monoculture 〈 〈 1) to moderate facilitation (relative yield 〉 1). Yet, we found no evidence that the strength of species' interactions was influenced by their evolutionary relatedness. There was no relationship between phylogenetic distance and the average, minimum (inferior competitor), nor maximum (superior competitor) interaction strength across all biculture communities (respectively, P = 0.19; P = 0.17, P = 0.14, N = 428). When we examined each individual species, only 17% of individual species' interactions strengths varied as a function of phylogenetic distance, and none of these relationships remained significant after Bonferoni correction for multiple tests (N = 23). Lastly, when we grouped interactions into five qualitatively different types, the frequency of these types was not related to phylogenetic distance among species pairs (F = 1.63, P = 0.15). Our empirical study adds to several others that suggest the biological underpinnings of competition may not be evolutionarily conserved, and thus, ecologists may need to re-evaluate the previously assumed generality of the limiting similarity hypothesis.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2014-05-06
    Description: Ecology, Ahead of Print. Environmental pulses, or sudden, marked changes to the conditions within an ecosystem, can be important drivers of resource availability in many systems. In this study, we investigated the effect of tidal pulsing on the fluxes of nitrous oxide (N2O), a powerful greenhouse gas, from a marine intertidal mudflat on the north shore of Massachusetts, USA. We found these tidal flat sediments to be a sink of N2O at low tide with an average uptake rate of -6.7 ± 2 μmol m-2 h-1. Further, this N2O sink increased the longer sediments were tidally exposed. These field measurements, in conjunction with laboratory nutrient additions, revealed that this flux appears to be driven primarily by sediment denitrification. Additionally, N2O uptake was most responsive to DIN+DIP addition suggesting that the N2O consumption process may be P limited. Furthermore, nutrient addition experiments suggest that dissimilatory nitrate reduction to ammonium (DNRA) releases N2O at the highest levels of nitrate fertilization. Our findings indicate that tidal flats are important sinks of N2O, potentially capable of offsetting the release of this potent greenhouse gas by other, nearby ecosystems.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2014-05-06
    Description: Ecology, Ahead of Print. Fear of predation produces large effects on prey population dynamics through indirect risk effects that can cause even greater impacts than direct predation mortality. As yet, there is no general theoretical framework for predicting when and how these population risk effects will arise in specific prey populations, meaning there is often little consideration given to the key role predator risk effects can play in understanding conservation and wildlife management challenges. Here, we propose population predator risk effects can be predicted through an extension of individual risk trade-off theory and show for the first time that this is the case in a wild vertebrate system. Specifically, we demonstrate that the timing (in specific months of the year), occurrence (at low food availability), cause (reduction in individual energy reserves) and type (starvation mortality) of a population level predator risk effect can be successfully predicted from individual responses using a widely applicable theoretical framework (individual based risk trade-off theory). Our results suggest individually-based risk-trade-off frameworks could allow a wide range of population level predator risk effects to be predicted from existing ecological theory, which would enable risk effects to be more routinely integrated into consideration of population processes and in applied situations such as conservation.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2014-05-06
    Description: Ecology, Ahead of Print. The timing of fine root production and turnover strongly influences both the seasonal potential for soil resource acquisition among competing root systems and the plant fluxes of root carbon into soil pools. However, basic patterns and variability in the rates and timing or fine root production and turnover are generally unknown among perennial plants species. We address this shortfall using a heuristic model relating root phenology to turnover together with three-years of minirhizotron observations of root dynamics in 12 temperate tree species grown in a common garden. We specifically investigated how the amount and the timing of root production differ among species and how they impact estimates of fine root turnover. Across the 12 species there was wide variation in the timing of root production with some species producing a single root flush in early summer and others producing roots either more uniformly over the growing season or in multiple pulses. Additionally, the pattern and timing of root production appeared to be consistent across years for some species but varied in others. Root turnover rate was related to total root production (P 〈 0.001) as species with greater root production typically had faster root turnover rates. We also found that within species, annual root production varied up to three-fold between years which led to large interannual differences in turnover rate. Results from the heuristic model indicated that shifting the pattern or timing of root production can impact estimates of root turnover rates for root populations with lifespans less than one year while estimates of root turnover rate for longer lived roots were unaffected by changes in root phenology. Overall, we suggest that more detailed observations of root phenology and production will improve fidelity of root turnover estimates. Future efforts should link patterns of root phenology and production with whole plant life history traits and variation in annual and seasonal climate.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2014-05-06
    Description: Ecology, Ahead of Print. The movements of some long-distance migrants are driven by innate compass headings that they follow on their first migrations (e.g., some birds and insects), whilst the movements of other first time migrants are learnt by following more experienced conspecifics (e.g., baleen whales). However, the overall roles of innate, learnt and social behaviors in driving migration goals in many taxa are poorly understood. To look for evidence of whether migration routes are innate or learnt for sea turtles, here for 42 sites around the World we compare the migration routes of 〉 400 satellite adults of multiple species of sea turtle with c.45,000 Lagrangian hatchling turtle drift scenarios. In so doing, we show that the migration routes of adult turtles are strongly related to hatchling drift patterns, implying that adult migration goals are learnt through their past experiences dispersing with ocean currents. The diverse migration destinations of adults consistently reflected the diversity in sites they would have encountered as drifting hatchlings. Our findings reveal how a simple mechanism, juvenile passive drift, can explain the ontogeny of some of the longest migrations in the animal kingdom and ensure that adults find suitable foraging sites.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2014-05-06
    Description: Ecology, Ahead of Print. Taylor's law, one of the most widely accepted generalizations in ecology, states that the variance of a population abundance time series scales as a power-law of its mean. Here we re-examine this law and the empirical evidence presented in support of it. Specifically we show that the exponent generally depends on the length of the time series and its value reflects the combined effect of many underlying mechanisms. Moreover, sampling errors alone, when presented on a double logarithmic scale, are sufficient to produce an apparent power-law. This raises questions regarding the usefulness of Taylor's law for understanding ecological processes. As an alternative approach, we focus on short-term fluctuations and derive a generic null model for the variance-mean ratio in population time-series from a demographic model that incorporates the combined effects of demographic and environmental stochasticity. After comparing the predictions of the proposed null model with the fluctuations observed in empirical datasets, we suggest an alternative expression for fluctuation scaling in population time series. Analyzing population fluctuations as we have proposed here may provide new applied (e.g., estimation of species persistence times) and theoretical (e.g., the neutral theory of biodiversity) insights that can be derived from more generally available short-term monitoring data.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2014-05-06
    Description: Ecology, Ahead of Print. Species exist within communities of other interacting species, so an exogenous force that directly affects one species can indirectly affect all other members of the community. In the case of climate change, many species may be affected directly and subsequently initiate numerous indirect effects that propagate throughout the community. Therefore, the net effect of climate change on any one species is a function of the direct and indirect effects. We investigated the direct and indirect effects of climate warming on corn leaf aphids, a pest of corn and other grasses, by performing an experimental manipulation of temperature, predators, and two common aphid-tending ants. Although warming had a positive direct effect on aphid population growth rate, warming reduced aphid abundance when ants and predators were present. This occurred because winter ants, which aggressively defend aphids from predators under control temperatures, were less aggressive towards predators and less abundant when temperatures were increased. In contrast, warming increased the abundance of cornfield ants, but they did not protect aphids from predators with the same vigor as winter ants. Thus, warming broke down the ant-aphid mutualism and counter-intuitively reduced the abundance of this agricultural pest.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2014-05-06
