ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (5,666)
  • Wiley  (5,666)
  • American Association for the Advancement of Science (AAAS)
  • American Association of Petroleum Geologists (AAPG)
  • American Institute of Physics
  • 2015-2019  (3,532)
  • 1985-1989  (1,325)
  • 1955-1959  (809)
  • Ecology  (1,550)
  • 6124
Collection
  • Articles  (5,666)
Publisher
  • Wiley  (5,666)
  • American Association for the Advancement of Science (AAAS)
  • American Association of Petroleum Geologists (AAPG)
  • American Institute of Physics
Years
Year
Topic
  • 1
    Publication Date: 2019
    Description: Abstract Ecotones can increase free‐living species richness, but little is known about how parasites respond to ecotones. Here, we use parasite communities in raccoons (Procyon lotor) to test the hypothesis that parasite communities can be divided into core and satellite species, each with fundamentally different responses to ecotones. We used published parasite surveys to classify parasites as common core or rare satellite species, and then surveyed raccoons in coastal California to examine how proximity to two aquatic ecotones altered parasite communities. Raccoons near ecotones had more satellite and fewer core parasite species. Specifically, the marine ecotone increased parasite diversity by adding satellite species to a persistent core community, whereas the freshwater ecotone shifted the community from core to satellite species without a net change in parasite richness. We hypothesize that increased parasite richness at the marine ecotone resulted from increased diet diversity, but that raccoons were sinks for some parasites. Increased exposure to rare parasites at ecotones has implications for wildlife health and provides insight into observed associations between ecotones and emerging disease.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019
    Description: Abstract A recent paper by Pillai and Gouhier (2019) (PG) in Ecology argues that biodiversity–ecosystem functioning (BEF) effects calculated by the additive partitioning approach introduced by Loreau and Hector (2001) (LH) are flawed and overestimate biodiversity effects. Biodiversity effects are based on the null expectation that the addition of more species has no effect on function and on ‘average' species affect functioning the same in mixture as in monoculture assuming no intra or interspecific density effects on performance. This article is protected by copyright. All rights reserved.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Wiley
    In: Ecology
    Publication Date: 2019
    Description: Ecology, Volume 100, Issue 7, July 2019.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019
    Description: Abstract Local and global measurements of parasite prevalence and abundance are critical for understanding the dynamics that underlie the diversity, distribution, and evolution of infectious diseases. Here we present a dataset of gut helminths found in 1) raccoons throughout their range, based on primary literature from 1925‐ 2017 and 2) raccoons in Santa Barbara County, CA surveyed from 2012‐2015. The range‐wide dataset has 1256 parasite entries from 217 literature sources across three continents and 32 states in the USA. This dataset includes a list of all recorded raccoon gut helminths (n=100) and their presence and prevalence in surveyed raccoon populations. The Santa Barbara dataset includes gut helminth data from 182 raccoons from one Southern California County. In addition to presence and abundance data for 13 parasite species, this dataset includes measurements of 7465 individual raccoon roundworms (Baylisascaris procyonis). For both range‐wide and Santa Barbara datasets, we include information on parasite site of infection in host, sampling method and sample size. We also provide geographic coordinates for infected raccoon populations (range‐wide database) and individuals (Santa Barbara). In the associated metadata, we include sampling methods and summary figures for both the range‐wide and Santa Barbara raccoon gut helminth records. There are no copyright or proprietary restrictions for research and/or teaching purposes. This article is protected by copyright. All rights reserved.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019
    Description: Abstract Species interactions in food webs are usually recognized as dynamic, varying across species, space, and time because of biotic and abiotic drivers. Yet food webs also show emergent properties that appear consistent, such as a skewed frequency distribution of interaction strengths (many weak, few strong). Reconciling these two properties requires an understanding of the variation in pairwise interaction strengths and its underlying mechanisms. We estimated stream sculpin feeding rates in three seasons at nine sites in Oregon to examine variation in trophic interaction strengths both across and within predator–prey pairs. Predator and prey densities, prey body mass, and abiotic factors were considered as putative drivers of within‐pair variation over space and time. We hypothesized that consistently skewed interaction strength distributions could result if individual interaction strengths show relatively little variation, or alternatively, if interaction strengths vary but shift in ways that conserve their overall frequency distribution. Feeding rate distributions remained consistently and positively skewed across all sites and seasons. The mean coefficient of variation in feeding rates within each of 25 focal species pairs across surveys was less than half the mean coefficient of variation seen across species pairs within a survey. The rank order of feeding rates also remained conserved across streams, seasons and individual surveys. On average, feeding rates on each prey taxon nonetheless varied by a hundredfold, with some feeding rates showing more variation in space and others in time. In general, feeding rates increased with prey density and decreased with high stream flows and low water temperatures, although for nearly half of all species pairs, factors other than prey density explained the most variation. Our findings show that although individual interaction strengths exhibit considerable variation in space and time, they can nonetheless remain relatively consistent, and thus predictable, compared to the even larger variation that occurs across species pairs. These results highlight how the ecological scale of inference can strongly shape conclusions about interaction strength consistency and help reconcile how the skewed nature of interaction strength distributions can persist in highly dynamic food webs.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019
    Description: Abstract Occurrence patterns of many sessile species in dynamic landscapes are not in equilibrium due to their slow rates of metapopulation colonization and extinction. Colonization‐extinction data enable the estimation of colonization rates for such species, but collecting the necessary data may require long waiting times between sampling years. Methods for estimating colonization rates of non‐equilibrium metapopulations from single occurrence pattern data have so far relied on additional data on patch ages and on past patch connectivities. We present an approach where metapopulation colonization rates are estimated from occurrence pattern data and from disturbance history data that inform of past patch dynamics and that can be collected together with occurrence pattern data. We estimated parameter values regulating patch and metapopulation dynamics by simulating patch network and metapopulation histories that result in present‐like patch network configurations and metapopulation occurrence patterns. We tested our approach using occurrence pattern data of the epiphytic lichen Lobaria pulmonaria in Fennoscandian forests, and fire scar data that inform of the 400‐year history of fires and host tree dynamics in the same landscapes. The estimated model parameters were similar to estimates obtained using colonization‐extinction data. The projected L. pulmonaria occupancy into the future also agreed with the respective projections that were made using the model estimated from colonization‐extinction data. Our approach accelerates the estimation of metapopulation colonization rates for sessile species that are not in metapopulation equilibrium with the current landscape structure. This article is protected by copyright. All rights reserved.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019
    Description: Abstract The functional trait approach proposes that relating traits of organisms within a community to variation in abiotic and biotic characteristics of their environment will provide insight on the mechanisms of community assembly. As traits at a given trophic level might act as filters for the selection of traits at another trophic level, we hypothesized that traits of consumers and of their resources covary in space. We evaluated complementary predictions about top‐down (negative) and bottom‐up (positive) trait covariation in a detrital food web. Additionally, we tested if positive trait covariation was better explained by the Resource Concentration Hypothesis (i.e. most commonly represented trait values attract abundant consumers) or the Resource Specialization Hypothesis (i.e. resource diversity increases niche availability for the consumers). Macroarthopods were collected with pitfall traps over two summers in three forested sites of southern Québec in 110 plots that varied in tree species composition. Six feeding traits of consumers (decomposers and predators) and six palatability traits of their resources (leaf litter and prey) were matched to assess spatial covariation. Trait‐matches included consumer biting force/ resource toughness, decomposer mandibular gape/ leaf thickness, predator/ prey body size ratio, etc. Our results demonstrate for the first time a covariation between feeding traits of detritivores and palatability traits of leaf litter (31‐34%), and between feeding traits of litter‐dwelling predators and palatability traits of potential prey (38‐44%). The observed positive covariation supports both the Resource Concentration Hypothesis and Resource Specialization Hypothesis. Spatial covariation of consumer and resource traits provides a new tool to partially predict the structure of the detrital food web. Nonetheless, top‐down regulation remains difficult to confirm. Further research on top‐down processes will be undoubtedly necessary to refine our capacity to interpret the effect of biotic interactions on co‐distribution. This article is protected by copyright. All rights reserved.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Wiley
    In: Ecology
    Publication Date: 2019
    Description: Ecology, Volume 100, Issue 8, August 2019.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019
    Description: Abstract Inducible defense is a common form of phenotypic plasticity, and inducibility (change in defense after herbivore‐attack) has long been predicted to trade off with constitutive (or baseline) defense to manage resource allocation. Although such trade‐offs likely constrain evolution within species, the extent to which they influence divergence among species is unresolved. We studied cardenolide toxins among genetic families in eight North American Asclepias species, spanning the full range of defense in the genus. Using common environment experiments and chemical assays, we report a consistent trade‐off (negative genetic correlation) between concentrations of constitutive cardenolides and their inducibility within each species. However, no trade‐off was found in a phylogenetic analysis across species. To investigate factors driving differences in defense allocation among species we used latitude as a proxy for growing season and herbivore pressure and found that divergence into lower latitudes resulted in evolution of higher cardenolides overall. Next we used an enzymatic assay of the cellular target of cardenolides (sodium‐potassium ATPase) and confirm that higher cardenolides resulted in stronger toxicity to a sensitive species, but not to specialized monarch butterflies. Thus, plant speciation into biogeographic regions with alternative resources or pest pressure resulted in the macroevolution of cardenolide defense, especially against unspecialized herbivores. Nonetheless, trade‐offs persist in the extent to which this defense is allocated constitutively or is inducible among genotypes within each species. This article is protected by copyright. All rights reserved.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019
    Description: Abstract As wildlife populations continue to decline worldwide, human‐caused mortality of terrestrial vertebrates is of increasing importance. However, there is a limited understanding of how direct anthropogenic mortality compares in magnitude to natural mortality. Here we present CauseSpec, a database of global terrestrial vertebrate cause‐specific mortality. We compiled studies that used telemetry to monitor terrestrial vertebrates and determine cause of death. We distinguished between anthropogenic and natural mortality and also documented the specific mortality source where possible (e.g. harvest, vehicle collision, predation, and starvation). This database consists of 1134 studies that collectively monitored the fates of 123,747 individual animals. From this, there are 43,998 deaths of known cause among 307 species. It is an updated version of the data set used in Hill et al. (2019) and will continue to be updated in the future. These data can be combined with data on species morphology and behavior to examine how species attributes influence susceptibility to various mortality sources. Our database also includes the geographic coordinates of the study site so that site attributes can be included in analyses. We also distinguish between adults and juveniles where possible, allowing for age‐specific mortality analyses. Study start and end dates are available as well so that analyses of temporal changes in mortality are possible. Lastly, users can select all cause‐specific mortality studies from a single species to perform a species‐level analysis. The data set will allow users to circumvent a literature search, facilitating more rapid publication of large‐scale vertebrate mortality studies and elucidating mortality patterns of terrestrial vertebrates around the world. There are no copyright or proprietary restrictions. We would like researchers to cite this paper if the associated database is used to find studies of interest for analysis. This article is protected by copyright. All rights reserved.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2019
    Description: Abstract In 2014 a DNA‐based phylogenetic study confirming the paraphyly of the grass subtribe Sporobolinae proposed the creation of a large monophyletic genus Sporobolus, including (among others) species previously included in the genera Spartina, Calamovilfa, and Sporobolus. Spartina species have contributed substantially (and continue contributing) to our knowledge in multiple disciplines, including ecology, evolutionary biology, molecular biology, biogeography, experimental ecology, biological invasions, environmental management, restoration ecology, history, economics, and sociology. There is no rationale so compelling to subsume the name Spartina as a subgenus that could rival the striking, global iconic history and use of the name Spartina for over 200 years. We do not agree with the subjective arguments underlying the proposal to change Spartina to Sporobolus. We understand the importance of both the objective phylogenetic insights and of the subjective formalized nomenclature and hope that by opening this debate we will encourage positive feedback that will strengthen taxonomic decisions with an interdisciplinary perspective. We consider that the strongly distinct, monophyletic clade Spartina should simply and efficiently be treated as the genus Spartina. This article is protected by copyright. All rights reserved.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2019
    Description: Abstract Habitat destruction is the single greatest anthropogenic threat to biodiversity. Decades of research on this issue have led to the accumulation of hundreds of data sets comparing species assemblages in larger, intact, habitats to smaller, more fragmented, habitats. Despite this, little synthesis or consensus has been achieved, primarily because of non‐standardized sampling methodology and analyses of notoriously scale‐dependent response variables (i.e., species richness). To be able to compare and contrast the results of habitat fragmentation on species' assemblages, it is necessary to have the underlying data on species abundances and sampling intensity, so that standardization can be achieved. To accomplish this, we systematically searched the literature for studies where abundances of species in assemblages (of any taxa) were sampled from many habitat patches that varied in size. From these, we extracted data from several studies, and contacted authors of studies where appropriate data were collected but not published, giving us 117 studies that compared species assemblages among habitat fragments that varied in area. Less than half (41) of studies came from tropical forests of Central and South America, but there were many studies from temperate forests and grasslands from all continents except Antarctica. Fifty‐four of the studies were on invertebrates (mostly insects), but there were several studies on plants (15), birds (16), mammals (19), and reptiles and amphibians (13). We also collected qualitative information on the length of time since fragmentation. With data on total and relative abundances (and identities) of species, sampling effort, and affiliated meta‐data about the study sites, these data can be used to more definitively test hypotheses about the role of habitat fragmentation in altering patterns of biodiversity. There are no copyright restrictions. Please cite this data paper and the associated Dryad data set if the data are used in publications. This article is protected by copyright. All rights reserved.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2019
    Description: Abstract Forest ecosystems in eastern North America have been in ux for the last several thousand years, well before Euro‐American land clearance and the 20th‐century onset of anthropogenic climate change. However, the magnitude and uncertainty of prehistoric vegetation change have been difficult to quantify because of the multiple ecological, dispersal, and sedimentary processes that govern the relationship between forest composition and fossil pollen assemblages. Here we extend STEPPS, a Bayesian hierarchical spatio‐temporal pollen‐vegetation model, to estimate changes in forest composition in the upper Midwestern United States from about 2,100 to 300 years ago. Using this approach, we find evidence for large changes in the relative abundance of some species, and significant changes in community composition. However, these changes took place against a regional background of changes that were small in magnitude or not statistically significant, suggesting complexity in the spatio‐temporal patterns of forest dynamics. The single largest change is the infilling of Tsuga canadensis in northern Wisconsin over the past 2000 years. Despite range in‐filling, the range limit of T. canadensis was largely stable, with modest expansion westward. The regional ecotone between temperate hardwood forests and northern mixed hardwood/conifer forests shifted southwestward by 15‐20 km in Minnesota and northwestern Wisconsin. Fraxinus, Ulmus, and other mesic hardwoods expanded in the Big Woods region of southern Minnesota. The increasing density of paleoecological data networks and advances in statistical modeling approaches now enables the confident detection of subtle but significant changes in forest composition over the last 2,000 years. This article is protected by copyright. All rights reserved.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2019
