ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (1,229)
  • Oxford University Press  (1,229)
  • BioMed Central
  • 2015-2019  (1,229)
  • 2016  (1,229)
  • FEMS Microbiology Letters  (270)
  • Human Molecular Genetics  (180)
  • 512
  • 62324
  • Biology  (1,229)
Collection
  • Articles  (1,229)
Publisher
  • Oxford University Press  (1,229)
  • BioMed Central
Years
  • 2015-2019  (1,229)
Year
Topic
  • 1
    Publication Date: 2016-07-15
    Description: Invertebrate animal species that can withstand temperatures as high as 37°C, the human body temperature, are limited. In the present study, we utilized the two-spotted cricket, Gryllus bimaculatus , which lives in tropical and subtropical regions, as an animal model of human pathogenic bacterial infection. Injection of Pseudomonas aeruginosa or Staphylococcus aureus into the hemolymph killed crickets. Injected P. aeruginosa or S. aureus proliferated in the hemolymph until the cricket died. The ability of these pathogenic bacteria to kill the crickets was blocked by the administration of antibiotics. S. aureus gene-knockout mutants of virulence factors, including cvfA, agr and srtA , exhibited decreased killing ability compared with the parent strain. The dose at which 50% of crickets were killed by P. aeruginosa or S. aureus was not decreased at 37°C compared with that at 27°C. Injection of Listeria monocytogenes , which upregulates toxin expression at 37°C, killed crickets, and the dose at which 50% of crickets were killed was decreased at 37°C compared with that at 27°C. These findings suggest that the two-spotted cricket is a useful model animal for evaluating the virulence properties of various human pathogenic bacteria at variable temperature including 37°C.
    Keywords: Pathogens & Pathogenicity
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-07-20
    Description: Four antibiotics (pamamycin, oligomycin A, oligomycin B and echinosporin) were isolated and characterized from the fermentation broth of the marine Streptomyces strains B8496 and B8739. Bioassays revealed that each of these compounds impaired motility and caused subsequent lysis of P. viticola zoospores in a dose- and time-dependent manner. Pamamycin displayed the strongest motility inhibitory and lytic activities (IC 50 0.1 μg mL –1 ) followed by oligomycin B (IC 50 0.15 and 0.2 μg mL –1 ) and oligomycin F (IC 50 0.3 and 0.5 μg mL –1 ). Oligomycin A and echinosporin also showed motility inhibitory activities against the zoospores with IC 50 values of 3.0 and 10.0 μg mL –1 , respectively. This is the first report of motility inhibitory and lytic activities of these antibiotics against zoospores of a phytopathogenic peronosporomycete. Structures of all the isolated compounds were determined based on detailed spectroscopic analysis.
    Keywords: Environmental Microbiology
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-07-24
    Description: We have recently reported the active Helicobacter pylori bacteriophages (phages), KHP30 and KHP40, the genomic DNAs of which exist as episomes in host bacterial strains isolated in Japan (i.e. pseudolysogeny). In this study, we examined the possibility of the lysogeny of active KHP30-like phages in Japanese H. pylori strains, because their genomes contain a putative integrase gene. Only the NY40 strain yielded partial detection of a KHP30-like prophage sequence in PCR among 174 Japanese H. pylori isolates, except for strains producing the above active phages. Next, according to the genomic analysis of the NY40 strain, the KHP30-like prophage sequence was found to be located from ca. 524 to 549 kb in the host chromosome. The attachment sites, attL and attR , in the NY40 genome showed almost the same genomic location and sequence as those detected in a French isolate B38, suggesting that an active parental KHP30-like phage had integrated into the ancestral NY40 genome in a site-specific manner. The prophage found in the NY40 genome was assumed to have been genetically modified, after site-specific integration. These, together with the data in the KHP30-like prophages of other H. pylori genomes, suggest that the lysogenic state of the KHP30-like phages is generally unstable.
    Keywords: Virology
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-07-24
    Description: Kefir is a fermented milk beverage consumed for nutritional and health tonic benefits in many parts of the world. It is produced by the fermentation of milk with a consortium of bacteria and yeast embedded within a polysaccharide matrix. This consortium is not well defined and can vary substantially between kefir grains. There are little data on the microbial stability of kefir grains, nor on interactions between microbes in the grain and in the milk. To study this, a grain was split, with one half of each stored at –20°C and the other half passaged repeatedly in whole unpasteurised milk. Grains passaged in the unpasteurised milk recovered vigour and acquired the yeast Kluyveromyces marxainus from the milk which was confirmed to be the same strain by molecular typing. Furthermore, these passaged grains produced kefir that was distinguished chemically and organoleptically from the stored grains. Some changes in ultrastructure were also observed by scanning electron microscopy. The study showed that kefir grains can acquire yeast from their environment and the final product can be influenced by these newly acquired yeasts. Kluyveromyces marxianus is considered to be responsible for some of the most important characteristics of kefir so the finding that this yeast is part of the less stable microbiota is significant.
    Keywords: Food Microbiology
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-07-31
    Description: In sulfidic environments, microbes oxidize reduced sulfur compounds via several pathways. We used metagenomics to investigate sulfur metabolic pathways from microbial mat communities in two subterranean sulfidic streams in Lower Kane Cave, WY, USA and from Glenwood Hot Springs, CO, USA. Both unassembled and targeted recA gene assembly analyses revealed that these streams were dominated by Epsilonproteobacteria and Gammaproteobacteria , including groups related to Sulfurovum , Sulfurospirillum , Thiothrix and an epsilonproteobacterial group with no close cultured relatives. Genes encoding sulfide:quinone oxidoreductase (SQR) were abundant at all sites, but the specific SQR type and the taxonomic affiliation of each type differed between sites. The abundance of thiosulfate oxidation pathway genes (Sox) was not consistent between sites, although overall they were less abundant than SQR genes. Furthermore, the Sox pathway appeared to be incomplete in all samples. This work reveals both variations in sulfur metabolism within and between taxonomic groups found in these systems, and the presence of novel epsilonproteobacterial groups.
    Keywords: Environmental Microbiology
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-07-31
    Description: Pseudomonas aeruginosa is an opportunistic pathogen with high resistance to a wide variety of antimicrobials. The multidrug resistance pump MexAB-OprM promotes the efflux of various antibiotics, mostly when mutations accumulate in the transcriptional regulators MexR, NalC and NalD, thereby causing MexAB-OprM overexpression. In this work, a characterization of 50 P. aeruginosa isolates obtained from Brazilian agricultural soils to determine the reasons of their resistance to aztreonam was done. The majority of the isolates showed higher aztreonam resistance than wild-type strain by MIC method. DNA sequence analysis of mexR , nalC and nalD genes from 13 of these isolates showed the amino acid substitution in NalC for all tested isolates, just one mutation was detected in MexR and none in NalD. Furthermore, an increase in the level of mexA expression by real-time RT-PCR analysis in eight isolates harboring mutations in NalC was found. Although there was not a relationship between MIC of aztreonam and the level of mexA expression, on the other hand, the results presented here suggest that novel mutations in NalC, including Arg 97 -Gly and Ala 186 -Thr, are related to MexAB-OprM overexpression causing aztreonam resistance in P. aeruginosa environmental isolates.
    Keywords: Environmental Microbiology
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-07-31
    Description: The 16S rRNA gene (16S rDNA) codes for RNA that plays a fundamental role during translation in the ribosome and is used extensively as a marker gene to establish relationships among bacteria. However, the complementary non-coding 16S rDNA (nc16S rDNA) has been ignored. An idea emerged in the course of analyzing bacterial 16S rDNA sequences in search for nucleotide composition and substitution patterns: Does the nc16S rDNA code? If so, what does it code for? More importantly: Does 16S rDNA evolution reflect its own evolution or the evolution of its counterpart nc16S rDNA? The objective of this minireview is to discuss these thoughts. nc strands often encode small RNAs (sRNAs), ancient components of gene regulation. nc16S rDNA sequences from different bacterial groups were used to search for possible matches in the Bacterial Small Regulatory RNA Database. Intriguingly, the sequence of one published sRNA obtained from Legionella pneumophila (GenBank: AE017354.1) showed high non-random similarity with nc16S rDNA corresponding in part to the V5 region especially from Legionella and relatives. While the target(s) of this sRNA is unclear at the moment, its mere existence might open up a new chapter in the use of the 16S rDNA to study relationships among bacteria.
    Keywords: Physiology & Biochemistry
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-07-31
    Description: This commentary describes an assessment exercise known as the TRIPSE (Tri-Partite Problem Solving Exercise) that mimics science in operation. Students frame hypotheses based on limited data, design experiments to test them, which they later revise with new information. It is emphasised that there are no single correct answers, only sets with varying degrees of plausibility. The approach is flexible and can be adapted to any of the basic biomedical sciences and for students at multiple levels, undergraduate to graduate. In comparison to other testing methods, this process-oriented exercise provides a better learning experience. It captures the excitement and fascination of science and gives students a more realistic view of how scientists function.
    Keywords: Professional Development
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-07-31
    Description: The OmpA-like protein domain has been associated with peptidoglycan-binding proteins, and is often found in virulence factors of bacterial pathogens. The intracellular pathogen Legionella pneumophila encodes for six proteins that contain the OmpA-like domain, among them the highly conserved uncharacterized protein we named CmpA. Here we set out to characterize the CmpA protein and determine its contribution to intracellular survival of L. pneumophila . Secondary structure analysis suggests that CmpA is an inner membrane protein with a peptidoglycan-binding domain at the C-teminus. A cmpA mutant was able to replicate normally in broth, but failed to compete with an isogenic wild-type strain in an intracellular growth competition assay. The cmpA mutant also displayed significant intracellular growth defects in both the protozoan host Acanthamoeba castellanii and in primary bone marrow-derived macrophages, where uptake into the cells was also impaired. The cmpA phenotypes were completely restored upon expression of CmpA in trans . The data presented here establish CmpA as a novel virulence factor of L. pneumophila that is required for efficient intracellular replication in both mammalian and protozoan hosts.
    Keywords: Pathogens & Pathogenicity
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2016-07-31
    Description: Sedge-dominated wetlands on the Qinghai–Tibetan Plateau are methane emission centers. Methanotrophs at these sites play a role in reducing methane emissions, but relatively little is known about the composition of active methanotrophs in these wetlands. Here, we used DNA stable isotope probing to identify the key active aerobic methanotrophs in three sedge-dominated wetlands on the plateau. We found that Methylocystis species were active in two peatlands, Hongyuan and Dangxiong. Methylobacter species were found to be active only in Dangxiong peat. Hongyuan peat had the highest methane oxidation rate, and cross-feeding of carbon from methanotrophs to methylotrophic Hyphomicrobium species was observed. Owing to a low methane oxidation rate during the incubation, the labeling of methanotrophs in Maduo wetland samples was not detected. Our results indicate that there are large differences in the activity of methanotrophs in the wetlands of this region.
    Keywords: Environmental Microbiology
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2016-07-31
    Description: Numerous national reports have addressed the need for changing how science courses in higher education are taught, so that students develop a deeper understanding of critical concepts and the analytical and cognitive skills needed to address future challenges. This review presents some evidence-based approaches to curriculum development and teaching. Results from discipline-based education research indicate that it is critically important for educators to formulate learning goals, provide frequent and authentic assessments and actively engage students in their learning. Professional societies can play a role in helping to put these changes into practice. To this end, the American Society for Microbiology has developed a number of educational programs and resources, which are described here to encourage the implementation of student-centered learning in microbiology education.
    Keywords: Professional Development
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2016-07-31
    Description: Two-component systems (TCS) allow a cell to elaborate a variety of adaptive responses to environment changes. The recently discovered CasK/R TCS plays a role in the optimal unsaturation of fatty acids necessary for cold adaptation of the foodborne-pathogen Bacillus cereus . Here, we showed that the promoter activity of the operon encoding this TCS was repressed during growth at low temperature in the stationary phase in the parental strain when compared to the casK/R mutant, suggesting that CasR negatively regulates the activity of its own promoter in these conditions. The promoter activity of the desA gene encoding the 5 fatty acid desaturase, providing unsaturated fatty acids (UFAs) required for low temperature adaptation, was repressed in the casK/R mutant grown at 12°C versus 37°C. This result suggests that CasK/R activates desA expression during B. cereus growth at low temperature, allowing an optimal unsaturation of the fatty acids. In contrast, desA expression was repressed during the lag phase at low temperature in presence of UFAs, in a CasK/R-independent manner. Our findings confirm that the involvement of this major TCS in B. cereus cold adaptation is linked to the upregulation of a fatty acid desaturase.
    Keywords: Food Microbiology
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2016-08-05
    Description: Thermotolerance of the fungus Fomes sp. EUM1 was evaluated in solid state fermentation (SSF). This thermotolerant strain improved both hyphal invasiveness (38%) and length (17%) in adverse thermal conditions exceeding 30°C and to a maximum of 40°C. In contrast, hyphal branching decreased by 46% at 45°C. The production of cellulases over corn stover increased 1.6-fold in 30°C culture conditions, xylanases increased 2.8-fold at 40°C, while laccase production improved 2.7-fold at 35°C. Maximum production of lignocellulolytic enzymes was obtained at elevated temperatures in shorter fermentation times (8–6 days), although the proteases appeared as a thermal stress response associated with a drop in lignocellulolytic activities. Novel and multiple isoenzymes of xylanase (four bands) and cellulase (six bands) were secreted in the range of 20–150 kDa during growth in adverse temperature conditions. However, only a single laccase isoenzyme (46 kDa) was detected. This is the first report describing the advantages of a thermotolerant white-rot fungus in SSF. These results have important implications for large-scale SSF, where effects of metabolic heat are detrimental to growth and enzyme production, which are severely affected by the formation of high temperature gradients.
    Keywords: Physiology & Biochemistry
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2016-08-05
    Description: Here we present the generation and function of two sets of bacterial plasmids that harbor fluorescent genes encoding either blue, cyan, yellow or red fluorescent proteins. In the first set, protein expression is controlled by the strong and constitutive nptII promoter whereas in the second set, the strong tac promoter was chosen that underlies LacI q regulation. Furthermore, the plasmids are mobilizable, contain Tn 7 transposons and a temperature-sensitive origin of replication. Using Escherichia coli S17-1 as donor strain, the plasmids allow fast and convenient Tn 7 -transposon delivery into many enterobacterial hosts, such as the here-used E. coli O157:H7. This procedure omits the need of preparing competent recipient cells and antibiotic resistances are only transiently conferred to the recipients. As the fluorescence proteins show little to no overlap in fluorescence emission, the constructs are well suited for the study of multicolored synthetic bacterial communities during biofilm production or in host colonization studies, e.g. of plant surfaces. Furthermore, tac promoter-reporter constructs allow the generation of so-called reproductive success reporters, which allow to estimate past doublings of bacterial individuals after introduction into environments, emphasizing the role of individual cells during colonization.
