ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (904)
  • Oxford University Press  (904)
  • 2020-2024
  • 2010-2014  (904)
  • 1975-1979
  • 2012  (904)
  • Human Molecular Genetics  (378)
  • 512
  • 1
    facet.materialart.
    Unknown
    Oxford University Press
    Publication Date: 2012-12-20
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Oxford University Press
    Publication Date: 2012-12-20
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-12-20
    Description: Frontonasal dysplasia (FND) refers to a class of midline facial malformations caused by abnormal development of the facial primordia. The term encompasses a spectrum of severities but characteristic features include combinations of ocular hypertelorism, malformations of the nose and forehead and clefting of the facial midline. Several recent studies have drawn attention to the importance of Alx homeobox transcription factors during craniofacial development. Most notably, loss of Alx1 has devastating consequences resulting in severe orofacial clefting and extreme microphthalmia. In contrast, mutations of Alx3 or Alx4 cause milder forms of FND. Whilst Alx1 , Alx3 and Alx4 are all known to be expressed in the facial mesenchyme of vertebrate embryos, little is known about the function of these proteins during development. Here, we report the establishment of a zebrafish model of Alx -related FND. Morpholino knock-down of zebrafish alx1 expression causes a profound craniofacial phenotype including loss of the facial cartilages and defective ocular development. We demonstrate for the first time that Alx1 plays a crucial role in regulating the migration of cranial neural crest (CNC) cells into the frontonasal primordia. Abnormal neural crest migration is coincident with aberrant expression of foxd3 and sox10 , two genes previously suggested to play key roles during neural crest development, including migration, differentiation and the maintenance of progenitor cells. This novel function is specific to Alx1, and likely explains the marked clinical severity of Alx1 mutation within the spectrum of Alx -related FND.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-12-20
    Description: Activating somatic and germline mutations of closely related RAS genes (H, K, N) have been found in various types of cancer and in patients with developmental disorders, respectively. The involvement of the RAS signalling pathways in developmental disorders has recently emerged as one of the most important drivers in RAS research. In the present study, we investigated the biochemical and cell biological properties of two novel missense KRAS mutations (Y71H and K147E). Both mutations affect residues that are highly conserved within the RAS family. KRAS Y71H showed no clear differences to KRAS wt , except for an increased binding affinity for its major effector, the RAF1 kinase. Consistent with this finding, even though we detected similar levels of active KRAS Y71H when compared with wild-type protein, we observed an increased activation of MEK1/2, irrespective of the stimulation conditions. In contrast, KRAS K147E exhibited a tremendous increase in nucleotide dissociation generating a self-activating RAS protein that can act independently of upstream signals. As a consequence, levels of active KRAS K147E were strongly increased regardless of serum stimulation and similar to the oncogenic KRAS G12V . In spite of this, KRAS K147E downstream signalling did not reach the level triggered by oncogenic KRAS G12V , especially because KRAS K147E was downregulated by RASGAP and moreover exhibited a 2-fold lower affinity for RAF kinase. Here, our findings clearly emphasize that individual RAS mutations, despite being associated with comparable phenotypes of developmental disorders in patients, can cause remarkably diverse biochemical effects with a common outcome, namely a rather moderate gain-of-function.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-12-20
    Description: Spinocerebellar ataxia type 2 (SCA2) is an autosomal dominantly inherited disorder, which is caused by a pathological expansion of a polyglutamine (polyQ) tract in the coding region of the ATXN2 gene. Like other ataxias, SCA2 most overtly affects Purkinje cells (PCs) in the cerebellum. Using a transgenic mouse model expressing a full-length ATXN2 Q127 -complementary DNA under control of the Pcp2 promoter (a PC-specific promoter), we examined the time course of behavioral, morphologic, biochemical and physiological changes with particular attention to PC firing in the cerebellar slice. Although motor performance began to deteriorate at 8 weeks of age, reductions in PC number were not seen until after 12 weeks. Decreases in the PC firing frequency first showed at 6 weeks and paralleled deterioration of motor performance with progression of disease. Transcription changes in several PC-specific genes such as Calb1 and Pcp2 mirrored the time course of changes in PC physiology with calbindin-28 K changes showing the first small, but significant decreases at 4 weeks. These results emphasize that in this model of SCA2, physiological and behavioral phenotypes precede morphological changes by several weeks and provide a rationale for future studies examining the effects of restoration of firing frequency on motor function and prevention of future loss of PCs.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2012-12-20
    Description: Balancing selection has maintained human leukocyte antigen (HLA) allele diversity, but it is unclear whether this selection is symmetric (all heterozygotes are comparable and all homozygotes are comparable in terms of fitness) or asymmetric (distinct heterozygote genotypes display greater fitness than others). We tested the hypothesis that HLA is under asymmetric balancing selection in populations by estimating allelic branch lengths from genetic sequence data encoding peptide-binding domains. Significant deviations indicated changes in the ratio of terminal to internal branch lengths. Such deviations could arise even if no individual alleles present a strikingly altered branch length (e.g. if there is an overall distortion, with all or many terminal branches being longer than expected). DQ and DP loci were also analyzed as haplotypes. Using allele frequencies for 419 distinct populations in 10 geographical regions, we examined population differentiation in alleles within and between regions, and the relationship between allelic branch length and frequency. The strongest evidence for asymmetrical balancing selection was observed for HLA-DRB1 , HLA-B and HLA-DPA1 , with significant deviation ( P ≤ 1.1 x 10 –4 ) in about half of the populations. There were significant results at all loci except HLA-DQB1 / DQA1 . We observed moderate genetic variation within and between geographic regions, similar to the rest of the genome. Branch length was not correlated with allele frequency. In conclusion, sequence data suggest that balancing selection in HLA is asymmetric (some heterozygotes enjoy greater fitness than others). Because HLA polymorphism is crucial for pathogen resistance, this may manifest as a frequency-dependent selection with fluctuation in the fitness of specific heterozygotes over time.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2012-12-20
    Description: Birt–Hogg–Dubé syndrome (BHD) is a human cancer disorder caused by mutations in the tumor suppressor gene Folliculin ( FLCN ) with unknown biological functions. Here, we show that the Drosophila homolog of FLCN, dFLCN (a.k.a. dBHD ) localizes to the nucleolus and physically interacts with the 19S proteasomal ATPase, Rpt4, a nucleolar resident and known regulator of rRNA transcription. Downregulation of dFLCN resulted in an increase in nucleolar volume and upregulation of rRNA synthesis, whereas dFLCN overexpression reduced rRNA transcription and counteracted the effects of Rpt4 on rRNA production by preventing the association of Rpt4 with the rDNA locus. We further show that human FLCN exhibited evolutionarily conserved function and that Rpt4 knockdown inhibits the growth of FLCN-deficient human renal cancer cells in mouse xenografts. Our study suggests that FLCN functions as a tumor suppressor by negatively regulating rRNA synthesis.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2012-12-20
    Description: KitL, via its receptor cKit, supports primordial germ cell (PGC) growth, survival, migration and reprogramming to pluripotent embryonic germ cells (EGCs). However, the signaling downstream of KitL and its regulation in PGCs remain unclear. A constitutively activating mutation, cKit V558 , causes gain-of-function phenotypes in mast cells and intestines, and gastrointestinal stromal tumors (GISTs) when heterozygous. Unexpectedly, we find that PGC growth is not significantly affected in cKit V558 heterozygotes, whereas in homozygotes, increased apoptosis and inefficient migration lead to the depletion of PGCs. Through genetic studies, we reveal that this oncogenic cKit allele exhibits loss-of-function behavior in PGCs distinct from that in GIST development. Examination of downstream signaling in GISTs from cKit V558/+ mice confirmed hyperphosphorylation of AKT and ERK, but both remain unperturbed in cKit V558/+ PGCs and EGCs. In contrast, we find reduced activation of ERK1/2 and JNK1 in cKit V558 homozygous PGCs and EGCs. Inhibiting JNK, though not ERK1/2, increased apoptosis of wild-type PGCs, but did not further affect the already elevated apoptosis of cKit V558 / V558 PGCs. These results demonstrate a cell-context-dependent response to the cKit V558 mutation. We propose that AKT overload protection and JNK-mediated survival comprise PGC-specific mechanisms for regulating cKit signaling.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2012-12-20
    Description: TDP-43 is an evolutionarily conserved RNA-binding protein currently under intense investigation for its involvement in the molecular pathogenesis of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). TDP-43 is normally localized in the nucleus, but translocated to the cytoplasm in diseased neurons. The endogenous functions of TDP-43 in the nervous system remain poorly understood. Here, we show that the loss of Drosophila TDP-43 (dTDP-43) results in an increased production of sensory bristles and sensory organ precursor (SOP) cells on the notum of some but not all flies. The location of ectopic SOPs varies among mutant flies. The penetrance of this novel phenotype is dependent on the gender and sensitive to environmental influences. A similar SOP phenotype was also observed on the wing and in the embryos. Overexpression of dTDP-43 causes both loss and ectopic production of SOPs. Ectopic expression of ALS-associated mutant human TDP-43 (hTDP-43 M337V and hTDP-43 Q331K ) produces a less severe SOP phenotype than hTDP-43 WT , indicating a partial loss of function of mutant hTDP-43. In dTDP-43 mutants, miR-9a expression is significantly reduced. Genetic interaction studies further support the notion that dTDP-43 acts through miR-9a to control the precision of SOP specification. These findings reveal a novel role for endogenous TDP-43 in neuronal specification and suggest that the FTD/ALS-associated RNA-binding protein TDP-43 functions to ensure the robustness of genetic control programs.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2012-12-20
    Description: Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most frequent known cause of late-onset Parkinson's disease (PD). To explore the therapeutic potential of small molecules targeting the LRRK2 kinase domain, we characterized two LRRK2 kinase inhibitors, TTT-3002 and LRRK2-IN1, for their effects against LRRK2 activity in vitro and in Caenorhabditis elegans models of LRRK2-linked neurodegeneration. TTT-3002 and LRRK2-IN1 potently inhibited in vitro kinase activity of LRRK2 wild-type and mutant proteins, attenuated phosphorylation of cellular LRRK2 and rescued neurotoxicity of mutant LRRK2 in transfected cells. To establish whether LRRK2 kinase inhibitors can mitigate pathogenesis caused by different mutations including G2019S and R1441C located within and outside of the LRRK2 kinase domain, respectively, we evaluated effects of TTT-3002 and LRRK2-IN1 against R1441C- and G2019S-induced neurodegeneration in C. elegans models. TTT-3002 and LRRK2-IN1 rescued the behavioral deficit characteristic of dopaminergic impairment in transgenic C. elegans expressing human R1441C- and G2019S-LRRK2. The inhibitors displayed nanomolar to low micromolar rescue potency when administered either pre-symptomatically or post-symptomatically, indicating both prevention and reversal of the dopaminergic deficit. The same treatments also led to long-lasting prevention and rescue of neurodegeneration. In contrast, TTT-3002 and LRRK2-IN1 were ineffective against the neurodegenerative phenotype in transgenic worms carrying the inhibitor-resistant A2016T mutation of LRRK2, suggesting that they elicit neuroprotective effects in vivo by targeting LRRK2 specifically. Our findings indicate that the LRRK2 kinase activity is critical for neurodegeneration caused by R1441C and G2019S mutations, suggesting that kinase inhibition of LRRK2 may represent a promising therapeutic strategy for PD.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2012-12-20
    Description: Mitochondrial DNA (mtDNA) mutations leading to the disruption of respiratory complex I (CI) have been shown to exhibit anti-tumorigenic effects, at variance with those impairing only the function but not the assembly of the complex, which appear to contribute positively to cancer development. Owing to the challenges in the analysis of the multi-copy mitochondrial genome, it is yet to be determined whether tumour-associated mtDNA lesions occur as somatic modifying factors or as germ-line predisposing elements. Here we investigated the whole mitochondrial genome sequence of 20 pituitary adenomas with oncocytic phenotype and identified pathogenic and/or novel mtDNA mutations in 60% of the cases. Using highly sensitive techniques, namely fluorescent PCR and allele-specific locked nucleic acid quantitative PCR, we identified the most likely somatic nature of these mutations in our sample set, since none of the mutations was detected in the corresponding blood tissue of the patients analysed. Furthermore, we have subjected a series of 48 pituitary adenomas to a high-resolution array comparative genomic hybridization analysis, which revealed that CI disruptive mutations, and the oncocytic phenotype, significantly correlate with low number of chromosomal aberrations in the nuclear genome. We conclude that CI disruptive mutations in pituitary adenomas are somatic modifiers of tumorigenesis most likely contributing not only to the development of oncocytic change, but also to a less aggressive tumour phenotype, as indicated by a stable karyotype.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2012-12-20
    Description: Functional loss of SMN1 causes proximal spinal muscular atrophy (SMA), the most common genetic condition accounting for infant lethality. Hence, the hypomorphic copy gene SMN2 is the only resource of functional SMN protein in SMA patients and influences SMA severity in a dose-dependent manner. Consequently, current therapeutic approaches focus on SMN2 . Histone deacetylase inhibitors (HDACi), such as the short chain fatty acid VPA (valproic acid), ameliorate the SMA phenotype by activating the SMN2 expression. By analyzing blood SMN2 expression in 16 VPA-treated SMA patients, about one-third of individuals were identified as positive responders presenting increased SMN2 transcript levels. In 66% of enrolled patients, a concordant response was detected in the respective fibroblasts. Most importantly, by taking the detour of reprograming SMA patients' fibroblasts, we showed that the VPA response was maintained even in GABAergic neurons derived from induced pluripotent stem cells (iPS) cells. Differential expression microarray analysis revealed a complete lack of response to VPA in non-responders, which was associated with an increased expression of the fatty acid translocase CD36. The pivotal role of CD36 as the cause of non-responsiveness was proven in various in vitro approaches. Most importantly, knockdown of CD36 in SMA fibroblasts converted non- into pos-responders. In summary, the concordant response from blood to the central nervous system (CNS) to VPA may allow selection of pos-responders prior to therapy. Increased CD36 expression accounts for VPA non-responsiveness. These findings may be essential not only for SMA but also for other diseases such as epilepsy or migraine frequently treated with VPA.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2012-12-20
    Description: Rett syndrome (RTT) is a neurodevelopmental disorder caused primarily by mutations of the X-linked MECP2 gene. Although the loss of MeCP2 function affects many neural systems, impairments of catecholaminergic function have been hypothesized to underlie several of the cardinal behavioral deficits of RTT patients and Mecp2-deficient mice. Although recent Mecp2 reactivation studies indicate that RTT may be a reversible condition, it remains unclear whether specifically preserving Mecp2 function within a specific system will be sufficient to convey beneficial effects. Here, we test whether the selective preservation of Mecp2 within catecholaminergic cells will improve the phenotype of Mecp2-deficient mice. Our results show that this targeted preservation of Mecp2 significantly improves the lifespan, phenotypic severity and cortical epileptiform discharge activity of both male and female Mecp2-deficient mice. Further, we found that the catecholaminergic preservation of Mecp2 also improves the ambulatory rate, rearing activity, motor coordination, anxiety and nest-building performances of Mecp2-deficient mice of each gender. Interestingly, our results also revealed a gender-specific improvement, as specific cortical and hippocampal electroencephalographic abnormalities were significantly improved in male, but not female, rescue mice. Collectively, these results support the role of the catecholaminergic system in the pathogenesis of RTT and provide proof-of-principle that restoring MeCP2 function within this specific system could represent a treatment strategy for RTT.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2012-12-20
    Description: Mutations in COL4A1 have been identified in families with hereditary small vessel disease of the brain presumably due to a dominant-negative mechanism. Here, we report on two novel mutations in COL4A1 in two families with porencephaly, intracerebral hemorrhage and severe white matter disease caused by haploinsufficiency. Two families with various clinical presentations of cerebral microangiopathy and autosomal dominant inheritance were examined. Clinical, neuroradiological and genetic investigations were performed. Electron microscopy of the skin was also performed. In one of the families, sequence analysis revealed a one base deletion, c.2085del, leading to a frameshift and a premature stopcodon, p.(Gly696fs). In the other family, a splice site mutation was identified, c.2194-1G〉A, which most likely leads to skipping of an exon with a frameshift and premature termination as a result. In fibroblasts of affected individuals from both the families, nonsense-mediated decay (NMD) of the mutant COL4A1 messenger RNAs (mRNAs) and a clear reduction of COL4A1 protein expression were demonstrated, indicating haploinsufficiency of COL4A1. Moreover, thickening of the capillary basement membrane in the skin was documented, similar to reports in patients with COL4A1 missense mutations. These findings suggest haploinsufficiency, a different mechanism from the commonly assumed dominant-negative effect, for COL4A1 mutations as a cause of (antenatal) intracerebral hemorrhage and white matter disease.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    facet.materialart.
