ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (9,146)
  • Oxford University Press  (9,146)
  • American Geophysical Union (AGU)
  • American Meteorological Society
  • 2015-2019  (8,092)
  • 1980-1984  (1,006)
  • 1925-1929
  • Geophysical Journal International  (2,189)
  • Human Molecular Genetics  (832)
  • 512
  • 5831
Collection
  • Articles  (9,146)
Publisher
  • Oxford University Press  (9,146)
  • American Geophysical Union (AGU)
  • American Meteorological Society
Years
Year
Topic
  • 1
    Publication Date: 1928-03-01
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-07-30
    Description: While the kinematics of Anatolia plate and the North Anatolian Fault System (NAFS) has been studied extensively, the slip rate and locking depth along the NAFS are usually assumed constant in the analyses due to the lack of sufficient data. This is also partly due to the reasonably good fit of Euler small circle and partly due to the lack of spatial resolution of observations to determine slip rates independently from locking depths. On the other hand, recent geodetic studies show a contrast for locking depth between Marmara and other parts of the NAFS, implying a non-uniform locking depth across the NAFS. In this study, we analyse new GPS data and homogenously combine available data sets covering the eastern part of the NAFS to form the most complete data set. In particular, we incorporate the first results of Turkish Real-Time Kinematic GPS Network (CORS-TR) into our data set. A detailed analysis of three profiles within the NAFS reveals an increase of locking depth in the middle profile to 19.1 ± 3.4 km from 11.9 ± 3.5 km in the easternmost profile while the slip rate is nearly constant (20–22 mm yr –1 ), which implies a variation of strain rate of ~100 nanostrain yr –1 . Assuming a constant locking depth throughout whole NAFS gives an average locking depth of 14.3 ± 1.7 km. Our best estimates of slip rates in block modelling which takes the variation of locking depths into account are in the range between 22.5 and 22.8 mm yr –1 over eastern part of the NAFS.
    Keywords: Geodynamics and Tectonics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-07-30
    Description: Seismic waves sensitive to the outermost part of the Earth's liquid core seem to be affected by a stably stratified layer at the core–mantle boundary. Such a layer could have an observable signature in both long-term and short-term variations of the magnetic field of the Earth, which are used to probe the flow at the top of the core. Indeed, with the recent SWARM mission, it seems reasonable to be able to identify waves propagating in the core with period of several months, which may play an important role in the large-scale dynamics. In this paper, we characterize the influence of a stratified layer at the top of the core on deep quasi-geostrophic (Rossby) waves. We compute numerically the quasi-geostrophic eigenmodes of a rapidly rotating spherical shell, with a stably stratified layer near the outer boundary. Two simple models of stratification are taken into account, which are scaled with commonly adopted values of the Brunt–Väisälä frequency in the Earth's core. In the absence of magnetic field, we find that both azimuthal wavelength and frequency of the eigenmodes control their penetration into the stratified layer: the higher the phase speed, the higher the permeability of the stratified layer to the wave motion. We also show that the theory developed by Takehiro & Lister for thermal convection extends to the whole family of Rossby waves in the core. Adding a magnetic field, the penetrative behaviour of the quasi-geostrophic modes (the so-called fast branch) is insensitive to the imposed magnetic field and only weakly sensitive to the precise shape of the stratification. Based on these results, the large-scale and high-frequency modes (1–2 month periods) may be detectable in the geomagnetic data measured at the Earth's surface, especially in the equatorial area where the modes can be trapped.
    Keywords: Geomagnetism, Rock Magnetism and Palaeomagnetism
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-08-07
    Description: Huntington's disease (HD) is a hereditary neurodegenerative disorder characterized by brain atrophy particularly in striatum leading to personality changes, chorea and dementia. Glycogen synthase kinase-3 (GSK-3) is a serine/threonine kinase in the crossroad of many signaling pathways that is highly pleiotropic as it phosphorylates more than hundred substrates including structural, metabolic, and signaling proteins. Increased GSK-3 activity is believed to contribute to the pathogenesis of neurodegenerative diseases like Alzheimer's disease and GSK-3 inhibitors have been postulated as therapeutic agents for neurodegeneration. Regarding HD, GSK-3 inhibitors have shown beneficial effects in cell and invertebrate animal models but no evident efficacy in mouse models. Intriguingly, those studies were performed without interrogating GSK-3 level and activity in HD brain. Here we aim to explore the level and also the enzymatic activity of GSK-3 in the striatum and other less affected brain regions of HD patients and of the R6/1 mouse model to then elucidate the possible contribution of its alteration to HD pathogenesis by genetic manipulation in mice. We report a dramatic decrease in GSK-3 levels and activity in striatum and cortex of HD patients with similar results in the mouse model. Correction of the GSK-3 deficit in HD mice, by combining with transgenic mice with conditional GSK-3 expression, resulted in amelioration of their brain atrophy and behavioral motor and learning deficits. Thus, our results demonstrate that decreased brain GSK-3 contributes to HD neurological phenotype and open new therapeutic opportunities based on increasing GSK-3 activity or attenuating the harmful consequences of its decrease.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-08-07
    Description: Spinocerebellar ataxia type 6 (SCA6) is dominantly inherited neurodegenerative disease, caused by an expansion of CAG repeat encoding a polyglutamine (PolyQ) tract in the Ca v 2.1 voltage-gated calcium channel. Its key pathological features include selective degeneration of the cerebellar Purkinje cells (PCs), a common target for PolyQ-induced toxicity in various SCAs. Mutant Ca v 2.1 confers toxicity primarily through a toxic gain-of-function mechanism; however, its molecular basis remains elusive. Here, we studied the cerebellar gene expression patterns of young Sca6 -MPI 118Q/118Q knockin (KI) mice, which expressed mutant Ca v 2.1 from an endogenous locus and recapitulated many phenotypic features of human SCA6. Transcriptional signatures in the MPI 118Q/118Q mice were distinct from those in the Sca1 154Q/2Q mice, a faithful SCA1 KI mouse model. Temporal expression profiles of the candidate genes revealed that the up-regulation of genes associated with microglial activation was initiated before PC degeneration and was augmented as the disease progressed. Histological analysis of the MPI 118Q/118Q cerebellum showed the predominance of M1-like pro-inflammatory microglia and it was concomitant with elevated expression levels of tumor necrosis factor, interleukin-6, Toll-like receptor (TLR) 2 and 7. Genetic ablation of MyD88, a major adaptor protein conveying TLR signaling, altered expression patterns of M1/M2 microglial phenotypic markers in the MPI 118Q/118Q cerebellum. More importantly, it ameliorated PC loss and partially rescued motor impairments in the early disease phase. These results suggest that early neuroinflammatory response may play an important role in the pathogenesis of SCA6 and its modulation could pave the way for slowing the disease progression during the early stage of the disease.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-08-08
    Description: The attenuation and velocity dispersion of sonic waves contain valuable information on the mechanical and hydraulic properties of the probed medium. An inherent complication arising in the interpretation of corresponding measurements is, however, that there are multiple physical mechanisms contributing to the energy dissipation and that the relative importance of the various contributions is difficult to unravel. To address this problem for the practically relevant case of terrestrial alluvial sediments, we analyse the attenuation and velocity dispersion characteristics of broad-band multifrequency sonic logs with dominant source frequencies ranging between 1 and 30 kHz. To adequately compensate for the effects of geometrical spreading, which is critical for reliable attenuation estimates, we simulate our experimental setup using a correspondingly targeted numerical solution of the poroelastic equations. After having applied the thus inferred corrections, the broad-band sonic log data set, in conjunction with a comprehensive suite of complementary logging data, allows for assessing the relative importance of a range of pertinent attenuation mechanisms. In doing so, we focus on the effects of wave-induced fluid flow over a wide range of scales. Our results indicate that the levels of attenuation due to the presence of mesoscopic heterogeneities in unconsolidated clastic sediments fully saturated with water are expected to be largely negligible. Conversely, Monte-Carlo-type inversions indicate that Biot's classical model permits to explain most of the considered data. Refinements with regard to the fitting of the observed attenuation and velocity dispersion characteristics are locally provided by accounting for energy dissipation at the microscopic scale, although the nature of the underlying physical mechanism remains speculative.
    Keywords: Seismology
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-08-19
    Description: Hydrocarbon reservoir pressure depletion leads to stress changes inside the reservoir and ground deformation which is registered at the surface as subsidence. As reservoirs are often overlain by layers of rocksalt (or other evaporites), which are materials that flow so as to relax stresses inside them, there is the potential for time-varying surface subsidence. This work focuses on understanding the macroscopic mechanisms that lead to rocksalt flow-induced ground displacements. A Finite Element Model is used for this purpose in which the rocksalt layer is represented by a viscoelastic Maxwell material. Two distinct mechanisms that lead to displacement are observed. These are active during different stages of the deformation and have different timescales associated with them. An important observation is that the timescale for deformation that is measured at the ground surface is not equal to the timescale for deformation of a viscoelastic material element, but can be many times larger than that. The sensitivity of the response to the thickness and location of the rocksalt layer is also presented. Conclusions are drawn which allow for the relative importance of the presence of the rocksalt layer to be assessed and for a framework for understanding time-dependent subsidence above producing hydrocarbon reservoirs to be developed. Finally the changes in stress distribution around a producing reservoir are also briefly discussed.
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-07-30
    Description: We investigate spatiotemporal variations of the crustal stress field orientation along the rupture zones of the 1999 August Izmit M w 7.4 and November Düzce M w 7.1 earthquakes at the North Anatolian Fault zone (NAFZ) in NW Turkey. Our primary focus is to elaborate on the relation between the state of the crustal stress field and distinct seismotectonic features as well as variations of coseismic slip within the seismogenic layer of the crust. To achieve this, we compile an extensive data base of hypocentres and first-motion polarities including a newly derived local hypocentre catalogue extending from 2 yr prior (1997) to 2 yr after (2001) the Izmit and Düzce main shocks. This combined data set allows studying spatial and temporal variations of stress field orientation along distinct fault segments for the pre- and post-seimic phase of the two large earthquakes in detail. Furthermore, the occurrence of two M  〉 7 earthquakes in rapid succession gives the unique opportunity to analyse the 87-d-long ‘inter-seismic phase’ between them. We use the MOTSI (first MOTion polarity Stress Inversion) procedure directly inverting first-motion polarities to study the stress field evolution of nine distinct segments. In particular, this allows to determine the stress tensor also for the pre- and post-seismic phases when no stable single-event focal mechanisms can be determined. We observe significantly different stress field orientations along the combined 200-km-long rupture in accordance with lateral variations of coseismic slip and seismotectonic setting. Distinct vertical linear segments of the NAFZ show either pure-strike slip behaviour or transtensional and normal faulting if located near pull-apart basins. Pull-apart structures such as the Akyazi and Düzce basins show a predominant normal faulting behaviour along the NAFZ and reflect clearly different characteristic from neighbouring strike-slip segments. Substantial lateral stress field heterogeneity following the two main shocks is observed that declines with time towards the post-seismic period that rather reflects the regional right-lateral strike-slip stress field.
    Keywords: Seismology
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-07-30
    Description: The Taupo Volcanic Zone (TVZ) is one of the world's most productive regions of rhyolitic volcanism and contains the highly active Okataina Volcanic Centre (OVC). Within the TVZ, intra-arc extension is expressed as normal faulting within a zone known as the Taupo Rift. The OVC is located within a complex part of the rift, where volcanism and deformation is considered influenced by rift structure and kinematics. There has been significant research on the structural, volcanic and geophysical properties of the rift and OVC, but less focus on deformation using geodetic data. The limited studies that have utilized geodetic data do not clearly resolve the distribution of deformation and strain rates within the rift and OVC. This is essential to ensure that deformation signals from volcanic processes at the OVC are correctly identified and distinguished from those related to regional tectonic or local hydrothermal processes within the rift. In this paper, we present a picture of contemporary deformation at the OVC and within the surrounding rift in detail, using existing and new GPS campaign and continuous GPS (cGPS) data collected between 1998 and 2011. The results show a highly heterogeneous deformation and strain rate field (both extension and shortening) through the study area, partitioned into different parts of the rift. Our results agree well with earlier geodetic studies, as well as identify new features, but some deformation patterns conflict with long-term geological observations. In the OVC, we observe a locally rotated horizontal velocity field, significant vertical deformation and variable strain rates across the caldera. In the Tarawera Rift, we identify elevated extension and shear rates, which may have significant implications for volcanism there. A shortening pattern is identified through the central rift, which is unexpected in an intra-arc rifting environment. We attempt to explain the source/s of shortening and extension and discuss their implications for geodetic monitoring efforts in the OVC.
    Keywords: Geodynamics and Tectonics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-08-07
    Description: Adaptor proteins (AP 1–5) are heterotetrameric complexes that facilitate specialized cargo sorting in vesicular-mediated trafficking. Mutations in AP5Z1 , encoding a subunit of the AP-5 complex, have been reported to cause hereditary spastic paraplegia (HSP), although their impact at the cellular level has not been assessed. Here we characterize three independent fibroblast lines derived from skin biopsies of patients harbouring nonsense mutations in AP5Z1 and presenting with spastic paraplegia accompanied by neuropathy, parkinsonism and/or cognitive impairment. In all three patient-derived lines, we show that there is complete loss of AP-5 protein and a reduction in the associated AP-5 µ5 protein. Using ultrastructural analysis, we show that these patient-derived lines consistently exhibit abundant multilamellar structures that are positive for markers of endolysosomes and are filled with aberrant storage material organized as exaggerated multilamellar whorls, striated belts and ‘fingerprint bodies’. This phenotype can be replicated in a HeLa cell culture model by siRNA knockdown of AP-5 . The cellular phenotype bears striking resemblance to features described in a number of lysosomal storage diseases (LSDs). Collectively, these findings reveal an emerging picture of the role of AP-5 in endosomal and lysosomal homeostasis, illuminates a potential pathomechanism that is relevant to the role of AP-5 in neurons and expands the understanding of recessive HSPs. Moreover, the resulting accumulation of storage material in endolysosomes leads us to propose that AP-5 deficiency represents a new type of LSDs.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2015-08-07
    Description: Cleft palate is a common birth defect in humans. Therefore, understanding the molecular genetics of palate development is important from both scientific and medical perspectives. Lhx6 and Lhx8 encode LIM homeodomain transcription factors, and inactivation of both genes in mice resulted in profound craniofacial defects including cleft secondary palate. The initial outgrowth of the palate was severely impaired in the mutant embryos, due to decreased cell proliferation. Through genome-wide transcriptional profiling, we discovered that p57 Kip2 ( Cdkn1c ), encoding a cell cycle inhibitor, was up-regulated in the prospective palate of Lhx6 –/– ;Lhx8 –/– mutants. p57 Kip2 has been linked to Beckwith–Wiedemann syndrome and IMAGe syndrome in humans, which are developmental disorders with increased incidents of palate defects among the patients. To determine the molecular mechanism underlying the regulation of p57 Kip2 by the Lhx genes, we combined chromatin immunoprecipitation, in silico search for transcription factor-binding motifs, and in vitro reporter assays with putative cis-regulatory elements. The results of these experiments indicated that LHX6 and LHX8 regulated p57 Kip2 via both direct and indirect mechanisms, with the latter mediated by Forkhead box (FOX) family transcription factors. Together, our findings uncovered a novel connection between the initiation of palate development and a cell cycle inhibitor via LHX. We propose a model in which Lhx6 and Lhx8 negatively regulate p57 Kip2 expression in the prospective palate area to allow adequate levels of cell proliferation and thereby promote normal palate development. This is the first report elucidating a molecular genetic pathway downstream of Lhx in palate development.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2015-08-07
    Description: Keratoconus is a degenerative eye condition which results from thinning of the cornea and causes vision distortion. Treatments such as ultraviolet (UV) cross-linking have proved effective for management of keratoconus when performed in early stages of the disease. The central corneal thickness (CCT) is a highly heritable endophenotype of keratoconus, and it is estimated that up to 95% of its phenotypic variance is due to genetics. Genome-wide association efforts of CCT have identified common variants (i.e. minor allele frequency (MAF) 〉5%). However, these studies typically ignore the large set of exonic variants whose MAF is usually low. In this study, we performed a CCT exome-wide association analysis in a sample of 1029 individuals from a population-based study in Western Australia. We identified a genome-wide significant exonic variant rs121908120 ( P = 6.63 x 10 –10 ) in WNT10A . This gene is 437 kb from a gene previously associated with CCT ( USP37 ). We showed in a conditional analysis that the WNT10A variant completely accounts for the signal previously seen at USP37 . We replicated our finding in independent samples from the Brisbane Adolescent Twin Study, Twin Eye Study in Tasmania and the Rotterdam Study. Further, we genotyped rs121908120 in 621 keratoconus cases and compared the frequency to a sample of 1680 unscreened controls from the Queensland Twin Registry. We found that rs121908120 increases the risk of keratoconus two times (odds ratio 2.03, P = 5.41 x 10 –5 ).