    Keywords: Environmental Microbiology
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2016-08-05
    Description: Shiga toxin-encoding Escherichia coli (STEC) regroup strains that carry genes encoding Shiga toxin (Stx). Among intestinal pathogenic E. coli , enterohaemorrhagic E. coli (EHEC) constitute the major subgroup of virulent STEC. EHEC cause serious human disease such as haemorrhagic colitis and haemolytic-uremic syndrome. While EHEC have evolved from enteropathogenic E. coli , hybrids with enteroaggregative E. coli have recently emerged. Of note, some enteroinvasive E. coli also belong to the STEC group. While the LEE (locus of enterocyte effacement) is a key and prominent molecular determinant in the pathogenicity, neither all EHEC nor STEC contain the LEE, suggesting that they possess additional virulence and colonisation factors. Currently, nine protein secretion systems have been described in diderm-lipopolysaccharide bacteria (archetypal Gram-negative) and can be involved in the secretion of extracellular effectors, cell-surface proteins or assembly of cell-surface organelles, such as flagella or pili. In this review, we focus on the secretome of STEC and related enteropathotypes, which are relevant to the colonisation of biotic and abiotic surfaces. Considering the wealth of potential protein trafficking mechanisms, the different combinations of colonisation factors and modulation of their expression is further emphasised with regard to the ecophysiology of STEC.
    Keywords: Pathogens & Pathogenicity
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2016-06-23
    Description: Spa -typing and microarray techniques were used to study epidemiological changes in methicillin-resistant Staphylococcus aureus (MRSA) in South-East Austria. The population structure of 327 MRSA isolated between 2002 and 2012 was investigated. MRSA was assigned to 58 different spa types and 14 different MLST CC (multilocus sequence type clonal complexes); in particular, between 2007 and 2012, an increasing diversity in MRSA clones could be observed. The most abundant clonal complex was CC5. On the respective SCC mec cassettes, the CC5 isolates differed clearly within this decade and CC5/SCC mec I, the South German MRSA, predominant in 2002, was replaced by CC5/SCC mec II, the Rhine-Hesse MRSA in 2012. Whereas in many European countries MLST CC22-MRSA (EMRSA 15, the Barnim epidemic MRSA) is predominant, this clone occurred in Austria nearly 10 years later than in neighbouring countries. CC45, the Berlin EMRSA, epidemic in Germany, was only sporadically found in South-East Austria. The Irish ST8-MRSA-II represented by spa -type t190 was frequently found in 2002 and 2007, but disappeared in 2012. Our results demonstrate clonal replacement of MRSA clones within the last years in Austria. Ongoing surveillance is warranted for detection of changes within the MRSA population.
    Keywords: Environmental Microbiology
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2016-06-23
    Description: This study aimed to investigate the effects of dietary fibre sources on the gut microbiota in suckling piglets, and to test the hypothesis that a moderate increase of dietary fibre may affect the gut microbiota during the suckling period. Suckling piglets were fed different fibre-containing diets or a control diet from postnatal day 7 to 22. Digesta samples from cecum, proximal colon and distal colon were used for Pig Intestinal Tract Chip analysis. The data showed that the effects of fibre-containing diet on the gut microbiota differed in the fibre source and gut location. The alfalfa diet increased Clostridium cluster XIVb and Sporobacter termitidis in the cecum compared to the pure cellulose diet. Compared to the control diet, the alfalfa diet also increased Coprococcus eutactus in the distal colon, while the pure cellulose diet decreased Eubacterium pyruvativorans in the cecum. The pure cellulose diet increased Prevotella ruminicola compared to the wheat bran diet. Interestingly, the alfalfa group had the lowest abundance of the potential pathogen Streptococcus suis in the cecum and distal colon. These results indicated that a moderate increase in dietary fibres affected the microbial composition in suckling piglets, and that the alfalfa inclusion produced some beneficial effects on the microbial communities.
    Keywords: Environmental Microbiology
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2016-06-23
    Description: The rhizobacterium Serratia plymuthica 4Rx13 emits the novel and unique volatile sodorifen (C 16 H 26 ), which has a polymethylated bicyclic structure. Transcriptome analysis revealed that gene SOD_c20750 (annotated as terpene cyclase) is involved in the biosynthesis of sodorifen. Here we show that this gene is located in a small cluster of four genes ( SOD_c20750 – SOD_c20780 ), and the analysis of the knockout mutants demonstrated that SOD_c20760 (annotated as methyltransferase) and SOD_c20780 (annotated as isopentenyl pyrophosphate (IPP) isomerase) are needed for the biosynthesis of sodorifen, while a sodorifen-negative phenotype was not achieved with the SOD_c20770 (annotated as deoxy-xylulose-5-phosphate (DOXP) synthase) mutant. Altogether, the function of this new gene cluster was assigned to the biosynthesis of this structurally unusual volatile compound sodorifen.
    Keywords: Physiology & Biochemistry
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2016-06-23
    Description: Among staphylococci Staphylococcus saprophyticus is the only species that is typically uropathogenic and an important cause of urinary tract infections in young women. The amino acid D-serine occurs in relatively high concentrations in human urine and has a bacteriostatic or toxic effect on many bacteria. In uropathogenic Escherichia coli and S. saprophyticus , the amino acid regulates the expression of virulence factors and can be used as a nutrient. The ability of uropathogens to respond to or to metabolize D-serine has been suggested as a factor that enables colonization of the urinary tract. Until now nothing is known about D-serine transport in S.   saprophyticus . We generated mutants of putative transporter genes in S.   saprophyticus 7108 that show homology to the D-serine transporter cyc A of E. coli and tested them in a D-serine depletion assay to analyze the D-serine uptake rate of the cells. The mutant of SPP1070 showed a strong decrease in D-serine uptake. Therefore, SSP1070 was identified as a major D-serine transporter in S. saprophyticus 7108 and was named D-serine transporter A (DstA). D-serine caused a prolonged lag phase of S. saprophyticus in a chemically defined medium. This negative effect was dependent on the presence of DstA.
    Keywords: Physiology & Biochemistry
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2016-06-23
    Description: One function of the gut microbiota gaining recent attention, especially in herbivorous mammals and insects, is the metabolism of plant secondary metabolites (PSMs). We investigated whether this function exists within the gut communities of a specialist avian herbivore. We sequenced the cecal metagenome of the Greater Sage-Grouse ( Centrocercus urophasianus ), which specializes on chemically defended sagebrush ( Artemisia spp.). We predicted that the cecal metagenome of the sage-grouse would be enriched in genes associated with the metabolism of PSMs when compared to the metagenome of the domestic chicken. We found that representation of microbial genes associated with ‘xenobiotic degradation and metabolism’ was 3-fold higher in the sage-grouse cecal metagenomes when compared to that of the domestic chicken. Further, we identified a complete metabolic pathway for the degradation of phenol to pyruvate, which was not detected in the metagenomes of the domestic chicken, bovine rumen or 14 species of mammalian herbivores. Evidence of monoterpene degradation (a major class of PSMs in sagebrush) was less definitive, although we did detect genes for several enzymes associated with this process. Overall, our results suggest that the gut microbiota of specialist avian herbivores plays a similar role to the microbiota of mammalian and insect herbivores in degrading PSMs.
    Keywords: Environmental Microbiology
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2016-06-23
    Description: The activity of levofloxacin against planktonic and biofilm Stenotrophomonas maltophilia cells and the role played by the multidrug efflux pump SmeDEF were evaluated under conditions relevant to the cystic fibrosis (CF) lung. MIC, MBC and MBEC of levofloxacin were assessed, against five CF strains, under ‘standard’ (CLSI-recommended) and ‘CF-like’ (pH 6.8, 5% CO 2 , in a synthetic CF sputum) conditions. Levofloxacin was tested against biofilms at concentrations (10, 50 and 100 μg mL –1 ) corresponding to achievable serum levels and sputum levels by aerosolisation. smeD expression was evaluated, under both conditions, in planktonic and biofilm cells by RT-PCR. The bactericidal effect of levofloxacin was decreased, in three out of five strains tested, under ‘CF-like’ conditions (MBC: 2–4 vs 8–16 μg mL –1 , under ‘standard’ and ‘CF-like’ conditions, respectively). Biofilm was intrinsically resistant to levofloxacin, regardless of conditions tested (MBECs ≥ 100 μg mL –1 for all strains). Only under ‘CF-like’ conditions, smeD expression increased during planktonic-to-biofilm transition, and in biofilm cells compared to stationary planktonic cells. Our findings confirmed that S. maltophilia biofilm is intrinsically resistant to therapeutic concentrations of levofloxacin. Under conditions relevant to CF, smeD overexpression could contribute to levofloxacin resistance. Further studies are warranted to define the clinical relevance of our findings .
    Keywords: Pathogens & Pathogenicity
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2016-06-23
    Description: Auranofin is an FDA-approved gold-containing compound used for the treatment of rheumatoid arthritis. Recent reports of antimicrobial activity against protozoa and bacteria indicate that auranofin targets the reductive enzyme thioredoxin reductase (TrxR). We evaluated auranofin as well as five auranofin analogs containing N- heterocyclic carbenes (instead of the triethylphosphane present in auranofin) and five gold-carbene controls for their ability to inhibit or kill Helicobacter pylori in vitro . Auranofin completely inhibited bacterial growth at 1.2 μM. Purified H. pylori TrxR was inhibited by auranofin in a cell-free assay (IC 50 ~88 nM). The most active gold(I)- N- heterocyclic carbene compounds exhibited MICs comparable to auranofin against H. pylori (2 μM), while also exhibiting lower toxicities for human embryonic kidney cells (HEK-293T cells). Median toxic concentrations (TC 50 ) were 13–20-fold higher compared to auranofin indicating that they were less cytotoxic. The N- heterocyclic carbene analogs maybe well tolerated, but further evaluation is needed in vivo . Finally, auranofin was synergistic with the antibiotic amoxicillin, suggesting that targeting both the reductive enzyme TrxR and cell wall synthesis may be effective against H. pylori infections.
    Keywords: Pathogens & Pathogenicity
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2016-06-23
    Description: Intracellular endosymbiotic bacteria are common and can play a crucial role for insect pathology. Therefore, such bacteria could be a potential key to our understanding of major losses of Western honey bees ( Apis mellifera ) colonies. However, the transmission and potential effects of endosymbiotic bacteria in A. mellifera and other Apis spp. are poorly understood. Here, we explore the prevalence and transmission of the genera Arsenophonus , Wolbachia , Spiroplasma and Rickettsia in Apis spp. Colonies of A. mellifera ( N = 33, with 20 eggs from worker brood cells and 100 adult workers each) as well as mated honey bee queens of A. cerana , A. dorsata and A. florea ( N = 12 each) were screened using PCR. While Wolbachia , Spiroplasma and Rickettsia were not detected, Arsenophonus spp. were found in 24.2% of A. mellifera colonies and respective queens as well as in queens of A. dorsata (8.3%) and A. florea (8.3%), but not in A. cerana . The absence of Arsenophonus spp. from reproductive organs of A. mellifera queens and surface-sterilized eggs does not support transovarial vertical transmission. Instead, horizontal transmission is most likely.
    Keywords: Environmental Microbiology
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2016-05-08
    Description: Legionella feeleii is a Gram-negative pathogenic bacterium that causes Pontiac fever and pneumonia in humans. When L. feeleii serogroup 1 (ATCC 35072) was cultured on BCYE agar plates, two types of colonies were observed and exhibited differences in color, opacity and morphology. Since the two colony types are white rugose and brown translucent, they were termed as white rugose L. feeleii (WRLf) and brown translucent L. feeleii (BTLf), respectively. They exhibited different growth capacities in BYE broth in vitro , and it was found that WRLf could transform to BTLf. Under the electron microscope, it was observed that WRLf secreted materials which could be stained with ruthenium red, which was absent in BTLf. When U937 macrophages and HeLa cells were infected with the bacteria, WRLf manifested stronger internalization ability than BTLf. Intracellular growth in murine macrophages and Acanthamoeba cells was affected by the level of initial phagocytosis. WRLf was more resistant to human serum bactericidal action than BTLf. After being inoculated to guinea pigs, both organisms caused fever in the animals. These results suggest that ruthenium red-stained materials secreted in the surroundings may play a crucial role in determining L. feeleii colony morphology and virulence traits.
    Keywords: Pathogens & Pathogenicity
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2016-05-12
    Description: Wood-rotting fungi possess remarkably diverse extracellular oxidation mechanisms, including enzymes, such as laccase and peroxidases, and Fenton chemistry. The ability to biologically drive Fenton chemistry by the redox cycling of quinones has previously been reported to be present in both ecologically diverging main groups of wood-rotting basidiomycetes. Therefore, we investigated whether it is even more widespread among fungal organisms. Screening of a diverse selection of a total of 18 ascomycetes and basidiomycetes for reduction of the model compound 2,6-dimethoxy benzoquinone revealed that all investigated strains were capable of reducing it to its corresponding hydroquinone. In a second step, depolymerization of the synthetic polymer polystyrene sulfonate was used as a proxy for quinone-dependent Fenton-based biodegradation capabilities. A diverse subset of the strains, including environmentally ubiquitous molds, white-rot fungi, as well as peatland and aquatic isolates, caused substantial depolymerization indicative for the effective employment of quinone redox cycling as biodegradation tool. Our results may also open up new paths to utilize diverse fungi for the bioremediation of recalcitrant organic pollutants.