    Unknown
    Oxford University Press
    Publication Date: 2012-12-15
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2012-12-15
    Description: Although biallelic mutations in non-collagen genes account for 〈10% of individuals with osteogenesis imperfecta, the characterization of these genes has identified new pathways and potential interventions that could benefit even those with mutations in type I collagen genes. We identified mutations in FKBP10 , which encodes the 65 kDa prolyl cis–trans isomerase, FKBP65, in 38 members of 21 families with OI. These include 10 families from the Samoan Islands who share a founder mutation. Of the mutations, three are missense; the remainder either introduce premature termination codons or create frameshifts both of which result in mRNA instability. In four families missense mutations result in loss of most of the protein. The clinical effects of these mutations are short stature, a high incidence of joint contractures at birth and progressive scoliosis and fractures, but there is remarkable variability in phenotype even within families. The loss of the activity of FKBP65 has several effects: type I procollagen secretion is slightly delayed, the stabilization of the intact trimer is incomplete and there is diminished hydroxylation of the telopeptide lysyl residues involved in intermolecular cross-link formation in bone. The phenotype overlaps with that seen with mutations in PLOD2 (Bruck syndrome II), which encodes LH2, the enzyme that hydroxylates the telopeptide lysyl residues. These findings define a set of genes, FKBP10 , PLOD2 and SERPINH1 , that act during procollagen maturation to contribute to molecular stability and post-translational modification of type I procollagen, without which bone mass and quality are abnormal and fractures and contractures result.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2012-12-15
    Description: The GUCY2D gene encodes retinal membrane guanylyl cyclase (RetGC1), a key component of the phototransduction machinery in photoreceptors. Mutations in GUCY2D cause Leber congenital amaurosis type 1 (LCA1), an autosomal recessive human retinal blinding disease. The effects of RetGC1 deficiency on human rod and cone photoreceptor structure and function are currently unknown. To move LCA1 closer to clinical trials, we characterized a cohort of patients (ages 6 months—37 years) with GUCY2D mutations. In vivo analyses of retinal architecture indicated intact rod photoreceptors in all patients but abnormalities in foveal cones. By functional phenotype, there were patients with and those without detectable cone vision. Rod vision could be retained and did not correlate with the extent of cone vision or age. In patients without cone vision, rod vision functioned unsaturated under bright ambient illumination. In vitro analyses of the mutant alleles showed that in addition to the major truncation of the essential catalytic domain in RetGC1, some missense mutations in LCA1 patients result in a severe loss of function by inactivating its catalytic activity and/or ability to interact with the activator proteins, GCAPs. The differences in rod sensitivities among patients were not explained by the biochemical properties of the mutants. However, the RetGC1 mutant alleles with remaining biochemical activity in vitro were associated with retained cone vision in vivo . We postulate a relationship between the level of RetGC1 activity and the degree of cone vision abnormality, and argue for cone function being the efficacy outcome in clinical trials of gene augmentation therapy in LCA1.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2012-09-28
    Description: Male patients with Peutz–Jeghers syndrome (PJS) have defective spermatogenesis and are at increased risk of developing Sertoli cell tumors. Mutations in the Liver Kinase B1 ( LKB1/STK11) gene are associated with the pathogenesis of PJS and have been identified in non-PJS patients with sporadic testicular cancers. The mechanisms controlled by LKB1 signaling in Sertoli cell functions and testicular biology have not been described. We have conditionally deleted the Lkb1 gene ( Lkb1 cko ) in somatic testicular cells to define the molecular mechanisms involved in the development of the testicular phenotype observed in PJS patients. Focal vacuolization in some of the seminiferous tubules was observed in 4-week-old mutant testes but germ cell development appeared to be normal. However, similar to PJS patients, we observed progressive germ cell loss and Sertoli cell only tubules in Lkb1 cko testes from mice older than 10 weeks, accompanied by defects in Sertoli cell polarity and testicular junctional complexes and decreased activation of the MAP/microtubule affinity regulating and focal adhesion kinases. Suppression of AMP kinase and activation of mammalian target of rapamycin (mTOR) signaling were also observed in Lkb1 cko testes. Loss of Tsc1 or Tsc2 copies the progressive Lkb1 cko phenotype, suggesting that dysregulated activation of mTOR contributes to the pathogenesis of the Lkb1 cko testicular phenotype. Pten cko mice had a normal testicular phenotype, which could be explained by the comparative lack of mTOR activation detected. These studies describe the importance of LKB1 signaling in testicular biology and the possible molecular mechanisms driving the pathogenesis of the testicular defects observed in PJS patients.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2012-09-28
    Description: The human X-linked macrosatellite DXZ4 is a large tandem repeat located at Xq23 that is packaged into heterochromatin on the male X chromosome and female active X chromosome and, in response to X chromosome, inactivation is organized into euchromatin bound by the insulator protein CCCTC-binding factor (CTCF) on the inactive X chromosome (Xi). The purpose served by this unusual epigenetic regulation is unclear, but suggests a Xi-specific gain of function for DXZ4. Other less extensive bands of euchromatin can be observed on the Xi, but the identity of the underlying DNA sequences is unknown. Here, we report the identification of two novel human X-linked tandem repeats, located 58 Mb proximal and 16 Mb distal to the macrosatellite DXZ4. Both tandem repeats are entirely contained within the transcriptional unit of novel spliced transcripts. Like DXZ4, the tandem repeats are packaged into Xi-specific CTCF-bound euchromatin. These sequences undergo frequent CTCF-dependent interactions with DXZ4 on the Xi, implicating DXZ4 as an epigenetically regulated Xi-specific structural element and providing the first putative functional attribute of a macrosatellite in the human genome.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2012-09-28
    Description: The apolipoprotein E ( APOE ) genotype is the major genetic risk factor for Alzheimer's disease (AD). We have access to cerebrospinal fluid (CSF) and plasma APOE protein levels from 641 individuals and genome-wide genotyped data from 570 of these samples. The aim of this study was to test whether CSF or plasma APOE levels could be a useful endophenotype for AD and to identify genetic variants associated with APOE levels. We found that CSF ( P = 8.15 x 10 –4 ) but not plasma ( P = 0.071) APOE protein levels are significantly associated with CSF Aβ 42 levels. We used Mendelian randomization and genetic variants as instrumental variables to confirm that the association of CSF APOE with CSF Aβ 42 levels and clinical dementia rating (CDR) is not because of a reverse causation or confounding effect. In addition the association of CSF APOE with Aβ 42 levels was independent of the APOE 4 genotype, suggesting that APOE levels in CSF may be a useful endophenotype for AD. We performed a genome-wide association study to identify genetic variants associated with CSF APOE levels: the APOE 4 genotype was the strongest single-genetic factor associated with CSF APOE protein levels ( P = 6.9 x 10 –13 ). In aggregate, the Illumina chip single nucleotide polymorphisms explain 72% of the variability in CSF APOE protein levels, whereas the APOE 4 genotype alone explains 8% of the variability. No other genetic variant reached the genome-wide significance threshold, but nine additional variants exhibited a P -value 〈10 –6 . Pathway mining analysis indicated that these nine additional loci are involved in lipid metabolism ( P = 4.49 x 10 –9 ).
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2012-09-28
    Description: A number of mouse models for spinal muscular atrophy (SMA) have been genetically engineered to recapitulate the severity of human SMA by using a targeted null mutation at the mouse Smn1 locus coupled with the transgenic addition of varying copy numbers of human SMN2 genes. Although this approach has been useful in modeling severe SMA and very mild SMA, a mouse model of the intermediate form of the disease would provide an additional research tool amenable for drug discovery. In addition, many of the previously engineered SMA strains are multi-allelic by design, containing a combination of transgenes and targeted mutations in the homozygous state, making further genetic manipulation difficult. A new genetic engineering approach was developed whereby variable numbers of SMN2 sequences were incorporated directly into the murine Smn1 locus. Using combinations of these alleles, we generated an allelic series of SMA mouse strains harboring no, one, two, three, four, five, six or eight copies of SMN2. We report here the characterization of SMA mutants in this series that displayed a range in disease severity from embryonic lethal to viable with mild neuromuscular deficits.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2012-09-28
    Description: Insulin resistance (IR) is a key determinant of type 2 diabetes (T2D) and other metabolic disorders. This genome-wide association study (GWAS) was designed to shed light on the genetic basis of fasting insulin (FI) and IR in 927 non-diabetic African Americans. 5 396 838 single-nucleotide polymorphisms (SNPs) were tested for associations with FI or IR with adjustments for age, sex, body mass index, hypertension status and first two principal components. Genotyped SNPs ( n = 12) with P 〈 5 x 10 –6 in African Americans were carried forward for de novo genotyping in 570 non-diabetic West Africans. We replicated SNPs in or near SC4MOL and TCERG1L in West Africans. The meta-analysis of 1497 African Americans and West Africans yielded genome-wide significant associations for SNPs in the SC4MOL gene: rs17046216 ( P = 1.7 x 10 –8 and 2.9 x 10 –8 for FI and IR, respectively); and near the TCERG1L gene with rs7077836 as the top scoring ( P = 7.5 x 10 –9 and 4.9 x 10 –10 for FI and IR, respectively). In silico replication in the MAGIC study ( n = 37 037) showed weak but significant association (adjusted P -value of 0.0097) for rs34602777 in the MYO5A gene. In addition, we replicated previous GWAS findings for IR and FI in Europeans for GCKR , and for variants in four T2D loci ( FTO , IRS1 , KLF14 and PPARG ) which exert their action via IR. In summary, variants in/near SC4MOL , and TCERG1L were associated with FI and IR in this cohort of African Americans and were replicated in West Africans. SC4MOL is under-expressed in an animal model of T2D and plays a key role in lipid biosynthesis, with implications for the regulation of energy metabolism, obesity and dyslipidemia. TCERG1L is associated with plasma adiponectin, a key modulator of obesity, inflammation, IR and diabetes.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2012-09-28
    Description: Loss of dystrophin protein due to mutations in the DMD gene causes Duchenne muscular dystrophy. Dystrophin loss also leads to the loss of the dystrophin glycoprotein complex (DGC) from the sarcolemma which contributes to the dystrophic phenotype. Tyrosine phosphorylation of dystroglycan has been identified as a possible signal to promote the proteasomal degradation of the DGC. In order to test the role of tyrosine phosphorylation of dystroglycan in the aetiology of DMD, we generated a knock-in mouse with a phenylalanine substitution at a key tyrosine phosphorylation site in dystroglycan, Y890. Dystroglycan knock-in mice ( Dag1 Y890F/Y890F ) had no overt phenotype. In order to examine the consequence of blocking dystroglycan phosphorylation on the aetiology of dystrophin-deficient muscular dystrophy, the Y890F mice were crossed with mdx mice an established model of muscular dystrophy. Dag1 Y890F/Y890F / mdx mice showed a significant improvement in several parameters of muscle pathophysiology associated with muscular dystrophy, including a reduction in centrally nucleated fibres, less Evans blue dye infiltration and lower serum creatine kinase levels. With the exception of dystrophin, other DGC components were restored to the sarcolemma including α-sarcoglycan, α-/β-dystroglycan and sarcospan. Furthermore, Dag1 Y890F/Y890F / mdx showed a significant resistance to muscle damage and force loss following repeated eccentric contractions when compared with mdx mice. While the Y890F substitution may prevent dystroglycan from proteasomal degradation, an increase in sarcolemmal plectin appeared to confer protection on Dag1 Y890F/Y890F / mdx mouse muscle. This new model confirms dystroglycan phosphorylation as an important pathway in the aetiology of DMD and provides novel targets for therapeutic intervention.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2012-09-28
    Description: Facioscapulohumeral muscular dystrophy (FSHD), the most prevalent myopathy afflicting both children and adults, is predominantly associated with contractions in the 4q35-localized macrosatellite D4Z4 repeat array. Recent studies have proposed that FSHD pathology is caused by the misexpression of the DUX4 (double homeobox 4) gene resulting in production of a pathogenic protein, DUX4-FL, which has been detected in FSHD, but not in unaffected control myogenic cells and muscle tissue. Here, we report the analysis of DUX4 mRNA and protein expression in a much larger collection of myogenic cells and muscle biopsies derived from biceps and deltoid muscles of FSHD affected subjects and their unaffected first-degree relatives. We confirmed that stable DUX4-fl mRNA and protein were expressed in myogenic cells and muscle tissues derived from FSHD affected subjects, including several genetically diagnosed adult FSHD subjects yet to show clinical manifestations of the disease in the assayed muscles. In addition, we report DUX4-fl mRNA and protein expression in muscle biopsies and myogenic cells from genetically unaffected relatives of the FSHD subjects, although at a significantly lower frequency. These results establish that DUX4-fl expression per se is not sufficient for FSHD muscle pathology and indicate that quantitative modifiers of DUX4-fl expression and/or function and family genetic background are determinants of FSHD muscle disease progression.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    facet.materialart.
    Unknown
    Oxford University Press
    Publication Date: 2012-09-28
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    facet.materialart.
    Unknown
    Oxford University Press
    Publication Date: 2012-10-16
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    facet.materialart.