    Description: Abstract We propose an operational definition of soil “fertility” that is applicable to plant community ecology and develop a method of measuring and quantifying it, using structural equations modeling, that is generalizable to soils in different regions whose fertility has different causes. To do this, we used structural equation modeling (SEM). The measurement submodel predicts the latent “generalized fertility,” FG, of a soil using four indicator variables: the relative growth rates of Festuca rubra, Trifolium pratense, Triticum aestivum, and Arabidopsis thaliana. The direct causes of FG in this study were the supply rates of NO3−, P, and K as well as three indirect causes consisting of three physical soil properties, but these can change between studies. The model was calibrated using 76 grassland soils from southern Quebec, Canada and independently tested using aboveground net primary productivity (NPP) of the natural vegetation over two growing seasons. Both the measurement submodel and the full SEM fit the data well. The FG values predicted 51% of the variance in NPP and were a better predictor than any other single variable, including the actual nutrient flux rates. Furthermore, this model can be applied to grassland soils anywhere because of its modular nature in which the causes and effects of soil fertility are clearly separated.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2019
    Description: Abstract The seasonal cycle varies geographically and organisms are under selection to express life cycles that optimally exploit their spatiotemporal habitats. In insects, this often means producing an annual number of generations (voltinism) appropriate to the local season length. Variation in voltinism may arise from variation in environmental factors (e.g., temperature or photoperiod) acting on a single reaction norm shared across populations, but it may also result from local adaptation of reaction norms. However, such local adaptation is poorly explored at short geographic distances, especially within latitudes. Using a combination of common‐garden rearing and life cycle modeling, we have investigated the causal factors behind voltinism variation in Swedish populations of the butterfly Pararge aegeria, focusing on a set of populations that lie within a single degree of latitude but nonetheless differ in season length and voltinism. Despite considerable differences in ambient temperature between populations, modeling suggested that the key determinant of local voltinism was in fact interpopulation differences in photoperiodic response. These include differences in the induction thresholds for winter diapause, as well as differences in photoperiodic regulation of larval development, a widespread but poorly studied phenomenon. Our results demonstrate previously neglected ways that photoperiodism may mediate insect phenological responses to temperature, and emphasize the importance of local adaptation in shaping phenological patterns in general, as well as for predicting the responses of populations to changes in climate.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2019
    Description: Ecology, Volume 100, Issue 2, February 2019.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2019
    Description: Ecology, Volume 100, Issue 1, January 2019.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2019
    Description: Ecology, Volume 100, Issue 2, February 2019.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2019
    Description: Ecology, Volume 100, Issue 1, January 2019.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2019
    Description: Abstract The two dominant approaches for the analysis of species–habitat associations in animals have been shown to reach divergent conclusions. Models fitted from the viewpoint of an individual (step selection functions), once scaled up, do not agree with models fitted from a population viewpoint (resource selection functions [RSFs]). We explain this fundamental incompatibility, and propose a solution by introducing to the animal movement field a novel use for the well‐known family of Markov chain Monte Carlo (MCMC) algorithms. By design, the step selection rules of MCMC lead to a steady‐state distribution that coincides with a given underlying function: the target distribution. We therefore propose an analogy between the movements of an animal and the movements of an MCMC sampler, to guarantee convergence of the step selection rules to the parameters underlying the population's utilization distribution. We introduce a rejection‐free MCMC algorithm, the local Gibbs sampler, that better resembles real animal movement, and discuss the wide range of biological assumptions that it can accommodate. We illustrate our method with simulations on a known utilization distribution, and show theoretically and empirically that locations simulated from the local Gibbs sampler give rise to the correct RSF. Using simulated data, we demonstrate how this framework can be used to estimate resource selection and movement parameters.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2019
    Description: Abstract In ecological systems, extremes can happen in time, such as population crashes, or in space, such as rapid range contractions. However, current methods for joint inference about temporal and spatial dynamics (e.g., spatiotemporal modeling with Gaussian random fields) may perform poorly when underlying processes include extreme events. Here we introduce a model that allows for extremes to occur simultaneously in time and space. Our model is a Bayesian predictive‐process GLMM (generalized linear mixed‐effects model) that uses a multivariate‐t distribution to describe spatial random effects. The approach is easily implemented with our flexible R package glmmfields. First, using simulated data, we demonstrate the ability to recapture spatiotemporal extremes, and explore the consequences of fitting models that ignore such extremes. Second, we predict tree mortality from mountain pine beetle (Dendroctonus ponderosae) outbreaks in the U.S. Pacific Northwest over the last 16 yr. We show that our approach provides more accurate and precise predictions compared to traditional spatiotemporal models when extremes are present. Our R package makes these models accessible to a wide range of ecologists and scientists in other disciplines interested in fitting spatiotemporal GLMMs, with and without extremes.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2019
    Description: Abstract Primates play an important role in ecosystem functioning and offer critical insights into human evolution, biology, behavior, and emerging infectious diseases. There are 26 primate species in the Atlantic Forests of South America, 19 of them endemic. We compiled a dataset of 5,472 georeferenced locations of 26 native and 1 introduced primate species, as hybrids in the genera Callithrix and Alouatta. The dataset includes 700 primate communities, 8,121 single species occurrences and 714 estimates of primate population sizes, covering most natural forest types of the tropical and subtropical Atlantic Forest of Brazil, Paraguay and Argentina and some other biomes. On average, primate communities of the Atlantic Forest harbor 2 ± 1 species (range = 1–6). However, about 40% of primate communities contain only one species. Alouatta guariba (N = 2,188 records) and Sapajus nigritus (N = 1,127) were the species with the most records. Callicebus barbarabrownae (N = 35), Leontopithecus caissara (N = 38), and Sapajus libidinosus (N = 41) were the species with the least records. Recorded primate densities varied from 0.004 individuals/km2 (Alouatta guariba at Fragmento do Bugre, Paraná, Brazil) to 400 individuals/km2 (Alouatta caraya in Santiago, Rio Grande do Sul, Brazil). Our dataset reflects disparity between the numerous primate census conducted in the Atlantic Forest, in contrast to the scarcity of estimates of population sizes and densities. With these data, researchers can develop different macroecological and regional level studies, focusing on communities, populations, species co‐occurrence and distribution patterns. Moreover, the data can also be used to assess the consequences of fragmentation, defaunation, and disease outbreaks on different ecological processes, such as trophic cascades, species invasion or extinction, and community dynamics. There are no copyright restrictions. Please cite this Data Paper when the data are used in publications. We also request that researchers and teachers inform us of how they are using the data.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2019
    Description: Ecology, Volume 100, Issue 2, February 2019.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2019
    Description: Ecology, Volume 100, Issue 1, January 2019.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2019
    Description: Ecology, EarlyView.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2019
    Description: Abstract Moonlight mediates trophic interactions and shapes the evolution of life‐history strategies for nocturnal organisms. Reproductive cycles and important life‐history transitions for many marine organisms coincide with moon phases, but few studies consider the effects of moonlight on pelagic larvae at sea. We evaluated effects of moonlight on growth of pelagic larvae of a temperate reef fish using “master chronologies” of larval growth constructed from age‐independent daily increment widths recorded in otoliths of 321 individuals. We found that daily growth rates of fish larvae were enhanced by lunar illumination after controlling for the positive influence of temperature and the negative influence of cloud cover. Collectively, these results indicate that moonlight enhances growth rates of larval fish. This pattern is likely the result of moonlight's combined effects on foraging efficiency and suppression of diel migrations of mesopelagic predators, and has the potential to drive evolution of marine life histories.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2019
    Description: Abstract Large‐scale observational data from citizen science efforts are becoming increasingly common in ecology, and researchers often choose between these and data from intensive local‐scale studies for their analyses. This choice has potential trade‐offs related to spatial scale, observer variance, and interannual variability. Here we explored this issue with phenology by comparing models built using data from the large‐scale, citizen science USA National Phenology Network (USA‐NPN) effort with models built using data from more intensive studies at Long Term Ecological Research (LTER) sites. We built statistical and process based phenology models for species common to each data set. From these models, we compared parameter estimates, estimates of phenological events, and out‐of‐sample errors between models derived from both USA‐NPN and LTER data. We found that model parameter estimates for the same species were most similar between the two data sets when using simple models, but parameter estimates varied widely as model complexity increased. Despite this, estimates for the date of phenological events and out‐of‐sample errors were similar, regardless of the model chosen. Predictions for USA‐NPN data had the lowest error when using models built from the USA‐NPN data, while LTER predictions were best made using LTER‐derived models, confirming that models perform best when applied at the same scale they were built. This difference in the cross‐scale model comparison is likely due to variation in phenological requirements within species. Models using the USA‐NPN data set can integrate parameters over a large spatial scale while those using an LTER data set can only estimate parameters for a single location. Accordingly, the choice of data set depends on the research question. Inferences about species‐specific phenological requirements are best made with LTER data, and if USA‐NPN or similar data are all that is available, then analyses should be limited to simple models. Large‐scale predictive modeling is best done with the larger‐scale USA‐NPN data, which has high spatial representation and a large regional species pool. LTER data sets, on the other hand, have high site fidelity and thus characterize inter‐annual variability extremely well. Future research aimed at forecasting phenology events for particular species over larger scales should develop models that integrate the strengths of both data sets.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2019
    Description: Abstract In semiarid regions, vegetation constraints on plant growth responses to precipitation (PPT) are hypothesized to place an upper limit on net primary productivity (NPP), leading to predictions of future shifts from currently defined linear to saturating NPP–PPT relationships as increases in both dry and wet PPT extremes occur. We experimentally tested this prediction by imposing a replicated gradient of growing season PPT (GSP, n = 11 levels, n = 4 replicates), ranging from the driest to wettest conditions in the 75‐yr climate record, within a semiarid grassland. We focused on responses of two key ecosystem processes: aboveground NPP (ANPP) and soil respiration (Rs). ANPP and Rs both exhibited greater relative responses to wet vs. dry GSP extremes, with a linear relationship consistently best explaining the response of both processes to GSP. However, this responsiveness to GSP peaked at moderate levels of extremity for both processes, and declined at the most extreme GSP levels, suggesting that greater sensitivity of ANPP and Rs to wet vs. dry conditions may diminish under increased magnitudes of GSP extremes. Underlying these responses was rapid plant compositional change driven by increased forb production and cover as GSP transitioned to extreme wet conditions. This compositional shift increased the magnitude of ANPP responses to wet GSP extremes, as well as the slope and variability explained in the ANPP–GSP relationship. Our findings suggest that rapid plant compositional change may act as a mediator of semiarid ecosystem responses to predicted changes in GSP extremes.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2019
    Description: Abstract Habitat conversion and fragmentation threaten biodiversity and disrupt species interactions. While parasites are recognized as ecologically important, the impacts of fragmentation on parasitism are poorly understood relative to other species interactions. This lack of understanding is in part due to confounding landscape factors that accompany fragmentation. Fragmentation experiments provide the opportunity to fill this knowledge gap by mechanistically testing how fragmentation affects parasitism while controlling landscape factors. In a large‐scale, long‐term experiment, we asked how fragmentation affects a host–parasite interaction between a skink and a parasitic nematode, which is trophically transmitted via a terrestrial amphipod intermediate host. We expected that previously observed amphipod declines resulting from fragmentation would result in decreased transmission of nematodes to skinks. In agreement, we found that nematodes were absent among skinks in the cleared matrix and that infections in fragments were about one quarter of those in continuous forest. Amphipods found in gut contents of skinks and collected from pitfall traps mirrored this pattern. A structural equation model supported the expectation that fragmentation disrupted this interaction by altering the abundance of amphipods and suggested that other variables are likely also important in mediating this effect. These findings advance understanding of how landscape change affects parasitism.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2019
    Description: Abstract Despite the importance of fine roots for the acquisition of soil resources such as nitrogen and water, the study of linkages between traits and both population and community dynamics remains focused on aboveground traits. We address this gap by investigating associations between belowground traits and metrics of species dynamics. Our analysis included 85 species from a long‐term data set on the transition from old field to forest in eastern North America (the Buell‐Small Succession Study) and the new Fine‐Root Ecology Database. Given the prominent roles of life form (woody vs. non‐woody) and species origin (native vs. exotic) in defining functional relationships, we also assessed whether traits or their relationships with species dynamics differed for these groups. Species that reached their peak abundance early in succession had fine‐root traits corresponding to resource acquisitive strategies (i.e., they were thinner, less dense, and had higher nitrogen concentrations) while species that peaked progressively later had increasingly conservative strategies. In addition to having more acquisitive root traits than native species, exotics diverged from the above successional trend, having consistently thinner fine roots regardless of the community context. Species with more acquisitive fine‐root morphologies typically had faster rates of abundance increase and achieved their maximal rates in fewer years. Decreasing soil nutrient availability and increasing belowground competition may become increasingly strong filters in successional communities, acting on root traits to promote a transition from acquisitive to conservative foraging. However, disturbances that increase light and soil resource availability at local scales may allow acquisitive species, especially invasive exotics, to continue colonizing late into the community transition to forest.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2019
    Description: Ecology, EarlyView.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2019
    Description: Abstract An enduring challenge for ecology is identifying the drivers of ecosystem and population stability. In a spatially explicit context, key features to consider are landscape spatial structure, local interactions, and dispersal. Substantial work has been done on each of these features as a driver of stability, but little is known on the interplay between them. Missing has been a more integrative approach, able to map and identify different dynamical regimes, predicting a system's response to perturbations. Here we first consider a simple scenario, i.e., the recovery of a homogeneous metapopulation from a single localized pulse disturbance. The analysis of this scenario reveals three fundamental recovery regimes: Isolated Regime when dispersal is not significant, Rescue Regime when dispersal mediates recovery, and Mixing Regime when perturbations spread throughout the system. Despite its simplicity, our approach leads to remarkably general predictions. These include the qualitatively different outcomes of various scenarios of habitat fragmentation, the surprising benefits of local extinctions on population persistence at the transition between regimes, and the productivity shifts of metacommunities in a changing environment. This study thus provides context to known results and insight into future directions of research.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2019
