ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (848)
  • Wiley  (848)
  • American Association for the Advancement of Science (AAAS)
  • American Chemical Society
  • American Geophysical Union
  • American Institute of Physics (AIP)
  • American Society of Civil Engineers
  • Copernicus
  • Molecular Diversity Preservation International
  • Taylor & Francis
  • 2015-2019  (848)
  • 2010-2014
  • 2016  (848)
  • Global Change Biology  (400)
  • 5833
  • Geography  (848)
  • Biology  (848)
  • Political Science
Collection
  • Articles  (848)
Publisher
  • Wiley  (848)
  • American Association for the Advancement of Science (AAAS)
  • American Chemical Society
  • American Geophysical Union
  • American Institute of Physics (AIP)
  • +
Years
  • 2015-2019  (848)
  • 2010-2014
Year
Topic
  • 1
    Publication Date: 2016-07-10
    Description: Habitat degradation not only disrupts habitat-forming species, but alters the sensory landscape within which most species must balance behavioural activities against predation risk. Rapidly developing a cautious behavioural phenotype, a condition known as neophobia, is advantageous when entering a novel risky habitat. Many aquatic organisms rely on damage-released conspecific cues (i.e. alarm cues) as an indicator of impending danger and use them to assess general risk and develop neophobia. This study tested whether settlement-stage damselfish associated with degraded coral reef habitats were able to use alarm cues as an indicator of risk and, in turn, develop a neophobic response at the end of their larval phase. Our results indicate that fish in live coral habitats that were exposed to alarm cues developed neophobia, and, in situ , were found to be more cautious, more closely associated with their coral shelters and survived four-times better than non-neophobic control fish. In contrast, fish that settled onto degraded coral habitats did not exhibit neophobia and consequently suffered much greater mortality on the reef, regardless of their history of exposure to alarm cues. Our results show that habitat degradation alters the efficacy of alarm cues with phenotypic and survival consequences for newly settled recruits.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-07-21
    Description: Despite covering only approximately 138,000 km 2 , mangroves are globally important carbon sinks with carbon density values 3-4 times that of terrestrial forests. A key challenge in evaluating the carbon benefits from mangrove forest conservation is the lack of rigorous spatially resolved estimates of mangrove sediment carbon stocks; most mangrove carbon is stored belowground. Previous work has focused on detailed estimations of carbon stores over relatively small areas, which has obvious limitations in terms of generality and scope of application. Most studies have focused only on quantifying the top 1m of belowground carbon (BGC). Carbon stored at depths beyond 1m, and the effects of mangrove species, location and environmental context on these stores, is poorly studied. This study investigated these variables at two sites (Gazi and Vanga in the south of Kenya) and used the data to produce a country-specific BGC predictive model for Kenya and map BGC store estimates throughout Kenya at spatial scales relevant for climate change research, forest management and REDD+ (Reduced Emissions from Deforestation and Degradation). The results revealed that mangrove species was the most reliable predictor of BGC; Rhizophora muronata had the highest mean BGC with 1485.5t C ha −1 . Applying the species-based predictive model to a base map of species distribution in Kenya for the year 2010 with a 2.5m 2 resolution, produced an estimate of 69.41 Mt C (± 9.15 95% C.I.) for BGC in Kenyan mangroves. When applied to a 1992 mangrove distribution map, the BGC estimate was 75.65 Mt C (± 12.21 95% C.I.); an 8.3% loss in BGC stores between 1992 and 2010 in Kenya. The country level mangrove map provides a valuable tool for assessing carbon stocks and visualising the distribution of BGC. Estimates at the 2.5m 2 resolution provide sufficient detail for highlighting and prioritising areas for mangrove conservation and restoration. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-07-23
    Description: In light of daunting global sustainability challenges such as climate change, biodiversity loss and food security, improving our understanding of the complex dynamics of the Earth system is crucial. However, large knowledge gaps related to the effects of land management persist, in particular those human-induced changes in terrestrial ecosystems that do not result in land cover conversions. Here we review the current state of knowledge of ten common land management activities for their biogeochemical and biophysical impacts, the level of process-understanding and data availability. Our review shows that ca. one tenth of the ice free land surface is under intense human management, half under medium and one fifth under extensive management. Based on our review, we cluster these ten management activities into three groups: (1) management activities for which datasets are available, and for which a good knowledge base exists (cropland harvest and irrigation); (2) management activities for which sufficient knowledge on biogeochemical and biophysical effects exists but robust global datasets are lacking (forest harvest, tree species selection, grazing and mowing harvest, N-fertilization); and (3) land management practices with severe data gaps concomitant with an unsatisfactory level of process understanding (crop species selection, artificial wetland drainage, tillage and fire management and crop residue management, an element of crop harvest). Although we identify multiple impediments to progress, we conclude that the current status of process understanding and data availability is sufficient to advance with incorporating management in e.g. Earth System or Dynamic Vegetation models in order to provide a systematic assessment of their role in the Earth system. This review contributes to a strategic prioritization of research efforts across multiple disciplines, including land system research, ecological research and Earth system modelling. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-07-29
    Description: Species compositional shifts have important consequences to biodiversity and ecosystem function and services to humanity. In boreal forests, compositional shifts from late-successional conifers to early-successional conifers and deciduous broadleaves have been postulated based on increased fire frequency associated with climate change truncating stand age-dependent succession. However, little is known about how climate change has affected forest composition in the background between successive catastrophic fires in boreal forests. Using 1797 permanent sample plots from western boreal forests of Canada measured from 1958 to 2013, we show that after accounting for stand age-dependent succession, the relative abundances of early-successional deciduous broadleaves and early-successional conifers have increased at the expense of late-successional conifers with climate change. These background compositional shifts are persistent temporally, consistent across all forest stand ages and pervasive spatially across the region. Rising atmospheric CO 2 promoted early-successional conifers and deciduous broadleaves, and warming increased early-successional conifers at the expense of late-successional conifers, but compositional shifts were not associated with climate moisture index. Our results emphasize the importance of climate change on background compositional shifts in the boreal forest and suggest further compositional shifts as rising CO 2 and warming will continue in the 21st century.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-07-30
    Description: A cross-site analysis was conducted on seven diverse, forested watersheds in the northeastern U.S. to evaluate hydrological responses (evapotranspiration, soil moisture, seasonal and annual streamflow, and water stress) to projections of future climate. We used output from four Atmosphere-Ocean General Circulation Models (AOGCMs) (CCSM4, HadGEM2-CC, MIROC5, and MRI-CGCM3) included in Phase 5 of the Coupled Model Intercomparison Project, coupled with two Representative Concentration Pathways (RCP 8.5 and 4.5). The coarse resolution AOGCMs outputs were statistically downscaled using an asynchronous regional regression model to provide finer resolution future climate projections as inputs to the deterministic dynamic ecosystem model PnET-BGC. Simulation results indicated that projected warmer temperatures and longer growing seasons in the northeastern U.S. are anticipated to increase evapotranspiration across all sites, although invoking CO 2 effects on vegetation (growth enhancement and increases in water use efficiency (WUE)) diminish this response. The model showed enhanced evapotranspiration resulted in drier growing season conditions across all sites and all scenarios in the future. Spruce-fir conifer forests have a lower optimum temperature for photosynthesis, making them more susceptible to temperature stress than more tolerant hardwood species, potentially giving hardwoods a competitive advantage in the future. However, some hardwood forests are projected to experience seasonal water stress, despite anticipated increases in precipitation, due to the higher temperatures, earlier loss of snowpacks, longer growing seasons and associated water deficits. Considering future CO 2 effects on WUE in the model alleviated water stress across all sites. Modeled streamflow responses were highly variable, with some sites showing significant increases in annual water yield, while others showed decreases. This variability in streamflow responses poses a challenge to water resource management in the northeastern U.S. Our analyses suggest that dominant vegetation type and soil type are important attributes in determining future hydrologic responses to climate change. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-07-31
    Description: Understanding uncertainties in land cover projections is critical to investigating land-based climate mitigation policies, assessing the potential of climate adaptation strategies, and quantifying the impacts of land cover change on the climate system. Here we identify and quantify uncertainties in global and European land cover projections over a diverse range of model types and scenarios, extending the analysis beyond the agro-economic models included in previous comparisons. The results from 75 simulations over 18 models are analysed and show a large range in land cover area projections, with the highest variability occurring in future cropland areas. We demonstrate systematic differences in land cover areas associated with the characteristics of the modelling approach, which is at least as great as the differences attributed to the scenario variations. The results lead us to conclude that a higher degree of uncertainty exists in land use projections than currently included in climate or earth system projections. To account for land use uncertainty, it is recommended to use a diverse set of models and approaches when assessing the potential impacts of land cover change on future climate. Additionally, further work is needed to better understand the assumptions driving land use model results and reveal the causes of uncertainty in more depth, to help reduce model uncertainty and improve the projections of land cover. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-07-31
    Description: Understanding the evolutionary consequences of the Green Revolution, particularly in wild populations, is an important frontier in contemporary biology. Because human impacts have occurred at varying magnitudes or time periods depending on the study ecosystem, evolutionary histories may vary considerably among populations. Paleogenetics in conjunction with paleolimnology enable us to associate microevolutionary dynamics with detailed information on environmental change. We used this approach to reconstruct changes in the temporal population genetic structure of the keystone zooplankton grazer, Daphnia pulicaria , using dormant eggs extracted from sediments in two Minnesota lakes (South Center, Hill). The extent of agriculture and human population density in the catchment of these lakes has differed markedly since European settlement in the late 19 th century, and is reflected in their environmental histories reconstructed here. The reconstructed environments of these two lakes differed strongly in terms of environmental stability and their associated patterns of Daphnia population structure. We detected long periods of stability in population structure and environmental conditions in South Center Lake that were followed by a dramatic temporal shift in population genetic structure after the onset of European settlement and industrialized agriculture in its watershed. In particular, we noted a 24.3-fold increase in phosphorus (P) flux between pre-European and modern sediment P accumulation rates (AR) in this lake. In contrast, no such shifts were detected in Hill Lake, where the watershed was not as impacted by European settlement and rates of change were less directional with a much smaller increase of sediment P AR (2.3-fold). We identify direct and indirect effects of eutrophication proxies on genetic structure in these lake populations, and demonstrate the power of using this approach in understanding the consequences of anthropogenic environmental change on natural populations throughout historic time periods. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-08-03
    Description: The sustainability of using irrigation to produce food depends not only on the availability of sufficient water, but also on the soils ‘response’ to irrigation. Stocks of carbon (C) and nitrogen (N) are key components of soil organic matter (SOM), which is important for sustainable agricultural production. While there is some information about the effects of irrigation on soil C stocks in cropping systems, there is a paucity of such studies in pastoral food production systems. For this study, we sampled soils from 34 paired, irrigated and unirrigated pasture sites across New Zealand (NZ) and analysed these for total C and N. On average, irrigated pastures had significantly ( P 〈0.05) less soil carbon (C) and nitrogen (N) than adjacent unirrigated pastures, with differences of 6.99 t C ha −1 and 0.58 t N ha −1 in the uppermost 0.3 m. Differences in C and N tended to occur throughout the soil profile, so the cumulative differences increased with depth, and the proportion of the soil C lost from deeper horizons was large. There were no relationships between differences in soil C and N stocks and the length of time under irrigation. This study suggests SOM will decrease when pastures under a temperate climate are irrigated. On this basis, increasing the area of temperate pasture land under irrigation would result in more CO 2 in the atmosphere, and may directly and indirectly increase N leaching to groundwater. Given the large and increasing area of land being irrigated both in NZ and on a global scale, there is an urgent need to determine whether the results found in this study are also applicable in other regions and under different land management systems (e.g. arable). This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-08-03
    Description: From 1890 to 2015, anthropogenic carbon dioxide emissions have increased atmospheric CO 2 concentrations from 270 mol mol −1 to 400 mol mol −1 . The effect of increased carbon emissions on plant growth and reproduction has been the subject of study of Free Air CO 2 Enrichment (FACE) experiments. These experiments have found a) an increase in internal CO 2 partial pressure (c i ) alongside acclimation of photosynthetic capacity, b) variable decreases in stomatal conductance, and c) that increases in yield do not increase commensurate with CO 2 concentrations. Our data set, which includes a 115 year long selection of grasses collected in New Mexico since 1892 is consistent with an increased c i as a response to historical CO 2 increase in the atmosphere; with invasive species showing the largest increase. Comparison with Palmer Drought Sensitivity index (PDSI) for New Mexico indicates a moderate correlation with Δ 13 C (r 2 = 0.32, p 〈 0.01) before 1950, with no correlation (r 2 = 0.00, p = 0.91) after 1950. These results indicate that increased c i may have conferred some drought resistance to these grasses through increased availability of CO 2 in the event of reduced stomatal conductance in response to short term water shortage. Comparison with C 3 trees from arid environments ( Pinus longaeva and Pinus edulis in the US Southwest) as well as from wetter environments ( Bromus and Poa grasses in New Mexico) suggest differing responses based on environment; arid environments in New Mexico see increased intrinsic water use efficiency (WUE) in response to historic elevated CO 2 while wetter environments see increased c i . The present study suggests that a) the observed increases in c i in FACE experiments are consistent with historical CO 2 increases and b) the CO 2 increase influences plant sensitivity to water shortage, through either increased WUE or c i in arid and wet environments, respectively. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2016-08-03
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2016-08-05
    Description: Models predicting ecosystem carbon dioxide (CO 2 ) exchange under future climate change rely on relatively few real-world tests of their assumptions and outputs. Here we demonstrate a rapid and cost-effective method to estimate CO 2 exchange from intact vegetation patches under varying atmospheric CO 2 concentrations . We find that net ecosystem CO 2 uptake (NEE) in a boreal forest rose linearly by 4.7 ± 0.2% of the current ambient rate for every 10 ppm CO 2 increase, with no detectable influence of foliar biomass, season or nitrogen (N) fertilization. The lack of any clear short-term NEE response to fertilization in such an N-limited system is inconsistent with the instantaneous down-regulation of photosynthesis formalized in many global models. Incorporating an alternative mechanism with considerable empirical support – diversion of excess carbon to storage compounds – into an existing earth system model brings the model output into closer agreement with our field measurements. A global simulation incorporating this modified model reduces a long-standing mismatch between the modeled and observed seasonal amplitude of atmospheric CO 2 . Wider application of this chamber approach would provide critical data needed to further improve modeled projections of biosphere-atmosphere CO 2 exchange in a changing climate. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2016-07-12
    Description: Each year, two or three species that had been considered to be extinct are rediscovered. Uncertainty about whether or not a species is extinct is common, because rare and highly threatened species are difficult to detect. Biological traits such as body size and range size are expected to be associated with extinction. However, these traits, together with the intensity of search effort, might influence the probability of detection and extinction differently. This makes statistical analysis of extinction and rediscovery challenging. Here we use a variant of survival analysis known as cure rate modelling to differentiate factors that influence rediscovery from those that influence extinction. We analyse a global dataset of 99 mammals that have been categorised as extinct or possibly extinct. We estimate the probability that each of these mammals is still extant, and thus estimate the proportion of missing (presumed extinct) mammals that are incorrectly assigned extinction. We find that body mass and population density are predictors of extinction, and body mass and search effort predict rediscovery. In mammals, extinction rate increases with body mass and population density, and these traits act synergistically to greatly elevate extinction rate in large species that also occurred in formerly dense populations. However, when they remain extant, larger-bodied missing species are rediscovered sooner than smaller species. Greater search effort increases the probability of rediscovery in larger species of missing mammals, but has a minimal effect on small species, which take longer to be rediscovered, if extant. By separating the effects of species characteristics on extinction and detection, and using models with the assumption that a proportion of missing species will never be rediscovered, our new approach provides estimates of extinction probability in species with few observation records and scant ecological information. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2016-07-15
    Description: Livestock grazing activities potentially alter ecosystem carbon (C) and nitrogen (N) cycles in grassland ecosystems. Despite the fact that numerous individual studies and a few meta-analyses had been conducted, how grazing, especially its intensity, affects belowground C and N cycling in grasslands remains unclear. In this study, we performed a comprehensive meta-analysis of 115 published studies to examine the responses of 19 variables associated with belowground C and N cycling to livestock grazing in global grasslands. Our results showed that, on average, grazing significantly decreased belowground C and N pools in grassland ecosystems, with the largest decreases in microbial biomass C and N (21.62 and 24.40%, respectively). In contrast, belowground fluxes, including soil respiration, soil net N mineralization and soil N nitrification increased by 4.25%, 34.67 and 25.87%, respectively in grazed grasslands compared to ungrazed ones. More importantly, grazing intensity significantly affected the magnitude (even direction) of changes in the majority of the assessed belowground C and N pools and fluxes, and C:N ratio as well as soil moisture. Specifically,light grazing contributed to soil C and N sequestration whereas moderate and heavy grazing significantly increased C and N losses. In addition, soil depth, livestock type and climatic conditions influenced the responses of selected variables to livestock grazing to some degree. Our findings highlight the importance of the effects of grazing intensity on belowground C and N cycling, which may need to be incorporated into regional and global models for predicting effects of human disturbance on global grasslands and assessing the climate- biosphere feedbacks. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2016-07-15
