ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (9,144)
  • Wiley  (9,144)
  • American Physical Society (APS)
  • Public Library of Science
  • Springer
  • 2010-2014  (9,144)
  • Journal of the American Ceramic Society  (2,688)
  • 5833
  • 6716
Collection
  • Articles  (9,144)
Publisher
  • Wiley  (9,144)
  • American Physical Society (APS)
  • Public Library of Science
  • Springer
Years
Year
  • 1
    Publication Date: 2013-09-08
    Description: Tree species are predicted to track future climate by shifting their geographic distributions, but climate-mediated migrations are not apparent in a recent continental-scale analysis. To better understand the mechanisms of a possible migration lag, we analyzed relative recruitment patterns by comparing juvenile and adult tree abundances in climate space. One would expect relative recruitment to be higher in cold and dry climates as a result of tree migration with juveniles located further poleward than adults. Alternatively, relative recruitment could be higher in warm and wet climates as a result of higher tree population turnover with increased temperature and precipitation. Using the USDA Forest Service's Forest Inventory and Analysis data at regional scales, we jointly modeled juvenile and adult abundance distributions for 65 tree species in climate space of the eastern United States. We directly compared the optimal climate conditions for juveniles and adults, identified the climates where each species has high relative recruitment, and synthesized relative recruitment patterns across species. Results suggest that for 77% and 83% of the tree species, juveniles have higher optimal temperature and optimal precipitation, respectively, than adults. Across species, the relative recruitment pattern is dominated by relatively more abundant juveniles than adults in warm and wet climates. These different abundance-climate responses through life history are consistent with faster population turnover and inconsistent with the geographic trend of large-scale tree migration. Taken together, this juvenile-adult analysis suggests that tree species might respond to climate change by having faster turnover as dynamics respond to longer growing seasons and higher temperatures, before there is evidence of poleward migration at biogeographic scales. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-09-15
    Description: Climate warming threatens to increase mass coral bleaching events, and several studies have projected the demise of tropical coral reefs this century. However, recent evidence indicates corals may be able to respond to thermal stress though adaptive processes (e.g., genetic adaptation, acclimatization, and symbiont shuffling). How these mechanisms might influence warming induced bleaching is largely unknown. This study compared how different adaptive processes could affect coral bleaching projections. We used the latest bias-corrected global sea surface temperature (SST) output from the NOAA/GFDL Earth System Model 2 (ESM2M) for the pre-industrial period though 2100 to project coral bleaching trajectories. Initial results showed that, in the absence of adaptive processes, application of a pre-industrial climatology to the NOAA Coral Reef Watch bleaching prediction method over-predicts the present day bleaching frequency. This suggests that corals may have already responded adaptively to some warming over the industrial period. We then modified the prediction method so that the bleaching threshold either permanently increased in response to thermal history (e.g., simulating directional genetic selection) or temporarily increased for 2-10 years in response to a bleaching event (e.g., simulating symbiont shuffling). A bleaching threshold that changes relative to the preceding 60 years of thermal history reduced the frequency of mass bleaching events by 20-80% compared with the ‘no adaptive response’ prediction model by 2100, depending on the emissions scenario. When both types of adaptive responses were applied, up to 14% more reef cells avoided high frequency bleaching by 2100. However, temporary increases in bleaching thresholds alone only delayed the occurrence of high frequency bleaching by ~10 years in all but the lowest emissions scenario. Future research should test the rate and limit of different adaptive responses for coral species across latitudes and ocean basins to determine if and how much corals can respond to increasing thermal stress. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-09-15
    Description: The snow-masking effect of vegetation exerts strong control on albedo in northern high latitude ecosystems. Large-scale changes in the distribution and stature of vegetation in this region will thus have important feedbacks to climate. The snow-albedo feedback is controlled largely by the contrast between snow-covered and snow-free albedo (Δα), which influences predictions of future warming in coupled climate models, despite being poorly constrained at seasonal and century time scales. Here we compare satellite observations and coupled climate model representations of albedo and tree cover for the boreal and Arctic region. Our analyses reveal consistent declines in albedo with increasing tree cover, occurring south of latitudinal tree line, that are poorly represented in coupled climate models. Observed relationships between albedo and tree cover differ substantially between snow-covered and snow-free periods, and among plant functional type (PFT). Tree cover in models varies widely but surprisingly does not correlate well with model albedo. Further, our results demonstrate a relationship between tree cover and snow-albedo feedback that may be used to accurately constrain high latitude albedo feedbacks in coupled climate models under current and future vegetation distributions. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-09-15
    Description: Because of global land surface warming, extreme temperature events are expected to occur more often and more intensely, affecting the growth and development of the major cereal crops in several ways, thus affecting the production component of food security. In this paper, we have identified rice and maize crop responses to temperature in different, but consistent, phenological phases and development stages. A literature review and data compilation of around 140 scientific articles have determined the key temperature thresholds and response to extreme temperature effects for rice and maize, complementing an earlier study on wheat. Lethal temperatures and cardinal temperatures, together with error estimates, have been identified for phenological phases and development stages. Following the methodology of previous work, we have collected and statistically analysed temperature thresholds of the three crops for the key physiological processes such as leaf initiation, shoot growth and root growth and for the most susceptible phenological phases such as sowing to emergence, anthesis and grain filling. Our summary shows that cardinal temperatures are conservative between studies and are seemingly well-defined in all three crops. Anthesis and ripening are the most sensitive temperature stages in rice as well as in wheat and maize. We call for further experimental studies of the effects of transgressing threshold temperatures so such responses can be included into crop impact and adaptation models. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-09-17
    Description: Homogenous liquid precursor for ZrC – SiC was prepared by blending of Zr ( OC 4 H 9 ) 4 and Poly[(methylsilylene)acetylene]. This precursor could be cured at 250°C and converted into binary ZrC – SiC composite ceramics upon heat treatment at 1700°C. The pyrolysis mechanism and optimal molar ratio of the precursor were investigated by XRD. The morphology and elements analyses were conducted by SEM and corresponding energy-dispersive spectrometer. The evolution of carbon during ceramization was studied by Raman spectroscopy. The results showed that the precursor samples heat treated at 900°C consisted of t- ZrO 2 (main phase) and m- ZrO 2 (minor phase). The higher temperature induced phase transformation and t- ZrO 2 converted into m- ZrO 2 . Further heating led to the formation of ZrC and SiC due to the carbothermal reduction, and the ceramic sample changed from compact to porous due to the generation of carbon oxides. With the increasing molar ratios of C / Zr , the residual oxides in 1700°C ceramic samples converted into ZrC and almost pure ZrC – SiC composite ceramics could be obtained in ZS-3 sample. The Zr , Si , and C elements were well distributed in the obtained ceramics powders and particles with a distribution of 100 ~ 300 nm consisted of well-crystallized ZrC and SiC phases.
    Print ISSN: 0002-7820
    Electronic ISSN: 1551-2916
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-09-20
    Description: Will warming lead to an increased use of older soil organic carbon (SOC) by microbial communities, thereby inducing C losses from C-rich alpine soils? We studied soil microbial community composition, activity and substrate use after three and four years of soil warming (+4°C, 2007-2010) at the alpine treeline in Switzerland. The warming experiment was nested in a free air CO 2 enrichment experiment using depleted 13 CO 2 (δ 13 C = –30‰, 2001-2009). We traced this depleted 13 C label in phospholipid fatty acids (PLFA) of the organic layer (0-5 cm soil depth) and in C mineralized from root-free soils to distinguish substrate ages used by soil microorganisms: fixed before 2001 (“old”), from 2001 to 2009 (“new”) or in 2010 (“recent”). Warming induced a sustained stimulation of soil respiration (+38%) without decline in mineralizable SOC. PLFA concentrations did not reveal changes in microbial community composition due to soil warming, but soil microbial metabolic activity was stimulated (+66%). Warming decreased the amount of new and recent C in the fungal biomarker 18:2ω6,9 and the amount of new C mineralized from root-free soils, implying a shift in microbial substrate use towards a greater use of old SOC. This shift in substrate use could indicate an imbalance between C inputs and outputs, which could eventually decrease SOC storage in this alpine ecosystem. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-09-21
    Description: Circumpolar expansion of tall shrubs and trees into Arctic tundra is widely thought to be occurring as a result of recent climate warming, but little quantitative evidence exists for northern Siberia, which encompasses the world's largest forest-tundra ecotonal belt. We quantified changes in tall shrub and tree canopy cover in eleven, widely-distributed Siberian ecotonal landscapes by comparing very-high-resolution photography from the Cold War-era “Gambit” and “Corona” satellite surveillance systems (1965-1969) with modern imagery. We also analyzed within-landscape patterns of vegetation change to evaluate the susceptibility of different landscape components to tall shrub and tree increase. The total cover of tall shrubs and trees increased in nine of eleven ecotones. In northwest Siberia, alder ( Alnus ) shrubland cover increased 5.3 – 25.9% in five ecotones. In Taymyr and Yakutia, larch ( Larix ) cover increased 3.0 – 6.7% within three ecotones, but declined 16.8% at a fourth ecotone due to thaw of ice-rich permafrost. In Chukotka, the total cover of alder and dwarf pine ( Pinus ) increased 6.1% within one ecotone and was little-changed at a second ecotone. Within most landscapes, shrub and tree increase was linked to specific geomorphic settings, especially those with active disturbance regimes such as permafrost patterned-ground, floodplains, and colluvial hillslopes. Mean summer temperatures increased at most ecotones since the mid-1960s, but rates of shrub and tree canopy cover expansion were not strongly correlated with temperature trends and were better correlated with mean annual precipitation. We conclude that shrub and tree cover is increasing in tundra ecotones across most of northern Siberia, but rates of increase vary widely regionally and at the landscape-scale. Our results indicate that extensive changes can occur within decades in moist, shrub-dominated ecotones, as in northwest Siberia, while changes are likely to occur much more slowly in the highly continental, larch-dominated ecotones of central and eastern Siberia. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-09-21
    Description: The adaptation of different species to warming temperatures has been increasingly studied. Moose ( Alces alces ) is the largest of the ungulate species occupying the northern latitudes across the globe, and in Finland it is the most important game species. It is very well adapted to severe cold temperatures, but has a relatively low tolerance to warm temperatures. Previous studies have documented changes in habitat use by moose due to high temperatures. In many of these studies the used areas have been classified according to how much thermal cover they were assumed to offer based on satellite/aerial imagery data. Here, we identified the vegetation structure in the areas used by moose under different thermal conditions. For this purpose we used airborne laser scanning (ALS) data extracted from the locations of GPS-collared moose. This provided us with detailed information about the relationships between moose and the structure of forests it uses in different thermal conditions and we were therefore able to determine and differentiate between the canopy structures at locations occupied by moose during different thermal conditions. We also discovered a threshold beyond which moose behaviour began to change significantly: as day temperatures began to reach 20 ○ C and higher, the search for areas with higher and denser canopies during daytime became evident. The difference was clear when compared to habitat use at lower temperatures, and was so strong that it provides supporting evidence to previous studies, suggesting that moose are able to modify their behaviour to cope with high temperatures, but also that the species is likely to be affected by warming climate. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-09-21
    Description: Mountain ecosystems are particularly susceptible to climate change. Characterizing intraspecific variation of alpine plants along elevational gradients is crucial for estimating their vulnerability to predicted changes. Environmental conditions vary with elevation, which might influence plastic responses and affect selection pressures that lead to local adaptation. Thus, local adaptation and phenotypic plasticity among low and high elevation plant populations in response to climate, soil and other factors associated with elevational gradients might underlie different responses of these populations to climate warming. Using a transplant experiment along an elevational gradient, we investigated reproductive phenology, growth and reproduction of the nutrient-poor grassland species Ranunculus bulbosus , Trifolium montanum , and Briza media . Seeds were collected from low and high elevation source populations across the Swiss Alps and grown in nine common gardens at three different elevations with two different soil depths. Despite genetic differentiation in some traits, the results revealed no indication of local adaptation to the elevation of population origin. Reproductive phenology was advanced at lower elevation in low and high elevation populations of all three species. Growth and reproduction of T. montanum and B. media were rarely affected by garden elevation and soil depth. In R. bulbosus , however, growth decreased and reproductive investment increased at higher elevation. Furthermore, soil depth influenced growth and reproduction of low elevation R. bulbosus populations. We found no evidence for local adaptation to elevation of origin and hardly any differences in the responses of low and high elevation populations. However, the consistent advanced reproductive phenology observed in all three species shows that they have the potential to plastically respond to environmental variation. We conclude that populations might not be forced to migrate to higher elevations as a consequence of climate warming, as plasticity will buffer the detrimental effects of climate change in the three investigated nutrient-poor grassland species. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-09-21
    Description: The impact of climate change on the stability of soil organic carbon (SOC) remains a major source of uncertainty in predicting future changes in atmospheric CO 2 levels. One unsettled issue is whether the mineralization response to temperature depends on SOC mineralization rate. Long-term (〉25 years) bare fallow experiments (LTBF) in which the soil is kept free of any vegetation and organic inputs, and their associated archives of soil samples represent a unique research platform to examine this issue as with increasing duration of fallow, the lability of remaining total SOC decreases. We retrieved soils from LTBF experiments situated at Askov (Denmark), Grignon (France), Ultuna (Sweden) and Versailles (France) and sampled at the start of the experiments and after 25, 50, 52, and 79 years of bare fallow, respectively. Soils were incubated at 4, 12, 20 and 35 °C and the evolved CO 2 monitored. The apparent activation energy ( Ea ) of SOC was then calculated for similar loss of CO 2 at the different temperatures. The Ea was always higher for samples taken at the end of the bare-fallow period, implying a higher temperature sensitivity of stable C than of labile C. Our results provide strong evidence for a general relationship between temperature sensitivity and SOC stability upon which significant improvements in predictive models could be based. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2013-09-21
    Description: The temperature dependence of aerobic scope has been suggested to be a major determinant of how marine animals will cope with future rises in environmental temperature. Here we present data suggesting that in some animals, the temperature dependence of anaerobic scope (i.e. the capacity for surviving severe hypoxia) may determine present-day latitudinal distributions and potential for persistence in a warmer future. As a model for investigating the role of anaerobic scope, we studied two sibling species of coral-dwelling gobies, Gobiodon histrio and G. erythrospilus , with different latitudinal distributions, but which overlap in equal abundance at Lizard Island (14°40'S) on the Great Barrier Reef. These species did not differ in the temperature dependence of resting oxygen consumption or critical oxygen concentration (the lowest oxygen level where resting oxygen consumption can be maintained). By contrast, the more equatorial species ( G. histrio ) had a better capacity to endure anaerobic conditions at oxygen levels below the critical oxygen concentration at the high temperatures (32 – 33 °C) more likely to occur near the equator, or in a warmer future. These results suggest that anaerobic scope, in addition to aerobic scope, could be important in determining the impacts of global warming on some marine animals. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2013-09-21
    Description: Most North American forests are at some stage of post-disturbance regrowth, subject to a changing climate, and exhibit growth and mortality patterns that may not be closely coupled to annual environmental conditions. Distinguishing the possibly interacting effects of these processes is necessary to put short-term studies in a longer-term context, and particularly important for the carbon-dense, fire-prone boreal forest. The goals of this study were to combine dendrochronological sampling, inventory records, and machine-learning algorithms to understand how tree growth and death have changed at one highly studied site (Northern Old Black Spruce, NOBS) in the central Canadian boreal forest. Over the 1999-2012 inventory period, mean tree diameter increased even as stand density and basal area declined significantly. Tree mortality averaged 1.4±0.6% yr −1 , with most mortality occurring in medium-sized trees; new recruitment was minimal. There have been at least two, and probably three, significant influxes of new trees since stand initiation, but none in recent decades. A combined tree ring chronology constructed from sampling in 2001, 2004, and 2012 showed several periods of extreme growth depression, with increased mortality lagging depressed growth by ~5 years. Higher minimum and maximum air temperatures exerted a negative influence on tree growth, while precipitation and climate moisture index had a positive effect; both current- and previous-year data exerted significant effects. Models based on these variables explained 23-44% of the ring-width variability. We suggest that past climate extremes led to significant mortality still visible in the current forest structure, with decadal dynamics superimposed on slower patterns of fire and succession. These results have significant implications for our understanding of previous work at NOBS, the carbon sequestration capability of old-growth stands in a disturbance-prone landscape, and the sustainable management of regional forests in a changing climate. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2013-09-21
    Description: The 20th century was a pivotal period at high northern latitudes as it marked the onset of a rapid climatic warming brought on by major anthropogenic changes in global atmospheric composition. In parallel, Arctic sea ice extent has been decreasing over the period of available satellite data record. Here we document how these changes influenced vegetation productivity in adjacent eastern boreal North America. To do this, we used normalized difference vegetation index (NDVI) data, model simulations of net primary productivity (NPP), and tree-ring width measurements covering the last 300 years. Climatic and proxy-climatic datasets were used to explore the relationships between vegetation productivity and Arctic sea ice concentration and extent, and temperatures. Results indicate that an unusually large amount of black spruce ( Picea mariana ) trees entered into a period of growth decline during the late 20th century (68% of sampled trees; n = 724 cross-sections of age 〉 70 years). This finding is coherent with evidence encoded in NDVI and simulated NPP data. Analyses of climatic and vegetation productivity relationships indicate that the influence of recent climatic changes in the studied forests has been via the enhanced moisture stress (i.e. greater water demands) and autotrophic respiration amplified by the declining sea ice concentration in the Hudson Bay and Hudson Strait. The recent decline strongly contrasts with other growth reduction events that occurred during the 19 th century, which were associated with cooling and high sea ice severity. The recent decline of vegetation productivity is the first one to occur under circumstances related to excess heat in a 300-year period, and further culminates with an intensifying wildfire regime in the region. Our results concur with observations from other forest ecosystems about intensifying temperature-driven drought stress and tree mortality with ongoing climatic changes. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2013-09-21
    Description: Ce -doped BaTiO 3 -based ceramics were prepared and studied to satisfy ultra-broad temperature stability (from −55°C to 300°C, capacitance variation rate based on C 20°C is within ±15%). The sample with 0.6 mol% CeO 2 succeeds to achieve this performance with a remarkably high ceiling temperature of 300°C. Meanwhile, the sample has good dielectric and electrical properties at room temperature (ε r  = 1667, tanδ = 1.478%, ρ V  = 5.9 × 10 12  Ω·cm). Ce ion can substitute for Ti ion as Ce 4+ or Ba ion as Ce 3+ . The substitution decreases the spontaneous polarization of BaTiO 3 , and then weakens the ferroelectricity of BaTiO 3 . As a result, the temperature stability of samples is improved obviously. Besides, CeO 2 addition promotes the formation of exaggerated grains, which are consisting of Ba 6 Ti 17 O 40 .