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2015-08-07
    Description: Somatic cell cytokinesis was shown to involve the insertion of sphingolipids (SLs) to midbodies prior to abscission. Spermatogenic midbodies transform into stable intercellular bridges (ICBs) connecting clonal daughter cells in a syncytium. This process requires specialized SL structures. (1) Using high resolution-mass spectrometric imaging, we show in situ a biphasic pattern of SL synthesis with testis-specific anchors. This pattern correlates with and depends on ceramide synthase 3 (CerS3) localization in both, pachytene spermatocytes until completion of meiosis and elongating spermatids. (2) Blocking the pathways to germ cell-specific ceramides (CerS3-KO) and further to glycosphingolipids (glucosylceramide synthase-KO) in mice highlights the need for special SLs for spermatid ICB stability. In contrast to somatic mitosis these SLs require ultra-long polyunsaturated anchors with unique physico-chemical properties, which can only be provided by CerS3. Loss of these anchors causes enhanced apoptosis during meiosis, formation of multinuclear giant cells and spermatogenic arrest. Hence, testis-specific SLs, which we also link to CerS3 in human testis, are quintessential for male fertility.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2015-08-07
    Description: Therapy-responsive biomarkers are an important and unmet need in the muscular dystrophy field where new treatments are currently in clinical trials. By using a comprehensive high-resolution mass spectrometry approach and western blot validation, we found that two fragments of the myofibrillar structural protein myomesin-3 (MYOM3) are abnormally present in sera of Duchenne muscular dystrophy (DMD) patients, limb-girdle muscular dystrophy type 2D (LGMD2D) and their respective animal models. Levels of MYOM3 fragments were assayed in therapeutic model systems: (1) restoration of dystrophin expression by antisense oligonucleotide-mediated exon-skipping in mdx mice and (2) stable restoration of α-sarcoglycan expression in KO-SGCA mice by systemic injection of a viral vector. Following administration of the therapeutic agents MYOM3 was restored toward wild-type levels. In the LGMD model, where different doses of vector were used, MYOM3 restoration was dose-dependent. MYOM3 fragments showed lower inter-individual variability compared with the commonly used creatine kinase assay, and correlated better with the restoration of the dystrophin-associated protein complex and muscle force. These data suggest that the MYOM3 fragments hold promise for minimally invasive assessment of experimental therapies for DMD and other neuromuscular disorders.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2015-08-07
    Description: RNA interference (RNAi) offers a promising therapeutic approach for dominant genetic disorders that involve gain-of-function mechanisms. One candidate disease for RNAi therapy application is myotonic dystrophy type 1 (DM1), which results from toxicity of a mutant mRNA. DM1 is caused by expansion of a CTG repeat in the 3' UTR of the DMPK gene. The expression of DMPK mRNA containing an expanded CUG repeat (CUG exp ) leads to defects in RNA biogenesis and turnover. We designed miRNA-based RNAi hairpins to target the CUG exp mRNA in the human α-skeletal muscle actin long-repeat ( HSA LR ) mouse model of DM1. RNAi expression cassettes were delivered to HSA LR mice using recombinant adeno-associated viral (rAAV) vectors injected intravenously as a route to systemic gene therapy. Vector delivery significantly reduced disease pathology in muscles of the HSA LR mice, including a reduction in the CUG exp mRNA, a reduction in myotonic discharges, a shift toward adult pre-mRNA splicing patterns, reduced myofiber hypertrophy and a decrease in myonuclear foci containing the CUG exp mRNA. Significant reversal of hallmarks of DM1 in the rAAV RNAi-treated HSA LR mice indicate that defects characteristic of DM1 can be mitigated with a systemic RNAi approach targeting the nuclei of terminally differentiated myofibers. Efficient rAAV-mediated delivery of RNAi has the potential to provide a long-term therapy for DM1 and other dominant muscular dystrophies.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2015-08-08
    Description: The Piton de la Fournaise basaltic volcano, on La Réunion Island in the western Indian Ocean, is one of the most active volcanoes in the world. This volcano is classically considered as the surface expression of an upwelling mantle plume and its activity is continuously monitored, providing detailed information on its superficial dynamics and on the edifice structure. Deeper crustal and upper mantle structure under La Réunion Island is surprisingly poorly constrained, motivating this study. We used receiver function techniques to determine a shear wave velocity profile through the crust and uppermost mantle beneath La Réunion, but also at other seismic stations located on the hotspot track, to investigate the plume and lithosphere interaction and its evolution through time. Receiver functions (RFs) were computed at permanent broad-band seismic stations from the GEOSCOPE network (on La Réunion and Rodrigues), at IRIS stations MRIV and DGAR installed on Mauritius and Diego Garcia islands, and at the GEOFON stations KAAM and HMDM on the Maldives. We performed non-linear inversions of RFs through modelling of P -to- S conversions at various crustal and upper mantle interfaces. Joint inversion of RF and surface wave dispersion data suggests a much deeper Mohorovičić discontinuity (Moho) beneath Mauritius (~21 km) compared to La Réunion (~12 km). A magmatic underplated body may be present under La Réunion as a thin layer (≤3 km thick), as suggested by a previous seismic refraction study, and as a much thicker layer beneath other stations located on the hotspot track, suggesting that underplating is an important process resulting from the plume–lithosphere interaction. We find evidence for a strikingly low velocity layer starting at about 33 km depth beneath La Réunion that we interpret as a zone of partial melt beneath the active volcano. We finally observe low velocities below 70 km beneath La Réunion and below 50 km beneath Mauritius that could represent the base of the oceanic lithosphere.
    Keywords: Seismology
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2015-06-06
    Description: We describe a multihomogeneity theory for source-parameter estimation of potential fields. Similar to what happens for random source models, where the monofractal scaling-law has been generalized into a multifractal law, we propose to generalize the homogeneity law into a multihomogeneity law. This allows a theoretically correct approach to study real-world potential fields, which are inhomogeneous and so do not show scale invariance, except in the asymptotic regions (very near to or very far from their sources). Since the scaling properties of inhomogeneous fields change with the scale of observation, we show that they may be better studied at a set of scales than at a single scale and that a multihomogeneous model is needed to explain its complex scaling behaviour. In order to perform this task, we first introduce fractional-degree homogeneous fields, to show that: (i) homogeneous potential fields may have fractional or integer degree; (ii) the source-distributions for a fractional-degree are not confined in a bounded region, similarly to some integer-degree models, such as the infinite line mass and (iii) differently from the integer-degree case, the fractional-degree source distributions are no longer uniform density functions. Using this enlarged set of homogeneous fields, real-world anomaly fields are studied at different scales, by a simple search, at any local window W , for the best homogeneous field of either integer or fractional-degree, this yielding a multiscale set of local homogeneity-degrees and depth estimations which we call multihomogeneous model. It is so defined a new technique of source parameter estimation (Multi-HOmogeneity Depth Estimation, MHODE), permitting retrieval of the source parameters of complex sources. We test the method with inhomogeneous fields of finite sources, such as faults or cylinders, and show its effectiveness also in a real-case example. These applications show the usefulness of the new concepts, multihomogeneity and fractional homogeneity-degree, to obtain valid estimates of the source parameters in a consistent theoretical framework, so overcoming the limitations imposed by global-homogeneity to widespread methods, such as Euler deconvolution.
    Keywords: Marine Geosciences and Applied Geophysics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2015-06-06
    Description: In this paper, two separate but related goals are tackled. The first one is to demonstrate that in some saturated rock textures the non-linear behaviour of induced polarization (IP) and the violation of Ohm's law not only are real phenomena, but they can also be satisfactorily predicted by a suitable physical-mathematical model, which is our second goal. This model is based on Fick's second law. As the model links the specific dependence of resistivity and chargeability of a laboratory sample to the injected current and this in turn to its pore size distribution, it is able to predict pore size distribution from laboratory measurements, in good agreement with mercury injection capillary pressure test results. This fact opens up the possibility for hydrogeophysical applications on a macro scale. Mathematical modelling shows that the chargeability acquired in the field under normal conditions, that is at low current, will always be very small and approximately proportional to the applied current. A suitable field test site for demonstrating the possible reliance of both resistivity and chargeability on current was selected and a specific measuring strategy was established. Two data sets were acquired using different injected current strengths, while keeping the charging time constant. Observed variations of resistivity and chargeability are in agreement with those predicted by the mathematical model. These field test data should however be considered preliminary. If confirmed by further evidence, these facts may lead to changing the procedure of acquiring field measurements in future, and perhaps may encourage the design and building of a new specific geo-resistivity meter. This paper also shows that the well-known Marshall and Madden's equations based on Fick's law cannot be solved without specific boundary conditions.
    Keywords: Marine Geosciences and Applied Geophysics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    facet.materialart.
    Unknown
    Oxford University Press
    Publication Date: 2015-06-09
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2015-06-09
    Description: The heart is a muscle with high energy demands. Hence, most patients with mitochondrial disease produced by defects in the oxidative phosphorylation (OXPHOS) system are susceptible to cardiac involvement. The presentation of mitochondrial cardiomyopathy includes hypertrophic, dilated and left ventricular noncompaction, but the molecular mechanisms involved in cardiac impairment are unknown. One of the most frequent OXPHOS defects in humans frequently associated with cardiomyopathy is cytochrome c oxidase (COX) deficiency caused by mutations in COX assembly factors such as Sco1 and Sco2. To investigate the molecular mechanisms that underlie the cardiomyopathy associated with Sco deficiency, we have heart specifically interfered scox expression, the single Drosophila Sco orthologue. Cardiac-specific knockdown of scox reduces fly lifespan, and it severely compromises heart function and structure, producing dilated cardiomyopathy. Cardiomyocytes with low levels of scox have a significant reduction in COX activity and they undergo a metabolic switch from OXPHOS to glycolysis, mimicking the clinical features found in patients harbouring Sco mutations. The major cardiac defects observed are produced by a significant increase in apoptosis, which is dp53-dependent. Genetic and molecular evidence strongly suggest that dp53 is directly involved in the development of the cardiomyopathy induced by scox deficiency. Remarkably, apoptosis is enhanced in the muscle and liver of Sco2 knock-out mice, clearly suggesting that cell death is a key feature of the COX deficiencies produced by mutations in Sco genes in humans.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    facet.materialart.
    Unknown
    Coetzee, S. G., Shen, H. C., Hazelett, D. J., Lawrenson, K., Kuchenbaecker, K., Tyrer, J., Rhie, S. K., Levanon, K., Karst, A., Drapkin, R., Ramus, S. J., The Ovarian Cancer Association Consortium, The Consortium of Investigators of Modifiers of BRCA1/2, Couch, F. J., Offit, K., Chenevix-Trench, G., Monteiro, A. N. A., Antoniou, A., Freedman, M., Coetzee, G. A., Pharoah, P. D. P., Noushmehr, H., Gayther, S. A., The Ovarian Cancer Association Consortium, The Consortium of Investigators of Modifiers of BRCA1/2, Tyrer, Anton-Culver, Antonenkova, Baker, Bandera, Bean, Beckmann, Berchuck, Bisogna, Bjorge, Bogdanova, Brinton, Brooks-Wilson, Bruinsma, Butzow, Campbell, Carty, Chang-Claude, Chen, Chen, Cook, Cramer, Cunningham, Cybulski, Dansonka-Mieszkowska, Dennis, Dicks, Doherty, Dork, Bois, Durst, Eccles, Easton, Edwards, Eilber, Ekici, Fasching, Fridley, Gao, Gentry-Maharaj, Giles, Glasspool, Goode, Goodman, Grownwald, Harrington, Harter, Hasmad, Hein, Heitz, Hildebrandt, Hillemanns, Hogdall, Hogdall, Hosono, Iversen, Jakubowska, James, Jensen, Ji, Karlan, Kjaer, Kelemen, Kellar, Kelley, Kiemeney, Krakstad, Kupryjanczyk, Lambrechts, Lambrechts, Le, Lele, Leminen, Lester, Levine, Liang, Lissowska, Lu, Lubinski, Lundvall, Massuger, Matsuo, McGuire, McLaughlin, McNeish, Menon, Modugno, Moysich, Narod, Nedergaard, Ness, Azmi, Odunsi, Olson, Orlow, Orsulic, Weber, Pearce, Pejovic, Pelttari, Permuth-Wey, Phelan, Pike, Poole, Risch, Rosen, Rossing, Rothstein, Rudolph, Runnebaum, Rzepecka, Salvesen, Schildkraut, Schwaab, Sellers, Shu, Shvetsov, Siddiqui, Sieh, Song, Southey, Sucheston, Tangen, Teo, Terry, Thompson, Timorek, Tsai, Tworoger, Tyrer, van Altena, Van Nieuwenhuysen, Vergote, Vierkant, Wang-Gohrke, Walsh, Wentzensen, Whittemore, Wicklund, Wilkens, Woo, Wu, Wu, Yang, Zheng, Ziogas
    Oxford University Press
    Publication Date: 2015-06-09
    Description: Understanding the regulatory landscape of the human genome is a central question in complex trait genetics. Most single-nucleotide polymorphisms (SNPs) associated with cancer risk lie in non-protein-coding regions, implicating regulatory DNA elements as functional targets of susceptibility variants. Here, we describe genome-wide annotation of regions of open chromatin and histone modification in fallopian tube and ovarian surface epithelial cells (FTSECs, OSECs), the debated cellular origins of high-grade serous ovarian cancers (HGSOCs) and in endometriosis epithelial cells (EECs), the likely precursor of clear cell ovarian carcinomas (CCOCs). The regulatory architecture of these cell types was compared with normal human mammary epithelial cells and LNCaP prostate cancer cells. We observed similar positional patterns of global enhancer signatures across the three different ovarian cancer precursor cell types, and evidence of tissue-specific regulatory signatures compared to non-gynecological cell types. We found significant enrichment for risk-associated SNPs intersecting regulatory biofeatures at 17 known HGSOC susceptibility loci in FTSECs ( P = 3.8 x 10 –30 ), OSECs ( P = 2.4 x 10 –23 ) and HMECs ( P = 6.7 x 10 –15 ) but not for EECs ( P = 0.45) or LNCaP cells ( P = 0.88). Hierarchical clustering of risk SNPs conditioned on the six different cell types indicates FTSECs and OSECs are highly related (96% of samples using multi-scale bootstrapping) suggesting both cell types may be precursors of HGSOC. These data represent the first description of regulatory catalogues of normal precursor cells for different ovarian cancer subtypes, and provide unique insights into the tissue specific regulatory variation with respect to the likely functional targets of germline genetic susceptibility variants for ovarian cancer.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2015-06-09
    Description: The gene mapt codes for the microtubule-associated protein Tau. The R406W amino acid substitution in Tau is associated with frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-17) characterized by Tau-positive filamentous inclusions. These filamentous Tau inclusions are present in a group of neurodegenerative diseases known as tauopathies, including Alzheimer's disease (AD). To gain more insights into the pathomechanism of tauopathies, we performed an RNAi-based large-scale screen in Drosophila melanogaster to identify genetic modifiers of Tau[R406W]-induced toxicity. A collection of RNAi lines, putatively silencing more than 7000 genes, was screened for the ability to modify Tau[R406W]-induced toxicity in vivo . This collection covered more than 50% of all protein coding fly genes and more than 90% of all fly genes known to have a human ortholog. Hereby, we identified 62 genes that, when silenced by RNAi, modified Tau-induced toxicity specifically. Among these 62 modifiers were three subunits of the Dynein/Dynactin complex. Analysis on segmental nerves of fly larvae showed that pan neural Tau[R406W] expression and concomitant silencing of Dynein/Dynactin complex members synergistically caused strong pathological changes within the axonal compartment, but only minor changes at synapses. At the larval stage, these alterations did not cause locomotion deficits, but became evident in adult flies. Our data suggest that Tau-induced detrimental effects most likely originate from axonal rather than synaptic dysfunction and that impaired retrograde transport intensifies detrimental effects of Tau in axons. In conclusion, our findings contribute to the elucidation of disease mechanisms in tauopathies like FTDP-17 or AD.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2015-06-09
    Description: Retinitis pigmentosa (RP), the most common form of inherited retinal degeneration, is clinically and genetically heterogeneous and can appear as syndromic or non-syndromic. Mucopolysaccharidosis type IIIC (MPS IIIC) is a lethal disorder, caused by mutations in the heparan-alpha-glucosaminide N-acetyltransferase ( HGSNAT ) gene and characterized by progressive neurological deterioration, with retinal degeneration as a prominent feature. We identified HGSNAT mutations in six patients with non-syndromic RP. Whole exome sequencing (WES) in an Ashkenazi Jewish Israeli RP patient revealed a novel homozygous HGSNAT variant, c.370A〉T, which leads to partial skipping of exon 3. Screening of 66 Ashkenazi RP index cases revealed an additional family with two siblings homozygous for c.370A〉T. WES in three Dutch siblings with RP revealed a complex HGSNAT variant, c.[398G〉C; 1843G〉A] on one allele, and c.1843G〉A on the other allele. HGSNAT activity levels in blood leukocytes of patients were reduced compared with healthy controls, but usually higher than those in MPS IIIC patients. All patients were diagnosed with non-syndromic RP and did not exhibit neurological deterioration, or any phenotypic features consistent with MPS IIIC. Furthermore, four of the patients were over 60 years old, exceeding by far the life expectancy of MPS IIIC patients. HGSNAT is highly expressed in the mouse retina, and we hypothesize that the retina requires higher HGSNAT activity to maintain proper function, compared with other tissues associated with MPS IIIC, such as the brain. This report broadens the spectrum of phenotypes associated with HGSNAT mutations and highlights the critical function of HGSNAT in the human retina.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2015-06-09
