ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (2,698)
  • Wiley  (2,698)
  • American Association for the Advancement of Science
  • American Chemical Society
  • Annual Reviews
  • Beilstein-Institut
  • Fuji Technology Press
  • The Royal Society
  • Wiley-Blackwell
  • 2015-2019  (1,511)
  • 1990-1994
  • 1980-1984  (972)
  • 1970-1974
  • 1950-1954  (215)
  • 1940-1944
  • 2016  (1,511)
  • 1983  (240)
  • 1982  (270)
  • 1981  (251)
  • 1980  (211)
  • 1953  (121)
  • 1950  (94)
  • Ecology  (575)
  • Ecological Applications  (330)
  • 6124
  • 8987
  • Biology  (2,698)
  • Sociology
  • Geography
  • Computer Science
  • Technology
Collection
  • Articles  (2,698)
Publisher
  • Wiley  (2,698)
  • American Association for the Advancement of Science
  • American Chemical Society
  • Annual Reviews
  • Beilstein-Institut
  • +
Years
  • 2015-2019  (1,511)
  • 1990-1994
  • 1980-1984  (972)
  • 1970-1974
  • 1950-1954  (215)
  • +
Year
Topic
  • Biology  (2,698)
  • Sociology
  • Geography
  • Computer Science
  • Technology
  • 1
    Publication Date: 2016-07-17
    Description: Bacteria are essential for many ecosystem services but our understanding of factors controlling their functioning is incomplete. While biodiversity has been identified as an important driver of ecosystem processes in macrobiotic communities, we know much less about bacterial communities. Due to the high diversity of bacterial communities, high functional redundancy is commonly proposed as explanation for a lack of clear effects of diversity. The generality of this claim has, however, been questioned. We present the results of an outdoor dilution-to-extinction experiment with four lake bacterial communities. The consequences of changes in bacterial diversity in terms of effective number of species, phylogenetic diversity and functional diversity were studied for (i) bacterial abundance, (ii) temporal stability of abundance, (iii) nitrogen concentration, and (iv) multifunctionality. We observed a richness gradient ranging from 15 to 280 operational taxonomic units. Individual relationships between diversity and functioning ranged from negative to positive depending on lake, diversity dimension and aspect of functioning. Only between phylogenetic diversity and abundance did we find a statistically consistent positive relationship across lakes. A literature review of 24 peer-reviewed studies that used dilution-to-extinction to manipulate bacterial diversity corroborated our findings: about 25% found positive relationships. Combined, these results suggest that bacteria-driven community functioning is relatively resistant to reductions in diversity. This article is protected by copyright. All rights reserved.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-07-23
    Description: The degree of ecological specialization plays a crucial role in shaping the structure and functioning of communities. However, comparing specialization within and among groups of organisms is complicated due to methodological issues but also by conceptual and terminological inconsistencies. Environmental predictability has been considered a key determinant of specialization though empirical evidence is still limited. Fungi and their insect consumers provide a poorly studied but promising system to measure host specialization and test the predictability hypothesis. In this study we systematically sampled mushrooms in North European boreal forest, and reared total samples of fungivores colonizing the fruitbodies. Due to the unpredictable nature of mushrooms as a resource, low levels of host specialization can be predicted for these insects which have indeed widely been considered polyphagous. Contrary to expectations, majority of the studied fungus gnats were found not to exploit their host taxa indiscriminately. Not only were some mushroom taxa never colonised, but also the infestation rate of acceptable hosts differed in most of these fungivores. Gnat species themselves formed continua with respect to the estimates of the degree of specialization, derived from parametric individual-based analyses of presence-absence data. In most cases, host use was best explained by models in which the hosts were classified at genus level, with limited support to specialization to particular host species, families or orders. Indeed, most of the common fungivores appeared to preferentially use various species from one or a few mushroom genera while occasionally feeding on members of other host taxa. This pattern has likely evolved as a compromise between selective forces stemming from host unpredictability, and taxon-specific chemical profiles of the mushrooms. Our study highlights the multidimensional nature of ecological specialization: a high number of acceptable hosts does not preclude considerable discrimination among members of the available resource pool. Such situations can only be revealed by individual-based analyses capable of capturing differences in partner-to-partner interaction intensities. This article is protected by copyright. All rights reserved.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-07-23
    Description: Prey at risk of predation may experience stress and respond physiologically by altering their metabolic rates. Theory predicts that such physiological changes should alter prey nutrient demands from N-rich to C-rich macronutrients and shift the balance between maintenance and growth/reproduction. Theory further suggests that for ectotherms, temperature stands to exacerbate this stress. Yet, the interactive effects of predation stress and temperature stress on diet, metabolism, and survival of ectotherms are not well known. This knowledge gap was addressed with a laboratory study in which wild juvenile grasshoppers were collected, assigned to one of three groups, and raised at three different temperatures. All grasshoppers had access to equal quantities of two diets composed of opposite carbohydrate:protein ratios. Half of the individuals in each temperature group were exposed to predation risk cues from spider predators, while the other half were kept in risk free conditions. Grasshoppers consumed more carbohydrates when exposed to predation risk, but consumption favored greater protein intake as temperature increased. Moreover, the difference in carbohydrate intake between risk cue and risk free treatments diminished as temperature increased. Furthermore, variability between individual consumption patterns both within and between treatments decreased markedly as temperature increased, suggesting that higher temperatures promote more consistent individual consumption behaviors. Grasshoppers grew faster and larger as temperature increased, which translated into higher survival rates at higher temperatures. Warmer grasshoppers also did not alter their metabolic rates in response to predation risk cues, in contrast to colder grasshoppers. Digestive efficiency increased with temperature as well, further indicating that lower temperatures were much more stressful than higher temperatures for grasshoppers. The study shows that physiological responses of ectothermic herbivores to predation stress are highly plastic and temperature dependent, with higher temperatures promoting increased protein intake, growth, development, survival, and digestive efficiency relative to colder temperatures. These findings help to reconcile why dietary responses (proportion of protein vs. carbohydrate intake) to predation stress may vary among different prey taxa studied previously. This article is protected by copyright. All rights reserved.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-07-23
    Description: Contradictory evidence from biogeomorphological studies has increased the debate on the extent of lichen contribution to differential rock surface weathering in both natural and cultural settings. This study, undertaken in Côa Valley Archaeological Park, aimed at evaluating the effect of rock surface orientation on the weathering ability of dominant lichens. Hyphal penetration and oxalate formation at the lichen-rock interface were evaluated as proxies of physical and chemical weathering, respectively. A new protocol of pixel-based supervised image classification for the analysis of periodic acid-Schiff stained cross-sections of colonized schist revealed that hyphal spread of individual species was not influenced by surface orientation. However, hyphal spread was significantly higher in species dominant on north-west facing surfaces. An apparently opposite effect was noticed in terms of calcium oxalate accumulation at the lichen-rock interface, detected by Raman spectroscopy and complementary X-ray microdiffraction on south-east facing surfaces only. These results suggest that lichen-induced physical weathering may be most severe on north-west facing surfaces by means of an indirect effect of surface orientation on species abundance, and thus dependent on the species, whereas lichen-induced chemical weathering is apparently higher on south-east facing surfaces and dependent on micro-environmental conditions, giving only weak support to the hypothesis that lichens are responsible for the currently observed pattern of rock-art distribution in Côa Valley. Assumptions about the drivers of open-air rock-art distribution patterns elsewhere should also consider the micro-environmental controls of lichen-induced weathering, to avoid biased measures of lichen contribution to rock-art deterioration. This article is protected by copyright. All rights reserved.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-07-27
    Description: Fire plays an important role in structuring vegetation in fire-prone regions worldwide. Progress has been made towards documenting the effects of individual fire events and fire regimes on vegetation structure; less is known of how different fire history attributes (e.g., time-since-fire, fire frequency) interact to affect vegetation. Using the temperate eucalypt ‘foothill’ forests of south-eastern Australia as a case-study system, we examine two hypotheses about such interactions: 1) that post-fire vegetation succession (e.g., time-since-fire effects) is influenced by other fire regime attributes, and 2) that the severity of the most recent fire overrides the effect of preceding fires on vegetation structure. Empirical data on vegetation structure were collected from 540 sites distributed across central and eastern Victoria, Australia. Linear mixed models were used to examine these hypotheses, and determine the relative influence of fire and environmental attributes on vegetation structure. Fire history measures, particularly time-since-fire, affected several vegetation attributes including ground and canopy strata; others such as low and sub-canopy vegetation were more strongly influenced by environmental characteristics like rainfall. There was little support for the hypothesis that post-fire succession is influenced by fire history attributes other than time-since-fire: only canopy regeneration was influenced by another variable (‘fire type’, representing severity). Our capacity to detect an overriding effect of the severity of the most recent fire was limited by a consistently weak effect of preceding fires on vegetation structure. Overall, results suggest the primary way that fire affects vegetation structure in foothill forests is via attributes of the most recent fire, both its severity and time since its occurrence: other attributes of fire regimes (e.g., fire interval, frequency) have less influence. The strong effect of environmental drivers such as rainfall and topography on many structural features show that foothill forest vegetation is also influenced by factors outside human control. While fire is amenable to human management, results suggest that at broad scales, structural attributes of these forests are relatively resilient to the effects of current fire regimes. Nonetheless, the potential for more frequent severe fires at short intervals, associated with a changing climate and/or fire management, warrant further consideration. This article is protected by copyright. All rights reserved.
    Print ISSN: 1051-0761
    Electronic ISSN: 1939-5582
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-07-27
    Description: Integral projection models (IPMs) have a number of advantages over matrix-model approaches for analyzing size-structured population dynamics, because the latter require parameter estimates for each age or stage transition. However, IPMs still require appropriate data. Typically they are parameterized using individual-scale relationships between body size and demographic rates, but these are not always available. Here we present an alternative approach for estimating demographic parameters from time series of size-structured survey data using a Bayesian state-space IPM (SSIPM). By fitting an IPM in a state-space framework, we estimate unknown parameters and explicitly account for process and measurement error in a dataset to estimate the underlying process model dynamics. We tested our method by fitting SSIPMs to simulated data; the model fit the simulated size distributions well and estimated unknown demographic parameters accurately. We then illustrated our method using 9 years of annual surveys of the density and size distribution of two fish species (blue rockfish, Sebastes mystinus , and gopher rockfish, S. carnatus ) at seven kelp forest sites in California. The SSIPM produced reasonable fits to the data, and estimated fishing rates for both species that were higher than our Bayesian prior estimates based on coast-wide stock assessment estimates of harvest. That improvement reinforces the value of being able to estimate demographic parameters from local-scale monitoring data. We highlight a number of key decision points in SSIPM development (e.g., open vs. closed demography, number of particles in the state-space filter) so that users can apply the method to their own datasets. This article is protected by copyright. All rights reserved.
    Print ISSN: 1051-0761
    Electronic ISSN: 1939-5582
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-07-27
    Description: Extensive outbreaks of bark beetles have killed trees across millions of hectares of forests and woodlands in western North America. These outbreaks have led to spirited scientific, public and policy debates about consequential increases in fire risk, especially in the wildland-urban interface (WUI), where homes and communities are at particular risk from wildfires. At the same time, large wildfires have become more frequent across this region. Widespread expectations that outbreaks increase extent, severity and/or frequency of wildfires are based partly on visible and dramatic changes in foliar moisture content and other fuel properties following outbreaks, as well as associated modeling projections. A competing explanation is that increasing wildfires are driven primarily by climatic extremes, which are becoming more common with climate change. However, the relative importance of bark beetle outbreaks versus climate on fire occurrence has not been empirically examined across very large areas and remains poorly understood. The most extensive outbreaks of tree-killing insects across the western United States have been of mountain pine beetle (MPB; Dendroctonus ponderosae ), which have killed trees over 〉 650,000 km 2 , mostly in forests dominated by lodgepole pine ( Pinus contorta ). Here we show that outbreaks of MPB in lodgepole pine forests of the western United States have been less important than climatic variability for the occurrence of large fires over the past 29 years. In lodgepole pine forests in general, as well as those in the WUI, occurrence of large fires was determined primarily by current and antecedent high temperatures and low precipitation but was unaffected by preceding outbreaks. Trends of increasing co-occurrence of wildfires and outbreaks are due to a common climatic driver rather than interactions between these disturbances. Reducing wildfire risk hinges on addressing the underlying climatic drivers, rather than treating beetle-affected forests. This article is protected by copyright. All rights reserved.
    Print ISSN: 1051-0761
    Electronic ISSN: 1939-5582
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-07-27
    Description: The majority of humanity now lives in cities or towns, with this proportion expected to continue increasing for the foreseeable future. As novel ecosystems, urban areas offer an ideal opportunity to examine multi-scalar processes involved in community assembly as well as the role of human activities in modulating environmental drivers of biodiversity. Although ecologists have made great strides in recent decades at documenting ecological relationships in urban areas, much remains unknown, and we still need to identify the major ecological factors, aside from habitat loss, behind the persistence or extinction of species and guilds of species in cities. Given this paucity of knowledge, there is an immediate need to facilitate collaborative, interdisciplinary research on the patterns and drivers of biodiversity in cities at multiple spatial scales. In this review, we introduce a new conceptual framework for understanding the filtering processes that mold diversity of urban floras and faunas. We hypothesize that the following hierarchical series of filters influence species distributions in cities: 1) regional climatic and biogeographical factors; 2) human facilitation; 3) urban form and development history; 4) socioeconomic and cultural factors; and 5) species interactions. In addition to these filters, life history and functional traits of species are important in determining community assembly and act at multiple spatial scales. Using these filters as a conceptual framework can help frame future research needed to elucidate processes of community assembly in urban areas. Understanding how humans influence community structure and processes will aid in the management, design, and planning of our cities to best support biodiversity. This article is protected by copyright. All rights reserved.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-07-27
    Description: Extensive mortality of whitebark pine, beginning in the early to mid-2000s, occurred in the Greater Yellowstone Ecosystem (GYE) of the western US, primarily from mountain pine beetle but also from other threats such as white pine blister rust. The climatic drivers of this recent mortality and the potential for future whitebark pine mortality from mountain pine beetle are not well understood, yet are important considerations in whether to list whitebark pine as a threatened or endangered species. We sought to increase the understanding of climate influences on mountain pine beetle outbreaks in whitebark pine forests, which are less well understood than in lodgepole pine, by quantifying climate-beetle relationships, analyzing climate influences during the recent outbreak, and estimating the suitability of future climate for beetle outbreaks. We developed a statistical model of the probability of whitebark pine mortality in the GYE that included temperature effects on beetle development and survival, precipitation effects on host tree condition, beetle population size, and stand characteristics. Estimated probability of whitebark pine mortality increased with higher winter minimum temperature, indicating greater beetle winter survival; higher fall temperature, indicating synchronous beetle emergence; lower two-year summer precipitation, indicating increased potential for host tree stress; increasing beetle populations; stand age; and increasing percent composition of whitebark pine within a stand. The recent outbreak occurred during a period of higher-than-normal regional winter temperatures, suitable fall temperatures, and low summer precipitation. In contrast to lodgepole pine systems, area with mortality was linked to precipitation variability even at high beetle populations. Projections from climate models indicate future climate conditions will likely provide favorable conditions for beetle outbreaks within nearly all current whitebark pine habitat in the GYE by the middle of this century. Therefore, when surviving and regenerating trees reach ages suitable for beetle attack, there is strong potential for continued whitebark pine mortality due to mountain pine beetle. This article is protected by copyright. All rights reserved.
    Print ISSN: 1051-0761
    Electronic ISSN: 1939-5582
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2016-07-27
    Description: The main goal of this study is to create a database that ultimately serves further studies on riparian vegetation and flow response guilds in the boreal region and on transferability of results across different regions. For this aim we compiled traits for all woody riparian species in northern Sweden that, directly or indirectly, underlie their responses to hydrological and hydraulic conditions, between October 2012 and April 2015. Consulted sources of information were diverse, ranging from scientific to informative and whose accuracy might or might not be verified. They were focused on particular or several traits and species from concrete areas to a worldwide perspective. Sources were characterized by different degrees of accessibility and showed a wide variety of descriptions, categorical and ordinal classifications, and numerical information for each trait. Our effort was to synthesize information for each trait from all sources into the common frame of our own database, following own defined criteria so that comparisons between species are congruent. Therefore, this data set is unique in that it comprehensively combines and homogenizes morphological, phenological, reproductive and ecological data for 59 woody, riparian, boreal species and from 118 sources of information, that would otherwise be scattered and hardly available. This article is protected by copyright. All rights reserved.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2016-07-28
    Description: The prediction of mosquito abundance is of central interest in addressing mosquito population dynamics and in forecasting the associated emerging and re-emerging diseases. However, little work has focused on the systematic evaluation of how well adult mosquito abundance can be predicted as a function of observational resolutions, aggregation scales, and prediction lead time. Here we use a state space reconstruction (SSR) approach to compare the predictability of mosquito population dynamics at weekly, biweekly, and monthly scales. We focus on the analysis of Aedes vexans and Culiseta melanura populations monitored in Brunswick County (NC – USA) and find that prediction over a 7-day lead time is improved when daily observations are used, compared to the commonly used once-per-week sample. Our results demonstrate that daily observations of mosquito abundance contribute to improving mosquito predictability in two ways: (1) daily observations better capture fluctuations over short time scales, which are missed when sampling at coarser resolutions, (2) the aggregation of daily abundance observations reduces the impact of noise, thereby increasing the predictability of mosquito population dynamics as the aggregation scale is increased. We show that the evaluation of population dynamical models based on observed and predicted abundance can lead to a spuriously high apparent performance, due to the high auto-correlation in the observations used to update the model state at each successive time step. We show that the comparison of predicted and observed population change, expressed through per capita growth rates, leads to a more informative performance measure. This article is protected by copyright. All rights reserved.