    Print ISSN: 0002-7820
    Electronic ISSN: 1551-2916
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2013-09-21
    Description: This study aims to optimize quantitative X-ray diffraction (XRD) mineralogical analysis of the minority phases in clinker. The proposed method consists of applying Rietveld quantitative refinement to the XRD patterns for both clinker and the insoluble residue remaining after it is attacked with methanol and salicylic acid (Takashima method). The method was tested with industrial clinker and the same material after modifying its mineralogy by refiring at 1500°C followed by slow cooling. The findings showed that the C 4 AF / C 3 A ratios for quickly and gradually cooled clinker were much higher when the clinker diffractograms were refined with the Rietveld procedure than when the proposed method was used. The proportion of C 3 A found with the proposed method was ≈2.8-fold higher than when Rietveld only was applied to the diffractograms for clinkers. Taken together, the refinement data for the two materials (clinker and Takashima residua) revealed that Rietveld quantitative XRD applied to clinker underestimates the low C 3 A content. These findings are supported by postsulfate attack durability studies conducted on cements prepared with the two clinkers.
    Print ISSN: 0002-7820
    Electronic ISSN: 1551-2916
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2013-09-21
    Description: The effect of increasing poling fields on the properties of (1− x )BZT– x BCT compositions across the morphotropic phase boundary (MPB) is studied using large signal polarization and strain, small signal permittivity and piezoelectric coefficient, and XRD measurements. Successive poling causes charge carrier migration inducing an internal bias field, which becomes large with respect to the coercive field resulting in biased ferroelectric and ferroelastic switching. Improvements in piezoelectric coefficient of 9% are significantly smaller in the tetragonal 60BCT composition compared with the improvement of approximately 50% in the rhombohedral 40BCT and MPB 50BCT compositions. While the properties continue to change with increased poling fields, the remnant ferroelastic domain texture parallel to the field direction, as observed from XRD, stays approximately constant. The improvement in overall domain alignment leading to largely enhanced intrinsic piezoelectricity originates from the alignment of 180° domains and possibly non-180° domains in grains with orientations inclined to the electric field. As a result, poling is most effective in BZT–BCT materials that have low coercive fields, show low distortions and possess more polarization orientations, such as compositions in the rhombohedral phase field or near the MPB.
    Print ISSN: 0002-7820
    Electronic ISSN: 1551-2916
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2013-09-21
    Description: The defect chemistry-modulated dielectric properties of dense yttria-doped zirconia ceramics prepared by conventional sintering (at 1350°C–1500°C) and electric field-assisted flash sintering (55 V/cm at 900°C) were studied by impedance spectroscopy. While the bulk dielectric properties from both sets of samples showed only small and insignificant changes in conductivity and permittivity, respectively, a huge increase of these properties was measured for the grain boundaries in the flash sintered specimens. A close analysis of these results suggests that flash sintering reduced grain-boundary thickness (by about 30%), while increasing the concentration of oxygen vacancies near these interfaces (by about 49%). The underlying mechanism proposed is electric field-assisted generation and accommodation of defects in the space-charge layers adjacent to the grain surface. The changes in measured permittivity are attributed to the boundary thickness effect on capacitance, while conductivity involved variations in its defect density-dependent intrinsic value, accounting for changes also observed in grain-boundary relaxation frequencies. Therefore, in terms of modifications to the specific dielectric properties of these materials, the overall consequence of flash sintering was to considerably lower the semi-blocking character of the grain boundaries.
    Print ISSN: 0002-7820
    Electronic ISSN: 1551-2916
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2013-09-21
    Description: This article presents a detailed study on the nanoscaled interface between microelongated gold particles (GP) and biphase leucite/feldspar glass-ceramic matrix. The glass-ceramic composite with a nonuniform GP distribution was processed through hot-pressing under vacuum using a commercial dental ceramic furnace for glass-ceramic dental crown manufacturing. Heat treatments at 900°C, 1100°C, and 1300°C were conducted, and microstructural features along the interface were used to verify the chemical reactions between GP and glass-ceramic matrix. It was observed that the amorphous glass-ceramic matrix had nanoscaled biphase structures, and the distributed nanoscaled amorphous leucite phase was attracted to GP during hot-pressing, and was more reactive with GP than the feldspar phase. The thickness of the interfacial phase formed through chemical reactions between GP and glass-ceramic matrix is around 30 nm. The chemically bonded interface has contributed significantly toward the substantial improvements in both strength and toughness of the GP-reinforced glass-ceramic matrix composite. Characterization techniques, including X-ray diffraction and field-emission scanning electron Microscopy, incorporating X-ray microanalysis using energy dispersive spectrometry, have been employed in this study.
    Print ISSN: 0002-7820
    Electronic ISSN: 1551-2916
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2013-09-27
    Description: Successful species interactions require that both partners share a similar cue. For many species, spring warming acts as a shared signal to synchronize mutualist behaviors. Spring flowering plants and the ants that disperse their seeds respond to warming temperatures so that ants forage when plants drop seeds. However, where warm-adapted ants replace cold-adapted ants, changes in this timing might leave early seeds stranded without a disperser. We investigate plant seed dispersal south and north of a distinct boundary between warm- and cold-adapted ants to determine if changes in the ant species influence local plant dispersal. The warm-adapted ants forage much later than the cold-adapted ants, and so we first assess natural populations of early and late blooming plants. We then transplant these plants south and north of the ant boundary to test whether distinct ant climate requirements disrupt the ant-plant mutualism. Whereas the early blooming plant's inability to synchronize with the warm-adapted ant leaves its populations clumped and patchy and its seedlings clustered around the parents in natural populations, when transplanted into the range of the cold-adapted ant, effective seed dispersal recovers. In contrast, the mutualism persists for the later blooming plant regardless of location because it sets seed later in spring when both warm- and cold-adapted ant species forage, resulting in effective seed dispersal. These results indicate that the climate response of species interactions, not just the species themselves, is integral in understanding ecological responses to a changing climate. Data linking phenological synchrony and dispersal are rare, and these results suggest a viable mechanism by which a species’ range is limited more by biotic than abiotic interactions – despite the general assumption that biotic influences are buried within larger climate drivers. These results show that biotic partner can be as fundamental a niche requirement as abiotic resources. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2013-10-01
    Description: Increasing ocean temperatures and strengthening boundary currents have caused the poleward migration of many marine species. Cubozoan jellyfish known to cause Irukandji syndrome have historically been confined to tropical waters but may be expanding into sub-tropical regions. Here we examine the interactive effects of warming and acidification on the population dynamics of polyps of an Irukandji jellyfish, Alatina nr mordens, and the formation of statoliths in newly metamorphosed medusae, to determine if this jellyfish could tolerate future conditions predicted for southeast Queensland (SEQ), Australia. Two experiments, examining the orthogonal factors of temperature and pH were undertaken. Experiment 1 mimicked the current, ca. 2050 and ca. 2100 summer temperature and pH conditions predicted for SEQ using A1F1 scenarios (temperature: 25, 27, 29°C; pH: 7.9, 7.8, 7.6) and Experiment 2 mimicked current and future winter conditions (18 and 22°C, pH 7.9, 7.8, 7.6). All polyps in Experiment 1 survived and budded. Fewer polyps budded in the lower pH treatments but patterns varied slightly among temperature treatments. Statoliths at pH 7.6 were 24% narrower than those at pH 7.8 and 7.9. Most polyps survived the winter conditions mimicked by Experiment 2 but only polyps in the 22°C, pH 7.9 treatment increased significantly. The current absence of A . nr mordens medusae in SEQ, despite the polyps’ ability to tolerate the current temperature and pH conditions, suggests that ecological, rather than abiotic factors currently limit their distribution. Observations that budding was lower under low pH treatments suggest that rates of asexual reproduction will likely be much slower in the future. We consider that A . nr mordens polyps are likely to tolerate future conditions but are unlikely to thrive in the long term. However, if polyps can overcome potential ecological boundaries and acidification proceeds slowly A . nr mordens could expand polewards in the short-term. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2013-10-01
    Description: Soil CO 2 efflux ( F soil ) is the largest source of carbon from forests and reflects primary productivity as well as how carbon is allocated within forest ecosystems. Through early stages of stand development, both elevated [CO 2 ] and availability of soil nitrogen (N; sum of mineralization, deposition, and fixation) have been shown to increase gross primary productivity, but the long-term effects of these factors on F soil are less clear. Expanding on previous studies at the Duke Free Air CO 2 Enrichment (FACE) site, we quantified the effects of elevated [CO 2 ] and N fertilization on F soil using daily measurements from automated chambers over 10 years. Consistent with previous results, compared to ambient-unfertilized plots, annual F soil increased under elevated [CO 2 ] (~17%) and decreased with N (~21%). N fertilization under elevated [CO 2 ] reduced F soil to values similar to untreated plots. Over the study period, base respiration rates increased with leaf productivity but declined after productivity saturated. Despite treatment-induced differences in aboveground biomass, soil temperature and water content were similar among treatments. Inter-annually, low soil water content decreased annual F soil from potential values – estimated based on temperature alone assuming non-limiting soil water content – by ~0.7% per 1.0% reduction in relative extractable water. This effect was only slightly ameliorated by elevated [CO 2 ]. Variability of soil N availability among plots accounted for the spatial variability of F soil , showing a decrease of ~114 g C m -2 y -1 per 1 g m -2 increase in soil N availability, with consistently higher F soil in elevated [CO 2 ] plots ~127 g C per 100 ppm [CO 2 ] over the +200 ppm enrichment. Altogether, reflecting increased belowground carbon partitioning in response to greater plant nutritional needs, the effects of elevated [CO 2 ] and N fertilization on F soil in this stand are sustained beyond the early stages of stand development and through stabilization of annual foliage production. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2013-10-01
    Description: To meet growing global food demand with limited land and reduced environmental impact, agricultural greenhouse gas (GHG) emissions are increasingly evaluated with respect to crop productivity, i.e. on a yield-scaled as opposed to area basis. Here, we compiled available field data on CH 4 and N 2 O emissions from rice production systems to test the hypothesis that in response to fertilizer nitrogen (N) addition, yield-scaled global warming potential (GWP) will be minimized at N rates that maximize yields. Within each study, yield N surplus was calculated to estimate deficit or excess N application rates with respect to the optimal N rate (defined as the N rate at which maximum yield was achieved). Relationships between yield N surplus and GHG emissions were assessed using linear and nonlinear mixed-effects models. Results indicate that yields increased moving from deficit to optimal N rates. At N rates contributing to a yield N surplus, N 2 O and yield-scaled N 2 O emissions increased exponentially. In contrast, CH 4 emissions were not impacted by N inputs. Accordingly, yield-scaled CH 4 emissions decreased with N addition. Overall, yield-scaled GWP was minimized at optimal N rates, decreasing by 21% compared to treatments without N addition. These results are unique compared to aerobic cropping systems in which N 2 O emissions are the primary contributor to GWP, meaning yield-scaled GWP may not necessarily decrease for aerobic crops when yields are optimized by N fertilizer additions. Balancing gains in agricultural productivity with climate change concerns, this work supports the concept that high rice yields can be achieved with minimal yield-scaled GWP through optimal N application rates. Moreover, additional improvements in N use efficiency may further reduce yield-scaled GWP, thereby strengthening the economic and environmental sustainability of rice systems. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2013-10-01
    Description: Climate change is projected to push the limits of cropping systems and has the potential to disrupt the agricultural sector from local to global scales. This article introduces the Coordinated Climate-Crop Modeling Project (C3MP), an initiative of the Agricultural Model Intercomparison and Improvement Project (AgMIP) to engage a global network of crop modelers to explore the impacts of climate change via an investigation of crop responses to changes in carbon dioxide concentration ([CO 2 ]), temperature, and water. As a demonstration of the C3MP protocols and enabled analyses, we apply the Decision Support System for Agrotechnology Transfer (DSSAT) CROPGRO-Peanut crop model for Henry County, Alabama, to evaluate responses to the range of plausible [CO 2 ], temperature changes, and precipitation changes projected by climate models out to the end of the 21 st century. These sensitivity tests are used to derive crop model emulators that estimate changes in mean yield and the coefficient of variation for seasonal yields across a broad range of climate conditions, reproducing mean yields from sensitivity test simulations with deviations of ~2% for rainfed conditions. We apply these statistical emulators to investigate how peanuts respond to projections from various global climate models, time periods, and emissions scenarios, finding a robust projection of modest (〈10%) median yield losses in the middle of the 21 st century accelerating to more severe (〉20%) losses and larger uncertainty at the end of the century under the more severe representative concentration pathway 8.5. This projection is not substantially altered by the selection of the AgMERRA global gridded climate dataset rather than the local historical observations, differences between the Third and Fifth Coupled Model Intercomparison Project (CMIP3 and CMIP5), or the use of the delta method of climate impacts analysis rather than the C3MP impacts response surface and emulator approach. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2013-10-01
    Description: Large-scale, long-term FACE (Free Air CO 2 -enrichment) experiments indicate that increases in atmospheric CO 2 concentrations will influence forest C cycling in unpredictable ways. It has been recently suggested that responses of mycorrhizal fungi could determine whether forest NPP (net primary production) is increased by elevated CO 2 over long time periods and if forests soils will function as sources or sinks of C in the future. We studied the dynamic responses of ectomycorrhizae to N fertilization and atmospheric CO 2 -enrichment at the Duke FACE experiment using minirhizotrons over a six year period (2005-2010). Stimulation of mycorrhizal production by elevated CO 2 was observed during only one (2007) of six years. This increased the standing crop of mycorrhizal tips during 2007 and 2008; during 2008, significantly higher mortality returned standing crop to ambient levels for the remainder of the experiment. It is therefore unlikely that increased production of mycorrhizal tips can explain the lack of progressive nitrogen limitations and associated increases in N uptake observed in CO 2 -enriched plots at this site. Fertilization generally decreased tree reliance on mycorrhizae as tip production declined with the addition of nitrogen as has been shown in many other studies. Annual NPP of mycorrhizal tips was greatest during years with warm January temperatures and during years with cool spring temperatures. A 2° C increase in average late spring temperatures (May and June) decreased annual production of mycorrhizal root tip length by 50%. This has important implications for ecosystem function in a warmer world in addition to potential for forest soils to sequester atmospheric C. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2013-10-01