    Description: Increased age, BMI and HbA1c levels are risk factors for several non-communicable diseases. However, the impact of these factors on the genome-wide DNA methylation pattern in human adipose tissue remains unknown. We analyzed the DNA methylation of ~480 000 sites in human adipose tissue from 96 males and 94 females and related methylation to age, BMI and HbA1c. We also compared epigenetic signatures in adipose tissue and blood. Age was significantly associated with both altered DNA methylation and expression of 1050 genes (e.g. FHL2 , NOX4 and PLG ). Interestingly, many reported epigenetic biomarkers of aging in blood, including ELOVL2 , FHL2 , KLF14 and GLRA1 , also showed significant correlations between adipose tissue DNA methylation and age in our study. The most significant association between age and adipose tissue DNA methylation was found upstream of ELOVL2 . We identified 2825 genes (e.g. FTO , ITIH5 , CCL18 , MTCH2 , IRS1 and SPP1 ) where both DNA methylation and expression correlated with BMI. Methylation at previously reported HIF3A sites correlated significantly with BMI in females only. HbA1c (range 28–46 mmol/mol) correlated significantly with the methylation of 711 sites, annotated to, for example, RAB37 , TICAM1 and HLA-DPB1 . Pathway analyses demonstrated that methylation levels associated with age and BMI are overrepresented among genes involved in cancer, type 2 diabetes and cardiovascular disease. Our results highlight the impact of age, BMI and HbA1c on epigenetic variation of candidate genes for obesity, type 2 diabetes and cancer in human adipose tissue. Importantly, we demonstrate that epigenetic biomarkers in blood can mirror age-related epigenetic signatures in target tissues for metabolic diseases such as adipose tissue.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2015-06-09
    Description: Interstitial lung disease, nephrotic syndrome and junctional epidermolysis bullosa is an autosomal recessive multiorgan disorder caused by mutations in the gene for the integrin α3 subunit ( ITGA3 ). The full spectrum of manifestations and genotype–phenotype correlations is still poorly characterized. Here, we uncovered the disease-causing role and the molecular mechanisms underlying a homozygous ITGA3 mutation leading to the single amino acid substitution, p.R463W. The patient suffered from respiratory distress and episodes of cyanosis with onset in the first week of life and had a nephrotic syndrome. Although there was no clinical evidence for cutaneous fragility, the analysis of a skin sample and of skin epithelial cells enabled the direct assessment of the authentic mutant protein. We show that the mutation altered the conformation of the extracellular β-propeller domain of the integrin α3 subunit preventing correct processing of N-linked oligosaccharides, heterodimerization with β1 integrin and maturation through cleavage into heavy and light chains in the Golgi. Confocal microscopy demonstrated that the mutant protein accumulated intracellularly, but it was not present in focal adhesions or on the cell membrane as shown by flow cytometry. These findings highlight that single amino acid changes in the integrin α3 subunit may crucially alter the structure and complex processing of this integrin, completely preventing its functionality. The present report also underscores that ITGA3 mutations may account for atypical cases solely with early onset respiratory and renal involvement.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2015-06-09
    Description: Gestational age (GA) and birth weight have been implicated in the determination of long-term health. It has been hypothesized that changes in DNA methylation may mediate these long-term effects. We obtained DNA methylation profiles from cord blood and peripheral blood at ages 7 and 17 in the same children from the Avon Longitudinal Study of Parents and Children. Repeated-measures data were used to investigate changes in birth-related methylation during childhood and adolescence. Ten developmental phenotypes (e.g. height) were analysed to identify possible mediation of health effects by DNA methylation. In cord blood, methylation at 224 CpG sites was found to be associated with GA and 23 CpG sites with birth weight. Methylation changed in the majority of these sites over time, but neither birth characteristic was strongly associated with methylation at age 7 or 17 (using a conservative correction for multiple testing of P 〈 1.03 x 10 –7 ), suggesting resolution of differential methylation by early childhood. Associations were observed between birth weight-associated CpG sites and phenotypic characteristics in childhood. One strong association involved birth weight, methylation of a CpG site proximal to the NFIX locus and bone mineral density at age 17. Analysis of serial methylation from birth to adolescence provided evidence for a lack of persistence of methylation differences beyond early childhood. Sites associated with birth weight were linked to developmental genes and have methylation levels which are associated with developmental phenotypes. Replication and interrogation of causal relationships are needed to substantiate whether methylation differences at birth influence the association between birth weight and development.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2015-07-30
    Description: The scattering of seismic waves travelling in the Earth is not only caused by random velocity heterogeneity but also by surface topography. Both factors are known to strongly affect ground-motion complexity even at relatively short distance from the source. In this study, we simulate ground motion with a 3-D finite-difference wave propagation solver in the 0–5 Hz frequency band using three topography models representative of the Swiss alpine region and realistic heterogeneous media characterized by the Von Karman correlation functions. Subsequently, we analyse and quantify the characteristics of the scattered wavefield in the near-source region. Our study shows that both topography and velocity heterogeneity scattering may excite large coda waves of comparable relative amplitude, especially at around 1 Hz, although large variability in space may occur. Using the single scattering model, we estimate average Q C values in the range 20–30 at 1 Hz, 36–54 at 1.5 Hz and 62–109 at 3 Hz for constant background velocity models with no intrinsic attenuation. In principle, envelopes of topography-scattered seismic waves can be qualitatively predicted by theoretical back-scattering models, while forward- or hybrid-scattering models better reproduce the effects of random velocity heterogeneity on the wavefield. This is because continuous multiple scattering caused by small-scale velocity perturbations leads to more gentle coda decay and envelope broadening, while topography abruptly scatters the wavefield once it impinges the free surface. The large impedance contrast also results in more efficient mode mixing. However, the introduction of realistic low-velocity layers near the free surface increases the complexity of ground motion dramatically and indicates that the role of topography in elastic waves scattering can be relevant especially in proximity of the source. Long-period surface waves can form most of the late coda, especially when intrinsic attenuation is taken into account. Our simulations indicate that both topography and velocity heterogeneity scattering may result in large ground-motion variability, characterized by standard deviation values in the range 0.2–0.5 also at short distance from the source. We conclude that both topography and velocity heterogeneity should be considered to correctly assess the ground-motion variability in earthquake scenario studies even at intermediate frequency.
    Keywords: Seismology
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2015-07-30
    Description: In this study, we have systematically investigated the influence of the parameters of the slip-weakening law and the size of nucleation asperity on dynamic rupture of a planar fault in full-space and half-space using the boundary integral equation method, in particular, the occurrence conditions for subshear (or sub-Rayleigh for strike-slip rupture) and supershear ruptures. Besides the well-known rupture styles of subshear (or sub-Rayleigh) and supershear, we defined a new kind of rupture style in this study, termed the ‘self-arresting rupture’, for which the rupture process can be autonomously arrested by itself without any outside interference (e.g. a high strength barrier). Based on the vast number of simulations, we obtained rupture phase diagrams for strike-slip and dip-slip ruptures vertically and obliquely embedded in half-space and full-space with different buried depths. The rupture phase diagram clearly illustrates the occurrence conditions of three kinds of rupture styles and the transitions between them. In full-space, the supershear transition is sensitive with the fault width. Owing to the influence of the free surface, the rupture in half-space becomes much more complicated comparing to the one in full-space. For a strike-slip fault with zero buried depth, all ruptures that occur within the parameter range for sub-Rayleigh ruptures in full-space case become supershear ruptures. This means that as long as a rupture is able to grow incessantly, it will always evolve into a supershear rupture. For dip-slip faults, however, ruptures will always propagate with subshear speed, although slip rate could be almost twice that of a strike-slip fault. Although the influence of the free surface is strong, it is limited to very shallow ruptures (i.e. buried depth 〈1 km). The rupture phase diagram discussed in this study could provide a new insight on earthquake rupture mechanics.
    Keywords: Seismology
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    facet.materialart.
    Unknown
    Oxford University Press
    Publication Date: 2015-08-07
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    facet.materialart.
    Unknown
    Oxford University Press
    Publication Date: 2015-08-07
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2015-08-07
    Description: Fragile X-associated tremor/ataxia syndrome (FXTAS) is a late-onset neurodegenerative disorder affecting carriers of the fragile X-premutation, who have an expanded CGG repeat in the 5'-UTR of the FMR1 gene. FXTAS is characterized by progressive development of intention tremor, ataxia, parkinsonism and neuropsychological problems. The disease is thought to be caused by a toxic RNA gain-of-function mechanism, and the major hallmark of the disease is ubiquitin-positive intranuclear inclusions in neurons and astrocytes. We have developed a new transgenic mouse model in which we can induce expression of an expanded repeat in the brain upon doxycycline (dox) exposure (i.e. Tet-On mice). This Tet-On model makes use of the PrP-rtTA driver and allows us to study disease progression and possibilities of reversibility. In these mice, 8 weeks of dox exposure was sufficient to induce the formation of ubiquitin-positive intranuclear inclusions, which also stain positive for the RAN translation product FMRpolyG. Formation of these inclusions is reversible after stopping expression of the expanded CGG RNA at an early developmental stage. Furthermore, we observed a deficit in the compensatory eye movements of mice with inclusions, a functional phenotype that could be reduced by stopping expression of the expanded CGG RNA early in the disease development. Taken together, this study shows, for the first time, the potential of disease reversibility and suggests that early intervention might be beneficial for FXTAS patients.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2015-08-07
    Description: Mutations affecting specific splicing regulatory elements offer suitable models to better understand their interplay and to devise therapeutic strategies. Here we characterize a meaningful splicing model in which numerous Hemophilia B-causing mutations, either missense or at the donor splice site (5'ss) of coagulation F9 exon 2, promote aberrant splicing by inducing the usage of a strong exonic cryptic 5'ss. Splicing assays with natural and artificial F9 variants indicated that the cryptic 5'ss is regulated, among a network of regulatory elements, by an exonic splicing silencer (ESS). This finding and the comparative analysis of the F9 sequence across species showing that the cryptic 5'ss is always paralleled by the conserved ESS support a compensatory mechanism aimed at minimizing unproductive splicing. To recover splicing we tested antisense oligoribonucleotides masking the cryptic 5'ss, which were effective on exonic changes but promoted exon 2 skipping in the presence of mutations at the authentic 5'ss. On the other hand, we observed a very poor correction effect by small nuclear RNA U1 (U1snRNA) variants with increased or perfect complementarity to the defective 5'ss, a strategy previously exploited to rescue splicing. Noticeably, the combination of the mutant-specific U1snRNAs with antisense oligonucleotides produced appreciable amounts of correctly spliced transcripts (from 0 to 20–40%) from several mutants of the exon 2 5'ss. Based on the evidence of an altered interplay among ESS, cryptic and the authentic 5'ss as a disease-causing mechanism, we provide novel experimental insights into the combinatorial correction activity of antisense molecules and compensatory U1snRNAs.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2015-08-07
    Description: Facioscapulohumeral muscular dystrophy (FSHD) is caused by the aberrant expression of the DUX4 transcription factor in skeletal muscle. The DUX4 retrogene is encoded in the D4Z4 macrosatellite repeat array, and smaller array size or a mutation in the SMCHD1 gene results in inefficient epigenetic repression of DUX4 in skeletal muscle, causing FSHD1 and FSHD2, respectively. Previously we showed that the entire D4Z4 repeat is bi-directionally transcribed with the generation of small si- or miRNA-like fragments and suggested that these might suppress DUX4 expression through the endogenous RNAi pathway. Here we show that exogenous siRNA targeting the region upstream of the DUX4 transcription start site suppressed DUX4 mRNA expression and increased both H3K9 methylation and AGO2 recruitment. In contrast, similarly targeted MOE-gapmer antisense oligonucleotides that degrade RNA but do not engage the RNAi pathway did not repress DUX4 expression. In addition, knockdown of DICER or AGO2 using either siRNA or MOE-gapmer chemistries resulted in the induction of DUX4 expression in control muscle cells that normally do not express DUX4 , indicating that the endogenous RNAi pathway is necessary to maintain repression of DUX4 in control muscle cells. Together these data demonstrate a role of the endogenous RNAi pathway in repeat-mediated epigenetic repression of the D4Z4 macrosatellite repeat, and show that enhancing the activity of this pathway by supplying exogenous siRNA oligonucleotides represents a potential therapeutic approach to silencing DUX4 in FSHD.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2015-08-07
    Description: Overgrowth syndromes comprise a group of heterogeneous disorders characterised by excessive growth parameters, often in association with intellectual disability. To identify new causes of human overgrowth, we have been undertaking trio-based exome sequencing studies in overgrowth patients and their unaffected parents. Prioritisation of functionally relevant genes with multiple unique de novo mutations revealed four mutations in protein phosphatase 2A (PP2A) regulatory subunit B family genes protein phosphatase 2, regulatory Subunit B’, beta (PPP2R5B) ; protein phosphatase 2, regulatory Subunit B’, gamma (PPP2R5C) ; and protein phosphatase 2, regulatory Subunit B’, delta (PPP2R5D). This observation in 3 related genes in 111 individuals with a similar phenotype is greatly in excess of the expected number, as determined from gene-specific de novo mutation rates ( P = 1.43 x 10 –10 ). Analysis of exome-sequencing data from a follow-up series of overgrowth probands identified a further pathogenic mutation, bringing the total number of affected individuals to 5. Heterozygotes shared similar phenotypic features including increased height, increased head circumference and intellectual disability. The mutations clustered within a region of nine amino acid residues in the aligned protein sequences ( P = 1.6 x 10 –5 ). We mapped the mutations onto the crystal structure of the PP2A holoenzyme complex to predict their molecular and functional consequences. These studies suggest that the mutations may affect substrate binding, thus perturbing the ability of PP2A to dephosphorylate particular protein substrates. PP2A is a major negative regulator of v-akt murine thymoma viral oncogene homolog 1 (AKT). Thus, our data further expand the list of genes encoding components of the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/AKT signalling cascade that are disrupted in human overgrowth conditions.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2015-08-07
    Description: Miles–Carpenter syndrome (MCS) was described in 1991 as an XLID syndrome with fingertip arches and contractures and mapped to proximal Xq. Patients had microcephaly, short stature, mild spasticity, thoracic scoliosis, hyperextendable MCP joints, rocker-bottom feet, hyperextended elbows and knees. A mutation, p.L66H, in ZC4H2 , was identified in a XLID re-sequencing project. Additional screening of linked families and next generation sequencing of XLID families identified three ZC4H2 mutations: p.R18K, p.R213W and p.V75in15aa. The families shared some relevant clinical features. In silico modeling of the mutant proteins indicated all alterations would destabilize the protein. Knockout mutations in zc4h2 were created in zebrafish and homozygous mutant larvae exhibited abnormal swimming, increased twitching, defective eye movement and pectoral fin contractures. Because several of the behavioral defects were consistent with hyperactivity, we examined the underlying neuronal defects and found that sensory neurons and motoneurons appeared normal. However, we observed a striking reduction in GABAergic interneurons. Analysis of cell-type-specific markers showed a specific loss of V2 interneurons in the brain and spinal cord, likely arising from mis-specification of neural progenitors. Injected human wt ZC4H2 rescued the mutant phenotype. Mutant zebrafish injected with human p.L66H or p.R213W mRNA failed to be rescued, while the p.R18K mRNA was able to rescue the interneuron defect. Our findings clearly support ZC4H2 as a novel XLID gene with a required function in interneuron development. Loss of function of ZC4H2 thus likely results in altered connectivity of many brain and spinal circuits.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2015-08-07