    Print ISSN: 1051-0761
    Electronic ISSN: 1939-5582
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2016-07-29
    Description: Size variation within a population can influence the structure of ecosystem interactions, because ecological performance differs between individuals of different sizes. Although the impact of size variation in a predator species on the structure of interactions is well understood, our knowledge about how size variation in a prey species might modify the interactions between predators and prey is very limited. Here, by examining the interactions between predatory Hynobius retardatus salamander larvae and their prey, Rana pirica frog tadpoles, we investigated how large prey individuals affect the predation mortality of small prey conspecifics. First, in an experiment conducted in a field pond in which we manipulated the presence of salamanders and large tadpoles (i.e., large enough to protect them against salamander predation) with small tadpoles, we showed that in the presence of large tadpoles the mortality of small tadpoles from salamander predation was increased. On the basis of our observations of the activity of individuals, we hypothesized that active large tadpoles caused physical disturbances, which in turn caused the small tadpoles to move, and thus increased their encounter frequency with the predatory salamanders. To test this hypothesis, we conducted a laboratory experiment in small tanks with three players (i.e., one salamander as predator, one small tadpole as focal prey, and either a small or a large tadpole as the prospective movement inducer). In each tank, we manipulated the presence or absence of a movement inducer, and, when present, its size (large or small) and access (caged or uncaged) to the focal prey. In the presence of a large, uncaged movement inducer, the focal prey was more active and suffered from higher predation mortality compared with the other treatments, because the large movement inducer (unlike a small movement inducer) moved actively and, when uncaged, could stimulate movement of the focal prey through direct contact. The results indicated that high activity of large prey individuals and the resulting behavioral interactions with small conspecifics via direct contact indirectly increased the mortality of the small prey. This article is protected by copyright. All rights reserved.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2016-07-29
    Description: The phyllosphere (comprising the leaf surface and interior) is one of the world's largest microbial habitats and is host to an abundant and diverse array of bacteria. Nonetheless, the degree to which bacterial communities are benign, harmful, or beneficial to plants in situ is unknown. We tested the hypothesis that the net effect of reducing bacterial abundance and diversity would vary substantially among host species (from harmful to beneficial) and this would be strongly mediated by soil resource availability. To test this, we monitored tree seedling growth responses to commercial antibiotics among replicated resource supply treatments (N, P, K) in a tropical forest in Panama for 29 months. We applied either antibiotics or control water to replicated seedlings of five common tree species ( Alseis blackiana , Desmopsis panamensis , Heisteria concinna , Sorocea affinis , and Tetragastris panamensis ). These antibiotic treatments significantly reduced both the abundance and diversity of bacteria epiphytically as well as endophytically. Overall, the effect of antibiotics on performance was highly host specific. Applying antibiotics increased growth for three species by as much as 49% ( Alseis , Heisteria , and Tetragastris ), decreased growth for a fourth species by nearly 20% ( Sorocea ), and had no impact on a fifth species ( Desmopsis ). Perhaps more importantly, the degree to which foliar bacteria were harmful or not varied with soil resource supply. Specifically, applying antibiotics had no effect when potassium was added but increased growth rate by almost 40% in the absence of potassium. Alternatively, phosphorus enrichment caused the effect of bacteria to switch from being primarily beneficial to harmful or vice versa, but this depended entirely on the presence or absence of nitrogen enrichment ( i.e ., important and significant interactions). Our results are the first to demonstrate that the net effect of reducing the abundance and diversity of bacteria can have very strong positive and negative effects on seedling performance. Moreover, these effects were clearly mediated by soil resource availability. Though speculative, we suggest that foliar bacteria may interact with soil fertility to comprise an important, yet cryptic dimension of niche differentiation, which can have important implications for species coexistence. This article is protected by copyright. All rights reserved.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2016-08-02
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2016-08-02
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2016-08-02
    Description: Emerging aquatic insects from streams are important food sources for riparian predators, yet their availability is seasonally limited. Spatial heterogeneity in stream water temperature was found to spatially desynchronize the emergence timing of aquatic insects, and prolong their flight period, potentially enhancing consumer growth. While a mayfly Ephemerella maculata emergence lasted for 12-22 days in local sites along a river, mayflies emerged 19 days earlier from warmer than cooler sites. Therefore, the overall emergence of E. maculata from the river lasted for 37 days, and adult swarms were observed over that same period in an adjacent reproductive habitat. A feeding experiment with the riparian spider Tetragnatha versicolor showed that a prolonged subsidy, as would occur in a heterogeneous river, led to higher juvenile growth than a synchronous pulsed subsidy of equal total biomass, as would typify a more homogeneous river. Since larger female adult spiders produce more eggs, spiders that received prolonged subsidy as juveniles should achieve higher fecundity. Restoring spatial heterogeneity in streams may benefit not only stream communities but also riparian predators. This article is protected by copyright. All rights reserved.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2016-08-05
    Description: Climate conditions, such as temperature or precipitation averaged over several decades strongly affect species distributions, as evidenced by experimental results and a plethora of models demonstrating statistical relations between species occurrences and long-term climate averages. However, long-term averages can conceal climate changes that have occurred in recent decades and may not capture actual species occurrence well because the distributions of species, especially at the edges of their range, are typically dynamic and may respond strongly to short-term climate variability. Our goal here was to test whether bird occurrence models can be predicted by either covariates based on short-term climate variability or on long-term climate averages. We parameterized species distribution models (SDMs) based on either short-term variability or long-term average climate covariates for 320 bird species in the conterminous U.S., and tested whether any life-history trait-based guilds were particularly sensitive to short-term conditions. Models including short-term climate variability performed well based on their cross-validated AUC score (0.85), as did models based on long-term climate averages (0.84). Similarly, both models performed well compared to independent presence/absence data from the North American Breeding Bird Survey (independent AUC of 0.89 and 0.90, respectively). However, models based on short-term variability covariates more accurately classified true absences for most species (73% of true absences classified within the lowest quarter of environmental suitability versus 68%). In addition, they have the advantage that they can reveal the dynamic relationship between species and their environment because they capture the spatial fluctuations of species potential breeding distributions. With this information we can identify which species and guilds are sensitive to climate variability, identify sites of high conservation value where climate variability is low, and assess how species’ potential distributions may have already shifted due recent climate change. However, long-term climate averages require less data and processing time and may be more readily available for some areas of interest. Where data on short-term climate variability are not available, long-term climate information is a sufficient predictor of species distributions in many cases. However, short-term climate variability data may provide information not captured with long-term climate data for use in SDMs. This article is protected by copyright. All rights reserved.
    Print ISSN: 1051-0761
    Electronic ISSN: 1939-5582
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2016-08-05
    Description: Increases in natural or non-crop habitat surrounding agricultural fields have been shown to be correlated with declines in insect crop pests. However, these patterns are highly variable across studies suggesting other important factors, such as abiotic drivers, which are rarely included in landscape models, may also contribute to variability in insect population abundance. The objective of this study was to explicitly account for the contribution of temperature and precipitation, in addition to landscape composition, on the abundance of a widespread insect crop pest, the soybean aphid ( Aphis glycines Matsumura), in Wisconsin soybean fields. We hypothesized that higher soybean aphid abundance would be associated with higher heat accumulation (e.g., growing degree days), and increasing non-crop habitat in the surrounding landscape, due to the presence of the overwintering primary hosts of soybean aphid. To evaluate these hypotheses, we used an ecoinformatics approach that relied on a large dataset collected across Wisconsin over a 9-year period (2003 – 2011), for an average of 235 sites per year (n=2,110 fields total). We determined surrounding landscape composition (1.5-km radius) using publicly available satellite-derived land cover imagery and interpolated daily temperature and precipitation information from the National Weather Service COOP weather station network. We constructed linear mixed models for soybean aphid abundance based on abiotic and landscape explanatory variables and applied model averaging for prediction using an information theoretic framework. Over this broad spatial and temporal extent in Wisconsin, we found that variation in growing season precipitation was positively related to soybean aphid abundance, while higher precipitation during the non-growing season had a negative effect on aphid populations. Additionally, we found that aphid populations were higher in areas with proportionally more forest, but were lower in areas where minor crops, such as small grains, were more prevalent. Thus, our findings support our hypothesis that including abiotic drivers increases our understanding of crop pest abundance and distribution. Moreover, by explicitly modeling abiotic factors, we may be able to explore how variable climate in tandem with land cover patterns may affect current and future insect populations, with potentially critical implications for crop yields and agricultural food webs. This article is protected by copyright. All rights reserved.
    Print ISSN: 1051-0761
    Electronic ISSN: 1939-5582
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2016-08-05
    Description: Predator-prey interactions shape ecosystem structure and function, potentially limiting the productivity of valuable species. Simultaneously, stochastic environmental forcing affects species productivity, often through unknown mechanisms. The interacting effects of trophic and environmental conditions complicate management of exploited ecosystems and have motivated calls for more holistic management via ecosystem-based approaches, yet the limitations to these approaches are not widely appreciated. The Chignik salmon fishery in Alaska is managed to achieve maximum sustainable yield for sockeye salmon, though research suggests that predation by less economically valuable, and thus not targeted, coho salmon during juvenile rearing limits the productivity of sockeye salmon. We examined the relationship between historical sockeye salmon recruitment and coho salmon abundance observed in the Chignik system and could not detect a clear effect of coho salmon abundance on sockeye salmon productivity, given existing data. Using simulation models, we examined the probability of detecting a known predation effect on sockeye salmon recruitment in the presence of observation error in coho salmon abundance and stochasticity in sockeye salmon recruitment. Increased recruitment stochasticity reduced the ability to detect predator effects in recruitment, an effect further strengthened when low frequency environmental variation was added to the system. Further, increased observation error biased estimates of predator effects towards zero. Thus, in systems with high observation error on predator abundances, estimates of predation effects will be substantially weaker than true effects. We examined the effects of stochasticity on the ability of an adaptive management program to learn about ecosystem structure and detect an effect of management actions intended to release a prey species from its predators. Simulation models revealed that even under scenarios of large predation effects on sockeye salmon, stochastic recruitment masked detection of an effect of increased coho salmon harvest for nearly a decade. These results highlight the challenges inherent in ecosystem-based management of predator-prey systems due to mismatched time-scales of ecosystem dynamics and the willingness of stakeholders to risk losses in order to test uncertain hypotheses. It is critical for stakeholders considering EBFM and adaptive management strategies to be aware of the potential timelines of perceiving ecosystem change. This article is protected by copyright. All rights reserved.
    Print ISSN: 1051-0761
    Electronic ISSN: 1939-5582
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2016-08-05
    Description: Timber harvest can adversely affect forest biota. Recent research and application suggest that retention of mature forest elements (‘retention forestry’), including unharvested patches (or ‘aggregates’) within larger harvested units, can benefit biodiversity compared to clearcutting. However, it is unclear whether these benefits can be generalized among the diverse taxa and biomes in which retention forestry is practiced. Lack of comparability in methods for sampling and analysing responses to timber harvest and edge creation presents a challenge to synthesis. We used a consistent methodology (similarly spaced plots or traps along transects) to investigate responses of vascular plants and ground-active beetles to aggregated retention at replicate sites in each of four temperate and boreal forest types on three continents: Douglas-fir forests in Washington, USA; aspen forests in Minnesota, USA; spruce forests in Sweden; and wet eucalypt forests in Tasmania, Australia. We assessed (i) differences in local (plot-scale) species richness and composition between mature (intact) and regenerating (previously harvested) forest; (ii) the lifeboating function of aggregates (capacity to retain species of unharvested forest); and whether intact forests and aggregates (iii) are susceptible to edge effects and (iv) influence the adjacent regenerating forest. Intact and harvested forests differed in composition but not richness of plants and beetles. The magnitude of this difference was generally similar among regions, but there was considerable heterogeneity of composition within and among replicate sites. Aggregates within harvest units were effective at lifeboating for both plant and beetle communities. Edge effects were uncommon even within the aggregates. In contrast, effects of forest influence on adjacent harvested areas were common and as strong for aggregates as for larger blocks of intact forest. Our results provide strong support for the widespread application of aggregated retention in boreal and temperate forests. The consistency of pattern in four very different regions of the world suggests that, for forest plants and beetles, responses to aggregated retention are likely to apply more widely. Our results suggest that through strategic placement of aggregates, it is possible to maintain the natural heterogeneity and biodiversity of mature forests managed for multiple objectives. This article is protected by copyright. All rights reserved.
    Print ISSN: 1051-0761
    Electronic ISSN: 1939-5582
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2016-08-05
    Description: Distributions of foliar nutrients across forest canopies can give insight into their plant functional diversity and improve our understanding of biogeochemical cycling. We used airborne remote sensing and Partial Least Squares Regression (PLSR) to quantify canopy foliar nitrogen (N) across ~164 km 2 of wet lowland tropical forest in the Osa Peninsula, Costa Rica. We determined the relative influence of climate and topography on the observed patterns of canopy foliar N using a gradient boosting model (GBM) technique. At a local scale, where climate and substrate where constant, we explored the influence of slope position on canopy N by quantifying canopy N on remnant terraces, their adjacent slopes and knife edged ridges. In addition, we climbed and sampled 540 trees and analyzed foliar N in order to quantify the role of species identity (phylogeny) and environmental factors in predicting canopy N. Observed canopy N heterogeneity reflected environmental factors working at multiple spatial scales. Across the larger landscape, elevation and precipitation had the highest relative influence on predicting canopy foliar N (30 and 24%), followed by soils (15%), site exposure (9%), compound topographic index (8%), substrate (6%), and landscape dissection (6%). Phylogeny explained ~75% of the variation in the filed collected foliar N data, suggesting that phylogeny largely underpins the response to the environmental factors. Taken together, these data suggest that a large fraction of the variance in canopy N across the landscape is proximately driven by species composition, though ultimately this is likely a response to abiotic factors such as climate and topography. Future work should focus on the mechanisms and feedbacks involved, and how shifts in climate may translate to changes in forest function. This article is protected by copyright. All rights reserved.
    Print ISSN: 1051-0761
    Electronic ISSN: 1939-5582
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2016-08-05
    Description: Escalating wildfire in subalpine forests with stand-replacing fire regimes is increasing the extent of early-seral forests throughout the western US. Post-fire succession generates the fuel for future fires, but little is known about fuel loads and their variability in young post-fire stands. We sampled fuel profiles in 24-year-old post-fire lodgepole pine ( Pinus contorta var. latifolia ) stands ( n =82) that regenerated from the 1988 Yellowstone Fires to answer three questions. (1) How do canopy and surface fuel loads vary within and among young lodgepole pine stands? (2) How do canopy and surface fuels vary with pre- and post-fire lodgepole pine stand structure and environmental conditions? (3) How have surface fuels changed between 8 and 24 years post-fire? Fuel complexes varied tremendously across the landscape despite having regenerated from the same fires. Available canopy fuel loads and canopy bulk density averaged 8.5 Mg ha -1 [range 0.0-46.6] and 0.24 kg m 3 [range: 0.0-2.3], respectively, meeting or exceeding levels in mature lodgepole pine forests. Total surface-fuel loads averaged 123 Mg ha -1 [range: 43 - 207], and 88% was in the 1000-hr fuel class. Litter, 1-hr, and 10-hr surface fuel loads were lower than reported for mature lodgepole pine forests, and 1000-hr fuel loads were similar or greater. Among-plot variation was greater in canopy fuels than surface fuels, and within-plot variation was greater than among-plot variation for nearly all fuels. Post-fire lodgepole pine density was the strongest positive predictor of canopy and fine surface fuel loads. Pre-fire successional stage was the best predictor of 100-hr and 1000-hr fuel loads in the post-fire stands and strongly influenced the size and proportion of sound logs (greater when late successional stands had burned) and rotten logs (greater when early successional stands had burned). Our data suggest that 76% of the young post-fire lodgepole pine forests have 1000-hr fuel loads that exceed levels associated with high-severity surface fire potential, and 63% exceed levels associated with active crown fire potential. Fire rotations in Yellowstone National Park are predicted to shorten to a few decades and this prediction cannot be ruled out by a lack of fuels to carry repeated fires. This article is protected by copyright. All rights reserved.