    Description: Ecology, Ahead of Print. Interactions between plants can have strong effects on community structure and function. Variability in the morphological, developmental, physiological and biochemical traits of plants can influence the outcome of plant interactions and thus have important ecological consequences. However, the ecological ramifications of trait variability in plants are poorly understood and have rarely been tested in the field. We experimentally tested the effects of morphological variation in root architecture of Quercus douglasii trees in the field on interactions between understory plants and community composition. Our results indicate that variability among Q. douglasii tree root systems initiates a striking reversal in the competitive effects of a dominant understory grass species on a less common species. Trees with a deep-rooted morphology facilitated exotic annual grasses and these annual grasses in turn competitively excluded the native perennial bunchgrass, Stipa pulchra. In contrast, Q. douglasii trees with shallow-rooted morphologies directly suppressed the growth of exotic annual grasses and indirectly released S. pulchra individuals from competition with these annual grasses. Morphological variation in the root architecture of Q. douglasii created substantial conditionality in the outcomes of competition among species which enhanced the potential for indirect interactions to sustain coexistence and increase community diversity.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2014-05-06
    Description: Ecology, Ahead of Print. Hurricane winds can have large impacts on forest structure and dynamics. To date, most evaluations of hurricane impacts have focused on short-term responses after a hurricane, often lack pre-hurricane measurements, and miss responses occurring over longer time scales. Here we use a long-term dataset (1974-2009, 35 years) of tree stems (〉 3 cm in diameter at 1.3 m) in four sites (0.35 ha in total) in montane rain forest (c.1600 m) in Jamaica to investigate the patterns of crown damage in individual stems by Hurricane Gilbert in 1988, and how subsequent growth and mortality were affected by hurricane damage, sprouting, and the incidence of multiple stems. Topographical position on a mountain ridge was the best predictor of crown damage, followed by crown size and species identity. The average diameter growth rate of stems that survived the hurricane was greater than that pre-hurricane for the whole 21 year post-hurricane period. Growth of stems with damaged crowns increased less than those with undamaged crowns; differences in growth rate between damaged and undamaged trees disappeared after eleven years. Hurricane-damaged stems had 2 to 8 times higher mortality than undamaged stems for up to 16 years post hurricane. Many stems sprouted shortly after the hurricane, but few sprouts managed to establish (grow to 〉 3 cm diameter at breast height). However, sprouting and multi-stemming were associated with reduced mortality rate, particularly in damaged trees. From an initial population of 1670 stems in 1974, 54% were still alive in 2009 (21 years after the hurricane). We conclude that despite the high frequency of hurricane damage to tree crowns and the subsequent increased mortality rate in this hurricane-prone tropical montane forest, many stems will be hit and recover from several hurricanes in their lifetime.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2014-05-06
    Description: Ecology, Ahead of Print. The Tibetan Plateau (TP) is experiencing high rates of climatic change. We present a novel combined mechanistic-bioclimatic modeling approach to determine (i) how changes in precipitation and temperature on the TP may impact net primary production (NPP) in four major biomes (forest, shrub, grass, desert); and (ii) if there exists a maximum rain use efficiency (RUEMAX) that represents a "boundary that constrain(s) site-level productivity and efficiency" (Huxman et al. 2004). We used a daily mechanistic ecosystem model to generate 40-y outputs using observed climatic data for scenarios of (i) decreased precipitation (25 to 100%); (ii) increased air temperature (1 to 6°C); (iii) simultaneous changes in both precipitation ( ± 50%, ± 25%) and air temperature (+1 to +6°C); and (iv) increased interannual variability (IAV) of precipitation (+1σ to +3σ, with fixed means). We fitted model output from these scenarios to Huxman et al.'s RUEMAX bioclimatic model, NPP = α +RUE•PPT (where α = intercept, RUE is rain use efficiency and PPT is annual precipitation). Based on these analyses we conclude that: (i) there is strong support (when not explicit, then trend-wise) for Huxman et al.'s assertion that biomes converge to a common RUEMAX during the driest years at a site, thus representing the boundary for highest rain use efficiency; (ii) the interactive effects of simultaneously decreasing precipitation and increasing temperature on NPP for the TP is smaller than might be expected from additive, single-factor changes in these drivers; and (iii) that increasing IAV of precipitation may ultimately have a larger impact on biomes of the Tibetan Plateau than changing amounts of rainfall and air temperature alone.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2014-05-06
    Description: Ecology, Ahead of Print. Birds and their population dynamics are often used to understand and document anthropogenic effects on biodiversity. Nest success is a critical component of the breeding output of birds in different environments; but to obtain the complete picture of how bird populations respond to perturbations, we also need an estimate of nest abundance or density. The problem is that raw counts generally underestimate actual nest numbers because detection is imperfect and because some nests may fail or fledge before being subjected to detection efforts. Here we develop a state-space superpopulation capture-recapture approach in which inference about detection probability is based on the age at first detection, as opposed to the sequence of re-detections in standard capture-recapture models. We apply the method to ducks in which 1) the age of the nests and their initiation dates can be determined upon detection and 2) the duration of the different stages of the breeding cycle is a priori known. We fit three model variants with or without assumptions about the phenology of nest initiation dates, and use simulations to evaluate the performance of the approach in challenging situations. In an application to blue-winged teal Anas discors breeding at study sites in North and South Dakota, USA, nesting stage (egg-laying or incubation) markedly influenced nest survival and detection probabilities. Two individual covariates (one binary covariate: presence of grazing cattle at the nest site, and one continuous covariate: Robel index of vegetation) had only weak effects. We estimated that 5-10% of the total number of nests were available for detection but missed by field crews. An additional 6-15% were never available for detection. These proportions are expected to be larger in less intense, more typical sampling designs. User-friendly software nestAbund is provided to assist users in implementing the method.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2014-05-06
    Description: Ecology, Ahead of Print. What determines the seasonal and interannual variation of growth rates in trees in a tropical forest? We explore this question with a novel four-year high temporal resolution dataset of carbon allocation from two forest plots in the Bolivian Amazon. The forests show strong seasonal variation in tree wood growth rates which are largely explained by shifts in carbon allocation, and not by shifts in total productivity. At the deeper soil plot, there was a clear seasonal trade-off between wood and canopy NPP, while the shallower soils plot showed a contrasting seasonal trade-off between wood and fine roots. Although a strong 2010 drought reduced photosynthesis, NPP remained constant and increased in the six month period following the drought, which indicates usage of significant non-structural carbohydrate stores. Following the drought, carbon allocation increased initially towards the canopy, and then in the following year, allocation increased towards fine root production. Had we only measured woody growth at these sites and inferred total NPP, we would have misinterpreted both the seasonal and interannual responses. In many tropical forest ecosystems, we propose that changing tree growth rates are more likely to reflect shifts in allocation rather than changes in overall productivity. Only a whole NPP allocation perspective can correctly interpret the relationship between changes in growth and changes in productivity.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2014-05-06
    Description: Ecology, Ahead of Print. Dispersal affects processes as diverse as habitat selection, population growth and gene flow. Inference about dispersal and its variation is thus crucial for assessing population and evolutionary dynamics. Two approaches are generally used to estimate dispersal in free-ranging animals. First, multisite capture-recapture models estimate movement rates among sites while accounting for survival and detection probabilities. This approach is however limited in the number of sites that can be considered. Second, diffusion models estimate movements within discrete habitat using a diffusion coefficient resulting in a continuous processing of space. However, this approach has been rarely used because of its mathematical and implementation complexity. Here, we develop a multievent capture-recapture approach that circumvents the issue of too many sites while being relatively simple to be implemented in existing software. Moreover, this new approach allows quantifying memory effects whereby the decision of dispersing or not on a given year impacts on the survival or dispersal likelihood of the following year. We illustrate our approach using a long-term dataset on the breeding ecology of a declining passerine in southern Québec, Canada, the Tree swallow (Tachycineta bicolor).