    Description: Alterations in oxidative metabolism are considered to be one of the major contributors to Huntington's disease (HD) pathogenesis. However, existing data about oxidative metabolism in HD are contradictory. Here, we investigated the effect of mutant huntingtin (mHtt) on oxidative metabolism in YAC128 mice. Both mHtt and wild-type huntingtin (Htt) were associated with mitochondria and the amount of bound Htt was four-times higher than the amount of bound mHtt. Percoll gradient-purified brain synaptic and non-synaptic mitochondria as well as unpurified brain, liver and heart mitochondria, isolated from 2- and 10-month-old YAC128 mice and age-matched WT littermates had similar respiratory rates. There was no difference in mitochondrial membrane potential or ADP and ATP levels. Expression of selected nuclear-encoded mitochondrial proteins in 2- and 10-month-old YAC128 and WT mice was similar. Cultured striatal and cortical neurons from YAC128 and WT mice had similar respiratory and glycolytic activities as measured with Seahorse XF24 analyzer in medium containing 10 m m glucose and 15 m m pyruvate. In the medium with 2.5 m m glucose, YAC128 striatal neurons had similar respiration, but slightly lower glycolytic activity. Striatal neurons had lower maximal respiration compared with cortical neurons. In vivo experiments with YAC128 and WT mice showed similar O 2 consumption, CO 2 release, physical activity, food consumption and fasted blood glucose. However, YAC128 mice were heavier and had more body fat compared with WT mice. Overall, our data argue against respiratory deficiency in YAC128 mice and, consequently, suggest that mitochondrial respiratory dysfunction is not essential for HD pathogenesis.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2015-08-07
    Description: Leucine-rich repeat kinase 2 (LRRK2) is the causative molecule of the autosomal dominant hereditary form of Parkinson's disease (PD), PARK8, which was originally defined in a study of a Japanese family (the Sagamihara family) harboring the I2020T mutation in the kinase domain. Although a number of reported studies have focused on cell death mediated by mutant LRRK2, details of the pathogenetic effect of LRRK2 still remain to be elucidated. In the present study, to elucidate the mechanism of neurodegeneration in PD caused by LRRK2, we generated induced pluripotent stem cells (iPSC) derived from fibroblasts of PD patients with I2020T LRRK2 in the Sagamihara family. We found that I2020T mutant LRRK2 iPSC-derived neurons released less dopamine than control-iPSC-derived neurons. Furthermore, we demonstrated that patient iPSC-derived neurons had a lower phospho-AKT level than control-iPSC-derived neurons, and that the former showed an increased incidence of apoptosis relative to the controls. Interestingly, patient iPSC-derived neurons exhibited activation of glycogen synthase kinase-3β (GSK-3β) and high Tau phosphorylation. In addition, the postmortem brain of the patient from whom the iPSC had been established exhibited deposition of neurofibrillary tangles as well as increased Tau phosphorylation in neurons. These results suggest that I2020T LRRK2-iPSC could be a promising new tool for reproducing the pathology of PD in the brain caused by the I2020T mutation, and applicable as a model in studies of targeted therapeutics.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2015-08-07
    Description: SOX10 is a transcription factor with well-known functions in neural crest and oligodendrocyte development. Mutations in SOX10 were first associated with Waardenburg–Hirschsprung disease (WS4; deafness, pigmentation defects and intestinal aganglionosis). However, variable phenotypes that extend beyond the WS4 definition are now reported. The neurological phenotypes associated with some truncating mutations are suggested to be the result of escape from the nonsense-mediated mRNA decay pathway; but, to date, no mechanism has been suggested for missense mutations, of which approximately 20 have now been reported, with about half of the latter shown to be redistributed to nuclear bodies of undetermined nature and function in vitro . Here, we report that p54NRB, which plays a crucial role in the regulation of gene expression during many cellular processes including differentiation, interacts synergistically with SOX10 to regulate several target genes. Interestingly, this paraspeckle protein, as well as two other members of the Drosophila behavior human splicing (DBHS) protein family, co-localize with SOX10 mutants in nuclear bodies, suggesting the possible paraspeckle nature of these foci or re-localization of the DBHS members to other subnuclear compartments. Remarkably, the co-transfection of wild-type and mutant SOX10 constructs led to the sequestration of wild-type protein in mutant-induced foci. In contrast to mutants presenting with additional cytoplasmic re-localization, those exclusively found in the nucleus alter synergistic activity between SOX10 and p54NRB. We propose that such a dominant negative effect may contribute to or be at the origin of the unique progressive and severe neurological phenotype observed in affected patients.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2015-08-07
    Description: Huntington's disease (HD) is a hereditary neurodegenerative disorder characterized by motor and cognitive impairments, involving striatum, cortex and hippocampus. Synaptic and memory dysfunction in HD mouse models have been related to low levels of brain-derived neurotrophic factor (BDNF) and imbalance between TrkB and p75 NTR receptors. In addition, astrocyte over-activation has also been suggested to contribute to HD cognitive deficits. Fingolimod (FTY720), a modulator of sphingosine-1 phosphate (S1P) receptors, has been shown to increase BDNF levels and to reduce astrogliosis, proving its potential to regulate trophic support and inflammatory response. In this view, we have investigated whether FTY720 improves synaptic plasticity and memory in the R6/1 mouse model of HD, through regulation of BDNF signaling and astroglial reactivity. Chronic administration of FTY720 from pre-symptomatic stages ameliorated long-term memory deficits and dendritic spine loss in CA1 hippocampal neurons from R6/1 mice. Furthermore, FTY720 delivery prevented astrogliosis and over-activation of nuclear factor kappa beta (NF-B) signaling in the R6/1 hippocampus, reducing tumor necrosis factor alpha (TNFα) and induced nitric oxide synthase (iNOS) levels. TNFα decrease correlated with the normalization of p75 NTR expression in the hippocampus of FTY720-treated R6/1 mice, thus preventing p75 NTR /TrkB imbalance. In addition, FTY720 increased cAMP levels and promoted phosphorylation of CREB and RhoA in the hippocampus of R6/1 mice, further supporting its role in the enhancement of synaptic plasticity. Our findings provide new insights into the mechanism of action of FTY720 and reveal a novel therapeutic strategy to treat memory deficits in HD.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2015-08-07
    Description: DDX11 was recently identified as a cause of Warsaw breakage syndrome (WABS). However, the functional mechanism of DDX11 and the contribution of clinically described mutations to the pathogenesis of WABS are elusive. Here, we show that DDX11 is a novel nucleolar protein that preferentially binds to hypomethylated active ribosomal DNA (rDNA) gene loci, where it interacts with upstream binding factor (UBF) and the RNA polymerase I (Pol I). DDX11 knockdown changed the epigenetic state of rDNA loci from euchromatic structures to more heterochromatic structures, reduced the activity of UBF, decreased the recruitment of UBF and RPA194 (a subunit of Pol I) to rDNA promoter, suppressed rRNA transcription and thereby inhibited growth and proliferation of HeLa cells. Importantly, two indentified WABS-derived mutants, R263Q and K897del, and a Fe–S deletion construct demonstrated significantly reduced binding abilities to rDNA promoters and lowered DNA-dependent ATPase activities compared with wild-type DDX11. Knockdown of the zebrafish ortholog of human DDX11 by morpholinos resulted in growth retardation and vertebral and craniofacial malformations in zebrafish, concomitant with the changes in histone epigenetic modifications at rDNA loci, the reduction of Pol I recruitment to the rDNA promoter and a significant decrease in nascent pre-RNA levels. These growth disruptions in zebrafish in response to DDX11 reduction showed similarities to the clinically described developmental abnormalities found in WABS patients for the first time in any vertebrate. Thus, our results indicate that DDX11 functions as a positive regulator of rRNA transcription and provides a novel insight into the pathogenesis of WABS.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2015-08-09
    Description: Mainland Portugal, on the southwestern edge of the European continent, is located directly north of the boundary between the Eurasian and Nubian plates. It lies in a region of slow lithospheric deformation (〈5 mm yr –1 ), which has generated some of the largest earthquakes in Europe, both intraplate (mainland) and interplate (offshore). Some offshore earthquakes are nucleated on old and cold lithospheric mantle, at depths down to 60 km. The seismicity of mainland Portugal and its adjacent offshore has been repeatedly classified as diffuse. In this paper, we analyse the instrumental earthquake catalogue for western Iberia, which covers the period between 1961 and 2013. Between 2010 and 2012, the catalogue was enriched with data from dense broad-band deployments. We show that although the plate boundary south of Portugal is diffuse, in that deformation is accommodated along several distributed faults rather than along one long linear plate boundary, the seismicity itself is not diffuse. Rather, when located using high-quality data, earthquakes collapse into well-defined clusters and lineations. We identify and characterize the most outstanding clusters and lineations of epicentres and correlate them with geophysical and tectonic features (historical seismicity, topography, geologically mapped faults, Moho depth, free-air gravity, magnetic anomalies and geotectonic units). Both onshore and offshore, clusters and lineations of earthquakes are aligned preferentially NNE–SSW and WNW–ESE. Cumulative seismic moment and epicentre density decrease from south to north, with increasing distance from the plate boundary. Only few earthquake lineations coincide with geologically mapped faults. Clusters and lineations that do not match geologically mapped faults may correspond to previously unmapped faults (e.g. blind faults), rheological boundaries or distributed fracturing inside blocks that are more brittle and therefore break more easily than neighbour blocks. The seismicity map of western Iberia presented in this article opens important questions concerning the regional seismotectonics. This work shows that the study of low-magnitude earthquakes using dense seismic deployments is a powerful tool to study lithospheric deformation in slowly deforming regions, such as western Iberia, where high-magnitude earthquakes occur with long recurrence intervals.
    Keywords: Seismology
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2015-08-15
    Description: We present a new 3-D traveltime tomography code (TOMO3D) for the modelling of active-source seismic data that uses the arrival times of both refracted and reflected seismic phases to derive the velocity distribution and the geometry of reflecting boundaries in the subsurface. This code is based on its popular 2-D version TOMO2D from which it inherited the methods to solve the forward and inverse problems. The traveltime calculations are done using a hybrid ray-tracing technique combining the graph and bending methods. The LSQR algorithm is used to perform the iterative regularized inversion to improve the initial velocity and depth models. In order to cope with an increased computational demand due to the incorporation of the third dimension, the forward problem solver, which takes most of the run time (~90 per cent in the test presented here), has been parallelized with a combination of multi-processing and message passing interface standards. This parallelization distributes the ray-tracing and traveltime calculations among available computational resources. The code's performance is illustrated with a realistic synthetic example, including a checkerboard anomaly and two reflectors, which simulates the geometry of a subduction zone. The code is designed to invert for a single reflector at a time. A data-driven layer-stripping strategy is proposed for cases involving multiple reflectors, and it is tested for the successive inversion of the two reflectors. Layers are bound by consecutive reflectors, and an initial velocity model for each inversion step incorporates the results from previous steps. This strategy poses simpler inversion problems at each step, allowing the recovery of strong velocity discontinuities that would otherwise be smoothened.
    Keywords: Marine Geosciences and Applied Geophysics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2015-09-11
    Description: The accurate estimation of dispersion curves has been a key issue for ensuring high quality in geophysical surface wave exploration. Many studies have been carried out on the generation of a high-resolution dispersion image from array measurements. In this study, the sparse signal representation and reconstruction techniques are employed to obtain the high resolution Rayleigh-wave dispersion image from seismic wave data. First, a sparse representation of the seismic wave data is introduced, in which the signal is assumed to be sparse in terms of wave speed. Then, the sparse signal is reconstructed by optimization using l 1 -norm regularization, which gives the signal amplitude spectrum as a function of wave speed. A dispersion image in the f – v domain is generated by arranging the sparse spectra for all frequency slices in the frequency range. Finally, to show the efficiency of the proposed approach, the Surfbar-2 field test data, acquired by B. Luke and colleagues at the University of Nevada Las Vegas, are analysed. By comparing the real-field dispersion image with the results from other methods, the high mode-resolving ability of the proposed approach is demonstrated, particularly for a case with strongly coherent modes.
    Keywords: Seismology
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2015-09-11
    Description: Many applications of seismology require the calculation of wave speed and attenuation in rocks saturated with multiple fluids. Squirt flow is known to be an important effect in fully saturated rocks but the extension to the multifluid case is unclear. Neglecting capillary effects, we generalize previous work on squirt flow to the case where two fluids are present. We derive expressions for the effective fluid properties, but the results depend on the spatial distributions, and not only volume fractions, of the two fluids. Our results demonstrate that such multifluid squirt flow may be responsible for hysteresis effects in elastic properties during imbibition and drainage.
    Keywords: Express Letters, Seismology
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2015-09-11
    Description: Iterative substitution of the coupled Marchenko equations is a novel methodology to retrieve the Green's functions from a source or receiver array at an acquisition surface to an arbitrary location in an acoustic medium. The methodology requires as input the single-sided reflection response at the acquisition surface and an initial focusing function, being the time-reversed direct wavefield from the acquisition surface to a specified location in the subsurface. We express the iterative scheme that is applied by this methodology explicitly as the successive actions of various linear operators, acting on an initial focusing function. These operators involve multidimensional crosscorrelations with the reflection data and truncations in time. We offer physical interpretations of the multidimensional crosscorrelations by subtracting traveltimes along common ray paths at the stationary points of the underlying integrals. This provides a clear understanding of how individual events are retrieved by the scheme. Our interpretation also exposes some of the scheme's limitations in terms of what can be retrieved in case of a finite recording aperture. Green's function retrieval is only successful if the relevant stationary points are sampled. As a consequence, internal multiples can only be retrieved at a subsurface location with a particular ray parameter if this location is illuminated by the direct wavefield with this specific ray parameter. Several assumptions are required to solve the Marchenko equations. We show that these assumptions are not always satisfied in arbitrary heterogeneous media, which can result in incomplete Green's function retrieval and the emergence of artefacts. Despite these limitations, accurate Green's functions can often be retrieved by the iterative scheme, which is highly relevant for seismic imaging and inversion of internal multiple reflections.
    Keywords: Marine Geosciences and Applied Geophysics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2015-09-11
    Description: The pre- and current collision of the Juan Fernández Ridge with the central Chilean margin at 31°–33°S is characterized by large-scale crustal thinning and long-term subsidence of the submarine forearc caused by subduction erosion processes. Here, we study the structure of the central Chilean margin in the ridge–trench collision zone by using wide-angle and multichannel seismic data. The transition from the upper to middle continental slope is defined by a trenchward dipping normal scarp with variable offsets of 500–2000 m height. Beneath the scarp, the 2-D velocity–depth models show a prominent lateral velocity contrast of 〉1 s –1 that propagates deep into the continental crust defining a major lateral seismic discontinuity. The discontinuity is interpreted as the lithological contact between the subsided/collapsed outermost forearc (composed of eroded and highly fractured volcanic rocks) and the seaward part of the uplifted Coastal Cordillera (made of less fractured metamorphic/igneous rocks). Extensional faults are abundant in the collapsed outermost forearc, however, landward of the continental slope scarp, both extensional and compressional structures are observed along the uplifted continental shelf that forms part of the Coastal Cordillera. Particularly, at the landward flank of the Valparaíso Forearc Basin (32°–33.5°S), shallow crustal seismicity has been recorded in 2008–2009 forming a dense cluster of thrust events of M w 4–5. The estimated hypocentres spatially correlate with the location of the fault scarp, and they highlight the upper part of the seismic crustal discontinuity.
    Keywords: Geodynamics and Tectonics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2015-09-13
    Description: Employing dynamic reciprocity can be an effective tool to simplify the calculation of elastic wavefields for borehole problems and to check the results. We analytically obtain the reciprocity relations for the elastodynamic fields generated by multipole sources in a fluid–solid configuration: if the multipole sources are located in the fluid, the particle displacement due to a dipole source is reciprocal to the particle acceleration due to a single force; the fluid pressure due to a dipole source is reciprocal to the particle acceleration due to a monopole source; the particle displacement due to a quadrupole source is reciprocal to the spatial partial derivative of the particle acceleration due to a single force; the fluid pressure due to a quadrupole source is reciprocal to the spatial partial derivative of the particle acceleration due to a monopole source. These relations are tested by numerical experiments for different borehole problems, including acoustic logging, single-well imaging and vertical seismic profiling. A reciprocity test can be used as a quick check of a finite-difference algorithm and the implementation of the sources, although it cannot detect errors due to improper discretization of the interfaces.