    Print ISSN: 1051-0761
    Electronic ISSN: 1939-5582
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2016-08-05
    Description: Management of spatially structured species poses unique challenges. Despite a strong theoretical foundation, practitioners rarely have sufficient empirical data to evaluate how populations interact. Rather, assumptions about connectivity and source-sink dynamics are often based on incomplete, extrapolated or modeled data, if such interactions are even considered at all. Therefore, it has been difficult to evaluate whether spatially structured species are meeting conservation goals. We evaluated how estimated metapopulation structure responded to estimates of population sizes and dispersal probabilities, and to the set of populations included. We then compared outcomes of alternative management strategies that target conservation of metapopulation processes. We illustrated these concepts for Chinook salmon ( Oncorhynchus tshawytscha ) in the Snake River, USA. Our description of spatial structure for this metapopulation was consistent with previous characterizations. We found substantial differences in estimated metapopulation structure when we had incomplete information about all populations and when we used different sources of data (3 empirical, 2 modeled) to estimate dispersal, whereas responses to population size estimates were more consistent. Together, these findings suggest that monitoring efforts should target all populations occasionally and populations that play key roles frequently, and that multiple types of data should be collected when feasible. When empirical data are incomplete or of uneven quality, analyses using estimates produced from an ensemble of available datasets can help conservation planners and managers weigh near-term options. Doing so, we found tradeoffs in connectivity and source dominance in metapopulation-level responses to alternative management strategies that suggest which types of approaches may be inherently less risky. This article is protected by copyright. All rights reserved.
    Print ISSN: 1051-0761
    Electronic ISSN: 1939-5582
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2016-08-05
    Description: Increasing tree density that followed fire exclusion after the 1880s in the southwestern United States (US) may have also altered nutrient cycles and led to a carbon (C) sink that constitutes a significant component of the US C budget. Yet, empirical data quantifying century-scale changes in C or nutrients due to fire exclusion are rare. We used tree-ring reconstructions of stand structure from five ponderosa pine–dominated sites from across northern Arizona to compare live tree C, nitrogen (N), and phosphorus (P) storage between the 1880s and 1990s. Live tree biomass in the 1990s contained up to 3 times more C, N, and P than in 1880s. However, the increase in C storage was smaller than values used in recent US C budgets. Furthermore, trees that had established prior to the 1880s accounted for a large fraction (28 to 66%) of the C, N, and P stored in contemporary stands. Overall, our century-scale analysis revealed that forests of the 1880s were on a trajectory to accumulate C and nutrients in trees even in the absence of fire exclusion, either because growing conditions became more favorable after the 1880s or because forests in the 1880s included age or size cohorts poised for accelerated growth. These results may lead to a reduction in the C sink attributed to fire exclusion, and they refine our understanding of reference conditions for restoration management of fire-prone forests. This article is protected by copyright. All rights reserved.
    Print ISSN: 1051-0761
    Electronic ISSN: 1939-5582
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2016-08-05
    Description: The Conservation Effects Assessment Project (CEAP) was created in response to a request from the Office of Management and Budget that the U.S. Department of Agriculture - Natural Resource Conservation Service (USDA – NRCS) document the societal benefits anticipated to accrue from a major increase in conservation funding authorized by the 2002 Farm Bill. A comprehensive evaluation of the efficacy of rangeland conservation practices cost-shared with private landowners was unable to evaluate conservation benefits because outcomes were seldom documented. Four interrelated suppositions are presented to examine the causes underlying minimal documentation of conservations outcomes. These suppositions are: 1) benefits of conservation practices are considered a certainty so that documentation in not required, 2) minimal knowledge exchange between the USDA-NRCS and research organizations, 3) a paucity of conservation-relevant science, and 4) inadequate technical support for land owners following implementation of conservation practices. We then follow with recommendations to overcome potential barriers to documentation of conservation outcomes identified for each supposition. Collectively, this assessment indicates that the existing conservation practice standards are insufficient to effectively administer large conservation investments on rangelands and that modification of these standards alone will not achieve the goals explicitly stated by CEAP. We recommend that USDA-NRCS modify its conservation programs around a more comprehensive and integrative platform that is capable of implementing evidence-based conservation. Collaborative monitoring organized around landowner-agency-scientist partnerships would represent the focal point of a Conservation Program Assessment Network (CPAN). The primary network objective would be to establish missing information feedback loops between conservation practices and their agricultural and environmental outcomes to promote learning, adaptive management and innovation. Network information would be archived and made available to guide other, related conservation programs in relevant ecoregions. Restructuring conservation programs as recommend above would: 1) provide site specific information, learning and accountability that has been requested by CEAP and, 2) further advance balanced delivery of agricultural production and environmental quality goals. This article is protected by copyright. All rights reserved.
    Print ISSN: 1051-0761
    Electronic ISSN: 1939-5582
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2016-08-05
    Description: To investigate the underlying mechanisms that control long-term recovery of tundra carbon (C) and nutrients after fire, we employed the Multiple Element Limitation (MEL) model to simulate 200-year post-fire changes in the biogeochemistry of three sites along a burn severity gradient in response to increases in air temperature, CO 2 concentration, nitrogen (N) deposition and phosphorus (P) weathering rates. The simulations were conducted for severely burned, moderately burned, and unburned arctic tundra. Our simulations indicated that recovery of C balance after fire was mainly determined by the internal redistribution of nutrients among ecosystem components (controlled by air temperature), rather than the supply of nutrients from external sources (e.g., nitrogen deposition and fixation, phosphorus weathering). Increases in air temperature and atmospheric CO 2 concentration resulted in 1) a net transfer of nutrient from soil organic matter to vegetation, and 2) higher C:nutrient ratios in vegetation and soil organic matter. These changes led to gains in vegetation biomass C but net losses in soil organic C stocks. Under a warming climate, nutrients lost in wildfire were difficult to recover because the warming-induced acceleration in nutrient cycles caused further net nutrient loss from the system through leaching. In both burned and unburned tundra, the warming-caused acceleration in nutrient cycles and increases in ecosystem C stocks were eventually constrained by increases in soil C:nutrient ratios, which increased microbial retention of plant-available nutrients in the soil. Accelerated nutrient turnover, loss of C, and increasing soil temperatures will likely result in vegetation changes, which further regulate the long-term biogeochemical succession. Our analysis should help in the assessment of tundra C budgets and of the recovery of biogeochemical function following fire, which is in turn necessary for the maintenance of wildlife habitat and tundra vegetation. This article is protected by copyright. All rights reserved.
    Print ISSN: 1051-0761
    Electronic ISSN: 1939-5582
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2016-08-05
    Description: Restoring forest to hundreds of millions of hectares of degraded land has become a centerpiece of international plans to sequester carbon and conserve biodiversity. Forest landscape restoration will require scaling up ecological knowledge of secondary succession from small-scale field studies to predict forest recovery rates in heterogeneous landscapes. However, ecological field studies reveal widely divergent times to forest recovery, in part due to landscape features that are difficult to replicate in empirical studies. Seed rain can determine reforestation rate and depends on landscape features that are beyond the scale of most field studies. We develop mathematical models to quantify how landscape configuration affects seed rain and forest regrowth in degraded patches. The models show how landscape features can alter the successional trajectories of otherwise identical patches, thus providing insight into why some empirical studies reveal a strong effect of seed rain on secondary succession, while others do not. We show that seed rain will strongly limit reforestation rate when patches are near a threshold for arrested succession, when positive feedbacks between tree canopy cover and seed rain occur during early succession, and when directed dispersal leads to between-patch interactions. In contrast, seed rain has weak effects on reforestation rate over a wide range of conditions, including when landscape-scale seed availability is either very high or very low. Our modeling framework incorporates growth and survival parameters that are commonly estimated in field studies of reforestation. We demonstrate how mathematical models can inform forest landscape restoration by allowing land managers to predict where natural regeneration will be sufficient to restore tree cover. Translating quantitative forecasts into spatially-targeted interventions for forest landscape restoration could support target goals of restoring millions of hectares of degraded land and help mitigate global climate change. This article is protected by copyright. All rights reserved.
    Print ISSN: 1051-0761
    Electronic ISSN: 1939-5582
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2016-08-05
    Description: Successful pest-mammal eradications from remote islands have resulted in important biodiversity benefits. Near-shore islands can also serve as refuges for native biota but require ongoing effort to maintain low-pest or pest-free status. Three management options are available in the presence of reinvasion risk: (1) control-to-zero density, in which immigration may occur but reinvaders are removed; (2) sustained population suppression (to relatively low numbers); or (3) no action. Biodiversity benefits can result from options 1 and 2. The management challenge is to make evidence-based decisions on the selection of an appropriate objective and to identify a financially feasible control strategy that has a high probability of success. This requires understanding the pest species population dynamics and how it will respond to a range of potential management strategies, each with an associated financial cost. We developed a 2-stage modelling approach that consisted of: (1) Bayesian inferential modelling to estimate parameters for a model of pest population dynamics and control; and (2) a forward projection model to simulate a range of plausible management scenarios and quantify the probability of obtaining zero density within four years. We applied the model to an ongoing, six-year trapping program to control stoats ( Mustela erminea ) on Resolution Island, New Zealand. Zero density has not yet been achieved. Results demonstrate that management objectives were impeded by a combination of a highly fecund population, insufficient trap attractiveness and a substantial proportion of the population that did not enter traps. Immigration is known to occur because the founding population arrived on the island by swimming from the mainland. However, immigration rate during this study was indistinguishable from zero. The forward projection modelling showed that control-to-zero density was feasible but required greater than a 2-fold budget increase to intensify the trapping rate relative to population growth. The 2-stage modelling provides the foundation for a management program in which broad-scale trials of additional trapping effort or improved trap lures would test model predictions and increase our understanding of system dynamics. This article is protected by copyright. All rights reserved.
    Print ISSN: 1051-0761
    Electronic ISSN: 1939-5582
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2016-07-10
    Description: Mixing models are statistical tools that use biotracers to probabilistically estimate the contribution of multiple sources to a mixture. These biotracers may include contaminants, fatty acids, or stable isotopes, the latter of which are widely used in trophic ecology to estimate the mixed diet of consumers. Bayesian implementations of mixing models using stable isotopes (e.g. MixSIR, SIAR) are regularly used by ecologists for this purpose, but basic questions remain about when each is most appropriate. In this study, we describe the structural differences between common mixing model error formulations in terms of their assumptions about the predation process. We then introduce a new parameterization that unifies these mixing model error structures, as well as implicitly estimates the rate at which consumers sample from source populations (i.e. consumption rate). Using simulations and previously published mixing model datasets, we demonstrate that the new error parameterization outperforms existing models and provides an estimate of consumption. Our results suggest that the error structure introduced here will improve future mixing model estimates of animal diet. This article is protected by copyright. All rights reserved.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2016-07-19
    Description: Contagious seed dispersal refers to the tendency for some sites to receive many dispersed seeds while other sites receive few dispersed seeds. Contagious dispersal can lead to interspecific associations in seed arrival, and this in turn might lead to interspecific associations in seedling recruitment. We evaluate the extent of spatially contagious seed arrival, the frequency of positive interspecific associations in seed arrival, and their consequences for seedling recruitment at the community level in a tropical moist forest. We quantified seed arrival to 200 passive seed traps for 28 years of weekly censuses and seedling recruitment to 600 1-m 2 quadrats for 21 years of annual censuses on Barro Colorado Island, Panama. We assessed whether spatially contagious seed dispersal was more important among zoochorous species than among anemochorous species, increased in importance with similarity in fruiting times, and led to interspecific associations in seed arrival and seedling recruitment. We controlled adult seed source associations statistically to evaluate predicted relationships. We found that spatially contagious seed arrival was widespread among zoochorous species, but also occurred among anemochorous species when the strong, consistent trade winds were present. Significant interspecific associations in seed arrival were more likely for pairs of species with zoochorous seeds and similar fruiting times and persisted through seedling recruitment. Thus, interspecifically contagious seed dispersal affects local species composition and alters the mixture of interspecific interactions through the seed, germination and early seedling stages in this forest. Future investigations should consider the implications of interspecific association at the regeneration stages documented here for later life stages and species coexistence. This article is protected by copyright. All rights reserved.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2016-07-22
    Description: Understanding processes that may stabilize ecological systems confronted with rapidly changing environmental conditions is a key issue in ecology. We studied a system of highly fluctuating populations, the moth Achyra rantalis feeding on the plant Sesuvium portulacastrum in a group of small subtropical islands of the Bahamas. The plant is a prostrate inhabitant of shorelines, and consequently moths are highly vulnerable to being consumed by the ground-foraging lizard Anolis sagrei . We measured the percent ground cover of Sesuvium and abundance of Achyra on 11 islands with lizards present and 21 islands without lizards annually for 10 consecutive years. Overall abundance of Achyra was 4.6 times higher on no-lizard islands than on lizard islands. The percent cover of Sesuvium exhibited lower temporal variability on lizard islands when the study site was undisturbed by hurricanes, and higher recovery rate on lizard islands following hurricanes. We suggest that both of these stabilizing phenomena are linked to a trophic cascade in which predatory lizards control herbivore populations, thereby suppressing outbreaks and enhancing plant recovery following physical disturbance. This article is protected by copyright. All rights reserved.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2016-07-24
    Description: Seed dispersal effectiveness, which measures the number of adult plant individuals produced by seed dispersal, is the product of the number of seeds dispersed and the probability a seed produces an adult. Directed dispersal to certain habitat types may enhance some stages of recruitment but disfavor others, generating demographic conflicts in plant ontogeny. We asked whether temporal changes in habitat features may affect the distribution of seedlings recruited from dispersed acorns, and whether this could induce shifts in the life-stage conflicts experienced by successive cohorts of naturally recruited plants. As early successional habitats are characterized by rapid change, we used a burnt pine stand in southern Spain to monitor the recruitment and performance of a major tree species ( Quercus ilex ) across seven years in four types of post-fire habitats. These differed in structure and included patches of unburnt forest and three management alternatives of burnt trees: logging, partial cutting, and non-intervention. Young oaks that resprouted after the fire were mainly located near acorn sources, while new seedlings initially emerged mostly in habitats with standing snags due to habitat selection by European jays, Garrulus glandarius, for dispersal. The dead pines gradually collapsed and attracted less dispersal, so subsequent seedling cohorts mainly recruited within patches of unburnt pines. These live pines enhanced the survival of the oaks located beneath their canopy but greatly reduced their growth as compared to the other post-fire habitats, thus representing a demographic conflict that was absent elsewhere. As a consequence of the directional shift in the habitat where seedlings recruited, successive seedling cohorts experienced a gradual improvement in their likelihood of survival but a reduction in growth. The progressive intensification of this life-stage conflict hinged on the reduction of vertical structures in the habitat with standing burnt pines. Recruitment success thus involved temporal variation in the habitat where recruitment occurred, likely resulting from changes in the direction of seed dispersal, and spatial variation in habitat suitability for seedling establishment and growth. Temporal changes in habitat structure can indirectly change the environment in which recruitment occurs, and consequently seed dispersal effectiveness, by shifting the direction of seed dispersal. This article is protected by copyright. All rights reserved.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2016-07-26
    Description: Long-term experiments provide a way to test presumed causes of successional or environmentally driven vegetation changes. Early-successional nitrogen (N)-fixing plants are widely thought to facilitate productivity and vegetation development on N-poor sites, thus accounting for observed vegetation patterns later in succession. We tested this facilitative impact on vegetation development in a 23-year field experiment on an Interior Alaska (U.S.A.) floodplain. On three replicate early-successional silt bars, we planted late-successional white spruce ( Picea glauca ) seedlings in the presence and absence of planted seedlings of an early-successional N-fixing shrub—thinleaf alder ( Alnus incana ). Alder initially facilitated survivorship and growth of white spruce. Within six years, however, after canopy closure, alder negatively affected spruce survivorship and growth. Our three replicate sites followed different successional trajectories. One site was eliminated by erosion and supported no vegetation development during our study. The other two sites, which differed in site moisture, diverged in vegetation composition. Structural equation modeling (SEM) suggested that, in the drier of these two sites, alder inhibited spruce growth directly (presumably by competition) and indirectly through effects mediated by competition with other woody species. However at the wetter site alder had both positive and negative effects on spruce growth, with negative effects predominating. Snowshoe hares ( Lepus americanus ) in alder thickets further reduced height growth of spruce in the wetter site. We conclude that net effects of alder on white spruce, the late-successional dominant, were primarily inhibitory and indirect, with the mechanisms depending on initial site moisture. Our results highlight the importance of long-term research showing that small differences among initial replicate sites can cause divergence in successional trajectories–consistent with individualistic distributions of species and communities along environmental gradients. This divergence was detectable only decades later. This article is protected by copyright. All rights reserved.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2016-07-26