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2014-05-06
    Description: Ecology, Ahead of Print. Fungal plant pathogens are common in natural communities where they affect plant physiology, plant survival and biomass production. Conversely, pathogen transmission and infection may be regulated by plant-community characteristics such as plant-species diversity and functional composition that favor pathogen diversity through increases in host diversity while simultaneously reducing pathogen infection via increased variability in host density and spatial heterogeneity. Therefore, a comprehensive understanding of multi-host-multi-pathogen interactions is of high significance in the context of biodiversity-ecosystem functioning. We investigated the relationship between plant diversity and aboveground obligate parasitic fungal pathogen ("pathogens" hereafter) diversity and infection in grasslands of a long-term, large-scale biodiversity experiment with varying plant-species (1-60 species) and plant functional group diversity (1-4 groups). To estimate pathogen infection of the plant communities, we visually assessed pathogen-group presence (i.e., rusts, powdery mildews, downy mildews, smuts, and leaf-spot diseases) and overall infection levels (combining incidence and severity of each pathogen group) in 82 experimental plots on all aboveground organs of all plant species per plot during four surveys in 2006. Pathogen diversity, assessed as the cumulative number of pathogen groups on all plant species per plot, increased log-linearly with plant-species diversity. However, pathogen incidence and severity and hence overall infection decreased with increasing plant-species diversity. In addition, co-infection of plant individuals by two or more pathogen groups was less likely with increasing plant-community diversity. We conclude that plant-community diversity promotes pathogen-community diversity while at the same time reducing pathogen infection-levels of plant individuals.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2014-05-06
    Description: Ecology, Ahead of Print. We tested the effect of leaf-tying caterpillars, native ecosystem engineers, on the abundance and host feeding of an invasive insect, the Asiatic oak weevil, Cyrtepistomus castaneus (Roelofs). Leaf quality was previously thought to be the sole factor determining host use by C. castaneus, but adult weevils congregate in leaf ties made by lepidopteran larvae (caterpillars). Adult weevil abundance was naturally higher on Quercus alba and Q. velutina compared to four other tree species tested (Acer rubrum, Carya ovata, Cornus florida, and Sassafras albidum). These differences were associated with more natural leaf ties on the two Quercus species. In the laboratory, weevils fed on all six species but again preferred Q. alba and Q. velutina. When artificial ties were added to all six tree species, controlling for differences in leaf tie density, adult weevil density increased on all six tree species, damage increased on all species but A. rubrum, and host ranking changed based on both abundance and damage. We conclude that leaf ties increase the local abundance of C. castaneus adults and their feeding. Thus, these native leaf-tying caterpillars engender the success of an invasive species via structural modification of potential host plants, the first described example of this phenomenon.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2014-05-06
    Description: Ecology, Ahead of Print. The rarity of symbiotic nitrogen (N)-fixing trees in higher-latitude compared to lower-latitude forests is paradoxical because higher-latitude soils are relatively N poor. Using national-scale forest inventories from the U.S.A. and Mexico, we show that the latitudinal abundance distribution of N-fixing trees (more than 10 times less abundant poleward of 35°) coincides with a latitudinal transition in symbiotic N fixation type: rhizobial N-fixing trees (which are typically "facultative," regulating fixation to meet nutritional demand) dominate equatorward of 35°, whereas actinorhizal N-fixing trees (typically "obligate," maintaining fixation regardless of soil nutrition) dominate to the north. We then use theoretical and statistical models to show that a latitudinal shift in N fixation strategy (facultative vs. obligate) near 35° can explain the observed change in N-fixing tree abundance, even if N availability is lower at higher latitudes, because facultative fixation leads to much higher landscape-scale N-fixing tree abundance than obligate fixation.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2014-05-06
    Description: Ecology, Ahead of Print. The spatial structure of ecological communities, including those of bacteria, is often influenced by species sorting by contemporary environmental conditions. Moreover, historical processes, i.e. ecological and evolutionary events that have occurred at some point in the past, such as dispersal limitation, drift, priority effects or selection by past environmental conditions, can be important, but are generally much less investigated. Here we conducted a field study using 16 rock pools where we specifically compared the importance of past versus contemporary environmental conditions for bacterial community structure, by correlating present differences in bacterial community composition among pools to environmental conditions measured at the same day as well as to those measured 2, 4, 6, and 8 days earlier. The results proof that selection by past environmental conditions exists, since we could show that bacterial communities are to a greater extent an imprint of past compared to contemporary environmental conditions. We suggest that this is the result of a combination of different mechanisms, including priority effects that cause rapid adaptation to new environmental conditions of taxa that have been initially selected by past environmental conditions, and slower rates of turnover in community composition compared to environmental conditions.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2014-05-06
    Description: Ecology, Ahead of Print. Over the years, several arguments have been proposed to explain the invasibility of a given community based on the properties of the recipient community. Here, I assess whether the balance between native species' phylogenetic and functional variability determines vulnerability to invasion. I explored this hypothesis using a consensus phylogenetic tree and a database of leaf, height and seed traits of alien and native species co-occurring over 83 sites worldwide. An analysis of contrasts between aliens and natives indicates that aliens are as phylogenetically close to the incumbent native community as natives are among themselves (aliens are nested within the native community phylogeny), but functionally distinct to the native community (aliens are more functionally distant to the community of native taxa than natives are among themselves). These contrasting trends are consistent for different comparison criteria (comparisons to all natives or to the nearest native) and comparisons both within and across communities, habitats and continents. Furthermore, aliens are more functionally divergent than the native community and the closest native relative in both phylogenetically poor and rich communities. The phylogenetic similarity and functional distinctiveness of aliens with respect to the incumbent native community may explain why certain species succeed in some communities and not others. This is a step forward in resolving the long-standing debate on the role diversity-both phylogenetic and functional-plays in determining the success of introduced plants.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2014-05-06
    Description: Ecology, Ahead of Print. Determining the distribution of population extinction times is a fundamental problem in theoretical population biology. Particularly, the tail properties, patterns in the probability of long-term persistence, have not been studied. Further, until now there have been no experimental or observational data sets with which to empirically test the "rare event" predictions of the standard stochastic theory of extinction, which holds that extinction times should be exponentially distributed. I performed an experimental study of extinction in a large number of replicate (n = 1, 076) laboratory populations of the waterflea Daphnia pulicaria. Observed extinction time ranged from 1 to 1,239 days. Statistical models strongly supported the hypothesis of a power law distribution over the exponential distribution and other alternatives. This pattern contradicts the notion that population extinction time has a characteristic time scale, questioning its ubiquitous use in theoretical ecology. It is also a rare instance of a data set that exhibits power law scaling under appropriate statistical criteria.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2014-05-06