    Unknown
    Oxford University Press
    Publication Date: 2012-10-16
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2012-10-16
    Description: Abnormal presence of autophagic vacuoles is evident in brains of patients with Parkinson's disease (PD), in contrast to the rare detection of autophagosomes in a normal brain. However, the actual cause and pathological significance of these observations remain unknown. Here, we demonstrate a role for mitochondrial metabolism in the regulation of the autophagy-lysosomal pathway in ex vivo and in vitro models of PD. We show that transferring mitochondria from PD patients into cells previously depleted of mitochondrial DNA is sufficient to reproduce the alterations in the autophagic system observed in PD patient brains. Although the initial steps of this pathway are not compromised, there is an increased accumulation of autophagosomes associated with a defective autophagic activity. We prove that this functional decline was originated from a deficient mobilization of autophagosomes from their site of formation toward lysosomes due to disruption in microtubule-dependent trafficking. This contributed directly to a decreased proteolytic flux of α-synuclein and other autophagic substrates. Our results lend strong support for a direct impact of mitochondria in autophagy as defective autophagic clearance ability secondary to impaired microtubule trafficking is driven by dysfunctional mitochondria. We uncover mitochondria and mitochondria-dependent intracellular traffic as main players in the regulation of autophagy in PD.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2012-10-16
    Description: Resistin is a polypeptide hormone that was reported to be associated with insulin resistance, inflammation and risk of type 2 diabetes and cardiovascular disease. We conducted a genome-wide association (GWA) study on circulating resistin levels in individuals of European ancestry drawn from the two independent studies: the Nurses' Health Study ( n = 1590) and the Health, Aging and Body Composition Study ( n = 1658). Single-nucleotide polymorphisms (SNPs) identified in the GWA analysis were replicated in an independent cohort of Europeans: the Gargano Family Study ( n = 659). We confirmed the association with a previously known locus, the RETN gene (19p13.2), and identified two novel loci near the TYW3/CRYZ gene (1p31) and the NDST4 gene (4q25), associated with resistin levels at a genome-wide significant level, best represented by SNP rs3931020 ( P = 6.37 x 10 –12 ) and SNP rs13144478 ( P = 6.19 x 10 –18 ), respectively. Gene expression quantitative trait loci analyses showed a significant cis association between the SNP rs3931020 and CRYZ gene expression levels ( P = 3.68 x 10 –7 ). We also found that both of these two SNPs were significantly associated with resistin gene ( RETN ) mRNA levels in white blood cells from 68 subjects with type 2 diabetes (both P = 0.02). In addition, the resistin-rising allele of the TYW3/CRYZ SNP rs3931020, but not the NDST4 SNP rs13144478, showed a consistent association with increased coronary heart disease risk [odds ratio = 1.18 (95% CI, 1.03–1.34); P = 0.01]. Our results suggest that genetic variants in TYW3/CRYZ and NDST4 loci may be involved in the regulation of circulating resistin levels. More studies are needed to verify the associations of the SNP rs13144478 with NDST4 gene expression and resistin-related disease.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2012-04-12
    Description: SERPINA3 (Serpin peptidase inhibitor clade A member 3), also known as a1-antichymotrypsin, is a serine protease inhibitor involved in a wide range of biological processes. Recently, it has been shown to be up-regulated in human placental diseases in association with a hypomethylation of the 5' region of the gene. In the present study, we show that the promoter of SERPINA3 is transcriptionally activated by three transcription factors (TFs) (SP1, MZF1 and ZBTB7B), the level of induction being dependent on the rs1884082 single nucleotide polymorphism (SNP) located inside the promoter, the T allele being consistently induced to a higher level than the G, with or without added TFs. When the promoter was methylated, the response to ZBTB7B was allele specific (the G allele was strongly induced, while the T allele was strongly down-regulated). We propose an adaptive model to explain the interest of such a regulation for placental function and homeostasis. Overexpression of SERPINA3 in JEG-3 cells, a trophoblast cell model, decreased cell adhesion to the extracellular matrix and to neighboring cells, but protects them from apoptosis, suggesting a way by which this factor could be deleterious at high doses. In addition, we show in different human populations that the T allele appears to predispose to Intra Uterine Growth Restriction (IUGR), while a G allele at a second SNP located in the second exon (rs4634) increases the risk of preeclampsia. Our results provide mechanistic views inside the involvement of SERPINA3 in placental diseases, through its regulation by a combination of epigenetic, genetic and TF-mediated regulations.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    facet.materialart.
    Unknown
    Oxford University Press
    Publication Date: 2012-04-12
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    facet.materialart.
    Unknown
    Oxford University Press
    Publication Date: 2012-04-12
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2012-04-12
    Description: Apoptosis, or programmed cell death, is a cellular pathway involved in normal cell turnover, developmental tissue remodeling, embryonic development, cellular homeostasis maintenance and chemical-induced cell death. Caspases are a family of intracellular proteases that play a key role in apoptosis. Aberrant activation of caspases has been implicated in human diseases. In particular, numerous findings implicate Caspase-6 (Casp6) in neurodegenerative diseases, including Alzheimer disease (AD) and Huntington disease (HD), highlighting the need for a deeper understanding of Casp6 biology and its role in brain development. The use of targeted caspase-deficient mice has been instrumental for studying the involvement of caspases in apoptosis. The goal of this study was to perform an in-depth neuroanatomical and behavioral characterization of constitutive Casp6-deficient ( Casp6 –/–) mice in order to understand the physiological function of Casp6 in brain development, structure and function. We demonstrate that Casp6 –/– neurons are protected against excitotoxicity, nerve growth factor deprivation and myelin-induced axonal degeneration. Furthermore, Casp6-deficient mice show an age-dependent increase in cortical and striatal volume. In addition, these mice show a hypoactive phenotype and display learning deficits. The age-dependent behavioral and region-specific neuroanatomical changes observed in the Casp6 –/– mice suggest that Casp6 deficiency has a more pronounced effect in brain regions that are involved in neurodegenerative diseases, such as the striatum in HD and the cortex in AD.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2012-04-12
    Description: In Duchenne muscular dystrophy (DMD), a persistently altered and reorganizing extracellular matrix (ECM) within inflamed muscle promotes damage and dysfunction. However, the molecular determinants of the ECM that mediate inflammatory changes and faulty tissue reorganization remain poorly defined. Here, we show that fibrin deposition is a conspicuous consequence of muscle-vascular damage in dystrophic muscles of DMD patients and mdx mice and that elimination of fibrin(ogen) attenuated dystrophy progression in mdx mice. These benefits appear to be tied to: (i) a decrease in leukocyte integrin α M β 2 -mediated proinflammatory programs, thereby attenuating counterproductive inflammation and muscle degeneration; and (ii) a release of satellite cells from persistent inhibitory signals, thereby promoting regeneration. Remarkably, Fib-gamma(390-396A) (Fib 390-396A ) mice expressing a mutant form of fibrinogen with normal clotting function, but lacking the α M β 2 binding motif, ameliorated dystrophic pathology. Delivery of a fibrinogen/α M β 2 blocking peptide was similarly beneficial. Conversely, intramuscular fibrinogen delivery sufficed to induce inflammation and degeneration in fibrinogen-null mice. Thus, local fibrin(ogen) deposition drives dystrophic muscle inflammation and dysfunction, and disruption of fibrin(ogen)-α M β 2 interactions may provide a novel strategy for DMD treatment.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2012-04-12
    Description: Fragile X-associated tremor/ataxia syndrome (FXTAS) is a progressive neurodegenerative disorder recognized in fragile X premutation carriers. Using Drosophila , we previously identified elongated non-coding CGG repeats in FMR1 allele as the pathogenic cause of FXTAS. Here, we use this same FXTAS Drosophila model to conduct a chemical screen that reveals small molecules that can ameliorate the toxic effects of fragile X premutation ribo-CGG (rCGG) repeats, among them several known phospholipase A 2 (PLA 2 ) inhibitors. We show that specific inhibition of PLA 2 activity could mitigate the neuronal deficits caused by fragile X premutation rCGG repeats, including lethality and locomotion deficits. Furthermore, through a genetic screen, we identified a PLA 2 Drosophila ortholog that specifically modulates rCGG repeat-mediated neuronal toxicity. Our results demonstrate the utility of Drosophila models for unbiased small molecule screens and point to PLA 2 as a possible therapeutic target to treat FXTAS.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2012-04-12
    Description: Disrupted in Schizophrenia 1 (DISC1) is a key susceptibility gene implicated in major mental illnesses, such as schizophrenia, depression, bipolar disorder and autism, but the link between this protein and the pathology of these diseases remains unclear. Recently, DISC1 has been demonstrated to form insoluble protein aggregates in vitro and in human post-mortem brain tissue but the cellular dynamics of these DISC1 aggregates and their effects on neuronal function are unknown. Using a combination of biochemistry and live cell confocal and video microscopy, we characterize the properties of DISC1 aggregates and their effects on cellular function. We demonstrate that DISC1 protein aggregates are recruited to the aggresome and degraded there by the autophagic pathway. We show that there is a compromised exchange between DISC1 in aggresomes and the cytosolic DISC1 pool, and that the large DISC1 aggregates, which can also co-recruit endogenous soluble DISC1, exhibit altered trafficking. Moreover, we demonstrate that large DISC1 aggregates have a pathological effect in neurons by causing the disruption of intracellular transport of key organellar cargo, such as mitochondria. These data, therefore, show that DISC1 is recruited to aggresomes with negative effects on neuronal function, and suggests a novel DISC1-based mechanism for neuronal pathology.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2012-04-12
    Description: Abnormalities in Z-disc proteins cause hypertrophic (HCM), dilated (DCM) and/or restrictive cardiomyopathy (RCM), but disease-causing mechanisms are not fully understood. Myopalladin (MYPN) is a Z-disc protein expressed in striated muscle and functions as a structural, signaling and gene expression regulating molecule in response to muscle stress. MYPN was genetically screened in 900 patients with HCM, DCM and RCM, and disease-causing mechanisms were investigated using comparative immunohistochemical analysis of the patient myocardium and neonatal rat cardiomyocytes expressing mutant MYPN. Cardiac-restricted transgenic (Tg) mice were generated and protein–protein interactions were evaluated. Two nonsense and 13 missense MYPN variants were identified in subjects with DCM, HCM and RCM with the average cardiomyopathy prevalence of 1.66%. Functional studies were performed on two variants (Q529X and Y20C) associated with variable clinical phenotypes. Humans carrying the Y20C-MYPN variant developed HCM or DCM, whereas Q529X-MYPN was found in familial RCM. Disturbed myofibrillogenesis with disruption of α-actinin2, desmin and cardiac ankyrin repeat protein (CARP) was evident in rat cardiomyocytes expressing MYPN Q529X . Cardiac-restricted MYPN Y20C Tg mice developed HCM and disrupted intercalated discs, with disturbed expression of desmin, desmoplakin, connexin43 and vinculin being evident. Failed nuclear translocation and reduced binding of Y20C-MYPN to CARP were demonstrated using in vitro and in vivo systems. MYPN mutations cause various forms of cardiomyopathy via different protein–protein interactions. Q529X-MYPN causes RCM via disturbed myofibrillogenesis, whereas Y20C-MYPN perturbs MYPN nuclear shuttling and leads to abnormal assembly of terminal Z-disc within the cardiac transitional junction and intercalated disc.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2012-04-12
    Description: In addition to the genetic constitution inherited by an organism, the developmental trajectory and resulting mature phenotype are also determined by mechanisms acting during critical windows in early life that influence and establish stable patterns of gene expression. This is the crux of the developmental origins of health and disease hypothesis that suggests undernutrition during gestation and infancy predisposes to ill health in later life. The hypothesis that periconceptional maternal micronutrient supplementation might affect fetal genome-wide methylation within gene promoters was explored in cord blood samples from offspring of Gambian women enrolled into a unique randomized, double blind controlled trial. Significant changes in the epigenome in cord blood DNA samples were further explored in a subset of offspring at 9 months. Gender-specific changes related to periconceptional nutritional supplementation were identified in cord blood DNA samples, some of which showed persistent changes in infant blood DNA samples. Significant effects of periconceptional micronutrient supplementation were also observed in postnatal samples which were not evident in cord blood. In this Gambian population, the increased death rate of individuals born in nutritionally poor seasons has been related to infection and it is of interest that we identified differential methylation at genes associated with defence against infection and immune response. Although the sample size was relatively small, these pilot data suggest that periconceptional nutrition in humans is an important determinant of newborn whole genome methylation patterns but may also influence postnatal developmental patterns of gene promoter methylation linking early with disease risk.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    facet.materialart.
    Unknown
    Abnet, C. C., Wang, Z., Song, X., Hu, N., Zhou, F.-Y., Freedman, N. D., Li, X.-M., Yu, K., Shu, X.-O., Yuan, J.-M., Zheng, W., Dawsey, S. M., Liao, L. M., Lee, M. P., Ding, T., Qiao, Y.-L., Gao, Y.-T., Koh, W.-P., Xiang, Y.-B., Tang, Z.-Z., Fan, J.-H., Chung, C. C., Wang, C., Wheeler, W., Yeager, M., Yuenger, J., Hutchinson, A., Jacobs, K. B., Giffen, C. A., Burdett, L., Fraumeni, J. F., Tucker, M. A., Chow, W.-H., Zhao, X.-K., Li, J.-M., Li, A.-L., Sun, L.-D., Wei, W., Li, J.-L., Zhang, P., Li, H.-L., Cui, W.-Y., Wang, W.-P., Liu, Z.-C., Yang, X., Fu, W.-J., Cui, J.-L., Lin, H.-L., Zhu, W.-L., Liu, M., Chen, X., Chen, J., Guo, L., Han, J.-J., Zhou, S.-L., Huang, J., Wu, Y., Yuan, C., Huang, J., Ji, A.-F., Kul, J.-W., Fan, Z.-M., Wang, J.-P., Zhang, D.-Y., Zhang, L.-Q., Zhang, W., Chen, Y.-F., Ren, J.-L., Li, X.-M., Dong, J.-C., Xing, G.-L., Guo, Z.-G., Yang, J.-X., Mao, Y.-M., Yuan, Y., Guo, E.-T., Zhang, W., Hou, Z.-C., Liu, J., Li, Y., Tang, S., Chang, J., Peng, X.-Q., Han, M., Yin, W.-L., Liu, Y.-L., Hu, Y.-L., Liu, Y., Yang, L.-Q., Zhu, F.-G., Yang, X.-F., Feng, X.-S., Wang, Z., Li, Y., Gao, S.-G., Liu, H.-L., Yuan, L., Jin, Y., Zhang, Y.-R., Sheyhidin, I., Li, F., Chen, B.-P., Ren, S.-W., Liu, B., Li, D., Zhang, G.-F., Yue, W.-B., Feng, C.-W., Qige, Q., Zhao, J.-T., Yang, W.-J., Lei, G.-Y., Chen, L.-Q., Li, E.-M., Xu, L.-Y., Wu, Z.-Y., Bao, Z.-Q., Chen, J.-L., Li, X.-C., Zhuang, X., Zhou, Y.-F., Zuo, X.-B., Dong, Z.-M., Wang, L.-W., Fan, X.-P., Wang, J., Zhou, Q., Ma, G.-S., Zhang, Q.-X., Liu, H., Jian, X.-Y., Lian, S.-Y., Wang, J.-S., Chang, F.-B., Lu, C.-D., Miao, J.-J., Chen, Z.-G., Wang, R., Guo, M., Fan, Z.-L., Tao, P., Liu, T.-J., Wei, J.-C., Kong, Q.-P., Fan, L., Wang, X.-Z., Gao, F.-S., Wang, T.-Y., Xie, D., Wang, L., Chen, S.-Q., Yang, W.-C., Hong, J.-Y., Wang, L., Qiu, S.-L., Goldstein, A. M., Yuan, Z.-Q., Chanock, S. J., Zhang, X.-J., Taylor, P. R., Wang, L.-D.