    Description: Decades of ecological study have demonstrated the importance of top-down and bottom-up controls on food webs, yet few studies within this context have quantified the magnitude of energy and material fluxes at the whole-ecosystem scale. We examined top-down and bottom-up effects on food web fluxes using a field experiment that manipulated the presence of a consumer, the Trinidadian guppy Poecilia reticulata , and the production of basal resources by thinning the riparian forest canopy to increase incident light. To gauge the effects of these reach-scale manipulations on food web fluxes, we used a nitrogen ( 15 N) stable isotope tracer to compare basal resource treatments (thinned canopy vs. control) and consumer treatments (guppy introduction vs. control). The thinned canopy stream had higher primary production than the natural canopy control, leading to increased N fluxes to invertebrates that feed on benthic biofilms (grazers), fine benthic organic matter (collector-gatherers), and organic particles suspended in the water column (filter-feeders). Stream reaches with guppies also had higher primary productivity and higher N fluxes to grazers and filter feeders. In contrast, N fluxes to collector-gatherers were reduced in guppy introduction reaches relative to upstream controls. N fluxes to leaf shredding invertebrates, predatory invertebrates and the other fish species present (Hart's killifish, Anablepsoides hartii ) did not differ across light or guppy treatments, suggesting that effects on detritus-based linkages and upper trophic levels were not as strong. Effect sizes of guppy and canopy treatments on N flux rates were similar for most taxa, though guppy effects were the strongest for filter feeding invertebrates while canopy effects were the strongest for collector-gatherer invertebrates. Combined, these results extend previous knowledge about top-down and bottom-up controls on ecosystems by providing experimental, reach-scale evidence that both pathways can act simultaneously and have equally strong influence on nutrient fluxes from inorganic pools through primary consumers. This article is protected by copyright. All rights reserved.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2016-07-27
    Description: Fifty years ago, Ehrlich and Raven proposed that insect herbivores have driven much of plant speciation, particularly at tropical latitudes. There have been no explicit tests of their hypotheses. Indeed there were no proposed mechanisms either at the time or since by which herbivores might generate new plant species. Here we outline two main classes of mechanisms, pre-zygotic and post-zygotic, with a number of scenarios in each by which herbivore-driven changes in host plant secondary chemistry might lead to new plant lineage production. The former apply mainly to a sympatric model of speciation while the latter apply to a parapatric or allopatric model. Our review suggests that the steps of each mechanism are known to occur individually in many different systems, but no scenario has been thoroughly investigated in any one system. Nevertheless, studies of Dalechampia and its herbivores and pollinators, and patterns of defense tradeoffs in trees on different soil types in the Peruvian Amazon provide evidence consistent with the original hypotheses of Ehrlich and Raven. For herbivores to drive sympatric speciation, our findings suggest that interactions with both their herbivores and their pollinators should be considered. In contrast, herbivores may drive speciation allopatrically without any influence by pollinators. Finally, there is evidence that these mechanisms are more likely to occur at low latitudes, and thus more likely to produce new species in the tropics. The mechanisms we outline provide a predictive framework for further study of the general role that herbivores play in diversification of their host plants. This article is protected by copyright. All rights reserved.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2016-07-27
    Description: Community ecologists have strived to find mechanisms that mediate the assembly of natural communities. Recent evidence suggests that natural enemies could play an important role in the assembly of hyper-diverse tropical plant systems. Classic ecological theory predicts that in order for coexistence to occur, species differences must be maximized across biologically important niche dimensions. For plant-herbivore interactions, it has been recently suggested that, within a particular community, plant species that maximize the difference in chemical defense profiles compared to neighboring taxa will have a relative competitive advantage. Here we tested the hypothesis that plant chemical diversity can affect local community composition in the hyper-diverse genus Piper at a lowland wet forest location in Costa Rica. We first characterized the chemical composition of 27 of the most locally abundant species of Piper . We then tested whether species with different chemical compositions were more likely to coexist. Finally, we assessed the degree to which Piper phylogenetic relationships are related to differences in secondary chemical composition and community assembly. We found that, on average, co-occurring species were more likely to differ in chemical composition than expected by chance. Contrary to expectations, there was no phylogenetic signal for overall secondary chemical composition. In addition we found that species in local communities were, on average, more phylogenetically closely related than expected by chance, suggesting that functional traits other than those measured here also influence local assembly. We propose that selection by herbivores for divergent chemistries between closely related species facilitates the coexistence of a high diversity of congeneric taxa via apparent competition. This article is protected by copyright. All rights reserved.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2016-07-27
    Description: Invasive alien predators (IAP) are spreading on a global scale and often with devastating ecological effects. One reason for their success may be that prey species fail to recognize them due to a lack of co-evolutionary history. We performed a comprehensive test of this ‘prey naiveté’ hypothesis using a novel approach: we tested whether predator-naive tadpoles of the agile frog ( Rana dalmatina ) display antipredator behaviour upon encountering chemical cues produced by native, invasive (established or recent) or allopatric fishes (four perciforms, four siluriforms and two cypriniforms). We studied the influence of population origin on predator-detection ability by presenting chemical cues to predator-naive tadpoles that originated from fishless hill-ponds or fish-infested floodplain populations. Before trials, we fed fishes with tadpoles or an alternative food to test whether direct chemical cues from the predator's diet influences the tadpoles’ recognition of potential predators. Tadpoles reduced their activity upon exposure to cues from native and long-established invasive perciforms, but not in response to recent invaders, allopatric predators or to any siluriforms. Also, predators that were previously fed with tadpoles did not universally induce behavioural defences upon first encounter. Finally, tadpoles originating from isolated hill-ponds exhibited higher baseline activity and responded weaker than their conspecifics from floodplain populations, which co-exist with predatory fishes. Our results indicate that tadpoles may be vulnerable to invading predatory fishes due to their inability to recognize them as dangerous, though their ability to recognize invasive IAP may evolve rapidly, in less than 30 generations. This article is protected by copyright. All rights reserved.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2016-07-28
    Description: The application of physiological measures to conservation monitoring has been gaining momentum and, while a suite of physiological traits are available to ascertain disturbance and condition in wildlife populations, glucocorticoids (i.e., GCs: cortisol and corticosterone) are the most heavily employed. The interpretation of GC levels as sensitive indicators of population change necessitates that GCs and metrics of population persistence are linked. However, the relationship between GCs and fitness may be highly context-dependent, changing direction, or significance, depending on the GC measure, fitness metric, life history stage, or other intrinsic and extrinsic contexts considered. We examined the relationship between baseline plasma corticosterone (CORT) levels measured at two periods of the breeding season and three metrics of fitness (offspring quality, reproductive output, and adult survival) in female tree swallows ( Tachycineta bicolor ). Specifically, we investigated whether: i) a relationship between baseline CORT metrics and fitness exists in our population; ii) whether the inclusion of energetic contexts such as food availability, reproductive investment, or body mass could alter or improve the strength of the relationship between CORT and fitness; iii) whether energetic contexts could better predict fitness compared to CORT metrics. Importantly, we investigated these relationships in both natural conditions and under an experimental manipulation of foraging profitability (feather clipping) to determine the influence of an environmental constraint on GC-fitness relationships. We found a lack of relationship between baseline CORT and both short- and long-term metrics of fitness in control and clipped birds. In contrast, loss in body mass over reproduction positively predicted reproductive output (number of chicks leaving the nest) in control birds; however, the relationship was characterized by a low R 2 (5%), limiting the predictive capacity, and therefore the application potential, of such a measure in a conservation setting. Our results stress the importance of ground-truthing GC-fitness relationships and indicate that baseline GCs will likely not be easily employed as conservation biomarkers across many species and life history stages. Given the accumulating evidence of temporally-dynamic, inconsistent, and context-dependent GC-fitness relationships, placing effort towards directly measuring fitness traits, rather than plasma GC levels, will likely be more worthwhile for many conservation endeavours. This article is protected by copyright. All rights reserved.
    Print ISSN: 1051-0761
    Electronic ISSN: 1939-5582
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2016-07-28
    Description: Ecological processes operate across temporal and spatial scales. Anthropogenic disturbances impact these processes, but examinations of scale dependence in impacts are infrequent. Such examinations can provide important insight to wildlife-human interactions and guide management efforts to reduce impacts. We assessed spatiotemporal scale dependence in habitat selection of mule deer ( Odocoileus hemionus ) in the Piceance Basin of Colorado, USA, an area of ongoing natural gas development. We employed a newly developed animal movement method to assess habitat selection across scales defined using animal-centric spatiotemporal definitions ranging from the local (defined from 5 hour movements) to the broad (defined from weekly movements). We extended our analysis to examine variation in scale dependence between night and day and assess functional responses in habitat selection patterns relative to the density of anthropogenic features. Mule deer displayed scale invariance in the direction of their response to energy development features, avoiding well pads and the areas closest to roads at all scales, though with increasing strength of avoidance at coarser scales. Deer displayed scale-dependent responses to most other habitat features, including land cover type and habitat edges. Selection differed between night and day at the finest scales, but homogenized as scale increased. Deer displayed functional responses to development, with deer inhabiting the least developed ranges more strongly avoiding development relative to those with more development in their ranges. Energy development was a primary driver of habitat selection patterns in mule deer, structuring their behaviors across all scales examined. Stronger avoidance at coarser scales suggests that deer behaviorally mediated their interaction with development, but only to a degree. At higher development densities than seen in this area, such mediation may not be possible and thus maintenance of sufficient habitat with lower development densities will be a critical best management practice as development expands globally. This article is protected by copyright. All rights reserved.
    Print ISSN: 1051-0761
    Electronic ISSN: 1939-5582
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2016-07-28
    Description: In saltmarsh plant communities bottom-up pressure from nutrient enrichment is predicted to increase productivity, alter community structure, decrease biodiversity, and alter ecosystem functioning. Previous work supporting these predictions has been based largely on short-term, plot-level (e.g., 1-300 m 2 ) studies, which may miss landscape-level phenomena that drive ecosystem-level responses. We implemented an ecosystem-scale, 9-year nutrient experiment to examine how saltmarsh plants respond to simulated conditions of coastal eutrophication. Our study differed from previous saltmarsh enrichment studies in that we applied realistic concentrations of nitrate (70-100 μM NO 3 - ), the most common form of coastal nutrient enrichment, via tidal water at the ecosystem scale ( ca . 60,000 m 2 creeksheds). Our enrichments added a total of 1,700 kg N creek −1 y −1 , which increased N loading 10-fold versus reference creeks (low-marsh: 171 g N m −2 y −1 ; high-marsh: 19 g N m −2 y −1 ). Nutrients increased the shoot mass and height of low marsh, tall Spartina alterniflora ; however, declines in stem density resulted in no consistent increase in aboveground biomass. High-marsh plants S. patens and stunted S. alterniflora did not respond consistently to enrichment. Nutrient enrichment did not shift community structure, contrary to the prediction of nutrient-driven dominance of S. alterniflora and Distichlis spicata over S. patens . Our mild responses may differ the results of previous studies for a number of reasons. First, the limited response of the high marsh may be explained by loading rates orders of magnitude lower than previous work. Low loading rates in the high marsh reflect infrequent inundation, arguing that inundation patterns must be considered when predicting responses to estuarine eutrophication. Additionally, we applied nitrate instead of the typically-used ammonium, which is energetically favored over nitrate for plant uptake. Thus, the form of nitrogen enrichment used, not just N-load, may be important in predicting plant responses. Overall, our results suggest that when coastal eutrophication is dominated by nitrate and delivered via flooding tidal water, aboveground saltmarsh plant responses may be limited despite moderate-to-high water-column N concentrations. Furthermore, we argue that the methodological limitations of nutrient studies must be considered when using results to inform management decisions about wetlands. This article is protected by copyright. All rights reserved.
    Print ISSN: 1051-0761
    Electronic ISSN: 1939-5582
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2016-07-29
    Description: Most species that are negatively impacted when their densities are low aggregate to minimize this effect. Aggregation has the potential to change how Allee effects are expressed at the population level. We studied the interplay between aggregation and Allee effects in the mountain pine beetle ( Dendroctonus ponderosae Hopkins), an irruptive bark beetle that aggregates to overcome tree defenses. By cooperating to surpass a critical number of attacks per tree, the mountain pine beetle is able to breach host defenses,oviposit and reproduce. Mountain pine beetles and Hymenopteran parasitoids share some biological features, the most notable of which is obligatory host death as a consequence of parasitoid attack and development. We developed spatiotemporal models of mountain pine beetle dynamics that were based on the Nicholson-Bailey framework but which featured beetle aggregation and a tree-level attack threshold. By fitting our models to data from a local mountain pine beetle outbreak, we demonstrate that due to aggregation, attack thresholds at the tree level can be overcome by a surprisingly low ratio of beetles per susceptible tree at the stand level. This results confirms the importance of considering aggregation in models of organisms that are subject to strong Allee effects. This article is protected by copyright. All rights reserved.
    Print ISSN: 1051-0761
    Electronic ISSN: 1939-5582
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2016-07-29
    Description: Chronic wasting disease (CWD) is a fatal neurodegenerative disease affecting free-ranging and captive cervids that now occurs in 24 US States and two Canadian provinces. Despite the potential threat of CWD to deer populations little is known about the rates of infection and mortality caused by this disease. We used epidemiological models to estimate the force-of-infection and disease-associated mortality for white-tailed deer in the Wisconsin and Illinois CWD outbreaks. Models were based on age-prevalence data corrected for bias in aging deer using the tooth wear and replacement method. Both male and female deer in the Illinois outbreak had higher corrected age-specific prevalence with slightly higher female infection than deer in the Wisconsin outbreak. Corrected ages produced more complex models with different infection and mortality parameters than those based on apparent prevalence. We found that adult male deer have 〉 3 fold higher risk of CWD infection than female deer. Males also had higher disease mortality than female deer. As a result CWD prevalence was 2 fold higher in adult males than females. We also evaluated the potential impacts of alternative contact structures on transmission dynamics in Wisconsin deer. Results suggested that transmission of CWD among male deer during the nonbreeding season may be a potential mechanism for producing higher rates of infection and prevalence characteristically found in males. However, alternatives based on high environmental transmission and transmission from females to males during the breeding season may also play a role. This article is protected by copyright. All rights reserved.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2016-07-29
    Description: Extinctions have no simple determinism, but rather result from complex interplays between environmental factors and demographic-genetic feedback that occur at small population size. Inbreeding depression has been assumed to be a major trigger of extinction vortices, yet very few models have studied its consequences in dynamic populations with realistic population structure. Here we investigate the impact of Complementary Sex Determination (CSD) on extinction in parasitoid wasps and other insects of the order Hymenoptera. CSD is believed to induce enough inbreeding depression to doom simple small populations to extinction, but we suggest that in parasitoids CSD may have the opposite effect. Using a theoretical model combining the genetics of CSD and the population dynamics of host-parasitoid systems, we show that CSD can reduce the risk of parasitoid extinction by reducing fluctuations in population size. Our result suggests that inbreeding depression is not always a threat to population survival, and that considering trophic interactions may reverse some pervasive hypotheses on its demographic impact. This article is protected by copyright. All rights reserved.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2016-07-29
    Description: Stability in population dynamics is an emergent property of the interaction between direct and delayed density dependence, the strengths of which vary with environmental covariates. Analysis of variation across populations in the strength of direct and delayed density dependence can reveal variation in stability properties of populations at the species level. We examined the stability properties of 22 elk/red deer populations in a two-stage analysis. First, we estimated direct and delayed density dependence applying an AR(2) model in a Bayesian hierarchical framework. Second, we plotted the coefficients of direct and delayed density dependence in the Royama parameter plane. We then used a hierarchical approach to test the significance of environmental covariates of direct and delayed density dependence. Three populations exhibited highly stable and convergent dynamics with strong direct, and weak delayed, density dependence. The remaining 19 populations exhibited more complex dynamics characterized by multi-annual fluctuations. Most (15 of 19) of these exhibited a combination of weak to moderate direct and delayed density dependence. Best-fit models included environmental covariates in 17 populations (77% of the total). Of these, interannual variation in growing-season primary productivity and interannual variation in winter temperature were the most common, performing as the best-fit covariate in six and five populations, respectively. Interannual variation in growing-season primary productivity was associated with the weakest combination of direct and delayed density dependence, while interannual variation in winter temperature was associated with the strongest combination of direct and delayed density dependence. These results accord with a classic theoretical prediction that environmental variability should weaken population stability. They furthermore suggest that two forms of environmental variability, one related to forage resources and the other related to abiotic conditions, both reduce stability but in opposing fashion: one through weakened direct density dependence and the other through strengthened delayed density dependence. Importantly, however, no single abiotic or biotic environmental factor emerged as generally predictive of the strengths of direct or delayed density dependence, nor of the stability properties emerging from their interaction. Our results emphasize the challenges inherent to ascribing primacy to drivers of such parameters at the species level and distribution scale. This article is protected by copyright. All rights reserved.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2016-08-02
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    facet.materialart.
    Unknown
    Wiley
    In: Ecology
    Publication Date: 2016-08-02
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    facet.materialart.
