ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Artikel  (12.447)
  • PLoS Computational Biology  (3.993)
  • 56466
  • Biologie  (12.447)
  • Energietechnik
Sammlung
  • Artikel  (12.447)
Erscheinungszeitraum
Thema
  • 1
    facet.materialart.
    Unbekannt
    Public Library of Science (PLoS)
    Publikationsdatum: 2015-08-07
    Beschreibung: by Eliseo Ferrante, Ali Emre Turgut, Edgar Duéñez-Guzmán, Marco Dorigo, Tom Wenseleers Division of labor is ubiquitous in biological systems, as evidenced by various forms of complex task specialization observed in both animal societies and multicellular organisms. Although clearly adaptive, the way in which division of labor first evolved remains enigmatic, as it requires the simultaneous co-occurrence of several complex traits to achieve the required degree of coordination. Recently, evolutionary swarm robotics has emerged as an excellent test bed to study the evolution of coordinated group-level behavior. Here we use this framework for the first time to study the evolutionary origin of behavioral task specialization among groups of identical robots. The scenario we study involves an advanced form of division of labor, common in insect societies and known as “task partitioning”, whereby two sets of tasks have to be carried out in sequence by different individuals. Our results show that task partitioning is favored whenever the environment has features that, when exploited, reduce switching costs and increase the net efficiency of the group, and that an optimal mix of task specialists is achieved most readily when the behavioral repertoires aimed at carrying out the different subtasks are available as pre-adapted building blocks. Nevertheless, we also show for the first time that self-organized task specialization could be evolved entirely from scratch, starting only from basic, low-level behavioral primitives, using a nature-inspired evolutionary method known as Grammatical Evolution. Remarkably, division of labor was achieved merely by selecting on overall group performance, and without providing any prior information on how the global object retrieval task was best divided into smaller subtasks. We discuss the potential of our method for engineering adaptively behaving robot swarms and interpret our results in relation to the likely path that nature took to evolve complex sociality and task specialization.
    Print ISSN: 1553-734X
    Digitale ISSN: 1553-7358
    Thema: Biologie , Informatik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    facet.materialart.
    Unbekannt
    Public Library of Science (PLoS)
    Publikationsdatum: 2015-08-07
    Beschreibung: by Patrícia Santos-Oliveira, António Correia, Tiago Rodrigues, Teresa M Ribeiro-Rodrigues, Paulo Matafome, Juan Carlos Rodríguez-Manzaneque, Raquel Seiça, Henrique Girão, Rui D. M. Travasso Sprouting angiogenesis, where new blood vessels grow from pre-existing ones, is a complex process where biochemical and mechanical signals regulate endothelial cell proliferation and movement. Therefore, a mathematical description of sprouting angiogenesis has to take into consideration biological signals as well as relevant physical processes, in particular the mechanical interplay between adjacent endothelial cells and the extracellular microenvironment. In this work, we introduce the first phase-field continuous model of sprouting angiogenesis capable of predicting sprout morphology as a function of the elastic properties of the tissues and the traction forces exerted by the cells. The model is very compact, only consisting of three coupled partial differential equations, and has the clear advantage of a reduced number of parameters. This model allows us to describe sprout growth as a function of the cell-cell adhesion forces and the traction force exerted by the sprout tip cell. In the absence of proliferation, we observe that the sprout either achieves a maximum length or, when the traction and adhesion are very large, it breaks. Endothelial cell proliferation alters significantly sprout morphology, and we explore how different types of endothelial cell proliferation regulation are able to determine the shape of the growing sprout. The largest region in parameter space with well formed long and straight sprouts is obtained always when the proliferation is triggered by endothelial cell strain and its rate grows with angiogenic factor concentration. We conclude that in this scenario the tip cell has the role of creating a tension in the cells that follow its lead. On those first stalk cells, this tension produces strain and/or empty spaces, inevitably triggering cell proliferation. The new cells occupy the space behind the tip, the tension decreases, and the process restarts. Our results highlight the ability of mathematical models to suggest relevant hypotheses with respect to the role of forces in sprouting, hence underlining the necessary collaboration between modelling and molecular biology techniques to improve the current state-of-the-art.