    Description: Abstract The Metabolic Theory of Ecology (MTE) posits that metabolic rate controls ecological processes, such as the rate of resource uptake, from the individual‐ to the ecosystem‐scale. Metabolic rate has been found empirically to be an exponential function of whole organism body mass. We test a fundamental assumption of MTE, whether resource uptake scales to metabolism, by examining detritivores accessing a single common resource pool, an ideal study case. We used an existing empirical model of ingestion for aquatic deposit feeders adjusted for temperature to test whether ingestion by abyssal deposit feeders conforms to MTE‐predicted feeding rates. We estimated the sediment deposit‐feeding rates of large invertebrates from two abyssal study sites using time‐lapse photography, and related those rates to body mass, environmental temperature, and sediment organic matter content using this framework. Ingestion was significantly related to individual wet mass, with a mass‐scaling coefficient of 0.81, with 95% confidence intervals that encompass the MTE‐predicted value of 0.75, and the same pattern determined in other aquatic systems. Our results also provide insight into the potential mechanism through which this fundamental assumption operates. After temperature correction, both deep‐ and shallow‐water taxa might be summarized into a single mass‐scaled ingestion rate.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2019
    Description: Abstract Spatially explicit capture–recapture (SECR) models have emerged as one solution to the problem of estimating the population density of mobile and cryptic animals. Spatial models embody assumptions regarding the spatial distribution of individuals and the spatial detection process. The detection process is modeled in SECR as a radial decline in detection probability with distance from the activity center of each individual. This would seem to require that home ranges are circular. The robustness of SECR when home ranges are not circular has been the subject of conflicting statements. Ivan et al. previously compared the SECR density estimator to a telemetry‐scaled non‐spatial estimator. I suggest that the apparent non‐robustness of SECR in their study was a simulation artefact. New simulations of elliptical home ranges establish that the SECR density estimator is largely robust to non‐circularity when detectors are spread in two dimensions, but may be very biased if the detector array is linear and home ranges align with the array. Transformation to isotropy reduces bias from designs of intermediate dimension, such as hollow square arrays. Possible alignment of home ranges should be considered when designing detector arrays.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2019
    Description: Abstract Support for the “biotic resistance hypothesis,” that species‐rich communities are more successful at resisting invasion by exotic species than are species‐poor communities, has long been debated. It has been argued that native–exotic richness relationships (NERR) are negative at small spatial scales and positive at large scales, but evidence for the role of spatial scale on NERR has been contradictory. However, no formal quantitative synthesis has previously examined whether NERR is scale‐dependent across multiple studies, and previous studies on NERR have not distinguished spatial grain and extent, which may drive very different ecological processes. We used a global systematic review and hierarchical mixed‐effects meta‐analysis to provide a comprehensive quantitative assessment of the patterns of NERR over a range of spatial grain sizes and spatial extents, based on 204 individual cases of observational (non‐experimental) NERRs from 101 publications. We show that NERR was indeed highly scale dependent across studies and increased with the log of grain size. However, mean NERR was not negative at any grain size, although there was high heterogeneity at small grain sizes. We found no clear patterns of NERR across different spatial extents, suggesting that extent plays a less important role in determining NERR than does grain, although there was a complex interaction between extent and grain size. Almost all studies on NERR were conducted in North America, western Europe, and a few other regions, with little information on tropical or Arctic regions. We did find that NERR increased northward in temperate regions and also varied with longitude. We discuss possible explanations for the patterns we found, and caution that our results do not show that invasive species are benign or have no negative consequences for biodiversity preservation. This study represents the first global quantitative analysis of scale‐based NERR, and casts doubt on the existence of an “invasion paradox” of negative NERR at small scales and positive correlations at large scales in non‐experimental studies.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2019
    Description: Abstract A plant's induction of secondary defenses helps to decrease herbivore damage by changing resource quality. While these chemical or physical defenses may directly decrease herbivory, they can also have indirect consequences. In a tritrophic system consisting of a plant, an insect herbivore, and an insect pathogen, plant based trait‐mediated indirect effects (TMIEs) can alter host–pathogen interactions and, thereby, indirectly affect disease transmission. In a series of field experiments, individual soybean plants (Glycine max) were sprayed with either a jasmonic acid (JA) solution to trigger induction of plant defenses or a similar control compound. Fall armyworm (Spodoptera frugiperda) larvae along with varying amounts of a lethal baculovirus were placed on the plants to measure transmission. Induction of plant defenses decreased viral transmission due to increased population heterogeneity arising from changes in individual susceptibility. The change in susceptibility via TMIEs was driven by a decrease in feeding rates and an increase viral dose needed to infect larvae. While the induction against herbivore attack may decrease herbivory, it can also decrease the efficacy of the herbivore's pathogen potentially to the plant's detriment. While TMIEs have been well‐recognized for being driven by top‐down forces, bottom‐up interactions can dictate community dynamics and, here, epizootic severity.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2019
    Description: Abstract Research on regime shifts has focused primarily on how changes in the intensity and duration of press disturbances precipitate natural systems into undesirable, alternative states. By contrast, the role of recurrent pulse perturbations, such as extreme climatic events, has been largely neglected, hindering our understanding of how historical processes regulate the onset of a regime shift. We performed field manipulations to evaluate whether combinations of extreme events of temperature and sediment deposition that differed in their degree of temporal clustering generated alternative states in rocky intertidal epilithic microphytobenthos (biofilms) on rocky shores. The likelihood of biofilms to shift from a vegetated to a bare state depended on the degree of temporal clustering of events, with biofilm biomass showing both states under a regime of non‐clustered (60 d apart) perturbations while collapsing in the clustered (15 d apart) scenario. Our results indicate that time since the last perturbation can be an important predictor of collapse in systems exhibiting alternative states and that consideration of historical effects in studies of regime shifts may largely improve our understanding of ecosystem dynamics under climate change.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2019
    Description: Abstract We identify changes in the functional composition of vascular epiphytes along a tropical elevational gradient with the aim of quantifying the role of climate in determining the assembly of epiphyte communities. We measured seven leaf functional traits (leaf area, specific leaf area, leaf dry‐matter content, leaf thickness, force to punch, stomatal density, and potential conductance index) in the 163 most abundant epiphyte species recorded across 10 sites located along an elevational gradient between 60 and 2900 m asl in the Colombian Andes. We grouped the epiphyte species into seven hierarchical functional groups according to their most characteristic leaf traits. Along the elevational gradient, the two main independent leaf trait dimensions that distinguished community assemblages were defined primarily by leaf area‐photosynthetic (LAPS) and mass‐carbon (LMCS) gradients. Mean annual temperature was the main determinant of species position along LAPS. In contrast, local changes in specific leaf area due to variation in the epiphytes' relative height of attachment was the main determinant of their position along the LMCS. Our findings indicate that epiphytic plant leaves have evolved to optimize and enhance photosynthesis through a leaf area‐based strategy and carbon acquisition through investments in construction costs of leaf area per unit of biomass that aim to regulate light capture and tissue development. Given that most studies of plant functional traits neglect vascular epiphytes, our quantification of the multiple dimensions of epiphyte leaf traits greatly augments our understanding of vascular plant function and adaptation to changing environments. This article is protected by copyright. All rights reserved.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2019
    Description: Abstract The aim of this research is to compile a database of vascular plants found in the Kingdom of Tonga in western Polynesia, a phyto‐geographic subregion of the South Pacific. The Tongan islands are spread over approximately 600,000 km2 of the Pacific Ocean between 15‐23º S latitude and 173‐177º W longitude. The archipelago is comprised of 171 islands with an aggregate land area of about 720 km2. Since there is no comprehensive or updated flora for Tonga, we use 143 published sources to compile a database for 1020 plant species, of which more than 450 are indigenous to these islands. Tonga is noteworthy for its low proportion of endemics, accounting for 〈 5% of the indigenous species and 〈 2% of the total plant species. Our database documents species presence in Tonga as a whole, and more specifically on 11 Tongan islands or island groups. We have assembled ecological information for each plant species according to growth form, vegetation type, origin (endemic, indigenous, and introduced species), and dispersal mechanisms. We include introduced species in our database because they represent over half of the plant species growing in Tonga. Species origins reflect human alteration of Tongan ecosystems in which endemic and indigenous species represent pre‐human vegetation and introduced species indicate plants brought by either Polynesian or European settlers. For example, on Tongatapu, the largest and longest occupied island, more than half the plants are introduced, whereas on the sparsely populated, more remote islands, 70 to 90% of the species are indigenous. Dispersal mechanisms, which may include more than one mechanism per species, are documented in over 100 publications. Our database provides information on the whole suite of plant dispersal mechanisms over entire communities or island groups in Tonga. Plant species dispersal differs across environmental variables, including island geology, topography, vegetation type, and species origin. The older limestone islands have more bird, water, and human‐dispersed plants, while the youngest volcanic islands have the most wind‐dispersed species. Our database documents plant species endemism, introductions, vegetation types and dispersal mechanisms that reveal key biogeographic dynamics of the Tongan archipelago in the South Pacific. Please cite this Ecology Data Paper if the data are used in publication, presentation, or teaching activities. There are no copyright restrictions.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2019
    Description: Abstract Global change stressors such as drought and plant invasion can affect ecosystem structure and function via mediation of resource availability and plant competition outcomes. Yet, it remains uncertain how native plants respond to drought stress that co‐occurs with potentially novel resource conditions created by a non‐native invader. Further, there is likely to be temporal variation in competition outcomes between native and non‐native plant species depending on which resources are most limiting at a given time. Interacting stressors coupled with temporal variation make it difficult to predict how global change will impact native plant communities. To address this knowledge gap, we conducted a five‐year factorial field experiment to quantify how simulated drought, plant invasion (by cogongrass, Imperata cylindrica), and these stressors combined, affected resource availability (soil moisture and light) and competition dynamics between the invader and native longleaf pine (Pinus palustris), a foundation species in southeast US forests. Drought and invasion mediated the survival and performance of pine seedlings in temporally dynamic and unexpected ways. Drought and invasion alone each significantly reduced pine seedling survival. However, when the stressors occurred together, the invader offset drought stress for pine seedlings by maintaining high levels of soil moisture, humidity, and shade compared to uninvaded vegetation. This facilitative effect was pronounced for two years, yet shifted to strong competitive exclusion as the invasion progressed and the limiting resource switched from soil moisture to light. After three years, pine tree survival was low except for pines growing with uninvaded vegetation under ambient precipitation conditions. After five years, pines experiencing a single stressor were taller and had greater height to diameter ratios than pines under no stress or both stressors. This outcome revealed a filtering effect where poorly performing trees were culled under stressful conditions, especially when pines were growing with the invader. Together, these results demonstrate that although drought and invasion suppressed a foundation tree species, the invader temporarily moderated stressful drought conditions, and at least some trees were able to survive despite increasingly strong competition. Such unpredictable effects of interacting global change stressors on native plant species highlight the need for additional long‐term studies. This article is protected by copyright. All rights reserved.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2019
    Description: Abstract Biodiversity is defined by trait‐differences between organisms, and biologists have long sought to predict associations among ecologically important traits: why do some traits trade off while others are co‐expressed? Why might some trait associations hold across levels of organization, from individuals and genotypes to populations and species, while others only occur at one level? Understanding such scaling is a core biological problem, bearing on the evolution of ecological strategies as well as forecasting responses to environmental change. Explicitly considering the hierarchy of biodiversity and expectations at each scale (individual change, evolution within and among populations, and species turn‐over) is necessary as we work towards a predictive framework in evolutionary ecology. Within species, a trait may have an association with another trait due to phenotypic plasticity, genetic correlation, or population‐level local adaptation. Plastic responses are often adaptive and yet individuals have a fixed pool of resources; thus, positive and negative trait associations can be generated by immediate environmental needs and energetic demands. Genetic variation and covariation for traits within a population are typically shaped by varying natural selection in space and time. Although genetic correlations are infrequently long‐term constraints, they may indicate competing organismal demands. Traits are often quantitatively differentiated (local adaptation) among populations, although selection rarely favors qualitatively different strategies until populations become reproductively isolated. Across species, niche specialization to particular habitats or biotic interactions may determine trait correlations, a subset of which are termed “strategic trade‐offs” because they are a consequence of adaptive specialization. Across scales, constraints within species often do not apply as new species evolve, and conversely, trait correlations observed across populations or species may not be reflected within populations. I give examples of such scale‐dependent trait associations and their causes across taxonomic groups and ecosystems, and in the final section of the paper I specifically evaluate leaf economic spectrum traits and their associations with plant defense against herbivory. Scale‐dependent predictions emerge for understanding plant ecology holistically, and this approach can be fruitfully applied more generally in evolutionary ecology. Adaptive specialization and community context are two of the primary drivers of trade‐offs and syndromes across biological scales.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2019
    Description: Abstract Introduced species may homogenize biotic communities. Whether this homogenization can erase latitudinal patterns of species diversity and composition has not been well studied. We examined this by comparing nematode and microbial communities in stands of native Phragmites australis and exotic Spartina alterniflora in coastal wetlands across 18° of latitude in China. We found clear latitudinal clines in nematode diversity and functional composition, and in microbial composition, for soils collected from native P. australis. These latitudinal patterns were weak or absent for soils collected from nearby stands of the exotic S. alterniflora. Climatic and edaphic variables varied across latitude in similar ways in both community types. In P. australis there were strong correlations between community structure and environmental variables, whereas in S. alterniflora these correlations were weak. These results suggest that the invasion of S. alterniflora into the Chinese coastal wetlands has caused profound biotic homogenization of soil communities across latitude. We speculate that the variation in P. australis nematode and microbial communities across latitude is primarily driven by geographic variation in plant traits, but that such variation in plant traits is largely lacking for the recently introduced exotic S. alterniflora. These results indicate that widespread exotic species can homogenize nematode communities at large spatial scales.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2019
    Description: Abstract Patterns of feeding interactions between species are thought to influence the stability of communities and the flux of nutrients and energy through ecosystems. However, surprisingly few well‐resolved food webs allow us to evaluate factors that influence the architecture of species interactions. We constructed a meta‐food web consisting of 714 invertebrate species collected over nine years of suction and pitfall sampling campaigns in the Jena Experiment, a long‐term grassland biodiversity experiment located in Jena, Germany. In this paper, we summarize information on the 51,496 potential trophic links, which were established using information on diet specificity and species traits that typically constrain feeding interactions (trophic group, body size, and vertical stratification). The list of species identities, traits, and link‐derivation rules will be useful not only for tests of plant diversity effects on food web structure within the Jena Experiment, but also for considering consistent construction of food webs from empirical data, and for comparisons of network structure across ecosystems. No copyright or proprietary restrictions are associated with the use of this data set other than citation of this Data Paper. This article is protected by copyright. All rights reserved.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    facet.materialart.