    Keywords: Marine Geosciences and Applied Geophysics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2015-09-12
    Description: Genome-wide association studies (GWAS) have identified several common loci contributing to non-obstructive azoospermia (NOA). However, a substantial fraction of NOA heritability remains undefined, especially those low-frequency [defined here as having a minor allele frequency (MAF) between 0.5 and 5%] and rare (MAF below 0.5%) variants. Here, we performed a 3-stage exome-wide association study in Han Chinese men to evaluate the role of low-frequency or rare germline variants in NOA development. The discovery stage included 962 NOA cases and 1348 healthy male controls genotyped by exome chips and was followed by a 2-stage replication with an additional 2168 cases and 5248 controls. We identified three low-frequency variants located at 6p22.2 (rs2298090 in HIST1H1E encoding p.Lys152Arg: OR = 0.30, P = 2.40 x 10 –16 ) and 6p21.33 (rs200847762 in FKBPL encoding p.Pro137Leu: OR = 0.11, P = 3.77 x 10 –16 ; rs11754464 in MSH5 : OR = 1.78, P = 3.71 x 10 –7 ) associated with NOA risk after Bonferroni correction. In summary, we report an instance of newly identified signals for NOA risk in genes previously undetected through GWAS on 6p22.2–6p21.33 in a Chinese population and highlight the role of low-frequency variants with a large effect in the process of spermatogenesis.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    facet.materialart.
    Unknown
    Oxford University Press
    Publication Date: 2015-09-17
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2015-09-17
    Description: Loss-of-function mutations in the X-linked gene Methyl-CpG-binding protein 2 ( MECP2 ) cause a devastating pediatric neurological disorder called Rett syndrome. In males, these mutations typically result in severe neonatal encephalopathy and early lethality. On the other hand, owing to expression of the normal allele in ~50% of cells, females do not suffer encephalopathy but instead develop Rett syndrome. Typically females with Rett syndrome exhibit a delayed onset of neurologic dysfunction that manifests around the child's first birthday and progresses over the next few years. Features of this disorder include loss of acquired language and motor skills, intellectual impairment and hand stereotypies. The developmental regression observed in patients with Rett syndrome arises from altered neuronal function and is not the result of neurodegeneration. Maintenance of an appropriate level of MeCP2 appears integral to the function of healthy neurons as patients with increased levels of MeCP2, owing to duplication of the Xq28 region encompassing the MECP2 locus, also present with intellectual disability and progressive neurologic symptoms. Despite major efforts over the past two decades to elucidate the molecular functions of MeCP2, the mechanisms underlying the delayed appearance of symptoms remain unclear. In this review, we will highlight recent findings that have expanded our knowledge of MeCP2's functions, and we will discuss how epigenetic regulation, chromatin organization and circuit dynamics may contribute to the postnatal onset of Rett syndrome.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2015-09-24
    Description: Previous formalisms for determining the static perturbation of spherically symmetric self-gravitating elastic Earth models due to displacement dislocations deal with each infinitesimal element of the fault system in its epicentral reference frame. In this work, we overcome this restriction and present novel and compact formulas for obtaining the perturbation due to the whole fault system in an arbitrary and common reference frame. Furthermore, we show that, even in an arbitrary reference frame, it is still possible to discriminate the contributions associated with the polar, bipolar and quadrupolar patterns of the seismic source response, as well as their relation with the along strike, along dip and tensile components of the displacement dislocation. These results allow a better understanding of the relation between the static perturbation and the whole fault system, and find direct applications in geodetic problems, like the modelling of long-wavelength geoid or gravity data from GRACE and GOCE space missions and of the perturbation of the deviatoric inertia tensor of the Earth.
    Keywords: Gravity, Geodesy and Tides
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    facet.materialart.
    Unknown
    Oxford University Press
    Publication Date: 2015-09-25
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    facet.materialart.
    Unknown
    Oxford University Press
    Publication Date: 2015-09-25
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2015-09-25
    Description: Glycogen branching enzyme 1 (GBE1) plays an essential role in glycogen biosynthesis by generating α-1,6-glucosidic branches from α-1,4-linked glucose chains, to increase solubility of the glycogen polymer. Mutations in the GBE1 gene lead to the heterogeneous early-onset glycogen storage disorder type IV (GSDIV) or the late-onset adult polyglucosan body disease (APBD). To better understand this essential enzyme, we crystallized human GBE1 in the apo form, and in complex with a tetra- or hepta-saccharide. The GBE1 structure reveals a conserved amylase core that houses the active centre for the branching reaction and harbours almost all GSDIV and APBD mutations. A non-catalytic binding cleft, proximal to the site of the common APBD mutation p.Y329S, was found to bind the tetra- and hepta-saccharides and may represent a higher-affinity site employed to anchor the complex glycogen substrate for the branching reaction. Expression of recombinant GBE1-p.Y329S resulted in drastically reduced protein yield and solubility compared with wild type, suggesting this disease allele causes protein misfolding and may be amenable to small molecule stabilization. To explore this, we generated a structural model of GBE1-p.Y329S and designed peptides ab initio to stabilize the mutation. As proof-of-principle, we evaluated treatment of one tetra-peptide, Leu-Thr-Lys-Glu, in APBD patient cells. We demonstrate intracellular transport of this peptide, its binding and stabilization of GBE1-p.Y329S, and 2-fold increased mutant enzymatic activity compared with untreated patient cells. Together, our data provide the rationale and starting point for the screening of small molecule chaperones, which could become novel therapies for this disease.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2015-09-25
    Description: Essential tremor (ET) is a common movement disorder with an estimated prevalence of 5% of the population aged over 65 years. In spite of intensive efforts, the genetic architecture of ET remains unknown. We used a combination of whole-exome sequencing and targeted resequencing in three ET families. In vitro and in vivo experiments in oligodendrocyte precursor cells and zebrafish were performed to test our findings. Whole-exome sequencing revealed a missense mutation in TENM4 segregating in an autosomal-dominant fashion in an ET family. Subsequent targeted resequencing of TENM4 led to the discovery of two novel missense mutations. Not only did these two mutations segregate with ET in two additional families, but we also observed significant over transmission of pathogenic TENM4 alleles across the three families. Consistent with a dominant mode of inheritance, in vitro analysis in oligodendrocyte precursor cells showed that mutant proteins mislocalize. Finally, expression of human mRNA harboring any of three patient mutations in zebrafish embryos induced defects in axon guidance, confirming a dominant-negative mode of action for these mutations. Our genetic and functional data, which is corroborated by the existence of a Tenm4 knockout mouse displaying an ET phenotype, implicates TENM4 in ET. Together with previous studies of TENM4 in model organisms, our studies intimate that processes regulating myelination in the central nervous system and axon guidance might be significant contributors to the genetic burden of this disorder.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2015-09-25
    Description: Trisomy 21 causes skeletal alterations in individuals with Down syndrome (DS), but the causative trisomic gene and a therapeutic approach to rescue these abnormalities are unknown. Individuals with DS display skeletal alterations including reduced bone mineral density, modified bone structure and distinctive facial features. Due to peripheral skeletal anomalies and extended longevity, individuals with DS are increasingly more susceptible to bone fractures. Understanding the genetic and developmental origin of DS skeletal abnormalities would facilitate the development of therapies to rescue these and other deficiencies associated with DS. DYRK1A is found in three copies in individuals with DS and Ts65Dn DS mice and has been hypothesized to be involved in many Trisomy 21 phenotypes including skeletal abnormalities. Return of Dyrk1a copy number to normal levels in Ts65Dn mice rescued the appendicular bone abnormalities, suggesting that appropriate levels of DYRK1A expression are critical for the development and maintenance of the DS appendicular skeleton. Therapy using the DYRK1A inhibitor epigallocatechin-3-gallate improved Ts65Dn skeletal phenotypes. These outcomes suggest that the osteopenic phenotype associated with DS may be rescued postnatally by targeting trisomic Dyrk1a .
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2015-09-26
    Description: We analyse daily cross-correlation computed from continuous records by permanent stations operating in vicinity of the Klyuchevskoy group of volcanoes (Kamchatka). Seismic waves generated by volcanic tremors are clearly seen on the cross-correlations between some pairs of stations as strong signals at frequencies between 0.2 and 2 Hz and with traveltimes typically shorter than those corresponding to interstation propagation. First, we develop a 2-D source-scanning algorithm based on summation of the envelops of cross-correlations to detect seismic tremors and to determine locations from which the strong seismic energy is continuously emitted. In an alternative approach, we explore the distinctive character of the cross-correlation waveforms corresponding to tremors emitted by different volcanoes and develop a phase-matching method for detecting volcanic tremors. Application of these methods allows us to detect and to distinguish tremors generated by the Klyuchevskoy and the Tolbachik, volcanoes and to monitor evolution of their intensity in time.
    Keywords: Seismology
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2015-09-26
    Description: In geophysical inversion, inferences of Earth's properties from sparse data involve a trade-off between model complexity and the spatial resolving power. A recent Markov chain Monte Carlo (McMC) technique formalized by Green, the so-called trans-dimensional samplers, allows us to sample between these trade-offs and to parsimoniously arbitrate between the varying complexity of candidate models. Here we present a novel framework using trans-dimensional sampling over tree structures. This new class of McMC sampler can be applied to 1-D, 2-D and 3-D Cartesian and spherical geometries. In addition, the basis functions used by the algorithm are flexible and can include more advanced parametrizations such as wavelets, both in Cartesian and Spherical geometries, to permit Bayesian multiscale analysis. This new framework offers greater flexibility, performance and efficiency for geophysical imaging problems than previous sampling algorithms. Thereby increasing the range of applications and in particular allowing extension to trans-dimensional imaging in 3-D. Examples are presented of its application to 2-D seismic and 3-D teleseismic tomography including estimation of uncertainty.
    Keywords: Seismology
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2015-09-26
    Description: The area of the 9.1-km-deep Continental Deep Drillhole (KTB) in Germany is used as a case study for a geothermal reservoir situated in folded and faulted metamorphic crystalline crust. The presented approach is based on the analysis of 3-D seismic reflection data combined with borehole data and hydrothermal numerical modelling. The KTB location exemplarily contains all elements that make seismic prospecting in crystalline environment often more difficult than in sedimentary units, basically complicated tectonics and fracturing and low-coherent strata. In a first step major rock units including two known nearly parallel fault zones are identified down to a depth of 12 km. These units form the basis of a gridded 3-D numerical model for investigating temperature and fluid flow. Conductive and advective heat transport takes place mainly in a metamorphic block composed of gneisses and metabasites that show considerable differences in thermal conductivity and heat production. Therefore, in a second step, the structure of this unit is investigated by seismic waveform modelling. The third step of interpretation consists of applying wavenumber filtering and log-Gabor-filtering for locating fractures. Since fracture networks are the major fluid pathways in the crystalline, we associate the fracture density distribution with distributions of relative porosity and permeability that can be calibrated by logging data and forward modelling of the temperature field. The resulting permeability distribution shows values between 10 –16 and 10 –19 m 2 and does not correlate with particular rock units. Once thermohydraulic rock properties are attributed to the numerical model, the differential equations for heat and fluid transport in porous media are solved numerically based on a finite difference approach. The hydraulic potential caused by topography and a heat flux of 54 mW m –2 were applied as boundary conditions at the top and bottom of the model. Fluid flow is generally slow and mainly occurring within the two fault zones. Thus, our model confirms the previous finding that diffusive heat transport is the dominant process at the KTB site. Fitting the observed temperature–depth profile requires a correction for palaeoclimate of about 4 K at 1 km depth. Modelled and observed temperature data fit well within 0.2 °C bounds. Whereas thermal conditions are suitable for geothermal energy production, hydraulic conditions are unfavourable without engineered stimulation.
    Keywords: Marine Geosciences and Applied Geophysics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2015-09-26
    Description: Sensitive instruments like strainmeters and tiltmeters are necessary for measuring slowly varying low amplitude Earth deformations. Nonetheless, laser and fibre interferometers are particularly suitable for interrogating such instruments due to their extreme precision and accuracy. In this paper, a practical design of a simple pendulum borehole tiltmeter based on laser fibre interferometric displacement sensors is presented. A prototype instrument has been constructed using welded borosilicate with a pendulum length of 0.85 m resulting in a main resonance frequency of 0.6 Hz. By implementing three coplanar extrinsic fibre Fabry-Perot interferometric probes and appropriate signal filtering, our instrument provides tilt measurements that are insensitive to parasitic deformations caused by temperature and pressure variations. This prototype has been installed in an underground facility (Rustrel, France) where results show accurate measurements of Earth strains derived from Earth and ocean tides, local hydrologic effects, as well as local and remote earthquakes. The large dynamic range and the high sensitivity of this tiltmeter render it an invaluable tool for numerous geophysical applications such as transient fault motion, volcanic strain and reservoir monitoring.
    Keywords: Gravity, Geodesy and Tides
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2015-09-26
    Description: Rupture properties, such as rupture direction, length, propagation speed and source duration, provide important insights into earthquake mechanisms. One approach to estimate these properties is to investigate the body-wave duration that depends upon the relative location of the station with respect to the rupture direction. Under the assumption that the propagation is unilateral, the duration can be expressed as a function of the dip and azimuth of the rupture. Examination of duration measurements with respect to both the take-off angle and the azimuth is crucial to obtain robust estimates of rupture parameters, especially for nearly vertical rupture propagation. Moreover, limited data coverage, such as using only teleseismic data, can bias the source duration estimate for dipping ruptures, and this bias can map into estimates of other source properties such as rupture extent and rupture speed. Based upon this framework, we introduce an inversion scheme that uses the duration measurements to obtain four parameters: the source duration, a measure of the rupture extent and speed, and dip and azimuth of the rupture propagation. The method is applied to two deep-focus events in the Sea of Okhotsk region, an M w 7.7 event that occurred on 2012 August 14 and an M w 8.3 event from 2013 May 24. The source durations are 26 ± 1 and 37 ± 1 s, and rupture speeds are 49 ± 4 per cent and 26 ± 3 per cent of shear wave speed for the M w 7.7 and 8.3 events, respectively. The azimuths of the two ruptures are parallel to the trench, but are in opposite directions. The dips of the M w 7.7 and 8.3 events are constrained to be 48° ± 8° downdip and 19° ± 8° updip, respectively. The fit to the data is significantly poorer for the M w 8.3 event than the M w 7.7 event, suggesting that the unilateral rupture may not be a good assumption. The analysis is expanded into a multi-episode model, and a secondary episode is determined for the M w 8.3 event in the southeast direction. The two-episode model gives a better fit to the data than the unilateral model and is compatible with the back-projection analysis, demonstrating that the rupture propagation of the M w 8.3 event is complex.