    Print ISSN: 1553-734X
    Digitale ISSN: 1553-7358
    Thema: Biologie , Informatik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2015-08-08
    Beschreibung: by Sayed-Rzgar Hosseini, Aditya Barve, Andreas Wagner All biological evolution takes place in a space of possible genotypes and their phenotypes. The structure of this space defines the evolutionary potential and limitations of an evolving system. Metabolism is one of the most ancient and fundamental evolving systems, sustaining life by extracting energy from extracellular nutrients. Here we study metabolism’s potential for innovation by analyzing an exhaustive genotype-phenotype map for a space of 10 15 metabolisms that encodes all possible subsets of 51 reactions in central carbon metabolism. Using flux balance analysis, we predict the viability of these metabolisms on 10 different carbon sources which give rise to 1024 potential metabolic phenotypes. Although viable metabolisms with any one phenotype comprise a tiny fraction of genotype space, their absolute numbers exceed 10 9 for some phenotypes. Metabolisms with any one phenotype typically form a single network of genotypes that extends far or all the way through metabolic genotype space, where any two genotypes can be reached from each other through a series of single reaction changes. The minimal distance of genotype networks associated with different phenotypes is small, such that one can reach metabolisms with novel phenotypes – viable on new carbon sources – through one or few genotypic changes. Exceptions to these principles exist for those metabolisms whose complexity (number of reactions) is close to the minimum needed for viability. Increasing metabolic complexity enhances the potential for both evolutionary conservation and evolutionary innovation.
    Print ISSN: 1553-734X
    Digitale ISSN: 1553-7358
    Thema: Biologie , Informatik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2015-08-19
    Beschreibung: by Pengxing Cao, Ada W. C. Yan, Jane M. Heffernan, Stephen Petrie, Robert G. Moss, Louise A. Carolan, Teagan A. Guarnaccia, Anne Kelso, Ian G. Barr, Jodie McVernon, Karen L. Laurie, James M. McCaw Influenza is an infectious disease that primarily attacks the respiratory system. Innate immunity provides both a very early defense to influenza virus invasion and an effective control of viral growth. Previous modelling studies of virus–innate immune response interactions have focused on infection with a single virus and, while improving our understanding of viral and immune dynamics, have been unable to effectively evaluate the relative feasibility of different hypothesised mechanisms of antiviral immunity. In recent experiments, we have applied consecutive exposures to different virus strains in a ferret model, and demonstrated that viruses differed in their ability to induce a state of temporary immunity or viral interference capable of modifying the infection kinetics of the subsequent exposure. These results imply that virus-induced early immune responses may be responsible for the observed viral hierarchy. Here we introduce and analyse a family of within-host models of re-infection viral kinetics which allow for different viruses to stimulate the innate immune response to different degrees. The proposed models differ in their hypothesised mechanisms of action of the non-specific innate immune response. We compare these alternative models in terms of their abilities to reproduce the re-exposure data. Our results show that 1) a model with viral control mediated solely by a virus-resistant state, as commonly considered in the literature, is not able to reproduce the observed viral hierarchy; 2) the synchronised and desynchronised behaviour of consecutive virus infections is highly dependent upon the interval between primary virus and challenge virus exposures and is consistent with virus-dependent stimulation of the innate immune response. Our study provides the first mechanistic explanation for the recently observed influenza viral hierarchies and demonstrates the importance of understanding the host response to multi-strain viral infections. Re-exposure experiments provide a new paradigm in which to study the immune response to influenza and its role in viral control.
    Print ISSN: 1553-734X
    Digitale ISSN: 1553-7358
    Thema: Biologie , Informatik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2015-08-21
    Beschreibung: by Paul M. Harrison, Laurent Badel, Mark J. Wall, Magnus J. E. Richardson Models of neocortical networks are increasingly including the diversity of excitatory and inhibitory neuronal classes. Significant variability in cellular properties are also seen within a nominal neuronal class and this heterogeneity can be expected to influence the population response and information processing in networks. Recent studies have examined the population and network effects of variability in a particular neuronal parameter with some plausibly chosen distribution. However, the empirical variability and covariance seen across multiple parameters are rarely included, partly due to the lack of data on parameter correlations in forms convenient for model construction. To addess this we quantify the heterogeneity within and between the neocortical pyramidal-cell classes in layers 2/3, 4, and the slender-tufted and thick-tufted pyramidal cells of layer 5 using a combination of intracellular recordings, single-neuron modelling and statistical analyses. From the response to both square-pulse and naturalistic fluctuating stimuli, we examined the class-dependent variance and covariance of electrophysiological parameters and identify the role of the h current in generating parameter correlations. A byproduct of the dynamic I-V method we employed is the straightforward extraction of reduced neuron models from experiment. Empirically these models took the refractory exponential integrate-and-fire form and provide an accurate fit to the perisomatic voltage responses of the diverse pyramidal-cell populations when the class-dependent statistics of the model parameters were respected. By quantifying the parameter statistics we obtained an algorithm which generates populations of model neurons, for each of the four pyramidal-cell classes, that adhere to experimentally observed marginal distributions and parameter correlations. As well as providing this tool, which we hope will be of use for exploring the effects of heterogeneity in neocortical networks, we also provide the code for the dynamic I-V method and make the full electrophysiological data set available.
