ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (1,352)
  • Wiley  (1,352)
  • 2010-2014  (1,352)
  • 1995-1999
  • 1985-1989
  • 1950-1954
  • 1945-1949
  • 2012  (1,352)
  • Journal of Geophysical Research JGR - Atmospheres  (818)
  • Water Resources Research  (534)
  • 4908
  • 7528
  • 1
    Publication Date: 2012-03-09
    Description: To monitor compliance with the Comprehensive Nuclear-Test ban Treaty (CTBT), a dedicated International Monitoring System (IMS) is being deployed. Recent global scale observations recorded by this network confirm that its detection capability is highly variable in space and time. Previous studies estimated the radiated source energy from remote observations using empirical yield-scaling relations which account for the along-path stratospheric winds. Although the empirical wind correction reduces the variance in the explosive energy versus pressure relationship, strong variability remains in the yield estimate. Today, numerical modeling techniques provide a basis to better understand the role of different factors describing the source and the atmosphere that influence propagation predictions. In this study, the effects of the source frequency and the stratospheric wind speed are simulated. In order to characterize fine-scale atmospheric structures which are excluded from the current atmospheric specifications, model predictions are further enhanced by the addition of perturbation terms. A theoretical attenuation relation is thus developed from massive numerical simulations using the Parabolic Equation method. Compared with previous studies, our approach provides a more realistic physical description of long-range infrasound propagation. We obtain a new relation combining a near-field and a far-field term, which account for the effects of both geometrical spreading and absorption. In the context of the future verification of the CTBT, the derived attenuation relation quantifies the spatial and temporal variability of the IMS infrasound network performance in higher resolution, and will be helpful for the design and prioritizing maintenance of any arbitrary infrasound monitoring network.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-03-09
    Description: A major difficulty when inverting the source term of an atmospheric tracer dispersion problem is the estimation of the prior errors: those of the atmospheric transport model, those ascribed to the representativity of the measurements, those that are instrumental, and those attached to the prior knowledge on the variables one seeks to retrieve. In the case of an accidental release of pollutant, the reconstructed source is sensitive to these assumptions. This sensitivity makes the quality of the retrieval dependent on the methods used to model and estimate the prior errors of the inverse modeling scheme. We propose to use an estimation method for the errors' amplitude based on the maximum likelihood principle. Under semi-Gaussian assumptions, it takes into account, without approximation, the positivity assumption on the source. We apply the method to the estimation of the Fukushima Daiichi source term using activity concentrations in the air. The results are compared to an L-curve estimation technique and to Desroziers's scheme. The total reconstructed activities significantly depend on the chosen method. Because of the poor observability of the Fukushima Daiichi emissions, these methods provide lower bounds for cesium-137 and iodine-131 reconstructed activities. These lower bound estimates, 1.2 × 1016 Bq for cesium-137, with an estimated standard deviation range of 15%–20%, and 1.9 − 3.8 × 1017 Bq for iodine-131, with an estimated standard deviation range of 5%–10%, are of the same order of magnitude as those provided by the Japanese Nuclear and Industrial Safety Agency and about 5 to 10 times less than the Chernobyl atmospheric releases.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-03-09
    Description: This study is our first step toward the generation of 6 hourly 3-D CO2 fields that can be used to validate CO2 forecast models by combining CO2 observations from multiple sources using ensemble Kalman filtering. We discuss a procedure to assimilate Atmospheric Infrared Sounder (AIRS) column-averaged dry-air mole fraction of CO2 (Xco2) in conjunction with meteorological observations with the coupled Local Ensemble Transform Kalman Filter (LETKF)-Community Atmospheric Model version 3.5. We examine the impact of assimilating AIRS Xco2 observations on CO2 fields by comparing the results from the AIRS-run, which assimilates both AIRS Xco2 and meteorological observations, to those from the meteor-run, which only assimilates meteorological observations. We find that assimilating AIRS Xco2 results in a surface CO2 seasonal cycle and the N-S surface gradient closer to the observations. When taking account of the CO2 uncertainty estimation from the LETKF, the CO2 analysis brackets the observed seasonal cycle. Verification against independent aircraft observations shows that assimilating AIRS Xco2 improves the accuracy of the CO2 vertical profiles by about 0.5–2 ppm depending on location and altitude. The results show that the CO2 analysis ensemble spread at AIRS Xco2 space is between 0.5 and 2 ppm, and the CO2 analysis ensemble spread around the peak level of the averaging kernels is between 1 and 2 ppm. This uncertainty estimation is consistent with the magnitude of the CO2 analysis error verified against AIRS Xco2 observations and the independent aircraft CO2 vertical profiles.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-03-09
    Description: Photolytic production rates of NO, NO2 and OH radicals in snow and the total absorption spectrum due to impurities in snowpack have been calculated for the Ocean-Atmosphere-Sea-Ice-Snowpack (OASIS) campaign during Spring 2009 at Barrow, Alaska. The photolytic production rate and snowpack absorption cross-sections were calculated from measurements of snowpack stratigraphy, light penetration depths (e-folding depths), nadir reflectivity (350–700 nm) and UV broadband atmospheric radiation. Maximum NOx fluxes calculated during the campaign owing to combined nitrate and nitrite photolysis were calculated as 72 nmol m−2 h−1 for the inland snowpack and 44 nmol m−2 h−1 for the snow on sea-ice and snowpack around the Barrow Arctic Research Center (BARC). Depth-integrated photochemical production rates of OH radicals were calculated giving maximum OH depth-integrated production rates of ∼160 nmol m−2 h−1 for the inland snowpack and ∼110–120 nmol m−2 h−1 for the snow around BARC and snow on sea-ice. Light penetration (e-folding) depths at a wavelength of 400 nm measured for snowpack in the vicinity of Barrow and snow on sea-ice are ∼9 cm and 14 cm for snow 15 km inland. Fitting scaled HULIS (HUmic-LIke Substances) and black carbon absorption cross-sections to the determined snow impurity absorption cross-sections show a “humic-like” component to snowpack absorption, with typical concentrations of 1.2–1.5 μgC g−1. Estimates of black carbon concentrations for the four snowpacks are ∼40 to 70 ng g−1 for the terrestrial Arctic snowpacks and ∼90 ng g−1 for snow on sea-ice.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-03-09
    Description: We examined the relationships between large wood (LW) export and precipitation patterns and intensity by analyzing the data on the annual volume of LW removed from 42 reservoirs and the daily precipitation at or near the reservoir sites. We also calculated the effective precipitation by considering the antecedent precipitation. Both daily and effective precipitation data were used as explanatory variables to explain LW export. The model selection revealed that the precipitation pattern and intensity controlling LW export varied with latitude in the Japanese archipelago. In small watersheds with narrow channel widths and low discharges, mass movements, such as landslides and debris flows, are major factors in the production and transport of LW. In this case, the effective precipitation required to initiate mass movements regulated the LW export and did not vary with the latitude. In intermediate and large watersheds with wide channel widths and high stream discharges, heavy rainfall and subsequent floods regulated buoyant depth, influencing the initiation of LW movement. In southern and central Japan, intense rainfall accompanied by typhoons or localized torrential downpours causes geomorphic disturbances, which introduce abundant pieces of LW into the channels. However, these pieces continue to be removed by repeated rainfall events. Therefore, LW export is supply-limited and potentially produces less LW accumulation. Conversely, in northern Japan, where typhoons and torrential downpours are rare, LW export is transport-limited because LW pieces recruited by bank erosion, tree mortality, and windthrow accumulate and persist on valley floors. These pieces may be easily exported by infrequent flooding.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2012-03-09
    Description: We developed a method to measure in situ the isotopic composition of liquid water with minimal supervision and, most important, with a temporal resolution of less than a minute. For this purpose a microporous hydrophobic membrane contactor (Membrana) was combined with an isotope laser spectrometer (Picarro). The contactor, originally designed for degassing liquids, was used with N2 as a carrier gas in order to transform a small fraction of liquid water to water vapor. The generated water vapor was then analyzed continuously by the Picarro analyzer. To prove the membrane's applicability, we determined the specific isotope fractionation factor for the phase change through the contactor's membrane across an extended temperature range (8°C–21°C) and with different waters of known isotopic compositions. This fractionation factor is needed to subsequently derive the liquid water isotope ratio from the measured water vapor isotope ratios. The system was tested with a soil column experiment, where the isotope values derived with the new method corresponded well (R2 = 0.998 for δ18O and R2 = 0.997 for δ2H) with those of liquid water samples taken simultaneously and analyzed with a conventional method (cavity ring-down spectroscopy). The new method supersedes taking liquid samples and employs only relatively cheap and readily available components. This makes it a relatively inexpensive, fast, user-friendly, and easily reproducible method. It can be applied in both the field and laboratory wherever a water vapor isotope analyzer can be run and whenever real-time isotope data of liquid water are required at high temporal resolution.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2012-03-09
    Description: Transit time of discharge is a hydrological characteristic used in water resource management. Previous studies have demonstrated large spatial variation in the mean transit time (MTT) of stream base flow in meso-scale catchments. Various relationships between topography and MTT have been reported. Although it is generally assumed that base flow MTT is controlled by the depth of the hydrologically active layer that recharges a stream, this hypothesis has not been tested in field studies. This study confirmed that the depth of hydrologically active soil and bedrock controls spatial variation in MTT. The study used isotopic and geochemical tracer data gathered in the 4.27 km2 Fudoji catchment, central Japan. The results, together with previously documented relationships between topography and MTT, indicate that the depth of the hydrologically active layer is sometimes, but not always, related to topography. A comprehensive understanding of the factors that control base flow production in mountainous catchments will require further study of the water flow path depths that recharge streams.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2012-03-09
    Description: The oxygen isotope ratio of precipitation and tree rings is a complex function of climate variables and atmospheric dynamics, which often makes the interpretation of δ18O for palaeoclimate research challenging. Here we analyzed monthly precipitation δ18O series for 1973–2004 and annually resolved tree ring δ18O chronologies for 1945–2004 for three sites in Switzerland: one north of the Alps, one at high-elevation within the Alps, and one south of the Alps. The goal of the study was to improve the understanding of the tree ring archive by a systematic analysis of nonlocal parameters related to atmospheric circulation, in particular, geopotential height field anomalies and the frequency of synoptic weather situations, in addition to the usual local climate parameters like temperature, sunshine duration, and relative humidity. We observed that on average high-pressure situations during summer were associated with relatively high δ18O and low-pressure situations were associated with relatively low δ18O, for both the isotope ratio in precipitation and tree rings. However, correlations to the frequency of weather types were not higher than simple correlations to local temperature. Accordingly, we constructed a combined index from temperature and air pressure that proved to be a good predictor of δ18O in precipitation and used this as the source water term in a tree ring isotope fractionation model. This enabled us to use the model beyond the period where isotope values for precipitation are available, opening new perspectives in the interpretation of long tree ring δ18O chronologies.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2012-03-10
    Description: This paper examines the long-term historical changes in frequency and amplitude of hydroclimatic extremes in the Blue Nile basin using data from the second half of 20th century. The temporal variability of basin-wide rainfall extremes and river flow extremes from four gauging stations was investigated under the hypothesis of no trend and no persistence in time. On the basis of a quantile anomaly analysis method, decadal variations in extreme daily, monthly, and annual quantiles were studied, and the periods of statistical significance were identified. The analysis showed that high and low river flows and rainfall depths do not vary in time in a fully random way but show a particular variation pattern. Their extremes show significant decadal variations. The 1980s had statistically significant negative anomalies in extremes in comparison with the long-term reference period of 1964–2009, while the 1960s–1970s and the 1990s–2000s had positive anomalies, although less significant. There is neither consistent increasing nor decreasing trend in rainfall and flow extremes of recent years. Therefore, anticipated trends due to global warming could not be identified. Conversely, low-flow extremes show an increasing trend during the last decade, which could be related to the effect of water regulation works at the outlet of Lake Tana. Moreover, similar patterns and statistically significant correlations were found between climatic indices representing the Pacific and Atlantic Oceans and the Blue Nile rainfall and flow extremes. Changes that occur on the Pacific Ocean appear to be a main driver for the decadal oscillations in climate and related high and low Blue Nile water availability for Ethiopia, Sudan, and Egypt.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2012-02-22
    Description: We investigated aerosol optical properties, mass concentration and chemical composition over a 1 year period (from March 2006 to February 2007) at an urban site in Southern Spain (Granada, 37.18°N, 3.58°W, 680 m above sea level). Light-scattering and absorption measurements were performed using an integrating nephelometer and a MultiAngle Absorption Photometer (MAAP), respectively, with no aerosol size cut-off and without any conditioning of the sampled air. PM10 and PM1 (ambient air levels of atmospheric particulate matter finer than 10 and 1 microns) were collected with two high volume samplers, and the chemical composition was investigated for all samples. Relative humidity (RH) within the nephelometer was below 50% and the weighting of the filters was also at RH of 50%. PM10 and PM1 mass concentrations showed a mean value of 44 ± 19 μg/m3 and 15 ± 7 μg/m3, respectively. The mineral matter was the major constituent of the PM10–1 fraction (contributing more than 58%) whereas organic matter and elemental carbon (OM+EC) contributed the most to the PM1 fraction (around 43%). The absorption coefficient at 550 nm showed a mean value of 24 ± 9 Mm−1 and the scattering coefficient at 550 nm presented a mean value of 61 ± 25 Mm−1, typical of urban areas. Both the scattering and the absorption coefficients exhibited the highest values during winter and the lowest during summer, due to the increase in the anthropogenic contribution and the lower development of the convective mixing layer during winter. A very low mean value of the single scattering albedo of 0.71 ± 0.07 at 550 nm was calculated, suggesting that urban aerosols in this site contain a large fraction of absorbing material. Mass scattering and absorption efficiencies of PM10 particles exhibited larger values during winter and lower during summer, showing a similar trend to PM1 and opposite to PM10–1. This seasonality is therefore influenced by the variations on PM composition. In addition, the mass scattering efficiency of the major aerosol constituents in PM10 were also calculated applying the multilinear regression (MLR) analysis. Among all of them, the most efficient in terms of scattering was sulfate ion (7 ± 1 m2g−1) while the least efficient was the mineral matter (0.2 ± 0.3 m2g−1). On the other hand, we found that the absorption process was mainly dominated by carbonaceous particles.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2012-02-24