    Keywords: Seismology
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2015-11-21
    Description: Understanding the mechanisms of chromosomal double-strand break repair (DSBR) provides insight into genome instability, oncogenesis and genome engineering, including disease gene correction. Research into DSBR exploits rare-cutting endonucleases to cleave exogenous reporter constructs integrated into the genome. Multiple reporter constructs have been developed to detect various DSBR pathways. Here, using a single endogenous reporter gene, the X-chromosomal disease gene encoding hypoxanthine phosphoribosyltransferase ( HPRT ), we monitor the relative utilization of three DSBR pathways following cleavage by I-Sce I or CRISPR/Cas9 nucleases. For I-Sce I, our estimated frequencies of accurate or mutagenic non-homologous end-joining and gene correction by homologous recombination are 4.1, 1.5 and 0.16%, respectively. Unexpectedly, I-Sce I and Cas9 induced markedly different DSBR profiles. Also, using an I-Sce I-sensitive HPRT minigene, we show that gene correction is more efficient when using long double-stranded DNA than single- or double-stranded oligonucleotides. Finally, using both endogenous HPRT and exogenous reporters, we validate novel cell cycle phase-specific I-Sce I derivatives for investigating cell cycle variations in DSBR. The results obtained using these novel approaches provide new insights into template design for gene correction and the relationships between multiple DSBR pathways at a single endogenous disease gene.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2015-11-21
    Description: Despite recent progress in the characterization of genetic loci associated with multiple sclerosis (MS) risk, the ubiquitous linkage disequilibrium operating across the genome has stalled efforts to distinguish causative variants from proxy single-nucleotide polymorphisms (SNPs). Here, we have identified through fine mapping and meta-analysis EVI5 as the most plausible disease risk gene within the 1p22.1 locus. We further show that an exonic SNP associated with risk induces changes in superficial hydrophobicity patterns of the coiled-coil domain of EVI5, which, in turns, affects the EVI5 interactome. Immunoprecipitation of wild-type and mutated EVI5 followed by mass spectrometry generated a roster of disease-specific interactors functionally linked to lipid metabolism. Among the exclusive binding partners of the risk variant, we describe the novel interaction with sphingosine 1-phosphate lyase (SGPL1)—a key enzyme for the creation of the sphingosine-1 phosphate gradient, which is relevant to the pathogenic process and therapeutic management of MS.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2015-11-21
    Description: Hereditary sensory and autonomic neuropathy type 1 (HSAN1) is characterized by a loss of distal peripheral sensory and motorneuronal function, neuropathic pain and tissue necrosis. The most common cause of HSAN1 is due to dominant mutations in serine palmitoyl-transferase subunit 1 (SPT1). SPT catalyses the condensation of serine with palmitoyl-CoA, the initial step in sphingolipid biogenesis. Identified mutations in SPT1 are known to both reduce sphingolipid synthesis and generate catalytic promiscuity, incorporating alanine or glycine into the precursor sphingolipid to generate a deoxysphingoid base (DSB). Why either loss of function in SPT1 , or generation of DSBs should generate deficits in distal sensory function remains unclear. To address these questions, we generated a Drosophila model of HSAN1. Expression of dSpt1 bearing a disease-related mutation induced morphological deficits in synapse growth at the larval neuromuscular junction consistent with a dominant-negative action. Expression of mutant dSpt1 globally was found to be mildly toxic, but was completely toxic when the diet was supplemented with alanine, when DSBs were observed in abundance. Expression of mutant dSpt1 in sensory neurons generated developmental deficits in dendritic arborization with concomitant sensory deficits. A membrane trafficking defect was observed in soma of sensory neurons expressing mutant dSpt1 , consistent with endoplasmic reticulum (ER) to Golgi block. We found that we could rescue sensory function in neurons expressing mutant dSpt1 by co-expressing an effector of ER–Golgi function, Rab1 suggesting compromised ER function in HSAN1 affected dendritic neurons. Our Drosophila model identifies a novel strategy to explore the pathological mechanisms of HSAN1.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2015-11-21
    Description: Defective lysosomal acid β-glucosidase (GCase) in Gaucher disease causes accumulation of glucosylceramide (GC) and glucosylsphingosine (GS) that distress cellular functions. To study novel pathological mechanisms in neuronopathic Gaucher disease (nGD), a mouse model (4L;C*), an analogue to subacute human nGD, was investigated for global profiles of differentially expressed brain mRNAs (DEGs) and miRNAs (DEmiRs). 4L;C* mice displayed accumulation of GC and GS, activated microglial cells, reduced number of neurons and aberrant mitochondrial function in the brain followed by deterioration in motor function. DEGs and DEmiRs were characterized from sequencing of mRNA and miRNA from cerebral cortex, brain stem, midbrain and cerebellum of 4L;C* mice. Gene ontology enrichment and pathway analysis showed preferential mitochondrial dysfunction in midbrain and uniform inflammatory response and identified novel pathways, axonal guidance signaling, synaptic transmission, eIF2 and mammalian target of rapamycin (mTOR) signaling potentially involved in nGD. Similar analyses were performed with mice treated with isofagomine (IFG), a pharmacologic chaperone for GCase. IFG treatment did not alter the GS and GC accumulation significantly but attenuated the progression of the disease and altered numerous DEmiRs and target DEGs to their respective normal levels in inflammation, mitochondrial function and axonal guidance pathways, suggesting its regulation on miRNA and the associated mRNA that underlie the neurodegeneration in nGD. These analyses demonstrate that the neurodegenerative phenotype in 4L;C* mice was associated with dysregulation of brain mRNAs and miRNAs in axonal guidance, synaptic plasticity, mitochondria function, eIF2 and mTOR signaling and inflammation and provides new insights for the nGD pathological mechanism.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2015-11-21
    Description: Fragile X-associated disorders are Repeat Expansion Diseases that result from expansion of a CGG/CCG-repeat in the FMR1 gene. Contractions of the repeat tract also occur, albeit at lower frequency. However, these contractions can potentially modulate disease symptoms or generate an allele with repeat numbers in the normal range. Little is known about the expansion mechanism and even less about contractions. We have previously demonstrated that the mismatch repair (MMR) protein MSH2 is required for expansions in a mouse model of these disorders. Here, we show that MSH3, the MSH2-binding partner in the MutSβ complex, is required for 98% of germ line expansions and all somatic expansions in this model. In addition, we provide evidence for two different contraction mechanisms that operate in the mouse model, a MutSβ-independent one that generates small contractions and a MutSβ-dependent one that generates larger ones. We also show that MutSβ complexes formed with the repeats have altered kinetics of ATP hydrolysis relative to complexes with bona fide MMR substrates and that MutSβ increases the stability of the CCG-hairpins at physiological temperatures. These data may have important implications for our understanding of the mechanism(s) of repeat instability and for the role of MMR proteins in this process.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2015-11-21
    Description: Amyloid-β (Aβ) peptides originating from β-amyloid precursor protein (APP) are critical in Alzheimer's disease (AD). Cellular cholesterol levels/distribution can regulate production and clearance of Aβ peptides, albeit with contradictory outcomes. To better understand the relationship between cholesterol homeostasis and APP/Aβ metabolism, we have recently generated a bigenic ANPC mouse line overexpressing mutant human APP in the absence of Niemann-Pick type C-1 protein required for intracellular cholesterol transport. Using this unique bigenic ANPC mice and complementary stable N2a cells, we have examined the functional consequences of cellular cholesterol sequestration in the endosomal–lysosomal system, a major site of Aβ production, on APP/Aβ metabolism and its relation to neuronal viability. Levels of APP C-terminal fragments (α-CTF/β-CTF) and Aβ peptides, but not APP mRNA/protein or soluble APPα/APPβ, were increased in ANPC mouse brains and N2a-ANPC cells. These changes were accompanied by reduced clearance of peptides and an increased level/activity of -secretase, suggesting that accumulation of APP-CTFs is due to decreased turnover, whereas increased Aβ levels may result from a combination of increased production and decreased turnover. APP-CTFs and Aβ peptides were localized primarily in early-/late-endosomes and to some extent in lysosomes/autophagosomes. Cholesterol sequestration impaired endocytic-autophagic-lysosomal, but not proteasomal, clearance of APP-CTFs/Aβ peptides. Moreover, markers of oxidative stress were increased in vulnerable brain regions of ANPC mice and enhanced β-CTF/Aβ levels increased susceptibility of N2a-ANPC cells to H 2 O 2 -induced toxicity. Collectively, our results show that cellular cholesterol sequestration plays a key role in APP/Aβ metabolism and increasing neuronal vulnerability to oxidative stress in AD-related pathology.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2015-11-21
    Description: Alternative polyadenylation (APA) plays a role in gene expression regulation generally by shortening of 3'UTRs (untranslated regions) upon proliferative signals and relieving microRNA-mediated repression. Owing to high proliferative indices of triple negative breast cancers (TNBCs), we hypothesized APA to cause 3'UTR length changes in this aggressive subgroup of breast cancers. Our probe-based meta-analysis approach identified 3'UTR length alterations where the significant majority was shortening events (~70%, 113 of 165) of mostly proliferation-related transcripts in 520 TNBC patients compared with controls. Representative shortening events were further investigated for their microRNA binding potentials by computational predictions and dual-luciferase assay. In silico -predicted 3'UTR shortening events were experimentally confirmed in patient and cell line samples. To begin addressing the underlying mechanisms, we found CSTF2 (cleavage stimulation factor 2), a major regulator of 3'UTR shortening to be up-regulated in response to epidermal growth factor (EGF). EGF treatment also resulted with further shortening of the 3'UTRs. To investigate the contribution of CSTF2 and 3'UTR length alterations to the proliferative phenotype, we showed pharmacological inhibition of the EGF pathway to lead to a reduction in CSTF2 levels. Accordingly, RNAi-induced silencing of CSTF2 decreased the proliferative rate of cancer cells. Therefore, our computational and experimental approach revealed a pattern of 3'UTR length changes in TNBC patients and a potential link between APA and EGF signaling. Overall, detection of 3'UTR length alterations of various genes may help the discovery of new cancer-related genes, which may have been overlooked in conventional microarray gene expression analyses.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    facet.materialart.
    Unknown
    Oxford University Press
    Publication Date: 2015-11-21
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2015-11-21
    Description: Usher syndrome (USH) is the leading cause of inherited deaf-blindness, with type 2 (USH2) being the most common clinical form. Studies suggest that proteins encoded by USH2 causative genes assemble into the ankle link complex (ALC) at the hair cell stereociliary bundle; however, little is known about the in vivo assembly and function of this complex. Using various USH2 mutant mice, we showed by immunofluorescence that USH2 proteins play different roles in cochlear ALC assembly, with G protein-coupled receptor 98 being the most important protein. Complex assembly likely occurs at the stereociliary bundle but not along the protein transport route in the cell body. Stereociliary morphological defects in USH2 mutant mice suggest roles for the ALC in regulating inner hair cell stereociliary growth and differentiation as well as outer hair cell stereociliary rigidity and organization during development. These roles are unique from the bundle cohesion role of Usher syndrome type 1 protein complexes. Loss of individual USH2 gene expressions leads to variable morphological and functional consequences, correlating with the severity of ALC disruption. This finding suggests a potential genotype–phenotype correlation in USH2 patients. In summary, this study provides novel insights into the molecular mechanism underlying cochlear stereociliary bundle development and hearing loss pathogenesis of various USH2 subtypes. Our thorough phenotypical characterization of USH2 mouse models is essential for future use of these animal models in therapeutic development.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2015-11-21
    Description: Assisted reproductive technologies (ART) are associated with several complications including low birth weight, abnormal placentation and increased risk for rare imprinting disorders. Indeed, experimental studies demonstrate ART procedures independent of existing infertility induce epigenetic perturbations in the embryo and extraembryonic tissues. To test the hypothesis that these epigenetic perturbations persist and result in adverse outcomes at term, we assessed placental morphology and methylation profiles in E18.5 mouse concepti generated by in vitro fertilization (IVF) in two different genetic backgrounds. We also examined embryo transfer (ET) and superovulation procedures to ascertain if they contribute to developmental and epigenetic effects. Increased placental weight and reduced fetal-to-placental weight ratio were observed in all ART groups when compared with naturally conceived controls, demonstrating that non-surgical embryo transfer alone can impact placental development. Furthermore, superovulation further induced overgrowth of the placental junctional zone. Embryo transfer and superovulation defects were limited to these morphological changes, as we did not observe any differences in epigenetic profiles. IVF placentae, however, displayed hypomethylation of imprinting control regions of select imprinted genes and a global reduction in DNA methylation levels. Although we did not detect significant differences in DNA methylation in fetal brain or liver samples, rare IVF concepti displayed very low methylation and abnormal gene expression from the normally repressed allele. Our findings suggest that individual ART procedures cumulatively increase placental morphological abnormalities and epigenetic perturbations, potentially causing adverse neonatal and long-term health outcomes in offspring.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2015-11-21
    Description: Mutations in subunits or regulators of cohesin cause a spectrum of disorders in humans known as the ‘cohesinopathies’. Cohesinopathies, including the best known example Cornelia de Lange syndrome (CdLS), are characterized by broad spectrum, multifactorial developmental anomalies. Heart defects occur at high frequency and can reach up to 30% in CdLS. The mechanisms by which heart defects occur are enigmatic, but assumed to be developmental in origin. In this study, we depleted cohesin subunit Rad21 by 70–80% in a zebrafish cohesinopathy model. The hearts of Rad21-depleted animals were smaller, often failed to loop, and functioned less efficiently than size-matched controls. Functional deficiency was accompanied by valve defects and reduced ejection fraction. Interestingly, neural crest cells failed to populate the heart and instead exhibited a wandering behavior. Consequently, these cells also failed to condense correctly into pharyngeal arches. Transcriptome analysis revealed that Wnt pathway, chemokine and cadherin genes are dysregulated at the time of cardiac neural crest development. Our results give insight into the etiology of heart defects in the cohesinopathies, and raise the possibility that mild mutations in cohesin genes may be causative of a fraction of congenital heart disease in human populations.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2015-11-21
    Description: The DFNB31 gene plays an indispensable role in the cochlea and retina. Mutations in this gene disrupt its various isoforms and lead to non-syndromic deafness, blindness and deaf-blindness. However, the known expression of Dfnb31 , the mouse ortholog of DFNB31 , in vestibular organs and the potential vestibular-deficient phenotype observed in one Dfnb31 mutant mouse ( Dfnb31 wi/wi ) suggest that DFNB31 may also be important for vestibular function. In this study, we find that full-length (FL-) and C-terminal (C-) whirlin isoforms are expressed in the vestibular organs, where their stereociliary localizations are similar to those of developing cochlear inner hair cells. No whirlin is detected in Dfnb31 wi/wi vestibular organs, while only C-whirlin is expressed in Dfnb31 neo/neo vestibular organs. Both FL- and C-whirlin isoforms are required for normal vestibular stereociliary growth, although they may play slightly different roles in the central and peripheral zones of the crista ampullaris. Vestibular sensory-evoked potentials demonstrate severe to profound vestibular deficits in Dfnb31 neo/neo and Dfnb31 wi/wi mice. Swimming and rotarod tests demonstrate that the two Dfnb31 mutants have balance problems, with Dfnb31 wi/wi mice being more affected than Dfnb31 neo/neo mice. Because Dfnb31 wi/wi and Dfnb31 neo/neo mice faithfully recapitulate hearing and vision symptoms in patients, our findings of vestibular dysfunction in these Dfnb31 mutants raise the question of whether DFNB31 -deficient patients may acquire vestibular as well as hearing and vision loss.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2015-11-21
    Description: Methylmalonic acidurias (MMAurias) are a group of inherited disorders in the catabolism of branched-chain amino acids, odd-chain fatty acids and cholesterol caused by complete or partial deficiency of methylmalonyl-CoA mutase ( mut 0 and mut - subtype respectively) and by defects in the metabolism of its cofactor 5'-deoxyadenosylcobalamin ( cblA , cblB or cblD variant 2 type). A long-term complication found in patients with mut 0 and cblB variant is chronic tubulointerstitial nephritis. The underlying pathomechanism has remained unknown. We established an in vitro model of tubular epithelial cells from patient urine (hTEC; 9 controls, 5 mut 0 , 1 cblB ). In all human tubular epithelial cell (hTEC) lines we found specific tubular markers (AQP1, UMOD, AQP2). Patient cells showed disturbance of energy metabolism in glycolysis, mitochondrial respiratory chain and Krebs cycle in concert with increased reactive oxygen species (ROS) formation. Electron micrographs indicated increased autophagosome production and endoplasmic reticulum stress, which was supported by positive acridine orange staining and elevated levels of LC3 II, P62 and pIRE1. Screening mTOR signaling revealed a release of inhibition of autophagy. Patient hTEC produced and secreted elevated amounts of the pro-inflammatory cytokine IL8, which was highly correlated with the acridine orange staining. Summarizing, hTEC of MMAuria patients are characterized by disturbed energy metabolism and ROS production that lead to increased autophagy and IL8 secretion.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2015-11-21
    Description: RNA dysregulation is a newly recognized disease mechanism in amyotrophic lateral sclerosis (ALS). Here we identify Drosophila fragile X mental retardation protein (dFMRP) as a robust genetic modifier of TDP-43-dependent toxicity in a Drosophila model of ALS. We find that dFMRP overexpression (dFMRP OE) mitigates TDP-43 dependent locomotor defects and reduced lifespan in Drosophila. TDP-43 and FMRP form a complex in flies and human cells. In motor neurons, TDP-43 expression increases the association of dFMRP with stress granules and colocalizes with polyA binding protein in a variant-dependent manner. Furthermore, dFMRP dosage modulates TDP-43 solubility and molecular mobility with overexpression of dFMRP resulting in a significant reduction of TDP-43 in the aggregate fraction. Polysome fractionation experiments indicate that dFMRP OE also relieves the translation inhibition of futsch mRNA, a TDP-43 target mRNA, which regulates neuromuscular synapse architecture. Restoration of futsch translation by dFMRP OE mitigates Futsch-dependent morphological phenotypes at the neuromuscular junction including synaptic size and presence of satellite boutons. Our data suggest a model whereby dFMRP is neuroprotective by remodeling TDP-43 containing RNA granules, reducing aggregation and restoring the translation of specific mRNAs in motor neurons.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    facet.materialart.