    Keywords: Environmental Microbiology
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2016-05-12
    Description: In this study, we isolated 15 endophytic fungi from five Sudanese medicinal plants. Each fungal endophytic strain was identified by sequencing of internal transcribed spacer (ITS) regions of rDNA. Ethyl acetate extracts were prepared from each endophyte cultivated in vitro and tested for their respective antibacterial activities and antiproliferative activities against human cancer cells. Antibacterial screening was carried out against two bacterial strains: Gram-negative Escherichia coli and Gram-positive methicillin-resistant Staphylococcus aureus , by the broth dilution method. Cell viability was evaluated by the MTT procedure after exposure of MCF7 breast cancer cells and HT29 or HCT116 human colon adenocarcinoma cells to each endophytic extract. Of interest, Byssochlamys spectabilis isolated from Euphorbia prostata showed cytotoxicity (IC 50 = 1.51 ± 0.2 μg mL –1 ) against MCF7 cells, but had a low effect against HT29 or HCT116 cells (IC 50 〉 20 μg mL –1 ). Cladosporium cladosporioides 2, isolated from Vernonia amygdalina leaves, showed antiproliferative activities against MCF7 cells (IC 50 = 10.5 ± 1.5 μg mL –1 ) only. On the other hand, B. spectabilis and Alternaria sp. extract had antibacterial activities against the S. aureus strain. The findings of this work revealed that endophytic fungi associated with medicinal plants from Sudan could be considered as an attractive source of new therapeutic compounds.
    Keywords: Biotechnology & Synthetic Biology
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2016-05-12
    Description: Piscirickettsia salmonis is a fastidious intracellular pathogen responsible for high mortality rates in farmed salmonids, with serious economic consequences for the Chilean aquaculture industry. Oxytetracycline and florfenicol are the most frequently used antibiotics against P. salmonis , but routine use could contribute to drug resistance. This study identified differentiated florfenicol susceptibilities in two P. salmonis strains, LF-89 and AUSTRAL-005. The less susceptible isolate, AUSTRAL-005, also showed a high ethidium bromide efflux rate, indicating a higher activity of general efflux pump genes than LF-89. The P. salmonis genome presented resistance nodulation division (RND) family members, a family containing typical multidrug resistance-related efflux pumps in Gram-negative bacteria. Additionally, efflux pump acrAB genes were overexpressed in AUSTRAL-005 following exposure to the tolerated maximal concentration of florfenicol, in contrast to LF-89. These results indicate that tolerated maximum concentrations of florfenicol can modulate RND gene expression and increase efflux pump activity. We propose that the acrAB efflux pump is essential for P. salmonis survival at critical florfenicol concentrations and for the generation of antibiotic-resistant bacterial strains.
    Keywords: Pathogens & Pathogenicity
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2016-05-12
    Description: Genes encoding fluoride transporters have been identified in bacterial and archaeal species. The genome sequence of the cariogenic  Streptococcus mutans  bacteria suggests the presence of a putative fluoride transporter, which is referred to as a chloride channel permease. Two homologues of this gene (GenBank locus tags SMU_1290c and SMU_1289c) reside in tandem in the genome of  S. mutans . The aim of this study was to determine whether the chloride channel permeases contribute to fluoride resistance. We constructed SMU_1290c- and SMU_1289c-knockout  S. mutans  UA159 strains. We also constructed a double-knockout strain lacking both genes. SMU_1290c or SMU_1289c was transformed into a fluoride transporter- disrupted  Escherichia coli strain. All bacterial strains were cultured under appropriate conditions with or without sodium fluoride, and fluoride resistance was evaluated. All three gene-knockout  S. mutans  strains showed lower resistance to sodium fluoride than did the wild-type strain. No significant changes in resistance to other sodium halides were recognized between the wild-type and double-knockout strains. Both SMU_1290c and SMU_1289c transformation rescued fluoride transporter-disrupted  E. coli  cell from fluoride toxicity. We conclude that the chloride channel permeases contribute to fluoride resistance in  S. mutans .
    Keywords: Physiology & Biochemistry
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2016-05-12
    Description: Vitamin C is known to inhibit mycobacterial growth by acting as a hypoxia inducing agent. While investigating how mycobacteriophage growth is influenced by hypoxic conditions induced by vitamin C, using Mycobacterium smegmatis - mycobacteriophage D29 as a model system, it was observed that prior exposure of the host to such conditions resulted in increased burst size of the phage. Vitamin C pre-exposure was also found to induce synchronous growth of the host. A mutant defective in DevR, the response regulator that controls hypoxic responses in mycobacteria, neither supported higher phage bursts nor was it able to undergo synchronized growth following vitamin C pre-exposure, indicating thereby that the two phenomena are interrelated. Further evidence supporting such an interrelationship was obtained from the observation that phage burst sizes varied depending on the stage of synchronous growth that the host cells were in, at the time of infection—higher bursts were observed in the resting/synthetic phases and lower in the dividing ones. The effects were specific in nature as synchronization by an unrelated method, known as ‘crowding’, did not lead to the same consequence. The results indicate that growth synchronization induced by vitamin C treatment is a DevR-dependent phenomenon which is exploited by mycobacteriophage D29 to grow in larger numbers.
    Keywords: Virology
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2016-05-12
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2016-05-12
    Description: Ice-binding proteins (IBPs), such as antifreeze proteins (AFPs) and ice-nucleating proteins (INPs), have been described in diverse cold-adapted organisms, and their potential applications in biotechnology have been recognized in various fields. Currently, both IBPs are being applied to biotechnological processes, primarily in medicine and the food industry. However, our knowledge regarding the diversity of bacterial IBPs is limited; few studies have purified and characterized AFPs and INPs from bacteria. Phenotypically verified IBPs have been described in members belonging to Gammaproteobacteria, Actinobacteria and Flavobacteriia classes, whereas putative IBPs have been found in Gammaproteobacteria, Alphaproteobacteria and Bacilli classes. Thus, the main goal of this minireview is to summarize the current information on bacterial IBPs and their application in biotechnology, emphasizing the potential application in less explored fields such as agriculture. Investigations have suggested the use of INP-producing bacteria antagonists and AFPs-producing bacteria (or their AFPs) as a very attractive strategy to prevent frost damages in crops. UniProt database analyses of reported IBPs (phenotypically verified) and putative IBPs also show the limited information available on bacterial IBPs and indicate that major studies are required.
    Keywords: Environmental Microbiology
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2016-05-12
    Description: Microcin N is a low-molecular weight, highly active antimicrobial peptide produced by uropathogenic Escherichia coli . In this study, the native peptide was expressed and purified from pGOB18 plasmid carrying E. coli in low yield. The pure peptide was characterized using mass spectrometry, N-terminal sequencing by Edman degradation as well as trypsin digestion. We found that the peptide is 74-residue long, cationic (+2 total charge), highly hydrophobic and consists of glycine as the first N-terminal residue. The minimum inhibitory concentration of the peptide against Salmonella enteritidis was found to be 150 nM. Evaluation of the solution conformation of the peptide using circular dichroism spectroscopy showed that the peptide is well folded in 40% trifluoroethanol with helical structure whereas the folded structure is lost in aqueous solution. To increase the yield of this potent peptide, we overexpressed GST-tagged microcin N using E. coli BL21. Recombinant GST-tagged microcin N was successfully expressed in E. coli BL21; however, the cleaved mature microcin N did not show activity against the indicator strain ( S. enterica ) most likely due to the extreme hydrophobic nature of the peptide. Efforts to produce active microcin N in large scale are discussed as this peptide has huge potential to be the next generation antimicrobial agent.
    Keywords: Food Microbiology
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2016-05-12
    Description: Triazophos is a broad-spectrum and highly effective insecticide, and the residues of triazophos have been frequently detected in the environment. A triazophos-degrading bacterium, Burkholderia sp. SZL-1, was isolated from a long-term triazophos-polluted soil. Strain SZL-1 could hydrolyze triazophos to 1-phenyl-3-hydroxy-1,2,4-triazole, which was further utilized as the carbon sources for growth. The triazophos hydrolase gene trhA , cloned from strain SZL-1, was expressed and homogenously purified using Ni-nitrilotriacetic acid affinity chromatography. TrhA is 55 kDa and displays maximum activity at 25°C, pH 8.0. This enzyme still has nearly 60% activity at the range of 15°C–50°C for 30 min. TrhA was mutated by sequential error prone PCR and screened for improved activity for triazophos degradation. One purified variant protein (Val89-Gly89) named TrhA-M1 showed up to 3-fold improvement in specific activity against triazophos, and the specificity constants of K cat and K cat / K m for TrhA-M1 were improved up to 2.3- and 8.28-fold, respectively, compared to the wild-type enzyme. The results in this paper provided potential material for the contaminated soil remediation and hydrolase genetic structure research.
    Keywords: Environmental Microbiology
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2016-05-12
    Description: Pseudomonas aeruginosa is an opportunistic pathogen, known to develop robust biofilms. Its biofilm development increases when antibiotics are presented at subminimal inhibitory concentrations (MICs) for reasons that remain unclear. In order to identify genes that affect biofilm development under such a sublethal antibiotic stress condition, we screened a transposon (Tn) mutant library of PAO1, a prototype P. aeruginosa strain. Among ~5000 mutants, a fiuA gene mutant was verified to form very defective biofilms in the presence of sub-MIC carbenicillin. The fiuA gene encodes ferrichrome receptor A, involved in the iron acquisition process. Of note, biofilm formation was not decreased in the pchpvd mutant defective in the production of pyochelin and pyoverdine, two well-characterized P. aeruginosa siderophore molecules. Moreover, fiuA , a non-polar fiuA deletion mutant, produced a significantly decreased level of elastase, a major virulence determinant. Mouse airway infection experiments revealed that the mutant expressed significantly less pathogenicity. Our results suggest that the fiuA gene has pleiotropic functions that affect P. aeruginosa biofilm development and virulence. The targeting of FiuA could enable the attenuation of P. aeruginosa virulence and may be suitable for the development of a drug that specifically controls the virulence of this important pathogen.
    Keywords: Pathogens & Pathogenicity
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2016-05-12
    Description: Clostridium thermocellum and Thermoanaerobacterium saccharolyticum are bacteria under investigation for production of biofuels from plant biomass. Thermoanaerobacterium saccharolyticum has been engineered to produce ethanol at high yield (〉90% of theoretical) and titer (〉70 g/l). Efforts to engineer C. thermocellum have not, to date, been as successful, and efforts are underway to transfer the ethanol production pathway from T. saccharolyticum to C. thermocellum . One potential challenge in transferring metabolic pathways is the possibility of incompatible levels of nicotinamide cofactors. These cofactors (NAD + , NADH, NADP + and NADPH) and their oxidation state are important in the context of microbial redox metabolism. In this study we directly measured the concentrations and reduced oxidized ratios of these cofactors in a number of strains of C. thermocellum and T. saccharolyticum by using acid/base extraction and enzymatic assays. We found that cofactor ratios are maintained in a fairly narrow range, regardless of the metabolic network modifications considered. We have found that the ratios are similar in both organisms, which is a relevant observation in the context of transferring the T. saccharolyticum ethanol production pathway to C. thermocellum .
    Keywords: Physiology & Biochemistry
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2016-05-12
    Description: The metal mining industry faces many large challenges in future years, among which is the increasing need to process low-grade ores as accessible higher grade ores become depleted. This is against a backdrop of increasing global demands for base and precious metals, and rare earth elements. Typically about 99% of solid material hauled to, and ground at, the land surface currently ends up as waste (rock dumps and mineral tailings). Exposure of these to air and water frequently leads to the formation of acidic, metal-contaminated run-off waters, referred to as acid mine drainage, which constitutes a severe threat to the environment. Formation of acid drainage is a natural phenomenon involving various species of lithotrophic (literally ‘rock-eating’) bacteria and archaea, which oxidize reduced forms of iron and/or sulfur. However, other microorganisms that reduce inorganic sulfur compounds can essentially reverse this process. These microorganisms can be applied on industrial scale to precipitate metals from industrial mineral leachates and acid mine drainage streams, resulting in a net improvement in metal recovery, while minimizing the amounts of leachable metals to the tailings storage dams. Here, we advocate that more extensive exploitation of microorganisms in metal mining operations could be an important way to green up the industry, reducing environmental risks and improving the efficiency and the economy of metal recovery.
    Keywords: Environmental Microbiology
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2016-07-15
    Description: Although problem-based learning (PBL) has been used for over 40 years, with many studies comparing the benefits of PBL versus other educational approaches, little attention has been paid to the effectiveness of hybrid PBL (H-PBL) curricula. Here we aimed to compare the learning outcomes of two groups of undergraduate biology students working towards a bachelor's degree: one group used an H-PBL approach, while the second used a lecture-based learning (LBL) approach. Specifically, the H-PBL group used a PBL module with interdisciplinary problems, which represented 20% of the entire curriculum. The main outcomes of evaluation were the long-term acquisition of factual knowledge and the problem-solving skills at the end of the bachelor's degree. The sample included 85 students, 39 in the H-PBL group and 46 in the LBL group. We found that an H-PBL curriculum can improve the students’ learning outcomes such as long-term knowledge acquisition, problem solving skills and generic competences.
    Keywords: Professional Development
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    facet.materialart.