    Description: Permafrost thaw in the Arctic driven by climate change is mobilizing ancient terrigenous organic carbon (OC) into fluvial networks. Understanding the controls on metabolism of this OC is imperative for assessing its role with respect to climate feedbacks. In this study we examined the effect of inorganic nutrient supply and dissolved organic matter (DOM) composition on aquatic extracellular enzyme activities (EEAs) in waters draining the Kolyma River Basin (Siberia), including permafrost derived OC. Reducing the phenolic content of the DOM pool resulted in dramatic increases in hydrolase EEAs (e.g. phosphatase activity increased 〉 28 fold) supporting the idea that high concentrations of polyphenolic compounds in DOM (e.g. plant structural tissues) inhibit enzyme synthesis or activity, limiting OC degradation. EEAs were significantly more responsive to inorganic nutrient additions only after phenolic inhibition was experimentally removed. In controlled mixtures of modern OC and thawed permafrost endmember OC sources, respiration rates per unit dissolved OC were 1.3 – 1.6 times higher in waters containing ancient carbon, suggesting that permafrost derived OC was more available for microbial mineralization. In addition, waters containing ancient permafrost derived OC supported elevated phosphatase and glucosidase activities. Based on these combined results, we propose that both composition and nutrient availability regulates DOM metabolism in Arctic aquatic ecosystems. Our empirical findings are incorporated into a mechanistic conceptual model highlighting two key enzymatic processes in the mineralization of riverine OM: 1) the role of phenol oxidase activity in reducing inhibitory phenolic compounds; and 2) the role of phosphatase in mobilizing organic P. Permafrost derived DOM degradation was less constrained by this initial “phenolic-OM” inhibition; thus, informing reports of high biological availability of ancient, permafrost derived DOM with clear ramifications for its metabolism in fluvial networks and feedbacks to climate. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2013-10-02
    Description: Ecosystem functioning is simultaneously affected by changes in community composition and environmental change such as increasing atmospheric carbon dioxide (CO 2 ) and subsequent ocean acidification. However, it largely remains uncertain how the effects of these factors compare to each other. Addressing this question, we experimentally tested the hypothesis that initial community composition and elevated CO 2 are equally important to the regulation of phytoplankton biomass. We full-factorially exposed three compositionally different marine phytoplankton communities to two different CO 2 levels and examined the effects and relative importance (ω 2 ) of the two factors and their interaction on phytoplankton biomass at bloom peak. The results showed that initial community composition had a significantly greater impact than elevated CO 2 on phytoplankton biomass, which varied largely among communities. We suggest that the different initial ratios between cyanobacteria, diatoms, and dinoflagellates might be the key for the varying competitive and thus functional outcome among communities. Furthermore, the results showed that depending on initial community composition elevated CO 2 selected for larger sized diatoms, which led to increased total phytoplankton biomass. Our study highlights the relevance of initial community composition, which strongly drives the functional outcome, when assessing impacts of climate change on ecosystem functioning. In particular, the increase in phytoplankton biomass driven by the gain of larger sized diatoms in response to elevated CO 2 potentially has strong implications for nutrient cycling and carbon export in future oceans. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2013-10-02
    Description: Less than half of anthropogenic carbon emissions are accumulating in the atmosphere, due to large net fluxes into both the oceans and the land (Le Queré et al., 2012). The land sink in particular has increased markedly, doubling in strength since the 1960's, to reach 26 petagrams of carbon in the latest decade. However, the location and drivers of this large terrestrial sink are still relatively poorly constrained by atmospheric measurements (Ciais et al. 2013). Pan et al. (2011) recently utilised 〉1 million forest inventory plots to provide summaries of forest carbon stocks, and the first global bottom-up estimates of carbon fluxes for the world's forest biomes for the period 1990-2007. One key result was that almost all the residual global terrestrial carbon sink (i.e. carbon uptake after accounting for land use change), some 2.4 ± 0.4 Pg of carbon per year, is located in the world's established forests (Pan et al., 2011). The sink is distributed worldwide, with globally significant net fluxes into boreal and temperate forests, and a large sink in intact tropical forest, albeit with large uncertainty. Furthermore, Pan et al. (2011) showed that this tropical intact forest sink - may have faded from an estimated annual 1.3 ± 0.4 Pg C in the 1990's to 1.0 ± 0.5 Pg C for 2000-2007. The tropical intact sink is offset by a net land-use emission (1.5 Pg C yr −1 [1990-1999]) declining to 1.1 Pg C yr −1 [2000-2007]), and as a consequence aircraft measurements and inverse modelling studies indicate the tropics to be close to neutral in terms of net carbon fluxes (reviewed by Ciais et al. 2013). While the intact tropical forest sink values represent updates from similar values published previously (e.g., Lewis et al., 2009a), the fact that almost the entire residual terrestrial carbon sink is accounted for by the forests of the world was a notable discovery. Evidence from the ground now points to established forests being a net sink across almost every major forest region, including all extra-tropical forest regions analysed. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2013-10-02
    Description: Forecasting how global warming will affect onset of the growing season is essential for predicting terrestrial productivity, but suffers from conflicting evidence. We show that accurate estimates require ways to connect discrete observations of changing tree status (e.g., pre- vs. post-budbreak) with continuous responses to fluctuating temperatures. By coherently synthesizing discrete observations with continuous responses to temperature variation, we accurately quantify how increasing temperature variation accelerates onset of growth. Application to warming experiments at two latitudes demonstrates that maximum responses to warming are concentrated in late winter, weeks ahead of the main budbreak period. Given that warming will not occur uniformly over the year, knowledge of when temperature variation has the most impact can guide prediction. Responses are large and heterogeneous, yet predictable. The approach has immediate application to forecasting effects of warming on growing season length, requiring only information that is readily available from weather stations and generated in climate models. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2013-10-02
    Description: Climate change is expected to cause geographic redistributions of species. To the extent that species within assemblages have different niche requirements, assemblages may no longer remain intact and dis- and reassemble at current or new geographic locations. We explored how climate change projected by 2100 may transform the world's avian assemblages (characterized at a 110 km spatial grain) by modelling environmental niche-based changes to their dietary guild structure under 0 km, 500 km, and 2000 km dispersal distances. We examined guild structure changes at coarse (primary, high-level, and mixed consumers) and fine (frugivores, nectarivores, insectivores, herbivores, granivores, scavengers, omnivores, and carnivores) ecological resolutions to determine whether or not geographic co-occurrence patterns among guilds were associated with the magnitude to which guilds are functionally resolved. Dietary guilds vary considerably in their global geographic prevalence, and under broad-scale niche-based redistribution of species, these are projected to change very heterogeneously. A non-dispersal assumption results in the smallest projected changes to guild assemblages, but with significant losses for some regions and guilds, such as South American insectivores. Longer dispersal distances are projected to cause greater degrees of disassembly, and lead to greater homogenization of guild composition, especially in northern Asia and Africa. This arises because projected range gains and losses result in geographically heterogeneous patterns of guild compensation. Projected decreases especially of primary and mixed consumers most often are compensated by increases in high-level consumers, with increasing uncertainty about these outcomes as dispersal distance and degree of guild functional resolution increases. Further exploration into the consequences of these significant broad-scale ecological functional changes at the community or ecosystem level should be increasingly on the agenda for conservation science. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2013-10-02
    Description: Climate change scenarios predict increases in the frequency and duration of ENSO-related droughts for parts of South-East Asia until the end of this century exposing the remaining rainforests to increasing drought risk. A pan-tropical review of recorded drought-related tree mortalities in more than 100 monitoring plots before, during and after drought events suggested a higher drought-vulnerability of trees in South-East Asian than in Amazonian forests. Here, we present the results of a replicated (n=3 plots) throughfall exclusion experiment in a perhumid tropical rainforest in Sulawesi, Indonesia. In this first large-scale roof experiment outside semi-humid eastern Amazonia, 60% of the throughfall was displaced during the first 8 months and 80% during the subsequent 17 months, exposing the forest to severe soil desiccation for about 17 months. In the experiment's second year, wood production decreased on average by 40% with largely different responses of the tree families (ranging from -100 to +100% change). Most sensitive were trees with high radial growth rates under moist conditions. In contrast, tree height was only a secondary factor and wood specific gravity had no influence on growth sensitivity. Fine root biomass was reduced by 35% after 25 months of soil desiccation while fine root necromass increased by 250% indicating elevated fine root mortality. Cumulative aboveground litter production was not significantly reduced in this period. The trees from this Indonesian perhumid rainforest revealed similar responses of wood and litter production and root dynamics as those in two semi-humid Amazonian forests subjected to experimental drought. We conclude that trees from paleo- or neotropical forests growing in semi-humid or perhumid climates may not differ systematically in their growth sensitivity and vitality under sub-lethal drought stress. Drought vulnerability may depend more on stem cambial activity in moist periods than on tree height or wood specific gravity. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2013-10-02
    Description: Soil microbial communities in Chihuahuan Desert grasslands generally experience highly variable spatiotemporal rainfall patterns. Changes in precipitation regimes can affect belowground ecosystem processes such as decomposition and nutrient cycling by altering soil microbial community structure and function. The objective of this study was to determine if increased seasonal precipitation frequency and magnitude over a seven-year period would generate a persistent shift in microbial community characteristics and soil nutrient availability. We supplemented natural rainfall with large events (one/winter and three/summer) to simulate increased precipitation based on climate model predictions for this region. We observed a two year delay in microbial responses to supplemental precipitation treatments. In Years 3-5, higher microbial biomass, arbuscular mycorrhizae abundance, and soil enzyme C and P acquisition activities were observed in the supplemental water plots even during extended drought periods. In Years 5-7, available soil P was consistently lower in the watered plots compared to control plots. Shifts in soil P corresponded to higher fungal abundances, microbial C utilization activity, and soil pH. This study demonstrated that 25% shifts in seasonal rainfall can significantly influence soil microbial and nutrient properties, which in turn may have long-term effects on nutrient cycling and plant P uptake in this desert grassland. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2013-10-02
    Description: It is proposed that increases in anthropogenic reactive nitrogen (N r )-deposition may cause temperate and boreal forests to sequester a globally significant quantity of carbon (C); however, long-term data from boreal forests describing how C sequestration responds to realistic levels of chronic N r -deposition are scarce. Using a long term (14-year) stand scale (0.1 ha) N-addition experiment (three levels: 0, 12.5, and 50 kg N ha −1 yr −1 ) in the boreal zone of northern Sweden, we evaluated how chronic N additions altered N uptake and biomass of understory communities, and whether changes in understory communities explained N uptake and C sequestration by trees. We hypothesized that understory communities (i.e. mosses and shrubs) serve as important sinks for low-level N additions, with the strength of these sinks weakening as chronic N addition rates increase, due to shifts in species composition. We further hypothesized that trees would exhibit non-linear increases in N acquisition, and subsequent C sequestration as N addition rates increased, due to a weakening understory N sink. Our data showed that understory biomass was reduced by 50% in response to the high N addition treatment, mainly due to reduced moss biomass. A 15 N labelling experiment showed that feather mosses acquired the largest fraction of applied label, with this fraction decreasing as the chronic N addition level increased. Contrary to our hypothesis, the proportion of label taken up by trees was equal (~8%) across all three N addition treatments. The relationship between N addition and C sequestration in all vegetation pools combined was linear, and had a slope of 16 kg C kg −1 N. While canopy retention of N r deposition may cause C sequestration rates to be slightly different than this estimate, our data suggests that a minor quantity of annual anthropogenic CO 2 emissions are sequestered into boreal forests as a result of N r deposition. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2013-10-02
    Description: Urbanization is one of the most extensive and ecologically significant changes happening to terrestrial environments, as it strongly affects the distribution of biodiversity. It is well established that native species richness is reduced in urban and suburban areas, but the species traits that predict tolerance to urbanization are yet little understood. In birds, one of the most studied groups in this respect, evidence is appearing that acoustic traits influence urban living, but it is unknown how this compares to the effects of more obvious ecological traits that facilitate urban living. Therefore, it remains unclear whether acoustic communication is an important predictor of urban tolerance among species. Here, with a comparative study across 140 European and North American passerines, I show that high song frequency, which is less masked by the low-frequency anthropogenic noise, is associated with urban tolerance, with an effect size over half that of the most important ecological trait studied: off-ground nesting. Other nesting and foraging traits accepted to facilitate urban living did not differ for species occurring in urban environments. Thus, the contribution of acoustic traits for passerine urban tolerance approximates that of more obvious ecological traits. Nonetheless, effect sizes of the biological predictors of urban tolerance were low and the phylogenetic signal for urban tolerance was null, both of which suggest that factors other than phenotypic traits have major effects on urban tolerance. A simple possibility is exposure to urbanization, since there was a higher proportion of urban-tolerant species in Europe, which is more urbanized than North America. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2013-10-02
    Description: Recent investigations have revealed the great potential of Raman spectroscopy for the characterization of clinker minerals and commercial Portland cements. The usefulness of this technique for the identification of anhydrous, hydrated, and carbonated phases in cement-based materials has been demonstrated. In the present work, the application of micro-Raman spectroscopy for the characterization of the main clinker phases of calcium aluminate cements and calcium sulfoaluminate cement is explored. The main stable hydrated phases as well as several important carbonated phases are investigated. Raman measurements on the following phases are reported: (i) pure, unhydrated phases: CA, C 12 A 7 , CA 2 , C 2 AS, cubic- C 3 A , C 4 AF, and C 4 A 3 ; (ii) hydrated phases: ettringite, monosulfoaluminate, and hydrogarnet ( C 3 AH 6 ); (iii) carboaluminate phases: hemicarboaluminate and monocarboaluminate. The present results, which are discussed in terms of the internal vibrational modes of the aluminate, carbonate, and sulfate molecular groups as well as stretching O–H vibrations, show the ability of Raman spectroscopy to identify the main hydrated and unhydrated phases in the aluminate and sulfoaluminate cements. The Raman spectra obtained in this work provide an extended database to the existing data published in the literature.