    Unknown
    Wiley
    In: Ecology
    Publication Date: 2019
    Description: Ecology, EarlyView.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2019
    Description: Abstract Recent studies have shown that complex species interactions can regulate above‐ and below‐ground processes in terrestrial systems. Ungulate herbivory and invasive species are known to have strong effects on plant communities in some systems, but their impacts on soil biota and belowground processes are lesser known. Growing evidence suggests white‐tailed deer (Odocoileus virginianus) and invasive plants facilitate increased abundance of exotic earthworms in temperate forests of the eastern United States. We conducted an experimental study that manipulated deer access and the presence of an invasive understory shrub in an eastern deciduous forest of southwestern Ohio, USA from 2013 to 2017. Earthworm density and biomass, and standing litter biomass were measured in five paired deer access and exclosure plots, each with a split‐plot removal of Amur honeysuckle (Lonicera maackii). Earthworm density declined in response to the experimental exclusion of deer, with earthworm density decreasing over time in the deer exclosure plots relative to deer access plots. Deer exclusion produced greater variation in earthworm species composition relative to access plots. Multivariate analyses indicated that larger earthworms in the genus Lumbricus were associated with deer exclosure plots, while smaller endogeic species were ubiquitous in both treatments. Standing litter biomass decreased over time in the deer‐access plots. In contrast, honeysuckle removal had little effect on earthworm density and standing litter biomass. There was an interaction between deer and honeysuckle treatments on earthworm biomass, with honeysuckle removal reducing earthworm biomass when deer were excluded. Our results demonstrate strong effects of herbivores on invasive earthworms and ecosystem processes, but indicate a weaker influence of invasive shrubs. Further, our findings suggest that the effects of deer overabundance in forest ecosystems are potentially reversible with long‐term intervention. This article is protected by copyright. All rights reserved.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2019
    Description: Abstract Light and temperature are key drivers of ecosystem productivity, but synchrony of their annual cycles typically obscures their relative influence. The coupling of annual light‐temperature regimes also drives complementary seasonal cycles of energy supply (primary production) and demand (metabolism), perhaps promoting temporal stability in carbon (C) storage and food web production that may be difficult to discern in most ecosystems. Spring‐fed streams in the Arctic are subject to extreme annual fluctuations in light availability but have relatively stable water temperatures, which allows assessment of the independent effects of light and temperature. We used the unusual annual light and temperature regimes of Ivishak Spring, Alaska, U.S.A. (latitude 69ºN, annual water temperature range ~4‐7°C) to test predictions about the effect of light availability on consumer productivity with minimally confounding effects of temperature. We predicted that: 1) annual patterns of secondary production would follow patterns of primary production, rather than temperature, due to organic C limitation during winter darkness when photosynthesis is effectively halted, 2) C limitation would propagate from primary producers upward through several trophic levels, 3) the lack of temperature dependence during winter darkness would be expressed as anomalous Arrhenius plots of growth rates indicating decoupled production‐temperature relationships, and 4) consumer diets would reflect C limitation during winter. As predicted, we found: 1) lowest production by macroinvertebrates and Salvelinus malma (Dolly Varden char) at the lowest light levels rather than the lowest temperatures, 2) apparent winter C limitation propagated upwards through three trophic levels, 3) anomalous Arrhenius plots indicating lack of temperature dependence of consumer growth rates during winter, and 4) lowest consumption of diatoms (by macroinvertebrates) and invertebrate prey (by S. malma) during winter. Together, these results indicate that light drives annual patterns of animal production in Ivishak Spring, with stable annual temperatures likely exacerbating C limitation of ectotherm metabolism during winter. The timing and severity of winter C limitation in this unusual arctic‐spring food web highlight a fundamental role for light‐temperature synchrony in matching energy supply with demand in most other ecosystem types, thereby conferring a measure of stability in the metabolism of their food webs over annual time‐scales. This article is protected by copyright. All rights reserved.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2019
    Description: Abstract Disease dynamics are governed by variation of individuals, species, and environmental conditions across space and time. In some cases, an alternate reservoir host amplifies pathogen loads and drives disease transmission to less competent hosts in a process called pathogen spillover. Spillover is frequently associated with multi‐host disease systems where a single species is more tolerant of infection and more competent in pathogen transmission compared to other hosts. Pathogen spillover must be driven by biotic factors, including host and community characteristics, yet biotic factors interact with the abiotic environment (e.g. temperature) to create disease. Despite its fundamental role in disease dynamics the influence of the abiotic environment on pathogen spillover has seldom been examined. Improving our understanding of disease processes such as pathogen spillover hinges on disentangling the effects of interrelated biotic and abiotic factors over space and time. We applied 10 years of fine‐scale microclimate, disease, and tree community data in a path analysis to investigate the relative influence of biotic and abiotic factors on pathogen spillover for the emerging infectious forest disease sudden oak death (SOD). Disease transmission in SOD is primarily driven by the reservoir host California bay laurel, which supports high foliar pathogen loads that spillover onto neighboring oak trees and create lethal canker infections. The foliar pathogen load and susceptibility of oaks is expected to be sensitive to forest microclimate conditions. We found that biotic factors of pathogen load and tree diversity had relatively stronger effects on pathogen spillover compared to abiotic microclimate factors, with pathogen load increasing oak infection and tree diversity reducing oak infection. Abiotic factors still had significant effects, with greater heat exposure during summer months reducing pathogen loads and optimal pathogen conditions during the wet season increasing oak infection. Our results offer clues to possible disease dynamics under future climate change where hotter and drier or warmer and wetter conditions could have opposing effects on pathogen spillover in the SOD system. Disentangling direct and indirect effects of biotic and abiotic factors affecting disease processes can provide key insights into disease dynamics including potential avenues for reducing disease spread and predicting future epidemics. This article is protected by copyright. All rights reserved.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2019
    Description: Abstract Extreme events significantly impact ecosystems and are predicted to increase in frequency and/or magnitude with climate change. Generalized extreme value (GEV) distributions describe most ecologically‐relevant extreme events, including hurricanes, wildfires, exotic species outbreaks, and disease spread. In climate science, the GEV is widely used as an accurate and flexible tool over large spatial scales (〉〉 105 km2) to study how changes in climate shift extreme events. However, ecologists rarely use the GEV to study how climate change affects populations. Here we show how to estimate a GEV for hurricanes at an ecologically‐relevant (〈 103 km2) spatial scale, and use the results in a stochastic, empirically‐based matrix population model. As a case study, we use an understory shrub in southeast Florida with hurricane‐driven dynamics and measure the effects of change using the stochastic population growth rate. We use sensitivities to analyze how population growth rate is affected by changes in hurricane frequency and intensity, canopy damage levels, and canopy recovery rates. Our results emphasize the importance of accurately estimating location‐specific storm frequency. In a rapidly changing world, our methods show how to combine realistic extreme event and population models to assess ecological impacts and to prioritize conservation actions for at‐risk populations. This article is protected by copyright. All rights reserved.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2019
    Description: Abstract Scientists have long been trying to understand why the Neotropical region holds the highest diversity of birds on Earth. Recently, there has been increased interest in morphological variation between and within species, and in how climate, topography and anthropogenic pressures may explain and affect phenotypic variation. Because morphological data are not always available for many species at the local or regional scale, we are limited in our understanding of intra‐ and inter‐species spatial morphological variation. Here we present the ATLANTIC BIRD TRAITS, a dataset that includes measurements of up to 44 morphological traits in 67,197 bird records from 2,790 populations distributed throughout the Atlantic forests of South America. This dataset comprises information, compiled over two centuries (1820–2018), for 711 bird species, which represent 80% of all known bird diversity in the Atlantic Forest. Among the most commonly reported traits are sex (n=65,717), age (n=63,852), body mass (n=58,768), flight molt presence (n=44,941), molt presence (n=44,847), body molt presence (n=44,606), tail length (n=43,005), reproductive stage (n=42,588), bill length (n=37,409), body length (n=28,394), right wing length (n=21,950), tarsus length (n=20,342) and, wing length (n=18,071). The most frequently recorded species are: Chiroxiphia caudata (n=1,837), Turdus albicollis (n=1,658), Trichothraupis melanops (n=1,468), Turdus leucomelas (n=1,436), and Basileuterus culicivorus (n=1,384). The species recorded in the greatest number of sampling localities are Basileuterus culicivorus (n=243), Trichothraupis melanops (n=242), Chiroxiphia caudata (n=210), Platyrinchus mystaceus (n=208), and Turdus rufiventris (n=191). ATLANTIC BIRD TRAITS (ABT) is the most comprehensive dataset on measurements of bird morphological traits found in a biodiversity hotspot; it provides data for basic and applied research at multiple scales—from individual to community—and from the local to the macroecological perspectives. No copyright or proprietary restrictions are associated with the use of this dataset. Please cite this data paper when the data are used in publications or teaching and educational activities. This article is protected by copyright. All rights reserved.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2019
    Description: Abstract Species traits provide a strong link between an organism's fitness and processes at community and ecosystem levels. However, such data remains scarce for amphibians in the neotropics. Colombia is the country with the highest number of threatened amphibians and the second greatest number of amphibian species worldwide. We present a data set containing eight morphological traits for 4623 museum specimens of the seven largest collections in the country corresponding to 293 species of 14 families. The number of measured specimens per species ranged from 1 to 118 individuals with a median of eight individuals per species. Overall, this database gathered morphological information for 37.6% of Colombian anuran diversity. Species measured were mainly distributed in the high Andean forest, the páramo, and wetland ecosystems and was part of a national initiative led by the Instituto Alexander von Humboldt. The morphological traits were selected on the basis of their role in species’ responses to environmental variability and their contributions to ecosystem processes. These traits were related to habitat use, (forearm length, tibia length, femur length, foot length, and foot webbing) predation and food chains (head width and mouth width), and nutrient recycling (snout‐vent length). We expect this data set will be used in studies on functional diversity in amphibians and the development of conservation planning for these taxa. No copyright or proprietary restrictions are associated with the use of this data set other than citation of this Data Paper. This article is protected by copyright. All rights reserved.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2019
    Description: Abstract Orchids are well‐known for possessing unsurpassed floral specializations and complex pollination strategies. For example, they are specialists that both reward and deceive their insect pollinators (Nilsson 1992). Although many orchids have evolved mechanisms to reduce or prevent self‐pollination and enhance outcrossing, autonomous self‐pollination occurs in about 400 orchid species, representing all subfamilies and most tribes (Catling 1990, Peter 2009). In contrast, abiotic pollination of orchids is rare: although anemophily (wind pollination) and hydrophily (water pollination) occur in ca. 20% of angiosperm families (Ackerman 2000), these mechanisms are unlikely to occur in the Orchidaceae, because the pollen grains of orchids are typically aggregated into pollinia that are not easily dislodged by rain or wind. This article is protected by copyright. All rights reserved.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2019
    Description: Abstract Plant population ecologists strive to understand how environmental drivers influence demographic vital rates and thus population dynamics. Hundreds of studies have collected demographic data and used matrix‐ and/or integral projection models to quantify lifetime fitness and population dynamics of plants. However, most of these studies have focused on native plant species, and there is a need for more studies on alien plants. Further, few studies on alien plants have experimentally manipulated environmental drivers in order to understand the mechanisms that allow alien plant species to have positive population growth. A synthetic understanding of the population dynamics of alien plant species will only be achieved if ecologists collect demographic data on many plant species and environments and provide the demographic data and model structure in a data archive for future comparisons and meta‐analyses. Invasive alien species are a social, economic and ecological issue that has become increasingly important in an increasingly globalized world. Researchers continue to forecast impacts and prevent new introductions by seeking a robust understanding of drivers of invasive species success and failure. Researchers have hypothesized that competitive differences may play a key role in determining alien species success in novel environments. Studies that experimentally manipulate competitors while quantifying demography provide mechanistic insight into species’ responses to competition. To date, nearly all field manipulations of competition that measure plant demography and population dynamics have focused on native plant species. The data we provide here aims to address this gap in our knowledge for alien plant species. We present raw data and population projection models for 14 alien plant species in eastern Missouri, USA. We sampled under ambient conditions and with all individuals of non‐focal species removed from the community, allowing us to project population dynamics in the presence and absence of competition. We have also included the data quantifying how much biomass we removed at the plot level during each removal procedure and data from our germination experiment. This article is protected by copyright. All rights reserved.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2019
    Description: Abstract Plankton live under the countervailing selective pressures of predation and ultraviolet radiation (UVR). In lakes, zooplankton are transparent reducing visibility to predatory fishes but are pigmented in the absence of fishes, hypothetically reducing UVR damage. In the sea, planktivorous fishes are widespread, so plankton typically are transparent and ascend to productive surface waters at night to forage and descend during the day to reduce visibility to predators. However, larvae of some species face the unique constraint of traveling in surface currents in the daytime during migrations between adult and larval habitats. We would expect these larvae to be transparent since companion studies demonstrated increased predation risk of pigmented larvae under strong sunlight. Paradoxically, larvae range from being darkly to lightly pigmented. We hypothesize that some larvae are more heavily pigmented to reduce UVR damage, while other species travelling in subsurface currents with low UVR might be more transparent. Linking larval morphology to depth‐dependent selective pressures would add a key element to help improve predictions of larval vertical distributions, which are important for simulating larval transport trajectories. We quantitatively tested the hypothesis that selection may have favored photoprotective pigmentation for larvae in the predominantly transparent plankton community while testing the differential effects of UVA and UVB radiation. We measured larval pigmentation of 12 species of crabs and exposed them to visible light only, visible + UVA, or visible + UVA + UVB in the tropics. Controlling for phylogeny, more pigmented species survived UVR better than less pigmented species, especially on sunnier days, though intraspecific comparisons for four species were equivocal. Most species died even from UVA exposure, which has long been regarded as relatively harmless despite penetrating deeper underwater than UVB. Thus, we demonstrate with a phylogenetically controlled analysis that crab larvae are pigmented in the predominantly transparent planktonic community to protect from UVR, improving our understanding of the selective forces acting on animal coloration and the factors determining planktonic distributions, survival, and dispersal. This linkage of morphology with susceptibility will be important for developing mechanistic models of environmental stress responses to better predict larval dispersal in current and future climates. This article is protected by copyright. All rights reserved.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2019