    Description: Ecology, Volume 95, Issue 4, Page 1055-1064, April 2014. Although the influence of positive interactions on plant and sessile communities has been well documented, surprisingly little is known about their role in structuring terrestrial animal communities. We evaluated beneficial interactions between two distantly related herbivore taxa, large vertebrate grazers (sheep) and smaller insect grazers (grasshoppers), using a set of field experiments in eastern Eurasian steppe of China. Grazing by large herbivores caused significantly higher grasshopper density, and this pattern persisted until the end of the experiment. Grasshoppers, in turn, increased the foraging time of larger herbivores, but such response occurred only during the peak of growing season (August). These reciprocal interactions were driven by differential herbivore foraging preferences for plant resources; namely, large herbivores preferred Artemisia forbs, whereas grasshoppers preferred Leymus grass. The enhancement of grasshopper density in areas grazed by large herbivores likely resulted from the selective consumption of Artemisia forbs by vertebrate grazers, which may potentially improve the host finding of grasshoppers. Likewise, grasshoppers appeared to benefit large herbivores by decreasing the cover and density of the dominant grass Leymus chinensis, which hampers large herbivores' access to palatable forbs. Moreover, we found that large herbivores grazing alone may significantly decrease plant diversity, yet grasshoppers appeared to mediate such negative effects when they grazed with large herbivores. Our results suggest that the positive, reciprocal interactions in terrestrial herbivore communities may be more prevalent and complex than previously thought.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2014-05-06
    Description: Ecology, Ahead of Print. Since proposed two decades ago, the stress-gradient hypothesis (SGH) suggesting that species interactions shift from competition to facilitation with stress has been widely examined. Despite broad support across species and ecosystems, ecologists debate whether the SGH applies to extreme environments, arguing that species interactions switch to competition or collapse under extreme stress. Here we show that facilitation often expands distributions on species borders. SGH exceptions occur when weak stress gradients or stresses outside of species' niche are examined, multiple stresses co-occur canceling out their effects, temporally dependent effects are involved, or results are improperly analyzed. We suggest that ecologists resolve debates by standardizing key SGH terms, such as fundamental and realized niche, stress gradients vs. environmental gradients, by quantitatively defining extreme stress, and by critically evaluating the functionality of stress gradients. We also suggest that new research examine the breadth and relevance of the SGH. More rigor needs to be applied to SGH tests to identify actual exceptions rather than those due to failures to meet its underlying assumptions so that the general principles of the SGH and its exceptions can be incorporated into ecological theory, conservation strategies and environmental change predictions.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2014-05-06
    Description: Ecology, Volume 95, Issue 4, Page 1065-1074, April 2014. The loss of apex predators is known to have reverberating consequences for ecosystems, but how changes in broader predator assemblages affect vital ecosystem functions and services is largely unknown. Predators and their prey form complex interaction networks, in which predators consume not only herbivores but also other predators. Resolving these interactions will be essential for predicting changes in many important ecosystem functions, such as the control of damaging crop pests. Here, we examine how birds, bats, and arthropods interact to determine herbivorous arthropod abundance and leaf damage in Costa Rican coffee plantations. In an exclosure experiment, we found that birds and bats reduced non-flying arthropod abundance by ∼35% and ∼25%, respectively. In contrast, birds and bats increased the abundance of flying arthropods, probably by consuming spiders. The frequency of this intraguild predation differed between birds and bats, with cascading consequences for coffee shrubs. Excluding birds caused a greater increase in herbivorous arthropod abundance than excluding bats, leading to increased coffee leaf damage. Excluding bats caused an increase in spiders and other predatory arthropods, increasing the ratio of predators to herbivores in the arthropod community. Bats, therefore, did not provide benefits to coffee plants. Leaf damage on coffee was low, and probably did not affect coffee yields. Bird-mediated control of herbivores, however, may aid coffee shrubs in the long term by preventing pest outbreaks. Regardless, our results demonstrate how complex, cascading interactions between predators and herbivores may impact plants and people.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2014-05-06
    Description: Ecology, Volume 95, Issue 4, Page 1075-1086, April 2014. Although toxic chemicals constitute a major threat for wildlife, their effects have been mainly assessed at the individual level and under laboratory conditions. Predicting population-level responses to pollutants in natural conditions is a major and ultimate task in ecological and ecotoxicological research. The present study aims to estimate the effect of mercury (Hg) levels on future apparent survival rates and breeding performances. We used a long-term data set (∼10 years) and recently developed methodological tools on two closely related Antarctic top predators, the South Polar Skua Catharacta maccormicki from Adélie Land and the Brown Skua C. lonnbergi from the Kerguelen Archipelago. Adult survival rates and breeding probabilities were not affected by Hg levels, but breeding success in the following year decreased with increasing Hg levels. Although South Polar Skuas exhibited much lower Hg levels than Brown Skuas, they suffered from higher Hg-induced breeding failure. This species difference could be attributed to an interaction between Hg and other environmental perturbations, including climate change and a complex cocktail of pollutants. By including Hg-dependent demographic parameters in population models, we showed a weak population decline in response to increasing Hg levels. This demographic decline was more pronounced in South Polar Skuas than in Brown Skuas. Hence, Hg exposure differently affects closely related species. The wide range of environmental perturbations in Antarctic regions could exacerbate the demographic responses to Hg levels. In that respect, we urge future population modeling to take into account the coupled effects of climate change and anthropogenic pollution to estimate population projections.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2014-05-06
    Description: Ecology, Volume 95, Issue 4, Page 1087-1095, April 2014. Powerful multiple regression-based approaches are commonly used to measure the strength of phenotypic selection, which is the statistical association between individual fitness and trait values. Age structure and overlapping generations complicate determinations of individual fitness, contributing to the popularity of alternative methods for measuring natural selection that do not depend upon such measures. The application of regression-based techniques for measuring selection in these situations requires a demographically appropriate, conceptually sound, and observable measure of individual fitness. It has been suggested that Fisher's reproductive value applied to an individual at its birth is such a definition. Here I offer support for this assertion by showing that multiple regression applied to this measure and vital rates (age-specific survival and fertility rates) yields the same selection gradients for vital rates as those inferred from Hamilton's classical results. I discuss how multiple regressions, applied to individual reproductive value at birth, can be used efficiently to estimate measures of phenotypic selection that are problematic for sensitivity analyses. These include nonlinear selection, components of the opportunity for selection, and multilevel selection.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2014-05-06
    Description: Ecology, Volume 95, Issue 4, Page 1096-1103, April 2014. Forest die-off caused by mountain pine beetle (MPB; Dendroctonus ponderosa) is rapidly transforming western North American landscapes. The rapid and widespread death of lodgepole pine (Pinus contorta) will likely have cascading effects on biodiversity. One group particularly prone to such declines associated with MPB are ectomycorrhizal fungi, symbiotic organisms that can depend on pine for their survival, and are critical for stand regeneration. We evaluated the indirect effects of MPB on above- (community composition of epigeous sporocarps) and belowground (hyphal abundance) occurrences of ectomycorrhizal fungi across 11 forest stands. Along a gradient of mortality (0–82% pine killed), macromycete community composition changed; this shift was driven by a decrease in the species richness of ectomycorrhizal fungi. Both the proportion of species that were ectomycorrhizal and hyphal length in the soil declined with increased MPB-caused pine mortality; 70% in stands without MPB attacks. The rapid range expansion of a native insect results not only in the widespread mortality of an ecologically and economically important pine species, but the effect of MPB may also be exacerbated by the concomitant decline of fungi crucial for recovery of these forests.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2014-05-06
    Description: Ecology, Volume 95, Issue 4, Page 1109-1112, April 2014.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2014-05-06