    Print ISSN: 0002-7820
    Electronic ISSN: 1551-2916
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2013-10-02
    Description: Acmite ( NaFeSi 2 O 6 ) films were formed on steel coupons via solvothermal reaction of silica, sodium hydroxide, and 1, 4-butanediol in an autoclave under autogenous pressure. Systematic variation in processing variables led to homogenous coatings comprised of pinacoidal acmite grains with an average grain size of ~33 μm. The coatings were produced on the steel coupons from reactant conditions of 0.635 m SiO 2 , 2.546 m NaOH , and 3.087 m 1,4-butanediol for 72 h at 240°C.
    Print ISSN: 0002-7820
    Electronic ISSN: 1551-2916
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2013-09-07
    Description: A 50:50 vol% MgO – Y 2 O 3 nanocomposite with ~150 nm grain size was prepared in an attempt to make 3–5 μm infrared-transmitting windows with increased durability and thermal shock resistance. Flexure strength of the composite at 21°C is 679 MPa for 0.88 cm 2 under load. Hardness is consistent with that of the constituents with similar grain size. For 3-mm-thick material at 4.85 μm, the total scatter loss is 1.5%, forward scatter is 0.2%, and absorptance is 1.8%. Optical scatter below 2 μm is 100%. Variable intensity OH absorption (~6% absorptance) is observed near 3 μm. The refractive index is ~0.4% below the volume-fraction-weighted average of those of the constituents. Thermal expansion is equal to the volume-fraction-weighted average of expansion of the constituents. Specific heat capacity is equal to the mass-fraction-weighted average of heat capacities of the constituents. Thermal conductivity lies between those of the constituents up to 1200 K. Elastic constants lie between those of the constituents. The Hasselman mild thermal shock resistance parameter for the composite is twice as great as that of common 3–5 μm window materials, but half as great as that of c -plane sapphire.
    Print ISSN: 0002-7820
    Electronic ISSN: 1551-2916
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2013-09-11
    Description: There is evidence that climate change induced tree mortalities in boreal and temperate forests and increased forest turnover rates (both mortality and recruitment rates) in Amazon forests. However, no study has examined China's tropical and subtropical evergreen broadleaved forests (TEBF) that cover 〉26% of China's terrestrial land . The sustainability of this biome is vital to the maintenance of local ecosystem services (e.g., carbon sequestration, biodiversity conservation, climatic regulation etc.), many of which may influence patterns of atmospheric circulation and composition at regional to global scales. Here we analyze time-series data collected from thirteen permanent plots within China's unmanaged TEBF to study whether and how this biome has changed over recent decades. We find that the numbers of individuals and species for shrub and small tree have increased since 1978, whereas the numbers of individuals and species for tree have decreased over this same time period. The shift in species composition is accompanied by a decrease in the mean DBH (diameter at breast height) for all individuals combined. China's TEBF may thereby be transitioning from cohorts of fewer and larger individuals to ones of more and smaller individuals, which shows a unique change pattern differing from the documented. Regional-scale drying is likely responsible for the biome's reorganization. This biome-wide reconstitution would deeply impact the regimes of carbon sequestration and biodiversity conservation and have implications for the sustainability of economic development in the area. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2013-09-11
    Description: Freshwater ecosystems provide vital resources for humans and support high levels of biodiversity, yet are severely threatened throughout the world. The expansion of human land uses, such as urban and crop cover, typically degrades water quality and reduces freshwater biodiversity, thereby jeopardizing both biodiversity and ecosystem services. Identifying and mitigating future threats to freshwater ecosystems requires forecasting where land use changes are most likely. Our goal was to evaluate the potential consequences of future land use on freshwater ecosystems in the coterminous United States by comparing alternative scenarios of land use change (2001-2051) with current patterns of freshwater biodiversity and water-quality risk. Using an econometric model, each of our land use scenarios projected greater changes in watersheds of the eastern half of the country, where freshwater ecosystems already experience higher stress from human activities. Future urban expansion emerged as a major threat in regions with high freshwater biodiversity (e.g., the Southeast) or severe water-quality problems (e.g., the Midwest). Our scenarios reflecting environmentally-oriented policies had some positive effects. Subsidizing afforestation for carbon sequestration reduced crop cover and increased natural vegetation in areas that are currently stressed by low water quality, while discouraging urban sprawl diminished urban expansion in areas of high biodiversity. On the other hand, we found that increases in crop commodity prices could lead to increased agricultural threats in areas of high freshwater biodiversity. Our analyses illustrate the potential for policy changes and market factors to influence future land use trends in certain regions of the country, with important consequences for freshwater ecosystems. Successful conservation of aquatic biodiversity and ecosystem services in the U.S. into the future will require attending to the potential threats and opportunities arising from policies and market changes affecting land use. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2013-09-19
    Description: In this work, novel Y 2 Si 2 O 7 / ZrO 2 composites were developed for structural and coating applications by taking advantage of their unique properties, such as good damage tolerance, tunable mechanical properties, and superior wear resistance. The γ- Y 2 Si 2 O 7 / ZrO 2 composites showed improved mechanical properties compared to the γ- Y 2 Si 2 O 7 matrix material, that is, the Young's modulus was enhanced from 155 to 188 GPa (121%) and the flexural strength from 135 to 254 MPa (181%); when the amount of ZrO 2 was increased from 0 to 50 vol%, the γ- Y 2 Si 2 O 7 / ZrO 2 composites also presented relatively high facture toughness (〉1.7 MPa·m 1/2 ), but this exhibited an inverse relationship with the ZrO 2 content. The composition–mechanical property–tribology relationships of the Y 2 Si 2 O 7 / ZrO 2 composites were elucidated. The wear resistance of the composites is not only influenced by the applied load, hardness, strength, toughness, and rigidity but also effectively depends on micromechanical stability properties of the microstructures. The easy growth of subcritical microcracks in Y 2 Si 2 O 7 grains and at grain boundaries significantly contributes to the macroscopic fracture toughness, but promotes the pull-out of individual grains, thus resulting in a lack of correlation between the wear rate and the macroscopic fracture toughness of the composites.
    Print ISSN: 0002-7820
    Electronic ISSN: 1551-2916
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2013-09-20
    Description: Animals living in tropical regions may be at increased risk from climate change because current temperatures at these locations already approach critical physiological thresholds. Relatively small temperature increases could cause animals to exceed these thresholds more often, resulting in substantial fitness costs or even death. Oviparous species could be especially vulnerable because the maximum thermal tolerances of incubating embryos is often lower than adult counterparts, and in many species mothers abandon the eggs after oviposition, rendering them immobile and thus unable to avoid extreme temperatures. As a consequence, the effects of climate change might become evident earlier and be more devastating for hatchling production in the tropics. Loggerhead sea turtles ( Caretta caretta ) have the widest nesting range of any living reptile, spanning temperate to tropical latitudes in both hemispheres. Currently, loggerhead sea turtle populations in the tropics produce nearly 30% fewer hatchlings per nest than temperate populations. Strong correlations between empirical hatching success and habitat quality allowed global predictions of the spatiotemporal impacts of climate change on this fitness trait. Under climate change, many sea turtle populations nesting in tropical environments are predicted to experience severe reductions in hatchling production, whereas hatching success in many temperate populations could remain unchanged or even increase with rising temperatures. Some populations could show very complex responses to climate change, with higher relative hatchling production as temperatures begin to increase, followed by declines as critical physiological thresholds are exceeded more frequently. Predicting when, where, and how climate change could impact the reproductive output of local populations is crucial for anticipating how a warming world will influence population size, growth, and stability. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2013-09-20
    Description: It has recently been found that the frequency distribution of remotely sensed tree cover in the tropics has three distinct modes, which seem to correspond to forest, savanna and treeless states. This pattern has been suggested to imply that these states represent alternative attractors, and that the response of these systems to climate change would be characterized by critical transitions and hysteresis. Here, we show how this inference is contingent upon mechanisms at play. We present a simple dynamical model that can generate three alternative tree cover states (forest, savanna and a treeless state), based on known mechanisms, and use this model to simulate patterns of tree cover under different scenarios. We use these synthetic data to show that the hysteresis inferred from remotely sensed tree cover patterns will be inflated by spatial heterogeneity of environmental conditions. On the other hand, we show that the hysteresis inferred from satellite data may actually underestimate real hysteresis in response to climate change if there exists a positive feedback between regional tree cover and precipitation. Our results also indicate that such positive feedback between vegetation and climate should cause direct shifts between forest and a treeless state (rather than through an intermediate savanna-state) to become more likely. Lastly, we show how directionality of historical change in conditions may bias the observed relationship between tree cover and environmental conditions. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2013-09-21
    Description: The as-prepared BiFeO 3 ceramic shows a piezoelectric d 33 coefficient of −14 pC/N, that is, an obvious ferroelectric self-poling phenomenon. The temperature gradient between the two surfaces of BiFeO 3 ceramic was intentionally enlarged when BiFeO 3 was prepared with a rapid liquid sintering method. This temperature gradient and the corresponding thermal strain can introduce defect dipoles through separating bismuth vacancies from oxygen vacancies. A mass of these dipoles introduce a macroscopic internal electric field ( E in ) which downward poles BiFeO 3 ceramic during its cooling down process. As expected, an E in of 〉10 kV/cm is confirmed by the asymmetrical polarization/strain versus electric field curves.
    Print ISSN: 0002-7820
    Electronic ISSN: 1551-2916
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2013-09-21
    Description: The effect of Ba content on the stress sensitivity of the antiferroelectric to ferroelectric phase transition in ( Pb 0.94− x La 0.04 Ba x )[( Zr 0.60 Sn 0.40 ) 0.84 Ti 0.16 ] O 3 ceramics is investigated through monitoring electric field-induced polarization and longitudinal strain under compressive prestresses. It is found that incorporation of Ba significantly suppresses the stress sensitivity of the phase transition, as manifested by slight decreases under prestresses up to 100 MPa in the maximum polarization ( P m ) and longitudinal strain ( x m ). The energy storage density is even increased under the mechanical confinement in compositions x  = 0.02 and 0.04. X-ray diffraction, transmission electron microscopy, and dielectric measurements indicate that the suppressed stress sensitivity is associated with the disruption of micrometersized antiferroelectric domains into nanodomains and the transition from antiferroelectric to relaxor behavior.
    Print ISSN: 0002-7820
    Electronic ISSN: 1551-2916
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2013-09-21
    Description: Powders and nanoceramics composed of composites of CoFe 2 O 4 , CoFe 2 , and a small amount of FeO were prepared by heating CoFe 2 O 4 powder in reducing atmosphere and by sintering the product of reducing reaction at 350°C via spark plasma sintering technology. In the powders, increase in the molar ratios of CoFe 2 : CoFe 2 O 4 and a great change in magnetic parameters were observed with the change in heating temperature from 300°C to 400°C, and the dominance of dipole interaction over exchange coupling in the interparticle interactions was confirmed by the steps in magnetic hysteresis loops and the negative Henkel plots. However, in the nanoceramics, significant enhancement in exchange coupling was found when the sintering temperature was raised to 500°C and 650°C, which was confirmed by both the positivity of Henkel plot and the single-phase style of the magnetic hysteresis loop.
    Print ISSN: 0002-7820
    Electronic ISSN: 1551-2916
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2013-09-21
    Description: Gas adsorption porosity measurement of geopolymers (GPs) is required for quantitative understanding of such mesoporous structures, but the complex nature of the GP system makes analysis difficult. Previous results in the literature are often ambiguous or contradictory. A systematic investigation of metakaolin GP gas adsorption results was conducted to optimize the use of this measurement technique and verify that results match known theory about GP structure. It was found that GP undergoes structural change upon degassing at 100°C or higher. If and only if this change is prevented by degassing at a lower temperature could it be shown that specific surface area and total gas adsorption increases with both increasing curing temperature and decreased Si : Al ratio. This observation is consistent with previous suggestions of increased zeolitic character under these conditions, where previous gas adsorption investigations had not observed this expected relationship. Hydrogen physisorption is proposed as a substitute technique for micropore isotherms in GPs due to the difficulty of removing trace gasses from GPs and the measurement effect of such gasses at high vacuum. A hydrogen physisorption isotherm qualitatively resembled an equivalent nitrogen micropore isotherm.
    Print ISSN: 0002-7820
    Electronic ISSN: 1551-2916
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2013-09-24
    Description: In this work, the role of europium doping of glasses formulated in the ternary system ZnO – CdO – TeO 2 is described. The Eu -doped oxide glasses were prepared by the conventional melt-quenching method and by using three different compositions. Structural studies reveal that there exists a good affinity between Cd and some rare earth (RE) ions to form the crystalline phase. The X-ray diffraction (XRD) diagrams display that the structure of these glasses is amorphous and with the increase in CdO content and the compatibility of Eu 3+ , there is a tendency to form nanocrystals of CdTe 2 O 5 . The scanning electron microscopic (SEM) observation of their microstructure confirms the presence of phase separation. Differential thermal analysis (DTA) of these glasses showed small exothermic peaks noted around 450°C for the V2 glass and 480°C for V1 and V3 glasses, which could be attributed to the formation of these crystals. The infrared spectra showed a main absorption band around 800–600 cm −1 corresponding to the Te – O stretching mode in TeO 4 and TeO 3 groups. By optical absorption (OA), the band gap ( E g ) for each glass was determined; these values were 3.27, 3.14, and 3.3 eV for the V1–V3 glasses, respectively. Furthermore, the presence of Eu 3+ was detected in the 370–470 nm short-range wavelengths. The photoluminescence (PL) experiments of the glasses showed light emission due to the following transitions: 5D0 → 7F1, 5D0 → 7F2, 5D0 → 7F3, and 5D0 → 7F4.
    Print ISSN: 0002-7820
    Electronic ISSN: 1551-2916
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2013-09-27
    Description: The magnitude and direction of phenological shifts from climate warming could be predictably variable across the planet depending upon the nature of physiological controls on phenology, the thermal sensitivity of the developmental processes and global patterns in the climate warming. We tested this with respect to the flight phenology of adult nocturnal moths (3.33 million captures of 334 species) that were sampled at sites in southern and northern Finland during 1993–2012 (with years 2005–2012 treated as an independent model validation data set). We compared eight competing models of physiological controls on flight phenology to each species and found strong support for thermal controls of phenology in 66% of the species generations. Among species with strong thermal control of phenology in both the south and north, the average development rate was higher in northern vs. southern populations at 10 °C, but about the same at 15 and 20 °C. With a 3 °C increase in temperature (approximating A2 scenario of IPPC for 2090–2099 relative to 1980–1999) these species were predicted to advance their phenology on average by 17 (SE ± 0.3) days in the south vs. 13 (±0.4) days in the north. The higher development rates at low temperatures of poleward populations makes them less sensitive to climate warming, which opposes the tendency for stronger phenological advances in the north from greater increases in temperature.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2013-10-01
    Description: Desert annuals are a critically important component of desert communities and may be particularly responsive to increasing atmospheric [CO 2 ] because of their high potential growth rates and flexible phenology. During the ten-year life of the Nevada Desert FACE (Free-air CO 2 enrichment) Facility, we evaluated the productivity, reproductive allocation, and community structure of annuals in response to long-term elevated [CO 2 ] exposure. The dominant forb and grass species exhibited accelerated phenology, increased size, and higher reproduction at elevated [CO 2 ] in a wet El Niño year near the beginning of the experiment. However, a multi-year dry cycle resulted in no increases in productivity or reproductive allocation for the remainder of the experiment. At the community level, early indications of increased dominance of the invasive Bromus rubens at elevated [CO 2 ] gave way to an absence of Bromus in the community during a drought cycle, with a resurgence late in the experiment in response to higher rainfall and a corresponding high density of Bromus in a final soil seed bank analysis, particularly at elevated [CO 2 ]. This long-term experiment resulted in two primary conclusions: (1) elevated [CO 2 ] does not increase productivity of annuals in most years; and (2) relative stimulation of invasive grasses will likely depend on future precipitation, with a wetter climate favoring invasive grasses but currently predicted greater aridity favoring native dicots. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2013-10-02
    Description: The conductivity of nominal CaWO 4 , CaW 0.99 Ta 0.01 O 4–δ , 0.7( CaWO 4 )–0.3( La 0.99 Ca 0.01 NbO 4–δ ), and Ca 0.9 La 0.1 WO 4+δ has been studied by means of a.c. impedance measurements. Proton conductivity was observed for CaW 0.99 Ta 0.01 O 4–δ , which displayed exothermic hydration with enthalpy and entropy of –82 kJ/mol and –120 J/molK, respectively. The proton mobility in CaW 0.99 Ta 0.01 O 4–δ was low, with enthalpy and preexponential factor of mobility of 82 kJ/mol and 0.7 cm 2 K/Vs. The high enthalpy of mobility is interpreted to reflect association between the acceptor dopant and protonic defects, whereas the low preexponential factor of mobility may reflect a lower proton concentration than assumed. Rietveld refinement indicated low solubilities of La on Ca -site and Ta on W-site. Proton conductivity was also observed in undoped CaWO 4 , however, not in Ca 0.9 La 0.1 WO 4+δ . The conductivity of 0.7( CaWO 4 )–0.3( La 0.99 Ca 0.01 NbO 4–δ ) behaved much like that of undoped LaNbO 4 , likely due to a very low acceptor dopant concentration.