    Unknown
    Oxford University Press
    Publication Date: 2016-01-09
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2016-01-09
    Description: Cellular protein homeostasis is achieved by a delicate network of molecular chaperones and various proteolytic processes such as ubiquitin–proteasome system (UPS) to avoid a build-up of misfolded protein aggregates. The latter is a common denominator of neurodegeneration. Neurons are found to be particularly vulnerable to toxic stress from aggregation-prone proteins such as α-synuclein. Induction of heat-shock proteins (HSPs), such as through activated heat shock transcription factor 1 (HSF1) via Hsp90 inhibition, is being investigated as a therapeutic option for proteinopathic diseases. HSF1 is a master stress-protective transcription factor which activates genes encoding protein chaperones (e.g. iHsp70) and anti-apoptotic proteins. However, whether and how HSF1 is dysregulated during neurodegeneration has not been studied. Here, we discover aberrant HSF1 degradation by aggregated α-synuclein (or α-synuclein-induced proteotoxic stress) in transfected neuroblastoma cells. HSF1 dysregulation via α-synuclein was confirmed by in vivo assessment of mouse and in situ studies of human specimens with α-synucleinopathy. We demonstrate that elevated NEDD4 is implicated as the responsible ubiquitin E3 ligase for HSF1 degradation through UPS. Furthermore, pharmacologically induced SIRT1-mediated deacetylation can attenuate aberrant NEDD4-mediated HSF1 degradation. Indeed, we define the acetylation status of the Lys 80 residue located in the DNA-binding domain of HSF1 as a critical factor in modulating HSF1 protein stability in addition to its previously identified role in the transcriptional activity. Together with the finding that preserving HSF1 can alleviate α-synuclein toxicity, this study strongly suggests that aberrant HSF1 degradation is a key neurodegenerative mechanism underlying α-synucleinopathy.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2016-01-09
    Description: Understanding epigenetic differences that distinguish neurons and glia is of fundamental importance to the nascent field of neuroepigenetics. A recent study used genome-wide bisulfite sequencing to survey differences in DNA methylation between these two cell types, in both humans and mice. That study minimized the importance of cell type-specific differences in CpG methylation, claiming these are restricted to localized genomic regions, and instead emphasized that widespread and highly conserved differences in non-CpG methylation distinguish neurons and glia. We reanalyzed the data from that study and came to markedly different conclusions. In particular, we found widespread cell type-specific differences in CpG methylation, with a genome-wide tendency for neuronal CpG-hypermethylation punctuated by regions of glia-specific hypermethylation. Alarmingly, our analysis indicated that the majority of genes identified by the primary study as exhibiting cell type-specific CpG methylation differences were misclassified. To verify the accuracy of our analysis, we isolated neuronal and glial DNA from mouse cortex and performed quantitative bisulfite pyrosequencing at nine loci. The pyrosequencing results corroborated our analysis, without exception. Most interestingly, we found that gene-associated neuron vs. glia CpG methylation differences are highly conserved across human and mouse, and are very likely to be functional. In addition to underscoring the importance of independent verification to confirm the conclusions of genome-wide epigenetic analyses, our data indicate that CpG methylation plays a major role in neuroepigenetics, and that the mouse is likely an excellent model in which to study the role of DNA methylation in human neurodevelopment and disease.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2016-01-09
    Description: Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with no cure. To develop effective treatments for this devastating disease, an appropriate strategy for targeting the molecule responsible for the pathogenesis of ALS is needed. We previously reported that mutant SOD1 protein causes motor neuron death through activation of ASK1, a mitogen-activated protein kinase kinase kinase. Additionally, we recently developed K811 and K812, which are selective inhibitors for ASK1. Here, we report the effect of K811 and K812 in a mouse model of ALS (SOD1 G93A transgenic mice). Oral administration of K811 or K812 significantly extended the life span of SOD1 G93A transgenic mice (1.06 and 1.08% improvement in survival). Moreover, ASK1 activation observed in the lumbar spinal cord of mice at the disease progression stage was markedly decreased in the K811- and K812-treated groups. In parallel, immunohistochemical analysis revealed that K811 and K812 treatment inhibited glial activation in the lumbar spinal cord of SOD1 G93A transgenic mice. These results reinforce the importance of ASK1 as a therapeutic target for ALS treatment.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2016-01-09
    Description: Dilated cardiomyopathy (DCM) is a leading cause of heart failure. In families with autosomal-dominant DCM, heterozygous missense mutations were identified in RNA-binding motif protein 20 ( RBM20 ), a spliceosome protein induced during early cardiogenesis. Dermal fibroblasts from two unrelated patients harboring an RBM20 R636S missense mutation were reprogrammed to human induced pluripotent stem cells (hiPSCs) and differentiated to beating cardiomyocytes (CMs). Stage-specific transcriptome profiling identified differentially expressed genes ranging from angiogenesis regulator to embryonic heart transcription factor as initial molecular aberrations. Furthermore, gene expression analysis for RBM20- dependent splice variants affected sarcomeric ( TTN and LDB3 ) and calcium (Ca 2+ ) handling ( CAMK2D and CACNA1C ) genes. Indeed, RBM20 hiPSC-CMs exhibited increased sarcomeric length ( RBM20 : 1.747 ± 0.238 µm versus control: 1.404 ± 0.194 µm; P 〈 0.0001) and decreased sarcomeric width ( RBM20 : 0.791 ± 0.609 µm versus control: 0.943 ± 0.166 µm; P 〈 0.0001). Additionally, CMs showed defective Ca 2+ handling machinery with prolonged Ca 2+ levels in the cytoplasm as measured by greater area under the curve ( RBM20 : 814.718 ± 94.343 AU versus control: 206.941 ± 22.417 AU; P 〈 0.05) and higher Ca 2+ spike amplitude ( RBM20 : 35.281 ± 4.060 AU versus control:18.484 ± 1.518 AU; P 〈 0.05). β-adrenergic stress induced with 10 µ m norepinephrine demonstrated increased susceptibility to sarcomeric disorganization ( RBM20 : 86 ± 10.5% versus control: 40 ± 7%; P 〈 0.001). This study features the first hiPSC model of RBM20 familial DCM. By monitoring human cardiac disease according to stage-specific cardiogenesis, this study demonstrates RBM20 familial DCM is a developmental disorder initiated by molecular defects that pattern maladaptive cellular mechanisms of pathological cardiac remodeling. Indeed, hiPSC-CMs recapitulate RBM20 familial DCM phenotype in a dish and establish a tool to dissect disease-relevant defects in RBM20 splicing as a global regulator of heart function.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2016-01-09
    Description: Synucleins belong to a family of intrinsically unstructured proteins that includes alpha-synuclein (aSyn), beta-synuclein (bSyn) and gamma-synuclein (gSyn). aSyn is the most studied member of the synuclein family due to its central role in genetic and sporadic forms of Parkinson's disease and other neurodegenerative disorders known as synucleionopathies. In contrast, bSyn and gSyn have been less studied, but recent reports also suggest that, unexpectedly, these proteins may also cause neurotoxicity. Here, we explored the yeast toolbox to investigate the cellular effects of bSyn and gSyn. We found that bSyn is toxic and forms cytosolic inclusions that are similar to those formed by aSyn. Moreover, we found that bSyn shares similar toxicity mechanisms with aSyn, including vesicular trafficking impairment and induction of oxidative stress. We demonstrate that co-expression of aSyn and bSyn exacerbates cytotoxicity, due to increased dosage of toxic synuclein forms, and that they are able to form heterodimers in both yeast and in human cells. In contrast, gSyn is not toxic and does not form inclusions in yeast cells. Altogether, our findings shed light into the question of whether bSyn can exert toxic effects and confirms the occurrence of aSyn/bSyn heterodimers, opening novel perspectives for the development of novel strategies for therapeutic intervention in synucleinopathies.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2016-01-09
    Description: Identification of a systemically acting and universal small molecule therapy for Duchenne muscular dystrophy would be an enormous advance for this condition. Based on evidence gained from studies on mouse genetic models, we have identified tyrosine phosphorylation and degradation of β-dystroglycan as a key event in the aetiology of Duchenne muscular dystrophy. Thus, preventing tyrosine phosphorylation and degradation of β-dystroglycan presents itself as a potential therapeutic strategy. Using the dystrophic sapje zebrafish, we have investigated the use of tyrosine kinase and other inhibitors to treat the dystrophic symptoms in this model of Duchenne muscular dystrophy. Dasatinib, a potent and specific Src tyrosine kinase inhibitor, was found to decrease the levels of β-dystroglycan phosphorylation on tyrosine and to increase the relative levels of non-phosphorylated β-dystroglycan in sapje zebrafish. Furthermore, dasatinib treatment resulted in the improved physical appearance of the sapje zebrafish musculature and increased swimming ability as measured by both duration and distance of swimming of dasatinib-treated fish compared with control animals. These data suggest great promise for pharmacological agents that prevent the phosphorylation of β-dystroglycan on tyrosine and subsequent steps in the degradation pathway as therapeutic targets for the treatment of Duchenne muscular dystrophy.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2016-01-09
    Description: Neuroinflammation, immune reactivity and mitochondrial abnormalities are considered as causes and/or contributors to neuronal degeneration. Peroxisome proliferator-activated receptors (PPARs) regulate both inflammatory and multiple other pathways that are implicated in neurodegeneration. In the present study, we investigated the efficacy of fenofibrate (Tricor), a pan-PPAR agonist that activates PPAR-α as well as other PPARs. We administered fenofibrate to superoxide dismutase 1 (SOD1 G93A ) mice daily prior to any detectable phenotypes and then animal behavior, pathology and longevity were assessed. Treated animals showed a significant slowing of the progression of disease with weight loss attenuation, enhanced motor performance, delayed onset and survival extension. Histopathological analysis of the spinal cords showed that neuronal loss was significantly attenuated in fenofibrate-treated mice. Mitochondria were preserved as indicated by Cytochrome c immunostaining in the spinal cord, which maybe partly due to increased expression of the PPAR- co-activator 1-α. The total mRNA analysis revealed that neuroprotective and anti-inflammatory genes were elevated, while neuroinflammatory genes were down-regulated. This study demonstrates that the activation of PPAR-α action via fenofibrate leads to neuroprotection by both reducing neuroinflammation and protecting mitochondria, which leads to a significant increase in survival in SOD1 G93A mice. Therefore, the development of therapeutic strategies to activate PPAR-α as well as other PPARs may lead to new therapeutic agents to slow or halt the progression of amyotrophic lateral sclerosis.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2016-01-09
    Description: Several studies have shown that testis-specific gene antigen ( TSGA10 ) could be considered as a cancer testis antigen (CTA), except for one study which has identified it as a tumor suppressor gene. In order to exert its function, TSGA10 interacts closely with hypoxia inducible factor (HIF-1α) and since this interaction is still not completely defined, the exact role of TSGA10 in angiogenesis and invasion is also under question. The current study was conducted to investigate the function of TSGA10 gene and evaluate its potential effects on tumor angiogenesis and invasion. To do so, TSGA10 vector was designed for a stable transfection in HeLa cells, and then clonal selection was applied. The efficiency of transfection and the role of TSGA10 in abovementioned targets were evaluated by real-time PCR, western blot, zymography and ELISA tests in both normoxia and hypoxia. Invasion, migration and angiogenesis were assessed. Three-dimensional model of TSGA10 protein was accurately built in which TSGA10 docked to 2 domains of HIF-1α. Increased expression of TSGA10 correlated with decreased HIF-1α transcriptional activity and inhibited angiogenesis and HeLa cells invasion in normoxia as well as hypoxia. Docking analysis indicated that binding affinity of TSGA10 with TAD-C (CBP) domain of HIF-1α would be stronger than that with PAS-B domain. Our findings showed that overexpression of TSGA10 would induce disruption of HIF-1α axis and exert potent inhibitory effects on tumor angiogenesis and metastasis. Therefore, TSGA10 could be considered as a potent therapeutic candidate, prognostic factor and a cancer management tool.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2016-01-09
    Description: Zinc finger motifs are distributed amongst many eukaryotic protein families, directing nucleic acid–protein and protein–protein interactions. Zinc finger protein 106 (ZFP106) has previously been associated with roles in immune response, muscle differentiation, testes development and DNA damage, although little is known about its specific function. To further investigate the function of ZFP106, we performed an in-depth characterization of Zfp106 deficient mice ( Zfp106 –/– ), and we report a novel role for ZFP106 in motor and sensory neuronal maintenance and survival. Zfp106 –/– mice develop severe motor abnormalities, major deficits in muscle strength and histopathological changes in muscle. Intriguingly, despite being highly expressed throughout the central nervous system, Zfp106 –/– mice undergo selective motor and sensory neuronal and axonal degeneration specific to the spinal cord and peripheral nervous system. Neurodegeneration does not occur during development of Zfp106 –/– mice, suggesting that ZFP106 is likely required for the maintenance of mature peripheral motor and sensory neurons. Analysis of embryonic Zfp106 –/– motor neurons revealed deficits in mitochondrial function, with an inhibition of Complex I within the mitochondrial electron transport chain. Our results highlight a vital role for ZFP106 in sensory and motor neuron maintenance and reveal a novel player in mitochondrial dysfunction and neurodegeneration.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2016-03-05
    Description: Single-stranded DNA (ssDNA) phages are profoundly different from tailed phages in many aspects including the nature and size of their genome, virion size and morphology, mutation rate, involvement in horizontal gene transfer, infection dynamics and cell lysis mechanisms. Despite the importance of ssDNA phages as molecular biology tools and model systems, the environmental distribution and ecological roles of these phages have been largely unexplored. Viral metagenomics and other culture-independent viral diversity studies have recently challenged the perspective of tailed, double-stranded DNA (dsDNA) phages, dominance by demonstrating the prevalence of ssDNA phages in diverse habitats. However, the differences between ssDNA and dsDNA phages also substantially limit the efficacy of simultaneously assessing the abundance and diversity of these two phage groups. Here we provide an overview of the major differences between ssDNA and tailed dsDNA phages that may influence their effects on bacterial communities. Furthermore, through the analysis of 181 published metaviromes we demonstrate the environmental distribution of ssDNA phages and present an analysis of the methodological biases that distort their study through metagenomics.
    Keywords: Virology
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2016-03-09
    Description: Bacteriophage ZF40 is the only currently available, temperate Myoviridae phage infecting the potato pathogen Pectobacterium carotovorum subsp . carotovorum . Despite its unusual tail morphology, its major tail sheath and tube proteins remained uncharacterized after the initial genome annotation. Using ESI tandem mass-spectrometry, 24 structural proteins of the ZF40 virion were identified, with a sequence coverage ranging between 15.8% and 87.8%. The putative function of 16 proteins could be elucidated based on secondary structure analysis and conservative domain searches. The experimental annotation of 35% of the encoded gene products within the structural region of the genome represents a complete view of the virion structure, which can serve as the basis for future structural analysis as a model phage.
    Keywords: Virology
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2016-03-09
    Description: Cadmium is a widespread environmental pollutant and poses some potential risks to human health. However, the signaling events controlling cadmium toxicity are not fully understood. In this study, we examined the effect of cadmium chloride on cell viability and the intracellular nitric oxide (NO) level in yeast cells. The results showed that exposure of yeast cells to cadmium (0–100 μM) could induce cell killing with significantly increased intracellular NO levels. Morphological analysis of the nuclei with 4 ' ,6-diamidino-2-phenylindole staining and DNA strand breaks analysis showed that cadmium at 50 μM can induce cell apoptosis in yeast cells. Treatment of yeast cells with cadmium (50 μM) and the nitric oxide scavenger c-PTIO [2-(4-carboxyphenyl)-4,4,5,5-teramethylimidazoline-1-oxyl-3-oxide; 0.2 mM] showed that c-PTIO attenuated the cadmium-induced cell killing. Our findings indicated that cadmium-induced yeast cell killing is mediated by a directly increased intracellular NO level.