    Unknown
    Wiley
    In: Ecology
    Publication Date: 2016-08-02
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2016-06-25
    Description: Ecosystem multifunctionality – the simultaneous production of multiple ecosystem functions – depends on community diversity, composition, productivity and spatial scale. In metacommunities, each of these community properties is affected by how species disperse between local patches to track environmental change. Here we use a consumer-resource metacommunity model of resource competition to show how dispersal affects the link between diversity, composition, and ecosystem multifunctionality. When species differ in their functional traits, and environmental niche, metacommunity multifunctionality becomes highly dependent upon dispersal, which allows community diversity to be maintained when environmental conditions change. Dispersal promotes multifunctionality in two ways: 1) species sorting – whereby species track local environmental changes by shifting in space, thus preserving diversity and ensuring high biomass productivity, and 2) mass effects – whereby source sink dynamics allow species to persist in sub-optimal environments, thus increasing local diversity. Changing the rate at which species disperse affects the strength of these metacommunity processes, and so metacommunity multifunctionality exhibits a unimodal relationship with dispersal, peaking when dispersal is intermediate. Species sorting dynamics also provide spatial insurance whereby compensatory dynamics stabilize the fluctuations of each function through time at the regional scale. However, this does not extend to the local scale, where species sorting results in high temporal variability for each function, even though the overall rates of multifunctionality are high. Our results suggest that metacommunity processes are important determinants of ecosystem multifunctionality, and thus effective management of multiple ecosystem functions requires consideration of landscape connectivity. This article is protected by copyright. All rights reserved.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2016-07-08
    Description: The cost and difficulty of manipulative field studies makes low statistical power a pervasive issue throughout most sub-disciplines in ecology. Ecologists are already aware that small sample sizes increase the probability of committing Type II errors. In this article, we address a relatively unknown problem with low power: underpowered studies must overestimate small effect sizes in order to achieve statistical significance. First, we describe how low replication coupled with weak effect sizes leads to Type M errors, or exaggerated effect sizes. We then conduct a meta-analysis to determine the average statistical power and Type M error rate for manipulative field experiments that address important questions related to global change; global warming, biodiversity loss, and drought. Finally, we provide recommendations for avoiding Type M errors and constraining estimates of effect size from underpowered studies. This article is protected by copyright. All rights reserved.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2016-06-24
    Description: Although the functional basis of variable and synchronous seed production (masting behavior) has been extensively investigated, only recently has attention been focused on the proximate mechanisms driving this phenomenon. We analyzed the relationship between weather and acorn production in 15 species of oaks (genus Quercus ) from three geographic regions on two continents with the goals of determining the extent to which similar sets of weather factors affect masting behavior across species and to explore the ecological basis for the similarities detected. Lag-1 temporal autocorrelations were predominantly negative, supporting the hypothesis that stored resources play a role in masting behavior across this genus, and we were able to determine environmental variables correlating with acorn production in all but one of the species. Standard weather variables outperformed “differential-cue” variables based on the difference between successive years in a majority of species, consistent with the hypothesis that weather is linked directly to the proximate mechanism driving seed production and that masting in these species is likely to be sensitive to climate change. Based on the correlations between weather variables and acorn production, cluster analysis failed to generate any obvious groups of species corresponding to phylogeny or life-history. Discriminant function analyses were, however, able to identify the phylogenetic section to which the species belonged and, controlling for phylogeny, the length of time species required to mature acorns, whether they were evergreen or deciduous, and, to a lesser extent, the geographic region to which they are endemic. These results indicate that similar proximate mechanisms are driving acorn production in these species of oaks, that the environmental factors driving seed production in oaks are to some extent phylogenetically conserved, and that the shared mechanisms driving acorn production result in some degree of synchrony among coexisting species in a way that potentially enhances predator satiation, at least when they have acorns requiring the same length of time to mature. This article is protected by copyright. All rights reserved.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2016-06-26
    Description: Woody plant encroachment and overall declines in perennial vegetation in dryland regions can alter ecosystem properties and indicate land degradation, but the causes of these shifts remain controversial. Determining how changes in the abundance and distribution of grass and woody plants are influenced by conditions that regulate water availability at a regional scale provides a baseline to which compare how management actions alter the composition of these vegetation types at a more local scale and can be used to predict future shifts under climate change. Using a remote sensing-based approach, we assessed the balance between grasses and woody plants and how climate and topo-edaphic conditions affected their abundances across the northern Sonoran Desert from 1989 to 2009. Despite widespread woody plant encroachment in this region over the last 150 years, we found that leguminous trees, including mesquite ( Prosopis spp.), declined in cover in areas with prolonged drying conditions during the early 21st century. Creosote bush ( Larrea tridentata ) also had moderate decreases with prolonged drying but was buffered from changes on soils with low clay that promote infiltration, and high available water capacity that allows for retention of water at depth. Perennial grasses have expanded and contracted over the last two decades in response to summer precipitation, and were especially dynamic on shallow soils with high clay that have large fluctuations in water availability. Our results suggest that topo-edaphic properties can amplify or ameliorate climate-induced changes in woody plants and perennial grasses. Understanding these relationships has important implications for ecosystem function under climate change in the southwestern U.S. and can inform management efforts to regulate grass-woody plant abundances. This article is protected by copyright. All rights reserved.
    Print ISSN: 1051-0761
    Electronic ISSN: 1939-5582
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2016-06-26
    Description: Many studies suggest that biodiversity may be particularly important for ecosystem multi functionality, because different species with different traits can contribute to different functions. Support, however, comes mostly from experimental studies conducted at small spatial scales in low-diversity systems. Here, we test whether different species contribute to different ecosystem functions that are important for carbon cycling in a high-diversity human-modified tropical forest landscape in Southern Mexico. We quantified aboveground standing biomass, primary productivity, litter production, and wood decomposition at the landscape level, and evaluated the extent to which tree species contribute to these ecosystem functions. We used simulations to tease apart the effects of species richness, species dominance and species functional traits on ecosystem functions. We found that dominance was more important than species traits in determining a species’ contribution to ecosystem functions. As a consequence of the high dominance in human-modified landscapes, the same small subset of species mattered across different functions. In human-modified landscapes in the tropics, biodiversity may play a limited role for ecosystem multifunctionality due to the potentially large effect of species dominance on biogeochemical functions. However, given the spatial and temporal turnover in species dominance, biodiversity may be critically important for the maintenance and resilience of ecosystem functions. This article is protected by copyright. All rights reserved.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2016-06-29
    Description: A number of ecological factors have been shown to influence the importance of positive interactions (i.e. facilitation) in nature, including environmental stress and ontogenetic effects, and many more are likely to emerge as facilitation research expands to new ecosystems and taxa. In this study, I used a combination of field surveys and experiments to explore the roles of stress, ontogeny, and organismal movement in determining the importance of mussel ( Mytilus californianus) recruit facilitation in central California. Results indicate that interactions between mussel recruits (shell length 〈 20 mm) and habitat ameliorating neighbors shift from neutral to positive from the low to high mussel zone. I also observed ontogenetic shifts in recruit survival and growth in the upper mussel zone that suggest mussel recruits migrate from algal substrate to adult mussel beds. This type of habitat shift, where an organism moves sequentially from one facilitator to another, may be common in nature and presents an exciting new area for research. This article is protected by copyright. All rights reserved.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2016-06-29
    Description: Tropical savannas are hypothesized to be hot spots of nitrogen fixer diversity and activity because of the high disturbance and low nitrogen characteristic of savanna landscapes. Here we compare the abundances of nitrogen-fixing and non-fixing trees in both tropical savannas and tropical forests under climatically equivalent conditions, using plant inventory studies across 566 plots in South America and Africa. A single factor – aridity – explained 19-54% of the variance in fixer abundance, and unexpectedly was more important than fire frequency, biome, and continent. Nitrogen fixers were more abundant in arid environments; as a result, African savannas, which tend to be drier, were richer in nitrogen fixers than South American savannas. Fixer abundance converged on similar levels in forests in both continents. We conclude that climate plays a greater role than fire in determining the distribution of nitrogen fixers across tropical savanna and forest biomes. This article is protected by copyright. All rights reserved.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2016-06-30
    Description: Species-area relationships have long been used to assess patterns of species diversity across scales. Here this concept is extended to spectral diversity using hyperspectral data collected by NASA's Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) over western Michigan. This mixture of mesic forest and agricultural lands offers two end-points on the local-scale diversity continuum – one set of well mixed forest patches and one set of highly homogeneous agricultural patches. Using the sum of the first three principal component values and the principal components’ convex hull volume, spectral diversity was compared within and among these plots and to null expectations for perfectly random and perfectly patchy landscapes. Overall the spectral diversity area relationship confirms the patterns that would be expected for this landscape, but this application suggests that this approach could be extended to less well understood landscapes and could reveal key insights about the relative importance of different drivers of community assembly, even in the absence of additional data about plant functional traits or species’ identities. This article is protected by copyright. All rights reserved.
    Print ISSN: 1051-0761
    Electronic ISSN: 1939-5582
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2016-05-05
    Description: Understanding how habitat and nutritional condition affect ungulate populations is necessary for informing management, particularly in areas experiencing carnivore recovery and declining ungulate population trends. Variations in forage species availability, plant phenological stage, and the abundance of forage make it challenging to understand landscape-level effects of nutrition on ungulates. We developed an integrated spatial modeling approach to estimate landscape-level elk ( Cervus elaphus ) nutritional resources in two adjacent study areas that differed in coarse measures of habitat quality and related the consequences of differences in nutritional resources to elk body condition and pregnancy rates. We found no support for differences in dry matter digestibility between plant samples or in phenological stage based on ground sampling plots in the two study areas. Our index of nutritional resources, measured as digestible forage biomass, varied among landcover types and between study areas. We found that altered plant composition following fires was the biggest driver of differences in nutritional resources, suggesting that maintaining a mosaic of fire history and distribution will likely benefit ungulate populations. Study area, lactation status and year affected fall body fat of adult female elk. Elk in the study area exposed to lower summer range nutritional resources had lower nutritional condition entering winter. These differences in nutritional condition resulted in differences in pregnancy rate, with average pregnancy rates of 89% for elk exposed to higher nutritional resources and 72% for elk exposed to lower nutritional resources. Summer range nutritional resources have the potential to limit elk pregnancy rate and calf production, and these nutritional limitations may predispose elk to be more sensitive to the effects of harvest or predation. Wildlife managers should identify ungulate populations that are nutritionally limited and recognize that these populations may be more impacted by recovering carnivores or harvest than populations inhabiting more productive summer habitats. This article is protected by copyright. All rights reserved.
    Print ISSN: 1051-0761
    Electronic ISSN: 1939-5582
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2016-05-05
    Description: Novel fire regimes are an important cause and consequence of global environmental change that involve interactions among biotic, climatic, and human components of ecosystems. Plant flammability is key to these interactions, yet few studies directly measure flammability or consider how multiple species with different flammabilities interact to produce novel fire regimes. Deserts of the southwestern USA are an ideal system for exploring how novel fire regimes can emerge when fire-promoting species invade ecosystems comprised of species that did not evolve with fire. In these deserts, exotic annual grasses provide fuel continuity across landscapes that did not historically burn. These fires often ignite a keystone desert shrub, the fire-intolerant creosote bush, Larrea tridentata (DC.) Coville. Ignition of Larrea is likely catalyzed by fuels produced by native plants that grow beneath the shrubs. We hypothesize that invasive and native species exhibit distinct flammability characteristics that in combination determine spatial patterns of fire spread and intensity. We measured flammability metrics of Larrea , two invasive grasses, Schismus arabicus and Bromus madritensis , and two native plants, the sub-shrub Ambrosia dumosa and the annual herb Amsinckia menziesii . Results of laboratory experiments show that the grasses carry fire quickly (1.32 cm/sec), but burn for short duration (0.5 min) at low temperatures. In contrast, native plants spread fire slowly (0.12 cm/sec), but burn up to eight times longer (4 min) and produced hotter fires. Additional experiments on the ignition requirements of Larrea suggest that native plants burn with sufficient temperature and duration to ignite dead Larrea branches (time to ignition: 2 min; temperature at ignition 692 °C). Once burning, these dead branches ignite living branches in the upper portions of the shrub. Our study provides support for a conceptual model in which exotic grasses are “spreaders” of fire and native plants growing beneath shrubs are “igniters” of dead Larrea branches. Once burning, flames produced by dead branches engulf the entire shrub, resulting in locally intense fires without historical precedent in this system. We suggest that fire models and conservation-focused management could be improved by incorporating the distinct flammability characteristics and spatial distributions of spreaders, igniters, and keystone shrubs. This article is protected by copyright. All rights reserved.
    Print ISSN: 1051-0761
    Electronic ISSN: 1939-5582
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2016-05-05
    Description: Why some species and lineages are more likely to be invasive than others is one of the most important unanswered questions in basic and applied biology. In particular, the relative contributions to the invasion process of factors like preadaptation to invasiveness in the native range, evolution post-colonization, and random vs. non-random sampling of colonist lineages remain unclear. Here, we use a powerful common garden approach to address the potential for a role for sensitivity to nutrient limitation in determining the invasiveness of particular lineages of Potamopyrgus antipodarum , a New Zealand freshwater snail that has become globally invasive. We quantified specific growth rate (SGR), an important fitness-related trait in this species, under high phosphorus (P) vs. low-P conditions for a diverse set of native and invasive P. antipodarum . This study revealed that native-range P. antipodarum experience a more severe decline in SGR in low-P conditions relative to SGR in high-P conditions than their invasive range counterparts. Although these results suggest resilience to P limitation in invasive lineages, the absence of significant absolute differences in SGR between native and invasive lineages indicates that a straightforward connection between response to P limitation and invasiveness in P. antipodarum is unlikely. Regardless, our data do demonstrate that invasive vs. native lineages of P. antipodarum exhibit consistently different responses to an important environmental variable that is rarely studied in the context of invasion success. Further studies directed at exploring and disentangling the roles of sampling effects, selection on preexisting variation, and evolution after colonization will be required to provide a comprehensive picture of the role (or lack thereof) of nutrient limitation in the global invasion of P. antipodarum as well for as other invasive taxa. This article is protected by copyright. All rights reserved.
    Print ISSN: 1051-0761
    Electronic ISSN: 1939-5582
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2016-05-05
    Description: An increasing number of studies have aimed to clarify the factors leading human groups to prioritize the use of some woody plant species when compared to others. Some of these studies have tested the apparency hypothesis in aiming to understand this phenomenon. According to the apparency hypothesis, the most commonly available local plant species on a forest path are the most useful to that local human population. However, the sparse and diverse nature of the results from studies investigating the factors that influence human exploitation of plant resources motivated us to perform a meta-analysis on the apparency hypothesis. We searched in the main databases (Scopus, Sciencedirect, Google Scholar and Scielo) for studies that correlated the environmental availability of woody species (estimated through vegetation parameters) with the importance degree of such species to the local human population (estimated by means of the use-value index). Overall, this meta-analysis supported the apparency hypothesis, although we also found high levels of heterogeneity in these studies. When the distinct uses of woody flora were considered separately, we found that local species availability is important for fuelwood (firewood and charcoal) and construction (houses, fences, etc.) purposes but does not explain medicinal and technological (object manufacture) plant use. We found no important differences in correlations values between the degree of species importance for people and the different vegetation parameters, although correlations are slightly higher for the dominance and importance value index. Our findings suggest that the exploitation of woody flora is influenced by local availability. This article is protected by copyright. All rights reserved.
    Print ISSN: 1051-0761
    Electronic ISSN: 1939-5582
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2016-05-05
    Description: Ecological traps are threats to organisms, and exist in a range of biological systems. A subset of ecological trap theory is the “ethological trap”, whereby behaviors canalized by past natural selection become traps when environments change rapidly. Invasive predators are major threats to imperilled species and their ability to exploit canalized behaviors of naive prey is particularly important for the establishment of the predator and the decline of the native prey. Our study uses ecological theory to demonstrate that invasive predator controls require shifts in management priorities. Total predation rate (i.e., total response) is the product of both the functional response and numerical response of predators to prey. Functional responses are the changes in the rate of prey consumption by individual predators, relative to prey abundance. Numerical responses are the aggregative rates of prey consumption by all predators relative to prey density, which change with predator density via reproduction or migration, in response to changes in prey density. Traditional invasive predator management methods focus on reducing predator populations, and thus manage for numerical responses. These management efforts fail to manage for functional responses, and may not eliminate impacts of highly-efficient individual predators. We explore this problem by modelling the impacts of functional and numerical responses of invasive foxes depredating imperilled Australian turtle nests. Foxes exhibit exceptionally-efficient functional responses. A single fox can destroy 〉95% of turtle nests in a nesting area, which eliminates juvenile recruitment. In this case, the ethological trap is the ‘Arribada’ nesting strategy, an emergent behavior whereby most turtles in a population nest simultaneously in the same nesting grounds. Our models show that Arribada nesting events do not oversaturate foxes, and small numbers of foxes depredate all of the nests in a given Arribada. Widely scattering nests may reduce fox predation rates, but the long generation times of turtles combined with their rapid recent decline suggests that evolutionary changes in nesting strategy may be unlikely. Our study demonstrates that reducing populations of highly-efficient invasive predators is insufficient for preserving native prey species. Instead, management must reduce individual predator efficiency, independent of reducing predator population size. This article is protected by copyright. All rights reserved.