    Description: Abstract Individual size is a major determinant of mobile organisms' ecology and behavior. This study aims to explore whether allometric scaling principles can provide an underlying framework for general patterns of resource patch use. To this end, we used Giving Up Densities (GUDs), i.e. the amount of resources remaining in a patch after a forager has quit feeding, as a comparative measure of the amount of resources exploited by a forager of any given size. We specifically tested the hypothesis that size‐dependent responses to both internal (energy requirement) and external (risk management) forces may have an effect on GUDs. We addressed this topic by conducting an extensive meta‐analysis of published data on granivorous rodents, including 292 GUDs measurements reported in 25 papers. The dataset includes data on 22 granivorous rodent species belonging to three taxonomic suborders (Castorimorpha, Myomorpha, Sciuromorpha) and spans three habitat types (desert, grassland, forest). The observations refer to both patches subject to predation risk and safe patches. Pooling all data, we observed positive allometric scaling of GUDs with average forager size (scaling exponent = 0.45), which explained 15% of overall variance in individual GUD. Perceived predation risk during foraging led to an increase in GUDs independently of forager size and taxonomy and of habitat type, which explained an additional 12% of overall GUD variance. The size scaling exponent of GUDs is positive across habitat types and taxonomic suborders of rodents. Some variation was observed however. The scaling coefficients in grassland and forest habitat types were significantly higher than in the desert habitat type. In addition, Sciuromorpha and Myomorpha exhibited a more pronounced size scaling of GUDs than Castorimorpha. This suggests that different adaptive behaviors may be used in different contexts and/or from different foragers. With body size being a fundamental ecological descriptor, research into size scaling of GUDs may help to place patch use observations in a broader allometric framework. This article is protected by copyright. All rights reserved.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2019
    Description: Abstract Bee populations have experienced declines in recent years, due in part to increased disease incidence. Multiple factors influence bee‐pathogen interactions, including nectar and pollen quality and secondary metabolites. However, we lack an understanding of how plant interactions with their environment shape bee diet quality. We examined how plant interactions with the belowground environment alter floral rewards and, in turn, bee‐pathogen interactions. Soil‐dwelling mycorrhizal fungi are considered plant mutualists, although the outcome of the relationship depends on environmental conditions such as nutrients. In a 2x2 factorial design, we asked whether mycorrhizal fungi and nutrients affect concentrations of nectar and pollen alkaloids (anabasine and nicotine) previously shown to reduce infection by the gut pathogen Crithidia in the native bumblebee Bombus impatiens. To ask how plant interactions affect this common bee pathogen, we fed pollen and nectar from our treatment plants, and from a wildflower pollen control with artificial nectar, to bees infected with Crithidia. Mycorrhizal fungi and fertilizer both influenced flowering phenology and floral chemistry. While we found no anabasine or nicotine in nectar, high fertilizer increased anabasine and nicotine in pollen. AMF decreased nicotine concentrations, but the reduction due to AMF was stronger in high than low‐nutrient conditions. AMF and nutrients also had interactive effects on bee pathogens via changes in nectar and pollen. High fertilizer reduced Crithidia cell counts relative to low fertilizer in AMF plants, but increased Crithidia in non‐AMF plants. These results did not correspond with effects of fertilizer and AMF on pollen alkaloid concentrations, suggesting that other components of pollen or nectar were affected by treatments and shaped pathogen counts. Our results indicate that soil biotic and abiotic environment can alter bee‐pathogen interactions via changes in floral rewards, and underscore the importance of integrative studies to predict disease dynamics and ecological outcomes. This article is protected by copyright. All rights reserved.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2019
    Description: Abstract Climate change and shifting species composition have influenced ecosystem‐scale phenology worldwide. For instance, invasive plant species have greater vegetation phenological sensitivity to climate change than native plant species in some regions, and hence invasion could modify how ecosystem carbon gain responds to increased drought frequencies expected with climate change. Results from a four‐year drought experiment show that invasion reduced ecosystem potential for carbon gain via increased sensitivity to reduced rainfall. Using canopy greenness (Normalized Difference Vegetation Index, NDVI) as a proxy for potential ecosystem carbon gain we show that areas invaded by herbaceous species had up to a 70% reduction in maximum NDVI under severe drought conditions as compared to areas dominated by native shrubs. Phenological differences between herbaceous‐ and shrub‐ dominated vegetation contributed to this reduction in potential ecosystem carbon gain because invaded areas had delayed green‐up, especially under drought conditions, while shrubs senescence was accelerated by drought. Hence, invasion by herbaceous species and increased drought frequencies are likely to act synergistically to reduce ecosystem capacity for carbon gain in this system. Our findings suggest that predicting ecosystem responses to future climate change could be improved by projecting of the spread of invasive species and accounting for phenological variation between native and invading species. This article is protected by copyright. All rights reserved.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2019
    Description: Abstract Nestedness and modularity have been recurrently observed in species interaction networks. Some studies argue that those topologies result from selection against unstable networks, while others propose that they likely emerge from processes driving the interactions between pairs of species. Here we present a model that simulates the evolution of consumer species using resource species following simple rules derived from the integrative hypothesis of specialization (IHS). Without any selection on stability, our model reproduced all commonly observed network topologies. Our simulations demonstrate that resource heterogeneity drives network topology. On the one hand, systems containing only homogeneous resources form generalized nested networks, in which generalist consumers have higher performance on each resource than specialists. On the other hand, heterogeneous systems tend to have a compound topology: modular with internally nested modules, in which generalists that divide their interactions between modules have low performance. Our results demonstrate that all real‐world topologies likely emerge through processes driving interactions between pairs of species. Additionally, our simulations suggest that networks containing similar species differ from heterogeneous networks and that modules may not present the topology of entire networks. This article is protected by copyright. All rights reserved.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2019
    Description: Abstract Kelp forests are known as key habitats for species diversity and macroalgal productivity; however, we know little about how these biogenic habitats interact with seawater chemistry and phototroph productivity in the water column. We examined kelp forest functions at three locales along the Olympic Peninsula of Washington state by quantifying carbonate chemistry, nutrient concentrations, phytoplankton productivity, and seawater microbial communities inside and outside of kelp beds dominated by the canopy kelp species Nereocystis luetkeana and Macrocystis pyrifera. Kelp beds locally increased the pH, oxygen, and aragonite saturation state of the seawater, but lowered seawater inorganic carbon content and total alkalinity. While kelp beds depleted nitrate and phosphorus concentrations, ammonium and DOC concentrations were enhanced. Kelp beds also decreased chlorophyll concentrations and carbon fixed by phytoplankton, although kelp carbon fixation more than compensated for any difference in phytoplankton production. Kelp beds also entrained distinct microbial communities, with higher taxonomic and phylogenetic diversity compared to seawater outside of the kelp bed. Kelp forests thus had significant effects on seawater chemistry, productivity and the microbial assemblages in their proximity. Thereby, the diversity of pathways for carbon and nitrogen cycling was also enhanced. Overall, these observations suggest that the contribution of kelp forests to nearshore carbon and nitrogen cycling is greater than previously documented. This article is protected by copyright. All rights reserved.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2019
    Description: Abstract Orb‐weaving spiders may encounter predacious insects in their own webs, leading to the question of how they may prey on them. To address this question, the French entomologist Jean‐Henri Fabre (1905) observed how the orb‐weaving spider Argiope bruennichi (Araneae: Araneidae) responded to a praying mantis, Mantis religiosa (Mantodea: Mantidae), that was placed experimentally on the spider's orb web. Interestingly, the spider immobilized the mantis by wrapping the mantis' body with silk threads spun from the spider's abdominal spinnerets, and successfully preyed upon it. However, Fabre (1905) asserted that he had never observed orb‐weaving spiders attacking praying mantises under field conditions. Because mantises frequently fly (e.g., Yager and Svenson 2008), they run the risk of becoming trapped in spider webs (Nentwig 1982). What factors have reduced the chances of observing predation by orb‐weaving spiders on mantises under field conditions? Although mantises may potentially be trapped by spider webs, this question has remained unexplored. This article is protected by copyright. All rights reserved.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2019
    Description: Abstract Identifying potentially invasive species and preventing their introduction and establishment are of critical importance in invasion ecology and land management. Although an extensive body of research has been dedicated to identifying traits that confer invasiveness, our current knowledge is still often inconclusive due to limitations in geographic extent and/or scope of traits analyzed. Here, using a comprehensive set of 45 traits, we performed a case study of invasive traits displayed by exotic woody plants in the United States (U.S.) by comparing 63 invasive and 794 non‐invasive exotic woody plant species naturalized across the country. We found that invasive woody species often bear the following two key traits: vegetative reproduction and long‐distance seed dispersal (via water, birds or mammals). Boosted classification tree models based on these traits accurately predicted species invasiveness (86% accuracy on average). Presented findings provide a generalized understanding of the relative importance of functional traits in identifying potentially invasive woody species in the U.S. The knowledge generated in this study can be used to improve current classification systems of non‐native woody plants used by various U.S. governmental agencies and land managers. This article is protected by copyright. All rights reserved.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2019
    Description: Abstract The pattern of sightings of a species that is rare, and then no longer observed, can be used to estimate its extinction date. However, other than physical captures or specimens, the veracity of any sighting is ambiguous, and should be treated probabilistically when used to infer extinction dates. We present a simple yet powerful computational approach for incorporating observational reliability into extinction date estimators (EDE). Our method: (i) combines repeated within‐year sightings probabilistically, (ii) samples observations using reliability as an inclusion probability, (iii) infers a probability distribution and summary statistics of extinction dates with any EDE, and (iv) computes the frequency distribution of the extinction date. We applied this method to eight exemplar sighting records covering a range of lengths, sighting rates and uncertainties, using a variety of statistical EDEs, and compared these results with a threshold approach for selecting sightings. We also demonstrated a robust coverage of ‘true' extinction dates based on selected real‐world examples of rediscovered species and confirmed extinctions, and simulated sighting records. Our approach represents a powerful generalization of past work because it is not predicated on any specific method for inferring extinction dates, and yet is simple to implement (with R script provided). This article is protected by copyright. All rights reserved.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2019
    Description: Ecology, EarlyView.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2019
    Description: Abstract Environmental forces and biotic interactions, both positive and negative, structure ecological communities, but their relative roles remain obscure despite strong theory. For instance, ecologically similar species, based on the principle of limiting similarity, are expected to be most competitive and show negative interactions. Specious communities that assemble along broad environmental gradients afford the most power to test theory, but the communities often are difficult to quantify. Microbes, specifically fungal endophytes of wood, are especially suited for testing community assembly theory because they are relatively easy to sample across a comprehensive range of environmental space with clear axes of variation. Moreover, endophytes mediate key forest carbon cycle processes and while saprophytic fungi from dead wood typically compete, endophytic fungi in living wood may enhance success through cooperative symbioses. To classify interactions within endophyte communities, we analyzed fungal DNA barcode variation across 22 woody plant species growing in woodlands near Richmond, NSW, Australia. We estimated the response of endophytes to the measured wood environment (i.e., 11 anatomical and chemical wood traits) and each other using latent variable models and identified recurrent communities across wood environments using model‐based classification. We used this information to evaluate whether (1) co‐occurrence patterns are consistent with strong competitive exclusion, and (2) a priori classifications by trophic mode and phylum distinguish taxa that are more likely to have positive versus negative associations under the principle of limiting similarity. Fungal endophytes were diverse (mean = 140 taxa/sample), with differences in community composition structured by wood traits. Variation in wood water content and carbon concentration were associated with especially large community shifts. Surprisingly, after accounting for wood traits, fungal species were still 〉3x more likely to have positive than negative co‐occurrence patterns. That is, patterns consistent with strong competitive exclusion were rare and positive interactions among fungal endophytes were more common than expected. Confirming the frequency of positive versus negative interactions among fungal taxa requires experimental tests and our findings establish clear paths for further study. Evidence to date intriguingly suggests that, across a wide range of wood traits, cooperation may outweigh combat for these fungi. This article is protected by copyright. All rights reserved.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2019
    Description: Abstract The complex coastline that stretches from Southeast Alaska to the Salish Sea hosts an expansive and verdant bathtub ring of seagrasses. Their presence is facilitated by the geographic complexity of the region, which promotes a variety of suitable substrates that are appropriate for seagrass recruitment (mud to sands to rock within small spatial scales). Seagrasses are marine flowering plants that have evolved at least three times from land plants back to the sea (Les et al. 1997). Although several adaptations have allowed for them to recolonize marine environments, they still rely upon rhizome and root structures for nutrient uptake and storage, gas exchange, and anchoring to substrates. These structures are reminiscent of their terrestrial ancestors, by which the rhizomes and roots of most species form belowground networks in soft‐sediments but sometimes exhibit plasticity in anchoring strategy, where a minority of species can also colonize rocky substrates. In such instances, attachment is secured via the secretion of an adhesive, mucilage from the plant's roots (see Appendix S1: Table S1). Of the 72 species of seagrass, there are only five (genus Phyllospadix) described to use rock as an obligate substrate (summarized by Balestri et al. 2015). Their niche is further differentiated from other seagrasses in that they prefer habitat with higher wave exposure and, as such, they are commonly referred to as “surfgrasses”. This article is protected by copyright. All rights reserved.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2019
    Description: Abstract In a new paper entitled “Not even wrong: The spurious measurement of biodiversity's effects on ecosystem functioning”, Pillai & Gouhier (2019) question the validity of the additive partition of biodiversity effects that we proposed 18 years ago (Loreau and Hector 2001) and that has become a classic in the biodiversity and ecosystem functioning (BEF) research field. Here we show that their critique misinterprets the goal of the BEF research program; in effect, they propose another research program that is both fundamentally different from BEF and logically inconsistent. In particular, they seek to measure biodiversity effects beyond and above those of species coexistence, an impossible task because biodiversity and coexistence are inseparable concepts. Therefore, once the direct and indirect effects of species coexistence are fully accounted for, the residual effect of biodiversity that they propose to study should be zero. We conclude that BEF research should rejuvenate and develop in new directions, but this effort will be successful only if it builds upon the foundations laid down by past research. This article is protected by copyright. All rights reserved.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2019