    Unknown
    Oxford University Press
    Publication Date: 2015-11-21
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2015-11-21
    Description: Friedreich's ataxia (FRDA) is a severe neurodegenerative disease caused by homozygous expansion of the guanine-adenine-adenine (GAA) repeats in intron 1 of the FXN gene leading to transcriptional repression of frataxin expression. Post-translational histone modifications that typify heterochromatin are enriched in the vicinity of the repeats, whereas active chromatin marks in this region are underrepresented in FRDA samples. Yet, the immediate effect of the expanded repeats on transcription progression through FXN and their long-range effect on the surrounding genomic context are two critical questions that remain unanswered in the molecular pathogenesis of FRDA. To address these questions, we conducted next-generation RNA sequencing of a large cohort of FRDA and control primary fibroblasts. This comprehensive analysis revealed that the GAA-induced silencing effect does not influence expression of neighboring genes upstream or downstream of FXN . Furthermore, no long-range silencing effects were detected across a large portion of chromosome 9. Additionally, results of chromatin immunoprecipitation studies confirmed that histone modifications associated with repressed transcription are confined to the FXN locus. Finally, deep sequencing of FXN pre-mRNA molecules revealed a pronounced defect in the transcription elongation rate in FRDA cells when compared with controls. These results indicate that approaches aimed to reactivate frataxin expression should simultaneously address deficits in transcription initiation and elongation at the FXN locus.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2015-11-21
    Description: Retinal degeneration and visual impairment are the first signs of juvenile neuronal ceroid lipofuscinosis caused by CLN3 mutations, followed by inevitable progression to blindness. We investigated retinal degeneration in Cln3 ex1-6 null mice, revealing classic ‘fingerprint’ lysosomal storage in the retinal pigment epithelium (RPE), replicating the human disease. The lysosomes contain mitochondrial F 0 -ATP synthase subunit c along with undigested membranes, indicating a reduced degradative capacity. Mature autophagosomes and basal phagolysosomes, the terminal degradative compartments of autophagy and phagocytosis, are also increased in Cln3 ex1 - 6 RPE, reflecting disruption to these key pathways that underpin the daily phagocytic turnover of photoreceptor outer segments (POS) required for maintenance of vision. The accumulated autophagosomes have post-lysosome fusion morphology, with undigested internal contents visible, while accumulated phagosomes are frequently docked to cathepsin D-positive lysosomes, without mixing of phagosomal and lysosomal contents. This suggests lysosome-processing defects affect both autophagy and phagocytosis, supported by evidence that phagosomes induced in Cln3 ex1 - 6 -derived mouse embryonic fibroblasts have visibly disorganized membranes, unprocessed internal vesicles and membrane contents, in addition to reduced LAMP1 membrane recruitment. We propose that defective lysosomes in Cln3 ex1 - 6 RPE have a reduced degradative capacity that impairs the final steps of the intimately connected autophagic and phagocytic pathways that are responsible for degradation of POS. A build-up of degradative organellar by-products and decreased recycling of cellular materials is likely to disrupt processes vital to maintenance of vision by the RPE.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2015-11-21
    Description: Human gene mutations have revealed that a significant number of ADAMTS (a disintegrin-like and metalloproteinase (reprolysin type) with thrombospondin type 1 motifs) proteins are necessary for normal ocular development and eye function. Mutations in human ADAMTSL4 , encoding an ADAMTS-like protein which has been implicated in fibrillin microfibril biogenesis, cause ectopia lentis (EL) and EL et pupillae. Here, we report the first ADAMTSL4 mouse model, tvrm267 , bearing a nonsense mutation in Adamtsl4 . Homozygous Adamtsl4 tvrm267 mice recapitulate the EL phenotype observed in humans, and our analysis strongly suggests that ADAMTSL4 is required for stable anchorage of zonule fibers to the lens capsule. Unexpectedly, homozygous Adamtsl4 tvrm267 mice exhibit focal retinal pigment epithelium (RPE) defects primarily in the inferior eye. RPE dedifferentiation was indicated by reduced pigmentation, altered cellular morphology and a reduction in RPE-specific transcripts. Finally, as with a subset of patients with ADAMTSL4 mutations, increased axial length, relative to age-matched controls, was observed and was associated with the severity of the RPE phenotype. In summary, the Adamtsl4 tvrm267 model provides a valuable tool to further elucidate the molecular basis of zonule formation, the pathophysiology of EL and ADAMTSL4 function in the maintenance of the RPE.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2015-11-21
    Description: Leber's hereditary optic neuropathy (LHON) is a maternally inherited blinding disease characterized by degeneration of retinal ganglion cells (RGCs) and consequent optic nerve atrophy. Peculiar features of LHON are incomplete penetrance and gender bias, with a marked male prevalence. Based on the different hormonal metabolism between genders, we proposed that estrogens play a protective role in females and showed that these hormones ameliorate mitochondrial dysfunction in LHON through the estrogen receptors (ERs). We also showed that ERβ localize to the mitochondria of RGCs. Thus, targeting ERβ may become a therapeutic strategy for LHON specifically aimed at avoiding or delaying the onset of disease in mutation carriers. Here, we tested the effects of ERβ targeting on LHON mitochondrial defective metabolism by treating LHON cybrid cells carrying the m.11778G〉A mutation with a combination of natural estrogen-like compounds that bind ERβ with high selectivity. We demonstrated that these molecules improve cell viability by reducing apoptosis, inducing mitochondrial biogenesis and strongly reducing the levels of reactive oxygen species in LHON cells. These effects were abolished in cells with ERβ knockdown by silencing receptor expression or by using specific receptor antagonists. Our observations support the hypothesis that estrogen-like molecules may be useful in LHON prophylactic therapy. This is particularly important for lifelong disease prevention in unaffected LHON mutation carriers. Current strategies attempting to combat degeneration of RGCs during the acute phase of LHON have not been very effective. Implementing a different and preemptive approach with a low risk profile may be very helpful.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2015-11-21
    Description: Mucopolysaccharidosis-I (MPS-I) is a lysosomal storage disease (LSD) caused by inactivating mutations of IDUA , encoding the glycosaminoglycan-degrading enzyme α-l-iduronidase. Although MPS-I is associated with skeletal abnormalities, the impact of IDUA deficiency on bone remodeling is poorly defined. Here we report that Idua -deficient mice progressively develop a high bone mass phenotype with pathological lysosomal storage in cells of the osteoblast lineage. Histomorphometric quantification identified shortening of bone-forming units and reduced osteoclast numbers per bone surface. This phenotype was not transferable into wild-type mice by bone marrow transplantation (BMT). In contrast, the high bone mass phenotype of Idua -deficient mice was prevented by BMT from wild-type donors. At the cellular level, BMT did not only normalize defects of Idua -deficient osteoblasts and osteocytes but additionally caused increased osteoclastogenesis. Based on clinical observations in an individual with MPS-I, previously subjected to BMT and enzyme replacement therapy (ERT), we treated Idua -deficient mice accordingly and found that combining both treatments normalized all histomorphometric parameters of bone remodeling. Our results demonstrate that BMT and ERT profoundly affect skeletal remodeling of Idua -deficient mice, thereby suggesting that individuals with MPS-I should be monitored for their bone remodeling status, before and after treatment, to avoid long-term skeletal complications.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2015-11-21
    Description: The autism spectrum disorders (ASD) comprise a broad group of behaviorally related neurodevelopmental disorders affecting as many as 1 in 68 children. The hallmarks of ASD consist of impaired social and communication interactions, pronounced repetitive behaviors and restricted patterns of interests. Family, twin and epidemiological studies suggest a polygenetic and epistatic susceptibility model involving the interaction of many genes; however, the etiology of ASD is likely to be complex and include both epigenetic and environmental factors. 5-hydroxymethylcytosine (5hmC) is a novel environmentally sensitive DNA modification that is highly enriched in post-mitotic neurons and is associated with active transcription of neuronal genes. Here, we used an established chemical labeling and affinity purification method coupled with high-throughput sequencing technology to generate a genome-wide profile of striatal 5hmC in an autism mouse model ( Cntnap2 –/– mice) and found that at 9 weeks of age the Cntnap2 –/– mice have a genome-wide disruption in 5hmC, primarily in genic regions and repetitive elements. Annotation of differentially hydroxymethylated regions (DhMRs) to genes revealed a significant overlap with known ASD genes (e.g. Nrxn1 and Reln ) that carried an enrichment of neuronal ontological functions, including axonogenesis and neuron projection morphogenesis. Finally, sequence motif predictions identified associations with transcription factors that have a high correlation with important genes in neuronal developmental and functional pathways. Together, our data implicate a role for 5hmC-mediated epigenetic modulation in the pathogenesis of autism and represent a critical step toward understanding the genome-wide molecular consequence of the Cntnap2 mutation, which results in an autism-like phenotype.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    facet.materialart.
    Unknown
    Oxford University Press
    Publication Date: 2015-08-27
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2015-08-27
    Description: Bladder exstrophy, a severe congenital urological malformation when a child is born with an open urinary bladder, is the most common form of bladder exstrophy-epispadias complex (BEEC) with an incidence of 1:30,000 children of Caucasian descent. Recent studies suggest that WNT genes may contribute to the etiology of bladder exstrophy. Here, we evaluated WNT -pathway genes in 20 bladder exstrophy patients using massively parallel sequencing. In total 13 variants were identified in WNT3 , WNT6 , WNT7A , WNT8B , WNT10A , WNT11 , WNT16 , FZD5 , LRP1 and LRP10 genes and predicted as potentially disease causing, of which seven variants were novel. One variant, identified in a patient with a de novo nonsynonymous substitution in WNT3 (p.Cys91Arg), was further evaluated in zebrafish. Knock down of wnt3 in zebrafish showed cloaca malformations, including disorganization of the cloaca epithelium and expansion of the cloaca lumen. Our study suggests that the function of the WNT3 p.Cys91Arg variant was altered, since RNA overexpression of mutant Wnt3 RNA does not result in embryonic lethality as seen with wild-type WNT3 mRNA. Finally, we also mutation screened the WNT3 gene further in 410 DNA samples from BEEC cases and identified one additional mutation c.638G〉A (p.Gly213Asp), which was paternally inherited. In aggregate our data support the involvement of WNT -pathway genes in BEEC and suggest that WNT3 in itself is a rare cause of BEEC.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    facet.materialart.
    Unknown
    Oxford University Press
    Publication Date: 2015-08-27
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2015-08-27
    Description: Multiple symmetric lipomatosis (MSL) is a mitochondrial disorder with impaired brown fat metabolism that has been associated with MERRF mutations in some, but not all, patients. We studied a sibling pair and an unrelated indiviadual who presented with MSL and neuropathy to determine the genetic etiology of this disorder in patients who did not carry the MSL-associated MERRF mutation. Whole-exome sequencing was performed on the siblings, and a rare, shared homozygous mutation in MFN2 (c.2119C〉T: p.R707W) was identified. The mutation was not present in their healthy siblings. In silico programs predict it to be pathogenic, and heterozygous carriers of the MFN2 p.R707W substitution are known to have Charcot–Marie–Tooth (CMT) disease. A third, unrelated patient with multiple symmetrical lipomatosis and neuropathy also harbored the same homozygous mutation and had been previously diagnosed with CMT. Functional studies in patient fibroblasts demonstrate that the p.R707W substitution impairs homotypic (MFN2–MFN2) protein interactions required for normal activity and renders mitochondria prone to perinuclear aggregation. These findings show that homozygous mutations at p.R707W in MFN2 are a novel cause of multiple symmetrical lipomatosis.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2015-08-27
    Description: The adaptor protein-2 sigma subunit (AP22) is pivotal for clathrin-mediated endocytosis of plasma membrane constituents such as the calcium-sensing receptor (CaSR). Mutations of the AP22 Arg15 residue result in familial hypocalciuric hypercalcaemia type 3 (FHH3), a disorder of extracellular calcium (Ca 2+ o ) homeostasis. To elucidate the role of AP22 in Ca 2+ o regulation, we investigated 65 FHH probands, without other FHH-associated mutations, for AP22 mutations, characterized their functional consequences and investigated the genetic mechanisms leading to FHH3. AP22 mutations were identified in 17 probands, comprising 5 Arg15Cys, 4 Arg15His and 8 Arg15Leu mutations. A genotype–phenotype correlation was observed with the Arg15Leu mutation leading to marked hypercalcaemia. FHH3 probands harboured additional phenotypes such as cognitive dysfunction. All three FHH3-causing AP22 mutations impaired CaSR signal transduction in a dominant-negative manner. Mutational bias was observed at the AP22 Arg15 residue as other predicted missense substitutions (Arg15Gly, Arg15Pro and Arg15Ser), which also caused CaSR loss-of-function, were not detected in FHH probands, and these mutations were found to reduce the numbers of CaSR-expressing cells. FHH3 probands had significantly greater serum calcium (sCa) and magnesium (sMg) concentrations with reduced urinary calcium to creatinine clearance ratios (CCCR) in comparison with FHH1 probands with CaSR mutations, and a calculated index of sCa x sMg/100 x CCCR, which was ≥ 5.0, had a diagnostic sensitivity and specificity of 83 and 86%, respectively, for FHH3. Thus, our studies demonstrate AP22 mutations to result in a more severe FHH phenotype with genotype–phenotype correlations, and a dominant-negative mechanism of action with mutational bias at the Arg15 residue.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2015-08-27
    Description: Sprouty proteins are regulators of cell growth and branching morphogenesis. Unlike mouse Spry3 , which is X-linked, human SPRY3 maps to the pseudoautosomal region 2; however, the human Y-linked allele is not expressed due to epigenetic silencing by an unknown mechanism. SPRY3 maps adjacent to X-linked Trimethyllysine hydroxylase epsilon ( TMLHE ), recently identified as an autism susceptibility gene. We report that Spry3 is highly expressed in central and peripheral nervous system ganglion cells in mouse and human, including cerebellar Purkinje cells and retinal ganglion cells. Transient over-expression or knockdown of Spry3 in cultured mouse superior cervical ganglion cells inhibits and promotes, respectively, neurite growth and branching. A 0.7 kb gene fragment spanning the human SPRY3 transcriptional start site recapitulates the endogenous Spry3 -expression pattern in LacZ reporter mice. In the human and mouse the SPRY3 promoter contains an AG-rich repeat and we found co-expression, and promoter binding and/or regulation of SPRY3 expression by transcription factors MAZ, EGR1, ZNF263 and PAX6. We identified eight alleles of the human SPRY3 promoter repeat in Caucasians, and similar allele frequencies in autism families. We characterized multiple SPRY3 transcripts originating at two CpG islands in the X-linked F8A3 — TMLHE region, suggesting X chromosome regulation of SPRY3 . These findings provide an explanation for differential regulation of X and Y-linked SPRY3 alleles. In addition, the presence of a SPRY3 transcript exon in a previously described X chromosome deletion associated with autism, and the cerebellar interlobular variation in Spry3 expression coincident with the reported pattern of Purkinje cell loss in autism, suggest SPRY3 as a candidate susceptibility locus for autism.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2015-08-27
    Description: Glycogen storage disease type-Ia (GSD-Ia) is caused by a lack of glucose-6-phosphatase-α (G6Pase-α or G6PC) activity. We have shown that gene therapy mediated by a recombinant adeno-associated virus (rAAV) vector expressing human G6Pase-α normalizes blood glucose homeostasis in the global G6pc knockout ( G6pc –/– ) mice for 70–90 weeks. The treated G6pc –/– mice expressing 3–63% of normal hepatic G6Pase-α activity (AAV mice) produce endogenous hepatic glucose levels 61–68% of wild-type littermates, have a leaner phenotype and exhibit fasting blood insulin levels more typical of young adult mice. We now show that unlike wild-type mice, the lean AAV mice have increased caloric intake and do not develop age-related obesity or insulin resistance. Pathway analysis shows that signaling by hepatic carbohydrate response element binding protein that improves glucose tolerance and insulin signaling is activated in AAV mice. In addition, several longevity factors in the calorie restriction pathway, including the NADH shuttle systems, NAD + concentrations and the AMP-activated protein kinase/sirtuin 1/peroxisome proliferator-activated receptor- coactivator 1α pathway are upregulated in the livers of AAV mice. The finding that partial restoration of hepatic G6Pase-α activity in GSD-Ia mice not only attenuates the phenotype of hepatic G6Pase-α deficiency but also prevents the development of age-related obesity and insulin resistance seen in wild-type mice may suggest relevance of the G6Pase-α enzyme to obesity and diabetes.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2015-08-27