    Description: Ecology, Volume 95, Issue 4, Page 930-939, April 2014. This study examines influences of climate variability on spruce beetle (Dendroctonus rufipennis) outbreak across northwestern Colorado during the period 1650–2011 CE. Periods of broad-scale outbreak reconstructed using documentary records and tree rings were dated to 1843−1860, 1882–1889, 1931–1957, and 2004–2010. Periods of outbreak were compared with seasonal temperature, precipitation, vapor pressure deficit (VPD), the Palmer Drought Severity Index (PDSI), and indices of ocean–atmosphere oscillation that include the El Niño Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), and Atlantic Multidecadal Oscillation (AMO). Classification trees showed that outbreaks can be predicted most successfully from above average annual AMO values and above average summer VPD values, indicators of drought across Colorado. Notably, we find that spruce beetle outbreaks appear to be predicted best by interannual to multidecadal variability in drought, not by temperature alone. This finding may imply that spruce beetle outbreaks are triggered by decreases in host tree defenses, which are hypothesized to occur with drought stress. Given the persistence of the AMO, the shift to a positive AMO phase in the late 1990s is likely to promote continued spruce beetle disturbance.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2014-05-06
    Description: Ecology, Volume 95, Issue 4, Page 1104-1109, April 2014.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2014-05-06
    Description: Ecology, Ahead of Print. Many animal species can carry considerable burdens of ectoparasites, or parasites living on the outside of a host's body. Ectoparasite infestation can decrease host survival, but the magnitude and even direction of survival effects can vary depending on the type of ectoparasite and the nature and duration of the association. When ectoparasites also serve as vectors of pathogens, the effects of ectoparasite infestation on host survival have the potential to alter disease dynamics by regulating host populations and stabilizing transmission. We quantified the impact of larval Ixodes scapularis tick burdens on both within-season and overwinter survival of white-footed mice (Peromyscus leucopus) using a hierarchical Bayesian capture-mark-recapture model. I. scapularis and P. leucopus are, respectively, vectors and competent reservoirs for the causative agents of Lyme disease, anaplasmosis, and babesiosis. Using a dataset of 5,587 individual mouse capture histories over sixteen years, we found little evidence for any effect of tick burdens on either within-season or overwinter mouse survival probabilities. In male mice, tick burdens were positively correlated with within-season survival probabilities. Mean maximum tick burdens were also positively correlated with population rates of change during the concurrent breeding season. The apparent indifference of mice to high tick burdens may contribute to their effectiveness as reservoir hosts for several human zoonotic pathogens.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2014-05-06
    Description: Ecology, Volume 95, Issue 4, Page 1000-1009, April 2014. Abiotic filtering is a major driver of gradients in the structure and functioning of ecosystems from the tropics to the poles. It is thus likely that environmental filtering is an important assembly process at the transition of biogeographical zones where many species occur at their range limits. Shifts in species abundances and association patterns along environmental gradients can be indicative of environmental filtering, which is predicted to be stronger in areas of high abiotic stress and to promote increased similarity of ecological characteristics among co-occurring species. Here we test these hypotheses for scleractinian corals along a broad latitudinal gradient in high-latitude eastern Australia, where corals occur at the margins of their ranges and environmental tolerances. We quantify variation in taxonomic, zoogeographic, and functional patterns combined with null model approaches and demonstrate systematic spatial variation in community structure and significant covariance of species abundance distributions and functional characteristics along the latitudinal gradient. We describe a strong biogeographic transition zone, consistent with patterns expected under abiotic filtering, whereby species are sorted along the latitudinal gradient according to their tolerances for marginal reef conditions. High-latitude coastal reefs are typified by widely distributed, generalist, stress-tolerant coral species with massive and horizontally spreading morphologies and by diminishing influence of tropical taxa at higher latitudes and closer to the mainland. Higher degree of ecological similarity among co-occurring species than expected by chance supports the environmental filtering hypothesis. Among individual traits, the structural traits corallite size and colony morphology were filtered most strongly, suggesting that characteristics linked to energy acquisition and physical stability may be particularly important for coral survival in high-latitude environments. These findings highlight interspecific differences and species interactions with the environment as key drivers of community organization in biogeographic transition zones and support the hypothesis that environmental filters play a stronger role than biotic interactions in structuring ecological communities in areas of high abiotic stress.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2014-05-06
    Description: Ecology, Volume 95, Issue 4, Page 1022-1032, April 2014. The evolutionary pressures that drive long larval planktonic durations in some coastal marine organisms, while allowing direct development in others, have been vigorously debated. We introduce into the argument the asymmetric dispersal of larvae by coastal currents and find that the strength of the currents helps determine which dispersal strategies are evolutionarily stable. In a spatially and temporally uniform coastal ocean of finite extent, direct development is always evolutionarily stable. For passively drifting larvae, long planktonic durations are stable when the ratio of mean to fluctuating currents is small and the rate at which larvae increase in size in the plankton is greater than the mortality rate (both in units of per time). However, larval behavior that reduces downstream larval dispersal for a given time in plankton will be selected for, consistent with widespread observations of behaviors that reduce dispersal of marine larvae. Larvae with long planktonic durations are shown to be favored not for the additional dispersal they allow, but for the additional fecundity that larval feeding in the plankton enables. We analyzed the spatial distribution of larval life histories in a large database of coastal marine benthic invertebrates and documented a link between ocean circulation and the frequency of planktotrophy in the coastal ocean. The spatial variation in the frequency of species with planktotrophic larvae is largely consistent with our theory; increases in mean currents lead to a decrease in the fraction of species with planktotrophic larvae over a broad range of temperatures.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2014-05-06
    Description: Ecology, Volume 95, Issue 4, Page 910-919, April 2014. Reproductive success in flowering plants is influenced by the morphology and timing of reproductive structures as well as the density of surrounding conspecifics. In species with separate male and female flower phases, successful pollen transfer is also expected to vary with the density and ratio of surrounding male and female flowers. Increased density of surrounding flowers may increase pollinator visitation rates, but the densities of male and female flowers will determine the availability of pollen and the strength of competition for pollen receipt. Here we (1) quantify the influence of surrounding plant density on total seasonal fruit and seed production, (2) quantify the influence of sexual neighborhood (surrounding sex ratio and densities of male- and female-phase flowers) on fruit and seed production for individual flowers presented within the season, and (3) compare the influence of plant density on fitness to that of focal plant phenotype, specifically stigma–nectary distance and plant height, in a natural population of the pollen-limited, hummingbird-pollinated hermaphrodite Lobelia cardinalis. These relationships were examined at four spatial scales (10, 20, 50, and 100 cm). By examining temporal and spatial scales we found that (1) total seed production per plant decreased with increasing plant density at the smallest scale but increased with increasing density at all larger scales; (2) at any given time, a female-phase flower benefited from a higher density of surrounding male-phase flowers and a lower density of surrounding female-phase flowers; (3) when sex ratio was explicitly analyzed, a female-phase flower benefited from a lower proportion of surrounding female flowers as well as a lower total flower density; and (4) at the whole-plant level, taller plants were more likely to produce fruit (even when accounting for total number of flowers produced), consistent with pollinator preference for taller floral displays. Our results suggest that the local density of male and female flowers (and surrounding sex ratio) influences successful pollen transfer, implying that the local floral environment may shape how attraction traits like plant height are related to fitness.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2014-03-21