    Print ISSN: 0002-7820
    Electronic ISSN: 1551-2916
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2013-10-02
    Description: A new lead-free BNT-based piezoelectric ceramics of (1 −  x ) Bi 0.5 Na 0.5 TiO 3 – x Bi ( Al 0.5 Ga 0.5 ) O 3 ( x  = 0, 0.02, 0.03, 0.04, and 0.05) were synthesized using a conventional ceramic fabrication method. Their structures and electrical properties were investigated. All the samples show a typical ferroelectric P ( E ) loops and S ( E ) curves at room temperature. The optimal properties are obtained at the composition of the x  = 0.03. The substitution of Bi ( Al 0.5 Ga 0.5 ) O 3 enhances piezoelectric constant and increases Curie temperature from 58 pC/N and 310°C of pure BNT to 93 pC/N and 325°C of the x  = 0.03. The temperature-dependent P ( E ) loops and S ( E ) curves of 0.97BNT–0.03BAG indicate that phase transition from ferroelectric to antiferroelectric takes place over a very wide temperature region from 80°C to 180°C. The results show that the introduction of BAG improves the electrical properties of BNT.
    Print ISSN: 0002-7820
    Electronic ISSN: 1551-2916
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2013-10-04
    Description: During the late Miocene, a dramatic global expansion of C 4 plant distribution occurred with broad spatial and temporal variations. Although the event is well documented, whether subsequent expansions were caused by a decreased atmospheric CO 2 concentration or climate change is a contentious issue. In the present study, we used an improved inverse vegetation modeling approach that accounts for the physiological responses of C 3 and C 4 plants to quantitatively reconstruct the paleoclimate in the Siwalik of Nepal based on pollen and carbon isotope data. We also studied the sensitivity of the C 3 and C 4 plants to changes in the climate and the atmospheric CO 2 concentration. We suggest that the expansion of the C 4 plant distribution during the late Miocene may have been primarily triggered by regional aridification and temperature increases. The expansion was unlikely caused by reduced CO 2 levels alone. Our findings suggest that this abrupt ecological shift mainly resulted from climate changes related to the decreased elevation of the Himalayan foreland. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2013-06-06
    Description: We studied ancient enamels on gilded copper from a collection of archeological horse harness pendants of the Museo Instituto Valencia de Don Juan (Madrid, Spain) to test the benefits of a new, nondestructive analytical methodology based on chemometric analysis (i.e., Principal Component Analysis, PCA) on micro-ATR-FTIR spectral data and chemical quantification using SEM-EDS. The novelty of this approach was threefold: (i) PCA allowed the discrimination of the different harness pendants of known origin and attributed to the 14th and 15th centuries according to the chemical complex composition, nanostructure, glass weathering, and/or coloring mechanisms of each colored enamel, separately (i.e., red, purple, blue, and white), (ii) it is a cheap, easily available and nondestructive methodology that enables us to (iii) draw archeological conclusions about the quality of the manufacturing process, reassess the chronology of these objects and attempt to attribute them to different workshops according to the different traditional recipes identified. In particular, the enamels were made of alkali and/or alkaline earth lead-glass with a wide range of chemical compounds in the form of pigments or opacifiers. Two types of coloring mechanisms were identified, colloidal particles such as copper-ruby for red enamels, and ionic mechanisms such as Fe (II) and Co (II) to achieve a blue pigments; Mn (III) in the purple pigment; and two kind of white enamels were identified, i.e., tin oxide as an opacifier and uranium oxide. In addition, we established the reason for the poor state of conservation of some of the enamels by means of the identification of depolymerization and ion exchanges, well-known harmful effects of glass weathering, and finally a chronology was assigned for some of these pieces according to the enamel composition.
    Print ISSN: 0002-7820
    Electronic ISSN: 1551-2916
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2013-06-06
    Description: Novel glass-ceramics with embedded thermoelectric Bi 2 Se 3 crystals were prepared from glass matrices in the Ge 20 Se 100− x Bi x ( x  = 5, 10, 12 mol%) system. Based on DSC results performed at different heating rates, characteristic activation energies ( E c ) and Avrami exponents ( n ) were obtained and analyzed by using Kissinger's relation, Ozawa's method, Augis–Bennett approximation and Matusita–Sakka theory. XRD results showed that pure Bi 2 Se 3 crystalline phase precipitated upon annealing at different temperatures for various time. The crystal size and crystalline fraction in the samples could be tuned by controlling the annealing time.
    Print ISSN: 0002-7820
    Electronic ISSN: 1551-2916
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2013-06-06
    Description: In the present investigations nano size high alumina cements (HAC) were prepared by very effective co-melt precursor sintering technique from their metal nitrate precursors. The prime cementing phases observed were CA, CA 2 , and C 12 A 7 . The addition of nano structured cements in refractory castables has improved the thermo-chemical-mechanical properties to a significant extent. Each batch of low cement castables (LCC) was prepared from calcined Chinese bauxite, HAC, and superfine additives. The effect of HAC in bauxite castable with the additives similar to Silicon Carbide, reactive alumina, and micro-fine silica on the sinterability and properties of these castables was investigated. Physical properties such as apparent porosity and bulk density, mechanical properties such as hot modulus of rupture (HMOR), cold and hot modulus of rupture (CMOR), and cold crushing strength (CCS) of hydrated and sintered castables were studied. The sintered castables were also characterized for their solid phase compositions and microstructure using X-ray diffraction (XRD) and FE-SEM, respectively. In the castables new phases such as mullite, α-alumina were formed at the expense of bauxite and silica. Solid solution of mullite formed at high temperature acts as a bonding phase and is accounted for high HMOR, CMOR, and CCS values. These excellent properties of such castables may enable their uses in various applications such as refractory lining for fabrication of steel, aluminium, copper, glass, cement, chemicals, and ceramics.
    Print ISSN: 0002-7820
    Electronic ISSN: 1551-2916
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2013-06-07
    Description: Projections of future changes in land carbon (C) storage using biogeochemical models depend on accurately modeling the interactions between the C and nitrogen (N) cycles. Here, we present a framework for analyzing N limitation in global biogeochemical models to explore how C-N interactions of current models compare to field observations, identify the processes causing model divergence, and identify future observation and experiment needs. We used a set of N fertilization simulations from two global biogeochemical models (CLM-CN and O-CN) that use different approaches to modeling C-N interactions. On the global scale, net primary productivity (NPP) in the CLM-CN model was substantially more responsive to N fertilization than in the O-CN model. The most striking difference between the two models occurred for humid tropical forests, where the CLM-CN simulated a 62% increase in NPP at high N addition levels (30 g N m −2 yr −1 ), while the O-CN predicted a 2% decrease in NPP due to N fertilization increasing plant respiration more than photosynthesis. Across 35 temperate and boreal forest sites with field N fertilization experiments, we show that the CLM-CN simulated a 46% increase in aboveground NPP in response to N, which exceeded the observed increase of 25%. In contrast, the O-CN only simulated a 6% increase in aboveground NPP at the N fertilization sites. Despite the small response of NPP to N fertilization, the O-CN model accurately simulated ecosystem retention of N and the fate of added N to vegetation when compared to empirical 15 N tracer application studies. In contrast, the CLM-CN predicted lower total ecosystem N retention and partitioned more losses to volatilization than estimated based from observed N budgets of small catchments. These results point to the need for model improvements for both models to enhance the accuracy with which global C-N cycle feedbacks can be simulated. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2013-06-07
    Description: This study reports the first well-replicated analysis of continuous coral growth records from warmer-water reefs (mean annual SST 〉28.5°C) around the Thai-Malay Peninsula in Southeast Asia. Based on analyses of 70 colonies sampled from 15 reefs within six locations, region-wide declines in coral calcification rate (~18.6%), linear extension rate (~15.4%) and skeletal bulk density (~3.9%) were observed over a 31-year period from 1980–2010. Decreases in calcification and linear extension rates were observed at five of the six locations and ranged from ~17.2-21.6% and ~11.4–19.6% respectively, while decline in skeletal bulk density was a consequence of significant reductions at only two locations (~6.9% and ~10.7%). A significant link between region-wide growth rates and average annual SST was found, and Porites spp. demonstrated a high thermal threshold of ~29.4°C before calcification rates declined. Responses at individual locations within the region were more variable with links between SST and calcification rates being significant at only four locations. Rates of sea temperature warming at locations in the Andaman Sea (Indian Ocean) (~1.3°C decade −1 ) were almost twice those in the South China Sea (Pacific Ocean) (~0.7°C decade −1 ), but this was not reflected in the magnitude of calcification declines at corresponding locations. Considering that massive Porites spp. are major reef-builders around Southeast Asia, this region-wide growth decline is a cause for concern for future reef accretion rates and resilience. However, this study suggests that the future rates and patterns of change within the region are unlikely to be uniform or dependent solely on the rates of change in the thermal environment. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2013-06-07
    Description: Although striking changes have been documented in plant and animal phenology over the past century, less is known about how the fungal kingdom's phenology has been changing. A few recent studies have documented changes in fungal fruiting in Europe in the last few decades, but the geographic and taxonomic extent of these changes, the mechanisms behind these changes, and their relationships to climate, are not well understood. Here, we analyzed herbarium data of 274 species of fungi from Michigan to test the hypotheses that fruiting times of fungi depend on annual climate, and that responses depend on taxonomic and functional groups. We show that the fungal community overall fruits later in warmer and drier years, which has led to a shift toward later fruiting dates for autumn-fruiting species, consistent with existing evidence. However, we also show that these effects are highly variable among species and are partly explained by basic life history characteristics. Resulting differences in climate sensitivities are expected to affect community structure as climate changes. This study provides a unique picture of the climate-dependence of fungal phenology in North America and an approach for quantifying how individual species and broader fungal communities will respond to ongoing climate change. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2013-06-07
    Description: A unique long-term phenological dataset of over 110,000 records of 1st cutting dates for haymaking across Germany, spanning the years 1951-2011 was examined. In addition, we analysed a long-term dataset on the beginning of flowering of meadow foxtail ( Alopecurus pratensis ) covering the last 20 years. We tested whether hay cutting dates (based on a human decision when to cut) showed trends, temperature relationships and spatial distribution similar to the development of this grassland species, and if these trends could be related to climate change. The timing of 1st hay cut was strongly influenced (p 〈 0.001) by altitude, latitude and longitude, revealing in particular an east-west gradient. Over the past 60 years there have been changes in the timing of hay cutting, with the majority of German federal states having significant (p 〈 0.05) advances of approximately 1 day per decade. Overall, the response to mean March- May temperature was highly significant (-2.87 days °C −1 ; p 〈 0.001). However, in the last 20 years no federal state experienced a significant advance and two were even significantly delayed. The temperature response in this post-1991 period became less or non significant for most of the federal states. We suggest that differences in agricultural land use and unequal uptakes of Agri-Environment Schemes (AES, which encourage later cutting) were likely to be responsible for the regional differences, while the general increase in AES appears to have confounded the overall trend in hay cutting in the last 20 years. Trends over time and responses to temperature were small relative to those associated with the phenology of meadow foxtail. The advance in phenology of this species is greater than the advance in hay cutting, implying that hay cutting may not be keeping pace with a changing climate, which may have a positive effect on grassland ecology. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2013-06-11
    Description: Zn 2 GeO 4 ceramic materials were synthesized by the solid-state method. Zn 2 GeO 4 powders were investigated with X-ray powder diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM). Oxygen defects in the Zn 2 GeO 4 ceramics were investigated by photoluminescence, Raman, and EDS spectra. Conductivity of Zn 2 GeO 4 was 0.18 S/cm at low temperature of 773 K, and its activation energy was 0.49 eV. The results showed that Zn 2 GeO 4 was a promising low-temperature electrolyte with high conductivity.