    Print ISSN: 1051-0761
    Electronic ISSN: 1939-5582
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2016-05-05
    Description: Changed fire regimes have led to declines of fire-regime-adapted species and loss of biodiversity globally. Fire affects population processes of growth, reproduction and dispersal in different ways, but there is little guidance about the best fire regime(s) to maintain species population processes in fire-prone ecosystems. We use a process-based approach to determine the best range of fire intervals for keystone plant species in a highly-modified Mediterranean ecosystem in south-western Australia where current fire regimes vary. In highly-fragmented areas, fires are few due to limited ignitions and active suppression of wildfire on private land, while in highly connected protected areas fires are frequent and extensive. Using matrix population models, we predict population growth of seven Banksia species under different environmental conditions and patch connectivity, and evaluate the sensitivity of species survival to different fire management strategies and burning intervals. We discover that contrasting, complementary patterns of species life-histories with time since fire result in no single best fire regime. All strategies result in the local patch extinction of at least one species. A small number of burning strategies secure complementary species sets depending on connectivity and post-fire growing conditions. A strategy of no fire always leads to fewer species persisting than prescribed fire or random wildfire, while too-frequent or too-rare burning regimes lead to the possible local extinction of all species. In low landscape connectivity, we find a smaller range of suitable fire intervals, and strategies of prescribed or random burning result in a lower number of species with positive growth rates after 100 years on average compared with burning high connectivity patches. Prescribed fire may reduce or increase extinction risk when applied in combination with wildfire depending on patch connectivity. Poor growing conditions result in a significantly reduced number of species exhibiting positive growth rates after 100 years of management. By exploring the consequences of managing fire, we are able to identify which species are likely to disappear under a given fire regime. Identifying the appropriate complementarity of fire intervals, and their species-specific as well as community-level consequences, is crucial to reduce local extinctions of species in fragmented fire-prone landscapes. This article is protected by copyright. All rights reserved.
    Print ISSN: 1051-0761
    Electronic ISSN: 1939-5582
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2016-05-05
    Description: Assessments of large-scale disasters, such as the Deepwater Horizon oil spill, are problematic because while measurements of post-disturbance conditions are common, measurements of pre-disturbance baselines are only rarely available. Without adequate observations of pre-disaster organismal and environmental conditions, it is impossible to assess the impact of such catastrophes on animal populations and ecological communities. Here, we use long-term biological tissue records to provide pre-disaster data for a vulnerable marine organism. Keratin samples from the carapace of loggerhead sea turtles record the foraging history for up to 18 years, allowing us to evaluate the effect of the oil spill on sea turtle foraging patterns. Samples were collected from 76 satellite-tracked adult loggerheads in 2011 and 2012, approximately one to two years after the spill. Of the ten individuals that foraged in areas exposed to surface oil, none demonstrated significant changes in foraging patterns post spill. The observed long-term fidelity to foraging sites indicates that loggerheads in the northern Gulf of Mexico likely remained in established foraging sites, regardless of the introduction of oil and chemical dispersants. More research is needed to address potential long-term health consequences to turtles in this region. Mobile marine organisms present challenges for researchers to monitor effects of environmental disasters, both spatially and temporally. We demonstrate that biological tissues can reveal long-term histories of animal behavior and provide critical pre-disaster baselines following an anthropogenic disturbance or natural disaster. This article is protected by copyright. All rights reserved.
    Print ISSN: 1051-0761
    Electronic ISSN: 1939-5582
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2016-05-05
    Description: Increasing temperatures have resulted in reduced growth and increased tree mortality across large areas of western North American forests. Here we use tree-ring isotope chronologies (δ 13 C & δ 18 O) from live and dead trees from four locations in south-central Alaska to test whether white spruce trees killed by recent spruce beetle ( Dendroctonus rufipennis Kirby) outbreaks showed evidence of drought stress prior to death. Trees that were killed were more sensitive to spring/summer temperature and/or precipitation than trees that survived. At two of our sites we found greater correlations between the δ 13 C and δ 18 O chronologies and spring/summer temperatures in dead trees than in live trees, suggesting that trees that are more sensitive to temperature-induced drought stress are more likely to be killed. At one site, the difference between δ 13 C in live and dead trees was related to winter/spring precipitation, with dead trees showing stronger correlations between δ 13 C and precipitation, again suggesting increased water stress in dead trees. At all sites where δ 18 O was measured, δ 18 O chronologies showed the greatest difference in climate response between live and dead groups, with δ 18 O in live trees correlating more strongly with late winter precipitation than dead trees. Our results indicate that sites where trees are already sensitive to warm or dry early growing-season conditions experienced the most beetle-kill, which has important implications for forecasting future mortality events in Alaska. This article is protected by copyright. All rights reserved.
    Print ISSN: 1051-0761
    Electronic ISSN: 1939-5582
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2016-05-05
    Description: Understanding the impacts of natural and human disturbances on forest biota is critical for improving forest management. Many studies have examined the separate impacts on fauna and flora of wildfire, conventional logging and salvage logging, but empirical comparisons across a broad gradient of simultaneous disturbances are lacking. We quantified species richness and frequency of occurrence of vascular plants, and functional group responses, across a gradient of disturbances that occurred concurrently in 2009 in the Mountain Ash forests of southeastern Australia. Our study encompassed replicated sites in undisturbed forest (~70 years post-fire), forest burned at low severity, forest burned at high severity, unburned forest that was clearcut logged, and forest burned at high severity that was clearcut salvage logged post-fire. All sites were sampled two and three years post-fire. Mean species richness decreased across the disturbance gradient from 30.1 spp/site on low severity burned sites and 28.9 spp/site on high severity burned sites, to 25.1 spp/site on clearcut sites and 21.7 spp/site on salvage logged sites. Low severity burned sites were significantly more species-rich than clearcut sites and salvage logged sites; high severity burned sites supported greater species richness than salvage logged sites. Specific traits influenced species’ sensitivity to disturbance. Resprouting species dominated undisturbed Mountain Ash forests, but declined significantly across the gradient. Fern and midstory trees decreased significantly in frequency of occurrence across the gradient. Ferns (excluding Bracken) decreased from 34% of plants in undisturbed forest to 3% on salvage logged sites. High severity burned sites supported a greater frequency of occurrence and species richness of midstory trees compared to clearcut and salvage logged sites. Salvage logging supported fewer midstory trees than any other disturbance category, and were distinctly different from clearcut sites. Plant life form groups, including midstory trees, shrubs and ferns, were dominated by very few species on logged sites. The differences in biotic response across the gradient of natural and human disturbances have significant management implications, particularly the need to reduce mechanical disturbance overall and to leave specific areas with no mechanical disturbance across the cut area during logging operations, to ensure the persistence of resprouting taxa. This article is protected by copyright. All rights reserved.
    Print ISSN: 1051-0761
    Electronic ISSN: 1939-5582
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2016-05-06
    Description: The timing of the fruit-set stage (i.e. start and end of fruit set) is crucial in a plant's life cycle, but its response to temperature change is still unclear. We investigated the timing of seven phenological events, including fruit-set dates during 3 years for six alpine plants transplanted to warmer (+ ~3.5 °C in soils) and cooler (- ~3.5 °C in soils) locations along an altitudinal gradient in the Tibetan area. We found that fruit-set dates remained relatively stable under both warming and cooling during the 3-years transplant experiment. Three earlier phenological events (emergence of first leaf, first bud set, and first flowering) and two later phenological events (first leaf coloring and complete leaf coloring) were earlier by 4.8-8.2 days °C −1 and later by 3.2-7.1 days °C −1 in response to warming. Conversely, cooling delayed the three earlier events by 3.8-6.9 days °C −1 and advanced the two later events by 3.2-8.1 days °C −1 for all plant species. The timing of the first and/or last fruit-set dates, however, did not change significantly compared to earlier and later phenological events. Statistical analyses also showed that the dates of fruit set were not significantly correlated or had lower correlations with changes of soil temperature relative to the earlier and later phenological events. Alpine plants may thus acclimate to changes in temperature for their fruiting function by maintaining relatively stable timings of fruit set compared with other phenological events to maximize the success of seed maturation and dispersal in response to short-term warming or cooling. This article is protected by copyright. All rights reserved.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2016-05-10
    Description: Statistical models of habitat preference and species distribution (e.g., Resource Selection Functions and Maximum Entropy approaches) perform a quantitative comparison of the use of space with the availability of all habitats in an animal's environment. However, not all of space is accessible all of the time to all individuals, so availability is in fact determined by limitations in animal perception and mobility. Therefore, measuring habitat availability at biologically relevant scales is essential for understanding preference, but herein lies a trade-off: Models fitted at large spatial scales, will tend to average across the responses of different individuals that happen to be in regions with contrasting habitat compositions. We suggest that such models may fail to capture local extremes (hotspots and coldspots) in animal usage and call this potential problem, homogenization . In contrast, models fitted at smaller scales will vary stochastically depending on the particular habitat composition of their narrow spatial neighborhood, and hence fail to describe responses when predicting for different sampling instances. This is the now well-documented issue of non-transferability of habitat models. We illustrate this tradeoff, using a range of simulated experiments, incorporating variations in environmental gradients, richness and fragmentation. We propose diagnostics for detecting the two issues of homogenization and non-transferability and show that these scale-related symptoms are likely to be more pronounced in highly fragmented or steeply graded landscapes. Further, we address these problems by treating the neighborhood of each cell in the landscape grid as an individual sampling instance (with its own neighborhood), hence allowing coefficients to respond to the local expectations of environmental variables according to a Generalized Functional Response (GFR). Under simulation this approach is consistently better at estimating robust (i.e., transferable) habitat models at smaller scales, and less susceptible to homogenization at larger scales. At the same time, it represents the first application of a GFR to continuous space (rather than multiple, spatially distinct datasets), allowing the predictive advantages of this extension of species distribution models to become available to data from large-scale but single-site field studies.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2016-05-10
    Description: Conspecific negative density dependence (CNDD) has been recognized as a key mechanism underlying species coexistence, especially in tropical forests. Recently, some studies have reported that seedling survival is also negatively correlated with the phylogenetic relatedness between neighbors and focal individuals, termed phylogenetic negative density dependence (PNDD). In contrast to CNDD or PNDD, shared habitat requirements between closely related individuals are thought to be a cause of observed positive effects of closely related neighbors, which may affect the strength and detectability of CNDD or PNDD. In order to investigate the relative importance of these mechanisms for tropical tree seedling survival, we used generalized linear mixed models to analyze how the survival of more than 10 000 seedlings of woody plant species related to neighborhood and habitat variables in a tropical rainforest in southwest China. By comparing models with and without habitat variables, we tested how habitat filtering affected the detection of CNDD and PNDD. The best-fitting model suggested that CNDD and habitat filtering played key roles in seedling survival, but that, contrary to our expectations, phylogenetic positive density dependence (PPDD) had a distinct and important effect. While habitat filtering affected the detection of CNDD by decreasing its apparent strength, it did not explain the positive effects of closely related neighbors. Our results demonstrate that a failure to control for habitat variables and phylogenetic relationships may obscure the importance of conspecific and heterospecific neighbor densities for seedling survival.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2016-05-10
    Description: Time can be a limiting constraint for consumers, particularly when resource phenology mediates foraging opportunity. Though a large body of research has explored how resource phenology influences trophic interactions, this work has focused on the topics of trophic mismatch or predator swamping, which typically occur over short periods, at small spatial extents or coarse resolutions. In contrast many consumers integrate across landscape heterogeneity in resource phenology, moving to track ephemeral food sources that propagate across space as resource waves. Here we provide a conceptual framework to advance the study of phenological diversity and resource waves. We define resource waves, review evidence of their importance in recent case studies, and demonstrate their broader ecological significance with a simulation model. We found that consumers ranging from fig wasps ( Chalcidoidea) to grizzly bears ( Ursus arctos ) exploit resource waves, integrating across phenological diversity to make resource aggregates available for much longer than their component parts. In model simulations, phenological diversity was often more important to consumer energy gain than resource abundance per se. Current ecosystem-based management assumes that species abundance mediates the strength of trophic interactions. Our results challenge this assumption and highlight new opportunities for conservation and management. Resource waves are an emergent property of consumer–resource interactions and are broadly significant in ecology and conservation.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2016-05-10
    Description: Essential fatty acids (EFAs) are primarily generated by phytoplankton in aquatic ecosystems, and can limit the growth, development, and reproduction of higher consumers. Among the most critical of the EFAs are highly unsaturated fatty acids (HUFAs), which are only produced by certain groups of phytoplankton. Changing environmental conditions can alter phytoplankton community and fatty acid composition and affect the HUFA content of higher trophic levels. Almost no research has addressed intraspecific variation in HUFAs in zooplankton, nor intraspecific relationships of HUFAs with body size and fecundity. This is despite that intraspecific variation in HUFAs can exceed interspecific variation and that intraspecific trait variation in body size and fecundity is increasingly recognized to have an important role in food web ecology (effect traits). Our study addressed the relative influences of abiotic selection and food web effects associated with climate change on intraspecific differences and interrelationships between HUFA content, body size, and fecundity of freshwater copepods. We applied structural equation modeling and regression analyses to intraspecific variation in a dominant calanoid copepod, Leptodiatomus minutus , among a series of shallow north-temperate ponds. Climate-driven diurnal temperature fluctuations favored the coexistence of diversity of phytoplankton groups with different temperature optima and nutritive quality. This resulted in unexpected positive relationships between temperature, copepod DHA content and body size. Temperature correlated positively with diatom biovolume, and mediated relationships between copepod HUFA content and body size, and between copepod body size and fecundity. The presence of brook trout further accentuated these positive effects in warm ponds, likely through nutrient cycling and stimulation of phytoplankton resources. Climate change may have previously unrecognized positive effects on freshwater copepod DHA content, body size, and fecundity in the small, shallow bodies of inland waters that are commonly found in north-temperate landscapes.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    facet.materialart.
    Unknown
    Wiley
    In: Ecology
    Publication Date: 2016-05-10
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2016-05-11
    Description: We review and synthesize information on invasions of nonnative forest insects and diseases in the United States, including their ecological and economic impacts, pathways of arrival, distribution within the United States, and policy options for reducing future invasions. Nonnative insects have accumulated in United States forests at a rate of ~2.5 per yr over the last 150 yr. Currently the two major pathways of introduction are importation of live plants and wood packing material such as pallets and crates. Introduced insects and diseases occur in forests and cities throughout the United States, and the problem is particularly severe in the Northeast and Upper Midwest. Nonnative forest pests are the only disturbance agent that has effectively eliminated entire tree species or genera from United States forests within decades. The resulting shift in forest structure and species composition alters ecosystem functions such as productivity, nutrient cycling, and wildlife habitat. In urban and suburban areas, loss of trees from streets, yards, and parks affects aesthetics, property values, shading, stormwater runoff, and human health. The economic damage from nonnative pests is not yet fully known, but is likely in the billions of dollars per year, with the majority of this economic burden borne by municipalities and residential property owners. Current policies for preventing introductions are having positive effects but are insufficient to reduce the influx of pests in the face of burgeoning global trade. Options are available to strengthen the defenses against pest arrival and establishment, including measures taken in the exporting country prior to shipment, measures to ensure clean shipments of plants and wood products, inspections at ports of entry, and post-entry measures such as quarantines, surveillance, and eradication programs. Improved data collection procedures for inspections, greater data accessibility, and better reporting would support better evaluation of policy effectiveness. Lack of additional action places the nation, local municipalities, and property owners at high risk of further damaging and costly invasions. Adopting stronger policies to reduce establishments of new forest insects and diseases would shift the major costs of control to the source and alleviate the economic burden now borne by homeowners and municipalities.