    Oxford University Press
    Publication Date: 2012-04-12
    Description: Genome-wide association studies have identified susceptibility loci for esophageal squamous cell carcinoma (ESCC). We conducted a meta-analysis of all single-nucleotide polymorphisms (SNPs) that showed nominally significant P -values in two previously published genome-wide scans that included a total of 2961 ESCC cases and 3400 controls. The meta-analysis revealed five SNPs at 2q33 with P 〈 5 x 10 –8 , and the strongest signal was rs13016963, with a combined odds ratio (95% confidence interval) of 1.29 (1.19–1.40) and P = 7.63 x 10 –10 . An imputation analysis of 4304 SNPs at 2q33 suggested a single association signal, and the strongest imputed SNP associations were similar to those from the genotyped SNPs. We conducted an ancestral recombination graph analysis with 53 SNPs to identify one or more haplotypes that harbor the variants directly responsible for the detected association signal. This showed that the five SNPs exist in a single haplotype along with 45 imputed SNPs in strong linkage disequilibrium, and the strongest candidate was rs10201587, one of the genotyped SNPs. Our meta-analysis found genome-wide significant SNPs at 2q33 that map to the CASP8 / ALS2CR12/TRAK2 gene region. Variants in CASP8 have been extensively studied across a spectrum of cancers with mixed results. The locus we identified appears to be distinct from the widely studied rs3834129 and rs1045485 SNPs in CASP8 . Future studies of esophageal and other cancers should focus on comprehensive sequencing of this 2q33 locus and functional analysis of rs13016963 and rs10201587 and other strongly correlated variants.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2012-04-12
    Description: Aneurysmal subarachnoid hemorrhage (aSAH) is the most serious subtype of stroke. Genetic factors have been known to play an important role in the development of intracranial aneurysm (IA), some of which further progress to subarachnoid hemorrhage (SAH). In this study, we conducted a genome-wide association study (GWAS) to identify common genetic variants that are associated with the risk of IA, using 1383 aSAH subjects and 5484 control individuals in the Japanese population. We selected 36 single-nucleotide polymorphisms (SNPs) that showed suggestive association ( P 〈 1 x 10 –4 ) in the GWAS as well as additional 7 SNPs that were previously reported to be associated with IA, and further genotyped an additional set of 1048 IA cases and 7212 controls. We identified an SNP, rs6842241, near EDNRA at chromosome 4q31.22 (combined P -value = 9.58 x 10 –9 ; odds ratio = 1.25), which was found to be significantly associated with IA. Additionally, we successfully replicated and validated rs10757272 on CDKN2BAS at chromosome 9p21.3 (combined P -value = 1.55 x 10 –7 ; odds ratio = 1.21) to be significantly associated with IA as previously reported. Furthermore, we performed functional analysis with the associated genetic variants on EDNRA , and identified two alleles of rs6841581 that have different binding affinities to a nuclear protein(s). The transcriptional activity of the susceptible allele of this variant was significantly lower than the other, suggesting that this functional variant might affect the expression of EDNRA and subsequently result in the IA susceptibility. Identification of genetic variants on EDNRA is of clinical significance probably due to its role in vessel hemodynamic stress. Our findings should contribute to a better understanding of physiopathology of IA.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2012-04-12
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2012-04-12
    Description: The leucine-rich repeat kinase 2 (LRRK2) mutations are the most common cause of autosomal-dominant Parkinson disease (PD). Mitochondrial dysfunction represents a critical event in the pathogenesis of PD. We demonstrated that wild-type (WT) LRRK2 expression caused mitochondrial fragmentation along with increased mitochondrial dynamin-like protein (DLP1, also known as DRP1), a fission protein, which was further exacerbated by expression of PD-associated mutants (R1441C or G2019S) in both SH-SY5Y and differentiated primary cortical neurons. We also found that LRRK2 interacted with DLP1, and LRRK2–DLP1 interaction was enhanced by PD-associated mutations that probably results in increased mitochondrial DLP1 levels. Co-expression of dominant-negative DLP1 K38A or WT Mfn2 blocked LRRK2-induced mitochondrial fragmentation, mitochondrial dysfunction and neuronal toxicity. Importantly, mitochondrial fragmentation and dysfunction were not observed in cells expressing either GTP-binding deficient mutant LRRK2 K1347A or kinase-dead mutant D1994A which has minimal interaction with DLP1 and did not increase the mitochondrial DLP1 level. We concluded that LRRK2 regulates mitochondrial dynamics by increasing mitochondrial DLP1 through its direct interaction with DLP1, and LRRK2 kinase activity plays a critical role in this process.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2012-04-12
    Description: FANCM is the most highly conserved protein within the Fanconi anaemia (FA) tumour suppressor pathway. However, although FANCM contains a helicase domain with translocase activity, this is not required for its role in activating the FA pathway. Instead, we show here that FANCM translocaseactivity is essential for promoting replication fork stability. We demonstrate that cells expressing translocase-defective FANCM show altered global replication dynamics due to increased accumulation of stalled forks that subsequently degenerate into DNA double-strand breaks, leading to ATM activation, CTBP-interacting protein (CTIP)-dependent end resection and homologous recombination repair. Accordingly, abrogation of ATM or CTIP function in FANCM-deficient cells results in decreased cell survival. We also found that FANCM translocase activity protects cells from accumulating 53BP1-OPT domains, which mark lesions resulting from problems arising during replication. Taken together, these data show that FANCM plays an essential role in maintaining chromosomal integrity by promoting the recovery of stalled replication forks and hence preventing tumourigenesis.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    facet.materialart.
    Unknown
    Oxford University Press
    Publication Date: 2012-04-12
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2012-04-12
    Description: There are numerous genes for which loss-of-function mutations do not produce apparent phenotypes even though statistically significant quantitative changes to biological pathways are observed. To evaluate the biological meaning of small effects is challenging. Bardet–Biedl syndrome (BBS) is a heterogeneous autosomal recessive disorder characterized by obesity, retinopathy, polydactyly, renal malformations, learning disabilities and hypogenitalism, as well as secondary phenotypes including diabetes and hypertension. BBS knockout mice recapitulate most human phenotypes including obesity, retinal degeneration and male infertility. However, BBS knockout mice do not develop polydacyly. Here we showed that the loss of BBS genes in mice result in accumulation of Smoothened and Patched 1 in cilia and have a decreased Shh response. Knockout of Bbs7 combined with a hypomorphic Ift88 allele (orpk as a model for Shh dysfuction) results in embryonic lethality with e12.5 embryos having exencephaly, pericardial edema, cleft palate and abnormal limb development, phenotypes not observed in Bbs7 –/– mice . Our results indicate that BBS genes modulate Shh pathway activity and interact genetically with the intraflagellar transport (IFT) pathway to play a role in mammalian development. This study illustrates an effective approach to appreciate the biological significance of a small effect.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2012-04-12
    Description: A proline-to-serine substitution at position 56 in the gene encoding vesicle-associated membrane protein-associated protein B (VAPB; VAPBP56S) causes some dominantly inherited familial forms of motor neuron disease, including amyotrophic lateral sclerosis (ALS) type-8. Here, we show that expression of ALS mutant VAPBP56S but not wild-type VAPB in neurons selectively disrupts anterograde axonal transport of mitochondria. VAPBP56S-induced disruption of mitochondrial transport involved reductions in the frequency, velocity and persistence of anterograde mitochondrial movement. Anterograde axonal transport of mitochondria is mediated by the microtubule-based molecular motor kinesin-1. Attachment of kinesin-1 to mitochondria involves the outer mitochondrial membrane protein mitochondrial Rho GTPase-1 (Miro1) which acts as a sensor for cytosolic calcium levels ([Ca 2+ ]c); elevated [Ca 2+ ]c disrupts mitochondrial transport via an effect on Miro1. To gain insight into the mechanisms underlying the VAPBP56S effect on mitochondrial transport, we monitored [Ca 2+ ]c levels in VAPBP56S-expressing neurons. Expression of VAPBP56S but not VAPB increased resting [Ca 2+ ]c and this was associated with a reduction in the amounts of tubulin but not kinesin-1 that were associated with Miro1. Moreover, expression of a Ca 2+ insensitive mutant of Miro1 rescued defective mitochondrial axonal transport and restored the amounts of tubulin associated with the Miro1/kinesin-1 complex to normal in VAPBP56S-expressing cells. Our results suggest that ALS mutant VAPBP56S perturbs anterograde mitochondrial axonal transport by disrupting Ca 2+ homeostasis and effecting the Miro1/kinesin-1 interaction with tubulin.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2012-04-12
    Description: Recombination plays a fundamental role in meiosis. Non-exchange gene conversion (non-crossover, NCO) may facilitate homologue pairing, while reciprocal crossover (CO) physically connects homologues so they orientate appropriately on the meiotic spindle. In males, X–Y homologous pairing and exchange occurs within the two pseudoautosomal regions (PARs) together comprising 〈5% of the human sex chromosomes. Successful meiosis depends on an obligatory CO within PAR1, while the nature and role of exchange within PAR2 is unclear. Here, we describe the identification and characterization of a typical ~1 kb wide recombination hotspot within PAR2. We find that both COs and NCOs are strongly modulated in trans by the presumed chromatin remodelling protein PRDM9, and in cis by a single nucleotide polymorphism (SNP) located at the hotspot centre that appears to influence recombination initiation and which causes biased gene conversion in SNP heterozygotes. This, the largest survey to date of human NCOs reveals for the first time substantial inter-individual variation in the NCO:CO ratio. Although the extent of biased transmission at the central marker in COs is similar across men, it is highly variable among NCO recombinants. This suggests that cis -effects are mediated not only through recombination initiation frequencies varying between haplotypes but also through subsequent processing, with the potential to significantly intensify meiotic drive of hotspot-suppressing alleles. The NCO:CO ratio and extent of transmission distortion among NCOs appear to be inter-related, suggesting the existence of two NCO pathways in humans.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2012-04-12
    Description: Recent genome-wide association studies (GWAS) identified a number of prostate cancer (PC) susceptibility loci, but most of their functional significances are not elucidated. Through our previous GWAS for PC in a Japanese population and subsequent resequencing and fine mapping, we here identified that IRX4 (Iroquois homeobox 4) , coding Iroquois homeobox 4, is a causative gene of the PC susceptibility locus (rs12653946) at chromosome 5p15. IRX4 is expressed specifically in the prostate and heart, and quantitative expression analysis revealed a significant association between the genotype of rs12653946 and IRX4 expression in normal prostate tissues. Knockdown of IRX4 in PC cells enhanced their growth and IRX4 overexpression in PC cells suppressed their growth, indicating the functional association of IRX4 with PC and its tumor suppressive effect. Immunoprecipitation confirmed its protein–protein interaction to vitamin D receptor (VDR), and we found a significant interaction between IRX4 and VDR in their reciprocal transcriptional regulation. These findings indicate that the PC-susceptibility locus represented by rs12653946 at 5p15 is likely to regulate IRX4 expression in prostate which could suppress PC growth by interacting with the VDR pathway, conferring to PC susceptibility.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2012-04-12
    Description: Recent genome-wide association studies (GWAS) have identified a number of novel genetic associations with complex human diseases. In spite of these successes, results from GWAS generally explain only a small proportion of disease heritability, an observation termed the ‘missing heritability problem’. Several sources for the missing heritability have been proposed, including the contribution of many common variants with small individual effect sizes, which cannot be reliably found using the standard GWAS approach. The goal of our study was to explore a complimentary approach, which combines GWAS results with functional data in order to identify novel genetic associations with small effect sizes. To do so, we conducted a GWAS for lymphocyte count, a physiologic quantitative trait associated with asthma, in 462 Hutterites. In parallel, we performed a genome-wide gene expression study in lymphoblastoid cell lines from 96 Hutterites. We found significant support for genetic associations using the GWAS data when we considered variants near the 193 genes whose expression levels across individuals were most correlated with lymphocyte counts. Interestingly, these variants are also enriched with signatures of an association with asthma susceptibility, an observation we were able to replicate. The associated loci include genes previously implicated in asthma susceptibility as well as novel candidate genes enriched for functions related to T cell receptor signaling and adenosine triphosphate synthesis. Our results, therefore, establish a new set of asthma susceptibility candidate genes. More generally, our observations support the notion that many loci of small effects influence variation in lymphocyte count and asthma susceptibility.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2012-04-12
    Description: A variety of conditions lead to anemia, which affects one-quarter of the world's population. Previous genome-wide association studies revealed a number of genetic polymorphisms significantly associated with plasma iron status. To evaluate the association of genetic variants in genes involved in iron delivery and hepcidin regulation pathways with the risk of iron-deficiency anemia (IDA), the following single nucleotide polymorphisms were genotyped in 2139 unrelated elderly Chinese women: rs3811647 ( TF ), rs7385804 ( TFR2 ), rs235756 ( BMP2 ), and rs855791(V736A) and rs4820268 ( TMPRSS6, encoding matriptase-2). We identified common variants in TMPRSS6 as being genetic risk factors for both iron deficiency (OR rs855791 = 1.55, P = 4.96 x 10 –8 ) and IDA (OR rs855791 = 1.78, P = 8.43 x 10 –9 ). TMPRSS6 polymorphisms were also associated with lower serum iron (SI) and hemoglobin levels, consistent with their associations to increased iron deficiency and anemia risk. Variants rs3811647 in TF and rs7385804 in TFR2 were associated with reduced SI, serum transferrin and transferrin saturation levels; however, these variants were not associated with iron deficiency or anemia risk. Our findings suggest that TF , TFR2 and TMPRSS6 polymorphisms are significantly associated with decreased iron status, but only variants in TMPRSS6 are genetic risk factors for iron deficiency and IDA.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2012-04-12
    Description: Pluripotent stem cells are derived from culture of early embryos or the germline and can be induced by reprogramming of somatic cells. Barriers to reprogramming that stabilize the differentiated state and have tumor suppression functions are expected to exist. However, we have a limited understanding of what such barriers might be. To find novel barriers to reprogramming to pluripotency, we compared the transcriptional profiles of the mouse germline with pluripotent and somatic cells, in vivo and in vitro . There is a remarkable global expression of the transcriptional program for pluripotency in primordial germ cells (PGCs). We identify parallels between PGC reprogramming to pluripotency and human germ cell tumorigenesis, including the loss of LATS2, a tumor suppressor kinase of the Hippo pathway. We show that knockdown of LATS2 increases the efficiency of induction of pluripotency in human cells. LATS2 RNAi, unlike p53 RNAi, specifically enhances the generation of fully reprogrammed iPS cells without accelerating cell proliferation. We further show that LATS2 represses reprogramming in human cells by post-transcriptionally antagonizing TAZ but not YAP, two downstream effectors of the Hippo pathway. These results reveal transcriptional parallels between germ cell transformation and the generation of iPS cells and indicate that the Hippo pathway constitutes a barrier to cellular reprogramming.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    facet.materialart.