    Print ISSN: 0002-7820
    Electronic ISSN: 1551-2916
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2013-06-12
    Description: The rate of vegetation recovery from boreal wildfire influences terrestrial carbon cycle processes and climate feedbacks by affecting the surface energy budget and land-atmosphere carbon exchange. Previous forest recovery assessments using satellite optical-infrared normalized difference vegetation index (NDVI) and tower CO 2 eddy covariance techniques indicate rapid vegetation recovery within 5 to 10 years, but these techniques are not directly sensitive to changes in vegetation biomass. Alternatively, the vegetation optical depth (VOD) parameter from satellite passive microwave remote sensing can detect changes in canopy biomass structure and may provide a useful metric of post-fire vegetation response to inform regional recovery assessments. We analyzed a multi-year (2003-2010) satellite VOD record from the NASA AMSR-E (Advanced Microwave Scanning Radiometer for EOS) sensor to estimate forest recovery trajectories for 14 large boreal fires from 2004 in Alaska and Canada. The VOD record indicated initial post-fire canopy biomass recovery within 3 to 7 years, lagging NDVI recovery by 1 to 5 years. The VOD lag was attributed to slower non-photosynthetic (woody) and photosynthetic (foliar) canopy biomass recovery, relative to the faster canopy greenness response indicated from the NDVI. The duration of VOD recovery to pre-burn conditions was also directly proportional (p〈0.01) to satellite (MODIS) estimated tree cover loss used as a metric of fire severity. Our results indicate that vegetation biomass recovery from boreal fire disturbance is generally slower than reported from previous assessments based solely on satellite optical-infrared remote sensing, while the VOD parameter enables more comprehensive assessments of boreal forest recovery. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2013-06-12
    Description: Shifts in precipitation regimes are an inherent component of climate change, but in low energy systems are often assumed to be less important than changes in temperature. Because soil moisture is the hydrological variable most proximally linked to plant performance during the growing season in arctic-alpine habitats, it may offer the most useful perspective on the influence of changes in precipitation on vegetation. Here we quantify the influence of soil moisture for multiple vegetation properties at fine spatial scales, to determine the potential importance of soil moisture under changing climatic conditions. A fine-scale dataset, comprising vascular species cover and field-quantified ecologically-relevant environmental parameters, was analysed to determine the influence of soil moisture relative to other key abiotic predictors. Soil moisture was strongly related to community composition, species richness and the occurrence patterns of individual species, having a similar or greater influence than soil temperature, pH and solar radiation. Soil moisture varied considerably over short distances, and this fine-scale heterogeneity may contribute to offsetting the ecological impacts of changes in precipitation for species not limited to extreme soil moisture conditions. In conclusion, soil moisture is a key driver of vegetation properties, both at the species- and community-level, even in this low energy system. Soil moisture conditions represent an important mechanism through which changing climatic conditions impact vegetation, and advancing our predictive capability will therefore require a better understanding of how soil moisture mediates the effects of climate change on biota. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2013-06-13
    Description: Global nitrogen (N) enrichment has resulted in increased nitrous oxide (N 2 O) emission that greatly contributes to climate change and stratospheric ozone destruction, but little is known about the N 2 O emissions from urban river networks receiving anthropogenic N inputs. We examined N 2 O saturation and emission in the Shanghai city river network, covering 6300 km 2 , over 27 months. The overall mean saturation and emission from 87 locations was 770% and 1.91 mg N 2 O-N•m −2 •d −1 , respectively. N 2 O saturation did not exhibit a clear seasonality, but the temporal pattern was co-regulated by both water temperature and N loadings. Rivers draining through urban and suburban areas receiving more sewage N inputs had higher N 2 O saturation and emission than those in rural areas. Regression analysis indicated that water ammonium (NH 4 + ) and dissolved oxygen (DO) level had great control on N 2 O production and were better predictors of N 2 O emission in urban watershed. About 0.29 Gg N 2 O-N•yr −1 N 2 O was emitted from the Shanghai river network annually, which was about 131% of IPCC's prediction using default emission values. Given the rapid progress of global urbanization, more study efforts, particularly on nitrification and its N 2 O yielding, are needed to better quantify the role of urban rivers in global riverine N 2 O emission. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2013-06-06
    Description: This article details the influence of zirconium doping on the piezoelectric properties and relaxor characteristics of 94( Bi 1/2 Na 1/2 ) TiO 3 –6 Ba ( Zr x Ti 1− x ) O 3 (BNT–6BZT) bulk ceramics. Neutron diffraction measurements of BNT–6BZT doped with 0%–15% Zr revealed an electric-field-induced transition of the average crystal structure from pseudo-cubic to rhombohedral/tetragonal symmetries across the entire compositional range. The addition of Zr up to 10% stabilizes this transition, resulting in saturated polarization hysteresis loops with a maximum polarization of 40 μC/cm 2 at 5.5 kV/mm, while corresponding strain hysteresis measurements yield a maximum strain of 0.3%. With further Zr addition, the ferroelectric order is progressively destabilized and typical relaxor characteristics such as double peaks in the current density loops are observed. In the strain hysteresis, this destabilization leads to an increase of the maximum strain by 0.05%. These changes to the physical behavior caused by Zr addition are consistent with a reduction of the transition temperature T F-R , above which the field-induced transformation from the relaxor to ferroelectric state becomes reversible.
    Print ISSN: 0002-7820
    Electronic ISSN: 1551-2916
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2013-06-06
    Description: Precursor glasses for the ferroelectric barium bismuth titanate ( BaBi 4 Ti 4 O 15 ) (BBiT) have been prepared by the melt-quench technique in the SiO 2 – K 2 O – BaO – Bi 2 O 3 – TiO 2 (SKBBT) glass system with and without Eu 2 O 3 doping. BBiT glass–ceramic (GC) nanocomposites have been derived from these glasses by controlled heat treatment. The structural properties of the GCs have been investigated using X-ray diffraction (XRD), electron microscopy (FE-SEM, TEM), and FT-IR reflectance spectroscopy. FE-SEM images show the formation of randomly oriented hexagonal rod-shaped crystals of 200–400 nm and TEM images show 10–20 nm crystallites. FT-IR spectra exhibit the characteristic bands of BBiT at 480, 585, and 680 cm −1 . The activation energy of crystallization ( E c ) varies from 295 to 307 kJ/mol. The dielectric constants (ε r ) of glass and GC nanocomposites increase with an increase in frequency up to 3.0 MHz and then decrease up to 5.0 MHz. Heat-treated GCs show higher ε r values, in the range 25–55, compared to the precursor glasses (20–37). Dielectric losses (tan δ) for all the samples increase from 0.005 to 1.0 with an increase in frequency from 100 Hz to 5.0 MHz. Excitation spectra were recorded by monitoring emission at 613 nm corresponding to the 5 D 0 → 7 F 2 transition. An intense 466 nm excitation band corresponding to the 7 F 0 → 5 D 2 transition was observed. Emission spectra were then recorded by exciting the glass samples at 466 nm. Longer heat-treatment times led to a 15-fold increase in the intensity of the red emission at 612 nm, attributed to the segregation of Eu 3+ ions into the low phonon energy BBiT crystallites. The hardness (3.8–5.1 GPa) and fracture toughness (1.8–3.5 MPam 0.5 ) values obtained in the GCs are high and suitable for structural applications.
    Print ISSN: 0002-7820
    Electronic ISSN: 1551-2916
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2013-06-06
    Description: Carbon doping is known to be very effective for enhancing the high-field properties of magnesium diboride, MgB 2 , but not for the low-field properties. Here, we report that both the high- and the low-field properties can be improved simultaneously without doping by increasing the initial magnesium partial pressure, by simply reducing the size of the magnesium particles. It is shown that in situ processed bulk MgB 2 sintered with fine magnesium powders has superior superconducting properties compared with a bulk sample fabricated using coarse magnesium lumps. The change in the lattice parameters was almost negligible; however, a clear increase in lattice strain can be observed for the sample sintered with fine magnesium powders. The increase in the lattice strain results in an enhancement of the high-field properties. Furthermore, it has also been found that the low-field critical current density is not reduced, but rather slightly increased for the fine magnesium powder sample. This is due to a closer linkage among the grains that drastically improves grain connectivity. These findings demonstrate that the initial growth mechanism of MgB 2 is very crucial for its superior superconducting properties, and it especially indicates the importance of magnesium vapor pressure.
    Print ISSN: 0002-7820
    Electronic ISSN: 1551-2916
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2013-06-06
    Description: Revisiting classic phase diagrams and chemical phase relations in the solid state of a very well-studied oxide system, such as the lithium aluminosilicate (LAS) system, can open a new window for the design of new advanced materials with improved properties. Crystal chemistry and phase equilibria are used to demonstrate the ability to design materials with particular desired properties in the alumina-rich corner of the LAS phase diagram. The experimental results demonstrate the alumina and β-eucryptite solid-state compatibility.
    Print ISSN: 0002-7820
    Electronic ISSN: 1551-2916
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2013-06-06
    Description: This work reports the crystallization, microstructure, and surface composition of Cu In 0.7 Ga 0.3 Se 2 (CIGS) thin films grown by femtosecond pulsed laser deposition at different annealing temperatures. The structural and optical properties of the CIGS films were characterized by X-ray diffraction, Raman scattering, UV-visible spectroscopy, and Hall effect measurement. The results indicate that binary crystals of CuS e initially formed on the as-deposited film, but then completely turned into a quaternary chalcopyrite structure after annealing at 400°C. Phase transformation significantly affects the surface morphology, Hall properties, and band gap. Transmission electron microscopy further revealed that an interface between the Mo substrate and CIGS crystallites contains an amorphous layer even at the high temperature of 500°C. For the application of photovoltaic devices, we also report on the photoresponse of both as-deposited and annealed films as demonstrated by preliminary tests.
    Print ISSN: 0002-7820
    Electronic ISSN: 1551-2916
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2013-06-06
    Description: Reactive sintering of 3 Ti : Sn :2 C and 3Ti:Sn:2C:0.6Fe powder mixtures is studied in the temperature range 510°C–1200°C under argon. It is demonstrated that the recently discovered Ti 3 SnC 2 phase is formed, provided that Fe is added to a 3 Ti : Sn :2 C reactant mixture within the synthesis conditions used. Using dilatometric and X-Ray diffraction analyses, the formation mechanism of Ti 3 SnC 2 is discussed. Results show that at low temperature (about 510°C), tin is consumed to form Fe x Sn y intermetallics. At high temperature (about 1060°C), tin is newly available to form Ti 3 SnC 2 due to the melting of Fe x Sn y . Then, the intermediate phases, TiC and Ti 2 SnC , and/or Ti 5 Sn 3 , TiC , C , and Ti are dissolved in the ( Fe  +  Sn ) liquid phase and Ti 3 SnC 2 very likely precipitate from the melt. The second part of the study deals with the optimization of the Fe content in the initial 3Ti:Sn:2C reactant powder mixture to synthesize samples with larger Ti 3 SnC 2 content by hot isostatic pressing.
    Print ISSN: 0002-7820
    Electronic ISSN: 1551-2916
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2013-06-06
    Description: The effects of non-stoichiometry on the microstructure, oxygen vacancies, and piezoelectric properties of ( Na 0.5 K 0.5 ) x NbO 3 (NK x N, where x  =   0.98, 1.00, 1.01, and 1.02) ceramics doped with sintering aid CuTa 2 O 6 (CT) doping were investigated. X-ray diffraction (XRD) patterns indicated that a secondary phase formed in CT-doped NK x N (NK x NCT) ceramics with x  〈   1.00 and that a pure phase was obtained with x  ≥   1.00. The grain size of NK x NCT ceramics increased with increasing x value due to the formation of a liquid phase. The internal bias field, activation energy, and Raman analysis for NK x NCT ceramics showed that the number of induced oxygen vacancies increased with decreasing x value. The high mechanical quality factor ( Q m ) value obtained for NK x NCT ceramics did not correspond to a higher concentration of oxygen vacancies, illustrating that the suitable compensation (excess Na and K ) is more important than the concentration of oxygen vacancies to obtain the ceramics with high Q m values. The NK x NCT ceramics with x  =   1.01 exhibited excellent piezoelectric properties, with k p and Q m values of 39.9% and 2,070, respectively.
    Print ISSN: 0002-7820
    Electronic ISSN: 1551-2916
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2013-06-06
    Description: Low-temperature sintering of β-spodumene ceramics with low coefficient of thermal expansion (CTE) was attained using Li 2 O – GeO 2 sintering additive. Single-phase β-spodumene ceramics could be synthesized by heat treatment at 1000°C using highly pure and fine amorphous silica, α-alumina, and lithium carbonate powders mixture via the solid-state reaction route. The mixture was calcined at 950°C, finely pulverized, compacted, and finally sintered with or without the sintering additive at 800°C–1400°C for 2 h. The relative density reached 98% for the sample sintered with 3 mass% Li 2 O – GeO 2 additive at 1000°C. Its Young's modulus was 167 GPa and flexural strength was 115 MPa. Its CTE (from R.T. to 800°C) was 0.7 × 10 −6  K −1 and dielectric constant was 6.8 with loss tangent of 0.9% at 5 MHz. These properties were excellent or comparative compared with those previously reported for the samples sintered at around 1300°C–1400°C via melt-quenching routes. As a result, β-spodumene ceramics with single phase and sufficient properties were obtained at about 300°C lower sintering temperature by adding Li 2 O – GeO 2 sintering additive via the conventional solid-state reaction route. These results suggest that β-spodumene ceramics sintered with Li 2 O – GeO 2 sintering additive has a potential use as LTCC for multichip modules.
    Print ISSN: 0002-7820
    Electronic ISSN: 1551-2916
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2013-06-06
    Description: Pyrochlore-structured lanthanide stannate ceramic ( Ln 2 Sn 2 O 7 ) has been synthesized via a new complex precipitation method. A suite of characterization techniques, including FTIR, Raman, X-ray, and electron diffraction as well as nitrogen sorption were employed to investigate the structural evolution of the synthesized and calcined powder. Raman, XRD, and selected area electron diffraction results confirm the presence of the pyrochlore structure after calcination of the powder above 1200°C. TEM imaging shows fine crystallites gradually increased in size from approximately 100 nm to about 500 nm with higher calcination temperatures. Grain growth and powder densification upon increasing the calcination temperature was confirmed by nitrogen sorption results. This aqueous synthetic method provides a simple pathway for the preparation of homogeneous lanthanide stannate ceramics.
    Print ISSN: 0002-7820
    Electronic ISSN: 1551-2916
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2013-06-12
    Description: Ceramics have played a crucial role in the development of fission based nuclear power, in glass & glass composite high level wasteforms, in composite cements to encapsulate intermediate level wastes (ILW) and also for oxide nuclear fuels based on UO 2 and PuO 2 /UO 2 mixed oxides. They are also used as porous filters with the ability to absorb radionuclides (RN) from air and liquids and are playing a key role in the cleanup at Fukushima. Non-oxides also find current fission applications including in graphite moderators and B 4 C control rods. Ceramics will continue to be significant in the near-term expansion of nuclear power via next-step developments of fuels with inert matrices or based on thoria and in wasteforms using alternative composite cements or single or multiphase ceramics that can host Pu & other difficult RN. Longer term advances for Generation IV reactors, which will operate at higher temperatures & with higher fuel burn-up require innovative fuel developments potentially via carbides & nitrides or composite fuel systems. Novel non-thermal (cement-like) and thermal techniques are currently being developed to treat some of the difficult legacy wastes. Non-thermally derived wasteforms developed from geopolymers, composite cements, hydroceramics, and phosphate-bonded ceramics and thermally derived wasteforms made by Hot Isostatic Pressing and fluidized bed steam reforming (FBSR) as well as vitrification techniques based on cold crucible melting (CCM), Joule-heater in-container melting and plasma melting (PM) are described. Future developments in waste treatment will be based on separation technologies for partitioning individual RN along with design & construction of RN-containing ceramic targets for inducing transmutation reactions. Near demonstration actinide-hosting ceramic wasteforms including multiphase Synroc systems are described. Opportunities also exist for ceramics in structural applications in Generation IV reactors such as composite SiC / SiC and C / C for fuel cladding and control rods and MAX phases and ultrahigh-temperature ceramics (UHTCs) may find near core fuel coating and cladding applications. Uses of ceramics in fusion reactor systems will be both functional (ceramic superconductors in magnet systems for plasma control and in Li silicate breeder blankets in tokamaks) and structural including as sapphire diagnostic windows, graphite diverters, and plasma facing C and UHTCs. In all these cases, performance is limited by poorly understood radiation damage and interface controlled processes, which demands a combined modeling/experimental approach.