    Print ISSN: 1553-734X
    Digitale ISSN: 1553-7358
    Thema: Biologie , Informatik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2015-08-19
    Beschreibung: by Ariel Afek, Hila Cohen, Shiran Barber-Zucker, Raluca Gordân, David B. Lukatsky Recent genome-wide experiments in different eukaryotic genomes provide an unprecedented view of transcription factor (TF) binding locations and of nucleosome occupancy. These experiments revealed that a large fraction of TF binding events occur in regions where only a small number of specific TF binding sites (TFBSs) have been detected. Furthermore, in vitro protein-DNA binding measurements performed for hundreds of TFs indicate that TFs are bound with wide range of affinities to different DNA sequences that lack known consensus motifs. These observations have thus challenged the classical picture of specific protein-DNA binding and strongly suggest the existence of additional recognition mechanisms that affect protein-DNA binding preferences. We have previously demonstrated that repetitive DNA sequence elements characterized by certain symmetries statistically affect protein-DNA binding preferences. We call this binding mechanism nonconsensus protein-DNA binding in order to emphasize the point that specific consensus TFBSs do not contribute to this effect. In this paper, using the simple statistical mechanics model developed previously, we calculate the nonconsensus protein-DNA binding free energy for the entire C . elegans and D . melanogaster genomes. Using the available chromatin immunoprecipitation followed by sequencing (ChIP-seq) results on TF-DNA binding preferences for ~100 TFs, we show that DNA sequences characterized by low predicted free energy of nonconsensus binding have statistically higher experimental TF occupancy and lower nucleosome occupancy than sequences characterized by high free energy of nonconsensus binding. This is in agreement with our previous analysis performed for the yeast genome. We suggest therefore that nonconsensus protein-DNA binding assists the formation of nucleosome-free regions, as TFs outcompete nucleosomes at genomic locations with enhanced nonconsensus binding. In addition, here we perform a new, large-scale analysis using in vitro TF-DNA preferences obtained from the universal protein binding microarrays (PBM) for ~90 eukaryotic TFs belonging to 22 different DNA-binding domain types. As a result of this new analysis, we conclude that nonconsensus protein-DNA binding is a widespread phenomenon that significantly affects protein-DNA binding preferences and need not require the presence of consensus (specific) TFBSs in order to achieve genome-wide TF-DNA binding specificity.
    Print ISSN: 1553-734X
    Digitale ISSN: 1553-7358
    Thema: Biologie , Informatik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2015-08-20
    Beschreibung: by The PLOS Computational Biology Staff
    Print ISSN: 1553-734X
    Digitale ISSN: 1553-7358
    Thema: Biologie , Informatik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2015-08-21
    Beschreibung: by James Tamerius, Cécile Viboud, Jeffrey Shaman, Gerardo Chowell While a relationship between environmental forcing and influenza transmission has been established in inter-pandemic seasons, the drivers of pandemic influenza remain debated. In particular, school effects may predominate in pandemic seasons marked by an atypical concentration of cases among children. For the 2009 A/H1N1 pandemic, Mexico is a particularly interesting case study due to its broad geographic extent encompassing temperate and tropical regions, well-documented regional variation in the occurrence of pandemic outbreaks, and coincidence of several school breaks during the pandemic period. Here we fit a series of transmission models to daily laboratory-confirmed influenza data in 32 Mexican states using MCMC approaches, considering a meta-population framework or the absence of spatial coupling between states. We use these models to explore the effect of environmental, school–related and travel factors on the generation of spatially-heterogeneous pandemic waves. We find that the spatial structure of the pandemic is best understood by the interplay between regional differences in specific humidity (explaining the occurrence of pandemic activity towards the end of the school term in late May-June 2009 in more humid southeastern states), school vacations (preventing influenza transmission during July-August in all states), and regional differences in residual susceptibility (resulting in large outbreaks in early fall 2009 in central and northern Mexico that had yet to experience fully-developed outbreaks). Our results are in line with the concept that very high levels of specific humidity, as present during summer in southeastern Mexico, favor influenza transmission, and that school cycles are a strong determinant of pandemic wave timing.