    Description: Salinity intrusion caused by land subsidence resulting from increasing groundwater abstraction, decreasing river sediment loads and increasing sea level because of climate change has caused widespread soil salinization in coastal ecosystems. Soil salinization may greatly alter nitrogen (N) cycling in coastal ecosystems. However, a comprehensive understanding of the effects of soil salinization on ecosystem N pools, cycling processes and fluxes is not available for coastal ecosystems. Therefore, we compiled data from 551 observations from 21 peer-reviewed papers and conducted a meta-analysis of experimental soil salinization effects on 19 variables related to N pools, cycling processes and fluxes in coastal ecosystems. Our results showed that the effects of soil salinization varied across different ecosystem types and salinity levels. Soil salinization increased plant N content (18%), soil NH 4 + (12%) and soil total N (210%), although it decreased soil NO 3 - (2%) and soil microbial biomass N (74%). Increasing soil salinity stimulated soil N 2 O fluxes as well as hydrological NH 4 + and NO 2 - fluxes more than three-fold, although it decreased the hydrological dissolved organic nitrogen (DON) flux (59%). Soil salinization also increased the net N mineralization by 70%, although salinization effects were not observed on the net nitrification, denitrification and dissimilatory nitrate reduction to ammonium in this meta-analysis. Overall, this meta-analysis improves our understanding of the responses of ecosystem N cycling to soil salinization, identifies knowledge gaps and highlights the urgent need for studies on the effects of soil salinization on coastal agro-ecosystem and microbial N immobilization. Additional increases in knowledge are critical for designing sustainable adaptation measures to the predicted intrusion of salinity intrusion so that the productivity of coastal agro-ecosystems can be maintained or improved and the N losses and pollution of the natural environment can be minimized. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2016-07-15
    Description: Can species shift their distributions fast enough to track changes in climate? We used abundance data from the 1950s and the 2000s in Wisconsin to measure shifts in the distribution and abundance of 78 forest-understory plant species over the last half-century and compare these shifts to changes in climate. We estimated temporal shifts in the geographic distribution of each species using vectors to connect abundance-weighted centroids from the 1950s and 2000s. These shifts in distribution reflect colonization, extirpation, and changes in abundance within sites, separately quantified here. We then applied climate analog analyses to compute vectors representing the climate change that each species experienced. Species shifted mostly to the northwest (mean: 49 ± 29 km) primarily reflecting processes of colonization and changes in local abundance. Analog climates for these species shifted even further to the northwest, however, exceeding species’ shifts by an average of 90 ± 40 km. Most species thus failed to match recent rates of climate change. These lags decline in species that have colonized more sites and those with broader site occupancy, larger seed mass, and higher habitat fidelity. Thus, species’ traits appear to affect their responses to climate change, but relationships are weak. As climate change accelerates, these lags will likely increase, potentially threatening the persistence of species lacking the capacity to disperse to new sites or locally adapt. However, species with greater lags have not yet declined more in abundance. The extent of these threats will likely depend on how other drivers of ecological change and interactions among species affect their responses to climate change. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2016-07-21
    Description: Humans are altering global environment at an unprecedented rate through changes in biodiversity, climate, nitrogen cycle, and land-use. In order to address their effects on ecosystem functioning, experiments most frequently explore one driver at a time and control as many confounding factors as possible. Yet, which driver exerts the largest influence on ecosystem functioning and whether their relative importance changes among systems remain unclear. We analyzed experiments in the Patagonian steppe that evaluated the aboveground net primary production (ANPP) response to manipulated gradients of species richness, precipitation, temperature, nitrogen fertilization (N) and grazing intensity. We compared the effect on ANPP relative to ambient conditions considering intensity and direction of manipulations for each driver. The ranking of responses to drivers with comparable manipulation intensity was: biodiversity〉grazing〉precipitation〉N. For a similar intensity of manipulation, the effect of biodiversity loss was 4.0, 3.6, and 1.5, times larger than N deposition, decreased precipitation, and increased grazing intensity. We interpreted our results considering two hypotheses. First, the response of ANPP to changes in precipitation and biodiversity is saturating, so we expected larger effects when the driver was reduced, relative to ambient conditions, than when it was increased. Experimental manipulations that reduced ambient levels had larger effects than those that increased them. Second, the sensitivity of ANPP to each driver is inversely related to the natural variability of the driver. In Patagonia, the ranking of natural variability of drivers is: precipitation〉grazing〉temperature〉biodiversity〉N. So, in general, the ecosystem was most sensitive to drivers that varied the least. Comparable results from Cedar Creek (MN) support both hypotheses and suggest that sensitivity to drivers varies among ecosystem types. Given the importance of understanding ecosystem sensitivity to predict global-change impacts, it is necessary to design new experiments located in regions with contrasting natural variability and that include the full range of drivers. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2016-07-21
    Description: Evapotranspiration, defined as the total flux of water from the land surface to the atmosphere, is a major component of the hydrologic cycle and surface energy balance. Although evapotranspiration is expected to intensify with increasing temperatures, long-term, regional trends in evapotranspiration remain uncertain due to spatially and temporally limited direct measurements. In this study, we utilize an emergent relation between the land surface and atmospheric boundary layer to infer daily evapotranspiration from historical meteorological data collected at 236 weather stations across the U.S. Our results suggest a statistically significant ( α = 0.05) decrease in evapotranspiration of approximately 6% from 1961 to 2014, with a significant ( α = 0.05) sharp decline of 13% from 1998 to 2014. We attribute the decrease in evapotranspiration mostly to declines in surface conductance, but also to offsetting changes in longwave radiation, wind speed, and incoming solar radiation. Using an established stomatal conductance model, we explain the changes in inferred surface conductance as a response to increases in carbon dioxide and, more recently, to an abrupt decrease in atmospheric humidity. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2016-07-21
    Description: Forest ecosystems across western North America will likely see shifts in both tree species dominance and composition over the rest of this century in response to climate change. Our objective in this paper is to identify which ecological regions might expect the greatest changes to occur. We used the process-based growth model 3-PG, to provide estimates of tree species responses to changes in environmental conditions and to evaluate the extent that species are resilient to shifts in climate over the rest of this century. We assessed the vulnerability of 20 tree species in western North America using the Canadian global circulation model under three different emission scenarios. We provided detailed projections of species shifts by including soil maps that account for the spatial variation in soil water availability and soil fertility as well as by utilizing annual climate projections of monthly changes in air temperature, precipitation, solar radiation, vapor pressure deficit and frost at a spatial resolution of 1 km. Projected suitable areas for tree species were compared to their current ranges based on observations at 〉40,000 field survey plots. Tree species were classified as vulnerable if environmental conditions projected in the future appear outside that of their current distribution ≥70% of the time. We added a migration constraint that limits species dispersal to 〈200 m year −1 to provide more realistic projections on species distributions. Based on these combinations of constraints, we predicted the greatest changes in the distribution of dominant tree species to occur within the Northwest Forested Mountains and the highest number of tree species stressed will likely be in the North American Deserts. Projected climatic changes appear especially unfavorable for species in the subalpine zone, where major shifts in composition may lead to the emergence of new forest types. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2016-07-21
    Description: To predict forest response to long-term climate change with high confidence requires that dynamic global vegetation models (DGVMs) be successfully tested against ecosystem response to short-term variations in environmental drivers, including regular seasonal patterns. Here, we used an integrated dataset from four forests in the Brasil flux network, spanning a range of dry season intensities and lengths, to determine how well four state-of-the-art models (IBIS, ED2, JULES, and CLM3.5) simulated the seasonality of carbon exchanges in Amazonian tropical forests. We found that most DGVMs poorly represented the annual cycle of gross primary productivity ( GPP ), of photosynthetic capacity ( Pc ), and of other fluxes and pools. Models simulated consistent dry season declines in GPP in the equatorial Amazon (Manaus K34, Santarem K67, and Caxiuanã CAX); a contrast to observed GPP increases. Model simulated dry season GPP reductions were driven by an external environmental factor, “soil water stress” and consequently by a constant or decreasing photosynthetic infrastructure ( Pc) , while observed dry-season GPP resulted from a combination of internal biological (leaf-flush and abscission and increased Pc ) and environmental (incoming radiation) causes. Moreover, we found models generally overestimated observed seasonal net ecosystem exchange ( NEE ) and respiration ( Re ) at equatorial locations. In contrast, a southern Amazon forest (Jarú RJA) exhibited dry season declines in GPP and Re consistent with most DGVMs simulations. While water-limitation was represented in models and the primary driver of seasonal photosynthesis in southern Amazonia, changes in internal biophysical processes, light harvesting adaptations (e.g. variations in leaf area index (LAI) and increasing leaf-level assimilation rate related to leaf demography), and allocation lags between leaf and wood, dominated equatorial Amazon carbon flux dynamics and were deficient or absent from current model formulations. Correctly simulating flux seasonality at tropical forests requires a greater understanding and the incorporation of internal biophysical mechanisms in future model developments. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2016-07-30
    Description: Predicting the impacts of climate change requires knowledge of the potential to adapt to rising temperatures, which is unknown for most species. Adaptive potential may be especially important in tropical species that have narrow thermal ranges and live close to their thermal optimum. We used the animal model to estimate heritability, genotype by environment interactions and nongenetic maternal components of phenotypic variation in fitness-related traits in the coral reef damselfish, Acanthochromis polyacanthus . Offspring of wild-caught breeding pairs were reared for two generations at current-day and two elevated temperature treatments (+1.5 and +3.0 °C) consistent with climate change projections. Length, weight, body condition and metabolic traits (resting and maximum metabolic rate and net aerobic scope) were measured at four stages of juvenile development. Additive genetic variation was low for length and weight at 0 and 15 days posthatching (dph), but increased significantly at 30 dph. By contrast, nongenetic maternal effects on length, weight and body condition were high at 0 and 15 dph and became weaker at 30 dph. Metabolic traits, including net aerobic scope, exhibited high heritability at 90 dph. Furthermore, significant genotype x environment interactions indicated potential for adaptation of maximum metabolic rate and net aerobic scope at higher temperatures. Net aerobic scope was negatively correlated with weight, indicating that any adaptation of metabolic traits at higher temperatures could be accompanied by a reduction in body size. Finally, estimated breeding values for metabolic traits in F2 offspring were significantly affected by the parental rearing environment. Breeding values at higher temperatures were highest for transgenerationally acclimated fish, suggesting a possible role for epigenetic mechanisms in adaptive responses of metabolic traits. These results indicate a high potential for adaptation of aerobic scope to higher temperatures, which could enable reef fish populations to maintain their performance as ocean temperatures rise.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2016-08-02
    Description: Urbanization is a global process contributing to the loss and fragmentation of natural habitats. Many studies have focused on the biological response of terrestrial taxa and habitats to urbanization. However, little is known regarding the consequences of urbanization on freshwater habitats, especially small lentic systems. In this study, we examined aquatic macro-invertebrate diversity (family and species level) and variation in community composition between 240 urban and 782 nonurban ponds distributed across the United Kingdom. Contrary to predictions, urban ponds supported similar numbers of invertebrate species and families compared to nonurban ponds. Similar gamma diversity was found between the two groups at both family and species taxonomic levels. The biological communities of urban ponds were markedly different to those of nonurban ponds, and the variability in urban pond community composition was greater than that in nonurban ponds, contrary to previous work showing homogenization of communities in urban areas. Positive spatial autocorrelation was recorded for urban and nonurban ponds at 0–50 km (distance between pond study sites) and negative spatial autocorrelation was observed at 100–150 km and was stronger in urban ponds in both cases. Ponds do not follow the same ecological patterns as terrestrial and lotic habitats (reduced taxonomic richness) in urban environments; in contrast, they support high taxonomic richness and contribute significantly to regional faunal diversity. Individual cities are complex structural mosaics which evolve over long periods of time and are managed in diverse ways. This facilitates the development of a wide range of environmental conditions and habitat niches in urban ponds which can promote greater heterogeneity between pond communities at larger scales. Ponds provide an opportunity for managers and environmental regulators to conserve and enhance freshwater biodiversity in urbanized landscapes whilst also facilitating key ecosystem services including storm water storage and water treatment.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2016-08-05
    Description: Nitrogen (N) deposition (N DEP ) drives forest carbon (C) sequestration but the size of this effect is still uncertain. In the field, an estimate of these effects can be obtained by applying mineral N fertilizers over the soil or forest canopy. A 15 N label in the fertilizer can be then used to trace the movement of the added N into ecosystem pools and deduce a C effect. However, N recycling via litter decomposition provides most of the nutrition for trees, even under heavy N DEP inputs. If this recycled litter nitrogen is retained in ecosystem pools differently to added mineral N, then estimates of the effects of N DEP on the relative change in C (ΔC/ΔN) based on short term isotope-labelled mineral fertilizer additions should be questioned. We used 15 N labelled litter to track decomposed N in the soil system (litter, soils, microbes, and roots) over 18 months in a Sitka spruce plantation and directly compared the fate of this 15 N to an equivalent amount in simulated N DEP treatments. By the end of the experiment, three times as much 15 N was retained in the O and A soil layers when N was derived from litter decomposition than from mineral N additions (60 % and 20 %, respectively), primarily because of increased recovery in the O layer. Roots expressed slightly more 15 N tracer from litter decomposition than from simulated mineral N DEP (7.5 % and 4.5 %) and compared to soil recovery, expressed proportionally more 15 N in the A layer than the O layer, potentially indicating uptake of organic N from decomposition. These results suggest effects of N DEP on forest ΔC/ΔN may not be apparent from mineral 15 N tracer experiments alone. Given the importance of N recycling, an important but underestimated effect of N DEP is its influence on the rate of N release from litter. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2016-07-08
    Description: A potato crop multi-model assessment was conducted to quantify variation among models and evaluate responses to climate change. Nine modeling groups simulated agronomic and climatic responses at low- (Chinoli, Bolivia and Gisozi, Burundi) and high- (Jyndevad, Denmark and Washington, United States) input management sites. Two calibration stages were explored, partial (P1), where experimental dry matter data were not provided, and full (P2). The median model ensemble response outperformed any single model in terms of replicating observed yield across all locations. Uncertainty in simulated yield decreased from 38% to 20% between P1 and P2. Model uncertainty increased with inter-annual variability, and predictions for all agronomic variables were significantly different from one model to another (p 〈 0.001). Uncertainty averaged 15% higher for low- versus high- input sites, with larger differences observed for evapotranspiration (ET), nitrogen uptake, and water use efficiency as compared to dry matter. A minimum of five partial, or three full, calibrated models was required for an ensemble approach to keep variability below that of common field variation. Model variation was not influenced by change in carbon dioxide (C), but increased as much as 41 and 23% for yield and ET respectively as temperature (T) or rainfall (W) moved away from historical levels. Increases in T accounted for the highest amount of uncertainty, suggesting that methods and parameters for T sensitivity represent a considerable unknown among models. Using median model ensemble values, yield increased on average 6% per 100-ppm C, declined 4.6% per °C, and declined 2% for every 10% decrease in rainfall (for non-irrigated sites). Differences in predictions due to model representation of light utilization were significant (p 〈 0.01). These are the first reported results quantifying uncertainty for tuber/root crops and suggest modeling assessments of climate change impact on potato may be improved using an ensemble approach. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2016-07-08
    Description: Understanding responses of forests to increasing CO 2 and temperature is an important challenge, but no easy task. Tree rings are increasingly used to study such responses. In a recent study, Van der Sleen et al. (2014) used tree rings from 12 tropical tree species and find that despite increases in intrinsic water use efficiency, no growth stimulation is observed. This challenges the idea that increasing CO 2 would stimulate growth. Unfortunately, tree ring analysis can be plagued by biases, resulting in spurious growth trends. While their study evaluated several biases, it does not account for all. In particular one bias may have seriously affected their results. Several of the species have recruitment patterns, which are not uniform, but clustered around one specific year. This results in spurious negative growth trends if growth rates are calculated in fixed size classes, as “fast-growing” trees reach the sampling diameter earlier compared to slow growers and thus fast growth rates tend to have earlier calendar dates. We assessed the effect of this “non-uniform age bias” on observed growth trends and find that Van der Sleen's conclusions of a lack of growth stimulation do not hold. Growth trends are -at least partially- driven by underlying recruitment or age distributions. Species with more clustered age distributions show more negative growth trends, and simulations to estimate the effect of species’ age distributions show growth trends close to those observed. Re-evaluation of the growth data and correction for the bias results in significant positive growth trends of 1-2% per decade for the full period, and 6-10% since 1950. These observations however, should be taken cautiously as multiple biases affect these trend estimates. In all, our results highlight that tree ring studies of long-term growth trends can be strongly influenced by biases if demographic processes are not carefully accounted for. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2016-07-09
    Description: Rapidly rising temperatures are expected to cause latitudinal and elevational range shifts as species track their optimal climate north and upward. However, a lack of adaptation to environmental conditions other than climate – for example photoperiod, biotic interactions, or edaphic conditions – might limit the success of immigrants in a new location despite hospitable climatic conditions. Here we present one of the first direct experimental tests of the hypothesis that warmer temperatures at northern latitudes will confer a fitness advantage to southern immigrants relative to native populations. As rates of warming in the Arctic are more than double the global average, understanding the impacts of warming in Arctic ecosystems is especially urgent. We established experimentally warmed and non-warmed common garden plots at Alexandra Fiord, Ellesmere Island in the Canadian High Arctic with seeds of two forb species ( Oxyria digyna and Papaver radicatum ) originating from 3-5 populations at different latitudes across the Arctic. We found that plants from the local populations generally had higher survival and obtained a greater maximum size than foreign individuals, regardless of warming treatment. Phenological traits varied with latitude of the source population, such that southern populations demonstrated substantially delayed leaf-out and senescence relative to northern populations. Our results suggest that environmental conditions other than temperature may influence the ability of foreign populations and species to establish at more northerly latitudes as the climate warms, potentially leading to lags in northward range shifts for some species. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2016-07-09