    Print ISSN: 0002-7820
    Electronic ISSN: 1551-2916
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2013-06-07
    Description: Our ability to project the impact of global change on marine ecosystem is limited by our poor understanding on how to predict species sensitivity. For example, the impact of ocean acidification is highly species-specific, even in closely related taxa. The aim of this study was to test the hypothesis that the tolerance range of a given species to decreased pH corresponds to their natural range of exposure. Larvae of the green sea urchin Strongylocentrotus droebachiensis were cultured from fertilization to metamorphic competence (29 days) under a wide range of pH (from pH T =8.0/ p CO 2 ≈480μatm to pH T =6.5/ p CO 2 ≈20000μatm) covering present (from pH T 8.7 to 7.6), projected near-future's variability (from pH T 8.3 to 7.2) and beyond. Decreasing pH impacted all tested parameters (mortality, symmetry, growth, morphometry and respiration). Development of normal, although showing morphological plasticity, swimming larvae was possible as low as pH T ≥7.0. Within that range, decreasing pH increased mortality and asymmetry and decreased body length growth rate. Larvae raised at lowered pH and with similar body length had shorter arms and a wider body. Relative to a given body length, respiration rates and stomach volume both increased with decreasing pH suggesting changes in energy budget. At the lowest pHs (pH T ≤6.5), all the tested parameters were strongly negatively affected and no larva survived past 13 days post-fertilization. In conclusion, sea urchin larvae appeared to be highly plastic when exposed to decreased pH until a physiological tipping point at pH T =7.0. However, this plasticity was associated with direct (increased mortality) and indirect (decreased growth) consequences for fitness. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2013-06-07
    Description: With a pace of about twice the observed rate of global warming, the temperature on the Qinghai-Tibetan Plateau (Earth's “third pole”) has increased by 0.2 °C per decade over the past 50 years, which results in significant permafrost thawing and glacier retreat. Our review suggested that warming enhanced net primary production (NPP) and soil respiration, decreased methane (CH 4 ) emissions from wetlands and increased CH 4 consumption of meadows, but might increase CH 4 emissions from lakes. Warming induced permafrost thawing and glaciers melting would also result in substantial emission of old carbon dioxide (CO 2 ) and CH 4 . Nitrous oxide (N 2 O) emission was not stimulated by warming itself, but might be slightly enhanced by wetting. However, there are many uncertainties in such biogeochemical cycles under climate change. Human activities (e.g., grazing, land cover changes) further modified the biogeochemical cycles and amplified such uncertainties on the plateau. If the projected warming and wetting continues, the future biogeochemical cycles will be more complicated. So facing research in this field is an ongoing challenge of integrating field observations with process-based ecosystem models to predict the impacts of future climate change and human activities at various temporal and spatial scales. To reduce the uncertainties and improve the precision of the predictions of the impacts of climate change and human activities on biogeochemical cycles, efforts should focus on conducting more field observation studies, integrating data within improved models, and developing new knowledge about coupling among carbon, nitrogen, and phosphorus biogeochemical cycles as well as about the role of microbes in these cycles. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2013-06-07
    Description: Some species are adapting to changing environments by expanding their geographic ranges. Understanding whether range shifts will be accompanied by increased exposure to other threats is crucial to predicting when and where new populations could successfully establish. If species overlap to a greater extent with human development under climate change, this could form ecological traps which are attractive to dispersing individuals, but the use of which substantially reduces fitness. Until recently, the core nesting range for the Critically Endangered Kemp's ridley sea turtle ( Lepidochelys kempii ) was ~1,000km of sparsely populated coastline in Tamaulipas, Mexico. Over the past twenty-five years, this species has expanded its range into populated areas of coastal Florida (〉1,500km outside the historical range), where nesting now occurs annually. Suitable Kemp's ridley nesting habitat has persisted for at least 140,000 years in the western Gulf of Mexico, and climate change models predict further nesting range expansion into the eastern Gulf of Mexico and northern Atlantic Ocean. Range expansion is 6-12% more likely to occur along uninhabited stretches of coastline than are current nesting beaches, suggesting that novel nesting areas will not be associated with high levels of anthropogenic disturbance. Although the high breeding-site fidelity of some migratory species could limit adaptation to climate change, rapid population recovery following effective conservation measures may enhance opportunities for range expansion. Anticipating the interactive effects of past or contemporary conservation measures, climate change, and future human activities will help focus long-term conservation strategies. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2013-06-08
    Description: We combine satellite and ground observations during 1950-2011 to study the long-term links between multiple climate (air temperature and cryospheric dynamics) and vegetation (greenness and atmospheric CO2 concentrations) indicators of the growing season of northern ecosystems (〉45oN) and their connection with the carbon cycle. During the last three decades, the thermal potential growing season has lengthened by about 10.5 days ( p 〈 0.01, 1982–2011), which is unprecedented in the context of the past 60 years. The overall lengthening has been stronger and more significant in Eurasia (12.6 days, p 〈 0.01) than North America (6.2 days, p 〉 0.05). The photosynthetic growing season has closely tracked the pace of warming and extension of the potential growing season in spring, but not in autumn when factors such as light and moisture limitation may constrain photosynthesis. The autumnal extension of the photosynthetic growing season since 1982 appears to be about half that of the thermal potential growing season, yielding a smaller lengthening of the photosynthetic growing season (6.7 days at circumpolar scale, p 〈 0.01). Nevertheless, when integrated over the growing season, photosynthetic activity has closely followed the interannual variations and warming trend in cumulative growing season temperatures. This lengthening and intensification of the photosynthetic growing season, manifested principally over Eurasia rather than North America, is associated with a long-term increase (22.2% since 1972, p 〈 0.01) in the amplitude of the CO2 annual cycle at northern latitudes. The springtime extension of the photosynthetic and potential growing seasons has apparently stimulated earlier and stronger net CO2 uptake by northern ecosystems, while the autumnal extension is associated with an earlier net release of CO2 to the atmosphere. These contrasting responses may be critical in determining the impact of continued warming on northern terrestrial ecosystems and the carbon cycle. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2013-06-11
    Description: The promotion of zircon ( ZrSiO 4 ) crystallization by ZnO from a zirconium-based frit glaze was studied and the possible mechanism was discussed. X-ray diffraction was used to analyze the relative quantities of zircon and other transitional crystals in the samples. The results show that ZnO can significantly decrease the crystallization temperature of zirconium-based glaze, depress the formation of Ca 2 ZrSi 4 O 12 , and promote the devitrification of transitional crystals t - ZrO 2 and Ca 2 ZnSi 2 O 7 , as well as lead to the formation of more zircon than the ZnO -free glaze. It was also found that zircon not only can form from the interaction between t - ZrO 2 and SiO 2 but also can devitrify directly from the glass phase of zirconium-based glaze.
    Print ISSN: 0002-7820
    Electronic ISSN: 1551-2916
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2013-06-11
    Description: Barium-substituted CsAlSi 2 O 6 pollucites, Cs x Ba (1− x )/2 AlSi 2 O 6 , and barium- and iron-substituted pollucites, Cs x Ba (1− x )/2 Al x Fe 1− x Si 2 O 6 and Cs x Ba 1− x Al x Fe 1− x Si 2 O 6 were synthesized with 1 ≥  x ≥ 0.7 using a hydrothermal synthesis procedure. Rietveld analysis of X-ray diffraction data confirmed the substitution of Ba for Cs and Fe for Al , respectively. The crystallographic analysis also describes the effects of three different types of pollucite substitutions on the pollucite unit cell: Ba 2+ for Cs 1+ cation results in little effect on cell dimensions, intermediate concentrations of Ba 2+ and Fe 3+ substitution result in net minor expansion due to Fe 3+ addition, and large Ba and Fe substitutions result in overall framework contraction. Elemental analysis combined with microscopy further supports the phase purity of these new phases. These materials can be used to study the stability of CsAlSi 2 O 6 as a durable ceramic waste form, which could accommodate with time Cs and its decay product, Ba . Furthermore, success in iron substitution for aluminum into the pollucite lattice predicts that redox charge compensation for Cs cation decay is possible.
    Print ISSN: 0002-7820
    Electronic ISSN: 1551-2916
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2013-06-11
    Description: Nitrogen-doped mullite fibers were first synthesized through the nitridation of Al 2 O 3 – SiO 2 gel fibers in NH 3 . The results showed that nitrogen take-up began at 800°C, reached the maximum at 900°C, and then decreased with increasing temperature. The ceramic fibers nitridated at 900°C were essentially amorphous, but contained a small amount of nano-sized Al – Si spinel crystals. Mullite was formed after nitridation at 1200°C, accompanied by crystallization of χ- SiAlON and δ- Al 2 O 3 . The incorporation of nitrogen resulted in the formation of a variety of nitrogen-containing crystalline phases. The grain size of the mullite fibers can be adjusted by changing of the nitrogen content.
    Print ISSN: 0002-7820
    Electronic ISSN: 1551-2916
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2013-06-11
    Description: The solubility limit of Ca in 99.99% pure α- Al 2 O 3 (alumina) was measured using a wavelength dispersive spectrometer mounted on a scanning electron microscope. Al 2 O 3 samples were equilibrated at a concentration which ensured saturation of the Al 2 O 3 grains with Ca , and were quenched in water from 1600°C. The results were compared with those from samples which were furnace cooled from 1600°C. For the quenched samples, the Ca solubility limit was found to be 51 ± 1 ppm, which is significantly larger than the solubility limit for samples which were furnace cooled (26 ± 1 ppm).
    Print ISSN: 0002-7820
    Electronic ISSN: 1551-2916
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2013-06-12
    Description: Coastal wetlands have the capacity to retain and denitrify large quantities of reactive nitrogen (N), making them important in attenuating increased anthropogenic N flux to coastal ecosystems. The ability of coastal wetlands to retain and transform N is being reduced by wetland losses resulting from land development. Nitrogen retention in coastal wetlands is further threatened by the increasing frequency and spatial extent of saltwater-inundation in historically freshwater ecosystems, due to the combined effects of dredging, declining river discharge to coastal areas due to human water use, increased drought frequency, and accelerating sea-level rise. Because saltwater incursion may affect N cycling through multiple mechanisms, the impacts of salinization on coastal freshwater wetland N retention and transformation are not well understood. Here, we show that repeated annual saltwater incursion during late summer droughts in the coastal plain of North Carolina changed N export from organic to inorganic forms and led to a doubling of annual NH 4 + export from a 440 hectare former agricultural field undergoing wetland restoration. Soil solution NH 4 + concentrations in two mature wetlands also increased with salinization, but the magnitude of increase was smaller than in the former agricultural field. Long-term saltwater exposure experiments with intact soil columns demonstrated that much of the increase in reactive N released could be explained by exchange of salt cations with sediment NH 4 + . Using these findings together with the predicted flooding of 1661 km 2 of wetlands along the NC coast by 2100, we estimate that saltwater incursion into these coastal areas could release up to 18,077 Mg N, or approximately half the annual NH 4 + flux of the Mississippi River. Our results suggest that that saltwater incursion into coastal freshwater wetlands globally could lead to increased N loading to sensitive coastal waters. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2013-06-12
    Description: Recently there have been several studies using open top chambers (OTCs) or cloches to examine the response of Arctic plant communities to artificially elevated temperatures. Few, however, have investigated multi-trophic systems, or the effects of both temperature and vertebrate grazing treatments on invertebrates. This study investigated trophic interactions between an herbivorous insect ( Sitobion calvulum , Aphididae), a woody perennial host plant ( Salix polaris ) and a selective vertebrate grazer (barnacle geese, Branta leucopsis ). In a factorial experiment, the responses of the insect and its host to elevated temperatures using open top chambers (OTCs) and to three levels of goose grazing pressure were assessed over two summer growing seasons (2004 and 2005). OTCs significantly enhanced the leaf phenology of Salix in both years and there was a significant OTC by goose presence interaction in 2004. Salix leaf number was unaffected by treatments in both years, but OTCs increased leaf size and mass in 2005. Salix reproduction and the phenology of flowers were unaffected by both treatments. Aphid densities were increased by OTCs but unaffected by goose presence in both years. While goose presence had little effect on aphid density or host plant phenology in this system, the OTC effects provide interesting insights into the possibility of phenological synchrony disruption. The advanced phenology of Salix effectively lengthens the growing season for the plant, but despite a close association with leaf maturity, the population dynamics of the aphid appeared to lack a similar phenological response except for the increased population observed. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2013-06-13
    Description: Evidence is accumulating that species’ responses to climate changes are best predicted by modelling the interaction of physiological limits, biotic processes and the effects of dispersal-limitation. Using commercially harvested blacklip ( Haliotis rubra ) and greenlip abalone ( H. laevigata ) as case studies, we determine the relative importance of accounting for interactions among physiology, metapopulation dynamics and exploitation in predictions of range (geographical occupancy) and abundance (spatially explicit density) under various climate change scenarios. Traditional correlative ecological niche models (ENM) predict that climate change will benefit the commercial exploitation of abalone by promoting increased abundances without any reduction in range size. However, models that account simultaneously for demographic processes and physiological responses to climate-related factors result in future (and present) estimates of area of occupancy and abundance that differ from those generated by ENMs alone. Range expansion and population growth are unlikely for blacklip abalone because of important interactions between climate-dependent mortality and metapopulation processes; in contrast, greenlip abalone should increase in abundance despite a contraction in area of occupancy. The strongly non-linear relationship between abalone population size and area of occupancy has important ramifications for the use of ENM predictions that rely on metrics describing change in habitat area as proxies for extinction risk. These results show that predicting species’ responses to climate change often require physiological information to understand climatic range determinants, and a metapopulation model that can make full use of this data to more realistically account for processes such as local extirpation, demographic rescue, source-sink dynamics and dispersal-limitation. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2013-04-11
    Description: The possibility of developing large solid oxide fuel cell (SOFC) stacks based upon 25 cm 2 ceramic oxide anode-supported cells is investigated. Planar fuel cells comprising strontium titanate-based anode support impregnated with active catalysts were prepared using a combination of deposition techniques. The fuel cell tests performed in a semisealed rig have shown power densities of 185 mW cm −2 at 850°C using humidified hydrogen as fuel and air as oxidant. The structure and evolution of the catalytically active impregnated materials-10 mol% Gd -doped CeO 2 and nickel- are analysed using electron microscopy at the end of the fuel cell test, revealing that a ceria and nickel layer surrounds the titanate backbone grains while ~50–150 nm spherical-like nickel particles uniformly decorate this top layer.
    Print ISSN: 0002-7820
    Electronic ISSN: 1551-2916
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2013-04-11
    Description: Structural and dielectric properties of (1− x ) BaTiO 3 – x Bi ( Mg 1/2 Ti 1/2 ) O 3 ( x  = 0.1–0.5) were investigated to understand the binary system and utilize it for high-voltage, high energy density capacitors. The solubility limit for Bi ( Mg 1/2 Ti 1/2 ) O 3 in a BaTiO 3 perovskite was between x  = 0.4 and x  = 0.5. A phase with pseudocubic symmetry was formed for x  = 0.1–0.4; a secondary phase developed at x  = 0.5. Dielectric measurements showed highly diffusive and dispersive relaxor-like characteristics from 10 to 40 mol% of Bi ( Mg 1/2 Ti 1/2 ) O 3 . These compositions also showed high relative permittivity with low-temperature coefficients of permittivity over a wide range of temperatures −100°C–600°C. Relaxation behavior was quantitatively investigated using the Vogel–Fulcher model, which revealed the activation energy of 0.17–0.22 eV. Prototyped multilayer capacitors of 18 mm × 17 mm × 4 mm dimensions with a capacitance of 12.5 nF at 1 kHz were successfully constructed and demonstrated multiple charge–discharge characteristics up to 10 kV.
    Print ISSN: 0002-7820
    Electronic ISSN: 1551-2916
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2013-04-11
    Description: K 3 Gd ( PO 4 ) 2 : RE 3+ (RE = Eu, Tb) are prepared by solid-state reaction and their photoluminescence (PL) properties are investigated under UV and VUV excitation, respectively. The obtained experimental data show that no energy transfer happens among the activator ions Tb 3+ or Eu 3+ under UV excitation. Under 147-nm excitation, the strongest emission intensity of K 3 Gd ( PO 4 ) 2 : RE 3+ (RE = Eu, Tb) is obtained when the activator ions Tb 3+ or Eu 3+ concentration is 0.8 mol, the integrate emission intensity of K 3 Gd 0.2 (PO 4 ) 2 :0.8Tb 3+ is about 204% of commercial phosphor Zn 1.96 SiO 4 :0.04 Mn 2+ with chromaticity coordinates of (0.340, 0.561) and the decay time of about 5.09 ms under 147-nm excitation. We analyze the experimental data and propose a possible energy-transfer mechanism under 147-nm excitation.