    Description: Ecology, Volume 0, Issue 0, Ahead of Print. We manipulated food inputs among patches within experimental streams to determine how variation in foraging behavior influenced demographic and phenotypic responses of juvenile steelhead trout (Oncorhynchus mykiss) to the spatial predictability of food resources. Demographic responses included compensatory adjustments in fish abundance, mean fish size, and size inequality. These responses paralleled shifts in individual foraging behavior, which increased the strength of exploitative competition relative to interference competition in streams with lower spatial predictability of food resources. Variation in the spatial predictability of food resources also favored different physiological phenotypes, as inferred from selection on an index of standard metabolic rate (SMR) based on fish otolith size. We observed positive directional selection on SMR in streams with spatially predictable food resources, disruptive selection for SMR at intermediate levels of spatial predictability, and negative directional selection for SMR in streams with the lowest level of spatial predictability of food resources. Thus, variation in the spatial predictability of food resources resulted in changes in individual behavior, modes of population regulation, and produced physiologically divergent cohorts of stream salmonids.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2014-03-21
    Description: Ecology, Volume 0, Issue 0, Ahead of Print. Invasive plants often experience rapid changes in biological interactions by escaping from their original herbivores at their new habitats, and sometimes reassociating with those herbivores afterwards. However, little is known about whether the temporal changes in herbivorous impact work as a selective agent for defensive traits of invaded plants. Solidago altissima (goldenrod) is a North American perennial, which has widely invaded abandoned fields in Japan. Recently, an herbivorous insect Corythucha marmorata (lace bug), an exotic insect also from North America, which was first recorded in 2000 in Japan, has been expanding its habitat on S. altissima populations in Japan. In this study, we investigated whether the invasion of C. marmorata had a selective impact on the defensive traits of S. altissima, by conducting a field survey, a common garden experiment and microsatellite analysis. We compared quantitative genetic differentiation of traits (resistance, growth, and reproduction) and neutral molecular differentiation among 16 populations of S. altissima populations with different establishment years of C. marmorata. The common garden experiment, in which plants were grown in a greenhouse and treated to either C. marmorata herbivory or no herbivory, revealed the presence of higher resistance, sexual reproduction and asexual (rhizome) reproduction in populations subjected to a longer history of C. marmorata pressure. Such phenotypic variability among establishment years of lace bugs was likely driven by natural selection rather than stochastic events such as genetic drift and founder effects. In addition, when plants were exposed to lace bug herbivory, resistance had a positive relationship with sexual and asexual reproduction, although no relationship was found when plants were free from herbivory. These findings suggest that defensive traits in S. altissima have evolved locally in the last decade in response to the selective pressure of C. marmorata.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2014-03-20
    Description: Ecology, Volume 0, Issue 0, Ahead of Print. Species exist within communities of other interacting species, so an exogenous force that directly affects one species can indirectly affect all other members of the community. In the case of climate change, many species may be affected directly and subsequently initiate numerous indirect effects that propagate throughout the community. Therefore, the net effect of climate change on any one species is a function of the direct and indirect effects. We investigated the direct and indirect effects of climate warming on corn leaf aphids, a pest of corn and other grasses, by performing an experimental manipulation of temperature, predators, and two common aphid-tending ants. Although warming had a positive direct effect on aphid population growth rate, warming reduced aphid abundance when ants and predators were present. This occurred because winter ants, which aggressively defend aphids from predators under control temperatures, were less aggressive towards predators and less abundant when temperatures were increased. In contrast, warming increased the abundance of cornfield ants, but they did not protect aphids from predators with the same vigor as winter ants. Thus, warming broke down the ant-aphid mutualism and counter-intuitively reduced the abundance of this agricultural pest.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2014-04-26
    Description: Ecology, Volume 0, Issue 0, Ahead of Print. Climate gradient-focused ecological research can provide a foundation for better understanding critical ecological transition points and nonlinear climate-ecological relationships, which is information that can be used to better understand, predict, and manage ecological responses to climate change. In this study, we examined the influence of freshwater availability upon the coverage of foundation plant species in coastal wetlands along a northwestern Gulf of Mexico rainfall gradient. Our research addresses the following three questions: (1) what are the region-scale relationships between measures of freshwater availability (e.g., rainfall, aridity, freshwater inflow, salinity) and the relative abundance of foundation plant species in tidal wetlands; (2) How vulnerable are foundation plant species in tidal wetlands to future changes in freshwater availability; and (3) What is the potential future relative abundance of tidal wetland foundation plant species under alternative climate change scenarios? We developed simple freshwater availability-based models to predict the relative abundance (i.e., coverage) of tidal wetland foundation plant species using climate data (1970-2000), estuarine freshwater inflow-focused data, and coastal wetland habitat data. Our results identify regional ecological thresholds and nonlinear relationships between measures of freshwater availability and the relative abundance of foundation plant species in tidal wetlands. In drier coastal zones, relatively small changes in rainfall could produce comparatively large landscape-scale changes in foundation plant species abundance which would affect some ecosystem good and services. Whereas a drier future would result in a decrease in the coverage of foundation plant species, a wetter future would result in an increase in foundation plant species coverage. In many ways, the freshwater-dependent coastal wetland ecological transitions we observed are analogous to those present in dryland terrestrial ecosystems.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2014-04-26
    Description: Ecology, Volume 0, Issue 0, Ahead of Print. Imbalances in phosphorus (P) intake relative to demand negatively affect animal growth, but their consequences are less understood for vertebrates, in which bone represents a significant and potentially flexible pool of P. Flexibility in body-P content could buffer vertebrates from the effects of imbalances between P intake and demand, reducing the likelihood of a sharp stoichiometric "knife-edge" in the relationship between growth rate and diet-P level. We conducted a meta-analysis of published aquaculture experiments that tested effects of diet %P on fish growth rate (49 studies, 28 species) and body-P content (27 of the studies in the main data set, 20 species). Our meta-analysis revealed significant P limitation of growth, as well as significant negative effects of excess P on growth rate. Diet-P thresholds for these effects occurred at ecologically relevant levels (mean ± SD optimal diet-P of 1.2 ± 0.45% under experimental conditions of high ration). Finally, the analysis also suggested a pattern of relatively shallow relationships between growth rate and diet-P level, coupled with surprisingly flexible body-P content in fishes. This result is consistent with fish using flexible body-P content (presumably mediated through bone P) to buffer imbalances between P intake and demand. Together, our results provide evidence for a relatively "dull" stoichiometric "knife-edge" in fishes, driven in part by flexible body-P content.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2014-04-26
    Description: Ecology, Volume 0, Issue 0, Ahead of Print. Global climate change is altering the breeding phenology of many organisms, and one reported consequence of warmer average temperatures is earlier breeding times in migratory songbirds of north temperate latitudes. Less studied are the potential interactions between earlier breeding and social behavior in colonial species. We investigated how breeding time, as measured by colony initiation dates across the entire summer, in cliff swallows (Petrochelidon pyrrhonota) of southwestern Nebraska changed over a 30-year period and could be predicted by climatic variables, year, and colony size. Mean colony initiation date became earlier over the study, with variation best predicted by extent of drought severity on the breeding grounds: colonies initiated earlier in warmer and drier years. Colony initiation dates were more asynchronous across the population in cooler and wetter years. There was no effect of climatic conditions during the non-breeding season. Larger colonies started earlier in the year than smaller ones, likely because of the cost of ectoparasitism and the benefit of social foraging, both of which varied with colony size, date, and climatic conditions. The inverse relationship between breeding time and colony size was more pronounced in years with more severe drought. This study is one of the few to show that breeding phenology of a long-distance migrant bird is sensitive primarily to drought severity on the breeding grounds and that climate change can influence social behavior. If climate change exacerbates drought in the future, cliff swallow breeding time will likely become more strongly linked to group size.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2014-04-27