    Description: Quantitative evidence of sudden shifts in ecological structure and function in large shallow lakes is rare, even though they provide essential benefits to society. Such ‘regime shifts’ can be driven by human activities which degrade ecological stability including water level control (WLC) and nutrient loading. Interactions between WLC and nutrient loading on the long-term dynamics of shallow lake ecosystems are, however, often overlooked and largely underestimated, which has hampered the effectiveness of lake management. Here, we focus on a large shallow lake (Lake Chaohu) located in one of the most densely populated areas in China, the lower Yangtze River floodplain, which has undergone both WLC and increasing nutrient loading over the last several decades. We applied a novel methodology that combines consistent evidence from both paleolimnological records and ecosystem modeling to overcome the hurdle of data insufficiency and to unravel the drivers and underlying mechanisms in ecosystem dynamics. We identified the occurrence of two regime shifts: one in 1963, characterized by the abrupt disappearance of submerged vegetation, and another around 1980, with strong algal blooms being observed thereafter. Using model scenarios, we further disentangled the roles of WLC and nutrient loading, showing that the 1963 shift was predominantly triggered by WLC, whereas the shift ca. 1980 was attributed to aggravated nutrient loading. Our analysis also shows interactions between these two stressors. Compared to the dynamics driven by nutrient loading alone, WLC reduced the critical P loading and resulted in earlier disappearance of submerged vegetation and emergence of algal blooms by approximately 26 years and 10 years, respectively. Overall, our study reveals the significant role of hydrological regulation in driving shallow lake ecosystem dynamics, and it highlights the urgency of using multi-objective management criteria that includes ecological sustainability perspectives when implementing hydrological regulation for aquatic ecosystems around the globe. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2016-06-24
    Description: Droughts are expected to become more frequent and more intense under climate change. Plant mortality rates and biomass declines in response to drought depend on stomatal and xylem flow regulation. Plants operate on a continuum of xylem and stomatal regulation strategies from very isohydric (strict regulation) to very anisohydric. Co-existing species may display a variety of isohydricity behaviors. As such, it can be difficult to predict how to model the degree of isohydricity at the ecosystem scale by aggregating studies of individual species. This is nonetheless essential for accurate prediction of ecosystem drought resilience. In this study, we define a metric for the degree of isohydricity at the ecosystem scale in analogy with a recent metric introduced at the species-level. Using data from the AMSR-E satellite, this metric is evaluated globally based on diurnal variations in microwave vegetation optical depth (VOD), which is directly related to leaf water potential. Areas with low annual-mean radiation are found to be more anisohydric. Except for evergreen broadleaf forests in the tropics, which are very isohydric, and croplands, which are very anisohydric, land cover type is a poor predictor of ecosystem isohydricity, in accordance with previous species-scale observations. It is therefore also a poor basis for parameterizing water stress response in land-surface models. For taller ecosystems, canopy height is correlated with higher isohydricity (so that rainforests are mostly isohydric). Highly anisohydric areas show either high or low underlying water use efficiency. In seasonally dry locations, most ecosystems display a more isohydric response (increased stomatal regulation) during the dry season. In several seasonally dry tropical forests, this trend is reversed, as dry-season leaf-out appears to coincide with a shift towards more anisohydric strategies. The metric developed in this study allows for detailed investigations of spatial and temporal variations in plant water behavior. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2016-06-22
    Description: Coastal embayments are at risk of impacts by climate change drivers such as ocean warming, sea level rise and alteration in precipitation regimes. The response of the ecosystem to these drivers is highly dependent on their magnitude of change, but also on physical characteristics such as bay morphology and river discharge, which play key roles in water residence time and hence estuarine functioning. These considerations are especially relevant for bivalve aquaculture sites, where the cultured biomass can alter ecosystem dynamics. The combination of climate change, physical and aquaculture drivers can result in synergistic/antagonistic and nonlinear processes. A spatially explicit model was constructed to explore effects of the physical environment (bay geomorphic type, freshwater inputs), climate change drivers (sea level, temperature, precipitation) and aquaculture (bivalve species, stock) on ecosystem functioning. A factorial design led to 336 scenarios (48 hydrodynamic × 7 management). Model outcomes suggest that the physical environment controls estuarine functioning given its influence on primary productivity (bottom-up control dominated by riverine nutrients) and horizontal advection with the open ocean (dominated by bay geomorphic type). The intensity of bivalve aquaculture ultimately determines the bivalve–phytoplankton trophic interaction, which can range from a bottom-up control triggered by ammonia excretion to a top-down control via feeding. Results also suggest that temperature is the strongest climate change driver due to its influence on the metabolism of poikilothermic organisms (e.g. zooplankton and bivalves), which ultimately causes a concomitant increase of top-down pressure on phytoplankton. Given the different thermal tolerance of cultured species, temperature is also critical to sort winners from losers, benefiting Crassostrea virginica over Mytilus edulis under the specific conditions tested in this numerical exercise. In general, it is predicted that bays with large rivers and high exchange with the open ocean will be more resilient under climate change when bivalve aquaculture is present.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2016-06-30
    Description: Ocean acidification is a global challenge that faces marine organisms in the near future with a predicted rapid drop in pH of up to 0.4 units by the end of this century. Effects of the change in ocean carbon chemistry and pH on the development, growth and fitness of marine animals are well documented. Recent evidence also suggests that a range of chemically mediated behaviours and interactions in marine fish and invertebrates will be affected. Marine animals use chemical cues, for example, to detect predators, for settlement, homing and reproduction. But, while effects of high CO 2 conditions on these behaviours are described across many species, little is known about the underlying mechanisms, particularly in invertebrates. Here, we investigate the direct influence of future oceanic pH conditions on the structure and function of three peptide signalling molecules with an interdisciplinary combination of methods. NMR spectroscopy and quantum chemical calculations were used to assess the direct molecular influence of pH on the peptide cues, and we tested the functionality of the cues in different pH conditions using behavioural bioassays with shore crabs ( Carcinus maenas ) as a model system. We found that peptide signalling cues are susceptible to protonation in future pH conditions, which will alter their overall charge. We also show that structure and electrostatic properties important for receptor binding differ significantly between the peptide forms present today and the protonated signalling peptides likely to be dominating in future oceans. The bioassays suggest an impaired functionality of the signalling peptides at low pH. Physiological changes due to high CO 2 conditions were found to play a less significant role in influencing the investigated behaviour. From our results, we conclude that the change of charge, structure and consequently function of signalling molecules presents one possible mechanism to explain altered behaviour under future oceanic pH conditions.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2016-05-08
    Description: Coral reefs are increasingly exposed to elevated temperatures that can cause coral bleaching and high levels of mortality of corals and associated organisms. The temperature threshold for coral bleaching depends on the acclimation and adaptation of corals to the local maximum temperature regime. However, because of larval dispersal, coral populations can receive larvae from corals that are adapted to very different temperature regimes. We combine an offline particle tracking routine with output from a high-resolution physical oceanographic model to investigate whether connectivity of coral larvae between reefs of different thermal regimes could alter the thermal stress threshold (TST) of corals. Our results suggest that larval transport between reefs of widely varying temperatures is likely in the Coral Triangle, and that accounting for this connectivity may be important in bleaching predictions. This has important implications in conservation planning, because connectivity may allow some reefs to have an inherited heat tolerance that is higher or lower than predicted based on local conditions alone. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2016-05-06
    Description: There are several models in the literature for predicting enteric methane (CH 4 ) emissions. These models were often developed on region or country-specific data and may not be able to predict the emissions successfully in every region. The majority of extant models require dry matter intake of individual animals (DMI), which is not routinely measured. The objectives of this study were to 1) evaluate performance of extant models in predicting enteric CH 4 emissions from dairy cows in North America (NA), Europe (EU), and Australia and New Zealand (AUNZ), and 2) explore the performance using estimated DMI. Forty extant models were challenged on 55, 105, and 52 enteric CH 4 measurements (g/lactating cow/d) from NA, EU, and AUNZ, respectively. The models were ranked using root mean square prediction error as a percentage of the average observed value (RMSPE), and concordance correlation coefficient (CCC). A modified model of Nielsen et al . (2013) using DMI, and dietary digestible neutral detergent fiber and fatty acid contents as predictor variables, ranked highest in NA (RMSPE = 13.1%, and CCC = 0.78). The gross energy intake-based model of Yan et al . (2000) and the updated IPCC Tier 2 model were ranked highest in EU (RMSPE = 11.0%, and CCC = 0.66), and AUNZ (RMSPE = 15.6%, and CCC = 0.75), respectively. DMI of cows in NA and EU were estimated satisfactorily with body weight and fat corrected milk yield data (RMSPE 〈 12.0%, and CCC 〉 0.60). Using estimated DMI, the Nielsen et al . (2013) [RMSPE = 12.7, and CCC = 0.79], and Yan et al . (2000) [RMSPE = 13.7, and CCC = 0.50] models still predicted emissions in respective regions well. Enteric CH 4 emissions from dairy cows can be predicted successfully (i.e., RMSPE 〈 15%), if DMI can be estimated with reasonable accuracy (i.e., RMSPE 〈 10%). This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2016-05-07
    Description: Microbial communities inhabiting soil aggregates dynamically adjust their activity and composition in response to variations in hydration and other external conditions. These rapid dynamics shape signatures of biogeochemical activity and gas fluxes emitted from soil profiles. Recent mechanistic models of microbial processes in unsaturated aggregate-like pore networks revealed a highly dynamic interplay between oxic and anoxic microsites jointly shaped by hydration conditions and by aerobic and anaerobic microbial community abundance and self-organization. The spatial extent of anoxic niches (hotspots) flicker in time (hot moments) and support substantial anaerobic microbial activity even in aerated soil profiles. We employed an individual-based model for microbial community life in soil aggregate assemblies represented by 3D angular pore networks. Model aggregates of different sizes were subjected to variable water, carbon, and oxygen contents that varied with soil depth as boundary conditions. The study integrates microbial activity within aggregates of different sizes and soil depth to obtain estimates of biogeochemical fluxes from the soil profile. The results quantify impacts of dynamic shifts in microbial community composition on CO 2 and N 2 O production rates in soil profiles in good agreement with experimental data. Aggregate size distribution and the shape of resource profiles in a soil determine how hydration dynamics shape denitrification and carbon utilization rates. Results from the mechanistic model for microbial activity in aggregates of different sizes were used to derive parameters for analytical representation of soil biogeochemical processes across large scales of practical interest for hydrological and climate models. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2016-05-27
    Description: Removal of biologically available nitrogen (N) by the microbially mediated processes denitrification and anaerobic ammonium oxidation (anammox) affects ecosystem N availability. Although few studies have examined temperature responses of denitrification and anammox, previous work suggests that denitrification could become more important than anammox in response to climate warming. To test this hypothesis, we determined whether temperature responses of denitrification and anammox differed in shelf and estuarine sediments from coastal Rhode Island over a seasonal cycle. The influence of temperature and organic C availability was further assessed in a 12-week laboratory microcosm experiment. Temperature responses, as characterized by thermal optima (T opt ) and apparent activation energy (E a ), were determined by measuring potential rates of denitrification and anammox at 31 discrete temperatures ranging from 3 to 59°C. With a few exceptions, T opt and E a of denitrification and anammox did not differ in Rhode Island sediments over the seasonal cycle. In microcosm sediments, E a  was somewhat lower for anammox compared to denitrification across all treatments. However, T opt  did not differ between processes, and neither E a  nor T opt  changed with warming or carbon addition. Thus, the two processes behaved similarly in terms of temperature response, and this response was not influenced by warming. This led us to reject the hypothesis that anammox is more cold-adapted than denitrification in our study system. Overall, our study suggests that temperature responses of both processes can be accurately modeled for temperate regions in the future using a single set of parameters, which are likely not to change over the next century as a result of predicted climate warming. We further conclude that climate warming will not directly alter the partitioning of N flow through anammox and denitrification. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2016-05-12
    Description: Forest stand age plays a major role in regulating carbon fluxes in boreal and temperate ecosystems. Young boreal forests represent a relatively small but persistent source of carbon to the atmosphere over 30 years after disturbance, while temperate forests switch from a substantial source over the first 10 years to a notable sink until they reach maturity. Russian forests are the largest contiguous forest belt in the world that accounts for 17% of the global forest cover; however, despite its critical role in controlling global carbon cycle, little is known about spatial patterns of young forest distribution across Russia as a whole, particularly before the year 2000. Here we present a map of young (0-27 years of age) forests, where 12-27 year old forests were modeled from the single-date 500 m satellite record and augmented with the 0-11 year old forest map aggregated from the 30 m resolution contemporary record between 2001 and 2012. The map captures the distribution of forests with the overall accuracy exceeding 85% within three largest bioclimatic vegetation zones (northern, middle and southern taiga), although mapping accuracy for disturbed classes was generally low (the highest of 31% for user's and producer's accuracy for the 12-27 age class and the maximum of 74% for user's and 32% for producer's accuracy for the 0-11 age class). The results show that 75.5 ± 17.6 Mha (roughly 9%) of Russian forests were younger than 30 years of age at the end of 2012. The majority of these 47 ± 4.7 Mha (62%) were distributed across the middle taiga bioclimatic zone. Based on the published estimates of Net Ecosystem Production (NEP) and the produced map of young forests, this study estimates that young Russian forests represent a total sink of carbon at the rate of 1.26 Tg C yr −1 . This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2016-05-12
    Description: Sustainable intensification of agriculture is one of the main strategies to provide global food security. However, its implementation raises enormous political, technological, and social challenges. Meeting these challenges will require, among other things, accurate information on the spatial and temporal patterns of agricultural land use and yield. Here, we investigate historical patterns of agricultural land use (1940–2012) and productivity (1990–2012) in Brazil using a new high-resolution (approximately 1 km 2 ) spatially explicit reconstruction. Although Brazilian agriculture has been historically known for its extensification over natural vegetation (Amazon and Cerrado), data from recent years indicate that extensification has slowed down and was replaced by a strong trend of intensification. Our results provide the first comprehensive historical overview of agricultural land use and productivity in Brazil, providing clear insights to guide future territorial planning, sustainable agriculture, policy, and decision-making.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2016-05-13
    Description: Estimates of global riverine nitrous oxide (N 2 O) emissions contain great uncertainity. We conducted a meta-analysis incorporating 169 observations from published literature to estimate global riverine N 2 O emission rates and emission factors. Riverine N 2 O flux was significantly correlated with NH 4 , NO 3 and DIN (NH 4 +NO 3 ) concentrations, loads and yields. The emission factors EF(a) ( i.e., the ratio of N 2 O emission rate and DIN load) and EF(b) ( i.e., the ratio of N 2 O and DIN concentrations) values were comparable and showed negative correlations with nitrogen concentration, load and yield and water discharge, but positive correlations with the dissolved organic carbon:DIN ratio. After individually evaluating 82 potential regression models based on EF(a) or EF(b) for global, temperate zone, and sub-tropical zone datasets, a power function of DIN yield multiplied by watershed area was determined to provide the best fit between modeled and observed riverine N 2 O emission rates (EF(a): R 2 =0.92 for both global and climatic zone models, n=70; EF(b): R 2 =0.91 for global model and R 2 =0.90 for climatic zone models, n=70). Using recent estimates of DIN loads for 6400 rivers, models estimated global riverine N 2 O emission rates of 29.6–35.3 (mean=32.2) Gg N 2 O-N yr −1 and emission factors of 0.16–0.19% (mean=0.17%). Global riverine N 2 O emission rates are forecasted to increase by 35%, 25%, 18% and 3% in 2050 compared to the 2000s under the Millennium Ecosystem Assessment's Global Orchestration , Order from Strength , Technogarden , and Adapting Mosaic scenarios, respectively. Previous studies may overestimate global riverine N 2 O emission rates (300–2100 Gg N 2 O-N yr −1 ) since they ignore declining emission factor values with increasing nitrogen levels and channel size, as well as neglect differences in emission factors corresponding to different nitrogen forms. Riverine N 2 O emission estimates will be further enhanced through refining emission factor estimates, extending measurements longitudinally along entire river networks, and improving estimates of global riverine nitrogen loads. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2016-07-12
    Description: The Paris Conference of Parties (COP21) agreement renewed momentum for action against climate change, creating the space for solutions for conservation of the ocean addressing two of its largest threats: climate change and ocean acidification (CCOA). Recent arguments that ocean policies disregard a mature conservation research field, and that protected areas cannot address climate change may be over-simplistic at this time when dynamic solutions for the management of changing oceans are needed. We propose a novel approach, based on spatial meta-analysis of climate impact models, to improve the positioning of marine protected areas to limit CCOA impacts. We do this by estimating the vulnerability of ocean ecosystems to CCOA in a spatially-explicit manner, and then co-mapping human activities such as the placement of renewable energy developments and the distribution of marine protected areas. We test this approach in the NE Atlantic considering also how CCOA impacts the base of the food web which supports protected species, an aspect often neglected in conservation studies. We found that, in this case, current regional conservation plans protect areas with low ecosystem-level vulnerability to CCOA, but disregard how species may re-distribute to new, suitable and productive habitats. Under current plans, these areas remain open to commercial extraction and other uses. Here, and worldwide, ocean conservation strategies under CCOA must recognize the long-term importance of these habitat refuges, and studies such as this one are needed to identify them. Protecting these areas creates adaptive, climate-ready and ecosystem-level policy options for conservation, suitable for changing oceans. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2016-07-14