    Description: The far-infrared (wavelengths longer than 17 μm) has been shown to be extremely important for radiative processes in the earth's atmosphere. The strength of the water vapor continuum absorption in this spectral region has largely been predicted using observations at other wavelengths that have been extrapolated using semiempirical approaches such as the Clough-Kneizys-Davies (CKD) family of models. Recent field experiments using new far-infrared instrumentation have supported a factor of 2 decrease in the modeled strength of the foreign continuum at 50 μm and a factor of 1.5 increase in the self-continuum at 24 μm in the Clough-Kneizys-Davies continuum model (CKD v2.4); these changes are incorporated in the Mlawer-Tobin-CKD continuum model (MT_CKD v2.4). The water vapor continuum in the Community Earth System Model (CESM v1.0) was modified to use the newer model, and the impacts of this change were investigated by comparing output from the original and modified CESM for 20 year integrations with prescribed sea surface temperatures. The change results in an increase in the net upward longwave flux of order 0.5 W m−2 between 300 and 400 mb, and a decrease in this flux of about the same magnitude for altitudes below 600 mb. The radiative impact results in a small but statistically significant change in the mean temperature and humidity fields, and also a slight decrease (order 0.5%) of high-cloud amount. The change in the cloud amount modified the longwave cloud radiative forcing, which partially offset the radiative heating caused by the change in the water vapor continuum absorption model.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2012-02-25
    Description: Following the eruption of the Icelandic volcano Eyjafjallajökull on the 14 April 2010, ground-based N2-Raman lidar (GBL) measurements were used to trace the temporal evolution of the ash plume from 16 to 20 April 2010 above the southwestern suburb of Paris. The nighttime overpass of the Cloud-Aerosol LIdar with Orthogonal Polarization onboard Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation satellite (CALIPSO/CALIOP) on 17 April 2010 was an opportunity to complement GBL observations. The plume shape retrieved from GBL has been used to assess the size range of the particles size. The lidar-derived aerosol mass concentrations (PM) have been compared with model-derived PM concentrations held in the Eulerian model Polair3D transport model, driven by a source term inferred from the SEVIRI sensor onboard Meteosat satellite. The consistency between model and ground-based wind lidar and CALIOP observations has been checked. The spatial and temporal structures of the ash plume as estimated by each instrument and by the Polair3D simulations are in agreement. The ash plume was associated with a mean aerosol optical thickness of 0.1 ± 0.06 and 0.055 ± 0.053 for GBL (355 nm) and CALIOP (532 nm), respectively. Such values correspond to ash mass concentrations of ∼400 ± 160 and ∼720 ± 670 μg m−3, respectively, within the ash plume, which was lower than 0.5 km in width. The relative uncertainty is ∼75% and mainly due to the assessment of the specific cross-section assuming an aerosol density of 2.6 g cm−3. The simulated ash plume is smoother leading to integrated mass of the same order of magnitude (between 50 and 250 mg m−2).
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2012-02-25
    Description: Within the Western Pacific Monsoon (WPM) region the zonal component of the low-level winds tends to weaken and reverse from east to west during the peak monsoon season, which also marks a peak in rainfall. This study examines how well climate models can simulate these phenomena prior to evaluating their projections for later this century. While a seasonal wind reversal or weakening appears to be reasonably well simulated by most models over much of the WPM, the relationships between large-scale average winds and rainfall are not always well simulated. This allows us to discriminate among the models in order to see if this affects the projections. However, it so happens that this has relatively little effect, and the predominant signal is for an increase in rainfall with a weakening or negligible change to the low-level monsoon winds. These results indicate that the WPM climate will respond more to global scale drivers such as an increase in atmospheric water vapor content and a weakening of the global circulation, rather than to more regional changes such as an increase in the land/ocean temperature contrast.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2012-02-25
    Description: Major stratospheric sudden warmings (SSW) occurring during Northern Hemisphere winter were identified in four runs of the Whole Atmosphere Community Climate Model (WACCM). Their characteristics are compared to those found by other authors using reanalysis data. The comparison shows that the frequency of occurrence of major SSW in the model is very similar to that found in reanalysis data, as is the occurrence of vortex splitting and displacement events. The main difference with respect to observations is that the modeled SSW are relatively longer lasting. WACCM simulates quite accurately some dynamical features associated with major SSW, despite the presence of outlier cases; however, the recently reported relationship between regional blocking and the type of SSW is only partially reproduced by WACCM. In general, the observed climatological and dynamical signatures of displacement SSW tend to be better reproduced by the model than those associated with splitting SSW. We also find that SSW in the model are often associated with an elevated polar cap stratopause, in agreement with recent observations. However, the simulations also show that there is not in general a close correspondence between major SSW and elevated polar cap stratopause events.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2012-03-13
    Description: Speciated aerosol composition data from the rural Interagency Monitoring for Protected Visual Environments (IMPROVE) network and the Environmental Protection Agency's urban/suburban Chemical Speciation Network (CSN) were combined to evaluate and contrast the PM2.5 composition and its seasonal patterns at urban and rural locations throughout the United States. We examined the 2005–2008 monthly and annual mean mass concentrations of PM2.5 ammonium sulfate (AS), ammonium nitrate (AN), particulate organic matter (POM), light-absorbing carbon (LAC), mineral soil, and sea salt from 168 rural and 176 urban sites. Urban and rural AS concentrations and seasonality were similar, and both were substantially higher in the eastern United States. Urban POM and LAC concentrations were higher than rural concentrations and were associated with very different seasonality depending on location. The highest urban and rural POM and LAC concentrations occurred in the southeastern and northwestern United States. Wintertime peaks in AN were common for both urban and rural sites, but urban concentrations were several times higher, and both were highest in California and the Midwest. Fine soil concentrations were highest in the Southwest, and similar regional patterns and seasonality in urban and rural concentrations suggested impacts from long-range transport. Contributions from sea salt to the PM2.5 budget were non-negligible only at coastal sites. This analysis revealed spatial and seasonal variability in urban and rural aerosol concentrations on a continental scale and provided insights into their sources, processes, and lifetimes.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2012-03-13
    Description: This study validates the cloud ice water content (IWC, non-precipitating ice/non-snow) produced by a unique prognostic cloud ice parameterization when used in the UCLA atmospheric general circulation model against CloudSat observations, and also compares it with the ERA-Interim reanalysis. A distinctive aspect of this parameterization is the novel treatment of the conversion of cloud ice to precipitating snow. The ice-to-snow autoconversion time scale is a function of differential infrared radiative heating and environmental static stability. The simulated IWC is in agreement with CloudSat observations in terms of its magnitude and three-dimensional structure. The annual and seasonal means of the zonal-mean IWC profiles from the simulations both show a local maximum in the upper troposphere in the tropics associated with deep convection, and other local maxima in the mid-troposphere in midlatitudes in both hemispheres associated with storm tracks. In contrast to the CloudSat values, the reanalysis shows much smaller IWC values in the tropics and much larger values in the lower troposphere in midlatitudes. The different vertical structures and magnitudes of IWC between the simulations and the reanalysis are likely due to differences in the parameterization of various processes in addition to the ice-to-snow autoconversion, including ice sedimentation, temperature thresholds for ice deposition and cumulus detrainment of cloud ice. However, a series of sensitivity experiments supports the conclusion that the model with a constant autoconversion time scale cannot reproduce the correct IWC distribution in both the tropics and midlatitudes, which strongly suggests the importance of physically based effects on the autoconversion timescale.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2012-03-14
    Description: The explosive phase of the eruption of the Eyjafjallajökull volcano in Iceland beginning on 14 April 2010 caused extensive disruption to aviation in Europe with serious social and economic consequences. Despite its impact, the explosive phase was modest in size and the amount of sulphur dioxide (SO2) released was low. The potential of hyperspectral thermal infrared measurements to discriminate emissions from similar events by measuring SO2 is examined using the Infrared Atmospheric Sounding Interferometer (IASI) on board MetOp-A. The transported plume in the initial stages of the explosive phase contained low amounts of SO2 at low altitude which placed it at the detection limit of space-based sensors used to monitor the volcanic threat to aviation using current methods. A recently developed technique for the fast retrieval of SO2 from IASI is applied in the context of the Eyjafjallajökull eruption to show that IASI is easily capable of sensing the SO2 in the plume at this stage where existing methods fail. The fast SO2 retrieval is calibrated against a fully quantitative optimal estimation retrieval of SO2 total column amount and plume altitude to derive the detection limit for the plume on 15 April 2010. An estimate of the general detection limit for the instrument is placed conservatively at 0.3 Dobson Units (DU) which is an order of magnitude lower than previously thought.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2012-03-14
    Description: The seasonal and interannual variabilities of warm pool properties in the Pacific and Indian Ocean sectors are examined and contrasted. The properties examined are the size, mean and maximum sea surface temperatures (SSTs), and central position. The seasonal variability is more vigorous in the Indian Ocean sector, but the interannual variability is comparable in the Pacific and Indian Ocean sectors. The variability is associated with significant longitudinal and latitudinal displacements on seasonal time scales but only with longitudinal displacements on interannual time scales. As for the controlling factors, while the seasonal variability of the warm pool is controlled by the annual march of the Sun in the Pacific sector and by the Indian summer monsoon in the Indian Ocean sector, the interannual variability in both sectors is related mostly to El Niño–Southern Oscillation (ENSO). ENSO is closely correlated with the size variations and longitudinal displacements of the warm pool. Interestingly, the warm pool intensity in both sectors is not highly correlated with ENSO until 5 to 6 months after ENSO peaks. The possible causes of this delayed ENSO influence are discussed. Only size and intensity (i.e., mean SST) variations in the Indian Ocean warm pool are significantly correlated with quasi-biennial variability in the Indian monsoon, which indicates that the Indian Ocean warm pool may be a potential predictor for Indian monsoon variations.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2012-03-14
    Description: The Vadas-Fritts ray-tracing model for convectively generated gravity waves is analyzed using the stationary phase approximation and is interpreted in terms of a ray Jacobian approximated by the density of rays. The Vadas-Fritts model launches rays from the convective source region, with initial conditions for the ray-tracing deduced from a near-field integral representation. In the far-field the rays are binned in space-time grid cells. The contribution of each ray to the spatial wave amplitude is determined by its spectral amplitude and by the local density of rays within the grid cells. The present analysis accomplishes two things. First, the stationary phase analysis gives the formal initial conditions for the ray-tracing, which mostly agree with the Vadas-Fritts initialization but also suggest some refinements. Secondly, the Jacobian and ray-density analysis shows how the Vadas-Fritts model can be generalized to follow a beam of rays with a single moving grid cell.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2012-03-14
    Description: Eurasian river discharge into the Arctic Ocean has steadily increased during the 20th century, and many studies have documented the spatial distribution of the trends and hypothesized the causes. There is a large variation in the scope of these studies, including the spatial scale of interest, and they often lack consistency in the time period analyzed. Studies have shown a connection between changes in the seasonal snowpack and discharge, but they have been constrained by the limitations of the snow observational network, which contains few long-term stations. This study overcomes these problems by using both in situ observations and a land surface model to evaluate the role snowpack changes have had on increases in runoff across northern Eurasia from 1936 through 1999. Our analysis shows consistent trends in both observations and model predictions. Increases in cold season precipitation propagate into increases in maximum snow water equivalent, which lead to increases in runoff. A series of model experiments demonstrate that the nonlinear interaction between winter precipitation and temperature has driven changes in the snowpack, which are manifested in the modeled runoff trends. Given that winter precipitation is expected to continue to increase and temperatures to warm during the 21st century in this region, these results point to the importance in understanding how the projected changes will influence the seasonal snowpack, which may have important consequences for streamflow in this region and freshwater export to the Arctic Ocean.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2012-03-15