    Description: Abstract The metapopulation concept initiated a paradigm shift in ecology and conservation biology, recognizing the eminent role of dispersal and colonization as fundamental processes contributing to species' long‐term persistence. Early models made ad hoc assumptions about a positive area‐dependency of dispersal (i.e., total number of emigrants), which persisted in the theoretical literature; however, numerous empirical examples of negative area‐dependencies of dispersal have been reported. Here, we first give a qualitative overview for different area‐dependencies of dispersal in empirical systems. Then, using a spatially realistic Levins‐model, we show that extending assumptions on the area dependence of dispersal (ADD) to include all empirically supported parameter space, specifically also negative ADD, alters predictions on several conservation‐relevant patterns. Importantly, we find that small patches could be of similar importance as large ones if dispersal decreases inversely with patch area, a result contrasting to previous findings based on a positive ADD. This leads to context‐dependent strategies to preserve metapopulations. If dispersal is positively correlated with patch area, efforts should be devoted to preserving large patches and the total habitat area. If dispersal is negatively correlated with patch area, the most efficient strategy is to preserve a high number of patches, including small ones. Our results have direct implications for management decisions in the context of destruction, deterioration, and protection of habitat patches. This article is protected by copyright. All rights reserved.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2019
    Description: Abstract The Indonesian island of Sulawesi possesses a biota defined by anomaly (Wallace 1869). It has high levels of endemism (Michaux 2010) but, despite attracting research interest since the time of biogeographic pioneers such as Alfred Russell Wallace, the island remains relatively undocumented (van Welzen et al. 2011) with collection rates below much of the wider region (Kessler et al. 2002). As currently known, the flora suggests a placement within the Austral‐Asian amalgamative region of Wallacea, which encompasses the chain of islands between Borneo and New Guinea (van Welzen et al. 2011). This article is protected by copyright. All rights reserved.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2019
    Description: Abstract Should we build our own phylogenetic trees based on gene sequence data, or can we simply use available synthesis phylogenies? This is a fundamental question that any study involving a phylogenetic framework must face at the beginning of the project. Building a phylogeny from gene sequence data (purpose‐built phylogeny) requires more effort, expertise, and cost than subsetting an already available phylogeny (synthesis‐based phylogeny). However, we still lack a comparison of how these two approaches to building phylogenetic trees influence common community phylogenetic analyses such as comparing community phylogenetic diversity and estimating trait phylogenetic signal. Here, we generated three purpose‐built phylogenies and their corresponding synthesis‐based trees (two from Phylomatic and one from the Open Tree of Life [OTL]). We simulated 1,000 communities and 12,000 continuous traits along each purpose‐built phylogeny. We then compared the effects of different trees on estimates of phylogenetic diversity (alpha and beta) and phylogenetic signal (Pagel's λ and Blomberg's K). Synthesis‐based phylogenies generally yielded higher estimates of phylogenetic diversity when compared to purpose‐built phylogenies. However, resulting measures of phylogenetic diversity from both types of phylogenies were highly correlated (Spearman's ρ 〉 0.8 in most cases). Mean pairwise distance (both alpha and beta) is the index that is most robust to the differences in tree construction that we tested. Measures of phylogenetic diversity based on the OTL showed the highest correlation with measures based on the purpose‐built phylogenies. Trait phylogenetic signal estimated with synthesis‐based phylogenies, especially from the OTL, were also highly correlated with estimates of Blomberg's K or close to Pagel's λ from purpose‐built phylogenies when traits were simulated under Brownian Motion. For commonly employed community phylogenetic analyses, our results justify taking advantage of recently developed and continuously improving synthesis trees, especially the Open Tree of Life. This article is protected by copyright. All rights reserved.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2019
    Description: Abstract The development of antipredator traits is dependent on the frequency and intensity of predator exposure over evolutionary and ecological time. We hypothesized that prey species would respond with increasing accuracy when exposed to predators across generational, ontogenetic and immediate timescales. We assessed larval Pacific chorus frog (PSRE; Pseudacris regilla) individuals that varied in population sympatry, embryonic conditioning, and immediate exposure to stocked populations of Rainbow Trout (Oncorhynchus mykiss). Using PSRE populations from sites with and without resident Rainbow Trout, we conditioned embryos to trout odor, PSRE alarm cues, trout odor in combination with alarm cues, or control water. After being hatched and reared in control water, individuals were exposed to the four predator cue treatments using a fully factorial design. Tadpoles from populations with resident Rainbow Trout did not behave or develop differently than tadpoles originating from fishless sites. However, we found evidence that PSRE reduced predation risk with a combination of carry‐over effect (i.e., transfer of information across life history stages) and within‐life stage phenotypically plastic mechanisms. We found both developmental and behavioral carry‐over effects: tadpoles conditioned with trout odor as embryos grew more slowly and took refuge more often than control animals. Within‐life stage behavioral plasticity was observed in tadpoles from all treatment groups, responding to predator cues with increased refuge use. Potentially additive effects of predator exposure on prey response should be considered when predicting the ability of prey to recognize novel threats. This article is protected by copyright. All rights reserved.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2019
    Description: Abstract Aggregations are common in ecological systems at a range of scales and may be driven by exogenous constraints such as environmental heterogeneity and resource availability or by ‘self‐organizing' interactions among individuals. One mechanism leading to self‐organized animal aggregations is captured by Hamilton's ‘selfish herd' hypothesis, which suggests that aggregations may be driven by an individual's effort to minimize their risk of predation by surrounding themselves with conspecifics. We demonstrate that aggregations observed in Adélie penguin (Pygoscelis adeliae) colonies are a convolution of both self‐organized dynamics and external forcing arising from landscape terrain. In fluid, highly mobile aggregations, individuals are constantly moving in response to changing environmental conditions, the locations of predators, or the movements of conspecifics. However, when the ability to rearrange is limited and spatial reconfiguration occurs on slower time scales than changes in population size, systems may become trapped in sub‐optimal arrangements. We use simulated annealing to demonstrate that Adélie penguin colonies are frozen in sub‐optimal spatial arrangements, and employ an individual‐based modelling approach to demonstrate that this sub‐optimal spatial configuration is driven by a convolution of nest site fidelity and stochastic events at the level of individual nests. The resulting spatial dynamics are responsible for a hysteretic response to long‐term changes in abundance. We find that declining abundance leads to fragmentation even in a homogeneous environment, which has population‐level consequences for reproductive success because predation is biased towards colony edges. Strong edge effects from heterogeneous predation coupled with fragmentation in response to population declines creates a positive feedback cycle that can accelerate population decline. This work provides a mechanistic understanding of complex spatial structuring in penguin colonies, provides a link between current spatial patterning and past dynamics, and suggests the possibility of critical collapse in seabird populations. This article is protected by copyright. All rights reserved.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    facet.materialart.
    Unknown
    Wiley
    In: Ecology
    Publication Date: 2019
    Description: Ecology, EarlyView.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2019
    Description: Abstract Changes in the frequency, duration and intensity of rainfall events are among the abiotic effects predicted under anthropogenic global warming. Heavy downpours may profoundly affect the development and survival of small organisms such as insects. Here, we examined direct (physically on the insects) and indirect (plant‐mediated) effects of simulated downpours on the performance of caterpillars of two lepidopteran herbivores (Plutella xylostella and Pieris brassicae) feeding on black mustard (Brassica nigra) plants. Host plants were exposed to different rainfall regimes both before and while caterpillars were feeding on the plants in an attempt to separate direct and indirect (plant‐mediated) effects of rainfall on insect survival and development. In two independent experiments, downpours were simulated as a single long (20 min) or as three short (5 min) daily events. Downpours had a strong negative direct effect on the survival of P. xylostella, but not on that of P. brassicae. Direct effects of downpours consistently increased development time of both herbivore species, whereas effects on body mass depended on herbivore species and downpour frequency. Caterpillar disturbance by rain and recorded microclimatic cooling by 5 °C may explain extended immature development. Indirect, plant‐mediated effects of downpours on the herbivores were generally small, despite the fact that sugar concentrations were reduced and herbivore induction of secondary metabolites (glucosinolates) was enhanced in plants exposed to rain. Changes in the frequency of precipitation events due to climate change may impact the survival and development of insect herbivores differentially. Broader effects of downpours on insects and other arthropods up the food chain could seriously impair and disrupt trophic interactions, ultimately destabilizing communities. This article is protected by copyright. All rights reserved.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2019
    Description: Abstract Diel variability in nutrient concentrations is common but not universal in aquatic ecosystems. Theoretical models of photoautotrophic systems attribute the absence of diel uptake variation to nutrient scarcity, such that diel variability in nutrient uptake disappears as nutrients becomes limiting. We tested this prediction in a mesocosm experiment, by exposing benthic algal communities to a range of nitrogen (N) and phosphorus concentrations and recording the rates of uptake during both day and night. We found that higher concentrations of N produced diel variability in uptake, and that the difference between the day and night total mass uptakes approximately equaled N demand for observed primary production as seen in other studies. At lower concentrations of N, uptake rates during the day and night were indistinguishable. These results are the first empirical evidence to imply that diel nitrate patterns in streams and rivers indicate a release from N limitation and offer a new way to assess nutrient limitation. This article is protected by copyright. All rights reserved.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2019
    Description: Abstract Structure‐function relationships are central to many ecological paradigms. Chief among these is the linkage of net primary production (NPP) with species diversity and canopy structure. Using the National Ecological Observatory Network (NEON) as a subcontinental‐scale research platform, we examined how temperate forest NPP relates to several measures of site‐level canopy structure and tree species diversity. Novel multi‐dimensional canopy traits describing structural complexity, most notably canopy rugosity, were more strongly related to site NPP than were species diversity measures and other commonly characterized canopy structural features. The amount of variation in site‐level NPP explained by canopy rugosity alone was 83%, which was substantially greater than that explained individually by vegetation area index (31%) or Shannon's Index of species diversity (30%). Forests that were more structurally complex, had higher vegetation area indices, or were more diverse absorbed more light and used light more efficiently to power biomass production, but these relationships were most strongly tied to structural complexity. Implications for ecosystem modeling and management are wide‐ranging, suggesting structural complexity traits are broad, mechanistically‐robust indicators of NPP that, in application, could improve the prediction and management of temperate forest carbon sequestration. This article is protected by copyright. All rights reserved.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2019
    Description: Abstract Increased drought intensity and frequency due to climate change may reduce the abundance and activity of nitrogen (N2) fixing plants, which supply new N to terrestrial ecosystems. As a result, drought may indirectly reduce ecosystem productivity through its effect on the N cycle. Here, we manipulated growing season net rainfall across a series of plots in an early successional mesic deciduous forest to understand how drought affects the aboveground productivity of the N2‐fixing tree Robinia pseudoacacia and three co‐occurring non‐fixing tree species. We found that lower soil moisture was associated with reduced productivity of R. pseudoacacia but not of non‐fixing trees. As a result, the relative biomass and density of R. pseudoacacia declined in drier soils over time. Greater aboveground biomass of R. pseudoacacia was also associated with greater total soil N, extractable inorganic N, N mineralization rates, and productivity of non‐fixing trees. These soil N effects may reflect current N2 fixation by R. pseudoacacia saplings, or the legacy effect of former trees in the same location. Our results suggest that R. pseudoacacia promotes the growth of non‐fixing trees in early succession through its effect on the N cycle. However, the sensitivity of R. pseudoacacia to dry soils may reduce N2 fixation under scenarios of increasing drought intensity and frequency, demonstrating a mechanism by which drought may indirectly diminish potential forest productivity and recovery rate from disturbance. This article is protected by copyright. All rights reserved.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2019
    Description: Abstract Elucidating the variation of allocation pattern of ecosystem net primary productivity (NPP) and its underlying mechanisms are critically important for understanding the changes of aboveground and belowground ecosystem functions. Under optimal partitioning theory, plants should allocate more NPP to the organ that acquires the most limiting resource, and this expectation has been widely used to explain and predict NPP allocation under changing precipitation. However, confirmatory evidence for this theory has mostly come from observed spatial variation in the relationship between precipitation and NPP allocation across ecosystems, rather than directly from the influences of changing precipitation on NPP allocation within systems. We performed a six‐year five‐level precipitation manipulation experiment in a semiarid steppe to test whether changes in NPP allocation can be explained by the optimal partitioning theory, and how water requirement of plant community is maintained if NPP allocation is unaltered. The total 30 precipitation levels (five‐level × six‐year) were divided into dry, nominal and wet precipitation ranges, relative to historical precipitation variation over the past six decades. We found that NPP in both aboveground (ANPP) and belowground (BNPP) increased nonlinearly as precipitation decreased, while the allocation of NPP to BNPP (fBNPP) showed a concave quadratic relationship with precipitation. The declined fBNPP as precipitation increased in the dry range supported the optimal partitioning theory. However, in the nominal range, NPP allocation was not influenced by the changed precipitation; instead, BNPP was distributed more in the surface soil horizon (0‐10 cm) as precipitation increased, and conversely more in the deeper soil layers (10‐30 cm) as precipitation decreased. This response in root foraging appears to be a strategy to satisfy plant water requirements and partially explains the stable NPP allocation patterns. Overall, our results suggest that plants can adjust their vertical BNPP distribution in response to drought stress, and that only under extreme drought does the optimal partitioning theory strictly apply, highlighting the context dependency of the adaption and growth of plants under changing precipitation. This article is protected by copyright. All rights reserved.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2019
    Description: Abstract Microclimatic data is required for many problems in pure and applied ecology. This data includes above‐ground convective and radiative conditions as well as soil temperature and moisture. In cold regions, the connection between above‐ and below‐ground microclimates via snow cover is also critically important. Here I describe a data set of hourly microclimates for continental USA, simulated from the years 1979 to 2017 across a grid of 2287 locations approximately 60 km apart. The data were generated with the NicheMapR microclimate model, driven by 0.04° gridded daily meteorological forcing data (air temperature, wind speed, humidity, solar radiation, air pressure and rainfall). The above‐ground microclimate variables include horizontal plane solar radiation, solar zenith angle, sky temperature (from which down‐welling longwave radiation can be computed), air temperature, relative humidity and wind speed at 1 and 200 cm height, and snow depth. The below‐ground variables include soil temperature, pore humidity, soil moisture and soil water potential for 0, 2.5, 5, 10, 15, 20, 30, 50, 100, and 200 cm below‐ground. The computations are for four shade levels (0%, 50%, 75% and 90%). The predictions are validated against detailed soil temperature, soil moisture and snow observations and show enhanced performance over existing microclimatic data for the USA. The data set can be used for a wide variety of applications, including the computation of heat and water budgets of organisms, the potential for vegetation growth, and the computation of stress and growth indices. The use of daily forcing data also allows assessments of the consequences of extreme events including heat waves and drought. Example applications are provided for computing plant growth potential, lizard egg development and body temperature, and mammalian energy and water requirements. No copyright or proprietary restrictions are associated with the use of this data set other than citation of this Data Paper. This article is protected by copyright. All rights reserved.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2019