    Description: Understanding the extent to which phylogenetic constraints and adaptive evolutionary forces help define the physiological sensitivity of species is critical for anticipating climate-related impacts in aquatic environments. Yet, whether upper thermal tolerance and plasticity are shaped by common evolutionary and environmental mechanisms remains to be tested. Based on a systematic literature review, we investigated this question in 82 freshwater fish species (27 families) representing 829 experiments for which data existed on upper thermal limits and it was possible to estimate plasticity using upper thermal tolerance reaction norms. Our findings indicated that there are strong phylogenetic signals in both thermal tolerances and acclimation capacity, although it is weaker in the latter. We found that upper thermal tolerances are correlated with the temperatures experienced by species across their range, likely because of spatially autocorrelated processes in which closely related species share similar selection pressures and limited dispersal from ancestral environments. No association with species thermal habitat was found for acclimation capacity. Instead, species with the lowest physiological plasticity also displayed the highest thermal tolerances, reflecting to some extent an evolutionary trade-off between these two traits. Although our study demonstrates that macroecological climatic niche features measured from species distributions are likely to provide a good approximation of freshwater fish sensitivity to climate change, disentangling the mechanisms underlying both acute and chronic heat tolerances may help to refine predictions regarding climate change-related range shifts and extinctions. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2016-07-14
    Description: The earth is in the midst of a biodiversity crisis, and projections indicate continuing and accelerating rates of global changes. Future alterations in communities and ecosystems may be precipitated by changes in the abundance of strongly interacting species, whose disappearance can lead to profound changes in abundance of other species, including an increase in extinction rate for some. Nearshore coastal communities are often dependent on the habitat and food resources provided by foundational plant (e.g., kelp) and animal (e.g., shellfish) species. We quantified changes in the abundance of the blue mussel ( Mytilus edulis ), a foundation species known to influence diversity and productivity of intertidal habitats, over the past 40 years in the Gulf of Maine, USA, one of the fastest warming regions in the global ocean. Using consistent survey methods, we compared contemporary population sizes to historical data from sites spanning 〉400 km. The results of these comparisons showed that blue mussels have declined in the Gulf of Maine by 〉60% (range: 29-100%) at the site level since the earliest benchmarks in the 1970s. At the same time as mussels declined, community composition shifted: at the 4 sites with historical community data, the sessile community became increasingly algal-dominated. Contemporary (2013-14) surveys across 20 sites showed that sessile species richness was positively correlated to mussel abundance in mid to high intertidal zones. These results suggest that declines in a critical foundation species may have already impacted the intertidal community. To inform future conservation efforts, we provide a database of historical and contemporary baselines of mussel population abundance and dynamics in the Gulf of Maine. Our results underscore the importance of anticipating not only changes in diversity but also changes in the abundance and identity of component species, as strong interactors like foundation species have the potential to drive cascading community shifts. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2016-07-15
    Description: The ongoing climate change is expected to modify the atmospheric carbon (C) sink function of peatlands, which store about 450 Gt of carbon accumulated over centuries and millennia (Fenner and Freeman, 2011). Indeed, the simultaneous rise of temperature and decrease of water level favors soil oxygenation, organic matter (OM) decomposition and in turn, the release of large amounts of CO 2 into the atmosphere. Recently, Bragazza et al. (2016) suggested that climate extreme events reduce carbon accumulation in peatlands by up to 30% owing to the decline of Sphagnum productivity and the rise of microbial decomposition of OM. However, investigating the impact of climate extreme events on OM decomposition requires that indirect effects, such as vegetation changes and water physicochemical properties, did not falsify interpretation of the changes in the microbial activities (Delarue et al., 2014; Delarue et al., 2015). This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2016-07-15
    Description: Although the impacts of nutrient pollution on coral reefs are well known, surprisingly, no statistical relationships have ever been established between water quality parameters, coral biodiversity and coral cover. Hong Kong provides a unique opportunity to assess this relationship. Here, coastal waters have been monitored monthly since 1986, at 76 stations, providing a highly spatially resolved water quality dataset including 68,903 data points. Moreover, a robust coral species richness ( S ) dataset is available from more than 100 surveyed locations, composed of 3,453 individual colonies’ observations, as well as a coral cover ( CC ) dataset including 85 sites. This wealth of data provides a unique opportunity to test the hypothesis that water quality, and in particular nutrients, drives coral biodiversity. The influence of water quality on S and CC was analyzed using GIS and multiple regression modeling. Eutrophication (as chlorophyll-a concentration; CHLA) was negatively correlated with S and CC , whereas physico-chemical parameters (DO and salinity) had no significant effect. The modeling further illustrated that PSM, DIN and DIP had a negative effect on S and on CC , however, the effect of nutrients was 1.5 to 2-fold greater. The highest S and CC occurred where CHLA 〈 2 μ g.L −1 , DIN 〈 2 μ M and DIP 〈 0.1 μ M. Where these values were exceeded, S and CC were significantly lower and no live corals were observed where CHLA 〉 15 μ g.L −1 , DIN 〉 9 μ M and DIP 〉 0.33 μ M. This study demonstrates the importance of nutrients over other water quality parameters in coral biodiversity loss and highlights the key role of eutrophication in shaping coral reef ecosystems. This work also provides ecological thresholds that may be useful for water quality guidelines and nutrient-mitigation policies. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2016-07-16
    Description: Arctic ecosystems are characterized by a wide range of soil moisture conditions and thermal regimes and contribute differently to the net methane (CH 4 ) budget. Yet, it is unclear how climate change will affect the capacity of those systems to act as a net source or sink of CH 4 . Here, we present results of in situ CH 4 flux measurements made during the growing season 2014 on Disko Island (west Greenland) and quantify the contribution of contrasting soil and landscape types to the net CH 4 budget and responses to summer warming. We compared gas flux measurements from a bare soil and a dry heath, at ambient conditions and increased air temperature, using open-top chambers (OTCs). Throughout the growing season, bare soil consumed 0.22 ± 0.03 g CH 4 -C m −2 (8.1 ± 1.2 g CO 2 -eq m −2 ) at ambient conditions, while the dry heath consumed 0.10 ± 0.02 g CH 4 -C m −2 (3.9 ± 0.6 g CO 2 -eq m −2 ). These uptake rates were subsequently scaled to the entire study area of 0.15 km 2 , a landscape also consisting of wetlands with a seasonally integrated methane release of 0.10 ± 0.01 g CH 4 -C m −2 (3.7 ± 1.2 g CO 2 -eq m −2 ). The result was a net landscape sink of 12.71 kg CH 4 -C (0.48 tonne CO 2 -eq) during the growing season. A nonsignificant trend was noticed in seasonal CH 4 uptake rates with experimental warming, corresponding to a 2% reduction at the bare soil, and 33% increase at the dry heath. This was due to the indirect effect of OTCs on soil moisture, which exerted the main control on CH 4 fluxes. Overall, the net landscape sink of CH 4 tended to increase by 20% with OTCs. Bare and dry tundra ecosystems should be considered in the net CH 4 budget of the Arctic due to their potential role in counterbalancing CH 4 emissions from wetlands – not the least when taking the future climatic scenarios of the Arctic into account.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2016-07-16
    Description: Understandings of contemporary forest cover loss are critical for policy but have come at the expense of long-term, multi-directional analyses of land cover change. This is a critical gap given (i) profound reconfigurations in land use and land control over the past several decades and (ii) evidence of widespread “woodland resurgence” throughout the tropics. In this paper, we argue that recent advancements within the field of land change science provide new opportunities to address this gap. In turn, we suggest that multi-decadal and multi-directional analyses of land cover change can facilitate richer social analyses of land cover change and more relevant conservation policies and practice. Our argument is grounded in a case study from Southeast Sulawesi, Indonesia. Using a novel analytical platform, Google Earth Engine, and open access to high-quality Landsat data, we map land cover change in Southeast Sulawesi, Indonesia from 1972-2014. We find that tree cover loss constitutes the single largest net change over the period 1972-2014 but that gross rates of tree cover gain were three times higher than gross loss rates from 1972-1995 and equivalent to loss rates from 1995-2014. We suggest the smallholder tree crop economy likely produced both forest loss and Imperata grassland restoration in this region. This case points to the need to expand rather than collapse the baselines used to study carbon and biodiversity change in tropical regions. It also demonstrates the possible utility of applying such methods to other regions. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2016-07-19
    Description: Shifts in biodiversity and ecological processes in stream ecosystems in response to rapid climate change will depend on how numerically and functionally dominant aquatic insect species respond to changes in stream temperature and hydrology. Across 253 minimally perturbed streams in 8 ecoregions in the western US, we modeled the distribution of 88 individual insect taxa in relation to existing combinations of maximum summer temperature, mean annual streamflow, and their interaction. We used a heat map approach along with downscaled General Circulation Model (GCM) projections of warming and streamflow change to estimate site-specific extirpation likelihood for each taxon, allowing estimation of whole community change in streams across these ecoregions. Conservative climate change projections indicate a 30-40% loss of taxa in warmer, drier ecoregions and 10-20% loss in cooler, wetter ecoregions where taxa are relatively buffered from projected warming and hydrologic change. Differential vulnerability of taxa with key functional foraging roles in processing basal resources suggests that climate change has the potential to modify stream trophic structure and function (e.g., alter rates of detrital decomposition and algal consumption), particularly in warmer and drier ecoregions. We show that streamflow change is equally as important as warming in projected risk to stream community composition and that the relative threat posed by these two fundamental drivers varies across ecoregions according to projected gradients of temperature and hydrologic change. Results also indicate that direct human modification of streams through actions such as water abstraction are likely to further exacerbate loss of taxa and ecosystem alteration, especially in drying climates. Management actions to mitigate climate change impacts on stream ecosystems or to proactively adapt to them will require regional calibration, due to geographic variation in insect sensitivity and in exposure to projected thermal warming and hydrologic change. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2016-07-19
    Description: De Oliveira Silva et al. (2016) model beef production in the Brazilian Cerrado , and conclude that – if accompanied by tight deforestation control – increasing production could lower emissions by incentivising better pasture management. While their analysis is valuable in identifying the conditions under which increasing meat consumption could be compatible with reducing greenhouse gas emissions, we believe that there is little chance of such conditions occurring in practice. Overall, increasing beef consumption and production is unlikely to be an effective lever for reducing emissions, and is more likely to exacerbate deforestation. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2016-07-19
    Description: Land-use change due to anthropogenic development is pervasive across the globe and commonly associated with negative consequences for biodiversity. While land-use change has been linked to shifts in the behavior and habitat-use patterns of wildlife species, little is known about its influence on animal population dynamics, despite the relevance of such information for conservation. We conducted the first broad-scale investigation correlating temporal patterns of land-use change with the demographic rates of mule deer, an iconic species in the western United States experiencing wide-scale population declines. We employed a unique combination of long-term (1980–2010) data on residential and energy development across western Colorado, in conjunction with congruent data on deer recruitment, to quantify annual changes in land-use and correlate those changes with annual indices of demographic performance. We also examined annual variation in weather conditions, which are well recognized to influence ungulate productivity, and provided a basis for comparing the relative strength of different covariates in their association with deer recruitment. Using linear mixed models, we found that increasing residential and energy development within deer habitat were correlated with declining recruitment rates, particularly within seasonal winter ranges. Residential housing had two times the magnitude of effect of any other factor we investigated, and energy development had an effect size similar to key weather variables known to be important to ungulate dynamics. This analysis is the first to correlate a demographic response in mule deer with residential and energy development at large spatial extents relevant to population performance, suggesting that further increases in these development types on deer ranges are not compatible with the goal of maintaining highly productive deer populations. Our results underscore the significance of expanding residential development on mule deer populations, a factor that has received little research attention in recent years, despite its rapidly increasing footprint across the landscape.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2016-07-19
    Description: The cumulative effects of climate warming on herbivore vital rates and population dynamics are hard to predict, given that the expected effects differ between seasons. In the Arctic, warmer summers enhance plant growth which should lead to heavier and more fertile individuals in the autumn. Conversely, warm spells in winter with rainfall (rain-on-snow) can cause ‘icing’, restricting access to forage, resulting in starvation, lower survival and fecundity. Since body condition is a ‘barometer’ of energy demands relative to energy intake, we explored the causes and consequences of variation in body mass of wild female Svalbard reindeer ( Rangifer tarandus platyrhynchus ) from 1994-2015, a period of marked climate warming. Late winter (April) body mass explained 88% of the between-year variation in population growth rate, because it strongly influenced reproductive loss, and hence subsequent fecundity (92%), as well as survival (94%) and recruitment (93%). Autumn (October) body mass affected ovulation rates but did not affect fecundity. April body mass showed no long-term trend (Coefficient of variation, CV = 8.8%) but was higher following warm autumn (October) weather, reflecting delays in winter onset, but most strongly, and negatively, related to ‘rain-on-snow’ events. October body mass (CV =2.5%) increased over the study due to higher plant productivity in the increasingly warm summers. Density-dependent mass change suggested competition for resources in both winter and summer but was less pronounced in recent years, despite an increasing population size. While continued climate warming is expected to increase the carrying capacity of the high Arctic tundra, it is also likely to cause more frequent icing-events. Our analyses suggest that these contrasting effects may cause larger seasonal fluctuations in body mass and vital rates. Overall our findings provide an important ‘missing’ mechanistic link in the current understanding of the population biology of a keystone species in a rapidly warming Arctic. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2016-03-25
    Description: Half the global soil carbon (C) is held in high latitude systems. Climate change will expose these to warming and a shift towards plant communities with more labile C input. Labile C can also increase the rate of loss of native soil organic matter (SOM); a phenomenon termed ‘priming’. We investigated how warming (+1.1°C over ambient using open top chambers) and litter addition (90 g m −2 y −1 ) treatments in the Subarctic influenced the susceptibility of SOM mineralisation to priming, and its microbial underpinnings. Labile C appeared to inhibit the mineralisation of C from SOM by up to 60% within hours. In contrast, the mineralisation of N from SOM was stimulated by up to 300%. These responses occurred rapidly and were unrelated to microbial successional dynamics, suggesting catabolic responses. Considered separately, the labile-C inhibited C mineralisation is compatible with previously reported findings termed ‘preferential substrate utilisation’ or ‘negative apparent priming’, while the stimulated N mineralisation responses echo recent reports of ‘real priming’ of SOM mineralisation. However, C and N mineralisation responses derived from the same SOM source must be interpreted together: This suggested that the microbial SOM-use decreased in magnitude and shifted to components richer in N. This finding highlights that only considering SOM in terms of C may be simplistic, and will not capture all changes in SOM decomposition. The selective mining for N increased in climate change treatments with higher fungal dominance. In conclusion, labile C appeared to trigger catabolic responses of the resident microbial community that shifted the SOM mining to N-rich components; an effect that increased with higher fungal dominance. Extrapolating from these findings, the predicted shrub expansion in the Subarctic could result in an altered microbial use of SOM, selectively mining it for N-rich components, and leading to a reduced total SOM-use. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2016-04-03
    Description: Climate change and forest disturbances are threatening the ability of forested mountain watersheds to provide the clean, reliable, and abundant fresh water necessary to support aquatic ecosystems and a growing human population. Here we used 76 years of water yield, climate, and field plot vegetation measurements in six unmanaged, reference watersheds in the southern Appalachian Mountains of North Carolina, USA to determine whether water yield has changed over time, and to examine and attribute the causal mechanisms of change. We found that annual water yield increased in some watersheds from 1938 to the mid-1970s by as much as 55%, but this was followed by decreases up to 22% by 2013. Changes in forest evapotranspiration were consistent with, but opposite in direction to the changes in water yield, with decreases in evapotranspiration up to 31% by the mid-1970s followed by increases up to 29% until 2013. Vegetation survey data showed commensurate reductions in forest basal area until the mid-1970s and increases since that time accompanied by a shift in dominance from xerophytic oak and hickory species to several mesophytic species (i.e., mesophication) that use relatively more water. These changes in forest structure and species composition may have decreased water yield by as much as 18% in a given year since the mid-1970s after accounting for climate. Our results suggest that changes in climate and forest structure and species composition in unmanaged forests brought about by disturbance and natural community dynamics over time can result in large changes in water supply. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2016-04-03
    Description: In high latitude regions, carbon dioxide (CO 2 ) emissions during the winter represent an important component of the annual ecosystem carbon budget; however, the mechanisms that control the winter CO 2 emissions are currently not well understood. It has been suggested that substrate availability from soil labile carbon pools is a main driver of winter CO 2 emissions. In ecosystems that are dominated by annual herbaceous plants, much of the biomass produced during the summer is likely to contribute to the soil labile carbon pool through litter fall and root senescence in the autumn. Thus, the summer carbon uptake in the ecosystem may have a significant influence on the subsequent winter CO 2 emissions. To test this hypothesis, we conducted a plot-scale shading experiment in a boreal peatland to reduce the gross primary production (GPP) during the growing season. At the growing season peak, vascular plant biomass in the shaded plots was half that in the control plots. During the subsequent winter, the mean CO 2 emission rates were 21% lower in the shaded plots than in the control plots. In addition, long-term (2001-2012) eddy covariance data from the same site showed a strong correlation between the GPP (particularly the late summer and autumn GPP) and the subsequent winter net ecosystem CO 2 exchange (NEE). In contrast, abiotic factors during the winter could not explain the inter-annual variation in the cumulative winter NEE. Our study demonstrates the presence of a cross-seasonal link between the growing season biotic processes and winter CO 2 emissions, which has important implications for predicting winter CO 2 emission dynamics in response to future climate change. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2016-04-05
    Description: Statistical species distribution models (SDMs) are increasingly used to project spatial relocations of marine taxa under future climate change scenarios. However, tests of their predictive skill in the real-world are rare. Here, we use data from the Continuous Plankton Recorder program, one of the longest running and most extensive marine biological monitoring programs, to investigate the reliability of predicted plankton distributions. We apply three commonly used SDMs to 20 representative plankton species, including copepods, diatoms, and dinoflagellates, all found in the North Atlantic and adjacent seas. We fit the models to decadal subsets of the full (1958–2012) dataset, and then use them to predict both forward and backward in time, comparing the model predictions against the corresponding observations. The probability of correctly predicting presence was low, peaking at 0.5 for copepods, and model skill typically did not outperform a null model assuming distributions to be constant in time. The predicted prevalence increasingly differed from the observed prevalence for predictions with more distance in time from their training dataset. More detailed investigations based on four focal species revealed that strong spatial variations in skill exist, with the least skill at the edges of the distributions, where prevalence is lowest. Furthermore, the scores of traditional single-value model performance metrics were contrasting and some implied overoptimistic conclusions about model skill. Plankton may be particularly challenging to model, due to its short life span and the dispersive effects of constant water movements on all spatial scales, however there are few other studies against which to compare these results. We conclude that rigorous model validation, including comparison against null models, is essential to assess the robustness of projections of marine planktonic species under climate change.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2016-04-07