    Unknown
    Oxford University Press
    Publication Date: 2012-08-28
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2012-08-28
    Description: Biallelic mutations in the gene encoding DHOdehase [dihydroorotate dehydrogenase ( DHODH )], an enzyme required for de novo pyrimidine biosynthesis, have been identified as the cause of Miller (Genée–Weidemann or postaxial acrofacial dysostosis) syndrome (MIM 263750). We report compound heterozygous DHODH mutations in four additional families with typical Miller syndrome. Complementation in auxotrophic yeast demonstrated reduced pyrimidine synthesis and in vitro enzymatic analysis confirmed reduced DHOdehase activity in 11 disease-associated missense mutations, with 7 alleles showing discrepant activity between the assays. These discrepancies are partly explained by the domain structure of DHODH and suggest both assays are useful for interpretation of individual alleles. However, in all affected individuals, the genotype predicts that there should be significant residual DHOdehase activity. Urine samples obtained from two mutation-positive cases showed elevated levels of orotic acid (OA) but not dihydroorotate (DHO), an unexpected finding since these represent the product and the substrate of DHODH enzymatic activity, respectively. Screening of four unrelated cases with overlapping but atypical clinical features showed no mutations in either DHODH or the other de novo pyrimidine biosynthesis genes ( CAD , UMPS ), with these cases also showing normal levels of urinary OA and DHO. In situ analysis of mouse embryos showed Dhodh , Cad and Umps to be strongly expressed in the pharyngeal arch and limb bud, supporting a site- and stage-specific requirement for de novo pyrimidine synthesis. The developmental sensitivity to reduced pyrimidine synthesis capacity may reflect the requirement for an exceptional mitogenic response to growth factor signalling in the affected tissues.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2012-08-28
    Description: Restless legs syndrome (RLS), also known as Willis–Ekbom disease, is a sensory–motor neurological disorder with a circadian component. RLS is characterized by uncomfortable sensations in the extremities, generally at night or during sleep, which often leads to an uncontrollable urge to move them for relief. Recently, genomic studies identified single-nucleotide polymorphisms in BTBD9 , along with three other genes, as being associated with a higher risk of RLS. Little is known about the function of BTBD9 or its potential role in the pathophysiology of RLS. We therefore examined a line of Btbd9 mutant mice we recently generated for phenotypes similar to symptoms found in RLS patients. We observed that the Btbd9 mutant mice had motor restlessness, sensory alterations likely limited to the rest phase, and decreased sleep and increased wake times during the rest phase. Additionally, the Btbd9 mutant mice had altered serum iron levels and monoamine neurotransmitter systems. Furthermore, the sensory alterations in the Btbd9 mutant mice were relieved using ropinirole, a dopaminergic agonist widely used for RLS treatment. These results, taken together, suggest that the Btbd9 mutant mice model several characteristics similar to RLS and would therefore be the first genotypic mouse model of RLS. Furthermore, our data provide further evidence that BTBD9 is involved in RLS, and future studies of the Btbd9 mutant mice will help shine light on its role in the pathophysiology of RLS. Finally, our data argue for the utility of Btbd9 mutant mice to discover and screen novel therapeutics for RLS.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2012-08-28
    Description: Achondroplasia (ACH) and thanatophoric dysplasia (TD) are caused by gain-of-function mutations of fibroblast growth factor receptor 3 ( FGFR3 ) and they are the most common forms of dwarfism and lethal dwarfism, respectively. Currently, there are few effective treatments for ACH. For the neonatal lethality of TD patients, no practical effective therapies are available. We here showed that systemic intermittent PTH (1-34) injection can rescue the lethal phenotype of TD type II (TDII) mice and significantly alleviate the retarded skeleton development of ACH mice. PTH-treated ACH mice had longer naso-anal length than ACH control mice, and the bone lengths of humeri and tibiae were rescued to be comparable with those of wild-type control mice. Our study also found that the premature fusion of cranial synchondroses in ACH mice was partially corrected after the PTH (1-34) treatment, suggesting that the PTH treatment may rescue the progressive narrowing of neurocentral synchondroses that cannot be readily corrected by surgery. In addition, we found that the PTH treatment can improve the osteopenia and bone structure of ACH mice. The increased expression of PTHrP and down-regulated FGFR3 level may be responsible for the positive effects of PTH on bone phenotype of ACH and TDII mice.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2012-08-28
    Description: Patients affected by bipolar disorder (BD) frequently report abnormalities in sleep/wake cycles. In addition, they showed abnormal oscillating melatonin secretion, a key regulator of circadian rhythms and sleep patterns. The acetylserotonin O-methyltransferase (ASMT) is a key enzyme of the melatonin biosynthesis and has recently been associated with psychiatric disorders such as autism spectrum disorders and depression. In this paper, we analysed rare and common variants of ASMT in patients with BD and unaffected control subjects and performed functional analysis of these variants by assaying the ASMT activity in their B-lymphoblastoid cell lines. We sequenced the coding and the regulatory regions of the gene in a discovery sample of 345 patients with BD and 220 controls. We performed an association study on this discovery sample using common variants located in the promoter region and showed that rs4446909 was significantly associated with BD ( P = 0.01) and associated with a lower mRNA level ( P 〈 10 –4 ) and a lower enzymatic activity ( P 〈 0.05) of ASMT. A replication study and a meta-analysis using 480 independent patients with BD and 672 controls confirmed the significant association between rs4446909 and BD ( P = 0.002). These results correlate with the general lower ASMT enzymatic activity observed in patients with BD ( P = 0.001) compared with controls. Finally, several deleterious ASMT mutations identified in patients were associated with low ASMT activity ( P = 0.01). In this study, we determined how rare and common variations in ASMT might play a role in BD vulnerability and suggest a general role of melatonin as susceptibility factor for BD.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2012-08-28
    Description: Pantothenate kinase-associated neurodegeneration (PKAN) is a neurodegenerative disease belonging to the group of neurodegeneration with brain iron accumulation disorders. It is characterized by progressive impairments in movement, speech and cognition. The disease is inherited in a recessive manner due to mutations in the Pantothenate Kinase-2 ( PANK2 ) gene that encodes a mitochondrial protein involved in Coenzyme A synthesis. To investigate the link between a PANK2 gene defect and iron accumulation, we analyzed primary skin fibroblasts from three PKAN patients and three unaffected subjects. The oxidative status of the cells and their ability to respond to iron were analyzed in both basal and iron supplementation conditions. In basal conditions, PKAN fibroblasts show an increase in carbonylated proteins and altered expression of antioxidant enzymes with respect to the controls. After iron supplementation, the PKAN fibroblasts had a defective response to the additional iron. Under these conditions, ferritins were up-regulated and Transferrin Receptor 1 (TfR1) was down-regulated to a minor extent in patients compared with the controls. Analysis of iron regulatory proteins (IRPs) reveals that, with respect to the controls, PKAN fibroblasts have a reduced amount of membrane-associated mRNA-bound IRP1, which responds imperfectly to iron. This accounts for the defective expression of ferritin and TfR1 in patients' cells. The inaccurate quantity of these proteins produced a higher bioactive labile iron pool and consequently increased iron-dependent reactive oxygen species formation. Our results suggest that Pank2 deficiency promotes an increased oxidative status that is further enhanced by the addition of iron, potentially causing damage in cells.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2012-08-28
    Description: The zinc metalloprotease ZMPSTE24 plays a critical role in nuclear lamin biology by cleaving the prenylated and carboxylmethylated 15-amino acid tail from the C-terminus of prelamin A to yield mature lamin A. A defect in this proteolytic event, caused by a mutation in the lamin A gene ( LMNA ) that eliminates the ZMPSTE24 cleavage site, underlies the premature aging disease Hutchinson-Gilford Progeria Syndrome (HGPS). Likewise, mutations in the ZMPSTE24 gene that result in decreased enzyme function cause a spectrum of diseases that share certain features of premature aging. Twenty human ZMPSTE24 alleles have been identified that are associated with three disease categories of increasing severity: mandibuloacral dysplasia type B (MAD-B), severe progeria (atypical ‘HGPS’) and restrictive dermopathy (RD). To determine whether a correlation exists between decreasing ZMPSTE24 protease activity and increasing disease severity, we expressed mutant alleles of ZMPSTE24 in yeast and optimized in vivo yeast mating assays to directly compare the activity of alleles associated with each disease category. We also measured the activity of yeast crude membranes containing the ZMPSTE24 mutant proteins in vitro . We determined that, in general, the residual activity of ZMPSTE24 patient alleles correlates with disease severity. Complete loss-of-function alleles are associated with RD, whereas retention of partial, measureable activity results in MAD-B or severe progeria. Importantly, our assays can discriminate small differences in activity among the mutants, confirming that the methods presented here will be useful for characterizing any new ZMPSTE24 mutations that are discovered.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2012-08-28
    Description: The Prader–Willi syndrome (PWS) region in 15q11q13 harbours a cluster of imprinted genes expressed from the paternal chromosome only. Whereas loss of function of the SNORD116 genes appears to be responsible for the major features of PWS, the role of the other genes is less clear. One of these genes is C15orf2 , which has no orthologues in rodents, but appears to be under strong positive selection in primates. C15orf2 encodes a 1156 amino acid protein with six nuclear localisation sequences. By protein BLAST analysis and InterProScan signature recognition search, we found sequence similarity of C15orf2 to the nuclear pore complex (NPC) protein POM121. To determine whether C15orf2 is located at nuclear pores, we generated a stable cell line that inducibly expresses FLAG-tagged C15orf2 and performed immunocytochemical studies. We found that C15orf2 is present at the nuclear periphery, where it colocalizes with NPCs and nuclear lamins. At very high expression levels, we observed invaginations of the nuclear envelope. Extending these observations to three-dimensional structured illumination microscopy, which achieves an 8-fold improved volumetric resolution over conventional imaging, we saw that C15orf2 is located at the inner face of the nuclear envelope where it strongly associates with the NPC. In nuclear envelope isolation and fractionation experiments, we detected C15orf2 in the NPC and lamina fractions. These experiments for the first time demonstrate that C15orf2 is part of the NPC or its associated molecular networks. Based on our findings, we propose ‘Nuclear pore associated protein 1’ as the new name for C15orf2.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2012-08-28
    Description: Myofibrillar myopathies are a group of muscle disorders characterized by the disintegration of skeletal muscle fibers and formation of sarcomeric protein aggregates. All the proteins known to be involved in myofibrillar myopathies localize to a region of the sarcomere known as the Z-disk, the site at which defects are first observed. Given the common cellular phenotype observed in this group of disorders, it is thought that there is a common mechanism of pathology. Mutations in filamin C, which has several proposed roles in the development and function of skeletal muscle, can result in filamin-related myofibrillar myopathy. The lack of a suitable animal model system has limited investigation into the mechanism of pathology in this disease and the role of filamin C in muscle development. Here, we characterize stretched out ( sot ), a zebrafish filamin Cb mutant, together with targeted knockdown of zebrafish filamin Ca , revealing fiber dissolution and formation of protein aggregates strikingly similar to those seen in filamin-related myofibrillar myopathies. Through knockdown of both zebrafish filamin C homologues, we demonstrate that filamin C is not required for fiber specification and that fiber damage is a consequence of muscle activity. The remarkable similarities in the myopathology between our models and filamin-related myofibrillar myopathy makes them suitable for the study of these diseases and provides unique opportunities for the investigation of the function of filamin C in muscle and development of therapies.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2012-08-28
    Description: PRPF31 , a gene located at chromosome 19q13.4, encodes the ubiquitous splicing factor PRPF31. The gene lies in a head-to-head arrangement with TFPT , a poorly characterized gene with a role in cellular apoptosis. Mutations in PRPF31 have been implicated in autosomal dominant retinitis pigmentosa (adRP), a frequent and important cause of blindness worldwide. Disease associated with PRPF31 mutations is unusual, in that there is often non-penetrance of the disease phenotype in affected families, caused by differential expression of PRPF31 . This study aimed to characterize the basic promoter elements of PRPF31 and TFPT. Luciferase reporter constructs were made, using genomic DNA from an asymptomatic individual with a heterozygous deletion of the entire putative promoter region. Fragments were tested by the dual-luciferase reporter assay in HeLa and RPE-1 cell lines. A comparison was made between the promoter regions of symptomatic and asymptomatic mutation-carrying individuals. A patient (CAN493) with adRP was identified, harbouring a regulatory region mutation; both alleles were assayed by the dual-luciferase reporter assay. Luciferase assays led to the identification of core promoters for both PRPF31 and TFPT ; despite their shared gene architecture, the two genes appear to be controlled by slightly different regulatory regions. One functional polymorphism was identified in the PRPF31 promoter that increased transcriptional activation. The change was not, however, consistent with the observed symptomatic–asymptomatic phenotypes in a family affected by PRPF31 -adRP. Analysis of the mutant promoter fragment from CAN493 showed a 〉50% reduction in promoter activity, suggesting a disease mechanism of functional haploinsufficiency—the first report of this disease mechanism in adRP.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2012-08-28
    Description: The CISD2 gene, which is an evolutionarily conserved novel gene, encodes a transmembrane protein primarily associated with the mitochondrial outer membrane. Significantly, the CISD2 gene is located within the candidate region on chromosome 4q where a genetic component for human longevity has been mapped. Previously, we have shown that Cisd2 deficiency shortens lifespan resulting in premature aging in mice. Additionally, an age-dependent decrease in Cisd2 expression has been detected during normal aging. In this study, we demonstrate that a persistent level of Cisd2 achieved by transgenic expression in mice extends their median and maximum lifespan without any apparent deleterious side effects. Cisd2 also ameliorates age-associated degeneration of the skin, skeletal muscles and neurons. Moreover, Cisd2 protects mitochondria from age-associated damage and functional decline as well as attenuating the age-associated reduction in whole-body energy metabolism. These results suggest that Cisd2 is a fundamentally important regulator of lifespan and provide an experimental basis for exploring the candidacy of CISD2 in human longevity.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    facet.materialart.