    Print ISSN: 1051-0761
    Electronic ISSN: 1939-5582
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2016-05-11
    Description: Understanding the impacts of biodiversity loss on ecosystem functioning and services has been a central issue in ecology. Experiments in synthetic communities suggest that biodiversity loss may erode a set of ecosystem functions, but studies in natural communities indicate that the effects of biodiversity loss are usually weak and that multiple functions can be sustained by relatively few species. Yet, the mechanisms by which natural ecosystems are able to maintain multiple functions in the face of diversity loss remain poorly understood. With a long-term and large-scale removal experiment in the Inner Mongolian grassland, here we showed that losses of plant functional groups (PFGs) can reduce multiple ecosystem functions, including biomass production, soil NO 3 -N use, net ecosystem carbon exchange, gross ecosystem productivity, and ecosystem respiration, but the magnitudes of these effects depended largely on which PFGs were removed. Removing the two dominant PFGs (perennial rhizomatous grasses and perennial bunchgrasses) simultaneously resulted in dramatic declines in all examined functions, but such declines were circumvented when either dominant PFG was present. We identify the major mechanism for this as a compensation effect by which each dominant PFG can mitigate the losses of others. This study provides evidence that compensation ensuing from PFG losses can mitigate their negative consequence, and thus natural communities may be more resilient to biodiversity loss than currently thought if the remaining PFGs have strong compensation capabilities. On the other hand, ecosystems without well-developed compensatory functional diversity may be much more vulnerable to biodiversity loss. This article is protected by copyright. All rights reserved.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2016-05-11
    Description: Understanding processes that promote species coexistence is integral to diversity maintenance. In hyperdiverse tropical forests, local conspecific density (LCD) and light are influential to woody seedling recruitment and soil nutrients are often limiting, yet the simultaneous effects of these factors on seedling survival across time remain unknown. We fit species- and age-specific models to census and resource data of seedlings of 68 woody species from a Costa Rican wet tropical forest. In decreasing order of prevalence, seedling survivorship was related to LCD, soil base cations, irradiance, nitrogen, and phosphorus. Species–specific responses to factors did not covary, providing evidence that species life history strategies have not converged to one continuum of high-surviving stress tolerant to low-surviving stress intolerant species. Survival responses to all factors varied over the average seedling's lifetime, indicating seedling requirements change with age and conclusions drawn about processes important to species coexistence depend on temporal resolution. This article is protected by copyright. All rights reserved.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2016-05-05
    Description: Droughts and their negative effects on forest ecosystems are projected to increase under climate change for many regions. It has been suggested that intensive thinning could reduce drought impacts on established forests in the short-term. Most previous studies on the effect of thinning on drought impacts, however, have been confined to single forest sites. It is therefore still unclear how general and persisting the benefits of thinning are. This study assesses the potential of thinning to increase drought tolerance of the wide spread Scots pine ( Pinus sylvestris ) in Central Europe. We hypothesized 1) that increasing thinning intensity benefits the maintenance of radial growth of crop trees during drought (resistance) and its recovery following drought, 2) that those benefits to growth decrease with time elapsed since the last thinning and with stand age, and 3) that they may depend on drought severity as well as water limitations in pre- and post-drought periods. To test these hypotheses, we assessed the effects of thinning regime, stand age, and drought severity on radial growth of 129 Scots pine trees during and after drought events in 4 long-term thinning experiments in Germany. We find that thinning improved the recovery of radial growth following drought and to a lesser extent the growth resistance during a drought event. Growth recovery following drought was highest after the first thinning intervention and in recently and heavily thinned stands. With time since the last thinning, however, this effect decreased and could even become negative when compared to unthinned stands. Further, thinning helped to avoid an age-related decline in growth resistance (and recovery) following drought. The recovery following drought, but not the resistance during drought, was related to water limitations in the drought period. This is the first study that analyzed drought-related radial growth in trees of one species across several stands of different age. The interaction between thinning intensity and time since the last thinning underline the importance to distinguish between short- and long-term effects of thinning. According to our analysis, only thinning regimes, with relatively heavy and frequent thinning interventions would increase drought tolerance in pine stands. This article is protected by copyright. All rights reserved.
    Print ISSN: 1051-0761
    Electronic ISSN: 1939-5582
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2016-05-06
    Description: Sea-to-land nutrient transfers can connect marine food webs to those on land, creating a dependence on marine webs by opportunistic species. We show how nitrogen, imported by grey seals, Halichoerus grypus , and traced through stable isotope (δ 15 N) measurements in marram grass , Ammophila breviligulata , significantly alters foraging behavior of a free-roaming megaherbivore (feral horses, Equus ferus caballus ) on Sable Island, Canada. Values of δ 15 N correlated with protein content of marram and strongly related to pupping-seal densities, and positively influenced selective foraging by horses. The latter was density-dependent consistent with optimal foraging theory. We present the first demonstration of how sea-to-land nutrient transfers can affect the behavioral process of resource selection (resource use relative to availability) of terrestrial consumers. We hypothesize that persistence of horses on Sable Island is being facilitated by N subsidies. Our results have relevance to advancing theory on trophic dynamics in island biogeography and metaecosystem ecology. This article is protected by copyright. All rights reserved.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2016-05-10
    Description: The “landscape of fear” model, recently advanced in research on the non-lethal effects of carnivores on ungulates, predicts that prey will exhibit detectable antipredator behavior not only during risky times (i.e., predators in close proximity) but also in risky places (i.e., habitat where predators kill prey or tend to occur). Aggregation is an important antipredator response in numerous ungulate species, making it a useful metric to evaluate the strength and scope of the landscape of fear in a multi-carnivore, multi-ungulate system. We conducted ungulate surveys over a 2-year period in South Africa to test the influence of three broad-scale sources of variation in the landscape on spatial patterns in aggregation: (1) habitat structure, (2) where carnivores tended to occur (i.e., population-level utilization distributions), and (3) where carnivores tended to kill ungulate prey (i.e., probabilistic kill site maps). We analyzed spatial variation in aggregation for six ungulate species exposed to predation from recently reintroduced lion ( Panthera leo ) and spotted hyena ( Crocuta crocuta ). Although we did detect larger aggregations of ungulates in “risky places,” these effects existed primarily for smaller-bodied (〈150 kg) ungulates and were relatively moderate (change of ≤4 individuals across all habitats). In comparison, ungulate aggregations tended to increase at a slightly lower rate in habitat that was more open. The lion, an ambush (stalking) carnivore, had stronger influence on ungulate aggregation than the hyena, an active (coursing) carnivore. In addition, places where lions tended to kill prey had a greater effect on ungulate aggregation than places where lions tended to occur, but an opposing pattern existed for hyena. Our study reveals heterogeneity in the landscape of fear and suggests broad-scale risk effects following carnivore reintroduction only moderately influence ungulate aggregation size and vary considerably by predator hunting mode, type of predation risk, and prey species.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2016-05-10
    Description: Many insect parasitoids are highly specialized and thus develop on only one or a few related host species, yet some hosts are attacked by many different parasitoid species in nature. For this reason, they have been often used to examine the consequences of competitive interactions. Hosts represent limited resources for larval parasitoid development and thus one competitor usually excludes all others. Although parasitoid competition has been debated and studied over the past several decades, understanding the factors that allow for coexistence among species sharing the same host in the field remains elusive. Parasitoids may be able to coexist on the same host species if they partition host resources according to size, age, or stage, or if their dynamics vary at spatial and temporal scales. One area that has thus far received little experimental attention is if competition can alter host usage strategies in parasitoids that in the absence of competitors attack hosts of the same size in the field. Here, we test this hypothesis with two parasitoid species in the genus Aphytis , both of which are specialized on the citrus pest California red scale Aonidiella aurantii . These parasitoids prefer large scales as hosts and yet coexist in sympatry in eastern parts of Spain. Parasitoids and hosts were sampled in 12 replicated orange groves. When host exploitation by the stronger competitor, A. melinus , was high the poorer competitor, A. chrysomphali , changed its foraging strategy to prefer alternative plant substrates where it parasitized hosts of smaller size. Consequently, the inferior parasitoid species shifted both its habitat and host size as a result of competition. Our results suggest that density-dependent size-mediated asymmetric competition is the likely mechanism allowing for the coexistence of these two species, and that the use of suboptimal (small) hosts can be advantageous under conditions imposed by competition where survival in higher quality larger hosts may be greatly reduced.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2016-05-10
    Description: Long-distance breeding and natal dispersal play central roles in many ecological and evolutionary processes, including gene flow, population dynamics, range expansion, and individual responses to fluctuating biotic and abiotic conditions. However, the relative contribution of long-distance dispersal to these processes depends on the ability of dispersing individuals to successfully reproduce in their new environment. Unfortunately, due to the difficulties associated with tracking dispersal in the field, relatively little is known about its reproductive consequences. Furthermore, because reproductive success is influenced by a variety of processes, disentangling the influence of each of these processes is critical to understanding the direct consequences of dispersal. In this study, we used stable hydrogen and carbon isotopes to estimate long-distance dispersal and winter territory quality in a migratory bird, the American Redstart ( Setophaga ruticilla ). We then applied Aster life-history models to quantify the strength of influence of these factors on apparent reproductive success. We found no evidence that male or female reproductive success was lower for long-distance dispersers relative to non-dispersing individuals. In contrast, carry-over effects from the winter season did influence male, but not female, reproductive success. Use of Aster models further revealed that for adult males, winter territory quality influenced the number of offspring produced whereas for yearling males, high-quality winter territories were associated with higher mating and nesting success. These results suggest that although long-distance natal and breeding dispersal carry no immediate reproductive cost for American Redstarts, reproductive success in this species may ultimately be limited by the quality of winter habitat.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2016-05-10
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2016-05-10
    Description: Ecological patterns arise from the interplay of many different processes, and yet the emergence of consistent phenomena across a diverse range of ecological systems suggests that many patterns may in part be determined by statistical or numerical constraints. Differentiating the extent to which patterns in a given system are determined statistically, and where it requires explicit ecological processes, has been difficult. We tackled this challenge by directly comparing models from a constraint-based theory, the Maximum Entropy Theory of Ecology (METE) and models from a process-based theory, the size-structured neutral theory (SSNT). Models from both theories were capable of characterizing the distribution of individuals among species and the distribution of body size among individuals across 76 forest communities. However, the SSNT models consistently yielded higher overall likelihood, as well as more realistic characterizations of the relationship between species abundance and average body size of conspecific individuals. This suggests that the details of the biological processes contain additional information for understanding community structure that are not fully captured by the METE constraints in these systems. Our approach provides a first step towards differentiating between process- and constraint-based models of ecological systems and a general methodology for comparing ecological models that make predictions for multiple patterns.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2016-05-11
    Description: In the coming century, climate change is projected to impact precipitation and temperature regimes worldwide, with especially large effects in drylands. We use big sagebrush ecosystems as a model dryland ecosystem to explore the impacts of altered climate on ecohydrology and the implications of those changes for big sagebrush plant communities using output from 10 Global Circulation Models (GCMs) for two representative concentration pathways (RCPs). We ask: 1) What is the magnitude of variability in future temperature and precipitation regimes among GCMs and RCPs for big sagebrush ecosystems and 2) How will altered climate and uncertainty in climate forecasts influence key aspects of big sagebrush water balance? We explored these questions across 1980-2010, 2030-2060, and 2070-2100 to determine how changes in water balance might develop through the 21 st century. We assessed ecohydrological variables at 898 sagebrush sites across the western US using a process-based soil water model, SOILWAT to model all components of daily water balance using site-specific vegetation parameters and site-specific soil properties for multiple soil layers. Our modeling approach allowed for changes in vegetation based on climate. Temperature increased across all GCMs and RCPs, while changes in precipitation were more variable across GCMs. Winter and spring precipitation was predicted to increase in the future (7% by 2030-2060, 12% by 2070-2100), resulting in slight increases in soil water potential (SWP) in winter. Despite wetter winter soil conditions, SWP decreased in late spring and summer due to increased evapotranspiration (6% by 2030-2060, 10% by 2070-2100) and groundwater recharge (26% and 30% increase by 2030-2060 and 2070-2100). Thus, despite increased precipitation in the cold season, soils may dry out earlier in the year, resulting in potentially longer drier summer conditions. If winter precipitation cannot offset drier summer conditions in the future, we expect big sagebrush regeneration and survival will be negatively impacted, potentially resulting in shifts in the relative abundance of big sagebrush plant functional groups. Our results also highlight the importance of assessing multiple GCMs to understand the range of climate change outcomes on ecohydrology, which was contingent on the GCM chosen. This article is protected by copyright. All rights reserved.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2016-05-11
    Description: Mass mortality of the sea urchin Diadema antillarum due to disease outbreaks in 1983 and 1991 decimated populations in the Florida Keys, and they have yet to recover. Here, we use a coupled advection-diffusion and fertilization-kinetics model to test the hypothesis that these populations are fertilization-limited. We found that fertilization success was ≥ 96% prior to the first disease outbreak, decreased substantially following recurrent disease to 3%, and has since remained low. By investigating the combined effects of physical factors (population spatial extent and current velocity) and sea urchin behavior (aggregation) on density-dependent fertilization success, we show that fertilization success at a given density increases with increasing population spatial extent and decreasing current velocity, and is greater under simulated aggregation behavior of D. antillarum . However, at present population densities, the increase in fertilization success due to aggregation is 〈 1%, even under the most favorable physical conditions. These results indicate that populations are severely fertilization-limited, and that Allee effects at low population density will continue to limit recovery. Our results can serve as a practical guide to managers in the development of coral reef restoration strategies, including the design of a D. antillarum restocking program to obtain reproductively viable populations. This article is protected by copyright. All rights reserved.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2016-05-27
    Description: Theory suggests that high activity levels in animals increase growth at the cost of increased mortality. This growth-mortality trade-off has recently been incorporated into the wider framework of the pace-of-life syndrome (POLS) hypothesis. However, activity is often quantified only in the laboratory and on a diurnal basis, leaving open the possibility that animals manage predation risk and feeding efficiency in the wild by modulating their circadian activity rhythms. Here we investigate how laboratory activity in wild brown trout parr ( Salmo trutta L.) associates with circadian activity, growth, and mortality in their natal stream. We found that individuals with high activity in the laboratory displayed high dispersal and cathemeral activity in their natal stream. In contrast, trout with low laboratory activity showed variation of activity in the wild, which was negatively related to the light intensity. Our results do not support the growth-mortality trade-off of the POLS hypothesis as highly active, fast-growing individuals showed higher survival than inactive conspecifics. These novel results show for the first time that active and inactive individuals, as scored in the lab, can show different circadian patterns of behaviour in the wild driven by light intensity. This implies that studies conducted under a narrow range of light conditions can bias our understanding of individual behavioural variation and its fitness consequences in the wild. This article is protected by copyright. All rights reserved.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2016-05-12
    Description: Encounter competition is interference competition in which animals directly contend for resources. Ecological theory predicts the trait that determines the resource holding potential (RHP), and hence the winner of encounter competition, is most often body size or mass. The difficulties of observing encounter competition in complex organisms in natural environments, however, has limited opportunities to test this theory across diverse species. We studied the outcome of encounter competition contests among mesocarnivores at deer carcasses in California to determine the most important variables for winning these contests. We found some support for current theory in that body mass is important in determining the winner of encounter competition, but we found that other factors including hunger and species-specific traits were also important. In particular, our top models were ‘strength and hunger’ and ‘size and hunger,’ with models emphasizing the complexity of variables influencing outcomes of encounter competition. In addition, our wins above predicted (WAP) statistic suggests that an important aspect that determines the winner of encounter competition is species-specific advantages that increase their RHP, as bobcats ( Lynx rufus ) and spotted skunks ( Spilogale gracilis ) won more often than predicted based on mass. In complex organisms, such as mesocarnivores, species-specific adaptations, including strategic behaviors, aggressiveness, and weapons, contribute to competitive advantages and may allow certain species to take control or defend resources better than others. Our results help explain how interspecific competition shapes the occurrence patterns of species in ecological communities. This article is protected by copyright. All rights reserved.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2016-07-20
    Description: Humans have a profound effect on fire regimes by increasing the frequency of ignitions. Although ignition is an integral component of understanding and predicting fire, to date fire models have not been able to isolate the ignition location, leading to inconsistent use of anthropogenic ignition proxies. Here, we identified fire ignitions from the Moderate Resolution Imaging Spectrometer (MODIS) burned area product (2000-2012) to create the first remotely sensed, consistently derived, and regionally comprehensive fire ignition data set for the western United States. We quantified the spatial relationships between several anthropogenic land use/disturbance features and ignition for ecoregions within the study area, and used hierarchical partitioning to test how the anthropogenic predictors of fire ignition vary among ecoregions. The degree to which anthropogenic features predicted ignition varied considerably by ecoregion, with the strongest relationships found in the Marine West Coast Forest and North American Desert ecoregions. Similarly, the contribution of individual anthropogenic predictors varied greatly among ecoregions. Railroad corridors and agricultural presence tended to be the most important predictors of anthropogenic ignition while population density and roads were generally poor predictors. Although human population has often been used as a proxy for ignitions at global scales, it is less important at regional scales when more specific land uses (e.g., agriculture) can be identified. The variability of ignition predictors among ecoregions suggests that human activities have heterogeneous impacts in altering fire regimes within different vegetation types and geographies. This article is protected by copyright. All rights reserved.