    Keywords: Physiology & Biochemistry
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2016-04-01
    Description: Differential inhibitors are important for measuring the relative contributions of microbial groups, such as ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA), to biogeochemical processes in environmental samples. In particular, 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide (PTIO) represents a nitric oxide scavenger used for the specific inhibition of AOA, implicating nitric oxide as an intermediate of thaumarchaeotal ammonia oxidation. This study investigated four alternative nitric oxide scavengers for their ability to differentially inhibit AOA and AOB in comparison to PTIO. Caffeic acid, curcumin, methylene blue hydrate and trolox were tested on Nitrosopumilus maritimus , two unpublished AOA representatives (AOA-6f and AOA-G6) as well as the AOB representative Nitrosomonas europaea . All four scavengers inhibited ammonia oxidation by AOA at lower concentrations than for AOB. In particular, differential inhibition of AOA and AOB by caffeic acid (100 μM) and methylene blue hydrate (3 μM) was comparable to carboxy-PTIO (100 μM) in pure and enrichment culture incubations. However, when added to aquarium sponge biofilm microcosms, both scavengers were unable to inhibit ammonia oxidation consistently, likely due to degradation of the inhibitors themselves. This study provides evidence that a variety of nitric oxide scavengers result in differential inhibition of ammonia oxidation in AOA and AOB, and provides support to the proposed role of nitric oxide as a key intermediate in the thaumarchaeotal ammonia oxidation pathway.
    Keywords: Environmental Microbiology
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2016-04-08
    Description: Resveratrol is a well-known triphenolic natural product present in red wine. For its contribution to human health, the demand for resveratrol as a food and nutrition supplement has increased significantly. In recent years, the rapid development of synthetic biology has promoted extensive work to increase the production of resveratrol in microbes. However, supplementation of expensive phenylpropanoic precursors was required in current engineered strains. Here, we first utilized the site-specific integration strategy to produce resveratrol in Escherichia coli . The genes tal , 4cl and sts were site-specific integrated into the loci of genes tyrR and trpED in the chromosome of E. coli BW25113 (DE3). The final strain was capable of producing 4.612 mg L –1 of resveratrol from glucose.
    Keywords: Biotechnology & Synthetic Biology
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2016-04-08
    Description: Effective uptake of fermentable substrates is a fundamentally important aspect of any fermentation process. The solventogenic bacterium Clostridium beijerinckii is noted for its ability to ferment a wide range of carbohydrates, yet few of its sugar transport systems have been characterized. In common with other anaerobes, C. beijerinckii shows a marked dependence on the PEP-dependent phosphotransferase system (PTS) for sugar accumulation. In this study, the gene cbe0751 encoding the sugar-specific domains of a phosphotransferase belonging to the glucose family was cloned into an Escherichia coli strain lacking the ability to take up and phosphorylate glucose. Transformants gained ability to ferment glucose, and also mannose, and further analysis of a selected transformant demonstrated that it could take up and phosphorylate glucose, confirming that cbe0751 encodes a glucose PTS which also recognizes mannose as a substrate. RT-PCR analysis showed that cbe0751 was expressed in cultures grown on both substrates, but also to varying extents during growth on some other carbon sources. Although analogue inhibition studies suggested that Cbe0751 is not the only glucose PTS in C. beijerinckii , this system should nevertheless be regarded as a potential target for metabolic engineering to generate a strain showing improved sugar fermentation properties.
    Keywords: Physiology & Biochemistry
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2016-04-08
    Description: Activating transcription factor 3 (ATF3) is a stress-induced transcriptional regulator in eukaryote. The role of ATF3 in cancer has been well defined, but how ATF3 functions in bacterial infection is not well understood. Pneumococcal infection has been shown to induce ATF3 expression, which subsequently enhances cytokine production and provides protection from lethal Streptococcus pneumoniae infection, but the role of ATF3 in other Gram-positive (G + ) infections remains unclear. Here, we report that infection with other G + bacteria ( Staphylococcus aureus and Listeria monocytogenes ) and with G – bacteria (uropathogenic Escherichia coli ) also significantly induced ATF3 expression. Moreover, the production of cytokines (tumor necrosis factor alpha [TNF]-α, interleukin [IL]-1β, IL-6 and interferon [IFN]-) was enhanced by ATF3 in S. aureus and L. monocytogenes infection, but decreased in uropathogenic E. coli (UPEC) infection. In addition, in S. aureus and L. monocytogenes infections, ATF3 WT mice cleared bacteria more efficiently and had higher survival rates than ATF3 knockout mice. However, in UPEC infection, no significant difference was found in survival rate. Taken together, these data suggest that ATF3 provides protection from S. aureus and L. monocytogenes infections; however, the role of ATF3 in UPEC infection is more complicated and should be further elucidated.
    Keywords: Pathogens & Pathogenicity
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2016-04-08
    Description: While extensively studied in several model organisms, the role of small, non-coding RNAs in the stress response remains largely unexplored in Clostridium organisms. About 100 years after the first industrial Acetone–Butanol–Ethanol fermentation process, based on the Weizmann Clostridium acetobutylicum strain, strain tolerance to butanol remains a crucial factor limiting the economics of the process. Several studies have examined the response of this organism to metabolite stress, and several genes have been engaged to impart enhanced tolerance, but no sRNAs have yet been directly engaged in this task. We show that the two stress-responsive sRNAs, 6S and tmRNA, upon overexpression impart tolerance to butanol as assessed by viability assays under process-relevant conditions. 6S overexpression enhances cell densities as well as butanol titres. We discuss the likely mechanisms that these two sRNAs might engage in this tolerance phenotype. Our data support the continued exploration of sRNAs as a basis for engineering enhanced tolerance and enhanced solvent production, especially because sRNA-based strategies impose a minimal metabolic burden on the cells.
    Keywords: Biotechnology & Synthetic Biology
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2016-06-30
    Description: Heavy metals are dense chemicals with dual biological role as micronutrients and intoxicants. A few hypersaline environmental systems are naturally enriched with heavy metals, while most metal-contaminated sites are a consequence of human activities. Numerous halotolerant and moderately halophilic Bacteria possess metal tolerance, whereas a few archaeal counterparts share similar features. The main mechanisms underlying heavy metal resistance in halophilic Bacteria and Archaea include extracellular metal sequestration by biopolymers, metal efflux mediated by specific transporters and enzymatic detoxification. Biotransformation of metals by halophiles has implications both for trace metal turnover in natural saline ecosystems and for development of novel bioremediation strategies.
    Keywords: Physiology & Biochemistry
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2016-06-30
    Description: We screened for a gene that inhibits streptomycin production in Streptomyces griseus when it is introduced on a high-copy-number plasmid pIJ702, and obtained a plasmid pKM545. The introduction of pKM545 abolished streptomycin production on all media tested including YMP-sugar and Nutrient broth. S1 protection analysis demonstrated that the introduction of this plasmid downregulated the transcriptional activity of the promoter preceding strR , the pathway-specific transcriptional regulator for streptomycin biosynthesis. The 2.8-kb Bam HI fragment cloned onto pKM545 contained two coding sequences SGR_5442 and 5443. These coding sequences and the two downstream ones (SGR_5444 and 5445) constituted a possible operon structure designated to be rspABCD (regulation of streptomycin production). RspB and RspC exhibited a marked similarity with an ATP-binding domain and a membrane-associating domain of an ABC-2 type transporter, respectively, suggesting that the Rsp proteins comprise a membrane exporter. The gene cluster consisting of the rsp operon and the upstream divergent small coding sequence (SGR_5441) was widely distributed to Streptomyces genome. An rspB mutant of S. griseus produced 3-fold streptomycin of the parental strain in YMP liquid medium. The evidence implies that the Rsp translocator is involved in the export of a substance that specifies the expression level of streptomycin biosynthesis genes in S. griseus .
    Keywords: Physiology & Biochemistry
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2016-07-02
    Description: Ten indole alkaloids were obtained from the marine sponge-associated fungus Neosartorya siamensis KUFA 0017. We studied the antimicrobial properties of these and of three other compounds previously isolated from the soil fungus N. siamensis KUFC 6349. Only neofiscalin A showed antimicrobial activity against Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus faecalis (VRE); with a minimum inhibitory concentration (MIC) of 8 μg mL –1 against both strains. Another compound, fiscalin C, presented synergistic activity against MRSA when combined with oxacillin, although alone showed no antibacterial effect. Moreover, neofiscalin A, when present at sub-MICs, hampered the ability of both MRSA and VRE strains to form a biofilm. Additionally, the biofilm inhibitory concentration values of neofiscalin A against the MRSA and VRE isolates were 96 and 80 μg mL –1 , respectively. At a concentration of 200 μg mL –1 , neofiscalin A was able to reduce the metabolic activity of the biofilms by ~50%. One important fact is that our results also showed that neofiscalin A had no cytotoxicity against a human brain capillary endothelial cell line.
    Keywords: Biotechnology & Synthetic Biology
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2016-07-02
    Description: Peatlands of all latitudes play an integral role in global climate change by serving as a carbon sink and a primary source of atmospheric methane; however, the microbial ecology of mid-latitude peatlands is vastly understudied. Herein, next generation Illumina amplicon sequencing of small subunit rRNA genes was utilized to elucidate the microbial communities in three southern Appalachian peatlands. In contrast to northern peatlands, Proteobacteria dominated over Acidobacteria in all three sites. An average of 11 bacterial phyla was detected at relative abundance values 〉1%, with three candidate divisions (OP3, WS3 and NC10) represented, indicating high phylogenetic diversity. Physiological traits of isolates within the candidate alphaproteobacterial order, Ellin 329, obtained here and in previous studies indicate that bacteria of this order may be involved in hydrolysis of poly-, di- and monosaccharides. Community analyses indicate that Ellin 329 is the third most abundant order and is most abundant near the surface layers where plant litter decomposition should be primarily occurring. In sum, members of Ellin 329 likely play important roles in organic matter decomposition, in southern Appalachian peatlands and should be investigated further in other peatlands and ecosystem types.
    Keywords: Environmental Microbiology
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2016-07-02
    Description: We previously demonstrated that in Streptomyces coelicolor two-component system AfsQ1/Q2 activates the production of the yellow-colored coelimycin P2 (also named as yCPK) on glutamate-supplemented minimal medium, and the response regulator AfsQ1 could specifically bind to the intergenic region between two structural genes, cpkA and cpkD . Here, a more in-depth investigation was performed to elucidate the mechanism underlying the role of AfsQ1/Q2 in regulating coelimycin P2 biosynthesis. Deletion of afsQ1/Q2 resulted in markedly decreased expression of the whole coelimycin P2 biosynthetic gene cluster. Electrophoretic mobility shift assays revealed that AfsQ1 bound only to the target site identified previously, but not to any other promoters in the gene cluster. Mutations of AfsQ1-binding motif only resulted in drastically reduced transcription of the cpkA/B/C operon (encoding three type I polyketide synthases) and intriguingly, led to enhanced expression of some coelimcyin P2 genes, particularly accA1 and scF . These results suggested the direct role of AfsQ1/Q2 in regulating coelimycin production, which is directly mediated by the structural genes, but not the cluster-situated regulatory genes, and also implied that other unknown mechanisms may be involved in AfsQ1/Q2-mediated regulation of coelimycin P2 biosynthesis.
    Keywords: Physiology & Biochemistry
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2016-07-02
    Description: Marine viruses are the most abundant biological entity in the oceans, the majority of which infect bacteria and are known as bacteriophages. Yet, the bulk of bacteriophages form part of the vast uncultured dark matter of the microbial biosphere. In spite of the paucity of cultured marine bacteriophages, it is known that marine bacteriophages have major impacts on microbial population structure and the biogeochemical cycling of key elements. Despite the ecological relevance of marine bacteriophages, there are relatively few isolates with complete genome sequences. This minireview focuses on knowledge gathered from these genomes put in the context of viral metagenomic data and highlights key advances in the field, particularly focusing on genome structure and auxiliary metabolic genes.
    Keywords: Environmental Microbiology
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2016-07-02
    Description: The fynbos biome in South Africa is globally recognised as a plant biodiversity hotspot. However, very little is known about the bacterial communities associated with fynbos plants, despite interactions between primary producers and bacteria having an impact on the physiology of both partners and shaping ecosystem diversity. This study reports on the structure, phylogenetic composition and potential roles of the endophytic bacterial communities located in the stems of three fynbos plants ( Erepsia anceps , Phaenocoma prolifera and Leucadendron laureolum ). Using Illumina MiSeq 16S rRNA sequencing we found that different subpopulations of Deinococcus-Thermus, Alphaproteobacteria, Acidobacteria and Firmicutes dominated the endophytic bacterial communities. Alphaproteobacteria and Actinobacteria were prevalent in P. prolifera , whereas Deinococcus-Thermus dominated in L. laureolum , revealing species-specific host–bacteria associations. Although a high degree of variability in the endophytic bacterial communities within hosts was observed, we also detected a core microbiome across the stems of the three plant species, which accounted for 72% of the sequences. Altogether, it seems that both deterministic and stochastic processes shaped microbial communities. Endophytic bacterial communities harboured putative plant growth-promoting bacteria, thus having the potential to influence host health and growth.
    Keywords: Environmental Microbiology
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2016-07-02
    Description: During unconventional protein secretion (UPS), proteins do not pass through the classical endoplasmic reticulum (ER)–Golgi-dependent pathway, but are transported to the cell membrane via alternative routes. One type of UPS is dependent on several autophagy-related (Atg) proteins in yeast and mammalian cells, but mechanisms for unconventional secretion are largely unknown for filamentous fungi. In this study, we investigated whether the autophagy machinery is used for UPS in the filamentous fungus Aspergillus niger . An aspartic protease, which we called PepN, was identified as being likely to be secreted unconventionally, as this protein is highly abundant in culture filtrates during carbon starvation while it lacks a conventional N-terminal secretion sequence. We analysed the presence of PepN in the culture filtrates of carbon starved wild-type, atg1 and atg8 deletion mutant strains by Western blot analysis and by secretome analysis using nanoLC-ESI-MS/MS (wild-type and atg8 deletion mutant). Besides the presence of carbohydrate-active enzymes and other types of proteases, PepN was abundantly found in culture filtrates of both wild-type and atg deletion strains, indicating that the secretion of PepN is independent of the autophagy machinery in A. niger and hence most likely occurs via a different mechanism.