    Description: Recent drastic reduction of the older perennial sea ice in the Arctic Ocean has resulted in a vast expansion of younger and saltier seasonal sea ice. This increase in the salinity of the overall ice cover could impact tropospheric chemical processes. Springtime perennial ice extent in 2008 and 2009 broke the half-century record minimum in 2007 by about one million km2. In both years seasonal ice was dominant across the Beaufort Sea extending to the Amundsen Gulf, where significant field and satellite observations of sea ice, temperature, and atmospheric chemicals have been made. Measurements at the site of the Canadian Coast Guard Ship Amundsen ice breaker in the Amundsen Gulf showed events of increased bromine monoxide (BrO), coupled with decreases of ozone (O3) and gaseous elemental mercury (GEM), during cold periods in March 2008. The timing of the main event of BrO, O3, and GEM changes was found to be consistent with BrO observed by satellites over an extensive area around the site. Furthermore, satellite sensors detected a doubling of atmospheric BrO in a vortex associated with a spiral rising air pattern. In spring 2009, excessive and widespread bromine explosions occurred in the same region while the regional air temperature was low and the extent of perennial ice was significantly reduced compared to the case in 2008. Using satellite observations together with a Rising-Air-Parcel model, we discover a topographic control on BrO distribution such that the Alaskan North Slope and the Canadian Shield region were exposed to elevated BrO, whereas the surrounding mountains isolated the Alaskan interior from bromine intrusion.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2012-03-15
    Description: The Nano Aerosol Mass Spectrometer (NAMS) was deployed to the California Nexus Los Angeles ground site in Pasadena, California during May–June 2010 to study nanoparticles in the 20–25 nm size range. NAMS gives a quantitative measure of the elemental composition of individual particles, and molecular apportionment of the elemental data allows the O/C mole ratio of carbonaceous matter in each particle to be determined. Abrupt increases in nanoparticle number concentration were observed in the afternoon on sunny days, and coincided with a shift in the wind direction from the southeast to the southwest. Nanoparticles analyzed during these time periods were found to contain enhanced levels of sulfur and silicon relative to particles analyzed earlier in the day, and the O/C ratios of carbonaceous matter changed from a distribution dominated by primary motor vehicle emissions (O/C ratio 〈 0.25) to one dominated by “fresh” secondary organic aerosol (O/C ratio between 0.25 and 0.65). The wind direction and chemical composition dependencies suggest that the afternoon increase in number concentration originated from motor vehicle emissions in the downtown Los Angeles area that were photochemically processed during transport to the measurement site. It is likely that photochemical processing led to both a change in the composition of preexisting particles and to the formation of new particles.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2012-03-16
    Description: In this paper, the potential of a multifrequency submillimeter radiometer to characterize ash plumes in the near-field of a volcanic eruption is evaluated. The radiometer's sensitivity to mass concentration and particle effective dimension is shown to depend most critically on aerosol altitude and ejected water vapor concentration. There is also some dependence on temperature, aerosol shape and complex refractive index. For this study, the volcanic aerosols are assumed to be randomly oriented solid hexagonal silicates of aspect ratio unity. The T-matrix method is used to calculate the single-scattering properties of the aerosols at 36 frequencies between 90 GHz and 880 GHz, and the aerosol bulk scattering properties are derived assuming lognormal size distribution functions. A midlatitude standard summer atmosphere and a perturbed midlatitude summer atmosphere are used to quantify the sensitivity, using the delta-Eddington two-stream approximation, of the radiometer to the presence of aerosol. It is shown that at 34 frequencies, between 113 GHz and 880 GHz, the sensitivity to aerosol is a maximum if the following four conditions are satisfied: (i) The altitude of the aerosol layer should be ≫ 3 km, (ii) 0.1 g m−3 〈 mass concentration 〈 30 g m−3 (iii) the aerosol effective dimension, De, 20 μm 〈 De 〈 1000 μm and (iv) water vapor ejected by a volcano into the atmosphere should be 〈 1000 times greater than the background water vapor concentration. The paper demonstrates the potential usefulness of using spectrally resolved submillimeter measurements in the near-field of volcanic eruptions to characterize plume properties.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2012-03-16
    Description: In 1982 and 1991, two major volcanic eruptions loaded the stratosphere with long-lived sulfate aerosols, altering the global climate by redistributing longwave and shortwave radiation at the surface and throughout the atmosphere, cooling the surface and subsurface waters of the tropical oceans. Theory and observations demonstrate, through direct and indirect mechanisms, a causal relationship between tropical North Atlantic sea surface temperatures and seasonal Atlantic hurricane frequency, duration, and intensity. Therefore, it is plausible that hurricane activity in the seasons immediately following these eruptions is diminished. However, to date, such a theory remains untested. Here I use observations, reanalysis data, and output from a numerical model to suggest that the number, duration, and intensity of hurricanes in the years following the eruptions of El Chichón (1982) and Mount Pinatubo (1991) decreased via the aerosol direct effect. Determining the effects of each eruption on seasonal cyclone activity is complicated by simultaneous positive ENSO events; thus further study of the relationship between Atlantic tropical cyclones and major volcanic eruptions is warranted.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2012-03-16
    Description: The ability of particles composed wholly or partially of biogenic secondary organic compounds to serve as cloud condensation nuclei (CCN) is a key characteristic that helps to define their roles in linking biogeochemical and water cycles. In this paper, we describe size-resolved (14–350 nm) CCN measurements from the Manitou Experimental Forest in Colorado, where particle compositions were expected to have a large biogenic component. These measurements were conducted for 1 year as part of the Bio-hydro-atmosphere Interactions of Energy, Aerosols, Carbon, H2O, Organics, and Nitrogen program and determined the aerosol hygroscopicity parameter, κ, at five water supersaturations between ∼0.14% and ∼0.97%. The average κ value over the entire study and all supersaturations was κavg = 0.16 ± 0.08. Kappa values decreased slightly with increasing supersaturation, suggesting a change in aerosol composition with dry diameter. Furthermore, some seasonal variability was observed with increased CCN concentrations and activated particle number fraction, but slightly decreased hygroscopicity, during the summer. Small particle events, which may indicate new particle formation, were observed throughout the study period, especially in the summer, leading to increases in CCN concentration, followed by a gradual increase in the aerosol mode size. The condensing material appeared to be predominantly composed of organic compounds and led to a small decrease in κ at the larger activation diameters during and immediately after those events.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2012-03-16
    Description: A new secondary organic aerosol (SOA) parameterization based on the volatility basis set is implemented in a regional air quality model WRF-CHEM. Full meteorological and chemistry simulations are carried out for the United States for August–September 2006. Predicted organic aerosol (OA) concentrations are compared against surface measurements made by several networks and aircraft data from the TexAQS-2006 field campaign. Elemental carbon simulations are also evaluated in order to evaluate the model's ability to capture their emissions, transport, and removal. Certain measurement limitations, such as daily averaged OA concentrations, impose some difficulties on the model evaluation, and hourly averaged OA measurements provide more informative constraints compared to daily concentrations. The updated model demonstrates a significant improvement in simulating the OA concentrations compared to the standard WRF-CHEM, which predicts very little SOA. The improvement in organic carbon (OC) predictions is noticeable in correlations and model bias. The correlations of OC exceed that of the persistence forecasts for hourly concentrations in the southeast United States during daytime. The updated traditional SOA yields still lead to an underestimation of observed OA, while addition of the multigenerational volatile organic compound (VOC) oxidation drastically improves model performance. However, several key uncertainties remain in SOA formation and loss mechanisms, which are characterized through several perturbation simulations. Dry deposition of VOC oxidation products is an important factor in the atmospheric SOA budget. The combination of the biogenic VOC emissions, updated SOA yields, and aging mechanism result in biogenic SOA being the dominant OA component for much of the nonurban United States.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2012-03-15
    Description: Retrievals of aerosol optical depth (AOD) and related parameters from satellite measurements typically involve prescribed models of aerosol size and composition, and are therefore dependent on how well these models are able to represent the radiative behavior of real aerosols. This study uses aerosol volume size distributions retrieved from Sun-photometer measurements at 11 Aerosol Robotic Network (AERONET) island sites, spread throughout the world's oceans, as a basis to define such a model for pure (unpolluted) maritime aerosol. Volume size distributions are observed to be bimodal and approximately lognormal, although the coarse mode is skewed with a long tail on the low-radius end. The relationship of AOD and size distribution parameters to meteorological conditions is also examined. As wind speed increases, so do coarse-mode volume and radius. The AOD and Ångström exponent show linear relationships with wind speed, although with considerable scatter. Links between aerosol properties and near-surface relative humidity, columnar water vapor, and sea surface temperature are also explored. A recommended bimodal maritime model, which is able to reconstruct the AERONET AOD with accuracy of order 0.01–0.02, is presented for use in aerosol remote sensing applications. This accuracy holds at most sites and for wavelengths between 340 nm and 1020 nm. Calculated lidar ratios are also provided, and are in the range of other studies, although differ more strongly from those currently used in Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) processing.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2012-02-04
    Description: Potential climate change effects on aspects of conjunctive management of water resources can be evaluated by linking climate models with fully integrated groundwater–surface water models. The objective of this study is to develop a modeling system that links global climate models with regional hydrologic models, using the California Central Valley as a case study. The new method is a supply and demand modeling framework that can be used to simulate and analyze potential climate change and conjunctive use. Supply-constrained and demand-driven linkages in the water system in the Central Valley are represented with the linked climate models, precipitation-runoff models, agricultural and native vegetation water use, and hydrologic flow models to demonstrate the feasibility of this method. Simulated precipitation and temperature were used from the GFDL-A2 climate change scenario through the 21st century to drive a regional water balance mountain hydrologic watershed model (MHWM) for the surrounding watersheds in combination with a regional integrated hydrologic model of the Central Valley (CVHM). Application of this method demonstrates the potential transition from predominantly surface water to groundwater supply for agriculture with secondary effects that may limit this transition of conjunctive use. The particular scenario considered includes intermittent climatic droughts in the first half of the 21st century followed by severe persistent droughts in the second half of the 21st century. These climatic droughts do not yield a valley-wide operational drought but do cause reduced surface water deliveries and increased groundwater abstractions that may cause additional land subsidence, reduced water for riparian habitat, or changes in flows at the Sacramento–San Joaquin River Delta. The method developed here can be used to explore conjunctive use adaptation options and hydrologic risk assessments in regional hydrologic systems throughout the world.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2012-02-11
    Description: An efficient approach is developed to analytically evaluate solute transport in a horizontal, divergent radial flow field with a multistep injection flow rate and an arbitrary input concentration history. By assuming a piecewise steady state flow and transforming the time domain to the cumulative injected flow domain, the concentration distribution is found to be completely determined by the total volume of injected flow and independent of specific flow rates. Thus, on the cumulative flow domain, the transport problem with a temporally varying velocity field can be transformed into a steady state flow problem. Linear convolution can then be applied on the cumulative injected flow domain to evaluate the solution for an arbitrarily time-dependent input concentration. Solutions on the regular time domain can be conveniently obtained by mapping the solution on the cumulative injected flow domain to the time domain. Furthermore, we theoretically examine the conditions for the assumption of piecewise steady state flow to be valid. On the basis of the critical time scale of the “pseudosteady state condition,” defined as when velocity changes accomplish 99% of their steady state differences, and the relative error in the mean travel time of plume front, we obtain conditions for neglecting the transitional period between two pumping steps. Such conditions include the following: (1) the duration of a pumping step, tp, must be longer than the critical time scale, tc, i.e., tp ≥ tc = 25r2S/T, where r is the radial distance, S is the storage coefficient, and T is the transmissivity, or similarly, a maximum problem domain needs to be defined for a given pumping strategy. (2) the maximum well pumping rate, qmax, should satisfy qmax ≤ πθT/25S, where θ is the effective porosity. When both conditions are satisfied, transitional periods may be neglected.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2012-02-14
    Description: We present the first published observations of “chaotic” dart leaders in triggered-lightning discharges. We examine four leaders that exhibited “chaotic” electric field derivative (dE/dt) signatures in their final 10 to 12 μs. The dE/dt signatures were characterized by bursts exhibiting widths of the order of hundreds of nanoseconds on which were superimposed irregular pulses with widths of the order of tens of nanoseconds. These unique signatures were dissimilar from the dE/dt waveforms observed from dart or dart-stepped leaders in triggered lightning. Three-dimensional locations for dE/dt pulses that radiated from the bottom 200 m of the leader channels were determined, as were emission times. Vertical leader speeds for the four “chaotic” dart leaders were estimated to range from 2.0 to 4.3 × 107 m/s. A relatively continuous flux of energetic radiation (X-rays and gamma rays) was observed during the final 10–13 μs of each “chaotic” dart leader. Some individual photons had energies more than 1 MeV. High-speed video images of three “chaotic” dart leaders were obtained at a frame rate of 300 kilo-frames per second (exposure time of 3.33 μs). One image, in the frame immediately prior to the return stroke, shows an upward positive leader 11.5 m in length propagating from the launch facility and a downward negative leader above with a streamer zone length of about 25 m. Channel base currents preceding the four “chaotic” dart leaders were of unusually long duration and large charge transfer, and return strokes following them had larger than usual peak currents.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2012-02-14