    Description: Abstract Mediterranean rear‐edge populations of Betula, located at the southwestern Eurasian margin of the distribution range, represent unique reservoirs of genetic diversity. However, increasing densities of wild ungulates, enhanced dryness, and wildfires threaten their future persistence. A historical perspective on the past responses of these relict populations to changing herbivory, fire occurrence and climatic conditions may contribute to assessing their future responses under comparable scenarios. We have reconstructed vegetation and disturbance (grazing, fire) history in the Cabañeros National Park (central‐southern Spain) using the paleoecological records of two small mires. We particularly focused on the historical range of variation in disturbance regimes, and the dynamics of rear‐edge Betula populations and herbivore densities. Changes in water availability, probably related to the North Atlantic Oscillation (NAO) index, and land‐use history have played a crucial role in vegetation shifts. Our data suggest that heathlands (mainly Erica arborea and E. scoparia) and Quercus woodlands dominated during dry phases while Sphagnum bogs and Betula stands expanded during wet periods. Betula populations survived past moderately dry periods but were unable to cope with enhanced land‐use, particularly increasing livestock raising since ~ 1100‐900 cal. BP (850‐1050 CE), and eventually underwent local extinction. High herbivore densities not only contributed to the Betula demise but also caused the retreat of Sphagnum bogs. Ungulate densities further rose at ~ 200‐100 cal. BP (1750‐1850 CE) associated with the historically documented intensification of land‐use around the Ecclesiastical Confiscation. However, herbivory reached truly unprecedented values only during the last decades, following rural depopulation and subsequent promotion of big game hunting. For the first time in temperate and Mediterranean Europe, we have used the abundances of fossil dung fungal spores to assess quantitatively that current high herbivore densities exceed the historical range of variation. In contrast, present fire activity lies within the range of variation of the last millennia, with fires (mainly human‐set) mostly occurring during dry periods. Our paleodata highlight the need of controlling the densities of wild ungulates to preserve ecosystem composition and functioning. We also urge to restore Betula populations in suitable habitats where they mostly disappeared because of excessive human activities. This article is protected by copyright. All rights reserved.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2019
    Description: Abstract Incidence, or compositional, matrices are generated for a broad range of research applications in biology. Zeta diversity provides a common currency and conceptual framework that links incidence‐based metrics with multiple patterns of interest in biology, ecology and biodiversity science. It quantifies the variation in species (or OTU) composition of multiple assemblages (or cases) in space or time, to capture the contribution of the full suite of narrow, intermediate and wide‐ranging species to biotic heterogeneity. Here we provide a conceptual framework for the application and interpretation of patterns of continuous change in compositional diversity using zeta diversity. This includes consideration of the survey design context, and the multiple ways in which zeta diversity decline and decay can be used to examine and test turnover in the identity of elements across space and time. We introduce the zeta ratio‐based retention rate curve to quantify rates of compositional change. We illustrate these applications using 11 empirical datasets from a broad range of taxa, scales and levels of biological organisation – from DNA molecules and microbes to communities and interaction networks – including one of the original data sets used to express compositional change and distance decay in ecology. We show (i) how different sample selection schemes used during the calculation of compositional change are appropriate for different data types and questions, (ii) how higher orders of zeta may in some cases better detect shifts and transitions, and (iii) the relative roles of rare versus common species in driving patterns of compositional change. By exploring the application of zeta diversity decline and decay, including the retention rate, across this broad range of contexts, we demonstrate its application for understanding continuous turnover in biological systems. This article is protected by copyright. All rights reserved.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2019
    Description: Abstract Plant invasion can significantly alter soil nutrient cycling of ecosystems. How these changes are linked to soil enzyme activities is still unknown, however, even though these are proximate agents of organic matter decomposition and nutrient release. We performed a meta‐analysis of 60 case studies examining responses of 10 unique soil enzymes to plant invasion, and tested whether invaded soils differed in their enzyme activities from uninvaded soils. We also examined whether increases in soil nutrient‐releasing enzyme activity were paralleled by enhanced soil nutrient availability after plant invasion. Overall, we found that plant invasion had significant impacts on the activities of 7 types of soil enzymes. Plant invasion had inconsistent impacts on C decomposing enzymes, but invaded sites had significantly higher activities of soil enzymes related to N‐ and P‐release than non‐invaded sites. Increases in nutrient‐releasing enzyme activity after plant invasion ranged from +23% to +69%, which potentially results in a linear increase of soil nutrient availability in response to enhanced enzyme activities. Invaded soils also had higher nutrient stocks and soil microbial biomass than uninvaded soils. Our results suggest that enhanced activity of soil nutrient‐releasing enzymes after plant invasion may accelerate nutrient cycling, potentially creating a nutrient‐rich soil environment that benefits invaders and promotes their persistence as invasive plants often appear to be more resource‐demanding and competitive than native species. This article is protected by copyright. All rights reserved.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2019
    Description: Abstract We developed a framework for the hierarchical pathways of bottom‐up (niche dimensionality) and top‐down control (herbivory) on biomass of stream algae via changes in guild composition (relative abundance of low profile, high profile, and motile guilds), species richness, and evenness. We further tested i) the contrasting predictions of resource competition theory vs. the benthic model of coexistence on how the number of added nutrients constrains species richness, ii) the relationship between species richness and evenness, and iii) the biodiversity‐ecosystem function paradigm. Implementing a combination of field and lab experiments that manipulated for the first time in benthic algae herbivory and/or niche dimensionality, i.e. the number of added nutrients (NAN), including nitrogen, phosphorus, iron, and manganese, we made the following discoveries. First, important predictors of guild composition were herbivory (field) and NAN (lab); of richness, NAN (field) and NAN and guild composition (lab); of evenness, guild composition (field and lab) and herbivory (field); and of biomass, guild composition, NAN, and richness + evenness (field and lab). Herbivory increased the proportions of the low profile and motile guilds but decreased the proportion of the high profile guild. In the absence of grazing, greater proportions of the high profile guild resulted in elevated richness and biomass but diminished evenness, whereas in the presence of grazing, these relationships generally disappeared. Second, both experiments confirmed the prediction of the benthic model that species richness increases with NAN—a pattern inconsistent with resource competition theory. Third, supplementation with manganese and/or iron increased algal richness, indicating that micronutrients, which have generally been overlooked in stream ecology, added dimensions to the algal niche. Fourth, the richness‐evenness relationship, observed only in the absence of herbivory, depended on the size of the species pool. It was positive at richness lower than 49 species (lab), implying complementarity and facilitation, while at higher richness (field and lab), this relationship was negative, consistent with negative interspecific interactions. Finally, the greater dependence of biomass production on guild composition and NAN than on richness and evenness suggests that more comprehensive, environmentally explicit, and trait‐based approaches are necessary for the study of the biodiversity‐ecosystem function paradigm. This article is protected by copyright. All rights reserved.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2019
    Description: Abstract In drylands, the coexistence of grasses and woody plants has been attributed to soil water resource partitioning. Soil texture and precipitation seasonality can influence the amount and distribution of water in the soil, and their interaction may play an important role in determining the relative importance of grasses and woody plants. We investigated the influence of this interaction on plant functional types across a broad range of precipitation regimes and soil textures in western North America by analyzing plant cover data collected at 2084 plots that included the widespread shrub big sagebrush (Artemisia tridentata Nutt.). We characterized how the significance of the inverse texture effect varies across soil conditions by quantifying relationships between precipitation and foliar cover on finer vs. coarser textured soils across a range of potential texture divisions represented by sand content. We found evidence of the inverse texture effect for every plant functional type (except for cheatgrass) that we examined with at least one component of precipitation (annual, warm, or cold season), and provide the first evidence for this effect in locations with cold season dominated precipitation regimes. The texture and precipitation combinations that exhibited the inverse texture effect varied with plant functional type, presumably due to effects of soil texture on water availability at different soil depths with season. Furthermore, we found an inverse texture effect that was remarkably similar for shrub cover with cold season precipitation and grass cover with warm season precipitation. These results provide new insight into how the inverse texture effect interacts with precipitation seasonality to influence plant functional type composition in drylands, and further suggest that quantifying the soil texture division at which the inverse texture effect is relevant under a given set of environmental conditions may provide support for the effect across dryland plant communities. This article is protected by copyright. All rights reserved.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2019
    Description: Abstract The microbes contained within free‐living organisms can alter host growth, reproduction, and interactions with the environment. In turn, processes occurring at larger scales determine the local biotic and abiotic environment of each host that may affect the diversity and composition of the microbiome community. Here, we examine variation in the diversity and composition of the foliar fungal microbiome in the grass host, Andropogon gerardii, across four mesic prairies in the central United States. Composition of fungal endophyte communities differed among sites and among individuals within a site, but was not consistently affected by experimental manipulation of nutrient supply to hosts (A. gerardii) or herbivore reduction via fencing. In contrast, mean fungal diversity was similar among sites but was limited by total plant biomass at the plot scale. Our work demonstrates that distributed experiments motivated by ecological theory are a powerful tool to unravel the multiscale processes governing microbial community composition and diversity.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2019
    Description: Abstract Lianas are more abundant in seasonal forests than in wetter forests and are thought to perform better than trees when light is abundant and water is limited. We tested the hypothesis that lianas perform better than trees during seasonal drought using a common garden experiment with 12 taxonomically diverse species (6 liana and 6 tree species) in 12 replicated plots. We irrigated six of the plots during the dry season for four years, while the remaining 6 control plots received only ambient rainfall. In year 5, we measured stem diameters for all individuals and harvested above‐ and belowground biomass for a subset of individuals to quantify absolute growth and biomass allocation to roots, stems, and leaves, as well as total root length and maximum rooting depth. We also measured rate of photosynthesis, intrinsic water use efficiency (iWUE), pre‐dawn and midday water potential, and a set of functional and hydraulic traits. During the peak of the dry season, lianas in control plots had 54% higher predawn leaf water potentials (ΨPD), and 45% higher photosynthetic rates than trees in control plots. By contrast, during the peak of the wet season, these physiological differences between lianas and trees become less pronounced and, in some cases, even disappeared. Trees had higher specific leaf area (SLA) than lianas; however, no other functional trait differed between growth forms. Trees responded to the irrigation treatment with 15% larger diameters and 119% greater biomass than trees in control plots. Liana growth, however, did not respond to irrigation; liana diameter and biomass were similar in control and irrigation plots, suggesting that lianas were far less limited by soil moisture than were trees. Contrary to previous hypotheses, lianas did not have deeper roots than trees; however, lianas had longer roots per stem diameter than did trees. Our results support the hypothesis that lianas perform better and experience less physiological stress than trees during seasonal drought, suggesting clear differences between growth forms in response to altered rainfall regimes. Ultimately, better dry‐season performance may explain why liana abundance peaks in seasonal forests compared to trees, which peak in abundance in less seasonal, wetter forests. This article is protected by copyright. All rights reserved.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2019
    Description: Abstract Climate change‐induced phenological shifts are ubiquitous and have the potential to disrupt natural communities by changing the timing of species interactions. Shifts in first and/or mean phenological date are well documented, but recent studies indicate that shifts in synchrony (individual variation around these metrics) can be just as common. However, we know little about how both types of phenological shifts interact to affect species interactions and communities. Here, we experimentally manipulated the hatching phenologies of two competing species of larval amphibians to address this conceptual gap. Specifically, we manipulated the relative mean hatching time (early, same, or late relative to competitor) and population synchrony (high, medium, or low levels of variation around the mean) in a full 3x3 factorial design to measure independent and interactive effects of phenological mean and population phenological synchrony on competitive outcomes. Our results indicate that phenological synchrony within a population strongly influences intraspecific competition by changing the density of individuals and relative strength of early vs. late arriving individuals. Individuals from high synchrony populations competed symmetrically whereas individuals from low synchrony populations competed asymmetrically. At the community scale, shifts in population phenological synchrony interact with shifts in phenological mean to strongly affect key demographic rates (survival, biomass export, per capita mass, and emergence timing). Furthermore, changes in mean timing of species interactions altered phenological synchrony within a population at the next life stage, and phenological synchrony at one life stage altered the mean timing of the next life stage. Thus, shifts in phenological synchrony within populations can not only alter species interactions but species interactions in turn can also drive shifts in phenology. This article is protected by copyright. All rights reserved.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2019
    Description: Abstract Pairwise interactions between species have both direct and indirect consequences that reverberate throughout the whole ecosystem. In particular, interaction effects may propagate in a spatial dimension, to localities connected by organismal movement. Here we study the propagation of interaction effects with a spatially explicit metacommunity model, where local sites are connected by dispersal, foraging, or by both types of movement. We show that indirect pairwise effects are, in most cases, of the same sign as direct effects if localities are connected by dispersing species. However, if foraging is prevalent, this correspondence is broken, and indirect effects between species often have a different sign than direct effects. This highlights the importance of indirect interactions across space and their inherent unpredictability in complex settings with species foraging across local patches. Further, the effect of a species over another in a local patch does not necessarily correspond to its effect at the metacommunity scale; this correspondence is again mediated by the type of movement across localities. Every species, despite their trophic position or spatial range, displays a non‐zero net effect over every other species in our model metacommunities. Thus we show that local dynamics and local interactions between species can trigger indirect effects all across the set of connected patches, and these effects have a distinct signature depending on whether the prevalent connection between patches is via dispersal or via foraging. However, the magnitude of this effect between any two species strongly decays with the distance between them. These theoretical results strengthen the importance of considering indirect effects across species at both the community and metacommunity levels, highlight the differences between types of movement across locations, and thus open novel avenues for the study of interaction effects in spatially explicit settings. This article is protected by copyright. All rights reserved.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2019