    Keywords: Biotechnology & Synthetic Biology
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    facet.materialart.
    Unknown
    Oxford University Press
    Publication Date: 2016-07-02
    Description: Sulfate-reducing bacteria (SRBs) gain their energy by coupling the oxidation of organic substrate to the reduction of sulfate to sulfide. Several SRBs are able to use alternative terminal electron acceptors to sulfate such as nitrate. Nitrate-reducing SRBs have been isolated from a diverse range of environments. In order to be able to understand the significance of nitrate reduction in SRBs, we need to examine the ecology and physiology of the nitrate-reducing SRB isolates.
    Keywords: Physiology & Biochemistry
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2016-08-18
    Description: The ADP-ribosylating enzymes are encoded in many pathogenic bacteria in order to affect essential functions of the host. In this study, we show that Neisseria gonorrhoeae possess a locus that corresponds to the ADP-ribosyltransferase NarE, a previously characterized enzyme in N. meningitidis . The 291 bp coding sequence of gonococcal narE shares 100% identity with part of the coding sequence of the meningococcal narE gene due to a frameshift previously described, thus leading to a 49-amino-acid deletion at the N-terminus of gonococcal NarE protein. However, we found a promoter region and a GTG start codon, which allowed expression of the protein as demonstrated by RT-PCR and western blot analyses. Using a gonococcal NarE–6xHis fusion protein, we demonstrated that the gonococcal enzyme underwent auto-ADP-ribosylation but to a lower extent than meningococcal NarE. We also observed that gonoccocal NarE exhibited ADP-ribosyltransferase activity using agmatine and cell-free host proteins as ADP-ribose acceptors, but its activity was inhibited by human β-defensins. Taken together, our results showed that NarE of Neisseria gonorrhoeae is a functional enzyme that possesses key features of bacterial ADP-ribosylating enzymes.
    Keywords: Physiology & Biochemistry
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2016-08-18
    Description: The effect of fructose 1,6-bisphosphate (Fru 1,6-P 2 ) on the regulatory enzymes of pentose phosphate pathway of Escherichia coli was examined. Fru 1,6-P 2 inhibited E. coli transaldolase (EC 2.2.1.2) competitively against fructose 6-phosphate and uncompetitively against erythrose 4-phosphate, whereas Fru 1,6-P 2 did not affect glucose 6-phosphate dehydrogenase (EC 1.1.1.49) and 6-phosphogluconate dehydrogenase (EC 1.1.1.44). Kinetic results can be explained by assuming that transaldolase has two kinds of binding sites for Fru 1,6-P 2 : a competitive binding site for fructose 6-phosphate and a second binding site on the enzyme-erythrose 4-phosphate complex. Fru 1,6-P 2 increased resulting from the stimulation of glycolysis, can inhibit transaldolase and further participates in the elevation of the concentration of ribose 5-phosphate that can be preferentially utilized for anabolic reaction in exponential phase of E. coli .
    Keywords: Physiology & Biochemistry
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    facet.materialart.
    Unknown
    Oxford University Press
    Publication Date: 2016-07-02
    Keywords: Professional Development
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2016-07-02
    Description: The presence of carbapenemase gene bla KPC-2 in a wide variety of plasmids, especially conjugative plasmids, is key to the rapid, worldwide spread of carbapenemase enzymes. Thirty-eight, non-duplicated, carbapenem-resistant, clinical Klebsiella pneumoniae isolates were collected, all carrying bla KPC-2 -bearing plasmids. Relaxase analysis was used to classify these plasmids; 8 and 30 plasmids belonged to the MOB P3 and MOB F12 subfamilies, respectively. Phylogenetic analysis revealed two genetic subclades in the MOB F12 subfamily and suggested that these subclades might not have originated from the same ancestor. Crossing PCR, used to sequence fully the type IV secretion system (T4SS, essential structures for conjugative plasmids) of the MOB F12 plasmids, found that T4SSs were distinctively different in certain functional genes, e.g. traS and traG. In conclusion, this study delineated the evolution of bla KPC-2 -bearing plasmids at Huashan Hospital, Shanghai, China. The plasmids bearing bla KPC-2 were diverse and the MOB F12 plasmids were dominant in clinical K. pneumoniae isolates.
    Keywords: Pathogens & Pathogenicity
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2016-07-03
    Description: The Hdr (heterodisulfide reductase)-like enzyme is predicted, from gene transcript profiling experiments previously published, to be essential in oxidative sulfur metabolism in a number of bacteria and archaea. Nevertheless, no biochemical and physicochemical data are available so far about this enzyme. Genes coding for it were identified in Aquifex aeolicus , a Gram-negative, hyperthermophilic, chemolithoautotrophic and microaerophilic bacterium that uses inorganic sulfur compounds as electron donor to grow. We provide biochemical evidence that this Hdr-like enzyme is present in this sulfur-oxidizing prokaryote (cultivated with thiosulfate or elemental sulfur). We demonstrate, by immunolocalization and cell fractionation, that Hdr-like enzyme is associated, presumably monotopically, with the membrane fraction. We show by co-immunoprecipitation assay or partial purification, that the Hdr proteins form a stable complex composed of at least five subunits, HdrA, HdrB1, HdrB2, HdrC1 and HdrC2, present in two forms of high molecular mass on native gel (~240 and 450 kDa). These studies allow us to propose a revised model for dissimilatory sulfur oxidation pathways in A. aeolicus , with Hdr predicted to generate sulfite.
    Keywords: Physiology & Biochemistry
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2016-07-03
    Description: The functioning of many natural and engineered environments is dependent on long distance electron transfer mediated through electrical currents. These currents have been observed in exoelectrogenic biofilms and it has been proposed that microbial biofilms can mediate electron transfer via electrical currents on the centimeter scale. However, direct evidence to confirm this hypothesis has not been demonstrated and the longest known electrical transfer distance for single species exoelectrogenic biofilms is limited to 100 μm. In the present study, biofilms were developed on electrodes with electrically non-conductive gaps from 50 μm to 1 mm and the in situ conductance of biofilms was evaluated over time. Results demonstrated that the exoelectrogenic mixed species biofilms in the present study possess the ability to transfer electrons through electrical currents over a distance of up to 1 mm, 10 times further than previously observed. Results indicate the possibility of interspecies interactions playing an important role in the spatial development of exoelectrogenic biofilms, suggesting that these biological networks might remain conductive even at longer distance. These findings have significant implications in regards to future optimization of microbial electrochemical systems.
    Keywords: Environmental Microbiology
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    facet.materialart.
    Unknown
    Oxford University Press
    Publication Date: 2016-07-06
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2016-07-06
    Description: Germline mutations in the X-linked gene, methyl-CpG-binding protein 2 (MECP2), underlie most cases of Rett syndrome (RTT), an autism spectrum disorder affecting approximately one in 10 000 female live births. The disease is characterized in affected girls by a latent appearance of symptoms between 12 and 18 months of age while boys usually die before the age of two. The nature of the latency is not known, but RTT-like phenotypes are recapitulated in mouse models, even when MeCP2 is removed at different postnatal stages, including juvenile and adolescent stages. Unexpectedly, here, we show that within a very brief developmental window, between 10 (adolescent) and 15 (adult) weeks after birth, symptom initiation and progression upon removal of MeCP2 in male mice transitions from 3 to 4 months to only several days, followed by lethality. We further show that this accelerated development of RTT phenotype and lethality occur at the transition to adult stage (15 weeks of age) and persists thereafter. Importantly, within this abbreviated time frame of days, the brain acquires dramatic anatomical, cellular and molecular abnormalities, typical of classical RTT. This study reveals a new postnatal developmental stage, which coincides with full-brain maturation, where the structure/function of the brain is extremely sensitive to levels of MeCP2 and loss of MeCP2 leads to precipitous collapse of the neuronal networks and incompatibility with life within days.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2016-07-06
    Description: Neurofibromatosis type 1 (NF1) is a common neurogenetic condition characterized by significant clinical heterogeneity. A major barrier to developing precision medicine approaches for NF1 is an incomplete understanding of the factors that underlie its inherent variability. To determine the impact of the germline NF1 gene mutation on the optic gliomas frequently encountered in children with NF1, we developed genetically engineered mice harboring two representative NF1-patient-derived Nf1 gene mutations (c.2542G〉C;p.G848R and c.2041C〉T;p.R681X). We found that each germline Nf1 gene mutation resulted in different levels of neurofibromin expression. Importantly, only R681X CKO but not G848R CKO , mice develop optic gliomas with increased optic nerve volumes, glial fibrillary acid protein immunoreactivity, proliferation and retinal ganglion cell death, similar to Nf1 conditional knockout mice harboring a neomycin insertion (neo) as the germline Nf1 gene mutation. These differences in optic glioma phenotypes reflect both cell-autonomous and stromal effects of the germline Nf1 gene mutation. In this regard, primary astrocytes harboring the R681X germline Nf1 gene mutation exhibit increased basal astrocyte proliferation (BrdU incorporation) indistinguishable from neo CKO astrocytes, whereas astrocytes with the G848R mutation have lower levels of proliferation. Evidence for paracrine effects from the tumor microenvironment were revealed when R681X CKO mice were compared with conventional neo CKO mice. Relative to neo CKO mice, the optic gliomas from R681X CKO mice had more microglia infiltration and JNK Thr183/Tyr185 activation, microglia-produced Ccl5, and glial AKT Thr308 activation. Collectively, these studies establish that the germline Nf1 gene mutation is a major determinant of optic glioma development and growth through by both tumor cell-intrinsic and stromal effects.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2016-07-06
    Description: Down syndrome (DS) is caused by a triplication of chromosome 21 (HSA21). Increased oxidative stress, decreased neurogenesis and synaptic dysfunction from HSA21 gene overexpression are thought to cause mental retardation, dementia and seizure in this disorder. Recent epigenetic studies have raised the possibility that DNA methylation has significant effects on DS neurodevelopment. Here, we performed methylome profiling in normal and DS fetal cortices and observed a significant hypermethylation in ~4% of probes in the DS samples compared with age-matched normals. The probes with differential methylation were distributed across all chromosomes, with no enrichment on HSA21. Functional annotation and pathway analyses showed that genes in the ubiquitination pathway were significantly altered, including: BRCA1 , TSPYL5 and PEX10 . HSA21 located DNMT3L was overexpressed in DS neuroprogenitors, and this overexpression increased the promoter methylation of TSPYL5 potentially through DNMT3B, and decreased its mRNA expression. DNMT3L overexpression also increased mRNA levels for TP53 and APP , effectors of TSPYL5 . Furthermore, DNMT3L overexpression increased APP and PSD95 expression in differentiating neurons, whereas DNMT3L shRNA could partially rescue the APP and PSD95 up-regulation in DS cells. These results provide some of the first mechanistic insights into causes for epigenetic changes in DS, leading to modification of genes relevant for the DS neural endophenotype.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2016-07-06
    Description: Huntington's disease (HD) is caused by an expanded polyglutamine (polyQ) tract in the huntingtin (htt) protein. The polyQ expansion increases the propensity of htt to aggregate and accumulate, and manipulations that mitigate protein misfolding or facilitate the clearance of misfolded proteins are predicted to slow disease progression in HD models. αB-crystallin (αBc) or HspB5 is a well-characterized member of the small heat shock protein (sHsp) family that reduces mutant htt (mhtt) aggregation and toxicity in vitro and in Drosophila models of HD. Here, we determined if overexpressing αBc in vivo modulates aggregation and delays the onset and progression of disease in a full-length model of HD, BACHD mice. Expression of sHsps in neurodegenerative disease predominantly occurs in non-neuronal cells, and in the brain, αBc is mainly found in astrocytes and oligodendrocytes. Here, we show that directed αBc overexpression in astrocytes improves motor performance in rotarod and balance beam tests and improves cognitive function in the BACHD mice. Improvement in behavioral deficits correlated with mitigation of neuropathological features commonly observed in HD. Interestingly, astrocytic αBc overexpression was neuroprotective against neuronal cell loss in BACHD brains, suggesting αBc might be acting in a non-cell-autonomous manner. At the protein level, αBc decreased the level of soluble mhtt and decreased the size of mhtt inclusions in BACHD brain. Our results support a model in which elevating astrocytic αBc confers neuroprotection through a potential non-cell-autonomous pathway that modulates mhtt aggregation and protein levels.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2016-07-06
    Description: The objective of this study was to determine the protective effects of the mitochondria-targeted molecules MitoQ and SS31 in striatal neurons that stably express mutant huntingtin (Htt) (STHDhQ111/Q111) in Huntington's disease (HD). We studied mitochondrial and synaptic activities by measuring mRNA and the protein levels of mitochondrial and synaptic genes, mitochondrial function, and ultra-structural changes in MitoQ- and SS31-treated mutant Htt neurons relative to untreated mutant Htt neurons. We used gene expression analysis, biochemical methods, transmission electron microscopy (TEM) and confocal microscopy methods. In the MitoQ- and SS31-treated mutant Htt neurons, fission genes Drp1 and Fis1 were down-regulated, and fusion genes Mfn1, Mfn2 and Opa1 were up-regulated relative to untreated neurons, suggesting that mitochondria-targeted molecules reduce fission activity. Interestingly, the mitochondrial biogenesis genes PGC1α, PGC1β, Nrf1, Nrf2 and TFAM were up-regulated in MitoQ- and SS31-treated mutant Htt neurons. The synaptic genes synaptophysin and PSD95 were up-regulated, and mitochondrial function was normal in the MitoQ- and SS31-treated mutant Htt neurons. Immunoblotting findings of mitochondrial and synaptic proteins agreed with the mRNA findings. TEM studies revealed decreased numbers of structurally intact mitochondria in MitoQ- and SS31-treated mutant Htt neurons. These findings suggest that mitochondria-targeted molecules MitoQ and SS31 are protective against mutant Htt-induced mitochondrial and synaptic damage in HD neurons, and these mitochondria-targeted molecules are potential therapeutic molecules for the treatment of HD neurons.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2016-07-06
    Description: We recently reported the association of the PCSK6 gene with handedness through a quantitative genome-wide association study (GWAS; P 〈 0.5 x 10 –8 ) for a relative hand skill measure in individuals with dyslexia. PCSK6 activates Nodal, a morphogen involved in regulating left–right body axis determination. Therefore, the GWAS data suggest that the biology underlying the patterning of structural asymmetries may also contribute to behavioural laterality, e.g. handedness. The association is further supported by an independent study reporting a variable number tandem repeat (VNTR) within the same PCSK6 locus to be associated with degree of handedness in a general population cohort. Here, we have conducted a functional analysis of the PCSK6 locus combining further genetic analysis, in silico predictions and molecular assays. We have shown that the previous GWAS signal was not tagging a VNTR effect, suggesting that the two markers have independent effects. We demonstrated experimentally that one of the top GWAS-associated markers, rs11855145, directly alters the binding site for a nuclear factor. Furthermore, we have shown that the predicted regulatory region adjacent to rs11855415 acts as a bidirectional promoter controlling the expression of novel RNA transcripts. These include both an antisense long non-coding RNA (lncRNA) and a short PCSK6 isoform predicted to be coding. This is the first molecular characterization of a handedness-associated locus that supports the role of common variants in non-coding sequences in influencing complex phenotypes through gene expression regulation.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2016-07-06
    Description: Huntington's disease (HD) is an incurable neurodegenerative condition characterized by progressive motor and cognitive dysfunction, and depletion of neurons in the striatum. Recently, BACHD transgenic mice expressing the full-length human huntingtin gene have been generated, which recapitulate some of the motor and cognitive deficits seen in HD. In this study, we carried out a series of extensive behavioural and neuropathological tests on BACHD mice, to validate this mouse for preclinical research. Transgenic C57BL/6J BACHD and litter-matched wild-type mice were examined in a battery of motor and cognitive function tests at regular intervals up to 12 months of age. Brains from these mice were also analysed for signs of neurodegeneration and striatal and cortical volume sizes compared using anatomic 16.4T magnetic resonance imaging (MRI) brain scans. BACHD mice showed progressive motor impairments on rotarod and balance beam tests starting from 3 months of age, were hypoactive in the open field tests starting from 6 months of age, however, showed no alterations in gait and grip strength at any age. Surprisingly, despite these distinct motor deficits, no signs of neuronal loss, gliosis or blood–brain barrier degeneration were observed in the striatum of 12-month-old mice. MRI brain scans confirmed no reduction in striatal or cortical volumes at 12 months of age, and BACHD mice had a normal lifespan. These results demonstrate that classical Huntington's-like motor impairments seen in this transgenic model, do not occur due to degeneration of the striatum, and thus caution against the use of this model for preclinical studies into HD.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2016-07-06