    Unknown
    Oxford University Press
    Publication Date: 2012-08-28
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2012-08-28
    Description: Variation on chromosome 9p21 is associated with risk of coronary artery disease (CAD). This genomic region contains the CDKN2A and CDKN2B genes which encode the cell cycle regulators p16 INK4a , p14 ARF and p15 INK4b and the ANRIL gene which encodes a non-coding RNA. Vascular smooth muscle cell (VSMC) proliferation plays an important role in the pathogenesis of atherosclerosis which causes CAD. We ascertained whether 9p21 genotype had an influence on CDKN2A/CDKN2B/ANRIL expression levels in VSMCs, VSMC proliferation and VSMC content in atherosclerotic plaques. Immunohistochemical examination showed that VSMCs in atherosclerotic lesions expressed p16 INK4a , p14 ARF and p15 INK4b . Analyses of primary cultures of VSMCs showed that the 9p21 risk genotype was associated with reduced expression of p16 INK4a , p15 INK4b and ANRIL ( P = 1.2 x 10 –5 , 1.4 x 10 –2 and 3.1 x 10 –9 ) and with increased VSMC proliferation ( P = 1.6 x 10 –2 ). Immunohistochemical analyses of atherosclerotic plaques revealed an association of the risk genotype with reduced p15 INK4b levels in VSMCs ( P = 3.7 x 10 –2 ) and higher VSMC content ( P = 5.6 x 10 –4 ) in plaques. The results of this study indicate that the 9p21 variation has an impact on CDKN2A and CDKN2B expression in VSMCs and influences VMSC proliferation, which likely represents an important mechanism for the association between this genetic locus and susceptibility to CAD.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2012-08-28
    Description: Molecules that induce ribosomal read-through of nonsense mutations in mRNA and allow production of a full-length functional protein hold great therapeutic potential for the treatment of many genetic disorders. Two such read-through compounds, RTC13 and RTC14, were recently identified by a luciferase-independent high-throughput screening assay and were shown to have potential therapeutic functions in the treatment of nonsense mutations in the ATM and the dystrophin genes. We have now tested the ability of RTC13 and RTC14 to restore dystrophin expression into skeletal muscles of the mdx mouse model for Duchenne muscular dystrophy (DMD). Direct intramuscular injection of compound RTC14 did not result in significant read-through activity in vivo and demonstrated the levels of dystrophin protein similar to those detected using gentamicin. In contrast, significant higher amounts of dystrophin were detected after intramuscular injection of RTC13. When administered systemically, RTC13 was shown to partially restore dystrophin protein in different muscle groups, including diaphragm and heart, and improved muscle function. An increase in muscle strength was detected in all treated animals and was accompanied by a significant decrease in creatine kinase levels. These studies establish the therapeutic potential of RTC13 in vivo and advance this newly identified compound into preclinical application for DMD.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2012-08-28
    Description: Single-nucleotide substitutions and small in-frame insertions or deletions identified in human breast cancer susceptibility genes BRCA1 and BRCA2 are frequently classified as variants of unknown clinical significance (VUS) due to the availability of very limited information about their functional consequences. Such variants can most reliably be classified as pathogenic or non-pathogenic based on the data of their co-segregation with breast cancer in affected families and/or their co-occurrence with a pathogenic mutation. Biological assays that examine the effect of variants on protein function can provide important information that can be used in conjunction with available familial data to determine the pathogenicity of VUS. In this report, we have used a previously described mouse embryonic stem (mES) cell-based functional assay to characterize eight BRCA2 VUS that affect highly conserved amino acid residues and map to the N-terminal PALB2-binding or the C-terminal DNA-binding domains. For several of these variants, very limited co-segregation information is available, making it difficult to determine their pathogenicity. Based on their ability to rescue the lethality of Brca2- deficient mES cells and their effect on sensitivity to DNA-damaging agents, homologous recombination and genomic integrity, we have classified these variants as pathogenic or non-pathogenic. In addition, we have used homology-based modeling as a predictive tool to assess the effect of some of these variants on the structural integrity of the C-terminal DNA-binding domain and also generated a knock-in mouse model to analyze the physiological significance of a residue reported to be essential for the interaction of BRCA2 with meiosis-specific recombinase, DMC1.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2012-08-28
    Description: The MAPT (microtubule-associated protein tau) locus is one of the most remarkable in neurogenetics due not only to its involvement in multiple neurodegenerative disorders, including progressive supranuclear palsy, corticobasal degeneration, Parksinson's disease and possibly Alzheimer's disease, but also due its genetic evolution and complex alternative splicing features which are, to some extent, linked and so all the more intriguing. Therefore, obtaining robust information regarding the expression, splicing and genetic regulation of this gene within the human brain is of immense importance. In this study, we used 2011 brain samples originating from 439 individuals to provide the most reliable and coherent information on the regional expression, splicing and regulation of MAPT available to date. We found significant regional variation in mRNA expression and splicing of MAPT within the human brain. Furthermore, at the gene level, the regional distribution of mRNA expression and total tau protein expression levels were largely in agreement, appearing to be highly correlated. Finally and most importantly, we show that while the reported H1/H2 association with gene level expression is likely to be due to a technical artefact, this polymorphism is associated with the expression of exon 3-containing isoforms in human brain. These findings would suggest that contrary to the prevailing view, genetic risk factors for neurodegenerative diseases at the MAPT locus are likely to operate by changing mRNA splicing in different brain regions, as opposed to the overall expression of the MAPT gene.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2012-08-28
    Description: Exposure to the antiepileptic drug valproic acid (VPA) during gestation causes neurofunctional and anatomic deficits in later life. At present, there are little human data on how early neural development is affected by chemicals. We used human embryonic stem cells, differentiating to neuroectodermal precursors, as a model to investigate the modes of action of VPA. Microarray expression profiling, qPCR of specific marker genes, immunostaining and the expression of green fluorescent protein under the control of the promoter of the canonical neural precursor cell marker HES5 were used as readouts. Exposure to VPA resulted in distorted marker gene expression, characterized by a relative increase in NANOG and OCT4 and a reduction in PAX6 . A similar response pattern was observed with trichostatin A, a potent and specific histone deacetylase inhibitor (HDACi), but not with several other toxicants. Differentiation markers were disturbed by prolonged, but not by acute treatment with HDACi, and the strongest disturbance of differentiation was observed by toxicant exposure during early neural fate decision. The increased acetylation of histones observed in the presence of HDACi may explain the up-regulation of some genes. However, to understand the down-regulation of PAX6 and the overall complex transcript changes, we examined further epigenetic markers. Alterations in the methylation of lysines 4 and 27 of histone H3 were detected in the promoter region of PAX6 and OCT4 . The changes in these activating and silencing histone marks provide a more general mechanistic rational for the regulation of developmentally important genes at non-cytotoxic drug concentrations.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2012-08-28
    Description: Age-related macular degeneration (AMD) is a leading cause of visual loss in Western populations. Susceptibility is influenced by age, environmental and genetic factors. Known genetic risk loci do not account for all the heritability. We therefore carried out a genome-wide association study of AMD in the UK population with 893 cases of advanced AMD and 2199 controls. This showed an association with the well-established AMD risk loci ARMS2 (age-related maculopathy susceptibility 2)– HTRA1 (HtrA serine peptidase 1) ( P = 2.7 x 10 –72 ), CFH (complement factor H) ( P = 2.3 x 10 –47 ), C2 (complement component 2)– CFB (complement factor B) ( P = 5.2 x 10 –9 ), C3 (complement component 3) ( P = 2.2 x 10 –3 ) and CFI ( P = 3.6 x 10 –3 ) and with more recently reported risk loci at VEGFA ( P = 1.2 x 10 –3 ) and LIPC (hepatic lipase) ( P = 0.04). Using a replication sample of 1411 advanced AMD cases and 1431 examined controls, we confirmed a novel association between AMD and single-nucleotide polymorphisms on chromosome 6p21.3 at TNXB (tenascin XB)– FKBPL (FK506 binding protein like) [rs12153855/rs9391734; discovery P = 4.3 x 10 –7 , replication P = 3.0 x 10 –4 , combined P = 1.3 x 10 –9 , odds ratio (OR) = 1.4, 95% confidence interval (CI) = 1.3–1.6] and the neighbouring gene NOTCH4 (Notch 4) (rs2071277; discovery P = 3.2 x 10 –8 , replication P = 3.8 x 10 –5 , combined P = 2.0 x 10 –11 , OR = 1.3, 95% CI = 1.2–1.4). These associations remained significant in conditional analyses which included the adjacent C2 – CFB locus. TNXB , FKBPL and NOTCH4 are all plausible AMD susceptibility genes, but further research will be needed to identify the causal variants and determine whether any of these genes are involved in the pathogenesis of AMD.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2012-08-28
    Description: Recurrent microdeletions of 8p23.1 that include GATA4 and SOX7 confer a high risk of both congenital diaphragmatic hernia (CDH) and cardiac defects. Although GATA4-deficient mice have both CDH and cardiac defects, no humans with cardiac defects attributed to GATA4 mutations have been reported to have CDH. We were also unable to identify deleterious GATA4 sequence changes in a CDH cohort. This suggested that haploinsufficiency of another 8p23.1 gene may contribute, along with GATA4 , to the development of CDH. To determine if haploinsufficiency of SOX7 —another transcription factor encoding gene—contributes to the development of CDH, we generated mice with a deletion of the second exon of Sox7 . A portion of these Sox7 ex2/+ mice developed retrosternal diaphragmatic hernias located in the anterior muscular portion of the diaphragm. Anterior CDH is also seen in Gata4 +/– mice and has been described in association with 8p23.1 deletions in humans. Immunohistochemistry revealed that SOX7 is expressed in the vascular endothelial cells of the developing diaphragm and may be weakly expressed in some diaphragmatic muscle cells. Sox7 ex2/ex2 embryos die prior to diaphragm development with dilated pericardial sacs and failure of yolk sac remodeling suggestive of cardiovascular failure. Similar to our experience screening GATA4 , no clearly deleterious SOX7 sequence changes were identified in our CDH cohort. We conclude that haploinsufficiency of Sox7 or Gata4 is sufficient to produce anterior CDH in mice and that haploinsufficiency of SOX7 and GATA4 may each contribute to the development of CDH in individuals with 8p23.1 deletions.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2012-08-28
    Description: Frataxin deficiency results in mitochondrial dysfunction and oxidative stress and it is the cause of the hereditary neurodegenerative disease Friedreich ataxia (FA). Here, we present evidence that one of the pleiotropic effects of oxidative stress in frataxin-deficient yeast cells ( yfh1 mutant) is damage to nuclear DNA and that repair requires the Apn1 AP-endonuclease of the base excision repair pathway. Major phenotypes of yfh1 cells are respiratory deficit, disturbed iron homeostasis and sensitivity to oxidants. These phenotypes are weak or absent under anaerobiosis. We show here that exposure of anaerobically grown yfh1 cells to oxygen leads to down-regulation of antioxidant defenses, increase in reactive oxygen species, delay in G1- and S-phases of the cell cycle and damage to mitochondrial and nuclear DNA. Nuclear DNA lesions in yfh1 cells are primarily caused by oxidized bases and single-strand breaks that can be detected 15–30 min after oxygen exposition. The Apn1 enzyme is essential for the repair of the DNA lesions in yfh1 cells. Compared with yfh1 , the double yfh1 apn1 mutant shows growth impairment, increased mutagenesis and extreme sensitivity to H 2 O 2 . On the contrary, overexpression of the APN1 gene in yfh1 cells decreases spontaneous and induced mutagenesis. Our results show that frataxin deficiency in yeast cells leads to increased DNA base oxidation and requirement of Apn1 for repair, suggesting that DNA damage and repair could be important features in FA disease progression.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    facet.materialart.