    Print ISSN: 1051-0761
    Electronic ISSN: 1939-5582
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2016-07-20
    Description: Ecological theory suggests that pathogens are capable of regulating or limiting host population dynamics, and this relationship has been empirically established in several settings. However, although studies of childhood diseases were integral to the development of disease ecology, few studies show population limitation by a disease affecting juveniles. Here, we present empirical evidence that disease in lambs constrains population growth in bighorn sheep ( Ovis canadensis ) based on 45 years of population-level and 18 years of individual-level monitoring across 12 populations. While populations generally increased (lambda =1.11) prior to disease introduction, most of these same populations experienced an abrupt change in trajectory at the time of disease invasion, usually followed by stagnant-to-declining growth rates (lambda = 0.98) over the next twenty years. Disease-induced juvenile mortality imposed strong constraints on population growth that were not observed prior to disease introduction, even as adult survival returned to pre-invasion levels. Simulations suggested that models including persistent disease-induced mortality in juveniles qualitatively matched observed population trajectories, whereas models that only incorporated all-age disease events did not. We use these results to argue that pathogen persistence may pose a lasting, but under-recognized, threat to host populations, particularly in cases where clinical disease manifests primarily in juveniles. This article is protected by copyright. All rights reserved.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2016-07-20
    Description: Global environmental change (GEC) is affecting species interactions and causing a rapid decline in biodiversity. In this study, I present a new Ecosystem Disruption Index (EDI) to quantify the impacts of simulated nitrogen (N) deposition (0, 10, 20 and 50 kg N ha -1 yr -1 + 6-7 kg N ha -1 yr -1 background) on abiotic and biotic ecological interactions. This comparative index is based on pairwise linear and quadratic regression matrices. These matrices, calculated at the N treatment level, were constructed using a range of abiotic and biotic ecosystem constituents: soil pH, shrub cover, and the first component of several separate principal component analyses using soil fertility data (total carbon and N) and community data (annual plants; microorganisms; biocrusts; edaphic fauna) for a total of seven ecosystem constituents. Four years of N fertilization in a semiarid shrubland completely disrupted the network of ecological interactions, with a greater proportional increase in ecosystem disruption at low-N addition levels. Biotic interactions, particularly those involving microbes, shrubs and edaphic fauna, were more prone to be lost in response to N, whereas interactions involving soil properties were more resilient. In contrast, edaphic fauna was the only group directly affected by N addition, with mites and collembolans increasing their abundance with up to 20 kg N ha -1 yr -1 and then decreasing, which supports the idea of higher-trophic level organisms being more sensitive to disturbance due to more complex links with other ecosystem constituents. Future experimental studies evaluating the impacts of N deposition, and possibly other GEC drivers, on biodiversity and biotic and abiotic interactions may be able to explain results more effectively in the context of ecological networks as a key feature of ecosystem sensitivity. This article is protected by copyright. All rights reserved.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2016-07-20
    Description: Edaphic variation in plant community composition is widespread, yet its underlying mechanisms are rarely understood and often assumed to be physiological. In East African savannas, Acacia tree species segregate sharply across soils of differing parent material: the ant-defended whistling thorn, A. drepanolobium (ACDR), is monodominant on clay vertisols that are nutrient rich but physically stressful, whereas poorly defended species such as A. brevispica (ACBR) dominate on nutrient-poor but otherwise less-stressful sandy loams. Using a series of field experiments, we show that large-mammal herbivory interacts with soil properties to maintain this pattern. In the absence of large herbivores, transplanted saplings of both species established on both soil types. Browsers strongly suppressed survival and growth of ACDR saplings on sandy soil, where resource limitation constrained defensive investment. On clay soil, ACBR saplings established regardless of herbivory regime, but elephants prevented recruitment to maturity, apparently because trees could not tolerate the combination of biotic and abiotic stressors. Hence, each tree species was filtered out of one habitat by browsing in conjunction with different edaphic factors and at different ontogenetic stages. Browser abundance was greater on sandy soil, where trees were less defended, consistent with predicted feedbacks between plant community assembly and herbivore distributions. By exploring two inversely related axes of soil “quality” (abiotic stress and nutrient content), our study extends the range of mechanisms by which herbivores are known to promote edaphic specialization, illustrates how the high cost of a protection mutualism can constrain the realized niche of host trees, and shows that large-scale properties of savanna ecosystems are shaped by species interactions in cryptic ways that mimic simple abiotic determinism. These results suggest that ongoing declines in large-herbivore populations may relax spatial heterogeneity in plant assemblages and reduce the beta diversity of communities. This article is protected by copyright. All rights reserved.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2016-07-23
    Description: In their commentary on our recent article, “Where have all the people gone? Enhancing global Conservation using night lights and social media” (Levin et al., 2015), Tortato and Izzo (2016) agree with the manuscript's approach and major conclusion. However, Tortato and Izzo (2016) state that some of the areas identified by Levin et al. (2015) as “unprotected visitation hotspots” (page 2162) are actually located “in and around protected areas of the Pantanal.” Tortato and Izzo (2016) suggest that this mismatch may result from incompleteness of the version of the World Database on Protected Areas that we used in our global analysis (being from August 2013). This article is protected by copyright. All rights reserved.
    Print ISSN: 1051-0761
    Electronic ISSN: 1939-5582
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2016-07-27
    Description: Controversy exists over the cause and timing of the extinction of the Pleistocene megafauna. In the tropical Andes, deglaciation and associated rapid climate change began c. 8000 years before human arrival, providing an opportunity to separate the effects of climate change from human hunting on megafaunal extinction. We present a paleoecological record spanning the last 25,000 years from Lake Pacucha, Peru (3100 m elevation). Fossil pollen, charcoal, diatoms, and the dung fungus Sporormiella, chronicle a two-stage megaherbivore population collapse. Sporormiella abundance, the proxy for megafaunal presence, fell sharply at c. 21,000 years ago, but rebounded prior to a permanent decline between c. 16,800 and 15,800 years ago. This two-stage decline in megaherbivores resulted in a functional extinction by c. 15,800 years ago, 3000 years earlier than human occupation of the high Andes. Declining megaherbivore populations coincided with warm, wet intervals. Climatic instability and megafaunal population collapse triggered an ecological cascade that resulted in novel floral assemblages, and increases in woody species, fire frequency, and plant species that were sensitive to trampling. Our data revealed that Andean megafaunal populations collapsed due to positive feedbacks between habitat quality and climate change rather than human activity. This article is protected by copyright. All rights reserved.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2016-07-29
    Description: Increasing temperatures and a reduction in the frequency and severity of freezing events have been linked to species distribution shifts. Across the globe, mangrove ranges are expanding towards higher latitudes, likely due to diminishing frequency of freezing events associated with climate change. Continued warming will alter coastal wetland plant dynamics both above- and belowground, potentially altering plant capacity to keep up with sea level rise. We conducted an in-situ warming experiment, in Northeast Florida, to determine how increased temperature (+2°C) influences co-occurring mangrove and salt marsh plants. Warming was achieved using passive warming with three treatment levels (ambient, shade control, warmed). Avicennia germinans , the black mangrove , exhibited no differences in growth or height due to experimental warming but displayed a warming-induced increase in leaf production (48%). Surprisingly, Distichlis spicata, the dominant salt marsh grass , increased in biomass (53% in 2013 and 70% in 2014), density (41%) and height (18%) with warming during summer months. Warming decreased plant root mass at depth and changed abundances of anaerobic bacterial taxa. Even while the poleward shift of mangroves is clearly controlled by the occurrences of severe freezes, chronic warming between these freeze events may slow the progression of mangrove dominance within ecotones. This article is protected by copyright. All rights reserved.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2016-07-29
    Description: In terrestrial ecosystems, a large portion (20-80%) of the dissolved Si (DSi) in soil solution has passed through vegetation. While the importance of this ‘terrestrial Si filter’ is generally accepted, few data exist on the pools and fluxes of Si in forest vegetation and the rate of release of Si from decomposing plant tissues. We quantified the pools and fluxes of Si through vegetation and coarse woody debris (CWD) in a northern hardwood forest ecosystem (Watershed 6, W6) at the Hubbard Brook Experimental Forest (HBEF) in New Hampshire, USA. Previous work suggested that the decomposition of CWD may have significantly contributed to an excess of DSi reported in stream-waters following experimental deforestation of Watershed 2 (W2) at the HBEF. We found that woody biomass (wood + bark) and foliage account for approximately 65% and 31%, respectively, of the total Si in biomass at the HBEF. During the decay of American beech ( Fagus grandifolia ) boles, Si loss tracked the whole-bole mass loss, while yellow birch ( Betula alleghaniensis ) and sugar maple ( Acer saccharum ) decomposition resulted in a preferential Si retention of up to 30% after 16 years. A power-law model for the changes in wood and bark Si concentrations during decomposition, in combination with an exponential model for whole-bole mass loss, successfully reproduced Si dynamics in decaying boles. Our data suggest that a minimum of 50% of the DSi annually produced in the soil of a biogeochemical reference watershed (W6) derives from biogenic Si (BSi) dissolution. The major source is fresh litter, while only ~2% comes from the decay of CWD. Decay of tree boles could only account for 9% of the excess DSi release observed following the experimental deforestation of W2. Therefore, elevated DSi concentrations after forest disturbance are largely derived from other sources (e.g., dissolution of BSi from forest floor soils and/or mineral weathering). This article is protected by copyright. All rights reserved.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2016-07-29
    Description: Temperature can play an important role in determining the feeding preferences of ectotherms. In light of the warmer temperatures arising with the current climatic changes omnivorous ectotherms may perform diet shifts towards higher herbivory to optimize energetic intake. Such diet shifts may also occur during heat waves, which are projected to become more frequent, intense and longer lasting in the future. Here, we investigated how heat waves of different duration affect feeding preferences in omnivorous anuran tadpoles and how these choices affect larval life history. In laboratory experiments, we fed tadpoles of three species on animal, plant or mixed diet and exposed them to short heat waves (similar to the heat waves these species experience currently) or long heat waves (predicted to increase under climate change). We estimated the dietary choices of tadpoles fed on the mixed diet using stable isotopes and recorded tadpole survival and growth, larval period and mass at metamorphosis. Tadpole feeding preferences were associated with their thermal background, herbivory increasing with breeding temperature in nature. Patterns in survival, growth and development generally support decreased efficiency of carnivorous diets and increased efficiency or higher relative quality of herbivorous diets at higher temperatures. All three species increased herbivory in at least one of the heat wave treatments, but the responses varied among species. Diet shifts towards higher herbivory were maladaptive in one species, but beneficial in the other two. Higher herbivory in omnivorous ectotherms under warmer temperatures may impact species differently and further contribute to changes in the structure and function of freshwater environments. This article is protected by copyright. All rights reserved.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2016-07-30
    Description: Environmental filtering, including the influence of environmental constraints and biological interactions on species’ survival, is known to significantly affect patterns of community assembly in terrestrial ecosystems. However, its role in regulating patterns and processes of community assembly in deep-sea environments is poorly studied. Here, we investigated the role of wood characteristics in the assembly of deep-sea wood fall communities. Ten different wood species (substrata) that varied in structural complexity were sunk to a depth of 3,100 m near Monterey Bay, CA. In total, 28 wood parcels were deployed on the deep-sea bed. After 2 years, the wood parcels were recovered with over 7,000 attached or colonizing macroinvertebrates. All macroinvertebrates were identified to the lowest taxonomic level possible, and included several undescribed species. Diversity indices and multivariate analyses of variance detected significant variation in the colonizing community assemblages among different wood substrata. Structural complexity seemed to be the primary factor altering community composition between wood substrata. For example, wood-boring clams were most abundant on solid logs, while small arthropods and limpets were more abundant on bundles of branches that provided more surface area and small, protected spaces to occupy. Other factors such as chemical defenses, the presence of bark, and wood hardness likely also played a role. Our finding that characteristics of woody debris entering the marine realm can have significant effects on community assembly supports the notion of ecological and perhaps evolutionarily significant links between land and sea. This article is protected by copyright. All rights reserved.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2016-03-27
    Description: Understanding the causes of within- and among-population differences in vital rates, life histories, and population dynamics is a central topic in ecology. To understand how within- and among-population variation emerges, we need long-term studies that include episodic events and contrasting environmental conditions, data to characterize individual and shared variation, and statistical models that can tease apart shared and individual contribution to the observed variation. We used long-term tag-recapture data to investigate and estimate within- and among-population differences in vital rates, life histories and population dynamics of marble trout Salmo marmoratus , an endemic freshwater salmonid with a narrow range. Only ten populations of pure marble trout persist in headwaters of Alpine rivers in western Slovenia. Marble trout populations are also threatened by floods and landslides, which have already caused the extinction of two populations in recent years. We estimated and determined causes of variation in growth, survival, and recruitment both within and among populations, and evaluated trade-offs between them. Specifically, we estimated the responses of these traits to variation in water temperature, density, sex, early life conditions, and extreme events. We found that the effects of population density on traits were mostly limited to the early stages of life and that growth trajectories were established early in life. We found no clear effects of water temperature on vital rates. Population density varied over time, with flash floods and debris flows causing massive mortalities (〉55% decrease in survival with respect to years with no floods) and threatening population persistence. Apart from flood events, variation in population density within streams was largely determined by variation in recruitment, with survival of older fish being relatively constant over time within populations, but substantially different among populations. Marble trout show a fast–to-slow continuum of life histories, with slow growth associated with higher survival at the population level, possibly determined by food conditions and age at maturity. Our work provides unprecedented insight into the causes of variation in vital rates, life histories, and population dynamics in an endemic species that is teetering on the edge of extinction. This article is protected by copyright. All rights reserved.
    Print ISSN: 1051-0761
    Electronic ISSN: 1939-5582
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2016-03-29
    Description: Central to understanding global C cycle dynamics is the functional relationship between precipitation and net primary production (NPP). At large spatial (regional) scales, the responsiveness of aboveground NPP (ANPP) to interannual variation in annual precipitation (AP; ANPP sens ) is inversely related to site-level ANPP, coinciding with turnover of plant communities along precipitation gradients. Within ecosystems experiencing chronic alterations in water availability, plant community change will also occur with unknown consequences for ANPP sens . To examine the role plant community shifts may play in determining alterations in site-level ANPP sens , we experimentally increased precipitation by ~35% for two decades in a native Central U.S. grassland. Consistent with regional models, ANPP sens decreased initially as water availability and ANPP increased. However, ANPP sens shifted back to ambient levels when mesic species increased in abundance in the plant community. Similarly, in grassland sites with distinct mesic and xeric plant communities and corresponding 50% differences in ANPP, ANPP sens did not differ over almost three decades. We conclude that responses in ANPP sens to chronic alterations in water availability within an ecosystem may not conform to regional AP–ANPP patterns, despite expected changes in ANPP and plant communities. The result is unanticipated functional resistance to climate change at the site scale.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2016-03-29
    Description: The challenges posed by observing host–pathogen–environment interactions across large geographic extents and over meaningful time scales limit our ability to understand and manage wildland epidemics. We conducted a landscape-scale, longitudinal study designed to analyze the dynamics of sudden oak death (an emerging forest disease caused by Phytophthora ramorum ) across hierarchical levels of ecological interactions, from individual hosts up to the community and across the broader landscape. From 2004 to 2011, we annually assessed disease status of 732 coast live oak, 271 black oak, and 122 canyon live oak trees in 202 plots across a 275-km 2 landscape in central California. The number of infected oak stems steadily increased during the eight-year study period. A survival analysis modeling framework was used to examine which level of ecological heterogeneity best predicted infection risk of susceptible oak species, considering variability at the level of individuals (species identity, stem size), the community (host density, inoculum load, and species richness), and the landscape (seasonal climate variability, habitat connectivity, and topographic gradients). After accounting for unobserved risk shared among oaks in the same plot, survival models incorporating heterogeneity across all three levels better predicted oak infection than did models focusing on only one level. We show that larger oak trees (especially coast live oak) were more susceptible, and that interannual variability in inoculum production by the highly infectious reservoir host, California bay laurel, more strongly influenced disease risk than simply the density of this important host. Concurrently, warmer and wetter rainy-season conditions in consecutive years intensified infection risk, presumably by creating a longer period of inoculum build-up and increased probability of pathogen spillover from bay laurel to oaks. Despite the presence of many alternate host species, we found evidence of pathogen dilution, where less competent hosts in species-rich communities reduce pathogen transmission and overall risk of oak infection. These results identify key parameters driving the dynamics of emerging infectious disease in California woodlands, while demonstrating how multiple levels of ecological heterogeneity jointly determine epidemic trajectories in wildland settings.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2016-03-29
    Description: Although genetics in a single species is known to impact whole communities, little is known about how genetic variation influences species interaction networks in complex ecosystems. Here, we examine the interactions in a community of arthropod species on replicated genotypes (clones) of a foundation tree species, Populus angustifolia James (narrowleaf cottonwood), in a long-term, common garden experiment using a bipartite “genotype–species” network perspective. We combine this empirical work with a simulation experiment designed to further investigate how variation among individual tree genotypes can impact network structure. Three findings emerged: (1) the empirical “genotype–species network” exhibited significant network structure with modularity being greater than the highly conservative null model; (2) as would be expected given a modular network structure, the empirical network displayed significant positive arthropod co-occurrence patterns; and (3) furthermore, the simulations of “genotype–species” networks displayed variation in network structure, with modularity in particular clearly increasing, as genotypic variation increased. These results support the conclusion that genetic variation in a single species contributes to the structure of ecological interaction networks, which could influence ecological dynamics (e.g., assembly and stability) and evolution in a community context.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2016-03-29
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2016-03-29
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...