    Description: On 17 May 2010, the FAAM BAe-146 aircraft made remote and in situ measurements of the volcanic ash cloud from Eyjafjallajökull over the southern North Sea. The Falcon 20E aircraft operated by Deutsches Zentrum für Luft- und Raumfahrt (DLR) also sampled the ash cloud on the same day. While no “wingtip-to-wingtip” co-ordination was performed, the proximity of the two aircraft allows worthwhile comparisons. Despite the high degree of inhomogeneity (e.g., column ash loadings varied by a factor of three over ∼100 km) the range of ash mass concentrations and the ratios between volcanic ash mass and concentrations of SO2, O3 and CO were consistent between the two aircraft and within expected instrumental uncertainties. The data show strong correlations between ash mass, SO2 concentration and aerosol scattering with the FAAM BAe-146 data providing a specific extinction coefficient of 0.6–0.8 m2 g−1. There were significant differences in the observed ash size distribution with FAAM BAe-146 data showing a peak in the mass at ∼3.5 μm (volume-equivalent diameter) and DLR data peaking at ∼10 μm. Differences could not be accounted for by refractive index and shape assumptions alone. The aircraft in situ and lidar data suggest peak ash concentrations of 500–800 μg m−3 with a factor of two uncertainty. Comparing the location of ash observations with the ash dispersion model output highlights differences that demonstrate the difficulties in forecasting such events and the essential nature of validating models using high quality observational data from platforms such as the FAAM BAe-146 and the DLR Falcon.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2012-02-14
    Description: Wind speeds for a nominal height of 10 m and from the lowest model level (∼70 m above ground level) from the Rossby Center regional climate model (RCM) (RCA3) run at four resolutions between approximately 50 × 50 km and 6 × 6 km are analyzed to assess the effect of model resolution on wind climates. The influence of model resolution in this topographically simple subdomain of northern Europe is more profound in the wind extremes than in the central tendency. The domain-averaged mean wind speed at 10 m increases by 5% as the resolution increases from 50 to 6.25 km, while the 50 year return period wind speed and wind gust at this height increase by over 10% and 24%, respectively. Larger changes are observed in these wind speed metrics at the lowest model level as model resolution increases (∼+10% in the mean and ∼+20% in the 50 year return period wind speed). These differences are of similar magnitude to the climate change signal in extreme wind events derived in prior research and may have implications for climate change risk and vulnerability analyses. Output from the lowest model level indicates some evidence for increased variability at synoptic and meso-α time scales with increased model resolution, but the effect is nonlinear. Furthermore, analysis of power spectra of grid cell average and tile fraction wind speeds at 10 m does not support the assertion that increased model resolution increases model skill at synoptic and meso-α time scales relative to in situ observations.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2012-02-14
    Description: This paper analyzes the effects of an extreme Saharan dust event detected on 6 September 2007 on spectral UV irradiance recorded at El Arenosillo, South Spain. The intensity of the extreme event was detected using the aerosol optical depth (AOD) and Angström exponent series obtained by a Cimel Sun photometer operated at the study site in the framework of the Aerosol Robotic Network (AERONET). This Saharan dust event is characterized by its strong intensity, with a mean daily AOD value at 440 nm of 1.35 ± 0.40 (1.76 ± 0.03 around 13:00 UT). Additionally, a moderate decrease (∼15 Dobson units (1 DU = 2.69 × 1016 molecules cm−2)) in the total ozone column was recorded with a Brewer spectrophotometer during this episode. The spectral UV irradiance was measured from the transportable Quality Assurance of Spectral Ultraviolet Measurements in Europe (QASUME) through the development of a transportable unit reference spectroradiometer. The relative decrease of the UV irradiance at 320 nm on 6 September is about 50% (40%) with respect to days with low (moderate) aerosol loads. This attenuation slightly decreases with increasing wavelength above 315 nm. The relative differences between QASUME measurements and the spectral UV irradiance derived from the Ozone Monitoring Instrument (OMI) were calculated for the desert dust episode. This satellite instrument strongly overestimates the ground-based UV data recorded on 6 September, with differences between 138% at 305 nm and 72% at 380 nm. Finally, the aerosol forcing efficiency (AFE) is evaluated for UV-B (290–315 nm), UV-A (315–400 nm), and erythemal UV (290–400 nm, weighted by the CIE spectrum), showing a notable decrease (in absolute value) with increasing solar zenith angles (SZAs). For instance, the AFE values for the harmful UV-B irradiance change from −0.41 W/m2 per unit of AOD at 440 nm for a SZA of 30° to −0.21 W/m2 per unit of AOD for a SZA of 50°.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2012-02-14
    Description: Many observations and studies have shown that water resources amount in the Hai River Basin decreased significantly over the last half of the twentieth century. This study attempts to attribute the observed changes in the water resources amount in the basin over a 40 year period (1961–2000) to different factors, including natural climate variability, climate change induced by anthropogenic forcing of greenhouse gas emissions (referred to as anthropogenic forcing hereafter), and local human activity. First, the temporal variation of the annual water resources amount in the basin during the past 40 years is analyzed by employing the moving-average method, the linear regression method, and the Mann-Kendall method. Second, through setting different scenarios, the effects on the water resources amount due to different factors, including natural climate variability, anthropogenic forcing, and local human activity, are obtained using the parallel climate model, the distributed hydrological model water and energy transfer processes in large river basins, and the statistical downscaling model. Third, the fingerprint-based attribution method is used to obtain the signal strengths of observed changes in water resources amount during 1961–2000 and changes in the water resources amount under different scenarios. Finally, by comparing the signal strengths, the observed changes in water resources amount in the basin can be attributed to different factors. The results indicate that natural climate variability and local human activity may be two factors responsible for the observed changes in the water resources amount during the past 40 years in the basin, with local human activity being the main factor and accounting for about 60% of the changes.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2012-02-15
    Description: Flood events can induce temporal changes in streambed elevation and particle-size composition, which may influence the bed's hydraulic properties and stream-aquifer fluxes during and after an event. This study combines a set of previously developed modeling approaches to create a synthetic flood event during which bed sediment is entrained and deposited as a function of hydraulic conditions and particle size. One simulated river reach in a state of approximate dynamic equilibrium is chosen to investigate the impacts of size-selective sediment transport on stream-aquifer interaction. Along this reach, the preferential entrainment of fine sediment during the flood's rising limb leads to overall bed coarsening, and increases in vertical hydraulic conductivity (Kbv) and downward fluxes of floodwater into the streambed. Progressively finer sediment layers are deposited during the event's falling limb, causing the redevelopment of a colmation (clogging) layer on the bed surface and a decline in overall Kbv by the event's conclusion. This reduction in Kbv leads to prolonged retention of event water in the streambed (after the reach reverts from losing to gaining river conditions) when compared with what is expected if pre-event Kbv values are used to estimate river-aquifer exchanges. This process of sequential bed coarsening and fining during a flood event provides a mechanistic explanation for the event size-and-duration threshold, inferred in some systems, that must be exceeded for significant amounts of flood recharge to occur. The major consequences of these processes—enhanced infiltration and prolonged floodwater retention—have potentially major implications for groundwater-surface water interactions, water quality, contaminant transport, and riparian biogeochemistry.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2012-02-15
    Description: Nonstationary oscillation (NSO) processes are observed in a number of hydroclimatic data series. Stochastic simulation models are useful to study the impacts of the climatic variations induced by NSO processes into hydroclimatic regimes. Reproducing NSO processes in a stochastic time series model is, however, a difficult task because of the complexity of the nonstationary behaviors. In the current study, a novel stochastic simulation technique that reproduces the NSO processes embedded in hydroclimatic data series is presented. The proposed model reproduces NSO processes by utilizing empirical mode decomposition (EMD) and nonparametric simulation techniques (i.e., k-nearest-neighbor resampling and block bootstrapping). The model was first tested with synthetic data sets from trigonometric functions and the Rössler system. The North Atlantic Oscillation (NAO) index was then examined as a real case study. This NAO index was then employed as an exogenous variable for the stochastic simulation of streamflows at the Romaine River in the province of Quebec, Canada. The results of the application to the synthetic data sets and the real-world case studies indicate that the proposed model preserves well the NSO processes along with the key statistical characteristics of the observations. It was concluded that the proposed model possesses a reasonable simulation capacity and a high potential as a stochastic model, especially for hydroclimatic data sets that embed NSO processes.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2012-02-15
    Description: Vegetation zonation and tidal hydrology are basic attributes of intertidal salt marshes, but specific links among vegetation zonation, plant water use, and spatiotemporally dynamic hydrology have eluded thorough characterization. We developed a quantitative model of an intensively studied salt marsh field site, integrating coupled 2-D surface water and 3-D groundwater flow and zonal plant water use. Comparison of model scenarios with and without heterogeneity in (1) evapotranspiration rates and rooting depths, according to mapped vegetation zonation, and (2) sediment hydraulic properties from inferred geological heterogeneity revealed the coupled importance of both sources of ecohydrological variability at the site. Complex spatial variations in root zone pressure heads, saturations, and vertical groundwater velocities emerged in the model but only when both sources of ecohydrological variability were represented together and with tidal dynamics. These regions of distinctive root zone hydraulic conditions, caused by the intersection of vegetation and sediment spatial patterns, were termed “ecohydrological zones” (EHZ). Five EHZ emerged from different combinations of sediment hydraulic properties and evapotranspiration rates, and two EHZ emerged from local topography. Simulated pressure heads and groundwater dynamics among the EHZ were validated with field data. The model and data showed that hydraulic differences between EHZ were masked shortly after a flooding tide but again became prominent during prolonged marsh exposure. We suggest that ecohydrological zones, which reflect the combined influences of topographic, sediment, and vegetation heterogeneity and do not emphasize one influence over the others, are the fundamental spatial habitat units comprising the salt marsh ecosystem.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2012-02-16
    Description: The preconditioning of major sudden stratospheric warmings (SSWs) is investigated with two long time series using reanalysis (ERA-40) and model (MAECHAM5/MPI-OM) data. Applying planetary wave analysis, we distinguish between wavenumber-1 and wavenumber-2 major SSWs based on the wave activity of zonal wavenumbers 1 and 2 during the prewarming phase. For this analysis an objective criterion to identify and classify the preconditioning of major SSWs is developed. Major SSWs are found to occur with a frequency of six and seven events per decade in the reanalysis and in the model, respectively, thus highlighting the ability of MAECHAM5/MPI-OM to simulate the frequency of major SSWs realistically. However, from these events only one quarter are wavenumber-2 major warmings, representing a low (∼0.25) wavenumber-2 to wavenumber-1 major SSW ratio. Composite analyses for both data sets reveal that the two warming types have different dynamics; while wavenumber-1 major warmings are preceded only by an enhanced activity of the zonal wavenumber-1, wavenumber-2 events are either characterized by only the amplification of zonal wavenumber-2 or by both zonal wavenumber-1 and zonal wavenumber-2, albeit at different time intervals. The role of tropospheric blocking events influencing these two categories of major SSWs is evaluated in the next step. Here, the composite analyses of both reanalysis and model data reveal that blocking events in the Euro-Atlantic sector mostly lead to the development of wavenumber-1 major warmings. The blocking–wavenumber-2 major warming connection can only be statistical reliable analyzed with the model time series, demonstrating that blocking events in the Pacific region mostly precede wavenumber-2 major SSWs.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2012-02-18
    Description: Soil hydraulic parameters were upscaled from a 30 m resolution to a 1 km resolution using a new aggregation scheme (described in the companion paper) where the scale parameter was based on the topography. When soil hydraulic parameter aggregation or upscaling schemes ignore the effect of topography, their application becomes limited at hillslope scales and beyond, where topography plays a dominant role in soil deposition and formation. Hence the new upscaling algorithm was tested at the hillslope scale (1 km) across two locations: (1) the Little Washita watershed in Oklahoma, and (2) the Walnut Creek watershed in Iowa. The watersheds were divided into pixels of 1 km resolution and the effective soil hydraulic parameters obtained for each pixel. Each pixel/domain was then simulated using the physically based HYDRUS-3-D modeling platform. In order to account for the surface (runoff/on) and subsurface fluxes between pixels, an algorithm to route infiltration-excess runoff onto downstream pixels at daily time steps and to update the soil moisture states of the downstream pixels was applied. Simulated soil moisture states were compared across scales, and the coarse scale values compared against the airborne soil moisture data products obtained during the hydrology experiment field campaign periods (SGP97 and SMEX02) for selected pixels with different topographic complexities, soil distributions, and land cover. Results from these comparisons show good correlations between simulated and observed soil moisture states across time, topographic variations, location, elevation, and land cover. Stream discharge comparisons made at two gauging stations in the Little Washita watershed also provide reasonably good results as to the suitability of the upscaling algorithm used. Based only on the topography of the domain, the new upscaling algorithm was able to provide coarse resolution values for soil hydraulic parameters which effectively captured the variations in soil moisture across the watershed domains.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2012-02-18
    Description: Hydropower accounts for about 20% of the worldwide electrical power production. In mountainous regions this ratio is significantly higher. In this study we present how future projected climatic forcing, as described in regional climate models (RCMs), will affect water resources and subsequently hydropower production in downstream hydropower plants in a glacierized alpine valley (Vispa valley, Switzerland, 778 km2). In order to estimate future runoff generation and hydropower production, we used error-corrected and downscaled climate scenarios from regional climate models (RCMs) as well as glacier retreat projections from a dynamic glacier model and coupled them to a physically based hydrological model. Furthermore, we implemented all relevant hydropower operational rules in the hydrological model to estimate future hydropower production based on the runoff projections. The uncertainty of each modeling component (climate projections, glacier retreat, and hydrological projection) and the resulting propagation of uncertainty to the projected future water availability for energy production were assessed using an analysis of variance. While the uncertainty of the projections is considerable, the consistent trends observed in all projections indicate significant changes to the current situation. The model results indicate that future melt- and rainfall-runoff will increase during spring but decline during summer. The study concludes by outlining the most relevant expected changes for hydropower operations.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2012-02-21