    Description: Correlative species distribution models have long been the predominant approach to predict species’ range responses to climate change. Recently, the use of dynamic models is increasingly advocated for because these models better represent the main processes involved in range shifts and also simulate transient dynamics. A well-known problem with the application of these models is the lack of data for estimating necessary parameters of demographic and dispersal processes. However, what has been hardly considered so far is the fact that simulating transient dynamics potentially implies additional uncertainty arising from our ignorance of short-term climate variability in future climatic trends. Here, we use endemic mountain plants of Austria as a case study to assess how the integration of decadal variability in future climate affects outcomes of dynamic range models as compared to projected long-term trends and uncertainty in demographic and dispersal parameters. We do so by contrasting simulations of a so-called hybrid model run under fluctuating climatic conditions with those based on a linear interpolation of climatic conditions between current values and those predicted for the end of the 21st century. We find that accounting for short-term climate variability modifies model results nearly as differences in projected long-term trends and much more than uncertainty in demographic/dispersal parameters. In particular, range loss and extinction rates are much higher when simulations are run under fluctuating conditions. These results highlight the importance of considering the appropriate temporal resolution when parameterizing and applying range-dynamic models, and hybrid models in particular. In case of our endemic mountain plants, we hypothesize that smoothed linear time series deliver more reliable results because these long-lived species are primarily responsive to long-term climate averages.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2016-04-09
    Description: Extreme temperatures can injure or kill organisms and can drive evolutionary patterns. Many indices of extremes have been proposed; but few attempts have been made to establish geographic patterns of extremes and to evaluate whether they align with geographic patterns in biological vulnerability and diversity. To examine these issues, we adopt the CLIMDEX indices of thermal extremes. We compute scores for each index on a geographic grid during a baseline period (1961-1990) and separately for the recent period (1991-2010). Heat extremes (temperatures above the 90 th percentile during the baseline period) have become substantially more common during the recent period, particularly in the tropics. Importantly, the various indices show weak geographic concordance, implying that organisms in different regions will face different forms of thermal stress. The magnitude of recent shifts in indices is largely uncorrelated with baseline scores in those indices, suggesting that organisms are likely to face novel thermal stresses. Organismal tolerances correlate roughly with absolute metrics (mainly for cold), but poorly with metrics defined relative to local conditions. Regions with high extreme scores do not correlate closely with regions with high species diversity, human population density, or agricultural production. Even though frequency and intensity of extreme temperature events have – and are likely to have – major impacts on organisms, the impacts are likely to be geographically and taxonomically idiosyncratic and difficult to predict. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2016-01-01
    Description: Tall shrubs and trees are advancing into many tundra and wetland ecosystems but at a rate that often falls short of that predicted due to climate change. For forest, tall shrub, and tundra ecosystems in two pristine mountain ranges of Alaska we apply a Bayesian, error-propagated calculation of expected elevational rise (climate velocity), observed rise (biotic velocity), and their difference (biotic inertia). We show a sensitive dependence of climate velocity on lapse rate and derive biotic velocity as a rigid elevational shift. Ecosystem presence identified from recent and historic orthophotos ~50 years apart was regressed on elevation. Biotic velocity was estimated as the difference between critical point elevations of recent and historic logistic fits divided by time between imagery. For both mountain ranges the 95% highest posterior density of climate velocity enclosed the posterior distributions of all biotic velocities. In the Kenai Mountains mean tall shrub and climate velocities were both 2.8 m y −1 . In the better sampled Chugach Mountains mean tundra retreat was 1.2 m y −1 and climate velocity 1.3 m y −1 . In each mountain range the posterior mode of tall woody vegetation velocity (the complement of tundra) matched climate velocity better than either forest or tall shrub alone, suggesting competitive compensation can be important. Forest velocity was consistently low at 0.1 – 1.1 m y −1 indicating treeline is advancing slowly. We hypothesize that the high biotic inertia of forest ecosystems in south-central Alaska may be due to competition with tall shrubs and/or more complex climate controls on the elevational limits of trees than tall shrubs. Among tall shrubs, those that disperse farthest had lowest inertia. Finally, the rapid upward advance of woody vegetation may be contributing to regional declines in Dall's sheep (Ovis dalli), a poorly-dispersing alpine specialist herbivore with substantial biotic inertia due to dispersal reluctance. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2016-01-01
    Description: As global temperatures rise, variation in annual climate is also changing, with unknown consequences for forest biomes. Growing forests have the ability to capture atmospheric CO 2 and thereby slow rising CO 2 concentrations. Forests’ ongoing ability to sequester C depends on how tree communities respond to changes in climate variation. Much of what we know about tree and forest response to climate variation comes from tree-ring records. Yet typical tree-ring datasets and models do not capture the diversity of climate responses that exist within and among trees and species. We address this issue using a model that estimates individual tree response to climate variables while accounting for variation in individuals’ size, age, competitive status, and spatially-structured latent covariates. Our model allows for inference about variance within and among species. We quantify how variables influence aboveground biomass growth of individual trees from a representative sample of 15 northern or southern tree species growing in a transition zone between boreal and temperate biomes. Individual trees varied in their growth response to fluctuating mean annual temperature and summer moisture stress. The variation among individuals within a species was wider than mean differences among species. Effects of mean temperature and summer moisture stress interacted, such that warm years produced positive responses to summer moisture availability and cool years produced negative responses. As climate models project significant increases in annual temperatures, growth of species like Acer saccharum , Quercus rubra , and Picea glauca will vary more in response to summer moisture stress than in the past. The magnitude of biomass growth variation in response to annual climate was 92-95% smaller than responses to tree size and age. This means that measuring or predicting the physical structure of current and future forests could tell us more about future C dynamics than growth responses related to climate change alone. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2016-01-07
    Description: Despite 20 years of effort to curb emissions, greenhouse gas (GHG) emissions grew faster during the 2000s than in the 1990s, which presents a major challenge for meeting the international goal of limiting warming to 〈2 °C relative to the preindustrial era. Most recent scenarios from integrated assessment models require large-scale deployment of negative emissions technologies (NETs) to reach the 2 °C target. A recent analysis of NETs, including direct air capture, enhanced weathering, bioenergy with carbon capture and storage and afforestation/deforestation, showed that all NETs have significant limits to implementation, including economic cost, energy requirements, land use, and water use. In this paper, I assess the potential for negative emissions from soil carbon sequestration and biochar addition to land, and also the potential global impacts on land use, water, nutrients, albedo, energy and cost. Results indicate that soil carbon sequestration and biochar have useful negative emission potential (each 0.7 GtCeq. yr −1 ) and that they potentially have lower impact on land, water use, nutrients, albedo, energy requirement and cost, so have fewer disadvantages than many NETs. Limitations of soil carbon sequestration as a NET centre around issues of sink saturation and reversibility. Biochar could be implemented in combination with bioenergy with carbon capture and storage. Current integrated assessment models do not represent soil carbon sequestration or biochar. Given the negative emission potential of SCS and biochar and their potential advantages compared to other NETs, efforts should be made to include these options within IAMs, so that their potential can be explored further in comparison with other NETs for climate stabilization.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2016-01-09
    Description: Soil moisture constrains the activity of decomposer soil microorganisms, and in turn the rate at which soil carbon returns to the atmosphere. While increases in soil moisture are generally associated with increased microbial activity, historical climate may constrain current microbial responses to moisture. However, it is not known if variation in the shape and magnitude of microbial functional responses to soil moisture can be predicted from historical climate at regional scales. To address this problem, we measured soil enzyme activity at 12 sites across a broad climate gradient spanning 442 – 887 mm mean annual precipitation. Measurements were made eight times over 21 months to maximize sampling during different moisture conditions. We then fit saturating functions of enzyme activity to soil moisture and extracted half saturation and maximum activity parameter values from model fits. We found that 50% of the variation in maximum activity parameters across sites could be predicted by 30-year mean annual precipitation, an indicator of historical climate, and that the effect is independent of variation in temperature, soil texture, or soil carbon concentration. Based on this finding, we suggest that variation in the shape and magnitude of soil microbial response to soil moisture due to historical climate may be remarkably predictable at regional scales, and this approach may extend to other systems. If historical contingencies on microbial activities prove to be persistent in the face of environmental change, this approach also provides a framework for incorporating historical climate effects into biogeochemical models simulating future global change scenarios. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2016-01-09
    Description: Biological invasions are a major driver of global change, for which models can attribute causes, assess impacts and guide management. However, invasion models typically focus on spread from known introduction points or non-native distributions and ignore the transport processes by which species arrive. Here, we developed a simulation model to understand and describe plant invasion at a continental scale, integrating repeated transport through trade pathways, unintentional release events and the population dynamics and local anthropogenic dispersal that drive subsequent spread. We used the model to simulate the invasion of Europe by common ragweed ( Ambrosia artemisiifolia ), a globally-invasive plant that causes serious harm as an aeroallergen and crop weed. Simulations starting in 1950 accurately reproduced ragweed's current distribution, including the presence of records in climatically-unsuitable areas as a result of repeated introduction. Further, the model outputs were strongly correlated to spatial and temporal patterns of ragweed pollen concentrations, which are fully independent of the calibration data. The model suggests that recent trends for warmer summers and increased volumes of international trade have accelerated the ragweed invasion. For the latter, long distance dispersal because of trade within the invaded continent is highlighted as a key invasion process, in addition to import from the native range. Biosecurity simulations, whereby transport through trade pathways is halted, showed that effective control is only achieved by early action targeting all relevant pathways. We conclude that invasion models would benefit from integrating introduction processes (transport and release) with spread dynamics, to better represent propagule pressure from native sources as well as mechanisms for long-distance dispersal within invaded continents. Ultimately, such integration may facilitate better prediction of spatial and temporal variation in invasion risk and provide useful guidance for management strategies to reduce the impacts of invasion. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2016-01-09
    Description: Agricultural expansion has resulted in both land use and land cover change (LULCC) across the tropics. However, the spatial and temporal patterns of such change and their resulting impacts are poorly understood, particularly for the pre-satellite era. Here we quantify the LULCC history across the 33.9 million ha watershed of Tanzania's Eastern Arc Mountains, using geo-referenced and digitised historical land cover maps (dated 1908, 1923, 1949 and 2000). Our time series from this biodiversity hotspot shows that forest and savanna area both declined, by 74% (2.8 million ha) and 10% (2.9 million ha), respectively, between 1908 and 2000. This vegetation was replaced by a five-fold increase in cropland, from 1.2 million ha to 6.7 million ha. This LULCC implies a committed release of 0.9 Pg C (95% CI: 0.4-1.5) across the watershed for the same period, equivalent to 0.3 Mg C ha −1 yr −1 . This is at least three-fold higher than previous estimates from global models for the same study area. We then used the LULCC data from before and after protected area creation, as well as from areas where no protection was established, to analyse the effectiveness of legal protection on land cover change despite the underlying spatial variation in protected areas. We found that, between 1949 and 2000, forest expanded within legally protected areas, resulting in carbon uptake of 4.8 (3.8-5.7) Mg C ha −1 , compared to a committed loss of 11.9 (7.2-16.6) Mg C ha −1 within areas lacking such protection. Furthermore, for nine protected areas where LULCC data is available prior to and following establishment, we show that protection reduces deforestation rates by 150% relative to unprotected portions of the watershed. Our results highlight that considerable LULCC occurred prior to the satellite era, thus other data sources are required to better understand long-term land cover trends in the tropics. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2016-01-12
    Description: Changes in peak photosynthesis timing (PPT) could substantially change the seasonality of the terrestrial carbon cycle. Spring PPT in dry regions has been documented for some individual plant species on a stand scale, but both the spatio-temporal pattern of shifting PPT on a continental scale and its determinants remain unclear. Here we use satellite measurements of vegetation greenness to find that the majority of Northern Hemisphere, mid-latitude vegetated area experienced a trend toward earlier PPT during 1982-2012, with significant trends of approximately 0.61 day·year −1 across 19.4% of areas. These shifts correspond to increased annual accumulation of growing degree days (GDD) due to warming and are most highly concentrated in the eastern United States and Europe. Earlier mean PPT is generally a trait common among areas with summer temperatures higher than 27.62.9°C, summer precipitation lower than 84.241.5 mm, and fraction of pre-growing season precipitation greater than 89.21.5%. The trends toward earlier PPT discovered here have co-occurred with overall increases in vegetation greenness throughout the growing season, suggesting that summer drought is not a dominant driver of these trends. These results imply that continued warming facilitate continued shifts toward earlier PPT and cause these trends to become more pervasive, with important implications for terrestrial carbon, water, nutrient, and energy budgets. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2016-01-12
    Description: Global changes and associated droughts, heat waves, logging activities, and forest fragmentation may intensify fires in Amazonia by altering forest microclimate and fuel dynamics. To isolate the effects of fuel loads on fire behavior and fire-induced changes in forest carbon cycling, we manipulated fine fuel loads in a fire experiment located in southeast Amazonia. We predicted that a 50% increase in fine fuel loads would disproportionally increase fire intensity and severity (i.e., tree mortality and losses in carbon stocks) due to multiplicative effects of fine fuel loads on the rate of fire spread, fuel consumption, and burned area. The experiment followed a fully replicated randomized block design ( N  = 6) comprised of unburned control plots and burned plots that were treated with and without fine fuel additions. The fuel addition treatment significantly increased burned area (+22%) and consequently canopy openness (+10%), fine fuel combustion (+5%), and mortality of individuals ≥5 cm in diameter at breast height (dbh; +37%). Surprisingly, we observed nonsignificant effects of the fuel addition treatment on fireline intensity, and no significant differences among the three treatments for (i) mortality of large trees (≥30 cm dbh), (ii) aboveground forest carbon stocks, and (iii) soil respiration. It was also surprising that postfire tree growth and wood increment were higher in the burned plots treated with fuels than in the unburned control. These results suggest that (i) fine fuel load accumulation increases the likelihood of larger understory fires and (ii) single, low-intensity fires weakly influence carbon cycling of this primary neotropical forest, although delayed postfire mortality of large trees may lower carbon stocks over the long term. Overall, our findings indicate that increased fine fuel loads alone are unlikely to create threshold conditions for high-intensity, catastrophic fires during nondrought years.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2016-03-05
    Description: Communal nesting lizards may be vulnerable to climate warming, particularly if air temperatures regulate nest temperatures. In southeastern Australia, velvet geckos Oedura lesueurii lay eggs communally inside rock crevices. We investigated whether increases in air temperatures could elevate nest temperatures, and if so, how this could influence hatching phenotypes, survival, and population dynamics. In natural nests, maximum daily air temperature influenced mean and maximum daily nest temperatures, implying that nest temperatures will increase under climate warming. To determine whether hotter nests influence hatchling phenotypes, we incubated eggs under two fluctuating temperature regimes to mimic current ‘cold’ nests (mean = 23.2 °C, range 10–33 °C) and future ‘hot’ nests (27.0 °C, 14–37 °C). ‘Hot’ incubation temperatures produced smaller hatchlings than did cold temperature incubation. We released individually marked hatchlings into the wild in 2014 and 2015, and monitored their survival over 10 months. In 2014 and 2015, hot-incubated hatchlings had higher annual mortality (99%, 97%) than cold-incubated (11%, 58%) or wild-born hatchlings (78%, 22%). To determine future trajectories of velvet gecko populations under climate warming, we ran population viability analyses in Vortex and varied annual rates of hatchling mortality within the range 78– 96%. Hatchling mortality strongly influenced the probability of extinction and the mean time to extinction. When hatchling mortality was 〉86%, populations had a higher probability of extinction (PE: range 0.52– 1.0) with mean times to extinction of 18–44 years. Whether future changes in hatchling survival translate into reduced population viability will depend on the ability of females to modify their nest-site choices. Over the period 1992–2015, females used the same communal nests annually, suggesting that there may be little plasticity in maternal nest-site selection. The impacts of climate change may therefore be especially severe on communal nesting species, particularly if such species occupy thermally challenging environments.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2016-03-07
    Description: The response of terrestrial ecosystems to rising atmospheric CO 2 concentration (C a ), particularly under nutrient limited conditions, is a major uncertainty in Earth System models. The Eucalyptus Free-Air CO 2 Enrichment (EucFACE) experiment, recently established in a nutrient-and water-limited woodland, presents a unique opportunity to address this uncertainty, but can best do so if key model uncertainties have been identified in advance. We applied seven vegetation models, which have previously been comprehensively assessed against earlier forest FACE experiments, to simulate a priori possible outcomes from EucFACE. Our goals were to provide quantitative projections against which to evaluate data as they are collected, and to identify key measurements that should be made in the experiment to allow discrimination among alternative model assumptions in a post-experiment model intercomparison. Simulated responses of annual net primary productivity (NPP) to elevated C a ranged from 0.5 to 25% across models. The simulated reduction of NPP during a low rainfall year also varied widely, from 24% to 70%. Key processes where assumptions caused disagreement among models included nutrient limitations to growth; feedbacks to nutrient uptake; autotrophic respiration; and the impact of low soil moisture availability on plant processes. Knowledge of the causes of variation among models is now guiding data collection in the experiment, with the expectation that the experimental data can optimally inform future model improvements. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2016-03-07