    Description: Abstract Biotic interactions play a critical role in mediating community responses to temporal environmental variation, but the importance of these effects relative to the direct effects of environmental change remains poorly understood, particularly in diverse forest communities. Here we combine a neighborhood modeling approach with insights from coexistence theory to assess the effects of temporal variation in species interactions and environmental conditions (e.g., precipitation, temperature and understory light availability) on seedling survival over nine census years in a subtropical forest. We find significant temporal shifts in the magnitude of neighborhood effects on both community‐wide and species‐level seedling survival (statistically significant random effects of neighborhood × year and neighborhood × species × year interactions). These results are consistent with the idea that environmental change will play a fundamental role on forest regeneration dynamics by altering biotic interactions at the neighborhood scale. Moreover, differences among species in response to neighbors over time contribute to a pattern of temporal decoupling of seedling survival between species, which can help to promote diversity in certain contexts. In separate analyses of multiple regression on distance matrices (MRM), altered interactions with neighbors are much stronger predictors of asynchronous seedling survival among species than the pure effects of climate and plant functional traits, explaining twice as much variation (43.9% vs. 22.2%). In sum, these results reveal that divergent species responses to interannual environmental variability detected are driven primarily by indirect effects mediated by changing biotic environments. This highlights the importance of including indirect effects from local biotic (neighborhood) interactions in forecasts of forest community responses to global change. This article is protected by copyright. All rights reserved.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2019
    Description: Abstract Biological nitrogen fixation is critical for the nitrogen cycle of tropical forests, yet we know little about the factors that control the microbial nitrogen‐fixers that colonize the microbiome of leaves and branches that make up a forest canopy. Forest canopies are especially prone to nutrient limitation because they are (1) disconnected from soil nutrient pools, and (2) often subject to leaching. Earlier studies have suggested a role of phosphorus and molybdenum in controlling biological N‐fixation rates, but experimental confirmation has hitherto been unavailable. We here present the results of a manipulation of canopy nutrient availability. Our findings demonstrate a primary role of phosphorus in constraining overall N‐fixation by canopy cyanobacteria, but also a secondary role of molybdenum in determining per‐cell fixation rates. A conservative evaluation suggests that canopy fixation can contribute to significant N fluxes at the ecosystem level, especially as bursts following atmospheric inputs of nutrient‐rich dust. This article is protected by copyright. All rights reserved.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2019
    Description: Abstract Population responses to environmental change depend on both the ecological interactions between species and the evolutionary responses of all species. In this study, we explore how evolution in prey, predators, or both species affect the responses of predator populations to a sustained increase in mortality. We use an eco‐evolutionary predator‐prey model to explore how evolution alters the predator extinction threshold (defined as the minimum mortality rate that prevents population growth at low predator densities) and predator hydra effects (increased predator abundance in response to increased mortality). Our analysis identifies how evolutionary responses of prey and predators individually affect the predator extinction threshold and hydra effects, and how those effects are altered by interactions between the evolutionary responses. Based on our theoretical results, we predict that it is common in natural systems for evolutionary responses in one or both species to allow predators to persist at higher mortality rates than would be possible in the absence of evolution (i.e., evolution increases the predator mortality extinction threshold). We also predict that evolution‐driven hydra effects occur in a minority of natural systems, but not rare. We revisited published eco‐evolutionary models and found that evolution causes hydra effects and increases the predator extinction threshold in many studies, but those effects have been overlooked. We discuss the implications of these results for species conservation, predicting population responses to environmental change, and the possibility of evolutionary rescue.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2019
    Description: Abstract We have recently observed a gelatinous coat surrounding the oocytes of Cerastoderma edule within which the development of early larval stages takes place (Fig. 1). Although variously‐coated oocytes are common in the wider marine world, and among other molluscs, most bivalve researchers have never encountered such a thing. And when they do, many simply ignore it, while others mis‐label it as a ‘perivitteline space’ (Gustafson and Reid 1986, Kandeel et al. 2013). Of course, the immediate question is: ‘why should we care?’. We should care first because of the ecological and evolutionary lessons and perspectives this feature holds. And we should care because it tells us something very important about how the process of science funding can shape our view of the natural world. This article is protected by copyright. All rights reserved.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2019
    Description: Abstract Variation in life‐history strategies can affect metapopulation dynamics and consequently the composition and diversity of communities. However, datasets that allow for the full range of species turnover from colonization to extinction over relevant time periods are limited. The late Quaternary record provides unique opportunities to explore the traits that may have influenced interspecific variation in responses to past climate warming, in particular the rate at which species colonized newly suitable habitat or went locally extinct from degrading habitat. We controlled for differences in species climate niches in order to predict expected colonization and extinction sequences recorded in packrat middens from 15 localities in the Mohave, Sonoran, and Chihuahuan deserts of North America. After accounting for temperature niche differences, we tested the hypotheses that dispersal syndrome (none, wind, vertebrate), growth form (herb, shrub, tree) and seed mass mediated variation in postglacial colonization lags among species, whereas clonality (clonal, non‐clonal), growth form and seed mass affected extinction lags. Growth form and dispersal syndrome interactively affected colonization lags, where herbaceous species lacking long‐distance dispersal mechanisms exhibited lags that exceeded those of woody, wind or vertebrate‐dispersed species by an average of 2‐5 thousand years. Growth form and seed mass interactively affected extinction lags, with very small‐seeded shrubs persisting for 4‐8 thousand years longer than other functional groups. Taller, vertebrate‐dispersed plants have been shown in other studies to disperse farther than shorter plants without specialized dispersal mechanisms. We found that variation along this axis of dispersal syndromes resulted in dramatic differences in colonization rates in response to past climate change. Very small seeded shrubs may have a unique combination of long vegetative and seed bank lifetimes that may allow them to persist for long periods despite declines in habitat condition. This study indicates that readily measurable traits may help predict which species will be more or less sensitive to future climate change, and inform interventions that can stabilize and promote at‐risk populations. This article is protected by copyright. All rights reserved.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2019
    Description: Abstract The generality of ecological patterns depends inextricably on the scale at which they are examined. We investigated patterns of crab distribution and the relationship between crabs and vegetation in salt marshes at multiple scales. By using consistent monitoring protocols across 15 US National Estuarine Research Reserves, we were able to synthesize patterns from the scale of quadrats to the entire marsh landscape to regional and national scales. Some generalities emerged across marshes from our overall models, and these are useful for informing broad coastal management policy. We found that crab burrow distribution within a marsh could be predicted by marsh elevation, distance to creek and soil compressibility. While these physical factors also affected marsh vegetation cover, we did not find a strong or consistent overall effect of crabs at a broad scale in our multivariate model, though regressions conducted separately for each site revealed that crab burrows were negatively correlated with vegetation cover at 4/15 sites. This contrasts with recent smaller‐scale studies and meta‐analyses synthesizing such studies that detected strong negative effects of crabs on marshes, likely because we sampled across the entire marsh landscape, while targeted studies are typically limited to low‐lying areas near creeks, where crab burrow densities are highest. Our results suggest that sea‐level rise generally poses a bigger threat to marshes than crabs, but there will likely be interactions between these physical and biological factors. Beyond these generalities across marshes, we detected some regional differences in crab community composition, richness and abundance. However, we found striking differences among sites within regions, and within sites, in terms of crab abundance and relationships to marsh integrity. Although generalities are broadly useful, our findings indicate that local managers cannot rely on data from other nearby systems, but rather need local information for developing salt marsh management strategies. This article is protected by copyright. All rights reserved.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2019
    Description: Abstract Nitrogen (N) and phosphorus (P) are essential components of the basic cell structure of plants. In particular, leaf N and P concentrations and their stoichiometric relationship largely determine the photosynthesis, growth, reproduction and eco‐physiological processes of plants. As important leaf functional traits, leaf N and P concentrations and their stoichiometric relationship play vital roles in indicating plant nutrient‐use strategies and their evolution in terrestrial ecosystems. They also influence physiological and ecological processes in leaves (e.g., growth rate and energy metabolism) and productivity (e.g., net primary production and net ecosystem production) at ecosystem level. However, the lack of a comprehensive dataset containing paired leaf N and P concentration records has distinctly limited research on nutrient stoichiometry and leaf functional traits. Here, we provide a global database of paired records of leaf N and P concentrations. A total of 11,354 individual records were acquired spanning 1,291 sites worldwide, including 201 families, 1,265 genera and 3,227 species. The records span a latitudinal range of 45.28 °S to 68.35 °N and a longitudinal range of 155.5 °W to 168.0 °E. The variables provided for each individual record are: (1) geographical location (longitude, latitude and altitude); (2) matched leaf N and P concentrations and N:P ratio; (3) taxonomic information (family, genera and species); (4) life form (angiosperm/gymnosperm, monocotyledonous/dicotyledonous and woody plants/herbaceous plants; note that woody plants were further divided into coniferous, deciduous broad‐leaved and evergreen broad‐leaved woody species, and that herbaceous plants were further divided into annual and perennial species); (5) mean annual temperature (MAT) and mean annual precipitation (MAP); and (6) soil N and P concentrations and pH value in some records. To date, this database is the world's largest database of paired leaf N and P concentrations, which contains matched information of geographical location, environmental factors, and taxa. We believe that the database will play a fundamental and crucial part in ecological stoichiometric studies. There are no copyright restrictions. When using this database, we kindly request that you cite this article, respecting all the authors’ hard work during sample collection and data compilation. This article is protected by copyright. All rights reserved.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2019
    Description: Abstract Sneaky mating tactic has fascinated scientists for decades, and the mechanisms behind its evolution remains unclear. In many taxa, sneaker males are thought to outsmart the dominant males because they can secure fertilization of eggs either through pre‐copulatory or post‐copulatory processes (Shuster and Wade 2003). For instance, sneaker males of a fish mimic the female's appearance to dupe the dominant male (Todd et al. 2017) whereas in some insects sneaker males steal females from male's territories and force copulation (Cordero and Andrés 2002). This article is protected by copyright. All rights reserved.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2019
    Description: Abstract Seed mucilage, a coating on seeds or fruit that becomes slimy and sticky when wet, has evolved convergently many times across plants. One common consequence of having seed mucilage is that sand and dirt particles stick to wet seeds and remain tightly bound to the seed surface after the mucilage dries. Here, we test the hypothesis that a mucilage‐bound sand coating protects the seed from seed predators; either as a physical barrier or by reducing apparency of the seed (i.e., camouflage). We experimentally manipulated the sand coating on seeds of 53 plant species of 13 families and assayed the defensive benefit of the sand coating in feeding “depots” near harvester ant nests in California's Central Valley. Consistent with a defensive function, sand coating reduced ant predation on seeds in 48 of the 53 species examined. To test whether this striking benefit was due to reduced apparency, we conducted an addition experiment using flax seeds in which we factorially manipulated the color of both the background substrate and the sand coating, creating visually apparent and unapparent seeds. Our results did not support the reduced apparency hypothesis; seeds coated in background‐matched sand were removed at the same rate as seeds coated in unmatched sand. The defensive benefit of a sand coating was not well‐predicted by seed mass, entrapped sand mass, or sand mass scaled by seed mass. Together, our results demonstrate that seed mucilage is a phylogenetically widespread and effective seed defensive trait and point to the physical barrier, not reduced apparency, as a mechanism.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2019
    Description: Ecology, EarlyView.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2019
    Description: Ecology, Volume 100, Issue 6, June 2019.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2019
    Description: Ecology, Volume 100, Issue 6, June 2019.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2019
    Description: Abstract To understand how migratory behavior evolved and to predict how migratory species will respond to global environmental change it is important to quantify the fitness consequences of intra‐ and inter‐individual variation in migratory behavior. Intra‐individual variation includes behavioral responses to changing environmental conditions and hence behavioral plasticity in the context of novel or variable conditions. Inter‐individual variation determines the degree of variation on which selection can act and the rate of evolutionary responses to changes in average and extreme environmental conditions. Here we focus on variation in the partial migratory behavior of giant Galápagos tortoises (Chelonoidis spp.) and its energetic consequences. We evaluate the extent and mechanisms by which tortoises adjust migration timing in response to varying annual environmental conditions, and integrate movement data within a bioenergetic model of tortoise migration to quantify the fitness consequences of migration timing. We find strong inter‐individual variation in the timing of migration, which was not affected by environmental conditions prevailing at the time of migration but rather by average expectations estimated from multi‐annual averaged conditions. This variation is associated with an average annual loss in efficiency of ~15% relative to optimal timing based on year‐specific conditions. These results point towards a limited ability of tortoises to adjust the timing of their migrations based on prevailing (and, by extension, future) conditions, suggesting that the adaptability of tortoise migratory behavior to changing conditions is predicated more by past “normal” conditions than responses to prevailing, changing conditions. Our work offers insights into the level of environmental‐tuning in migratory behavior and a general framework for future research across taxa.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2019
    Description: Abstract The spatial relationship between predator and prey is often conceptualized as a behavioral response race, in which prey avoid predators while predators track prey. Limiting habitat types can create spatial anchors for prey or predators, influencing the likelihood that the predator or prey response will dominate. Joint spatial anchors emerge when predator and prey occupy similar feeding habitat domains and risk and reward become spatially conflated, confusing predictions of which player will win the space race. These spatial dynamics of risk‐foraging trade‐offs are often obscured by habitat heterogeneity and community complexity in large vertebrate systems, fueling ambiguity regarding the generality of predictions from predator–prey theory. To test how habitat distribution influences the predator–prey space race, we examine correlation in puma and vicuña habitat selection and space use at two sites, one of which generates a distinct risk–foraging trade‐off at a joint spatial anchor. The distribution of vegetation, which serves as both forage for vicuñas and stalking cover for pumas, differs between the sites; the llano contains a single central meadow that acts as a joint spatial anchor, while the canyon is characterized by more heterogeneous vegetation. Puma–vicuña habitat selection correlation was positive in the llano and negative in the canyon, and similarly, utilization distributions were more strongly correlated in the llano than the canyon. Vicuña locations occurred at higher values of puma habitat selection and utilization in the llano than in the canyon. Similarly, puma locations in the llano occurred at higher values of vicuña habitat selection and utilization than in the canyon. Although pumas consistently selected for and utilized vegetative and topographic cover regardless of habitat distribution, vicuñas only selected against vegetation in the heterogeneous canyon site, reducing spatial correlation with pumas. Our work suggests a joint spatial anchor favors pumas in the space race due to the inability for vicuñas to avoid crucial foraging habitat. The outcome of the predator–prey space race appears to be strongly informed by the distribution of habitat, whereby corresponding predictability of predator and prey favors predators in the spatial game.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...