    Description: The multispecies analysis of daily air samples collected at the NOAA Boulder Atmospheric Observatory (BAO) in Weld County in northeastern Colorado since 2007 shows highly correlated alkane enhancements caused by a regionally distributed mix of sources in the Denver-Julesburg Basin. To further characterize the emissions of methane and non-methane hydrocarbons (propane, n-butane, i-pentane, n-pentane and benzene) around BAO, a pilot study involving automobile-based surveys was carried out during the summer of 2008. A mix of venting emissions (leaks) of raw natural gas and flashing emissions from condensate storage tanks can explain the alkane ratios we observe in air masses impacted by oil and gas operations in northeastern Colorado. Using the WRAP Phase III inventory of total volatile organic compound (VOC) emissions from oil and gas exploration, production and processing, together with flashing and venting emission speciation profiles provided by State agencies or the oil and gas industry, we derive a range of bottom-up speciated emissions for Weld County in 2008. We use the observed ambient molar ratios and flashing and venting emissions data to calculate top-down scenarios for the amount of natural gas leaked to the atmosphere and the associated methane and non-methane emissions. Our analysis suggests that the emissions of the species we measured are most likely underestimated in current inventories and that the uncertainties attached to these estimates can be as high as a factor of two.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2012-02-21
    Description: The effect of spatial concentration fluctuations on the reaction of two solutes, A + B ⇀ C, is considered. In the absence of fluctuations, the concentration of solutes decays as Adet = Bdet ∼ t−1. Contrary to this, experimental and numerical studies suggest that concentrations decay significantly slower. Existing theory suggests a t−d/4 scaling in the asymptotic regime (d is the dimensionality of the problem). Here we study the effect of fluctuations using the classical diffusion-reaction equation with random initial conditions. Initial concentrations of the reactants are treated as correlated random fields. We use the method of moment equations to solve the resulting stochastic diffusion-reaction equation and obtain a solution for the average concentrations that deviates from ∼t−1 to ∼t−d/4 behavior at characteristic transition time t*. We also derive analytical expressions for t* as a function of Damköhler number and the coefficient of variation of the initial concentration.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2012-12-28
    Description: Volatile organic compounds (VOCs) were measured online at an urban site in Beijing in August–September 2010. Diurnal variations of various VOC species indicate that VOCs concentrations were influenced by photochemical removal with OH radicals for reactive species and secondary formation for oxygenated VOCs (OVOCs). A photochemical age-based parameterization method was applied to characterize VOCs chemistry. A large part of the variability in concentrations of both hydrocarbons and OVOCs was explained by this method. The determined emission ratios of hydrocarbons to acetylene agreed within a factor of two between 2005 and 2010 measurements. However, large differences were found for emission ratios of some alkanes and C8 aromatics between Beijing and northeastern United States secondary formation from anthropogenic VOCs generally contributed higher percentages to concentrations of reactive aldehydes than those of inert ketones and alcohols. Anthropogenic primary emissions accounted for the majority of ketones and alcohols concentrations. Positive matrix factorization (PMF) was also used to identify emission sources from this VOCs data set. The four resolved factors were three anthropogenic factors and a biogenic factor. However, the anthropogenic factors are attributed here to a common source at different stages of photochemical processing rather than three independent sources. Anthropogenic and biogenic sources of VOCs concentrations were not separated completely in PMF. This study indicates that photochemistry of VOCs in the atmosphere complicates the information about separated sources that can be extracted from PMF and the influence of photochemical processing must be carefully considered in the interpretation of source apportionment studies based upon PMF.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2012-12-19
    Description: Based on existing techniques in nonlinear physics that work in the Fourier domain, we develop a multivariate, wavelet-based method for the generation of synthetic discharge time series. This approach not only retains the cross-correlative structure of the original data (which makes it preferable to principal component methods that merely preserve the correlations) but also replicates the nonlinear properties of the original data. We argue that the temporal asymmetry of the typical hydrograph is the most important form of nonlinearity to preserve in the synthetic data. Using the derivative skewness as a measure of asymmetry and an example data set of 35 years of daily discharge data from 107 gauging stations in the United States, we compare two approaches that preserve the asymmetry of the original records. We generate synthetic data and then study the properties of fitting a generalized extreme value distribution to the annual maxima for a total flux time series. The synthetic series provides error bands for the fitted distribution that give a different way of assessing credible return periods. It is found that the best approach for studying extremes is to match the asymmetry of each series individually, rather than to formulate a global threshold criterion.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2012-12-19
    Description: This article focuses on household water use in Spain by analyzing the influence of a detailed set of factors. We find that, although the presence of both water-saving equipment and water-conservation habits leads to water savings, the factors that influence each are not the same. In particular, our results show that those individuals most committed to the adoption of water-saving equipment and, at the same time, less committed to water-conservation habits tend to have higher incomes.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2012-12-19
    Description: We perform every 6 h a simultaneous data assimilation of surface CO2 fluxes and atmospheric CO2 concentrations along with meteorological variables using the Local Ensemble Transform Kalman Filter (LETKF) within an Observing System Simulation Experiments framework. In this paper, we focus on the impact of advanced variance inflation methods and vertical localization of column CO2 data on the analysis of CO2. With both additive inflation and adaptive multiplicative inflation, we are able to obtain encouraging multiseasonal analyses of surface CO2 fluxes in addition to atmospheric CO2 and meteorological analyses. Furthermore, we examine strategies for vertical localization in the assimilation of simulated CO2 from GOSAT that has nearly uniform sensitivity from the surface to the upper troposphere. Since atmospheric CO2 is forced by surface fluxes, its short-term variability should be largest near the surface. We take advantage of this by updating observed changes only into the lower tropospheric CO2 rather than into the full column. This results in a more accurate analysis of CO2 in terms of both RMS error and spatial patterns. Assimilating synthetic CO2 ground-based observations and CO2 retrievals from GOSAT and AIRS with the enhanced LETKF, we obtain an accurate estimation of the evolving surface fluxes even in the absence of any a priori information. We also test the system with a longer assimilation window and find that a short window with an efficient treatment for wind uncertainty is beneficial to flux inversion. Since this study assumes a perfect forecast model, future research will explore the impact of model errors.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2012-12-20
    Description: In semiarid regions, the rooting strategies employed by vegetation can be critical to its survival. Arid regions are characterized by high variability in the arrival of rainfall, and species found in these areas have adapted mechanisms to ensure the capture of this scarce resource. Vegetation roots have strong control over this partitioning, and assuming a static root profile, predetermine the manner in which this partitioning is undertaken.A coupled, dynamic vegetation and hydrologic model, tRIBS + VEGGIE, was used to explore the role of vertical root distribution on hydrologic fluxes. Point-scale simulations were carried out using two spatially and temporally invariant rooting schemes: uniform: a one-parameter model and logistic: a two-parameter model. The simulations were forced with a stochastic climate generator calibrated to weather stations and rain gauges in the semiarid Walnut Gulch Experimental Watershed (WGEW) in Arizona. A series of simulations were undertaken exploring the parameter space of both rooting schemes and the optimal root distribution for the simulation, which was defined as the root distribution with the maximum mean transpiration over a 100-yr period, and this was identified. This optimal root profile was determined for five generic soil textures and two plant-functional types (PFTs) to illustrate the role of soil texture on the partitioning of moisture at the land surface. The simulation results illustrate the strong control soil texture has on the partitioning of rainfall and consequently the depth of the optimal rooting profile. High-conductivity soils resulted in the deepest optimal rooting profile with land surface moisture fluxes dominated by transpiration. As we move toward the lower conductivity end of the soil spectrum, a shallowing of the optimal rooting profile is observed and evaporation gradually becomes the dominate flux from the land surface. This study offers a methodology through which local plant, soil, and climate can be accounted for in the parameterization of rooting profiles in semiarid regions.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2012-12-20
    Description: There has been a recent debate in the hydrological community about the relative merits of the informal generalized likelihood uncertainty estimation (GLUE) approach to uncertainty assessment in hydrological modeling versus formal probabilistic approaches. Some recent literature has suggested that the methods can give similar results in practice when properly applied. In this note, we show that the connection between formal Bayes and GLUE is not merely operational but goes deeper, with GLUE corresponding to a certain approximate Bayesian procedure even when the “generalized likelihood” is not a true likelihood. The connection we describe relates to recent approximate Bayesian computation (ABC) methods originating in genetics. ABC algorithms involve the use of a kernel function, and the generalized likelihood in GLUE can be thought of as relating to this kernel function rather than to the model likelihood. Two interpretations of GLUE emerge, one as a computational approximation to a Bayes procedure for a certain “error-free” model and the second as an exact Bayes procedure for a perturbation of that model in which the truncation of the generalized likelihood in GLUE plays a role. The intent of this study is to encourage cross-fertilization of ideas regarding GLUE and ABC in hydrologic applications. The connection we outline suggests the possibility of combining a formal likelihood with a kernel based on a generalized likelihood within the ABC framework and also allows advanced ABC computational methods to be used in GLUE applications. The model-based interpretation of GLUE may also be helpful in partially illuminating the implicit assumptions in different choices of generalized likelihood.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2012-12-20
    Description: Satellite-passive microwave remote sensing has been extensively used to estimate snow water equivalent (SWE) in northern regions. Although passive microwave sensors operate independent of solar illumination and the lower frequencies are independent of atmospheric conditions, the coarse spatial resolution introduces uncertainties to SWE retrievals due to the surface heterogeneity within individual pixels. In this article, we investigate the coupling of a thermodynamic multilayered snow model with a passive microwave emission model. Results show that the snow model itself provides poor SWE simulations when compared to field measurements from two major field campaigns. Coupling the snow and microwave emission models with successive iterations to correct the influence of snow grain size and density significantly improves SWE simulations. This method was further validated using an additional independent data set, which also showed significant improvement using the two-step iteration method compared to standalone simulations with the snow model.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2012-12-20
    Description: The ability of nine current generation (Coupled Model Intercomparison Project Phase 5, CMIP-5) coupled atmosphere-ocean general circulation models (AOGCMs) to accurately simulate the near-surface wind climate over China is evaluated by comparing output from the historical period (1971–2005) with an observational data set and reanalysis output. Results suggest the AOGCMs show substantial positive bias in the mean 10 m wind speed relative to observations and the ERA-40, National Centers for Environmental Prediction–Department of Energy, and National Centers for Environmental Prediction–National Center for Atmospheric Research reanalysis. Given that the models generally produce the upper level geopotential height gradients comparatively well, it is postulated that one major reason for the discrepancy between observed and modeled wind fields is the surface characterization used in the AOGCMs. All models exhibit lower interannual variability than reanalysis data and observations, and none of the models reproduce the recent decline in wind speed that is manifest in the near-surface observations. The wind speed of individual model runs during the historical period does not exhibit much influence from the initial atmospheric conditions. The output for the current century from seven of the AOGCMs is examined relative to the historical wind climate. The results indicate that spatial fields of wind speed at the end of the 21st century are very similar to those of the last 35 years with comparatively little response to the precise representative concentration pathway scenario applied.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2012-12-20
    Description: This paper investigates the impact of accounting for interactive plant phenology on the simulation of the June and August 2003 European heat waves. A sensitivity analysis is conducted here by using the WRF atmospheric model and the ORCHIDEE land-surface model over France with (1) a prescribed vegetation corresponding to year 2002 and (2) a dynamical vegetation model that leaves the vegetation freely evolving. It has been found that, accounting for the phenology dynamics has opposite effects on both events, it damps the temperature anomaly in June, while it amplifies the temperature anomaly in August. The evolution of leaf area index in the two simulations reveals the early and fast development of agricultural vegetation in the simulation with freely evolving vegetation. The vegetation also decays earlier in 2003 than during normal years. This behavior has two consequences. In June, the larger foliage development, caused by higher springtime insolation, contributes to enhanced evapotranspiration and therefore land surface cooling which limit the temperature anomaly during the heat wave. This effect is not as visible in mountainous regions where the presence of forest and the absence of agriculture do not lead to the same modulation of the local water cycle. In August, the early leave fall and the critical soil moisture stress contribute to largely suppress evapotranspiration and to enhance sensible heat flux thus amplifying the temperature anomaly. The modulation of the temperature anomaly caused by the effect of interactive vegetation phenology can reach ±1.5°C for an average total anomaly of about 8°C (i.e. ±20%).