    Description: Spinal muscular atrophy (SMA) is an autosomal recessive disease linked to survival motor neuron (SMN) protein deficiency. While SMN protein is expressed ubiquitously, its deficiency triggers tissue-specific hallmarks, including motor neuron death and muscle atrophy, leading to impaired motor functions and premature death. Here, using stable miR-mediated knockdown technology in zebrafish, we developed the first vertebrate system allowing transgenic spatio-temporal control of the smn1 gene. Using this new model it is now possible to investigate normal and pathogenic SMN function(s) in specific cell types, independently or in synergy with other cell populations. We took advantage of this new system to first test the effect of motor neuron or muscle-specific smn1 silencing. Anti- smn1 miRNA expression in motor neurons, but not in muscles, reproduced SMA hallmarks, including abnormal motor neuron development, poor motor function and premature death. Interestingly, smn1 knockdown in motor neurons also induced severe late-onset phenotypes including scoliosis-like body deformities, weight loss, muscle atrophy and, seen for the first time in zebrafish, reduction in the number of motor neurons, indicating motor neuron degeneration. Taken together, we have developed a new transgenic system allowing spatio-temporal control of smn1 expression in zebrafish, and using this model, we have demonstrated that smn1 silencing in motor neurons alone is sufficient to reproduce SMA hallmarks in zebrafish. It is noteworthy that this research is going beyond SMA as this versatile gene-silencing transgenic system can be used to knockdown any genes of interest, filling the gap in the zebrafish genetic toolbox and opening new avenues to study gene functions in this organism.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2016-07-06
    Description: Skeletal dysplasias are a clinically and genetically heterogeneous group of bone and cartilage disorders. Whilst 〉450 skeletal dysplasias have been reported, 30% are genetically uncharacterized. We report two Irish Traveller families with a previously undescribed lethal skeletal dysplasia characterized by fetal akinesia, shortening of all long bones, multiple contractures, rib anomalies, thoracic dysplasia, pulmonary hypoplasia and protruding abdomen. Single nucleotide polymorphism homozygosity mapping and whole exome sequencing identified a novel homozygous stop-gain mutation in NEK9 (c.1489C〉T; p.Arg497*) as the cause of this disorder. NEK9 encodes a never in mitosis gene A-related kinase involved in regulating spindle organization, chromosome alignment, cytokinesis and cell cycle progression. This is the first disorder to be associated with NEK9 in humans. Analysis of NEK9 protein expression and localization in patient fibroblasts showed complete loss of full-length NEK9 (107 kDa). Functional characterization of patient fibroblasts showed a significant reduction in cell proliferation and a delay in cell cycle progression. We also provide evidence to support possible ciliary associations for NEK9. Firstly, patient fibroblasts displayed a significant reduction in cilia number and length. Secondly, we show that the NEK9 orthologue in Caenorhabditis elegans , nekl-1 , is almost exclusively expressed in a subset of ciliated cells, a strong indicator of cilia-related functions. In summary, we report the clinical and molecular characterization of a lethal skeletal dysplasia caused by NEK9 mutation and suggest that this disorder may represent a novel ciliopathy.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2016-07-06
    Description: Oxidative damage to mitochondria (MT) is a major mechanism for aging and neurodegeneration. We have developed a novel synthetic antioxidant, XJB-5-131, which directly targets MT, the primary site and primary target of oxidative damage. XJB-5-131 prevents the onset of motor decline in an HdhQ(150/150) mouse model for Huntington's disease (HD) if treatment starts early. Here, we report that XJB-5-131 attenuates or reverses disease progression if treatment occurs after disease onset. In animals with well-developed pathology, XJB-5-131 promotes weight gain, prevents neuronal death, reduces oxidative damage in neurons, suppresses the decline of motor performance or improves it, and reduces a graying phenotype in treated HdhQ(150/150) animals relative to matched littermate controls. XJB-5-131 holds promise as a clinical candidate for the treatment of HD.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2016-07-06
    Description: Defects in organelle dynamics underlie a number of human degenerative disorders, and whole exome sequencing (WES) is a powerful tool for studying genetic changes that affect the cellular machinery. WES may uncover variants of unknown significance (VUS) that require functional validation. Previously, a pathogenic de novo variant in the middle domain of DNM1L (p.A395D) was identified in a single patient with a lethal defect of mitochondrial and peroxisomal fission. We identified two additional patients with infantile encephalopathy and partially overlapping clinical features, each with a novel VUS in the middle domain of DNM1L (p.G350R and p.E379K). To evaluate pathogenicity, we generated transgenic Drosophila expressing wild-type or variant DNM1L. We find that human wild-type DNM1L rescues the lethality as well as specific phenotypes associated with the loss of Drp1 in Drosophila. Neither the p.A395D variant nor the novel variant p.G350R rescue lethality or other phenotypes. Moreover, overexpression of p.A395D and p.G350R in Drosophila neurons, salivary gland and muscle strikingly altered peroxisomal and mitochondrial morphology. In contrast, the other novel variant (p.E379K) rescued lethality and did not affect organelle morphology, although it was associated with a subtle mitochondrial trafficking defect in an in vivo assay. Interestingly, the patient with the p.E379K variant also has a de novo VUS in pyruvate dehydrogenase 1 ( PDHA1 ) affecting the same amino acid (G150) as another case of PDHA1 deficiency suggesting the PDHA1 variant may be pathogenic. In summary, detailed clinical evaluation and WES with functional studies in Drosophila can distinguish different functional consequences of newly-described DNM1L alleles.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2016-07-06
    Description: Riboflavin, also known as vitamin B2, is essential for cellular reduction-oxidation reactions, but is not readily synthesized by mammalian cells. It has been proposed that riboflavin absorption occurs through solute carrier family 52 members (SLC52) A1, A2 and A3. These transporters are also candidate genes for the childhood onset-neural degenerative syndrome Brown–Vialetto–Van Laere (BVVL). Although riboflavin is an essential nutrient, why mutations in its transporters result in a neural cell-specific disorder remains unclear. Here, we provide evidence that Slc52a3 is the mouse ortholog of SLC52A3 and show that Slc52a3 deficiency results in early embryonic lethality. Loss of mutant embryos was associated with both defects in placental formation and increased rates of apoptosis in embryonic cells. In contrast, Slc52a3 –/– embryonic stem cell lines could be readily established and differentiated into motor neurons, suggesting that this transporter is dispensable for neural differentiation and short-term maintenance. Consistent with this finding, examination of Slc52a3 gene products in adult tissues revealed expression in the testis and intestine but little or none in the brain and spinal cord. Our results suggest that BVVL patients with SCL52A3 mutations may be good candidates for riboflavin replacement therapy and suggests that either the mutations these individuals carry are hypomorphic, or that in these cases alternative transporters act during human embryogenesis to allow full-term development.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2016-07-06
    Description: The X-linked disease Barth syndrome (BTHS) is caused by mutations in TAZ ; TAZ is the main determinant of the final acyl chain composition of the mitochondrial-specific phospholipid, cardiolipin. To date, a detailed characterization of endogenous TAZ has only been performed in yeast. Further, why a given BTHS-associated missense mutation impairs TAZ function has only been determined in a yeast model of this human disease. Presently, the detailed characterization of yeast tafazzin harboring individual BTHS mutations at evolutionarily conserved residues has identified seven distinct loss-of-function mechanisms caused by patient-associated missense alleles. However, whether the biochemical consequences associated with individual mutations also occur in the context of human TAZ in a validated mammalian model has not been demonstrated. Here, utilizing newly established monoclonal antibodies capable of detecting endogenous TAZ, we demonstrate that mammalian TAZ, like its yeast counterpart, is localized to the mitochondrion where it adopts an extremely protease-resistant fold, associates non-integrally with intermembrane space-facing membranes and assembles in a range of complexes. Even though multiple isoforms are expressed at the mRNA level, only a single polypeptide that co-migrates with the human isoform lacking exon 5 is expressed in human skin fibroblasts, HEK293 cells, and murine heart and liver mitochondria. Finally, using a new genome-edited mammalian BTHS cell culture model, we demonstrate that the loss-of-function mechanisms for two BTHS alleles that represent two of the seven functional classes of BTHS mutation as originally defined in yeast, are the same when modeled in human TAZ.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2016-07-06
    Description: Familial medullary thyroid cancer (MTC) and its precursor, C cell hyperplasia (CCH), is associated with germline RET mutations causing multiple endocrine neoplasia type 2. However, some rare families with apparent MTC/CCH predisposition do not have a detectable RET mutation. To identify novel MTC/CCH predisposition genes we undertook exome resequencing studies in a family with apparent predisposition to MTC/CCH and no identifiable RET mutation. We identified a novel ESR2 frameshift mutation, c.948delT, which segregated with histological diagnosis following thyroid surgery in family members and demonstrated loss of ESR2 -encoded ERβ expression in the MTC tumour. ERα and ERβ form heterodimers binding DNA at specific oestrogen-responsive elements (EREs) to regulate gene transcription. ERβ represses ERα-mediated activation of the ERE and the RET promoter contains three EREs . In vitro , we showed that ESR2 c.948delT results in unopposed ERα mediated increased cellular proliferation, activation of the ERE and increased RET expression. In vivo , immunostaining of CCH and MTC using an anti-RET antibody demonstrated increased RET expression. Together these findings identify germline ESR2 mutation as a novel cause of familial MTC/CCH and provide important insights into a novel mechanism causing increased RET expression in tumourigenesis.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2016-07-06
    Description: The expansion of the GGGGCC hexanucleotide repeat in the non-coding region of the Chromosome 9 open-reading frame 72 (C9orf72) gene is the most common genetic cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). This genetic alteration leads to the accumulation of five types of poly-dipeptides translated from the GGGGCC hexanucleotide repeat. Among these, poly-proline-arginine (poly-PR) and poly-glycine-arginine (poly-GR) peptides are known to be neurotoxic. However, the mechanisms of neurotoxicity associated with these poly-dipeptides are not clear. A proteomics approach identified a number of interacting proteins with poly-PR peptide, including mRNA-binding proteins, ribosomal proteins, translation initiation factors and translation elongation factors. Immunostaining of brain sections from patients with C9orf72 ALS showed that poly-GR was colocalized with a mRNA-binding protein, hnRNPA1. In vitro translation assays showed that poly-PR and poly-GR peptides made insoluble complexes with mRNA, restrained the access of translation factors to mRNA, and blocked protein translation. Our results demonstrate that impaired protein translation mediated by poly-PR and poly-GR peptides plays a role in neurotoxicity and reveal that the pathways altered by the poly-dipeptides-mRNA complexes are potential therapeutic targets for treatment of C9orf72 FTD/ALS.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2016-07-06
    Description: Thrombotic diseases are among the leading causes of morbidity and mortality in the world. To add insights into the genetic regulation of thrombotic disease, we conducted a genome-wide association study (GWAS) of 6135 self-reported blood clots events and 252 827 controls of European ancestry belonging to the 23andMe cohort of research participants. Eight loci exceeded genome-wide significance. Among the genome-wide significant results, our study replicated previously known venous thromboembolism (VTE) loci near the F5, FGA-FGG, F11, F2, PROCR and ABO genes, and the more recently discovered locus near SLC44A2 . In addition, our study reports for the first time a genome-wide significant association between rs114209171, located upstream of the F8 structural gene, and thrombosis risk. Analyses of expression profiles and expression quantitative trait loci across different tissues suggested SLC44A2 , ILF3 and AP1M2 as the three most plausible candidate genes for the chromosome 19 locus, our only genome-wide significant thrombosis-related locus that does not harbor likely coagulation-related genes. In addition, we present data showing that this locus also acts as a novel risk factor for stroke and coronary artery disease (CAD). In conclusion, our study reveals novel common genetic risk factors for VTE, stroke and CAD and provides evidence that self-reported data on blood clots used in a GWAS yield results that are comparable with those obtained using clinically diagnosed VTE. This observation opens up the potential for larger meta-analyses, which will enable elucidation of the genetics of thrombotic diseases, and serves as an example for the genetic study of other diseases.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2016-07-06
    Description: Meta-analysis strategies have become critical to augment power of genome-wide association studies (GWAS). To reduce genotyping or sequencing cost, many studies today utilize shared controls, and these individuals can inadvertently overlap among multiple studies. If these overlapping individuals are not taken into account in meta-analysis, they can induce spurious associations. In this article, we propose a general framework for adjusting association statistics to account for overlapping subjects within a meta-analysis. The key idea of our method is to transform the covariance structure of the data, so it can be used in downstream analyses. As a result, the strategy is very flexible and allows a wide range of meta-analysis methods, such as the random effects model, to account for overlapping subjects. Using simulations and real datasets, we demonstrate that our method has utility in meta-analyses of GWAS, as well as in a multi-tissue mouse expression quantitative trait loci (eQTL) study where our method increases the number of discovered eQTL by up to 19% compared with existing methods.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2016-07-06
    Description: Papillary thyroid carcinoma (PTC) is the most common type of thyroid cancer. However, we know little of mutational spectrum in the Chinese population. Thus, here we report the identification of somatic mutations for Chinese PTC using 402 tumor-normal pairs (Discovery: 91 pairs via exome sequencing; validation: 311 pairs via Sanger sequencing). We observed three distinct mutational signatures, evidently different from the two mutational signatures among Caucasian PTCs. Ten significantly mutated genes were identified, most previously uncharacterized. Notably, we found that long non-coding RNA (lncRNA) GAS8-AS1 is the secondary most frequently altered gene and acts as a novel tumor suppressor in PTC. As a mutation hotspot, the c.713A〉G/714T〉C dinucleotide substitution was found among 89.1% patients with GAS8-AS1 mutations and associated with advanced PTC disease ( P = 0.009). Interestingly, the wild-type lncRNA GAS8-AS1 (A 713 T 714 ) showed consistently higher capability to inhibit cancer cell growth compared to the mutated lncRNA (G 713 C 714 ). Further studies also elucidated the oncogene nature of the G protein-coupled receptor LPAR4 and its c.872T〉G (p.Ile291Ser) mutation in PTC malignant transformation. The BRAF c.1799T〉A (p.Val600Glu) substitution was present in 59.0% Chinese PTCs, more frequently observed in patients with lymph node metastasis ( P = 1.6 x 10 –4 ). Together our study defines a exome mutational spectrum of PTC in the Chinese population and highlights lncRNA GAS8-AS1 and LPAR4 as potential diagnostics and therapeutic targets.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2016-08-11
    Description: Geobacter sulfurreducens is an anaerobic soil bacterium that is involved in biogeochemical cycles of elements such as Fe and Mn. Although significant progress has been made in the understanding of the electron transfer processes in G. sulfurreducens , little is known about the regulatory mechanisms involved in their control. To expand the study of gene regulation in G. sulfurreducens , we carried out a genome-wide identification of transcription start sites (TSS) by 5'RACE and by deep RNA sequencing of primary mRNAs in two growth conditions. TSSs were identified along G. sulfurreducens genome and over 50% of them were located in the upstream region of the associated gene, and in some cases we detected genes with more than one TSS. Our global mapping of TSSs contributes with valuable information, which is needed for the study of transcript structure and transcription regulation signals and can ultimately contribute to the understanding of transcription initiation phenomena in G. sulfurreducens .