    Print ISSN: 1553-734X
    Digitale ISSN: 1553-7358
    Thema: Biologie , Informatik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    facet.materialart.
    Unbekannt
    Public Library of Science (PLoS)
    Publikationsdatum: 2015-08-21
    Beschreibung: by Alireza Alemi, Carlo Baldassi, Nicolas Brunel, Riccardo Zecchina Understanding the theoretical foundations of how memories are encoded and retrieved in neural populations is a central challenge in neuroscience. A popular theoretical scenario for modeling memory function is the attractor neural network scenario, whose prototype is the Hopfield model. The model simplicity and the locality of the synaptic update rules come at the cost of a poor storage capacity, compared with the capacity achieved with perceptron learning algorithms. Here, by transforming the perceptron learning rule, we present an online learning rule for a recurrent neural network that achieves near-maximal storage capacity without an explicit supervisory error signal, relying only upon locally accessible information. The fully-connected network consists of excitatory binary neurons with plastic recurrent connections and non-plastic inhibitory feedback stabilizing the network dynamics; the memory patterns to be memorized are presented online as strong afferent currents, producing a bimodal distribution for the neuron synaptic inputs. Synapses corresponding to active inputs are modified as a function of the value of the local fields with respect to three thresholds. Above the highest threshold, and below the lowest threshold, no plasticity occurs. In between these two thresholds, potentiation/depression occurs when the local field is above/below an intermediate threshold. We simulated and analyzed a network of binary neurons implementing this rule and measured its storage capacity for different sizes of the basins of attraction. The storage capacity obtained through numerical simulations is shown to be close to the value predicted by analytical calculations. We also measured the dependence of capacity on the strength of external inputs. Finally, we quantified the statistics of the resulting synaptic connectivity matrix, and found that both the fraction of zero weight synapses and the degree of symmetry of the weight matrix increase with the number of stored patterns.
    Print ISSN: 1553-734X
    Digitale ISSN: 1553-7358
    Thema: Biologie , Informatik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Publikationsdatum: 2015-08-12
    Beschreibung: by Sander Land, Steven A. Niederer Biophysical models of cardiac tension development provide a succinct representation of our understanding of force generation in the heart. The link between protein kinetics and interactions that gives rise to high cooperativity is not yet fully explained from experiments or previous biophysical models. We propose a biophysical ODE-based representation of cross-bridge (XB), tropomyosin and troponin within a contractile regulatory unit (RU) to investigate the mechanisms behind cooperative activation, as well as the role of cooperativity in dynamic tension generation across different species. The model includes cooperative interactions between regulatory units (RU-RU), between crossbridges (XB-XB), as well more complex interactions between crossbridges and regulatory units (XB-RU interactions). For the steady-state force-calcium relationship, our framework predicts that: (1) XB-RU effects are key in shifting the half-activation value of the force-calcium relationship towards lower [Ca 2+ ], but have only small effects on cooperativity. (2) XB-XB effects approximately double the duty ratio of myosin, but do not significantly affect cooperativity. (3) RU-RU effects derived from the long-range action of tropomyosin are a major factor in cooperative activation, with each additional unblocked RU increasing the rate of additional RU’s unblocking. (4) Myosin affinity for short (1–4 RU) unblocked stretches of actin of is very low, and the resulting suppression of force at low [Ca 2+ ] is a major contributor in the biphasic force-calcium relationship. We also reproduce isometric tension development across mouse, rat and human at physiological temperature and pacing rate, and conclude that species differences require only changes in myosin affinity and troponin I/troponin C affinity. Furthermore, we show that the calcium dependence of the rate of tension redevelopment k tr is explained by transient blocking of RU’s by a temporary decrease in XB-RU effects.
    Print ISSN: 1553-734X
    Digitale ISSN: 1553-7358
    Thema: Biologie , Informatik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...