    Unknown
    Oxford University Press
    Publication Date: 2012-06-13
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2012-06-13
    Description: RAD51C was defined by Meindl et al . in 2010 as a high-risk gene involved in hereditary breast and ovarian cancers. Although this role seems to be clear, nowadays there is controversy about the indication of including the gene in routine clinical genetic testing, due to the lower prevalence or the absence of mutations found in subsequent studies. Here, we present the results of a comprehensive mutational screening of the RAD51C gene in a large series of 785 Spanish breast and/or ovarian cancer families, which, in contrast to the various subsequent studies published to date, includes the functional characterization of suspicious missense variants as reported in the initial study. We have detected 1.3% mutations of RAD51C in breast and ovarian cancer families, while mutations in breast cancer only families seem to be very rare. More than half of the deleterious variants detected were of missense type, which highlights their significance in the gene, and suggest that RAD51C mutations may have been so far partially disregarded and their prevalence underestimated due to the lack of functional complementation assays. Our results provide new evidences, suggesting that the genetic testing of RAD51C should be considered for inclusion into the clinical setting, at least for breast and ovarian cancer families, and encourage re-evaluating its role incorporating functional assays.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2012-06-13
    Description: Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease affecting motor neurons. Mutations in related RNA-binding proteins TDP-43, FUS/TLS and TAF15 have been connected to ALS. These three proteins share several features, including the presence of a bioinformatics-predicted prion domain, aggregation–prone nature in vitro and in vivo and toxic effects when expressed in multiple model systems. Given these commonalities, we hypothesized that a related protein, EWSR1 (Ewing sarcoma breakpoint region 1), might also exhibit similar properties and therefore could contribute to disease. Here, we report an analysis of EWSR1 in multiple functional assays, including mutational screening in ALS patients and controls. We identified three missense variants in EWSR1 in ALS patients, which were absent in a large number of healthy control individuals. We show that disease-specific variants affect EWSR1 localization in motor neurons. We also provide multiple independent lines of in vitro and in vivo evidence that EWSR1 has similar properties as TDP-43, FUS and TAF15, including aggregation–prone behavior in vitro and ability to confer neurodegeneration in Drosophila . Postmortem analysis of sporadic ALS cases also revealed cytoplasmic mislocalization of EWSR1. Together, our studies highlight a potential role for EWSR1 in ALS, provide a collection of functional assays to be used to assess roles of additional RNA-binding proteins in disease and support an emerging concept that a class of aggregation–prone RNA-binding proteins might contribute broadly to ALS and related neurodegenerative diseases.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2012-06-13
    Description: Chronic systemic inflammation is thought to be a major contributor to metabolic and neurodegenerative diseases. Since inflammatory components are shared among different disorders, targeting inflammation is an attractive option for mitigating disease. To test the significance of inflammation in the lipid storage disorder (LSD) Niemann-Pick C (NPC), we deleted the macrophage inflammatory gene Mip1a/Ccl3 from NPC diseased mice. Deletion of Ccl3 had been reported to delay neuronal loss in Sandhoff LSD mice by inhibiting macrophage infiltration. For NPC mice, in contrast, deleting Ccl3 did not retard neurodegeneration and worsened the clinical outcome. Depletion of visceral tissue macrophages also did not alter central nervous system (CNS) pathology and instead increased liver injury, suggesting a limited macrophage infiltration response into the CNS and a beneficial role of macrophage activity in visceral tissue. Prevention of neuron loss or liver injury, even at late stages in the disease, was achieved through specific rescue of NPC disease in neurons or in liver epithelial cells, respectively. Local epithelial cell correction was also sufficient to reduce the macrophage-associated pathology in lung tissue. These results demonstrate that elevated inflammation and macrophage activity does not necessarily contribute to neurodegeneration and tissue injury, and LSD defects in immune cells may not preclude an appropriate inflammatory response. We conclude that inflammation remains secondary to neuronal and epithelial cell dysfunction and does not irreversibly contribute to the pathogenic cascade in NPC disease. Without further exploration of possible beneficial roles of inflammatory mediators, targeting inflammation may not be therapeutically effective at ameliorating disease severity.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2012-06-13
    Description: Lipoprotein lipase (LPL) is a 448-amino-acid head-to-tail dimeric enzyme that hydrolyzes triglycerides within capillaries. LPL is secreted by parenchymal cells into the interstitial spaces; it then binds to GPIHBP1 (glycosylphosphatidylinositol-anchored high density lipoprotein-binding protein 1) on the basolateral face of endothelial cells and is transported to the capillary lumen. A pair of amino acid substitutions, C418Y and E421K, abolish LPL binding to GPIHBP1, suggesting that the C-terminal portion of LPL is important for GPIHBP1 binding. However, a role for LPL's N terminus has not been excluded, and published evidence has suggested that only full-length homodimers are capable of binding GPIHBP1. Here, we show that LPL's C-terminal domain is sufficient for GPIHBP1 binding. We found, serendipitously, that two LPL missense mutations, G409R and E410V, render LPL susceptible to cleavage at residue 297 (a known furin cleavage site). The C terminus of these mutants (residues 298–448), bound to GPIHBP1 avidly, independent of the N-terminal fragment. We also generated an LPL construct with an in-frame deletion of the N-terminal catalytic domain (residues 50–289); this mutant was secreted but also was cleaved at residue 297. Once again, the C-terminal domain (residues 298–448) bound GPIHBP1 avidly. The binding of the C-terminal fragment to GPIHBP1 was eliminated by C418Y or E421K mutations. After exposure to denaturing conditions, the C-terminal fragment of LPL refolds and binds GPIHBP1 avidly. Thus, the binding of LPL to GPIHBP1 requires only the C-terminal portion of LPL and does not depend on full-length LPL homodimers.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2012-06-13
    Description: C-reactive protein (CRP) is an acute phase reactant protein produced primarily by the liver. Circulating CRP levels are influenced by genetic and non-genetic factors, including infection and obesity. Genome-wide association studies (GWAS) provide an unbiased approach towards identifying loci influencing CRP levels. None of the six GWAS for CRP levels has been conducted in an African ancestry population. The present study aims to: (i) identify genetic variants that influence serum CRP in African Americans (AA) using a genome-wide association approach and replicate these findings in West Africans (WA), (ii) assess transferability of major signals for CRP reported in European ancestry populations (EA) to AA and (iii) use the weak linkage disequilibrium (LD) structure characteristic of African ancestry populations to fine-map the previously reported CRP locus. The discovery cohort comprised 837 unrelated AA, with the replication of significant single-nucleotide polymorphisms (SNPs) assessed in 486 WA. The association analysis was conducted with 2 366 856 genotyped and imputed SNPs under an additive genetic model with adjustment for appropriate covariates. Genome-wide and replication significances were set at P 〈 5 x 10 –8 and P 〈 0.05, respectively. Ten SNPs in ( CRP pseudogene-1 ) CRPP1 and CRP genes were associated with serum CRP ( P = 2.4 x 10 –09 to 4.3 x 10 –11 ). All but one of the top-scoring SNPs associated with CRP in AA were successfully replicated in WA. CRP signals previously identified in EA samples were transferable to AAs, and we were able to fine-map this signal, reducing the region of interest from the 25 kb of LD around the locus in the HapMap CEU sample to only 8 kb in our AA sample.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2012-06-13
    Description: People with Down syndrome (DS) exhibit abnormal brain structure. Alterations affecting neurotransmission and signalling pathways that govern brain function are also evident. A large number of genes are simultaneously expressed at abnormal levels in DS; therefore, it is a challenge to determine which gene(s) contribute to specific abnormalities, and then identify the key molecular pathways involved. We generated RCAN1-TG mice to study the consequences of RCAN1 over-expression and investigate the contribution of RCAN1 to the brain phenotype of DS. RCAN1-TG mice exhibit structural brain abnormalities in those areas affected in DS. The volume and number of neurons within the hippocampus is reduced and this correlates with a defect in adult neurogenesis. The density of dendritic spines on RCAN1-TG hippocampal pyramidal neurons is also reduced. Deficits in hippocampal-dependent learning and short- and long-term memory are accompanied by a failure to maintain long-term potentiation (LTP) in hippocampal slices. In response to LTP induction, we observed diminished calcium transients and decreased phosphorylation of CaMKII and ERK1/2—proteins that are essential for the maintenance of LTP and formation of memory. Our data strongly suggest that RCAN1 plays an important role in normal brain development and function and its up-regulation likely contributes to the neural deficits associated with DS.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2012-06-13
    Description: To identify a novel susceptibility locus for type 2 diabetes, we performed an imputation-based, genome-wide association study (GWAS) in a Japanese population using newly obtained imputed-genotype data for 2 229 890 single-nucleotide polymorphisms (SNPs) estimated from previously reported, directly genotyped GWAS data in the same samples (stage 1: 4470 type 2 diabetes versus 3071 controls). We directly genotyped 43 new SNPs with P -values of 〈10 –4 in a part of stage-1 samples (2692 type 2 diabetes versus 3071 controls), and the associations of validated SNPs were evaluated in another 11 139 Japanese individuals (stage 2: 7605 type 2 diabetes versus 3534 controls). Combined meta-analysis using directly genotyped data for stages 1 and 2 revealed that rs515071 in ANK1 and rs7656416 near MGC21675 were associated with type 2 diabetes in the Japanese population at the genome-wide significant level ( P 〈 5 x 10 –8 ). The association of rs515071 was also observed in European GWAS data (combined P for all populations = 6.14 x 10 –10 ). Rs7656416 was in linkage disequilibrium to rs6815464, which had recently been identified as a top signal in a meta-analysis of East Asian GWAS for type 2 diabetes ( r 2 = 0.76 in stage 2). The association of rs7656416 with type 2 diabetes disappeared after conditioning on rs6815464. These results indicate that the ANK1 locus is a new, common susceptibility locus for type 2 diabetes across different ethnic groups. The signal of association was weaker in the directly genotyped data, so the improvement in signal indicates the importance of imputation in this particular case.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    facet.materialart.
    Unknown
    Oxford University Press
    Publication Date: 2012-09-14
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2012-09-14
    Description: The G2019S leucine rich repeat kinase 2 (LRRK2) mutation is the most common genetic cause of Parkinson's disease (PD), clinically and pathologically indistinguishable from idiopathic PD. Mitochondrial abnormalities are a common feature in PD pathogenesis and we have investigated the impact of G2019S mutant LRRK2 expression on mitochondrial bioenergetics. LRRK2 protein expression was detected in fibroblasts and lymphoblasts at levels higher than those observed in the mouse brain. The presence of G2019S LRRK2 mutation did not influence LRRK2 expression in fibroblasts. However, the expression of the G2019S LRRK2 mutation in both fibroblast and neuroblastoma cells was associated with mitochondrial uncoupling. This was characterized by decreased mitochondrial membrane potential and increased oxygen utilization under basal and oligomycin-inhibited conditions. This resulted in a decrease in cellular ATP levels consistent with compromised cellular function. This uncoupling of mitochondrial oxidative phosphorylation was associated with a cell-specific increase in uncoupling protein (UCP) 2 and 4 expression. Restoration of mitochondrial membrane potential by the UCP inhibitor genipin confirmed the role of UCPs in this mechanism. The G2019S LRRK2-induced mitochondrial uncoupling and UCP4 mRNA up-regulation were LRRK2 kinase-dependent, whereas endogenous LRRK2 levels were required for constitutive UCP expression. We propose that normal mitochondrial function was deregulated by the expression of G2019S LRRK2 in a kinase-dependent mechanism that is a modification of the normal LRRK2 function, and this leads to the vulnerability of selected neuronal populations in PD.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2012-09-14
    Description: Various small molecule pharmacologic agents with different known functions produce similar outcomes in diverse Mendelian and complex disorders, suggesting that they may induce common cellular effects. These molecules include histone deacetylase inhibitors, 4-phenylbutyrate (4PBA) and trichostatin A, and two small molecules without direct histone deacetylase inhibitor activity, hydroxyurea (HU) and sulforaphane. In some cases, the therapeutic effects of histone deacetylase inhibitors have been attributed to an increase in expression of genes related to the disease-causing gene. However, here we show that the pharmacological induction of mitochondrial biogenesis was necessary for the potentially therapeutic effects of 4PBA or HU in two distinct disease models, X-linked adrenoleukodystrophy and sickle cell disease. We hypothesized that a common cellular response to these four molecules is induction of mitochondrial biogenesis and peroxisome proliferation and activation of the stress proteome, or adaptive cell survival response. Treatment of human fibroblasts with these four agents induced mitochondrial and peroxisomal biogenesis as monitored by flow cytometry, immunofluorescence and/or western analyses. In treated normal human fibroblasts, all four agents induced the adaptive cell survival response: heat shock, unfolded protein, autophagic and antioxidant responses and the c-jun N -terminal kinase pathway, at the transcriptional and translational levels. Thus, activation of the evolutionarily conserved stress proteome and mitochondrial biogenesis may be a common cellular response to such small molecule therapy and a common basis of therapeutic action in various diseases. Modulation of this novel therapeutic target could broaden the range of treatable diseases without directly targeting the causative genetic abnormalities.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2012-09-14
    Description: Congenital disorders of glycosylation type I (CDG-I) form a growing group of recessive neurometabolic diseases. Identification of disease genes is compromised by the enormous heterogeneity in clinical symptoms and the large number of potential genes involved. Until now, gene identification included the sequential application of biochemical methods in blood samples and fibroblasts. In genetically unsolved cases, homozygosity mapping has been applied in consanguineous families. Altogether, this time-consuming diagnostic strategy led to the identification of defects in 17 different CDG-I genes. Here, we applied whole-exome sequencing (WES) in combination with the knowledge of the protein N-glycosylation pathway for gene identification in our remaining group of six unsolved CDG-I patients from unrelated non-consanguineous families. Exome variants were prioritized based on a list of 76 potential CDG-I candidate genes, leading to the rapid identification of one known and two novel CDG-I gene defects. These included the first X-linked CDG-I due to a de novo mutation in ALG13 , and compound heterozygous mutations in DPAGT1 , together the first two steps in dolichol-PP-glycan assembly, and mutations in PGM1 in two cases, involved in nucleotide sugar biosynthesis. The pathogenicity of the mutations was confirmed by showing the deficient activity of the corresponding enzymes in patient fibroblasts. Combined with these results, the gene defect has been identified in 98% of our CDG-I patients. Our results implicate the potential of WES to unravel disease genes in the CDG-I in newly diagnosed singleton families.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2012-09-14
    Description: Lymphoepithelial Kazal-type related inhibitor (LEKTI) is a multidomain serine protease inhibitor which plays a central role in skin permeability barrier and allergy. Loss-of-function mutations in the LEKTI encoding gene SPINK5 cause Netherton syndrome, a rare and severe genetic skin disease with a profound skin barrier defect and atopic manifestations. Several studies also reported genetic association between the multifactorial disease atopic dermatitis (AD) and a frequent and non-conservative LEKTI variant, E420K, in different populations. Here, we provide evidence that the 420K variant impacts on LEKTI function by increasing the likelihood of furin-dependent LEKTI precursor cleavage within the linker region D6–D7. This results in the reversal of the cleavage priorities for LEKTI proteolytic activation and prevents the formation of the LEKTI fragment D6D9 known to display the strongest inhibitory activity against kallikrein (KLK) 5-mediated desmoglein-1 (DSG1) degradation. Using in situ and gel zymographies, we show that the modification of the subtle balance in LEKTI inhibitory fragments leads to enhanced KLK5, KLK7 and elastase-2 (ELA-2) activities in 420KK epidermis. By immunohistochemistry and western blot analyses, we found that increased epidermal protease activity correlates with reduced DSG1 protein expression and accelerated profilaggrin proteolysis. All changes determined by the presence of residue 420K within the LEKTI sequence likely contribute to defective skin barrier permeability. Remarkably, LEKTI 420KK epidermis displays an increased expression of the proallergic cytokine thymic stromal lymphopoietin (TSLP). This is the first functional evidence supporting association studies which identified the 420K LEKTI variant as a predisposing factor to AD, in combination with other genetic and environmental factors.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2012-09-14