    Description: Congenital Hyperinsulinism (CHI) is a rare heterogeneous disease characterized by unregulated insulin secretion. Dominant mutations in ABCC8 causing medically unresponsive CHI have been reported; however, the molecular mechanisms are not clear. The molecular basis of medically unresponsive CHI due to dominant ABCC8 mutations has been studied in 10 patients, who were medically unresponsive to diazoxide (DZX), and nine of whom required a near-total pancreatectomy, and one partial pancreatectomy. DNA sequencing revealed seven dominant inactivating heterozygous missense mutations in ABCC8 , including one novel and six previously reported but uncharacterized mutations. Two groups of mutations with different cellular mechanisms were characterized. Mutations in the transmembrane domain (TMD) were more responsive to channel activators such as DZX, MgADP and metabolic inhibition. The trafficking analysis has shown that nucleotide-binding domain two (NBD2) mutations are not retained in the endoplasmic reticulum (ER) and are present on the membrane. However, the TMD mutations were retained in the ER. D1506E was the most severe SUR1-NBD2 mutation. Homologous expression of D1506E revealed a near absence of K ATP currents in the presence of DZX and intracellular MgADP. Heterozygous expression of D1506E showed a strong dominant-negative effect on SUR1\K ir 6.2 currents. Overall, we define two groups of mutation with different cellular mechanisms. In the first group, channel complexes with mutations in NBD2 of SUR1 traffic normally but are unable to be activated by MgADP. In the second group, channels mutations in the TMD of SUR1 are retained in the ER and have variable functional impairment.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2015-08-27
    Description: Fanconi anemia (FA) is a rare inherited disorder clinically characterized by congenital malformations, progressive bone marrow failure and cancer susceptibility. At the cellular level, FA is associated with hypersensitivity to DNA-crosslinking genotoxins. Eight of 17 known FA genes assemble the FA E3 ligase complex, which catalyzes monoubiquitination of FANCD2 and is essential for replicative DNA crosslink repair. Here, we identify the first FA patient with biallelic germline mutations in the ubiquitin E2 conjugase UBE2T. Both mutations were aluY-mediated: a paternal deletion and maternal duplication of exons 2–6. These loss-of-function mutations in UBE2T induced a cellular phenotype similar to biallelic defects in early FA genes with the absence of FANCD2 monoubiquitination. The maternal duplication produced a mutant mRNA that could encode a functional protein but was degraded by nonsense-mediated mRNA decay. In the patient's hematopoietic stem cells, the maternal allele with the duplication of exons 2–6 spontaneously reverted to a wild-type allele by monoallelic recombination at the duplicated aluY repeat, thereby preventing bone marrow failure. Analysis of germline DNA of 814 normal individuals and 850 breast cancer patients for deletion or duplication of UBE2T exons 2–6 identified the deletion in only two controls, suggesting aluY-mediated recombinations within the UBE2T locus are rare and not associated with an increased breast cancer risk. Finally, a loss-of-function germline mutation in UBE2T was detected in a high-risk breast cancer patient with wild-type BRCA1/2 . Cumulatively, we identified UBE2T as a bona fide FA gene ( FANCT ) that also may be a rare cancer susceptibility gene.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2015-08-27
    Description: Myoclonus-dystonia (M-D) is a very rare movement disorder, caused in ~30–50% of cases by mutations in SGCE . The CACNA1B variant c.4166G〉A; (p.R1389H) was recently reported as the likely causative mutation in a single 3-generation Dutch pedigree with five subjects affected by a unique dominant M-D syndrome and cardiac arrhythmias. In an attempt to replicate this finding, we assessed by direct sequencing the frequency of CACNA1B c.4166G〉A; (p.R1389H) in a cohort of 520 M-D cases, in which SGCE mutations had been previously excluded. A total of 146 cases (28%) had a positive family history of M-D. The frequency of the variant was also assessed in 489 neurologically healthy controls and in publicly available data sets of genetic variation (1000 Genomes, Exome Variant Server and Exome Aggregation Consortium). The variant was detected in a single sporadic case with M-D, but in none of the 146 probands with familial M-D. Overall, the variant was present at comparable frequencies in M-D cases (1 out of 520; 0.19%) and healthy controls (1 out of 489; 0.2%). A similar frequency of the variant was also reported in all publicly available databases. These results do not support a causal association between the CACNA1B c.4166G〉A; (p.R1389H) variant and M-D.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2015-08-27
    Description: The alternative splicing of the tau gene, MAPT , generates six protein isoforms in the adult human central nervous system (CNS). Tau splicing is developmentally regulated and dysregulated in disease. Mutations in MAPT that alter tau splicing cause frontotemporal dementia (FTD) with tau pathology, providing evidence for a causal link between altered tau splicing and disease. The use of induced pluripotent stem cell (iPSC)-derived neurons has revolutionized the way we model neurological disease in vitro . However, as most tau mutations are located within or around the alternatively spliced exon 10, it is important that iPSC–neurons splice tau appropriately in order to be used as disease models. To address this issue, we analyzed the expression and splicing of tau in iPSC-derived cortical neurons from control patients and FTD patients with the 10 + 16 intronic mutation in MAPT . We show that control neurons only express the fetal tau isoform (0N3R), even at extended time points of 100 days in vitro . Neurons from FTD patients with the 10 + 16 mutation in MAPT express both 0N3R and 0N4R tau isoforms, demonstrating that this mutation overrides the developmental regulation of exon 10 inclusion in our in vitro model. Further, at extended time points of 365 days in vitro , we observe a switch in tau splicing to include six tau isoforms as seen in the adult human CNS. Our results demonstrate the importance of neuronal maturity for use in in vitro modeling and provide a system that will be important for understanding the functional consequences of altered tau splicing.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2015-08-27
    Description: Although DNA methylation is now recognized as an important mediator of complex diseases, the extent to which the genetic basis of such diseases is accounted for by DNA methylation is unknown. In the setting of large, extended families representing a minority, high-risk population of the USA, we aimed to characterize the role of epigenome-wide DNA methylation in type 2 diabetes (T2D). Using Illumina HumanMethylation450 BeadChip arrays, we tested for association of DNA methylation at 446 356 sites with age, sex and phenotypic traits related to T2D in 850 pedigreed Mexican-American individuals. Robust statistical analyses showed that (i) 15% of the methylome is significantly heritable, with a median heritability of 0.14; (ii) DNA methylation at 14% of CpG sites is associated with nearby sequence variants; (iii) 22% and 3% of the autosomal CpG sites are associated with age and sex, respectively; (iv) 53 CpG sites were significantly associated with liability to T2D, fasting blood glucose and insulin resistance; (v) DNA methylation levels at five CpG sites, mapping to three well-characterized genes ( TXNIP , ABCG1 and SAMD12 ) independently explained 7.8% of the heritability of T2D (vi) methylation at these five sites was unlikely to be influenced by neighboring DNA sequence variation. Our study has identified novel epigenetic indicators of T2D risk in Mexican Americans who have increased risk for this disease. These results provide new insights into potential treatment targets of T2D.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2015-08-27
    Description: Cumulative evidence indicates that the onset and severity of Huntington's disease (HD) symptoms correlate with connectivity deficits involving specific neuronal populations within cortical and basal ganglia circuits. Brain imaging studies and pathological reports further associated these deficits with alterations in cerebral white matter structure and axonal pathology. However, whether axonopathy represents an early pathogenic event or an epiphenomenon in HD remains unknown, nor is clear the identity of specific neuronal populations affected. To directly evaluate early axonal abnormalities in the context of HD in vivo , we bred transgenic YFP( J16 ) with R6/2 mice, a widely used HD model. Diffusion tensor imaging and fluorescence microscopy studies revealed a marked degeneration of callosal axons long before the onset of motor symptoms. Accordingly, a significant fraction of YFP-positive cortical neurons in YFP( J16 ) mice cortex were identified as callosal projection neurons. Callosal axon pathology progressively worsened with age and was influenced by polyglutamine tract length in mutant huntingtin (mhtt). Degenerating axons were dissociated from microscopically visible mhtt aggregates and did not result from loss of cortical neurons. Interestingly, other axonal populations were mildly or not affected, suggesting differential vulnerability to mhtt toxicity. Validating these results, increased vulnerability of callosal axons was documented in the brains of HD patients. Observations here provide a structural basis for the alterations in cerebral white matter structure widely reported in HD patients. Collectively, our data demonstrate a dying-back pattern of degeneration for cortical projection neurons affected in HD, suggesting that axons represent an early and potentially critical target for mhtt toxicity.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2015-08-27
    Description: Mutations in alpha- and beta-tubulins are increasingly recognized as a major cause of malformations of cortical development (MCD), typically lissencephaly, pachygyria and polymicrogyria; however, sequencing tubulin genes in large cohorts of MCD patients has detected tubulin mutations in only 1–13%. We identified patients with a highly characteristic cerebellar dysplasia but without lissencephaly, pachygyria and polymicrogyria typically associated with tubulin mutations. Remarkably, in seven of nine patients (78%), targeted sequencing revealed mutations in three different tubulin genes ( TUBA1A , TUBB2B  and TUBB3 ), occurring de novo or inherited from a mosaic parent. Careful re-review of the cortical phenotype on brain imaging revealed only an irregular pattern of gyri and sulci, for which we propose the term tubulinopathy-related dysgyria. Basal ganglia (100%) and brainstem dysplasia (80%) were common features. On the basis of in silico structural predictions, the mutations affect amino acids in diverse regions of the alpha-/beta-tubulin heterodimer, including the nucleotide binding pocket. Cell-based assays of tubulin dynamics reveal various effects of the mutations on incorporation into microtubules: TUBB3 p.Glu288Lys and p.Pro357Leu do not incorporate into microtubules at all, whereas TUBB2B p.Gly13Ala shows reduced incorporation and TUBA1A p.Arg214His incorporates fully, but at a slower rate than wild-type. The broad range of effects on microtubule incorporation is at odds with the highly stereotypical clinical phenotype, supporting differential roles for the three tubulin genes involved. Identifying this highly characteristic phenotype is important due to the low recurrence risk compared with the other (recessive) cerebellar dysplasias and the apparent lack of non-neurological medical issues.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2015-08-27
    Description: Preferential dysfunction/degeneration of midbrain substantia nigra pars compacta (SNpc) dopaminergic (DA) neurons contributes to the main movement symptoms manifested in Parkinson's disease (PD). Although the Leucine-rich repeat kinase 2 ( LRRK2 ) G2019S missense mutation ( LRRK2 G2019S) is the most common causative genetic factor linked to PD, the effects of LRRK2 G2019S on the function and survival of SNpc DA neurons are poorly understood. Using a binary gene expression system, we generated transgenic mice expressing either wild-type human LRRK2 (WT mice) or the LRRK2 G2019S mutation (G2019S mice) selectively in the midbrain DA neurons. Here we show that overexpression of LRRK2 G2019S did not induce overt motor abnormalities or substantial SNpc DA neuron loss. However, the LRRK2 G2019S mutation impaired dopamine homeostasis and release in aged mice. This reduction in dopamine content/release coincided with the degeneration of DA axon terminals and decreased expression of DA neuron-enriched genes tyrosine hydroxylase (TH), vesicular monoamine transporter 2, dopamine transporter and aldehyde dehydrogenase 1. These factors are responsible for dopamine synthesis, transport and degradation, and their expression is regulated by transcription factor paired-like homeodomain 3 (PITX3). Levels of Pitx3 mRNA and protein were similarly decreased in the SNpc DA neurons of aged G2019S mice. Together, these findings suggest that PITX3-dependent transcription regulation could be one of the many potential mechanisms by which LRRK2 G2019S acts in SNpc DA neurons, resulting in downregulation of its downstream target genes critical for dopamine homeostasis and release.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2015-08-27
    Description: Epidemiological studies have reported inconsistent associations between telomere length (TL) and risk for various cancers. These inconsistencies are likely attributable, in part, to biases that arise due to post-diagnostic and post-treatment TL measurement. To avoid such biases, we used a Mendelian randomization approach and estimated associations between nine TL-associated SNPs and risk for five common cancer types (breast, lung, colorectal, ovarian and prostate cancer, including subtypes) using data on 51 725 cases and 62 035 controls. We then used an inverse-variance weighted average of the SNP-specific associations to estimate the association between a genetic score representing long TL and cancer risk. The long TL genetic score was significantly associated with increased risk of lung adenocarcinoma ( P = 6.3 x 10 –15 ), even after exclusion of a SNP residing in a known lung cancer susceptibility region ( TERT-CLPTM1L ) P = 6.6 x 10 –6 ). Under Mendelian randomization assumptions, the association estimate [odds ratio (OR) = 2.78] is interpreted as the OR for lung adenocarcinoma corresponding to a 1000 bp increase in TL. The weighted TL SNP score was not associated with other cancer types or subtypes. Our finding that genetic determinants of long TL increase lung adenocarcinoma risk avoids issues with reverse causality and residual confounding that arise in observational studies of TL and disease risk. Under Mendelian randomization assumptions, our finding suggests that longer TL increases lung adenocarcinoma risk. However, caution regarding this causal interpretation is warranted in light of the potential issue of pleiotropy, and a more general interpretation is that SNPs influencing telomere biology are also implicated in lung adenocarcinoma risk.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    facet.materialart.
    Unknown
    Peterlongo, P., Catucci, I., Colombo, M., Caleca, L., Mucaki, E., Bogliolo, M., Marin, M., Damiola, F., Bernard, L., Pensotti, V., Volorio, S., Dall'Olio, V., Meindl, A., Bartram, C., Sutter, C., Surowy, H., Sornin, V., Dondon, M.-G., Eon-Marchais, S., Stoppa-Lyonnet, D., Andrieu, N., Sinilnikova, O. M., GENESIS, Mitchell, G., James, P. A., Thompson, E., k; Con; Fab, SWE-BRCA, Marchetti, M., Verzeroli, C., Tartari, C., Capone, G. L., Putignano, A. L., Genuardi, M., Medici, V., Marchi, I., Federico, M., Tognazzo, S., Matricardi, L., Agata, S., Dolcetti, R., Puppa, L. D., Cini, G., Gismondi, V., Viassolo, V., Perfumo, C., Mencarelli, M. A., Baldassarri, M., Peissel, B., Roversi, G., Silvestri, V., Rizzolo, P., Spina, F., Vivanet, C., Tibiletti, M. G., Caligo, M. A., Gambino, G., Tommasi, S., Pilato, B., Tondini, C., Corna, C., Bonanni, B., Barile, M., Osorio, A., Benitez, J., Balestrino, L., Ottini, L., Manoukian, S., Pierotti, M. A., Renieri, A., Varesco, L., Couch, F. J., Wang, X., Devilee, P., Hilbers, F. S., van Asperen, C. J., Viel, A., Montagna, M., Cortesi, L., Diez, O., Balmana, J., Hauke, J., Schmutzler, R. K., Papi, L., Pujana, M. A., Lazaro, C., Falanga, A., Offit, K., Vijai, J., Campbell, I., Burwinkel, B., Kvist, A., Ehrencrona, H., Mazoyer, S., Pizzamiglio, S., Verderio, P., Surralles, J., Rogan, P. K., Radice, P.
    Oxford University Press
    Publication Date: 2015-08-27
    Description: Numerous genetic factors that influence breast cancer risk are known. However, approximately two-thirds of the overall familial risk remain unexplained. To determine whether some of the missing heritability is due to rare variants conferring high to moderate risk, we tested for an association between the c.5791C〉T nonsense mutation (p.Arg1931*; rs144567652) in exon 22 of FANCM gene and breast cancer. An analysis of genotyping data from 8635 familial breast cancer cases and 6625 controls from different countries yielded an association between the c.5791C〉T mutation and breast cancer risk [odds ratio (OR) = 3.93 (95% confidence interval (CI) = 1.28–12.11; P = 0.017)]. Moreover, we performed two meta-analyses of studies from countries with carriers in both cases and controls and of all available data. These analyses showed breast cancer associations with OR = 3.67 (95% CI = 1.04–12.87; P = 0.043) and OR = 3.33 (95% CI = 1.09–13.62; P = 0.032), respectively. Based on information theory-based prediction, we established that the mutation caused an out-of-frame deletion of exon 22, due to the creation of a binding site for the pre-mRNA processing protein hnRNP A1. Furthermore, genetic complementation analyses showed that the mutation influenced the DNA repair activity of the FANCM protein. In summary, we provide evidence for the first time showing that the common p.Arg1931* loss-of-function variant in FANCM is a risk factor for familial breast cancer.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2015-08-29
    Description: We take account of the effect of Earth's surface topography in quasi-dynamic earthquake cycle simulations using a boundary integral equation method. While we have so far assumed a homogeneous elastic half-space medium with a flat free surface, Earth's actual surface topography is complicated. Here, we constructed new slip response functions in half-space with an arbitrarily shaped surface topography in which we used slip response functions in full-space by introducing imaginary free surface cells in addition to embedded fault ones. By comparing analytical slip response functions in the case of a flat surface overlying half-space with the new ones, we developed a computationally efficient method for setting the Earth's surface region, which was divided into cells with the appropriate sizes depending on the fault source cell depth to maintain the computational accuracy. With these new slip response functions, we simulated simple interplate earthquake cycles in the region close to the Japan Trench, off Miyagi, Tohoku, in northeast Japan, which has the amplitude of 7 km in depth. Compared with the case where the flat surface level was set at the trench depth, the slip response functions for the case where actual seafloor topography was used had smaller amplitudes. Hence, the actual topography produces smaller recurrence times for earthquake cycles than that for the flat surface case. These effects of the actual Earth's surface topography mainly come from changes in the distance between the surface and the fault compared with the flat surface case. Changes in the slip response function also represent changes in the fault stiffness of the system. Considering the actual topography of the Earth's surface to be convex upwards as opposed to the flat, the fault stiffness becomes larger compared to the case of the flat Earth's surface. This leads to a change in the frictional instability, and sometime leads to the change in the way of rupture.
    Keywords: Seismology
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...