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2012-11-08
    Description: Existing analytical solutions to determine aquifer response to a change in stream stage are inappropriate where an unsaturated zone exists beneath the stream, as in the case of disconnected stream-aquifer systems. A better understanding of the relationship between aquifer response and transient stream stage in disconnected systems is therefore required, as this would also aid in the field determination of the status of connection between the stream and aquifer. We use a numerical model to examine transient stream stage and the corresponding water table response. Beneath disconnected streams, the magnitude of head change in the water table level is a balance between the cumulative infiltration during a flow event and the rate at which the water can disperse laterally. Increases in wave duration, stream width, and streambed permeability result in greater infiltrated water volume and therefore a higher peak response at the water table. Conversely, higher aquifer transmissivity and aquifer hydraulic conductivity allow the water to move laterally away from the stream faster, resulting in a smaller head change below the stream. Lower unsaturated storage results in a greater and faster aquifer response because the unsaturated zone can fill more quickly. Under some combinations of parameters, the magnitude of the disconnected head response is more than seven times greater than the change in stream stage driving streambed infiltration; an effect which can never occur beneath a connected stream. The results of this sensitivity analysis are compared to field data from a river in eastern Australia to determine periods of disconnection. Where the change in aquifer head is greater than the change in stream stage, disconnection between the stream and aquifer can be determined.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2012-11-08
    Description: The ability to understand and predict the flux and fate of sediment delivered to the sea by rivers remains an outstanding scientific challenge. Approaches to this challenge are necessarily synthetic, spanning wide ranges in spatial and temporal scales. Here a conventional sediment transport theory used by engineers and sedimentologists at reach and channel scales is applied at the basin scale. Specifically, a straightforward expression proposed by Bagnold and modified accordingly predicts the observed importance of combined wetness and steepness of a source basin as a control of sediment supply to the sea. The reasonable, key assumption underlying the application of sediment transport theory in this context is that the river-mouth sites for which suspended-sediment loads are reported are alluviated, and thus characterized by transport-limited flux of sediment. This analysis also indicates the potential significance of additional, as yet poorly documented factors constraining sediment supply to the sea. These factors, some of which appear to covary systematically with climate, include river-profile concavity, river-mouth channel width and friction, and the characteristic size of sediment in transport.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2012-11-09
    Description: Key documents such as the European Water Framework Directive and the U.S. Clean Water Act state that public and stakeholder participation in water resource management is required. Participation aims to enhance resource management and involve individuals and groups in a democratic way. Evaluation of participatory programs and projects is necessary to assess whether these objectives are being achieved and to identify how participatory programs and projects can be improved. The different methods of evaluation can be classified into three groups: (i) process evaluation assesses the quality of participation process, for example, whether it is legitimate and promotes equal power between participants, (ii) intermediary outcome evaluation assesses the achievement of mainly nontangible outcomes, such as trust and communication, as well as short- to medium-term tangible outcomes, such as agreements and institutional change, and (iii) resource management outcome evaluation assesses the achievement of changes in resource management, such as water quality improvements. Process evaluation forms a major component of the literature but can rarely indicate whether a participation program improves water resource management. Resource management outcome evaluation is challenging because resource changes often emerge beyond the typical period covered by the evaluation and because changes cannot always be clearly related to participation activities. Intermediary outcome evaluation has been given less attention than process evaluation but can identify some real achievements and side benefits that emerge through participation. This review suggests that intermediary outcome evaluation should play a more important role in evaluating participation in water resource management.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2012-11-10
    Description: The key question that is asked in this study is “how are the three independent bias components of satellite rainfall estimation, comprising hit bias, missed, and false precipitation, physically related to the estimation uncertainty of soil moisture and runoff for a physically based hydrologic model?” The study also investigated the performance of different satellite rainfall products as a function of land use and land cover (LULC) type. Using the entire Mississippi river basin as the study region and the variable infiltration capacity (VIC)-3L as the distributed hydrologic model, the study of the satellite products (CMORPH, 3B42RT, and PERSIANN-CCS) yielded two key findings. First, during the winter season, more than 40% of the rainfall total bias is dominated by missed precipitation in forest and woodland regions (southeast of Mississippi). During the summer season, 51% of the total bias is governed by the hit bias, and about 42% by the false precipitation in grassland-savanna region (western part of Mississippi basin). Second, a strong dependence is observed between hit bias and runoff error, and missed precipitation and soil moisture error. High correlation with runoff error is observed with hit bias (∼0.85), indicating the need for improving the satellite rainfall product's ability to detect rainfall more consistently for flood prediction. For soil moisture error, it is the total bias that correlated significantly (∼0.78), indicating that a satellite product needed to be minimized of total bias for long-term monitoring of watershed conditions for drought through continuous simulation.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2012-11-10
    Description: Bayesian inference is used to study the effect of precipitation and model structural uncertainty on estimates of model parameters and confidence limits of predictive variables in a conceptual rainfall-runoff model in the snow-fed Rudbäck catchment (142 ha) in southern Finland. The IHACRES model is coupled with a simple degree day model to account for snow accumulation and melt. The posterior probability distribution of the model parameters is sampled by using the Differential Evolution Adaptive Metropolis (DREAM(ZS)) algorithm and the generalized likelihood function. Precipitation uncertainty is taken into account by introducing additional latent variables that were used as multipliers for individual storm events. Results suggest that occasional snow water equivalent (SWE) observations together with daily streamflow observations do not contain enough information to simultaneously identify model parameters, precipitation uncertainty and model structural uncertainty in the Rudbäck catchment. The addition of an autoregressive component to account for model structure error and latent variables having uniform priors to account for input uncertainty lead to dubious posterior distributions of model parameters. Thus our hypothesis that informative priors for latent variables could be replaced by additional SWE data could not be confirmed. The model was found to work adequately in 1-day-ahead simulation mode, but the results were poor in the simulation batch mode. This was caused by the interaction of parameters that were used to describe different sources of uncertainty. The findings may have lessons for other cases where parameterizations are similarly high in relation to available prior information.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2012-11-13
    Description: Operational land surface models (LSMs) compute hydrologic states such as soil moisture that are needed for a range of important applications (e.g., drought, flood, and weather prediction). The uncertainty in LSM parameters is sufficiently great that several researchers have proposed conducting parameter estimation using globally available remote sensing data to identify best fit local parameter sets. However, even with in situ data at fine modeling scales, there can be significant remaining uncertainty in LSM parameters and outputs. Here, using a new uncertainty estimation subsystem of the NASA Land Information System (LIS) (described herein), a Markov chain Monte Carlo (MCMC) technique is applied to conduct Bayesian analysis for the accounting of parameter uncertainties. The Differential Evolution Markov Chain (DE-MC) MCMC algorithm was applied, for which a new parallel implementation was developed. A case study is examined that builds on previous work in which the Noah LSM was calibrated to passive (L-band) microwave remote sensing estimates of soil moisture for the Walnut Gulch Experimental Watershed. In keeping with prior related studies, the parameters subjected to the analysis were restricted to the soil hydraulic properties (SHPs). The main goal is to estimate SHPs and soil moisture simulation uncertainty before and after consideration of the remote sensing data. The prior SHP uncertainty is based on the original source of the standard SHP lookup tables for the Noah LSM. Conclusions are drawn regarding the value and viability of Bayesian analysis over alternative approaches (e.g., parameter estimation, lookup tables) and further research needs are identified.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2012-11-15
    Description: It has long been known that surface gravity waves induce significant seepage through the porous layer found at the lake bottom. Away from coastal regions, however, the pressure signature of surface waves at the lake bottom is weak. We consider fully nonlinear internal gravity waves, whose long wavelength and slow motion implies a sustained and strong pressure perturbation even in the deep regions of the lake. We argue that internal waves can induce significant seepage through the sediment layer, in regions where surface gravity waves have negligible impact. The pressure profile at the fluid–porous layer interface is computed from the “exact” Dubreil-Jacotin-Long theory, giving a reliable profile even for large waves. This profile is used in conjunction with Darcy's law to compute the seepage within the porous region. We find that the geometric distribution of seepage is strongly controlled by both the ratio of porous media thickness to the horizontal length of the pressure perturbation, and the bottom topography, when it is present. Based on work on the interaction of internal solitary waves with the bottom boundary layer, we develop a model to account for the changes in permeability due to wave-induced instabilities in the bottom boundary layer and enhanced benthic turbulence. This turbulence acts to unplug the pores near the surface by lifting the detritus that clogs them. The resulting changes in permeability significantly enhance exchange between the free fluid and the porous medium on the downstream side of the wave.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2012-11-15
    Description: Investigations of solute transport in fractured rock aquifers often rely on tracer test data acquired at a limited number of observation points. Such data do not, by themselves, allow detailed assessments of the spreading of the injected tracer plume. To better understand the transport behavior in a granitic aquifer, we combine tracer test data with single-hole ground-penetrating radar (GPR) reflection monitoring data. Five successful tracer tests were performed under various experimental conditions between two boreholes 6 m apart. For each experiment, saline tracer was injected into a previously identified packed-off transmissive fracture while repeatedly acquiring single-hole GPR reflection profiles together with electrical conductivity logs in the pumping borehole. By analyzing depth-migrated GPR difference images together with tracer breakthrough curves and associated simplified flow and transport modeling, we estimate (1) the number, the connectivity, and the geometry of fractures that contribute to tracer transport, (2) the velocity and the mass of tracer that was carried along each flow path, and (3) the effective transport parameters of the identified flow paths. We find a qualitative agreement when comparing the time evolution of GPR reflectivity strengths at strategic locations in the formation with those arising from simulated transport. The discrepancies are on the same order as those between observed and simulated breakthrough curves at the outflow locations. The rather subtle and repeatable GPR signals provide useful and complementary information to tracer test data acquired at the outflow locations and may help us to characterize transport phenomena in fractured rock aquifers.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2012-11-15
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2012-11-15
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2012-12-08
    Description: Since 2006, a Joint Observing System Simulation Experiment (OSSE) project has been established at the United States Joint Center for Satellite Data Assimilation. The work provided here documents the simulation of synthetic satellite observations from the OSSE Nature Run (NR) and the evaluation of the simulated results. The Community Radiative Transfer Model was used to produce synthetic satellite observations, which will be assimilated in the Gridpoint Statistical Interpolation system. Synthetic radiances were evaluated through a comparison with real observations and model simulations obtained from National Center for Environmental Prediction (NCEP) Global Forecast System (GFS) 6 h forecast fields. For both IR and microwave sensors, we determined that the bias and the standard deviation of the synthetic radiances were in good agreement with real observations. At the NR initial time, the simulated Advanced Microwave Sounding Unit-A (AMSU-A) radiances reproduced observed AMSU-A interchannel correlations and symmetric angular-dependent features. However, the asymmetric angular-dependent bias, mainly related to AMSU-A instrument polarization misalignment, cloud not be simulated properly. The simulated GOES-12 Sounder radiances indicated that the error characteristics of atmospheric temperature sounding channels were similar to those from the NCEP operational GFS analysis system, and those biases of moisture and surface channels were approximately 2 K. To mimic real observational errors, random (Gaussian distribution) errors with the mean and variance estimated by the differences between observations and GFS fields were added to the synthetic radiances, resulting in a 20–30% increase in the standard deviations of the synthetic radiances.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2012-12-11
    Description: Natural modes of variability on many timescales influence aerosol particle distributions and cloud properties such that isolating statistically significant differences in cloud radiative forcing due to anthropogenic aerosol perturbations (indirect effects) typically requires integrating over long simulations. For state-of-the-art global climate models (GCM), especially those in which embedded cloud-resolving models replace conventional statistical parameterizations (i.e., multiscale modeling framework, MMF), the required long integrations can be prohibitively expensive. Here an alternative approach is explored, which implements Newtonian relaxation (nudging) to constrain simulations with both pre-industrial and present-day aerosol emissions toward identical meteorological conditions, thus reducing differences in natural variability and dampening feedback responses in order to isolate radiative forcing. Ten-year GCM simulations with nudging provide a more stable estimate of the global-annual mean net aerosol indirect radiative forcing than do conventional free-running simulations. The estimates have mean values and 95% confidence intervals of −1.19 ± 0.02 W/m2 and −1.37 ± 0.13 W/m2 for nudged and free-running simulations, respectively. Nudging also substantially increases the fraction of the world's area in which a statistically significant aerosol indirect effect can be detected (66% and 28% of the Earth's surface for nudged and free-running simulations, respectively). One-year MMF simulations with and without nudging provide global-annual mean net aerosol indirect radiative forcing estimates of −0.81 W/m2 and −0.82 W/m2, respectively. These results compare well with previous estimates from three-year free-running MMF simulations (−0.83 W/m2), which showed the aerosol-cloud relationship to be in better agreement with observations and high-resolution models than in the results obtained with conventional cloud parameterizations.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2012-12-11