    Description: Ecology, Volume 0, Issue 0, Ahead of Print. Animal contributions to ecosystem productivity via nutrient regeneration are increasingly recognized as significant for ecosystem productivity. The paradigm in coastal upwelling systems, in contrast, is that nutrient supply is extrinsic and sourced from deep water. Here we test for both animal contributions to nitrogen regeneration as well as microbial retention of nitrogen along a gradient of animal abundance in Washington State. Using inferences from the concentration and isotopic composition of nitrogen forms, as well as the stable nitrogen isotopic composition of particulate organic matter, and plant and animal tissue, we find increased ammonium as well as greater stable nitrogen isotope values in these organisms in areas of increased animal abundance. We further test the effect of the nearshore biota by comparing with an immediately adjacent offshore area and find an enriched δ15N value for nitrate and particulate organic matter. Further, an analysis of the dual isotopes of δ15N and the δ18O of nitrate indicate increasing microbial processing in the nearshore. Isoscapes, or the spatial pattern of stable isotopes, revealed that animal and microbial processing of nitrogen leave a consistent signature and are thus a previously overlooked and essential component of nearshore productivity.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2014-04-27
    Description: Ecology, Volume 0, Issue 0, Ahead of Print. Intraguild predation (IGP) is an extreme form of competition that involves a dominant predator (IG predator), a subordinate predator that is also a superior exploitative competitor (IG prey), and their shared prey. Theory predicts three possible equilibria, which parallel increasing resource enrichment: exclusion of the IG predator, stable coexistence, and exclusion of the IG prey. Here, we report on the existence of two concurrent states in a model carnivore system dominated by IGP. Using species occurrence data obtained from randomly distributed remote cameras, we modeled the probabilities of detection and occupancy of the kit fox (Vulpes macrotis) and their IG predator, the coyote (Canis latrans), at White Sands National Monument, New Mexico, using a recently developed conditional two-species occupancy model. Kit foxes persisted in habitats of low resource abundance, which could not support coyotes. Coexistence occurred in adjacent habitats of higher resource enrichment, with coyote occupancy strongly correlated with small mammal abundance. The odds of a coyote being present vs. absent in prey-rich habitats was 332:1 (± 0.006) whereas the odds of a coyote being present vs. absent in prey-poor habitats was 1:4 (± 0.11); thus, coyotes were much more likely to be present in prey-rich habitats. Kit foxes were more frequently photographed in prey-poor habitats avoided by coyotes. The odds of kit foxes being present vs. absent at a site where coyotes were absent was 7.9:1 (± 0.082) which was greater than the odds of kit foxes being present vs. absent at a site where coyotes were present (2.2:1 ± 0.081). These findings indicate that kit foxes avoid coyotes, but that their adaptations to arid conditions enable them to exploit habitats unsuitable for coyotes. Consequently, the primary driver of this spatial separation is the inability of coyotes to use prey-poor habitats, rather than kit fox avoidance of coyotes. Our results reveal the existence of concurrent IGP states within the same ecological community, which is consistent with theoretical predictions, and highlight the power of the conditional two-species occupancy model to illuminate how the abundance of shared prey shapes the competitive dynamic in ecological systems dominated by IGP.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2014-04-27
    Description: Ecology, Volume 0, Issue 0, Ahead of Print. The movements of some long-distance migrants are driven by innate compass headings that they follow on their first migrations (e.g., some birds and insects), whilst the movements of other first time migrants are learnt by following more experienced conspecifics (e.g., baleen whales). However, the overall roles of innate, learnt and social behaviors in driving migration goals in many taxa are poorly understood. To look for evidence of whether migration routes are innate or learnt for sea turtles, here for 42 sites around the World we compare the migration routes of 〉 400 satellite adults of multiple species of sea turtle with c.45,000 Lagrangian hatchling turtle drift scenarios. In so doing, we show that the migration routes of adult turtles are strongly related to hatchling drift patterns, implying that adult migration goals are learnt through their past experiences dispersing with ocean currents. The diverse migration destinations of adults consistently reflected the diversity in sites they would have encountered as drifting hatchlings. Our findings reveal how a simple mechanism, juvenile passive drift, can explain the ontogeny of some of the longest migrations in the animal kingdom and ensure that adults find suitable foraging sites.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2014-04-29
    Description: Ecology, Volume 0, Issue 0, Ahead of Print. Dispersal is one of the most important life-history traits affecting species persistence and evolution and is increasingly relevant for conservation biology as ecosystems become more fragmented. However, movement during different dispersal stages has been difficult to study and remains poorly understood. We analysed movement metrics and patterns of autocorrelation from GPS data for 20 lions over a five year period. We compared movement among different stages of natal dispersal (departure, transience and settlement) in addition to that of territorial adults of both sexes. The movement of lions differed according to dispersal stage, sex, group size and rainfall. As expected, during dispersal lions moved faster and further and in a more directional manner than pre- or post-dispersal. Transient movement was more directional than adult movement, but somewhat surprisingly, was slower with less net displacement than that of territorial males. Interestingly, the effect of group size on movement differed between transient males and territorial males; solitary dispersers moved faster and further than individuals in bigger groups, while territorial males had the opposite trend. Although our sample size is limited, our results suggest a transition from directional movement during transience to random or periodic use of a fixed territory after settlement. In addition, group size may affect the search and settlement strategies of dispersers while seeking a territory in which to settle.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2014-03-20
    Description: Ecology, Volume 0, Issue 0, Ahead of Print. Interactions between plants can have strong effects on community structure and function. Variability in the morphological, developmental, physiological and biochemical traits of plants can influence the outcome of plant interactions and thus have important ecological consequences. However, the ecological ramifications of trait variability in plants are poorly understood and have rarely been tested in the field. We experimentally tested the effects of morphological variation in root architecture of Quercus douglasii trees in the field on interactions between understory plants and community composition. Our results indicate that variability among Q. douglasii tree root systems initiates a striking reversal in the competitive effects of a dominant understory grass species on a less common species. Trees with a deep-rooted morphology facilitated exotic annual grasses and these annual grasses in turn competitively excluded the native perennial bunchgrass, Stipa pulchra. In contrast, Q. douglasii trees with shallow-rooted morphologies directly suppressed the growth of exotic annual grasses and indirectly released S. pulchra individuals from competition with these annual grasses. Morphological variation in the root architecture of Q. douglasii created substantial conditionality in the outcomes of competition among species which enhanced the potential for indirect interactions to sustain coexistence and increase community diversity.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2014-01-27