    Description: Well defined productivity-precipitation relationships of ecosystems are needed as benchmarks for the validation of land-models used for future projections. The productivity-precipitation relationship may be studied in two ways: the spatial approach relates differences in productivity to those in precipitation among sites along a precipitation gradient (the spatial fit, with a steeper slope); the temporal approach relates inter-annual productivity changes to variation in precipitation within sites (the temporal fits, with flatter slopes). Precipitation-reduction experiments in natural ecosystems represent a complement to the fits, because they can reduce precipitation below the natural range and are thus well suited to study potential effects of climate drying. Here, we analyze the effects of dry treatments in eleven multi-year precipitation-manipulation experiments, focusing on changes in the temporal fit. We expected that structural changes in the dry treatments would occur in some experiments, thereby reducing the intercept of the temporal fit and displacing the productivity-precipitation relationship downward the spatial fit. The majority of experiments (72%) showed that dry treatments did not alter the temporal fit. This implies that current temporal fits are to be preferred over the spatial fit to benchmark land-model projections of productivity under future climate within the precipitation ranges covered by the experiments. Moreover, in two experiments, the intercept of the temporal fit unexpectedly increased due to mechanisms that reduced either water- or nutrient losses. The expected decrease of the intercept was observed in only one experiment, and only when distinguishing between the late and the early phases of the experiment. This implies that we currently do not know at which precipitation-reduction level or at which experimental duration structural changes will start to alter ecosystem productivity. Our study highlights the need for experiments with multiple, including more extreme, dry treatments, to identify the precipitation boundaries within which the current temporal fits remain valid. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2016-03-07
    Description: Drought duration and intensity are expected to increase with global climate change. How changes in water availability and temperature affect the combined plant-soil-microorganism response remains uncertain. We excavated soil monoliths from a beech ( Fagus sylvatica L .) forest, thus keeping the understory plant-microbe communities intact, imposed an extreme climate event, consisting of drought and/or a single heat-pulse event, and followed microbial community dynamics over a time period of 28 days. During the treatment we labeled the canopy with 13 CO 2 with the goal of (1) determining the strength of plant-microbe carbon linkages under control, drought, heat, and heat-drought treatments, and (2) characterizing microbial groups that are tightly linked to the plant-soil carbon continuum based on 13 C labeled PLFAs. Additionally, we used 16S rRNA sequencing of bacteria from the Ah horizon to determine the short-term changes in the active microbial community. The treatments did not sever within-plant transport over the experiment, and carbon sinks belowground were still active. Based on the relative distribution of labeled carbon to roots and microbial PLFAs, we determined that soil microbes appear to have a stronger carbon sink strength during environmental stress. High-throughput sequencing of the 16S rRNA revealed multiple trajectories in microbial community shifts within the different treatments. Heat in combination with drought had a clear negative effect on microbial diversity and resulted in a distinct shift in the microbial community structure that also corresponded to the lowest level of label found in the PLFAs. Hence, the strongest changes in microbial abundances occurred in the heat-drought treatment where plants were most severely affected. Our study suggests that many of the shifts in the microbial communities that we might expect from extreme environmental stress will result from the plant-soil-microbial dynamics rather than from direct effects of drought and heat on soil microbes alone. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2016-03-08
    Description: Efficient management of biodiversity requires a forward-looking approach based on scenarios that explore biodiversity changes under future environmental conditions. A number of ecological models have been proposed over the last decades to develop these biodiversity scenarios. Novel modelling approaches with strong theoretical foundation now offer the possibility to integrate key ecological and evolutionary processes that shape species distribution and community structure. Although biodiversity is affected by multiple threats, most studies addressing the effects of future environmental changes on biodiversity focus on a single threat only. We examined the studies published during the last 25 years that developed scenarios to predict future biodiversity changes based on climate, land use and land cover change projections. We found that biodiversity scenarios mostly focus on the future impacts of climate change and largely neglect changes in land use and land cover. The emphasis on climate change impacts has increased over time and has now reached a maximum. Yet, the direct destruction and degradation of habitats through land use and land cover changes are among the most significant and immediate threats to biodiversity. We argue that the current state of integration between ecological and land system sciences is leading to biased estimation of actual risks and therefore constrains the implementation of forward-looking policy responses to biodiversity decline. We suggest research directions at the crossroads between ecological and environmental sciences to face the challenge of developing interoperable and plausible projections of future environmental changes and to anticipate the full range of their potential impacts on biodiversity. An intergovernmental platform is needed to stimulate such collaborative research efforts and to emphasize the societal and political relevance of taking up this challenge. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2016-03-08
    Description: Climate data created from historic climate observations are integral to most assessments of potential climate change impacts, and frequently comprise the baseline period used to infer species-climate relationships. They are often also central to downscaling coarse resolution climate simulations from General Circulation Models (GCMs) in order to project future climate scenarios at ecologically relevant spatial scales. Uncertainty in these baseline data can be large, particularly where weather observations are sparse and climate dynamics are complex (e.g. over mountainous or coastal regions). Yet, importantly, this uncertainty is almost universally overlooked when assessing potential responses of species to climate change. Here we assessed the importance of historic baseline climate uncertainty for projections of species’ responses to future climate change. We built species distribution models (SDMs) for 895 African bird species of conservation concern, using six different climate baselines. We projected these models to two future periods (2040-2069, 2070-2099), using downscaled climate projections, and calculated species turnover and changes in species-specific climate suitability. We found that the choice of baseline climate data constituted an important source of uncertainty in projections of both species turnover and species-specific climate suitability, often comparable with, or more important than, uncertainty arising from the choice of GCM. Importantly, the relative contribution of these factors to projection uncertainty varied spatially. Moreover, when projecting SDMs to sites of biodiversity importance (Important Bird and Biodiversity Areas), these uncertainties altered site-level impacts, which could affect conservation prioritisation. Our results highlight that projections of species’ responses to climate change are sensitive to uncertainty in the baseline climatology. We recommend that this should be considered routinely in such analyses. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2016-03-23
    Description: Weather fluctuations have been demonstrated to affect demographic traits in many species. In long-lived organisms, their impact on adult survival might be buffered by the evolution of traits that reduce variation in inter-annual adult survival. For example, skipping breeding is an effective behavioral mechanism that may limit yearly variation in adult survival when harsh weather conditions occur; however, this in turn would likely lead to strong variation in recruitment. Yet only a few studies to date have examined the impact of weather variation on survival, recruitment and breeding probability simultaneously in different populations of the same species. To fill this gap, we studied the impact of spring temperatures and spring rainfall on survival, on reproductive skipping behavior and on recruitment in five populations of a long-lived amphibian, the yellow-bellied toad ( Bombina variegata ). Based on capture–recapture data, our findings demonstrate that survival depends on interactions between age, population and weather variation. Varying weather conditions in the spring result in strong variation in the survival of immature toads, whereas they have little effect on adult toads. Breeding probability depends on both the individual's previous reproductive status and on the weather conditions during the current breeding season, leading to high inter-annual variation in recruitment. Crucially, we found that the impact of weather variation on demographic traits is largely context dependent and may thus differ sharply between populations. Our results suggest that studies predicting the impact of climate change on population dynamics should be taken with caution when the relationship between climate and demographic traits is established using only one population or few populations. We therefore highly recommend further research that includes surveys replicated in a substantial number of populations in order to account for context-dependent variation in demographic processes. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2016-03-23
    Description: Although it is generally recognized that global biodiversity is declining, few studies have examined long-term changes in multiple biodiversity dimensions simultaneously. In this study we quantified and compared temporal changes in the abundance, taxonomic diversity, functional diversity and phylogenetic diversity of bird assemblages, using roadside monitoring data of the North American Breeding Bird Survey from 1971 to 2010. We calculated 12 abundance and diversity metrics based on five year average abundances of 519 species for each of 768 monitoring routes. We did this for all bird species together as well as for four sub-groups based on breeding habitat affinity (grassland, woodland, wetland and shrubland breeders). The majority of the biodiversity metrics increased or remained constant over the study period, whereas the overall abundance of birds showed a pronounced decrease, primarily driven by declines of the most abundant species. These results highlight how stable or even increasing metrics of taxonomic, functional or phylogenetic diversity may occur in parallel with substantial losses of individuals. We further found that patterns of change differed among the species sub-groups, with both abundance and diversity increasing for woodland birds and decreasing for grassland breeders. The contrasting changes between abundance and diversity and among the breeding habitat groups underscore the relevance of a multi-faceted approach to measuring biodiversity change. Our findings further stress the importance of monitoring the overall abundance of individuals in addition to metrics of taxonomic, functional or phylogenetic diversity, thus confirming the importance of population abundance as an essential biodiversity variable. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2016-02-09
    Description: A pressing challenge in ecology is to understand the effects of changing global temperatures on food web structure and dynamics. The stability of these complex ecological networks largely depends on how predator-prey interactions may respond to temperature changes. Because predators and prey rely on their velocities to catch food or avoid being eaten, understanding how temperatures may affect animal movement is central to this quest. Despite our efforts, we still lack a mechanistic understanding of how the effect of temperature on metabolic processes scales up to animal movement and beyond. Here, we merge a biomechanical approach, the Metabolic Theory of Ecology and empirical data to show that animal movement displays multiple regimes of temperature dependence. We also show that crossing these regimes has important consequences for population dynamics and stability, which depend on the parameters controlling predator-prey interactions. We argue that this dependence upon interaction parameters may help explain why experimental work on the temperature dependence of interaction strengths has so far yielded conflicting results. More importantly, these changes in the temperature dependence of animal movement can have consequences that go well beyond ecological interactions and affect, for example, animal communication, mating, sensory detection, and any behavioral modality dependent on the movement of limbs. Finally, by not taking into account the changes in temperature dependence reported here we might not be able to properly forecast the impact of global warming on ecological processes and propose appropriate mitigation action when needed. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2016-02-09
    Description: Ocean warming “hotspots” are regions characterised by above-average temperature increases over recent years, for which there are significant consequences for both living marine resources and the societies that depend on them. As such, they represent early warning systems for understanding the impacts of marine climate change, and test-beds for developing adaptation options for coping with those impacts. Here, we examine five hotspots off the coasts of eastern Australia, South Africa, Madagascar, India and Brazil. These particular hotspots have underpinned a large international partnership that is working towards improving community adaptation by characterizing, assessing and projecting the likely future of coastal-marine food resources through the provision and sharing of knowledge. To inform this effort, we employ a high resolution global ocean model forced by Representative Concentration Pathway 8.5 and simulated to year 2099. In addition to the sea surface temperature, we analyse projected stratification, nutrient supply, primary production, anthropogenic CO 2 -driven ocean acidification, deoxygenation and ocean circulation. Our simulation finds that that the temperature-defined hotspots studied here will continue to experience warming but, with the exception of eastern Australia, may not remain the fastest warming ocean areas over the next century as the strongest warming is projected to occur in the subpolar and polar areas of the Northern Hemisphere. Additionally, we find that recent rapid change in SST is not necessarily an indicator that these areas are also hotspots of the other climatic stressors examined. However, a consistent facet of the hotspots studied here is that they are all strongly influenced by ocean circulation, which has already shown changes in the recent past and is projected to undergo further strong change into the future. In addition to the fast warming, change in local ocean circulation represents a distinct feature of present and future climate change impacting marine ecosystems in these areas. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2016-02-09
    Description: The importance of managing land to optimise carbon sequestration for climate change mitigation is widely recognised, with grasslands being identified as having the potential to sequester additional carbon. However, most soil carbon inventories only consider surface soils, and most large scale surveys group ecosystems into broad habitats without considering management intensity. Consequently, little is known about the quantity of deep soil carbon and its sensitivity to management. From a nationwide survey of grassland soils to 1 m depth, we show that carbon in grasslands soils is vulnerable to management and that these management effects can be detected to considerable depth down the soil profile, albeit at decreasing significance with depth. Carbon concentrations in soil decreased as management intensity increased, but greatest soil carbon stocks (accounting for bulk density differences), were at intermediate levels of management. Our study also highlights the considerable amounts of carbon in sub-surface soil below 30cm, which is missed by standard carbon inventories. We estimate grassland soil carbon in Great Britain to be 2097 Tg C to a depth of 1 m, with ~60% of this carbon being below 30cm. Total stocks of soil carbon (t ha −1 ) to 1 m depth were 10.7% greater at intermediate relative to intensive management, which equates to 10.1 t ha −1 in surface soils (0-30 cm), and 13.7 t ha −1 in soils from 30-100 cm depth. Our findings highlight the existence of substantial carbon stocks at depth in grassland soils that are sensitive to management. This is of high relevance globally, given the extent of land cover and large stocks of carbon held in temperate managed grasslands. Our findings have implications for the future management of grasslands for carbon storage and climate mitigation, and for global carbon models which do not currently account for changes in soil carbon to depth with management. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2016-02-09
    Description: Carbon release from thawing permafrost soils could significantly exacerbate global warming as the active-layer deepens, exposing more carbon to decay. Plant community and soil properties provide a major control on this by influencing the maximum depth of thaw each summer (active-layer thickness; ALT), but a quantitative understanding of the relative importance of plant and soil characteristics, and their interactions in determine ALTs, is currently lacking. To address this, we undertook an extensive survey of multiple vegetation and edaphic characteristics and ALTs across multiple plots in four field sites within boreal forest in the discontinuous permafrost zone (NWT, Canada). Our sites included mature black spruce, burned black spruce and paper birch, allowing us to determine vegetation and edaphic drivers that emerge as the most important and broadly applicable across these key vegetation and disturbance gradients, as well as providing insight into site-specific differences. Across sites, the most important vegetation characteristics limiting thaw (shallower ALTs) were tree leaf area index (LAI), moss layer thickness, and understory LAI in that order. Thicker soil organic layers also reduced ALTs, though were less influential than moss thickness. Surface moisture (0-6 cm) promoted increased ALTs, whereas deeper soil moisture (11-16 cm) acted to modify the impact of the vegetation, in particular increasing the importance of understory or tree canopy shading in reducing thaw. These direct and indirect effects of moisture indicate that future changes in precipitation and evapotranspiration may have large influences on ALTs. Our work also suggests that forest fires cause greater ALTs by simultaneously decreasing multiple ecosystem characteristics which otherwise protect permafrost. Given that vegetation and edaphic characteristics have such clear and large influences on ALTs, our data provide a key benchmark against which to evaluate process models used to predict future impacts of climate warming on permafrost degradation and subsequent feedback to climate. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2016-01-01
    Description: Perennially frozen soil in high latitude ecosystems (permafrost) currently stores 1330-1580 Pg of carbon (C). As these ecosystems warm, the thaw and decomposition of permafrost is expected to release large amounts of C to the atmosphere. Fortunately, losses from the permafrost C pool will be partially offset by increased plant productivity. The degree to which plants are able to sequester C, however, will be determined by changing nitrogen (N) availability in these thawing soil profiles. N availability currently limits plant productivity in tundra ecosystems but plant access to N is expected improve as decomposition increases in speed and extends to deeper soil horizons. In order to evaluate the relationship between permafrost thaw and N availability, we monitored N cycling during five years of experimentally induced permafrost thaw at the Carbon in Permafrost Experimental Heating Research project (CiPEHR). Inorganic N availability increased significantly in response to deeper thaw and greater soil moisture induced by Soil warming. This treatment also prompted a 23% increase in aboveground biomass and a 49% increase in foliar N pools. The sedge Eriophorum vaginatum responded most strongly to warming: this species explained 91% of the change in aboveground biomass during the five year period. Air warming had little impact when applied alone, but when applied in combination with Soil warming, growing season soil inorganic N availability was significantly reduced. These results demonstrate that there is a strong positive relationship between the depth of permafrost thaw and N availability in tundra ecosystems but that this relationship can be diminished by interactions between increased thaw, warmer air temperatures and higher levels of soil moisture. Within five years of permafrost thaw, plants actively incorporate newly available N into biomass but C storage in live vascular plant biomass is unlikely to be greater than losses from deep soil C pools. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2016-01-01