    Description: Glutamine (Q) expansion diseases are a family of degenerative disorders caused by the lengthening of CAG triplet repeats present in the coding sequences of seemingly unrelated genes whose mutant proteins drive pathogenesis. Despite all the molecular evidence for the genetic basis of these diseases, how mutant poly-Q proteins promote cell death and drive pathogenesis remains controversial. In this report, we show a specific interaction between the mutant androgen receptor (AR), a protein associated with spinal and bulbar muscular atrophy (SBMA), and the nuclear protein PTIP (Pax Transactivation-domain Interacting Protein), a protein with an unusually long Q-rich domain that functions in DNA repair. Upon exposure to ionizing radiation, PTIP localizes to nuclear foci that are sites of DNA damage and repair. However, the expression of poly-Q AR sequesters PTIP away from radiation-induced nuclear foci. This results in sensitivity to DNA-damaging agents and chromosomal instabilities. In a mouse model of SBMA, evidence for DNA damage is detected in muscle cell nuclei and muscular atrophy is accelerated when one copy of the gene encoding PTIP is removed. These data provide a new paradigm for understanding the mechanisms of cellular degeneration observed in poly-Q expansion diseases.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2012-09-14
    Description: Mutation in CUL4B , which encodes a scaffold protein of the E3 ubiquitin ligase complex, has been found in patients with X-linked mental retardation (XLMR). However, early deletion of Cul4b in mice causes prenatal lethality, which has frustrated attempts to characterize the phenotypes in vivo . In this report, we successfully rescued Cul4b mutant mice by crossing female mice in which exons 4–5 of Cul4b were flanked by loxP sequences with Sox2-Cre male mice. In Cul4b -deficient ( Cul4b /Y ) mice, no CUL4B protein was detected in any of the major organs, including the brain. In the hippocampus, the levels of CUL4A, CUL4B substrates (TOP1, β-catenin, cyclin E and WDR5) and neuronal markers (MAP2, tau-1, GAP-43, PSD95 and syn-1) were not sensitive to Cul4b deletion, whereas the number of parvalbumin (PV)-positive GABAergic interneurons was decreased in Cul4b /Y mice, especially in the dentate gyrus (DG). Some dendritic features, including the complexity, diameter and spine density in the CA1 and DG hippocampal neurons, were also affected by Cul4b deletion. Together, the decrease in the number of PV-positive neurons and altered dendritic properties in Cul4b /Y mice imply a reduction in inhibitory regulation and dendritic integration in the hippocampal neural circuit, which lead to increased epileptic susceptibility and spatial learning deficits. Our results identify Cul4b /Y mice as a potential model for the non-syndromic model of XLMR that replicates the CUL4B -associated MR and is valuable for the development of a therapeutic strategy for treating MR.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
  • 88
    Publication Date: 2012-09-14
    Description: Heteroplasmy, the mixture of mitochondrial genomes (mtDNA), varies among individuals and cells. Heteroplasmy levels alter the penetrance of pathological mtDNA mutations, and the susceptibility to age-related diseases such as Parkinson's disease. Although mitochondrial dysfunction occurs in age-related type 2 diabetes mellitus (T2DM), the involvement of heteroplasmy in diabetes is unclear. We hypothesized that the heteroplasmic mutational (HM) pattern may change in T2DM. To test this, we used next-generation sequencing, i.e. massive parallel sequencing (MPS), along with PCR–cloning–Sanger sequencing to analyze HM in blood and skeletal muscle DNA samples from monozygotic (MZ) twins either concordant or discordant for T2DM. Great variability was identified in the repertoires and amounts of HMs among individuals, with a tendency towards more mutations in skeletal muscle than in blood. Whereas many HMs were unique, many were either shared among twin pairs or among tissues of the same individual, regardless of their prevalence. This suggested a heritable influence on even low abundance HMs. We found no clear differences between T2DM and controls. However, we found ~5-fold increase of HMs in non-coding sequences implying the influence of negative selection ( P 〈 0.001). This negative selection was evident both in moderate to highly abundant heteroplasmy (〉5% of the molecules per sample) and in low abundance heteroplasmy (〈5% of the molecules). Although our study found no evidence supporting the involvement of HMs in the etiology of T2DM, the twin study found clear evidence of a heritable influence on the accumulation of HMs as well as the signatures of selection in heteroplasmic mutations.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2012-09-14
    Description: Disruption of E-cadherin ( CDH1 gene) expression, subcellular localization or function arises during initiation and progression of almost 90% of all epithelial carcinomas. Nevertheless, the mechanisms through which this occurs are largely unknown. Previous studies showed the importance of CDH1 intron 2 sequences for proper gene and protein expression, supporting these as E-cadherin cis -modulators. Through RACE and RT-PCR, we searched for transcription events arising from CDH1 intron 2 and discovered several new transcripts. One, named CDH1a , with high expression in spleen and absent from normal stomach, was demonstrated to be translated into a novel isoform, differing from canonical E-cadherin in its N-terminal, as determined by mass spectrometry. Quantitative and functional assays showed that when overexpressed in an E-cadherin negative context, CDH1a replaced canonical protein interactions and functions. However, when co-expressed with canonical E-cadherin, CDH1a increased cell invasion and angiogenesis. Further, interferon-induced gene IFITM1 and IFI27 levels were increased upon CDH1a overexpression. Effects on invasion and IFITM1 and IFI27 expression were reverted upon CDH1a -specific knockdown. Importantly, CDH1a was de novo expressed in gastric cancer cell lines. This study presents a new mechanism by which E-cadherin functions are impaired by cis -regulatory mechanisms possibly with the involvement of inflammatory machinery. If confirmed in other cancer models, our data enclose potential for designing targeted therapies to rescue E-cadherin function.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2012-09-14
    Description: Spinal muscular atrophy (SMA) is a progressive neurodegenerative disease associated with low levels of the essential survival motor neuron (SMN) protein. Reduced levels of SMN is due to the loss of the SMN1 gene and inefficient splicing of the SMN2 gene caused by a C〉T mutation in exon 7. Global analysis of the severe SMN7 SMA mouse model revealed altered splicing and increased levels of the hypoxia-inducible transcript, Hif3alpha , at late stages of disease progression. Severe SMA patients also develop respiratory deficiency during disease progression. We sought to evaluate whether hypoxia was capable of altering SMN2 exon 7 splicing and whether increased oxygenation could modulate disease in a severe SMA mouse model. Hypoxia treatment in cell culture increased SMN2 exon 7 skipping and reduced SMN protein levels. Concordantly, the treatment of SMN7 mice with hyperoxia treatment increased the inclusion of SMN2 exon 7 in skeletal muscles and resulted in improved motor function. Transfection splicing assays of SMN minigenes under hypoxia revealed that hypoxia-induced skipping is dependent on poor exon definition due to the SMN2 C〉T mutation and suboptimal 5' splice site. Hypoxia treatment in cell culture led to increased hnRNP A1 and Sam68 levels. Mutation of hnRNP A1-binding sites prevented hypoxia-induced skipping of SMN exon 7 and was found to bind both hnRNP A1 and Sam68. These results implicate hypoxic stress as a modulator of SMN2 exon 7 splicing in disease progression and a coordinated regulation by hnRNP A1 and Sam68 as modifiers of hypoxia-induced skipping of SMN exon 7.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2012-09-14
    Description: Autism spectrum disorder (ASD) is a heterogeneous disorder with substantial heritability, most of which is unexplained. ASD has a population prevalence of one percent and affects four times as many males as females. Patients with fragile X E (FRAXE) intellectual disability, which is caused by a silencing of the X-linked gene AFF2 , display a number of ASD-like phenotypes. Duplications and deletions at the AFF2 locus have also been reported in cases with moderate intellectual disability and ASD. We hypothesized that other rare X-linked sequence variants at the AFF2 locus might contribute to ASD. We sequenced the AFF2 genomic region in 202 male ASD probands and found that 2.5% of males sequenced had missense mutations at highly conserved evolutionary sites. When compared with the frequency of missense mutations in 5545 X chromosomes from unaffected controls, we saw a statistically significant enrichment in patients with ASD (OR: 4.9; P 〈 0.014). In addition, we identified rare AFF2 3' UTR variants at conserved sites which alter gene expression in a luciferase assay. These data suggest that rare variation in AFF2 may be a previously unrecognized ASD susceptibility locus and may help explain some of the male excess of ASD.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    facet.materialart.
    Unknown
    Oxford University Press
    Publication Date: 2012-09-14
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2012-09-14
    Description: RNA splicing plays a critical role in the programming of neuronal differentiation and, consequently, normal human neurodevelopment, and its disruption may underlie neurodevelopmental and neuropsychiatric disorders. The RNA-binding protein, fox-1 homolog ( RBFOX1 ; also termed A2BP1 or FOX1 ), is a neuron-specific splicing factor predicted to regulate neuronal splicing networks clinically implicated in neurodevelopmental disease, including autism spectrum disorder (ASD), but only a few targets have been experimentally identified. We used RNA sequencing to identify the RBFOX1 splicing network at a genome-wide level in primary human neural stem cells during differentiation. We observe that RBFOX1 regulates a wide range of alternative splicing events implicated in neuronal development and maturation, including transcription factors, other splicing factors and synaptic proteins. Downstream alterations in gene expression define an additional transcriptional network regulated by RBFOX1 involved in neurodevelopmental pathways remarkably parallel to those affected by splicing. Several of these differentially expressed genes are further implicated in ASD and related neurodevelopmental diseases. Weighted gene co-expression network analysis demonstrates a high degree of connectivity among these disease-related genes, highlighting RBFOX1 as a key factor coordinating the regulation of both neurodevelopmentally important alternative splicing events and clinically relevant neuronal transcriptional programs in the development of human neurons.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2012-09-14
    Description: We previously interrogated the transcriptome in heart tissue from Lmna H222P/H222P mice, a mouse model of cardiomyopathy caused by lamin A/C gene ( LMNA ) mutation, and found that the extracellular signal-regulated kinase 1/2 and Jun N -terminal kinase branches of the mitogen-activated protein (MAP) kinase signaling pathway were abnormally hyperactivated prior to the onset of significant cardiac impairment. We have now used an alternative gene expression analysis tool to reanalyze this transcriptome and identify hyperactivation of a third branch of the MAP kinase cascade, p38α signaling. Biochemical analysis of hearts from Lmna H222P/H222P mice showed enhanced p38α activation prior to and after the onset of heart disease as well as in hearts from human subjects with cardiomyopathy caused by LMNA mutations. Treatment of Lmna H222P/H222P mice with the p38α inhibitor ARRY-371797 prevented left ventricular dilatation and deterioration of fractional shortening compared with placebo-treated mice but did not block the expression of collagen genes involved in cardiac fibrosis. These results demonstrate that three different branches of the MAP kinase signaling pathway with overlapping consequences are involved in the pathogenesis of cardiomyopathy caused by LMNA mutations. They further suggest that pharmacological inhibition of p38α may be useful in the treatment of this disease.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
  • 96
    Publication Date: 2012-09-14
    Description: Tuberous sclerosis complex (TSC) is a neurodevelopmental disorder with prominent brain manifestations due to mutations in either TSC1 or TSC2 . Here, we describe novel mouse brain models of TSC generated using conditional hypomorphic and null alleles of Tsc2 combined with the neuron-specific synapsin I cre ( SynIcre ) allele. This allelic series of homozygous conditional hypomorphic alleles ( Tsc2 c-del3/c-del3 SynICre + ) and heterozygote null/conditional hypomorphic alleles ( Tsc2 k/c-del3 SynICre + ) achieves a graded reduction in expression of Tsc2 in neurons in vivo . The mice demonstrate a progressive neurologic phenotype including hunchback, hind limb clasp, reduced survival and brain and cortical neuron enlargement that correlates with a graded reduction in expression of Tsc2 in the two sets of mice. Both models also showed behavioral abnormalities in anxiety, social interaction and learning assays, which correlated with Tsc2 protein levels as well. The observations demonstrate that there are graded biochemical, cellular and clinical/behavioral effects that are proportional to the extent of reduction in Tsc2 expression in neurons. Further, they suggest that some patients with milder manifestations of TSC may be due to persistent low-level expression of functional protein from their mutant allele. In addition, they point to the potential clinical benefit of strategies to raise TSC2 protein expression from the wild-type allele by even modest amounts.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2012-09-14
    Description: Variation in gene expression has been found to be important in disease susceptibility and pharmacogenomics. Local and distant expression quantitative trait loci (eQTLs) have been identified via genome-wide association study (GWAS); yet the functional analysis of these variants has been challenging. The aim of this study was to unravel the functional consequence of a gene with a local SNP with evidence for local and distant regulatory roles in cellular sensitivity to cisplatin, one of the most widely used chemotherapeutic drugs. To this end, we measured cellular susceptibility to cisplatin in 176 HapMap lymphoblastoid cell lines derived from Yoruba individuals from Ibadan, Nigeria. The 276 cytotoxicity-associated SNPs at the suggestive threshold of P ≤ 0.0001 were significantly enriched for eQTLs. Of these SNPs, we found one intronic SNP, rs17115814, that had a significant relationship with the expression level of its host gene, PRPF39 ( P = 0.0007), and a significant correlation with the expression of over 100 distant transcripts ( P ≤ 0.0001). Successful knockdown of PRPF39 expression using siRNA resulted in a significant increase in cisplatin resistance. We then measured the expression of 61 downstream targets after PRPF39 knockdown and found 53 gene targets had significant ( P ≤ 0.05) expression changes. Included in the list of genes that significantly changed after PRPF39 knockdown were MAP3K4 and TFPD2 , two important signaling genes previously shown to be relevant in cisplatin response. Thus, modulation of a local target gene identified through a GWAS was followed by a downstream cascade of gene expression changes resulting in greater resistance to cisplatin.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2012-09-14
    Description: A small proportion of human immunodeficiency virus-1 (HIV-1) infected individuals, termed HIV-1 controllers, suppress viral replication to very low levels in the absence of therapy. Genetic investigations of this phenotype have strongly implicated variation in the class I major histocompatibility complex (MHC) region as key to HIV-1 control. We collected sequence-based classical class I HLA genotypes at 4-digit resolution in HIV-1-infected African American controllers and progressors ( n = 1107), and tested them for association with host control using genome-wide single nucleotide polymorphism data to account for population structure. Several classical alleles at HLA-B were associated with host control, including B*57:03 [odds ratio (OR) = 5.1; P = 3.4 x 10 –18 ] and B*81:01 (OR = 4.8; P = 1.3 x 10 –9 ). Analysis of variable amino acid positions demonstrates that HLA-B position 97 is the most significant association with host control in African Americans (omnibus P = 1.2 x 10 –21 ) and explains the signal of several HLA-B alleles, including B*57:03. Within HLA-B, we also identified independent effects at position 116 (omnibus P = 2.8 x 10 –15 ) in the canonical F pocket, position 63 in the B pocket ( P = 1.5 x 10 –3 ) and the non-pocket position 245 ( P = 8.8 x 10 –10 ), which is thought to influence CD8-binding kinetics. Adjusting for these HLA-B effects, there is evidence for residual association in the MHC region. These results underscore the key role of HLA-B in affecting HIV-1 replication, likely through the molecular interaction between HLA-B and viral peptides presented by infected cells, and suggest that sites outside the peptide-binding pocket also influence HIV-1 control.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2012-09-14
    Description: Congenital gonadotropin-releasing hormone (GnRH) deficiency manifests as absent or incomplete sexual maturation and infertility. Although the disease exhibits marked locus and allelic heterogeneity, with the causal mutations being both rare and private, one causal mutation in the prokineticin receptor, PROKR2 L173R, appears unusually prevalent among GnRH-deficient patients of diverse geographic and ethnic origins. To track the genetic ancestry of PROKR2 L173R, haplotype mapping was performed in 22 unrelated patients with GnRH deficiency carrying L173R and their 30 first-degree relatives. The mutation's age was estimated using a haplotype-decay model. Thirteen subjects were informative and in all of them the mutation was present on the same ~123 kb haplotype whose population frequency is ≤10%. Thus, PROKR2 L173R represents a founder mutation whose age is estimated at approximately 9000 years. Inheritance of PROKR2 L173R-associated GnRH deficiency was complex with highly variable penetrance among carriers, influenced by additional mutations in the other PROKR2 allele (recessive inheritance) or another gene (digenicity). The paradoxical identification of an ancient founder mutation that impairs reproduction has intriguing implications for the inheritance mechanisms of PROKR2 L173R-associated GnRH deficiency and for the relevant processes of evolutionary selection, including potential selective advantages of mutation carriers in genes affecting reproduction.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2012-09-14
    Description: In multicellular organisms, developmental changes to replication timing occur in 400–800 kb domains across half the genome. While examples of epigenetic control of replication timing have been described, a role for DNA sequence in mammalian replication-timing regulation has not been substantiated. To assess the role of DNA sequences in directing developmental changes to replication timing, we profiled replication timing in mice carrying a genetically rearranged Human Chromosome 21 (Hsa21). In two distinct mouse cell types, Hsa21 sequences maintained human-specific replication timing, except at points of Hsa21 rearrangement. Changes in replication timing at rearrangements extended up to 900 kb and consistently reconciled with the wild-type replication pattern at developmental boundaries of replication-timing domains. Our results are consistent with DNA sequence-driven regulation of Hsa21 replication timing during development and provide evidence that mammalian chromosomes consist of multiple independent units of replication-timing regulation.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...