    Description: Large areas of Amazonian evergreen forest experience seasonal droughts extending for three or more months, yet show maximum rates of photosynthesis and evapotranspiration during dry intervals. This apparent resilience is belied by disproportionate mortality of the large trees in manipulations that reduce wet season rainfall, occurring after 2–3 years of treatment. The goal of this study is to characterize the mechanisms that produce these contrasting ecosystem responses. A mechanistic model is developed based on the ecohydrological framework of TIN (Triangulated Irregular Network)-based Real Time Integrated Basin Simulator + Vegetation Generator for Interactive Evolution (tRIBS+VEGGIE). The model is used to test the roles of deep roots and soil capillary flux to provide water to the forest during the dry season. Also examined is the importance of “root niche separation,” in which roots of overstory trees extend to depth, where during the dry season they use water stored from wet season precipitation, while roots of understory trees are concentrated in shallow layers that access dry season precipitation directly. Observational data from the Tapajós National Forest, Brazil, were used as meteorological forcing and provided comprehensive observational constraints on the model. Results strongly suggest that deep roots with root niche separation adaptations explain both the observed resilience during seasonal drought and the vulnerability of canopy-dominant trees to extended deficits of wet season rainfall. These mechanisms appear to provide an adaptive strategy that enhances productivity of the largest trees in the face of their disproportionate heat loads and water demand in the dry season. A sensitivity analysis exploring how wet season rainfall affects the stability of the rainforest system is presented.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2012-12-12
    Description: Given the coarse scales of coupled atmosphere-ocean global climate models, regional climate models (RCMs) are increasingly relied upon for studies at scales appropriate for many impacts studies. We use outputs from an ensemble of RCMs participating in the North American Regional Climate Change Assessment Program (NARCCAP) to investigate potential changes in seasonal air temperature and precipitation between present (1971–2000) and future (2041–2070) time periods across the northeast United States. The models show a consistent modest cold bias each season and are wetter than observations in winter, spring, and summer. Agreement in spatial variability and pattern correlation is good for air temperature and marginal for precipitation. Two methods were used to evaluate robustness of the mid 21st century change projections; one which estimates model reliability to generate multimodel means and assess uncertainty and a second which depicts multimodel projections by separating lack of climate change signal from lack of model agreement. For air temperature we find changes of 2–3°C are outside the level of internal natural variability and significant at all northeast grid cells. Signals of precipitation increases in winter are significant region wide. Regionally averaged precipitation changes for spring, summer, and autumn are within the level of natural variability. This study raises confidence in mid 21st century temperature projections across the northeast United States and illustrates the value in comprehensive assessments of regional climate model projections over time and space scales where natural variability may obscure signals of anthropogenically forced changes.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2012-12-12
    Description: Black carbon (BC) aerosol absorbs solar radiation and can act as cloud condensation nucleus and ice formation nucleus. The current generation of climate models have difficulty in accurately predicting global-scale BC concentrations. Previously, an ensemble of such models was compared to measurements, revealing model biases in the tropical troposphere and in the polar troposphere. Here global aerosol distributions are simulated using different parameterizations of wet removal, and model results are compared to BC profiles observed in the remote atmosphere to explore the possible sources of these biases. The model-data comparison suggests a slow removal of BC aerosol during transport to the Arctic in winter and spring, because ice crystal growth causes evaporation of liquid cloud via the Bergeron process and, hence, release of BC aerosol back to ambient air. By contrast, more efficient model wet removal is needed in the cold upper troposphere over the tropical Pacific. Parcel model simulations with detailed droplet and ice nucleation and growth processes suggest that ice formation in this region may be suppressed due to a lack of ice nuclei (mainly insoluble dust particles) in the remote atmosphere, allowing liquid and mixed-phase clouds to persist under freezing temperatures, and forming liquid precipitation capable of removing aerosol incorporated in cloud water. Falling ice crystals can scavenge droplets in lower clouds, which also results in efficient removal of cloud condensation nuclei. The combination of models with global-scale BC measurements in this study has provided new, latitude-dependent information on ice formation processes in the atmosphere, and highlights the importance of a consistent treatment of aerosol and moist physics in climate models.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2012-12-12
    Description: Two distinct snowfall events are observed over the region near the Great Lakes during 19–23 January 2007 under the intensive measurement campaign of the Canadian CloudSat/CALIPSO validation project (C3VP). These events are numerically investigated using the Weather Research and Forecasting model coupled with a spectral bin microphysics (WRF-SBM) scheme that allows a smooth calculation of riming process by predicting the rimed mass fraction on snow aggregates. The fundamental structures of the observed two snowfall systems are distinctly characterized by a localized intense lake-effect snowstorm in one case and a widely distributed moderate snowfall by the synoptic-scale system in another case. Furthermore, the observed microphysical structures are distinguished by differences in bulk density of solid-phase particles, which are probably linked to the presence or absence of supercooled droplets. The WRF-SBM coupled with Goddard Satellite Data Simulator Unit (G-SDSU) has successfully simulated these distinctive structures in the three-dimensional weather prediction run with a horizontal resolution of 1 km. In particular, riming on snow aggregates by supercooled droplets is considered to be of importance in reproducing the specialized microphysical structures in the case studies. Additional sensitivity tests for the lake-effect snowstorm case are conducted utilizing different planetary boundary layer (PBL) models or the same SBM but without the riming process. The PBL process has a large impact on determining the cloud microphysical structure of the lake-effect snowstorm as well as the surface precipitation pattern, whereas the riming process has little influence on the surface precipitation because of the small height of the system.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2012-12-12
    Description: Land surface temperature and emissivity (LST&E) data are essential for a wide variety of surface-atmosphere studies, from calculating the evapotranspiration of the Earth's land surface to retrieving atmospheric water vapor. LST&E products are generated from thermal infrared data acquired from sensors such as ASTER and MODIS on NASA's EOS platforms. NASA has identified a major need to develop long-term, consistent products valid across multiple missions, with well-defined uncertainty statistics addressing specific Earth science questions. These products are termed Earth System Data Records (ESDRs) and LST&E have been identified as an important ESDR. Currently a lack of understanding in LST&E uncertainties limits their usefulness in land surface and climate models. To address this issue, a LST&E uncertainty simulator has been developed to quantify and model uncertainties for a variety of TIR sensors and LST algorithms. Using the simulator, uncertainties were estimated for the MODIS and ASTER TES algorithm, including water vapor scaling (WVS). These uncertainties were parameterized according to view angle and estimated total column water vapor for application to real data. The standard ASTER TES algorithm had a RMSE of 3.1 K (1.2 K with WVS), while the MODIS TES algorithm had a RMSE of 4.5 K (1.5 K with WVS). Accuracies in retrieved spectral emissivity for both sensors degraded with higher atmospheric water content, however, with WVS the emissivity uncertainties were reduced to
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2012-12-13
    Description: Bias-correction methods applied to monthly temperature and precipitation data simulated by multiple General Circulation Models (GCMs) are evaluated in this study. Although various methods have been proposed recently, an intercomparison among them using multiple GCM simulations has seldom been reported. Moreover, no previous methods have addressed the issue how to adequately deal with the changes of the statistics of bias-corrected variables from the historical to future simulations. In this study, a new method which conserves the changes of mean and standard deviation of the uncorrected model simulation data is proposed, and then five previous bias-correction methods as well as the proposed new method are intercompared by applying them to monthly temperature and precipitation data simulated from 12 GCMs in the Coupled Model Intercomparison Project (CMIP3) archives. Parameters of each method are calibrated by using 1948–1972 observed data and validated in the 1974–1998 period. These methods are then applied to the GCM future simulations (2073–2097) and the bias-corrected data are intercompared. For the historical simulations, negligible difference can be found between observed and bias-corrected data. However, the differences in future simulations are large dependent on the characteristics of each method. The new method successfully conserves the changes in the mean, standard deviation and the coefficient of variation before and after bias-correction. The differences of bias-corrected data among methods are discussed according to their respective characteristics. Importantly, this study classifies available correction methods into two distinct categories, and articulates important features for each of them.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2012-12-13
    Description: The main point of our study is that aerosol trends can be created by changes in meteorology without changes in aerosol source strength. Over the 10 year period 2000–2009, in October, Moderate Resolution Imaging Spectroradiometer (MODIS) showed strong increasing aerosol optical thickness (AOT) trends of approximately 14% yr−1 over northwest Bay of Bengal (BoB) in the absence of AOT trends over the east of the Indian subcontinent. This was unexpected because sources of anthropogenic pollution were located over the Indian subcontinent and aerosol transport from the Indian subcontinent to northwest BoB was carried out by prevailing winds. In October, winds over the east of the Indian subcontinent were stronger than winds over northwest BoB, which resulted in wind convergence and accumulation of aerosol particles over northwest BoB. Moreover, there was an increasing trend in wind convergence over northwest BoB. This led to increasing trends in the accumulation of aerosol particles over northwest BoB and, consequently, to strong AOT trends over this area. In contrast to October, November showed no increasing AOT trends over northwest BoB or the nearby Indian subcontinent. The lack of AOT trends over northwest BoB corresponds to a lack of trends in wind convergence in that region. Finally, December domestic heating by the growing population resulted in positive AOT trends of similar magnitude over land and sea. Our findings illustrate that in order to explain and predict trends in regional aerosol loading, meteorological trends should be taken into consideration together with changes in aerosol source strength.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2012-12-13
    Description: We use the Whole Atmosphere Community Climate Model, coupled to a deep ocean model, to investigate the impact of continued growth of halogenated ozone depleting substances (ODS) in the absence of the Montreal Protocol. We confirm the previously reported result that the growth of ODS leads to a global collapse of the ozone layer in mid-21st century, with column amounts falling to 100 DU or less at all latitudes. We also show that heterogeneous activation of chlorine in the lower stratosphere hastens this collapse but is not essential to produce it. The growth of ODS, which are also greenhouse gases, produces a radiative forcing of 4 W m−2 by 2070, nearly equal that of the non-ODS greenhouse gases CO2, CH4, and N2O in the RCP4.5 scenario of IPCC. This leads to surface warming of over 2 K in the tropics, 6 K in the Arctic, and close to 4 K in Antarctica in 2070 compared to the beginning of the century. We explore the reversibility of these impacts following complete cessation of ODS emissions in the mid-2050s. We find that impacts are reversed on various time scales, depending on the atmospheric lifetime of the ODS that cause them. Thus ozone in the lower stratosphere in the tropics and subtropics recovers very quickly because the ODS that release chlorine and bromine there (e.g., methyl chloroform and methyl bromide) have short atmospheric lifetimes and are removed within a few years. On the other hand, ozone depletion in the polar caps and global radiative forcing depend on longer-lived ODS, such that much of these impacts persist through the end of our simulations in 2070.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2012-12-13
    Description: We present direct numerical simulation results for both isothermal and density-stratified turbulent flow in an open channel into and around a 120° bend with a bulk Reynolds number of 7500 and Prandtl number of 1.5. The bend is sharp with a radius-to-channel breadth ratio of 1.5. The bulk Richardson number for the stratified flow is 2.4 based on overall channel depth. The gradient Richardson number (Rig) varies between 10 and 20 at the entrance to θ ≈ 60°, where θ is the angular location. Above θ ≈ 60 − 120, Rig ≈ 1. In isothermal flow, the well-known helical flow structure is observed. In stratified conditions, the vertical variation in relative strength of the outward-directed baroclinic pressure gradient and the centrifugal acceleration leads to a more complex circulation structure. In the near bed region and immediately above the interface, the centrifugal acceleration is greater, driving flow radially inward, while just below the density interface the baroclinic pressure gradient is greater, leading to outward-directed flow. This produces a four layer circulation structure with potentially significant implications for sediment erosion and transport. Additionally, this produces a complex dynamic at the density interface where the shear orientation varies through approximately 200° over the mixing layer depth.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2012-12-14
    Description: In the majority of large river systems, flow is regulated and/or otherwise affected by operational and management activities, such as ship locking. The effect of lock operation on sediment-water oxygen fluxes was studied within a 12.9 km long impoundment at the Saar River (Germany) using eddy-correlation flux measurements. The continuous observations cover a time period of nearly 5 days and 39 individual locking events. Ship locking is associated with the generation of surges propagating back and forth through the impoundment which causes strong variations of near-bed current velocity and turbulence. These wave-induced flow variations cause variations in sediment-water oxygen fluxes. While the mean flux during time periods without lock operation was 0.5 ± 0.1 g m−2 d−1, it increased by about a factor of 2 to 1.0 ± 0.5 g m−2 d−1 within time periods with ship locking. Following the daily schedule of lock operations, fluxes are predominantly enhanced during daytime and follow a pronounced diurnal rhythm. The driving force for the increased flux is the enhancement of diffusive transport across the sediment-water interface by bottom-boundary layer turbulence and perhaps resuspension. Additional means by which the oxygen budget of the impoundment is affected by lock-induced flow variations are discussed.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2012-12-15