    Keywords: Physiology & Biochemistry
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    facet.materialart.
    Unknown
    Oxford University Press
    Publication Date: 2016-08-11
    Description: There are not only many links between microbiological and philosophical topics, but good educational reasons for microbiologists to explore the philosophical issues in their fields. I examine three broad issues of classification, causality and model systems, showing how these philosophical dimensions have practical implications. I conclude with a discussion of the educational benefits for recognising the philosophy in microbiology.
    Keywords: Professional Development
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2016-08-27
    Description: Actin-like MreB paralogs play important roles in cell shape maintenance, cell wall synthesis and the regulation of the D,L-endopeptidases, CwlO and LytE. The gram-positive bacteria, Bacillus amyloliquefaciens LL3, is a poly--glutamic acid (-PGA) producing strain that contains three MreB paralogs: MreB, Mbl and MreBH. In B. amyloliquefaciens , CwlO and LytE can degrade -PGA. In this study, we aimed to test the hypothesis that modulating transcript levels of MreB paralogs would alter the synthesis and degradation of -PGA. The results showed that overexpression or inhibition of MreB, Mbl or MreBH had distinct effects on cell morphology and the molecular weight of the -PGA products. In fermentation medium, cells of mreB inhibition mutant were 50.2% longer than LL3, and the -PGA titer increased by 55.7%. However, changing the expression level of mbl showed only slight effects on the morphology, -PGA molecular weight and titer. In the mreBH inhibition mutant, -PGA production and its molecular weight increased by 56.7% and 19.4%, respectively. These results confirmed our hypothesis that suppressing the expression of MreB paralogs might reduce -PGA degradation, and that improving the cell size could strengthen -PGA synthesis. This is the first report of enhanced -PGA production via suppression of actin-like MreB paralogs.
    Keywords: Biotechnology & Synthetic Biology
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2016-08-27
    Description: DnpA, a putative de- N -acetylase of the PIG-L superfamily, is required for antibiotic tolerance in Pseudomonas aeruginosa . Exactly how dnpA (gene locus PA5002) directs the formation of antibiotic-tolerant persister cells is currently unknown. Previous research provided evidence for a role in surface-associated process(es), possibly in lipopolysaccharide biosynthesis. In silico sequence analysis of DnpA predicts a single transmembrane domain and N in /C out orientation of DnpA. In contrast, we here show that DnpA is an integral inner membrane protein containing two transmembrane domains, with the major C-terminal part located at the cytoplasmic face. Correct insertion into the inner membrane is necessary for DnpA to promote fluoroquinolone tolerance. The membrane localization of DnpA further supports its role in cell envelope-associated process(es). In addition to shedding light on the biological role of DnpA, this study highlights the risks of overreliance on the predictive value of bioinformatics tools and the importance of rigorous experimental validation of in silico predictions.
    Keywords: Physiology & Biochemistry
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2016-08-28
    Description: Enteroaggregative Escherichia coli (EAEC) is an important diarrhoeal pathogen causing diseases in multiple epidemiological and clinical settings. In developing countries like India, diarrhoeal diseases are one of the major killers among paediatric population and oddly, few studies are available from Indian paediatric population on the variability of EAEC virulence genes. In this study, we examined the distribution of plasmid and chromosomal-encoded virulence determinants in EAEC isolates, and analysed cytokines response generated against EAEC with specific aggregative adherence fimbriae (AAF) type in duodenal biopsies using in vitro organ culture (IVOC) mimicking in vivo conditions. Different virulence marker combinations among strains were reflected as a function of specific adhesins signifying EAEC heterogeneity. fis gene emerged as an important genetic marker apart from aggA and aap . Further, EAEC infection in IVOC showed upregulation of IL-8, IL-1β, IL-6, TNF-α and TLR-5 expression. EAEC with AAFII induced significant TLR-5 and IL-8 response, conceivably owing to more pathogenicity markers. This study sheds light on the pattern of EAEC pathotypes prevalent in North Indian paediatric population and highlights the presence of unique virulence combinations in pathogenic strains. Thus, evident diversity in EAEC virulence and multifaceted bacteria-host crosstalk can provide useful insights for the strategic management of diarrhoeal diseases in India, where diarrhoeal outbreaks are more frequent.
    Keywords: Pathogens & Pathogenicity
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2016-08-28
    Description: Bacteriophages are increasingly being used as water quality indicators. Two groups of phages infecting Escherichia coli , somatic and F-specific coliphages, are being considered as indicators of fecal and viral contamination for several types of water around the world. However, some uncertainties remain regarding which coliphages to assess. Recently, E. coli strain CB390 has been reported to be suitable for simultaneous detection of both groups, which seems to be more informative than determining only one of the groups. Here, a significant number of samples from different settings, mostly those where F-specific phages have been reported to outnumber somatic coliphages, are analyzed for somatic coliphages, F-specific RNA phages by standardized methods and coliphages detected by host strain CB390. The results presented here confirm that the numbers of phages counted using CB390 are equivalent to the sum of the somatic and F-specific coliphages counted independently in all settings. Hence the usefulness of this strain for simultaneous detection of somatic and F-specific coliphages is confirmed. Also, sets of data on the presence of coliphages in reclaimed and groundwater are reported.
    Keywords: Environmental Microbiology
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2016-06-08
    Description: Cell wall impermeability and active efflux of drugs are among the primary reasons for drug resistance in mycobacteria. Efflux pumps are tripartite membrane localized transport proteins that expel drug molecules outside the cells. Several of such efflux pumps are annotated in mycobacteria, but few have been characterized, like MSMEG_2991, a putative efflux pump permease of Mycobacterium smegmatis . To substantiate this, we overexpressed MSMEG_2991 protein in Escherichia coli 2443. Expression of MSMEG_2991 elevated the resistance towards structurally unrelated groups of antibiotics. An active antibiotic efflux pump nature of MSMEG_2991 was revealed by assessing the acquisition of ciprofloxacin in the absence and presence of the efflux pump inhibitor, carbonyl cyanide m-chlorophenyl hydrazone, indicating the involvement of proton-motive force (pmf) during the efflux activity. MSMEG_2991 expression elevated biofilm formation in E. coli by 4-fold, keeping parity to some of the earlier reported efflux pumps. In silico analysis suggested the presence of 12 transmembrane helices in MSMEG_2991 resembling EmrD efflux pump of E. coli . Based on in vivo and in silico analyses, MSMEG_2991 may be designated as a pmf-mediated multidrug efflux pump protein that expels diverse groups of antibiotics and might as well be involved in the biofilm enhancement.
    Keywords: Physiology & Biochemistry
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2016-06-08
    Description: Bacterial small RNAs (sRNAs) play essential roles in the post-transcriptional control of gene expression. To improve their detection by conventional microarrays, we designed a custom microarray containing a group of probes targeting known and some putative Escherichia coli sRNAs. To assess its potential in detection of sRNAs, RNA profiling experiments were performed with total RNA extracted from E. coli MG1655 cells exponentially grown in rich (Luria–Bertani) and minimal (M9/glucose) media. We found that many sRNAs could yield reasonably strong and statistically significant signals corresponding to nearly all sRNAs annotated in the EcoCyc database. Besides differential expression of two sRNAs (GcvB and RydB), expression of other sRNAs was less affected by the composition of the growth media. Other examples of the differentially expressed sRNAs were revealed by comparing gene expression of the wild-type strain and its isogenic mutant lacking functional poly(A) polymerase I ( pcnB ). Further, northern blot analysis was employed to validate these data and to assess the existence of new putative sRNAs. Our results suggest that the use of custom microarrays with improved capacities for detection of sRNAs can offer an attractive opportunity for efficient gene expression profiling of sRNAs and their target mRNAs at the whole transcriptome level.
    Keywords: Physiology & Biochemistry
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2016-06-08
    Description: Microbial production of acetone and butanol was one of the first large-scale industrial fermentation processes of global importance. During the first part of the 20th century, it was indeed the second largest fermentation process, superseded in importance only by the ethanol fermentation. After a rapid decline after the 1950s, acetone-butanol-ethanol (ABE) fermentation has recently gained renewed interest in the context of biorefinery approaches for the production of fuels and chemicals from renewable resources. The availability of new methods and knowledge opens many new doors for industrial microbiology, and a comprehensive view on this process is worthwhile due to the new interest. This thematic issue of FEMS Microbiology Letters, dedicated to the 100th anniversary of the first industrial exploitation of Chaim Weizmann's ABE fermentation process, covers the main aspects of old and new developments, thereby outlining a model development in biotechnology. All major aspects of industrial microbiology are exemplified by this single process. This includes new technologies, such as the latest developments in metabolic engineering, the exploitation of biodiversity and discoveries of new regulatory systems such as for microbial stress tolerance, as well as technological aspects, such as bio- and down-stream processing.
    Keywords: Biotechnology & Synthetic Biology
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2016-06-08
    Description: Escherichia coli DedA/Tvp38 family proteins YghB and YqjA are putative membrane transporters with 62% amino acid identity and overlapping functions. An E. coli strain (BC202) with nonpolar yghB and yqjA mutations displays cell-division defects and temperature sensitivity and is sensitive to antibiotics and alkaline pH. In this study, we performed site-directed mutagenesis on conserved, charged amino acids of YqjA and YghB. We discovered two conserved predicted membrane-embedded arginines (R130 and R136) that are critical for function in both proteins as defined by their ability to complement BC202 phenotypes, when expressed from a plasmid. Lysine can substitute for arginine at position R130 indicating a charge dependence at this position, but could not substitute at R136. In light of the established role that arginine plays in the translocation mechanism of numerous membrane transporters, we hypothesize that these amino acids play a role in the transport mechanism of these DedA/Tvp38 family proteins.
    Keywords: Physiology & Biochemistry
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2016-06-15
    Description: Complement component 3 (C3) is one of the proteins associated with complement cascades. C3 plays an essential role in three different pathways—the alternative, classical and lectin pathways. It is well known that cytokines activate complement system and increase complement component C3 production. In the current study, we found that lipoteichoic acid isolated from Lactobacillus plantarum K8 (pLTA) inhibited tumor necrosis factor-alpha (TNF-α) or interferon-gamma (IFN-)-mediated C3 mRNA and protein expression in HaCaT cells. pLTA inhibited C3 expression through the inhibition of the phosphorylation of p65 and p38 in the TNF-α-treated cells, while the inhibition of STAT1/2 and JAK2 phosphorylation by pLTA contributed to the reduction of C3 in IFN--treated cells. When mice were pre-injected with pLTA followed by re-injection of TNF-α, serum C3 level was decreased as compared to TNF-α-injected only. Further studies revealed that membrane attack complex (MAC) increased by TNF-α injection was lessened in pLTA-pre-injected mice. A bactericidal assay using mouse sera showed that MAC activity in pLTA-pre-injected mice was lower than in TNF-α only-injected mice. These results suggest that pLTA can suppress inflammatory cytokine-mediated complement activation through the inhibition of C3 synthesis. pLTA application has the potential to alleviate complement-mediated diseases caused by excessive inflammation.
    Keywords: Food Microbiology
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...