    Description: Ecology, Volume 0, Issue 0, Ahead of Print. Abstract. Capturing components of the weather which drive environment-animal interactions is a perennial problem in ecology. Identifying biologically significant elements of weather conditions in sensible statistics suitable for analysis of life history variation and population dynamics is central. Meteorological variables such as temperature, precipitation and wind modulate rates of heat loss in animals but analysis of their effects in endothermic species is complicated by the fact that their influence on energy balance in these is not invariably linear even across the thermoneutral range. Rather, the thermal load imposed by a given set of weather conditions is a function of organisms' metabolic requirement which, crucially, may vary spontaneously both seasonally and across different life phases. We propose that the endogenous component of variation in metabolic demand introduces a temporal dimension and that, as consequence, the specific effect of meteorological variables on energy balance, and attendant life history parameters, is a function of the timing of weather events with respect to the organism's metabolic rhythm(s). To test this, we examined how a spontaneous increase in metabolic demand influenced the effect of weather on early development in a large mammal. Specifically, we examined interaction between the exponential rise in the energy requirements of pregnancy and depth of snow, which restricts dams' access to forage, on the body mass of reindeer calves (Rangifer tarandus) at weaning. As expected, we detected a significant temporal component: the specific negative effect of snow on weaning weight was not constant but increased across pregnancy. The life history response was therefore better predicted by interaction between the magnitude and the timing of weather events than by their magnitude alone. To our knowledge this is the first demonstration of the influence of an endogenous metabolic dynamic on the impact of weather on a life history trait in a free-living mammal. Evaluating weather variables with respect to endogenous variation in metabolic demand adds biological realism and is likely to improve understanding of the influence of environmental variation on life history traits in many ecological contexts.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2014-02-22
    Description: Ecology, Volume 0, Issue 0, Ahead of Print. "Enemy release" occurs when invading species suffer from interactions with pathogens, parasites, herbivores, or predators to a lesser degree than native species due to a lack of shared evolutionary history. Here, we provide strong support for the hypothesis that variable thermal sensitivities among a consumer and its resources can generate temperature-dependent enemy release using both a mathematical model and field experiment. We first identify three common scenarios where changes in temperature should alter enemy release based on asymmetric responses among enemies and their resources to changes in temperature: (1) the vital rates of a shared enemy are more sensitive to changes in temperature than its resources, (2) the enemy's thermal maximum for consumption is higher than the resources' maxima for growth, and (3) the invading resource has a higher thermal maximum for growth than its native competitor. Mathematical representations indicated that warming is capable of altering enemy release in each of these three scenarios. We also tested our hypothesis using a mesocosm warming experiment in a system that exhibits variable thermal sensitivities among a predator and their native and non-native prey. We conducted a six-week experiment manipulating the presence of Lepomis sunfish (present, absent) and water temperature (ambient, heated) using the non-native crustacean zooplankter, Daphnia lumholtzi, whose morphological defenses reduce predation from juvenile sunfish relative to native Daphnia pulex. Our results indicate that D. lumholtzi benefited to a greater extent from the presence of Lepomis predators as temperatures increase. Taken together, our model and experiment indicate that changes in environmental temperature may directly influence the success of non-native species, and may assist with forecasting the community consequences of biological invasions in a warming world.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2014-02-27
    Description: Ecology, Volume 0, Issue 0, Ahead of Print. Predicting the effects of climate change on ecological communities requires an understanding of how environmental factors influence both physiological processes and species interactions. Specifically, the net impact of temperature on community structure depends on the relative response of physiological energetic costs (metabolism) and energetic gains (ingestion of resources) that mediate the flow of energy throughout a food web. However, the relative temperature scaling of metabolic and ingestion rates have rarely been measured for multiple species within an ecological assemblage and it is not known how, and to what extent, these relative scaling differences vary among species. To investigate the relative influence of these processes, I measured the temperature scaling of metabolic and ingestion rates for a suite of rocky intertidal species using a multiple regression experimental design. I compared oxygen consumption rates (as a proxy for metabolic rate) and ingestion rates by estimating the temperature scaling parameter of the 'universal temperature dependence' (UTD) model, a theoretical model derived from first principles of biochemical kinetics and allometry. The results show that consumer metabolic rates (energetic costs) tend to be more sensitive to temperature than ingestion rates (energetic gains). Thus, as temperature increases, metabolic rates tend to increase faster relative to ingestion rates, causing the overall energetic efficiencies of these rocky intertidal invertebrates to decline. Metabolic and ingestion rates largely scaled in accordance with the UTD model; however, non-linearity was evident in several cases, particularly at higher temperatures, in which alternative models were more appropriate. There are few studies where multiple rate dependencies are measured on multiple species from the same ecological community. These results indicate that there may be general patterns across species in the temperature scaling of biological rates, with important implications for forecasting temperature effects on ecological communities.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2014-02-27
    Description: Ecology, Volume 0, Issue 0, Ahead of Print. In many cities worldwide, urbanization is leading to the rapid and extensive fragmentation of native vegetation into small and scattered urban remnants. We investigated the effects of fragmentation on plant species richness and abundance in 30 remnant Banksia woodlands in the rapidly expanding city of Perth, located in the south-western Australian global biodiversity hotspot. We considered a comprehensive set of factors characterizing landscape fragmentation dynamics (current and historical remnant area and connectivity, time since isolation, and trajectories of landscape change), disturbance regimes (fire frequency, grazing and intensity of human activities), and local environmental conditions (soil nutrient status and litter depth). We used generalized linear mixed models to determine the interactive effects of time since remnant isolation and remnant area on plant species richness, and structural equation models to disentangle the direct and indirect effects of landscape and local factors on plant species richness and abundance. Fragmentation impacts were most rapid in smaller remnants. Indeed, in the small remnants, native plant species richness was halved in only a few decades after isolation, suggesting an underlying rapid loss of habitat quality. We found that richness and abundance of woody species were higher in historically large remnants and lower in the rural areas, despite these remnants showing greater connectivity. Richness of native herbaceous species declined with time since isolation, mainly in the smaller remnants, and this was associated with altered soil properties. Furthermore, increased litter depth (possibly indicating higher productivity) and increased abundance of non-native herbaceous species in the older and smaller remnants was associated with a decline in the abundance of native herbaceous species. Our study suggests that in rapidly expanding cities, landscape fragmentation can have major and complex effects on remnant vegetation. Yet, these impacts might take several decades to manifest themselves. Hence, understanding the long-term conservation capacity of newly formed remnants, which is key to setting conservation priorities, requires consideration of landscape fragmentation and land-use history. Moreover, the smaller and older remnants may already display changes due to fragmentation, providing clues for urban planning and ecosystem management that help protecting urban remnant plant diversity.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2014-02-08
    Description: Ecology, Volume 0, Issue 0, Ahead of Print. Since proposed two decades ago, the stress-gradient hypothesis (SGH) suggesting that species interactions shift from competition to facilitation with stress has been widely examined. Despite broad support across species and ecosystems, ecologists debate whether the SGH applies to extreme environments, arguing that species interactions switch to competition or collapse under extreme stress. Here we show that facilitation often expands distributions on species borders. SGH exceptions occur when weak stress gradients or stresses outside of species' niche are examined, multiple stresses co-occur canceling out their effects, temporally dependent effects are involved, or results are improperly analyzed. We suggest that ecologists resolve debates by standardizing key SGH terms, such as fundamental and realized niche, stress gradients vs. environmental gradients, by quantitatively defining extreme stress, and by critically evaluating the functionality of stress gradients. We also suggest that new research examine the breadth and relevance of the SGH. More rigor needs to be applied to SGH tests to identify actual exceptions rather than those due to failures to meet its underlying assumptions so that the general principles of the SGH and its exceptions can be incorporated into ecological theory, conservation strategies and environmental change predictions.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...