    Description: Sea level rise will change inundation regimes in salt marshes, altering redox dynamics that control nitrification—a potential source of the potent greenhouse gas, nitrous oxide (N 2 O)—and denitrification, a major nitrogen (N) loss pathway in coastal ecosystems and both a source and sink of N 2 O. Measurements of net N 2 O fluxes alone yield little insight into the different effects of redox conditions on N 2 O production and consumption. We used in situ measurements of gross N 2 O fluxes across a salt marsh elevation gradient to determine how soil N 2 O emissions in coastal ecosystems may respond to future sea level rise. Soil redox declined as marsh elevation decreased, with lower soil nitrate and higher ferrous iron in the low marsh compared to the mid and high marshes (p 〈 0.001 for both). In addition, soil oxygen concentrations were lower in the low and mid marshes relative to the high marsh (p 〈 0.001). Net N 2 O fluxes differed significantly among marsh zones (p = 0.009), averaging 9.8 ± 5.4 μ g N m −2 h −1 , -2.2 ± 0.9 μ g N m −2 h −1 , and 0.67 ± 0.57 μ g N m −2 h −1 in the low, mid, and high marshes, respectively. Both net N 2 O release and uptake were observed in the low and high marshes, but the mid marsh was consistently a net N 2 O sink. Gross N 2 O production was highest in the low marsh and lowest in the mid marsh (p = 0.02), whereas gross N 2 O consumption did not differ among marsh zones. Thus, variability in gross N 2 O production rates drove the differences in net N 2 O flux among marsh zones. Our results suggest that future studies should focus on elucidating controls on the processes producing, rather than consuming, N 2 O in salt marshes to improve our predictions of changes in net N 2 O fluxes caused by future sea level rise. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2016-01-05
    Description: Higher temperatures caused by future climate change will bring more frequent heat stress events and pose an increasing risk to global wheat production. Crop models have been widely used to simulate future crop productivity but are rarely tested with observed heat stress experimental datasets. Four wheat models (DSSAT-CERES-Wheat, DSSAT-Nwheat, APSIM-Wheat, and WheatGrow) were evaluated with four years of environment-controlled phytotron experimental datasets with two wheat cultivars under heat stress at anthesis and grain filling stage. Heat stress at anthesis reduced observed grain numbers per unit area and individual grain size, while heat stress during grain filling mainly decreased the size of the individual grains. The observed impact of heat stress on grain filling duration, total aboveground biomass, grain yield and grain protein concentration varied depending on cultivar and accumulated heat stress. For every unit increase of heat degree days (HDD, degree days over 30°C), grain filling duration was reduced by 0.30% to 0.60%, total aboveground biomass was reduced by 0.37% to 0.43%, and grain yield was reduced by 1.0% to 1.6%, but grain protein concentration was increased by 0.50% for cv Yangmai16 and 0.80% for cv Xumai30. The tested crop simulation models could reproduce some of the observed reductions in grain filling duration, final total aboveground biomass, and grain yield, as well as the observed increase in grain protein concentration due to heat stress. Most of the crop models tended to reproduce heat stress impacts better during grain filling than at anthesis. Some of the tested models require improvements in the response to heat stress during grain filling, but all models need improvements in simulating heat stress effects on grain set during anthesis. The observed significant genetic variability in the response of wheat to heat stress needs to be considered through cultivar parameters in future simulation studies. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2016-01-05
    Description: The rush to assess species’ responses to anthropogenic climate change (CC) has underestimated the importance of interannual population variability (PV). Researchers assume sampling rigor alone will lead to an accurate detection of response regardless of the underlying population fluctuations of the species under consideration. Using population simulations across a realistic, empirically-based gradient in PV, we show that moderate to high PV can lead to opposite and biased conclusions about CC responses. Between pre- and post-CC sampling bouts of modeled populations as in resurvey studies, there is (1) a 50% probability of erroneously detecting the opposite trend in population abundance change and nearly zero probability of detecting no change. (2) Across multiple years of sampling, it is nearly impossible to accurately detect any directional shift in population sizes with even moderate PV. (3) There is up to 50% probability of detecting a population extirpation when the species is present, but in very low natural abundances. (4) Under scenarios of moderate to high PV across a species’ range or at the range edges, there is a bias towards erroneous detection of range shifts or contractions. Essentially, the frequency and magnitude of population peaks and troughs greatly impact the accuracy of our CC response measurements. Species with moderate to high PV (many small vertebrates, invertebrates, and annual plants) may be inaccurate ‘canaries in the coal mine’ for CC without pertinent demographic analyses and additional repeat sampling. Variation in PV may explain some idiosyncrasies in CC responses detected so far, and urgently needs more careful consideration in design and analysis of CC responses This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2016-01-05
    Description: Northern peatlands have accumulated one third of the Earth's soil carbon stock since the last Ice Age. Rapid warming across northern biomes threatens to accelerate rates of peatland ecosystem respiration. Despite compensatory increases in net primary production, greater ecosystem respiration could signal the release of ancient, century- to millennia-old carbon from the peatland organic matter stock. Warming has already been shown to promote ancient peatland carbon release, but, despite the key role of vegetation in carbon dynamics, little is known about how plants influence the source of peatland ecosystem respiration. Here, we address this issue using in situ 14 C measurements of ecosystem respiration on an established peatland warming and vegetation manipulation experiment. Results show that warming of approximately 1 °C promotes respiration of ancient peatland carbon (up to 2100 years old) when dwarf-shrubs or graminoids are present, an effect not observed when only bryophytes are present. We demonstrate that warming likely promotes ancient peatland carbon release via its control over organic inputs from vascular plants. Our findings suggest that dwarf-shrubs and graminoids prime microbial decomposition of previously ‘locked-up’ organic matter from potentially deep in the peat profile, facilitating liberation of ancient carbon as CO 2 . Furthermore, such plant-induced peat respiration could contribute up to 40% of ecosystem CO 2 emissions. If consistent across other sub-arctic and arctic ecosystems, this represents a considerable fraction of ecosystem respiration that is currently not acknowledged by global carbon cycle models. Ultimately, greater contribution of ancient carbon to ecosystem respiration may signal the loss of a previously stable peatland carbon pool, creating potential feedbacks to future climate change. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2016-01-14
    Description: Loblolly pine trees (Pinus taeda L.) occupy more than 20% of the forested area in the Southern United States, represent more than 50% of the standing pine volume in this region, and remove from the atmosphere about 500 g C m −2 per year through net ecosystem exchange. Hence, their significance as a major regional carbon sink can hardly be disputed. What is disputed is whether the proliferation of young plantations replacing old forest in the Southern United States will alter key aspects of the hydrological cycle, including convective rainfall, which is the focus of the present work. Ecosystem fluxes of sensible ( Hs ) and latent heat ( LE ) and large-scale, slowlyevolving free atmospheric temperature and water vapor content are known to be first order controls on the formation of convective clouds in the atmospheric boundary layer. These controlling processes are here described by a zero-order analytical model aimed at assessing how plantations of different ages may regulate the persistence and transition of the atmospheric system between cloudy and cloudless conditions. Using the analytical model together with field observations, the roles of ecosystem Hs and LE on convective cloud formation are explored relative to the entrainment of heat and moisture from the free atmosphere. Our results demonstrate that cloudycloudless regimes at the land surface are regulated by a non-linear relation between the Bowen ratio Bo = Hs/LE and root-zone soil water content, suggesting that young/mature pines ecosystems have the ability to recirculate available water (through rainfall predisposition mechanisms). Such non-linearity was not detected in a much older pine stand, suggesting a higher tolerance to drought but a limited control on boundary layer dynamics. These results enable the generation of hypotheses about the impacts on convective cloud formation driven by afforestation/deforestation and groundwater depletion projected to increase following increased human population in the Southeastern United States. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2016-03-29
    Description: Global change will likely affect savanna and forest structure and distributions, with implications for diversity within both biomes. Few studies have examined the impacts of both expected precipitation and land-use changes on vegetation structure in the future, despite their likely severity. Here we modeled tree cover in Sub-Saharan Africa, as a proxy for vegetation structure and land cover change, using climatic, edaphic and anthropic data ( R 2 = 0.97). Projected tree cover for the year 2070, simulated using scenarios that include climate and land-use projections, generally decreased, both in forest and savanna, although the directionality of changes varied locally. The main driver of tree cover changes was land-use change; the effects of precipitation change were minor by comparison. Interestingly, carbon emissions mitigation via increasing biofuels production resulted in decreases in tree cover, more severe than scenarios with more intense precipitation change, especially within savannas. Evaluation of tree cover change against protected area extent at the WWF Ecoregion scale suggested areas of high biodiversity and ecosystem services concern. Those forests most vulnerable to large decreases in tree cover were also highly protected, potentially buffering the effects of global change. Meanwhile, savannas, especially where they immediately bordered forests ( e.g . West and Central Africa), were characterized by a dearth of protected areas, making them highly vulnerable. Savanna must become an explicit policy priority in the face of climate and land use change if conservation and livelihoods are to remain viable into the next century. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2016-04-01
    Description: Anthropogenic activities can induce major trophic shifts in aquatic systems, yet we have an incomplete understanding of the implication of such shifts on ecosystem function, and on primary production in particular. In recent decades, phytoplankton biomass and production in the Laurentian Great Lakes have declined in response to reduced nutrient concentrations and invasive mussels. However, the increases in water clarity associated with declines in phytoplankton may have positive effects on benthic primary production at the ecosystem scale. Have these lakes experienced oligotrophication (a reduction of algal production), or simply a shift in autotrophic structure with no net decline in primary production? Benthic contributions to ecosystem primary production are rarely measured in large aquatic systems, but our calculations based on productivity rates from the Great Lakes indicate that a significant proportion (up to one half, in Lake Huron) of their whole-lake production may be benthic. The large declines (5 to 45%) in phytoplankton production in the Great Lakes from the 1970s to 2000s may be substantially compensated by benthic primary production, which increased by up to 190%. Thus, the autotrophic productive capacity of large aquatic ecosystems may be relatively resilient to shifts in trophic status, due to a redirection of production to the nearshore benthic zone, and large lakes may exhibit shifts in autotrophic structure analogous to the regime shifts seen in shallow lakes. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2016-04-01
    Description: Drainage has turned peatlands from a carbon sink into one of the world's largest greenhouse gas (GHG) sources from cultivated soils. We analyzed a unique data set (12 peatlands, 48 sites and 122 annual budgets) of mainly unpublished GHG emissions from grasslands on bog and fen peat as well as other soils rich in soil organic carbon (SOC) in Germany. Emissions and environmental variables were measured with identical methods. Site-averaged GHG budgets were surprisingly variable (29.2 ± 17.4 t CO 2 -eq. ha −1 yr −1 ) and partially higher than all published data and the IPCC default emission factors for GHG inventories. Generally, CO 2 (27.7 ± 17.3 t CO 2 ha −1 yr −1 ) dominated the GHG budget. Nitrous oxide (2.3 ± 2.4 kg N 2 O-N ha −1 yr −1 ) and methane emissions (30.8 ± 69.8 kg CH 4 -C ha −1 yr −1 ) were lower than expected except for CH 4 emissions from nutrient-poor acidic sites. At single peatlands, CO 2 emissions clearly increased with deeper mean water table depth (WTD), but there was no general dependency of CO 2 on WTD for the complete data set. Thus, regionalisation of CO 2 emissions by WTD only will remain uncertain. WTD dynamics explained some of the differences between peatlands as sites which became very dry during summer showed lower emissions. We introduced the aerated nitrogen stock (N air ) as a variable combining soil nitrogen stocks with WTD. CO 2 increased with N air across peatlands. Soils with comparatively low SOC concentrations showed as high CO 2 emissions as true peat soils because N air was similar. N 2 O emissions were controlled by the WTD dynamics and the nitrogen content of the topsoil. CH 4 emissions can be well described by WTD and ponding duration during summer. Our results can help both to improve GHG emission reporting and to prioritize and plan emission reduction measures for peat and similar soils at different scales. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2016-07-03
    Description: Heat tolerance is a trait of paramount ecological importance and may determine a species’ ability to cope with ongoing climate change. Though critical thermal limits have consequently received substantial attention in recent years, their potential variation throughout ontogeny remained largely neglected. We investigate whether such neglect may bias conclusions regarding a species’ sensitivity to climate change. Using a tropical butterfly we found that developmental stages clearly differed in heat tolerance. It was highest in pupae followed by larvae, adults and finally eggs and hatchlings. Strikingly, most of the variation found in thermal tolerance was explained by differences in body mass, which may thus impose a severe constraint on adaptive variation in stress tolerance. Furthermore, temperature acclimation was beneficial by increasing heat knock-down time and therefore immediate survival under heat stress, but it affected reproduction negatively. Extreme temperatures strongly reduced survival and subsequent reproductive success even in our highly plastic model organism, exemplifying the potentially dramatic impact of extreme weather events on biodiversity. We argue that predictions regarding a species’ fate under changing environmental conditions should consider variation in thermal tolerance throughout ontogeny, variation in body mass and acclimation responses as important predictors of stress tolerance. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2016-07-03
    Description: Tropical savannas are a globally extensive biome prone to rapid vegetation change in response to changing environmental conditions. Via a meta-analysis, we quantified savanna woody vegetation change spanning the last century. We found a global trend of woody encroachment that was established prior the 1980s. However, there is critical regional variation in the magnitude of encroachment. Woody cover is increasing most rapidly in the remaining uncleared savannas of South America, most likely due to fire suppression and land fragmentation. In contrast, Australia has experienced low rates of encroachment. When accounting for land-use, African savannas have a mean rate annual woody cover increase two and a half times that of Australian savannas. In Africa, encroachment occurs across multiple land uses and is accelerating over time. In Africa and Australia, rising atmospheric CO 2 , changing land management and rainfall are likely causes. We argue that the functional traits of each woody flora, specifically the N-fixing ability and architecture of woody plants, are critical to predicting encroachment over the next century and that African savannas are at high risk of widespread vegetation change. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2016-07-03
    Description: There is a pressing need to understand how changing climate interacts with land-use change to affect predator-prey interactions in fragmented landscapes. This is particularly true in boreal ecosystems facing fast climate change and intensification in forestry practices. Here, we investigated the relative influence of autumn climate and habitat quality on the food-storing behaviour of a generalist predator, the pygmy owl , using a unique dataset of 15850 prey items recorded in western Finland over 12 years. Our results highlighted strong effects of autumn climate (number of days with rainfall and with temperature〈0°C) on food-store composition. Increasing frequency of days with precipitation in autumn triggered a decrease in i) total prey biomass stored, ii) the number of bank voles (main prey) stored, iii) the scaled mass index of pygmy owls. Increasing proportions of old spruce forests strengthened the functional response of owls to variations in vole abundance and were more prone to switch from main prey to alternative prey (passerine birds) depending on local climate conditions. High-quality habitat may allow pygmy owls to buffer negative effects of inclement weather and cyclic variation in vole abundance. Additionally, our results evidenced sex-specific trends in body condition, as the scaled mass index of smaller males increased while the scaled mass index of larger females decreased over the study period, probably due to sex-specific foraging strategies and energy requirements. Long-term temporal stability in local vole abundance refutes the hypothesis of climate-driven change in vole abundance and suggests that rainier autumns could reduce the vulnerability of small mammals to predation by pygmy owls. As small rodents are key prey species for many predators in northern ecosystems, our findings raise concern about the impact of global change on boreal food webs through changes in main prey vulnerability. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2016-07-06
    Description: Ocean warming may lead to smaller body sizes of marine ectotherms, because metabolic rates increase exponentially with temperature while the capacity of the cardiorespiratory system to match enhanced oxygen demands is limited. Here, we explore the impact of rising sea water temperatures on Atlantic cod ( Gadus morhua ), an economically important fish species. We focus on changes in the temperature-dependent growth potential by a transfer function model combining growth observations with climate model ensemble temperatures. Growth potential is expressed in terms of asymptotic body weight and depends on water temperature. We consider changes between the periods 1985–2004 and 2081–2100, assuming that future sea water temperatures will evolve according to climate projections for IPCC AR5 scenario RCP8.5. Our model projects a response of Atlantic cod to future warming, differentiated according to ocean regions, leading to increases of asymptotic weight in the Barents Sea, while weights are projected to decline at the southern margin of the biogeographic range. Southern spawning areas will disappear due to thermal limitation of spawning stages. These projections match the currently observed biogeographic shifts and the temperature- and oxygen-dependent decline in routine aerobic scope at southern distribution limits.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2016-08-21
    Description: We examined the hypothesis that ecological niche models (ENMs) more accurately predict species distributions when they incorporate information on population genetic structure, and concomitantly, local adaptation. Local adaptation is common in species that span a range of environmental gradients (e.g. soils and climate). Moreover, common garden studies have demonstrated a covariance between neutral markers and functional traits associated with a species’ ability to adapt to environmental change. We therefore predicted that genetically distinct populations would respond differently to climate change, resulting in predicted distributions with little overlap. To test whether genetic information improves our ability to predict a species’ niche space, we created genetically-informed ecological niche models (gENMs) using Populus fremontii (Salicaceae), a widespread tree species in which prior common garden experiments demonstrate strong evidence for local adaptation. Four major findings emerged: 1) gENMs predicted population occurrences with up to 12-fold greater accuracy than models without genetic information; 2) Tests of niche similarity revealed that three ecotypes, identified on the basis of neutral genetic markers and locally adapted populations, are associated with differences in climate; 3) Our forecasts indicate that ongoing climate change will likely shift these ecotypes further apart in geographic space, resulting in greater niche divergence; 4) Ecotypes that currently exhibit the largest geographic distribution and niche breadth appear to be buffered the most from climate change. Since diverse agents of selection shape genetic variability and structure within species, we argue that gENMs will lead to more accurate predictions of species distributions under climate change. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2016-08-24