    Print ISSN: 0002-7820
    Electronic ISSN: 1551-2916
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2013-04-11
    Description: The 0.72 Bi ( Fe 1− x Al x ) O 3 –0.28 BaTiO 3 ( x  = 0, 0.01, 0.03, 0.05, and 0.07, abbreviated as BFA x – BT ) lead-free high-temperature ceramics were prepared by the conventional ceramic processing. Systematic investigation on the microstructures, crystalline structures, dielectric and piezoelectric properties, and high-temperature stability of piezoelectric properties was carried out. The crystalline structures of BFA x –BT ceramics evolve from rhombohedral structure with x 〈  0.01 to the coexistence of rhombohedral structure and pseudocubic phases with x  ≈ 0.01, finally to pseudocubic phases when x 〉  0.03. Remarkably high-temperature stability with near-zero temperature coefficient of piezoelectric properties ( TCk p ), together with improved piezoelectric properties has been achieved for x  = 0.01 BFA x –BT ceramics. The BFA x –BT( x  = 0.01) ceramics simultaneously show the excellent piezoelectric properties of d 33  = 151 pC/N, k p  = 0.31 and super-high-temperature stability of T d  = 420°C, TCk p  = 1 × 10 −4 . It is considered that the observed strong piezoelectricity and remarkably high-temperature stability should be ascribed to the phase coexistence of rhombohedral and pseudocubic phases. The rhombohedral phases have a positive TCk p value and the pseudocubic phases possess a negative TCk p value. Thus, the TCk p value of BFA x –BT ceramics can be tuned by composition of x .
    Print ISSN: 0002-7820
    Electronic ISSN: 1551-2916
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2013-04-11
    Description: Owing to the widespread presence of electromagnetic interferences, it is necessary to develop new materials with excellent high-temperature electromagnetic wave (EM) absorption properties. In the present work, ZnO is infiltrated into porous ZrSiO 4 substrates to form ZnO / ZrSiO 4 composite ceramics using sol-gel process. The doping of aluminum results in the improvement of electrical conductivity and the significant change in the morphology of ZnO . With the increase in environment temperature during measurement, the permittivity of the composite ceramics increases first and then decreases dramatically, which is attributed to the change in conductive loss. The electrical conductivity increases with increasing measurement temperature. However, the concentration of oxygen vacancies decreases under air atmosphere when the measurement temperature increases continuously, which results in the reduction in conductivity. Therefore, permittivities of the undoped and doped ceramics measured at 673 K are higher than the ones at the other temperatures. The composite ceramics maintain a relatively high EM absorption coefficient, low reflection coefficient (RC), and wide effective absorption bandwidth at environment temperatures up to 773 K. As a result, we conclude that the ZnO / ZrSiO 4 composite ceramics exhibit a promising prospect as a kind of high-temperature EM absorbing material.
    Print ISSN: 0002-7820
    Electronic ISSN: 1551-2916
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2013-04-06
    Description: [0001] textured alumina ceramics with a fine grain size were fabricated between 1400°C and 1600°C via templated grain growth (TGG) using fine alumina platelets (~0.6 and ~3 μm diameter) aligned by tape casting in either a 50 nm α- Al 2 O 3 matrix powder, or in a seeded boehmite sol. The 3 μm templates could be readily aligned by tape casting in both matrices (orientation parameters r  = 0.27 and 0.18, respectively), whereas 0.6 μm diameter templates were well aligned in the seeded boehmite sol only ( r  = 0.29). Improved alignment in boehmite sols is attributed to inorganic gelation, resulting in a strongly pseudo-plastic rheology that preserves template alignment against the influence of Brownian motion. The in situ formation of fine α- Al 2 O 3 matrix after transformation in the seeded boehmite system results in a higher driving force for TGG and improves texture development. The combination of 3 μm templates with a seeded boehmite matrix results in extremely high texture qualities (texture fraction f  = 0.97–0.99, r  = 0.17) while maintaining a relatively fine grain size (5–10 μm in diameter and 1.5–3 μm in thickness). Although undoped samples can be fully textured at 1600°C, adding as little as ~0.25 wt% CaO / SiO 2 dopant improves TGG kinetics and yields full texture at 1400°C.
    Print ISSN: 0002-7820
    Electronic ISSN: 1551-2916
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2013-04-07
    Description: An elevated atmospheric CO 2 concentration ([CO 2 ]) can reduce stomatal conductance of leaves for most plant species, including rice ( Oryza sativa L.). However, few studies have quantified seasonal changes in the effects of elevated [CO 2 ] on canopy evapotranspiration, which integrates the response of stomatal conductance of individual leaves with other responses, such as leaf area expansion, changes in leaf surface temperature, and changes in developmental stages, in field conditions. We conducted a field experiment to measure seasonal changes in stomatal conductance of the uppermost leaves and in the evapotranspiration, transpiration, and evaporation rates using a lysimeter method. The study was conducted for flooded rice under open-air CO 2 elevation. Stomatal conductance decreased by 27% under elevated [CO 2 ], averaged throughout the growing season, and evapotranspiration decreased by an average of 5% during the same period. The decrease in daily evapotranspiration caused by elevated [CO 2 ] was more significantly correlated with air temperature and leaf area index rather than with other parameters of solar radiation, days after transplanting, vapor-pressure deficit and FAO reference evapotranspiration. This indicates that higher air temperatures, within the range from 16 to 27 °C, and a larger leaf area index, within the range from 0 to 4 m 2 m −2 , can increase the magnitude of the decrease in evapotranspiration rate caused by elevated [CO 2 ]. The crop coefficient (i.e., the evapotranspiration rate divided by the FAO reference evapotranspiration rate) was 1.24 at ambient [CO 2 ] and 1.17 at elevated [CO 2 ]. This study provides the first direct measurement of the effects of elevated [CO 2 ] on rice canopy evapotranspiration under open-air conditions using the lysimeter method, and the results will improve future predictions of water use in rice fields. © 2013 Blackwell Publishing Ltd
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2013-04-07
    Description: Forests around the world are subject to risk of high rates of tree growth decline and increased tree mortality from combinations of climate warming and drought, notably in semi-arid settings. Here we assess how climate warming has affected tree growth in one of the world's most extensive zones of semi-arid forests, in Inner Asia, a region where lack of data limits our understanding of how climate change may impact forests. We show that pervasive tree growth declines since 1994 in Inner Asia have been confined to semi-arid forests where growing season water stress has been rising due to warming-induced increases in atmospheric moisture demand. A causal link between increasing drought and declining growth at semi-arid sites is corroborated by correlation analyses comparing annual climate data to records of tree-ring widths. These ring-width records tend to be substantially more sensitive to drought variability at semi-arid sites than at semi-humid sites. Fire occurrence and insect/pathogen attacks have increased in tandem with the most recent (2007-2009) documented episode of tree mortality. If warming in Inner Asia continues, further increases in forest stress and tree mortality could be expected, potentially driving the eventual regional loss of current semi-arid forests. © 2013 Blackwell Publishing Ltd
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2013-04-02
    Description: Yttria partially stabilized zirconia Y-PSZ/glass-ceramic composites were prepared by reaction sintering using powder mixtures of a SiO 2 – Al 2 O 3 – ZnO – CaO – ZrO 2 – TiO 2 -based glass and yttria partially stabilized zirconia (Y-PSZ). The glass crystallized during sintering at temperatures of 1173, 1273, and 1373 K to give a glass-ceramic matrix for high-temperature protecting coatings. With the increasing firing time, the added zirconia reacted with the base glass and a glass-ceramic material with dispersed zircon particles was prepared in situ . Furthermore, the added zirconia changed the crystallization behavior of the base glass, affecting the shape, amount, and distribution of zircon in the microstructure. The bipyramid-like zircon grains with imbedded residual zirconia particles turned out to have two growth mechanisms: the inward growth and the outward growth, and its rapid growth was mainly dominated by the later one. For comparison, the referenced glass-ceramic was prepared by sintering using exclusive glass granules and its crystallization behavior at 1173–1373 K was examined as well. Scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM), and X-ray diffraction (XRD) were used to characterize the crystallization behavior of the base glass and the phase evolution of the Y-PSZ/glass-ceramic composites.
    Print ISSN: 0002-7820
    Electronic ISSN: 1551-2916
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2013-04-02
    Description: In this study, we present the preparation of a bulk material with a composition of 80 GeTe 2 –20 Ga 2 Te 3 by combining mechanosynthesis and sintering. This composition cannot be prepared by conventional melt/quenching technique. The progressive evolution of the powder during ball-milling is followed by X-ray Diffraction (XRD) and Differential Scanning Calorimetry analysis. The final powder obtained is highly crystalline, but a glass transition temperature ( T g ) is observed, indicating the presence of some amorphous phase remaining, allowing for its efficient sintering. By hot-pressing, a dense bulk material with a fine microstructure and a high electrical conductivity is obtained. The synthesis method described represents a simple and cost-effective way to produce tellurium-based materials of desired dimension with potential applications for optical storage or thermoelectric devices.
    Print ISSN: 0002-7820
    Electronic ISSN: 1551-2916
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2013-04-03
    Description: Revealing and understanding the microscopic origins of the macroscopic properties of aluminosilicate glasses is important for the design of new glasses with optimized properties. In this work, we study the composition-structure-property relationships in 20 MgO / CaO sodium aluminosilicate glasses upon Al 2 O 3 -for- SiO 2 and MgO -for- CaO substitutions. We find that some properties (density, molar volume, Young's modulus, and shear modulus) are linear through the investigated range of Al 2 O 3 compositions, while others (refractive index, coefficient of thermal expansion, Vickers hardness, isokom temperatures, and liquid fragility index) exhibit a change in the slope around the composition with [ Al 2 O 3 ] = [ Na 2 O ], which is especially pronounced for the glasses containing MgO . We discuss these phenomena based on structural information obtained by NMR spectroscopy and topological considerations.
    Print ISSN: 0002-7820
    Electronic ISSN: 1551-2916
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2013-04-03
    Description: In this article the changes on the surface of the 45S5 bioglass submitted to an enrichment with calcium ions were investigated. The method employed was the immersion of bioglass in calcium molten salt bath at 450°C. Changes in composition were probed by different techniques of chemical analysis. The use of SEM-EDS allowed estimating the thickness modified, as being about 10 μm. X-ray photoelectron spectroscopy enabled to infer over the structural changes on the surface of 45S5 bioactive glass. The entry of calcium in the vitreous network promoted the phase separation of microdomains rich in silica and phosphate on the surface of the glass. The formation of immiscibility region was attributed a depolymerization of silica network and also, to a possible migration of phosphate species from the bulk. The results of this study indicate a great change in the surface properties of this biomaterial. In addition, the method proposed in this study proved to be very promising in the possibility of designing the surface of bioactive glasses, to modulate the desired properties, keeping the bulk unchanged.
    Print ISSN: 0002-7820
    Electronic ISSN: 1551-2916
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2013-04-03
    Description: The Humboldt Current System (HCS) sustains the world′s largest small pelagic fishery. While a cooling of this system has been observed during recent decades, there is debate about the potential impacts of rising atmospheric CO 2 concentrations on upwelling dynamics and productivity. Recent studies suggest that under increased atmospheric CO 2 scenarios the oceanic stratification may strongly increase and upwelling-favorable winds may remain nearly constant off Peru and increase off Chile. Here we investigate the impact of such climatic conditions on egg and larval dispersal phases, a key stage of small pelagic fish reproduction. We used larval retention rate in a predefined nursery area to provide a proxy for the recruitment level. Numerical experiments are based on hydrodynamics downscaled to the HCS from global simulations forced by pre-industrial (PI), 2xCO 2 and 4xCO 2 scenarios. A biogeochemical model is applied to the PI and 4xCO 2 scenarios in order to define a time-variable nursery area where larval survival is optimum. We test two distinct values of the oxycline depth that limits larval vertical distribution: one corresponding to the present-day situation and the other corresponding to a shallower oxycline potentially produced by climate change. It appeared that larval retention over the continental shelf increases with enhanced stratification due to regional warming. However, this increase in retention is largely compensated for by a decrease of the nursery area and the shoaling of the oxycline. The underlying dynamics are explained by a combination of stratification effects and mesoscale activity changes. Our results therefore show that future climate change may significantly reduce fish capacity in the HCS with strong ecological, economic and social consequences. © 2013 Blackwell Publishing Ltd
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2013-04-10
    Description: Lanthanum hexaaluminate is a promising competitor to establish yttria partially stabilized zirconia as a thermal barrier coating material for Ni -based superalloy due to its relative low intrinsic thermal conductivity and low sinterability at temperatures exceeding 1100°C. Sr 2+ and Ti 4+ were selected as two dopants to partially substitute the La 3+ and Al 3+ in LaMgAl 11 O 19 , respectively. The variation in thermal conductivity with Sr 2+ and Ti 4+ fractions was analyzed based on structure information provided by X-ray diffraction and Raman spectroscopy. The average crystal size of LaMgAl 11 O 19 sintered at 1600°C for 10 min by spark plasma sintering is in nanoscale. The fully dense La 1− x Sr x MgAl 11− x Ti x O 19 solid solution showed a minimum thermal conductivity value (λ = 1.12 W/(m K) −1 , T  = 1273 K) at the composition of La 0.5 Sr 0.5 MgAl 10.5 Ti 0.5 O 19 ,which possibly reduces from the enhanced phonon scattering due to mass and strain fluctuations at the Ln 3+ and B 3+ sites.
    Print ISSN: 0002-7820
    Electronic ISSN: 1551-2916
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2013-04-10
    Description: Aqueous 3Y-TZP inks with solid contents of 22 and 27 vol% were used for fabricating three-dimensional ceramic components by the direct ink-jet printing process (DIP). The DIP fabrication was realized using a thermal ink-jet (TIJ) printing system. Despite the different physical properties of the inks, both inks were successfully ejected and deposited. To define the optimum window of the ink properties required for a stable printing operation, both ceramic inks as well as a typical TIJ ink were characterized in terms of particle size distribution, zeta potential, viscosity, surface tension, and the inverse Ohnesorge number ( Oh −1 ). Moreover, single drops of all inks were deposited and analyzed by scanning electron microscopy (SEM) to examine the form and integrity of the ejected drops. Demonstration objects (a base with curved channels and a sample molar tooth) were DIP fabricated using both of the ceramic inks. These objects show the potentials of the DIP process for ceramics manufacturing particularly by using TIJ printing systems.
    Print ISSN: 0002-7820
    Electronic ISSN: 1551-2916
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2013-04-11
    Description: Spherical granules of aluminum nitride (AlN) with an average particle size of about 50 μm were produced from aqueous suspensions using an AlN powder surface treated against hydrolysis with aluminum dihydrogenphosphate [Al(H 2 PO 4 ) 3 ]. Two different amounts of Al(H 2 PO 4 ) 3 were tested and the effects of surface treatment and aging time were evaluated by various techniques (XRD, TG-DTA, zeta potential and pH measurements). The treated powder exhibited antihydrolytic property and good dispersing behavior, enabling the preparation of low-viscosity and high-concentration aqueous AlN slurries for freeze granulation. The spherical AlN granules were sintered in a boron nitride (BN) powder bed followed by ultrasonic washing of the AlN granulates/BN mixture to remove BN. The sintered spherical AlN granules present excellent crystallinity and high sphericity as observed from SEM micrographs.
    Print ISSN: 0002-7820
    Electronic ISSN: 1551-2916
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2013-04-11
    Description: Near-infrared (NIR) quantum cutting involving the emission of two NIR photons for each visible photon absorbed is realized from Eu 2+ /Yb 3+ codoped chalcohalide glasses. Excitation, emission and decay spectra are measured to prove the occurrence of cooperative energy transfer (ET) from Eu 2+ to Yb 3+ . The maximum ET efficiency obtained is as high as 85%. The ET from Eu 2+ to Yb 3+ is followed by dipole-dipole interaction. The possible mechanism of ET is discussed.
    Print ISSN: 0002-7820
    Electronic ISSN: 1551-2916
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...