    Description: As atmospheric CO 2 concentrations rise, associated ocean warming (OW) and ocean acidification (OA) are predicted to cause declines in reef-building corals globally, shifting reefs from coral-dominated systems to those dominated by less sensitive species. Sponges are important structural and functional components of coral reef ecosystems, but despite increasing field based evidence that sponges may be ‘winners’ in response to environmental degradation, our understanding of how they respond to the combined effects of OW and OA is limited. To determine the tolerance of adult sponges to climate change, four abundant Great Barrier Reef species were experimentally exposed to OW and OA levels predicted for 2100, under two CO 2 Representative Concentration Pathways (RCPs). The impact of OW and OA on early life history stages was also assessed for one of these species to provide a more holistic view of species impacts. All species were generally unaffected by conditions predicted under RCP6.0, although environmental conditions projected under RCP8.5 caused significant adverse effects; with elevated temperature decreasing the survival of all species, increasing levels of tissue necrosis and bleaching, elevating respiration rates and decreasing photosynthetic rates. OA alone had little adverse effect, even under RCP8.5 concentrations. Importantly, the interactive effect of OW and OA varied between species with different nutritional modes, with elevated p CO 2 exacerbating temperature stress in heterotrophic species but mitigating temperature stress in phototrophic species. This antagonistic interaction was reflected by reduced mortality, necrosis and bleaching of phototrophic species in the highest OW/OA treatment. Survival and settlement success of C. foliascens larvae were unaffected by experimental treatments, and juvenile sponges exhibited greater tolerance to OW than their adult counterparts. With elevated p CO 2 providing phototrophic species with protection from elevated temperature, across different life-stages, climate change may ultimately drive a shift in the composition of sponge assemblages towards a dominance of phototrophic species. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2016-08-27
    Description: Forests store a large part of the terrestrial vegetation carbon (C) and have high C sequestration potential. Here, we developed a new forest C sequestration (FCS) model based on the secondary succession theory, to estimate vegetation C sequestration capacity in China's forest vegetation. The model used the field measurement data of 3,161 forest plots and three future climate scenarios. The results showed that logistic equations provided a good fit for vegetation biomass with forest age in natural and planted forests. The FCS model has been verified with forest biomass data, and model uncertainty is discussed. The increment of vegetation C storage in China's forest vegetation from 2010 to 2050 was estimated as 13.92 Pg C, while the average vegetation C sequestration rate was 0.34 Pg C yr −1 with a 95% confidence interval of 0.28–0.42 Pg C yr −1 , which differed significantly between forest types. The largest contributor to the increment was deciduous broadleaf forest (37.8%), while the smallest was deciduous needleleaf forest (2.7%). The vegetation C sequestration rate might reach its maximum around 2020, although vegetation C storage increases continually. It is estimated that vegetation C sequestration might offset 6–8% of China's future emissions. Furthermore, there was a significant negative relationship between vegetation C sequestration rate and C emission rate in different provinces of China, suggesting that developed provinces might need to compensate for undeveloped provinces through C trade. Our findings will provide valuable guidelines to policy makers for designing afforestation strategies and forest C trade in China. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2016-08-27
    Description: Anthropogenic climate change compromises reef growth as a result of increasing temperatures and ocean acidification. Scleractinian corals vary in their sensitivity to these variables, suggesting species composition will influence how reef communities respond to future climate change. Because data are lacking for many species, most studies that model future reef growth rely on uniform scleractinian calcification sensitivities to temperature and ocean acidification. In order to address this knowledge gap, calcification of twelve common and understudied Caribbean coral species was measured for two months under crossed temperatures (27°C, 30.3°C) and CO 2 partial pressures ( p CO 2 ) (400, 900, 1300 μ atm). Mixed effects models of calcification for each species were then used to project community-level scleractinian calcification using Florida Keys reef composition data and IPCC AR5 ensemble climate model data. Three of the four most abundant species, Orbicella faveolata, Montastraea cavernosa, and Porites astreoides , had negative calcification responses to both elevated temperature and p CO 2 . In the business-as-usual CO 2 emissions scenario, reefs with high abundances of these species had projected end-of-century declines in scleractinian calcification of 〉50% relative to present-day rates. Siderastrea siderea , the other most-common species, was insensitive to both temperature and p CO 2 within the levels tested here. Reefs dominated by this species had the most stable end-of-century growth. Under more optimistic scenarios of reduced CO 2 emissions, calcification rates throughout the Florida Keys declined 〈20% by 2100. Under the most extreme emissions scenario, projected declines were highly variable among reefs, ranging 10 to 100%. Without considering bleaching, reef growth will likely decline on most reefs, especially where resistant species like S. siderea are not already dominant. This study demonstrates how species composition influences reef community responses to climate change and how reduced CO 2 emissions can limit future declines in reef calcification. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2016-08-30
    Description: Soils are among the important sources of atmospheric nitric oxide (NO) and nitrous oxide (N 2 O), acting as a critical role in atmospheric chemistry. Updated data derived from 114 peer-reviewed publications with 520 field measurements were synthesized using meta-analysis procedure to examine the N fertilizer-induced soil NO and the combined with N 2 O (NO+N 2 O) emissions across global soils. Besides factors identified in earlier reviews, additional factors responsible for NO fluxes were fertilizer type, soil C/N ratio, crop residue incorporation, tillage, atmospheric carbon dioxide concentration, drought and biomass burning. When averaged across all measurements, soil NO-N fluxes were estimated to be 4.06 kg ha -1 yr -1 , with the greatest (9.75 kg ha -1 yr -1 ) in vegetable croplands and the lowest (0.11 kg ha -1 yr -1 ) in rice paddies. Soil NO emissions were more enhanced by synthetic N fertilizer (+38%), relative to organic (+20%) or mixed N (+18%) sources. Compared with synthetic N fertilizer alone, synthetic N fertilizer combined with nitrification inhibitors substantially reduced soil NO emissions by 81%. The global mean direct emission factors of N fertilizer for NO (EF NO ) and combined NO+N 2 O (EF c ) were estimated to be 1.16% and 2.58%, with 95% confidence intervals of 0.71–1.61% and 1.81–3.35%, respectively. Forests had the greatest EF NO (2.39%). Within the croplands, the EF NO (1.71%) and EF c (4.13%) were the greatest in vegetable cropping fields. Among different chemical N fertilizer varieties, ammonium nitrate had the greatest EF NO (2.93%) and EF c (5.97%). Some options such as organic instead of synthetic N fertilizer, decreasing N fertilizer input rate, nitrification inhibitor, and low irrigation frequency could be adopted to mitigate soil NO emissions. More field measurements over multi-years are highly needed to minimize the estimate uncertainties and mitigate soil NO emissions, particularly in forests and vegetable croplands. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2016-08-30
    Description: Multi-stressor global change, the combined influence of ocean warming, acidification, and deoxygenation, poses a serious threat to marine organisms. Experimental studies imply that organisms with higher levels of activity should be more resilient, but testing this prediction and understanding organism vulnerability at a global scale, over evolutionary timescales, and in natural ecosystems remain challenging. The fossil record, which contains multiple extinctions triggered by multi-stressor global change, is ideally suited for testing hypotheses at broad geographic, taxonomic, and temporal scales. Here, I assess the importance of activity level for survival of well-skeletonized benthic marine invertebrates over a 100 million-year long interval (Permian to Jurassic periods) containing four global change extinctions, including the end-Permian and end-Triassic mass extinctions. More active organisms, based on a semi-quantitative score incorporating feeding and motility, were significantly more likely to survive during three of the four extinction events (Guadalupian, end-Permian, and end-Triassic). In contrast, activity was not an important control on survival during non-extinction intervals. Both the end-Permian and end-Triassic mass extinctions also triggered abrupt shifts to increased dominance by more active organisms. Although mean activity gradually returned toward pre-extinction values, the net result was a permanent ratcheting of ecosystem-wide activity to higher levels. Selectivity patterns during ancient global change extinctions confirm the hypothesis that higher activity, a proxy for respiratory physiology, is a fundamental control on survival, although the roles of specific physiological traits (such as extracellular pCO 2 or aerobic scope) cannot be distinguished. Modern marine ecosystems are dominated by more active organisms, in part because of selectivity ratcheting during these ancient extinctions, so on average may be less vulnerable to global change stressors than ancient counterparts. However, ancient extinctions demonstrate that even active organisms can suffer major extinction when the intensity of environmental disruption is intense. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2016-06-26
    Description: In order to thrive in a time of rapid sea-level rise, tidal marshes will need to migrate upslope into adjacent uplands. Yet little is known about the mechanics of this process, especially in urbanized estuaries, where the adjacent upland is likely to be a mowed lawn rather than a wooded natural area. We studied marsh migration in a Long Island Sound salt marsh using detailed hydrologic, edaphic, and biotic sampling along marsh-to-upland transects in both wooded and lawn environments. We found that the overall pace of marsh development was largely unaffected by whether the upland being invaded was lawn or wooded, but the marsh-edge plant communities that developed in these two environments were quite different, and some indicators (soil salinity, foraminifera) appeared to migrate more easily into lawns. In addition, we found that different aspects of marsh structure and function migrated at different rates: wetland vegetation appeared to be a leading indicator of marsh migration, while soil characteristics such as redox potential and surface salinity developed later in the process. We defined a “hydrologic migration zone,” consisting of elevations that experience tidal inundation with frequencies ranging from 20% to 0.5% of high tides. This hydrologically defined zone – which extended to an elevation higher than the highest astronomical tide (HAT) datum – captured the biotic and edaphic marsh-upland ecotone. Tidal inundation at the upper border of this migration zone is highly variable over time and may be rising more rapidly than mean sea level. Our results indicate that land management practices at the upland periphery of tidal marshes can facilitate or impede ecosystem migration in response to rising sea level. These findings are applicable to large areas of tidal marsh along the U.S. Atlantic coast and in other urbanized coastal settings. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2016-06-26
    Description: Herbivory and nutrient limitation can increase the resistance of temperature-limited systems to invasions under climate warming. We imported seeds of lowland species to tundra under factorial treatments of warming, fertilization, herbivore exclusion and biomass removal. We show that warming alone had little impact on lowland species, while exclusion of native herbivores and relaxation of nutrient limitation greatly benefitted them. In contrast, warming alone benefitted resident tundra species and increased species richness; however, these were cancelled by negative effects of herbivore exclusion and fertilization. Dominance of lowland species was associated with low cover of tundra species, and resulted in decreased species richness. Our results highlight the critical role of biotic and abiotic filters unrelated to temperature in protecting tundra under warmer climate. While scarcity of soil nutrients and native herbivores act as important agents of resistance to invasions by lowland species, they concurrently promote overall species coexistence. However, when these biotic and abiotic resistances are relaxed, invasion of lowland species can lead to decreased abundance of resident tundra species, and diminished diversity. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2016-06-26
    Description: Climate change will alter the distribution of rainfall, with potential consequences for the hydrological dynamics of aquatic habitats. Hydrological stability can be an important determinant of diversity in temporary aquatic habitats, affecting species persistence and the importance of predation on community dynamics. As such, prey are not only affected by drought-induced mortality but also the risk of predation (a non-consumptive effect, NCE) and actual consumption by predators (a consumptive effect, CE). Climate-induced changes in rainfall may directly, or via altered hydrological stability, affect predator-prey interactions and their cascading effects on the food web, but this has rarely been explored, especially in natural food webs. To address this question, we performed a field experiment using tank bromeliads and their aquatic food web, composed of predatory damselfly larvae, macroinvertebrate prey and bacteria. We manipulated the presence and consumption ability of damselfly larvae under three rainfall scenarios (ambient, few large rainfall events and several small rainfall events), recorded the hydrological dynamics within bromeliads, and examined the effects on macroinvertebrate colonization, nutrient cycling and bacterial biomass and turnover. Despite our large perturbations of rainfall, rainfall scenario had no effect on the hydrological dynamics of bromeliads. As a result, macroinvertebrate colonization and nutrient cycling depended on the hydrological stability of bromeliads, with no direct effect of rainfall or predation. In contrast, rainfall scenario determined the direction of the indirect effects of predators on bacteria, driven by both predator CEs and NCEs. These results suggest that rainfall and the hydrological stability of bromeliads had indirect effects on the food web through changes in the CEs and NCEs of predators. We suggest that future studies should consider the importance of the variability in hydrological dynamics among habitats as well as the biological mechanisms underlying the ecological responses to climate change. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2016-07-01
    Description: Unprecedented levels of nitrogen (N) have been deposited in ecosystems over the past century, which is expected to have cascading effects on microbially mediated soil respiration (SR). Extracellular enzymes play critical roles on the degradation of soil organic matter, and measurements of their activities are potentially useful indicators of SR. The links between soil extracellular enzymatic activities (EEAs) and SR under N addition, however, have not been established. We therefore conducted a meta-analysis from 62 publications to synthesize the responses of soil EEAs and SR to elevated N. Nitrogen addition significantly increased glycosidase activity (GA) by 13.0%, α -1,4-glucosidase (AG) by 19.6%, β -1,4-glucosidase (BG) by 11.1%, β -1,4-xylosidase (BX) by 21.9% and β -D-cellobiosidase (CBH) by 12.6%. Increases in GA were more evident for long duration, high rate, organic and mixed N addition (combination of organic and inorganic N addition), as well as for studies from farmland. The response ratios (RRs) of GA were positively correlated with the SR-RRs, even when evaluated individually for AG, BG, BX and CBH. This positive correlation between GA-RR and SR-RR was maintained for most types of vegetation and soil as well as for different methods of N addition. Our results provide the first evidence that GA is linked to SR under N addition over a range of ecosystems and highlight the need for further studies on the response of other soil EEAs to various global change factors and their implications for ecosystem functions. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2016-07-01
    Description: Millions of birds migrate to and from the Arctic each year, yet rapid climate change in the High North could strongly affect where species are able to breed, disrupting migratory connections globally. We modelled the climatically suitable breeding conditions of 24 Arctic specialist shorebirds and projected them to 2070 and to the mid-Holocene climatic optimum, the world's last major warming event ~6000 years ago. We show that climatically suitable breeding conditions could shift, contract and decline over the next 70 years, with 66-83% of species losing the majority of currently suitable area. This exceeds, in rate and magnitude, the impact of the mid-Holocene climatic optimum. Suitable climatic conditions are predicted to decline acutely in the most species rich region, Beringia (western Alaska and eastern Russia) and become concentrated in the Eurasian and Canadian Arctic islands. These predicted spatial shifts of breeding grounds could affect the species composition of the world's major flyways. Encouragingly, protected area coverage of current and future climatically suitable breeding conditions generally meets target levels, however there is a lack of protected areas within the Canadian Arctic where resource exploitation is a growing threat. Given that already there are rapid declines of some populations of Arctic migratory birds, our results emphasize the urgency of mitigating climate change and protecting Arctic biodiversity. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2016-07-01
    Description: Permafrost peatlands store one-third of the total carbon (C) in the atmosphere and are increasingly vulnerable to thaw as high latitude temperatures warm. Large uncertainties remain about C dynamics following permafrost thaw in boreal peatlands. We used a chronosequence approach to measure C stocks in forested permafrost plateaus (forest) and thawed permafrost bogs, ranging in thaw age from young (〈10 years) to old (〉100 years) in two Interior Alaska chronosequences. Permafrost originally aggraded simultaneously with peat accumulation (syngenetic permafrost) at both sites. We found that upon thaw, C loss of the forest peat C is equivalent to ~30% of the initial forest C stock and is directly proportional to the pre-thaw C stocks. Our model results indicate that permafrost thaw turned these peatlands into net C sources to the atmosphere for a decade following thaw, after which post-thaw bog peat accumulation returned sites to net C sinks. It can take multiple centuries to millennia for a site to recover its pre-thaw C stocks; the amount of time needed for them to regain their pre-thaw C stocks is governed by the amount of C that accumulated prior to thaw. Consequently, these findings show that older peatlands will take longer to recover pre-thaw C stocks, whereas younger peatlands will exceed pre-thaw stocks in a matter of centuries. We conclude that the loss of sporadic and discontinuous permafrost by 2100 could result in a loss of up to 24 Pg of deep C from permafrost peatlands. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2016-07-01
    Description: Extreme climatic events, such as heat waves, are predicted to increase in frequency and intensity during the next hundred years, which may accelerate shifts in hydrological regimes and submerged macrophyte composition in freshwater ecosystems. Since macrophytes are profound components of aquatic systems, predicting their response to extreme climatic events is crucial for implementation of climate change adaptation strategies. We therefore performed an experiment performed in 24 outdoor enclosures (400 L) separating the impact of a 4°C increase in mean temperature with the same increase, i.e. the same total amount of energy input, but resembling a climate scenario with extreme variability, oscillating between 0°C and 8°C above present. We show that at the moderate nutrient conditions provided in our study neither an increase in mean temperature, nor heat waves lead to a shift from a plant-dominated to an algal-dominated system. Instead we show that species-specific responses to climate change among submerged macrophytes may critically influence species composition and thereby ecosystem functioning. Our results also imply that more fluctuating temperatures affect the number of flowers produced per plant leading to less sexual reproduction. Our findings therefore suggest that predicted alterations in climate regimes may influence both plant interactions and reproductive strategies, which have the potential to inflict changes in biodiversity, community structure and ecosystem functioning. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2016-07-03
    Description: The cultivation of grapevines for winemaking, known as viticulture, is widely cited as a climate-sensitive agricultural system that has been used as an indicator of both historic and contemporary climate change. Numerous studies have questioned the viability of major viticulture regions under future climate projections. We review the methods used to study the impacts of climate change on viticulture in the light of what is known about the effects of climate and weather on the yields and quality of vineyard harvests. Many potential impacts of climate change on viticulture, particularly those associated with a change in climate variability or seasonal weather patterns, are rarely captured. Key biophysical characteristics of viticulture are often unaccounted for, including the variability of grapevine phenology and the exploitation of microclimatic niches that permit successful cultivation under sub-optimal macroclimatic conditions. We consider how these same biophysical characteristics permit a variety of strategies by which viticulture can adapt to changing climatic conditions. The ability to realise these strategies, however, is affected by uneven exposure to risks across the winemaking sector, and the evolving capacity for decision-making within and across organizational boundaries. The role grape provenance plays in shaping perceptions of wine value and quality, illustrates how conflicts of interest influence decisions about adaptive strategies within the industry. We conclude by considering what lessons can be taken from viticulture for studies of climate change impacts and the capacity for adaptation in other agricultural and natural systems. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...