    Description: Model errors are inevitable in any prediction exercise. One approach that is currently gaining attention in reducing model errors is by combining multiple models to develop improved predictions. The rationale behind this approach primarily lies on the premise that optimal weights could be derived for each model so that the developed multimodel predictions will result in improved predictions. A new dynamic approach (MM-1) to combine multiple hydrological models by evaluating their performance/skill contingent on the predictor state is proposed. We combine two hydrological models, “abcd” model and variable infiltration capacity (VIC) model, to develop multimodel streamflow predictions. To quantify precisely under what conditions the multimodel combination results in improved predictions, we compare multimodel scheme MM-1 with optimal model combination scheme (MM-O) by employing them in predicting the streamflow generated from a known hydrologic model (abcd model or VIC model) with heteroscedastic error variance as well as from a hydrologic model that exhibits different structure than that of the candidate models (i.e., “abcd” model or VIC model). Results from the study show that streamflow estimated from single models performed better than multimodels under almost no measurement error. However, under increased measurement errors and model structural misspecification, both multimodel schemes (MM-1 and MM-O) consistently performed better than the single model prediction. Overall, MM-1 performs better than MM-O in predicting the monthly flow values as well as in predicting extreme monthly flows. Comparison of the weights obtained from each candidate model reveals that as measurement errors increase, MM-1 assigns weights equally for all the models, whereas MM-O assigns higher weights for always the best-performing candidate model under the calibration period. Applying the multimodel algorithms for predicting streamflows over four different sites revealed that MM-1 performs better than all single models and optimal model combination scheme, MM-O, in predicting the monthly flows as well as the flows during wetter months.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2012-12-15
    Description: The potential for riverine drinking source water to become contaminated with pathogens is related to the production and transport of fecal waste from within the local catchment area. Identifying specific relationships between land-use types and fecal contamination in riverine water provides an indication of the risk associated with land-use change and helps to target mitigation measures toward land-use types of concern. Fecal coliform (FC) data from 42 riverine sites across British Columbia (BC), Canada, were examined in relation to land-use composition (including 16 land-use types) in the local catchment area. FC concentration significantly increased in relation to anthropogenic land-use impacts but was negatively associated with undisturbed and high-elevation land types. Regression tree analysis identified that highest FC concentrations occurred in catchments characterized by more than 12.5% agricultural land and more than 1.6% urban land. Furthermore, the risk of violation of the BC partial treatment raw drinking water quality guideline for FC concentration (100 CFU 100 mL−1) increased in relation to agricultural impacts. Additional factors, such as sewage treatment discharge, low dilution in smaller streams, and higher temperatures, were associated with higher FC concentration among sites with similar levels of agricultural development. These results identify land-use types that present the greatest threat to riverine contamination, namely agricultural and urban land, and indicate the proportion of such land use associated with high contamination. Land use should be managed and source water protection should be targeted in light of these results so as to minimize the risk of surface water exposure to fecal contaminants.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2012-09-25
    Description: This study presents the aerosol radiative forcing derived from airborne measurements of shortwave spectral irradiance during the 2010 Research at the Nexus of Air Quality and Climate Change (CalNex). Relative forcing efficiency, the radiative forcing normalized by aerosol optical thickness and incident irradiance, is a means of comparing the aerosol radiative forcing for different conditions. In this study, it is used to put the aerosol radiative effects of an air mass in the Los Angeles basin in context with case studies from three field missions that targeted other regions and aerosol types, including a case study from the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS). For CalNex, we relied on irradiance measurements onboard the NOAA P-3 aircraft during a flight on 19 May 2010 over a ground station. CalNex presented a difficulty for determining forcing efficiency since one of the input parameters, optical thickness, was not available from the same aircraft. However, extinction profiles were available from a nearby aircraft. An existing retrieval algorithm was modified to use those measurements as initial estimate for the missing optical thickness. In addition, single scattering albedo and asymmetry parameter (secondary products of the method), were compared with CalNex in situ measurements. The CalNex relative forcing efficiency spectra agreed with earlier studies that found this parameter to be constrained at each wavelength within 20% per unit of aerosol optical thickness at 500 nm regardless of aerosol type and experiment, except for highly absorbing aerosols sampled near Mexico City. The diurnally averaged below-layer forcing efficiency integrated over the wavelength range of 350–700 nm for CalNex is estimated to be −58.6 ± 13.8 W/m2, whereas for the ARCTAS case it is −48.7 ± 11.5 W/m2.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2012-09-25
    Description: Ice formation induced by atmospheric particles through heterogeneous nucleation is not well understood. Onset conditions for heterogeneous ice nucleation and water uptake by particles collected in Los Angeles and Mexico City were determined as a function of temperature (200–273 K) and relative humidity with respect to ice (RHice). Four dominant particle types were identified including soot associated with organics, soot with organic and inorganics, inorganic particles of marine origin coated with organic material, and Pb/Zn-containing particles apportioned to emissions relevant to waste incineration. Single particle characterization was provided by micro-spectroscopic analyses using computer controlled scanning electron microscopy with energy dispersive analysis of X-rays (CCSEM/EDX) and scanning transmission X-ray microscopy with near edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS). Above 230 K, significant differences in onsets of water uptake and immersion freezing of different particle types were observed. Below 230 K, particles exhibited high deposition ice nucleation efficiencies and formed ice at RHice well below homogeneous ice nucleation limits. The data suggest that water uptake and immersion freezing are more sensitive to changes in particle chemical composition compared to deposition ice nucleation. The data demonstrate that anthropogenic and marine influenced particles, exhibiting various chemical and physical properties, possess distinctly different ice nucleation efficiencies and can serve as efficient IN at atmospheric conditions typical for cirrus and mixed-phase clouds.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2012-09-25
    Description: In the absence of model deficiencies, simulation results at the correct parameter values lead to an unbiased description of observed data with remaining deviations due to observation errors only. However, this ideal cannot be reached in the practice of environmental modeling, because the required simplified representation of the complex reality by the model and errors in model input lead to errors that are reflected in biased model output. This leads to two related problems: First, ignoring bias of output in the statistical model description leads to bias in parameter estimates, model predictions and, in particular, in the quantification of their uncertainty. Second, as there is no objective choice of how much bias to accept in which output variable, it is not possible to design an “objective” model calibration procedure. The first of these problems has been addressed by introducing a statistical (Bayesian) description of bias, the second by suggesting the use of multiobjective calibration techniques that cannot easily be used for uncertainty analysis. We merge the ideas of these two approaches by using the prior of the statistical bias description to quantify the importance of multiple calibration objectives. This leads to probabilistic inference and prediction while still taking multiple calibration objectives into account. The ideas and technical details of the suggested approach are outlined and a didactical example as well as an application to environmental data are provided to demonstrate its practical feasibility and computational efficiency.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2012-09-25
    Description: The hydraulics of step-pool streams are characterized by rapidly varied flow at the step crest, a hydraulic jump, and gradually varied flow in the pool unit of the step-pool sequence. The flow characteristics at the step crests act as the hydraulic control for the water surface profile within the upstream pool unit. Using both field and flume investigations, we demonstrate the use of weir flow concepts for assessing and categorizing the hydraulic characteristics of natural step-crests in step-pool streams. We categorize the results of our investigations in terms of the crest-clast, planform, longitudinal, and instream wood geometries of the step crests. The broad-crested weir equation can be expressed as Q = C* g0.5Wh3/2, where Q is the flowrate, C* is a dimensionless discharge coefficient, W is the crest width, g is the acceleration of gravity, and h is the upstream flow depth above the step crest. Although the flow over a natural step is generally more complex than for an engineered weir, the results of our investigations indicate that the C*-value for simulated and natural steps increases linearly as a function of the upstream head (h), with C* values ranging from 0.15 to 0.97. As a result, the application of weir flow concepts to natural steps provides means for (1) indirectly estimating flow rates; (2) characterizing the hydraulics for individual steps; (3) defining external and/or internal boundary conditions at step crests for hydraulic model simulations of natural or restored step-pool streams; and (4) estimating the upstream pressure force acting on step-crest clasts.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2012-09-22
    Description: The planetary boundary layer (PBL) height is a key variable in climate modeling and has an enormous influence on air pollution. A method based on the wavelet covariance transform (WCT) applied to lidar data is tested in this paper as an automated and non-supervised method to obtain the PBL height. The parcel and the Richardson number methods applied to radiosounding data and the parcel method applied to microwave radiometer temperature profiles are used as independent measurements of the PBL height in order to optimize the parameters required for its detection using the WCT method under different atmospheric conditions. This optimization allows for a one-year statistical analysis of the PBL height at midday over Granada (southeastern Spain) from lidar data. The PBL height showed a seasonal cycle, with higher values in summer and spring while lower values were found in winter and autumn. The annual mean was 1.7 ± 0.5 km a.s.l. during the study period. The relationship of the PBL height with aerosol properties is also analyzed for the one-year period.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2012-09-22
    Description: This study presents a second generation of homogenized monthly mean surface air temperature data set for Canadian climate trend analysis. Monthly means of daily maximum and of daily minimum temperatures were examined at 338 Canadian locations. Data from co-located observing sites were sometimes combined to create longer time series for use in trend analysis. Time series of observations were then adjusted to account for nation-wide change in observing time in July 1961, affecting daily minimum temperatures recorded at 120 synoptic stations; these were adjusted using hourly temperatures at the same sites. Next, homogeneity testing was performed to detect and adjust for other discontinuities. Two techniques were used to detect non-climatic shifts in de-seasonalized monthly mean temperatures: a multiple linear regression based test and a penalized maximal t test. These discontinuities were adjusted using a recently developed quantile-matching algorithm: the adjustments were estimated with the use of a reference series. Based on this new homogenized temperature data set, annual and seasonal temperature trends were estimated for Canada for 1950–2010 and Southern Canada for 1900–2010. Overall, temperature has increased at most locations. For 1950–2010, the annual mean temperature averaged over the country shows a positive trend of 1.5°C for the past 61 years. This warming is slightly more pronounced in the minimum temperature than in the maximum temperature; seasonally, the greatest warming occurs in winter and spring. The results are similar for Southern Canada although the warming is considerably greater in the minimum temperature compared to the maximum temperature over the period 1900–2010.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2012-09-22
    Description: This study aims at quantifying the most important factors affecting variations in downward surface shortwave radiation (DSW) in Europe including cloud cover and atmospheric circulation patterns. The role of observed cloud cover on DSW was analyzed through generalized linear models using DSW measurements obtained from the Global Energy Balance Archive during 1971–1996. Stations of DSW in Europe were selected to assess how they were affected by clouds. Overall cloud cover had a statistically significant negative relationship and a non-significant positive relationship on DSW for relatively nearby and distant cloud cover stations, respectively. The exception was west-central Europe where a significant negative effect over the whole continent was found suggesting an association with larger cloud structures. This showed that point DSW measurements can be spatially representative for larger scale variability. In line with other studies we found a strong seasonal effect of cloud cover on DSW mainly in northern Europe in spring and summer and in southern Europe in winter and autumn. The North Atlantic Oscillation was most important in winter with a significant negative effect in northern to central Europe and a positive non-significant effect in the south. The Mediterranean Oscillation exhibited mainly a positive effect in winter with significance in southern Europe and non-significance in central Europe. The North Sea Caspian Pattern primarily showed a positive effect with significance in east-central and northern Europe in spring and summer. The interrelationship found between these climatic variables could improve the understanding of a linkage to temperature and precipitation patterns in Europe.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2012-09-22
    Description: Surface ground-penetrating radar (GPR) techniques have been used by a number of previous researchers to characterize soil moisture content in the vadose zone. However, limited temporal sampling and low resolution near the surface in these studies greatly impedes the quantitative analysis of vertical soil moisture distribution and its associated dynamics within the shallow subsurface. To further examine the capacity of surface GPR, we have undertaken an extensive 26 month field study using concurrent high-frequency (i.e., 900 MHz) reflection profiling and common-midpoint (CMP) soundings to quantitatively monitor soil moisture distribution and dynamics within the shallow vadose zone. This unprecedented data set allowed us to assess the concurrent use of these techniques over two contrasting annual cycles of soil conditions. Reflection profiles provided high-resolution traveltime data between four stratigraphic reflection events while cumulative results of the CMP sounding data set produced precise depth estimates for those reflecting interfaces, which were used to convert interval-traveltime data into soil moisture. The downward propagation of major infiltration episodes associated with seasonal and transient events are well resolved by the GPR data. The use of CMP soundings permitted the determination of direct ground wave velocities, which provided high-resolution information along the air-soil interface. This improved resolution enabled better characterization of short-duration wetting/drying and freezing/thawing processes, and permitted better evaluation of the nature of the coupling between shallow and deep moisture conditions. The nature of transient infiltration pulses, evapotranspiration episodes, and deep drainage patterns observed in the GPR data series were further examined by comparing them with a vertical soil moisture flow simulation based on the variably saturated model, HYDRUS-1D. Using laboratory-derived soil hydraulic property information from soil samples and a number of simplifying assumptions about the upper and lower-boundary condition, we were able to achieve very good agreement between measured and simulated soil moisture profiles without model calibration; this is a strong indication of the overall quality of the GPR-derived soil moisture estimates. The only notable difference between simulated values and GPR water content estimates occurred during extended dry soil conditions near the surface.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2012-09-22
    Description: Typhoon rainfall characteristics over a mesoscale mountainous watershed (drainage area of 620 km2) located in eastern Taiwan were analyzed to fill the gaps in our knowledge concerning the linkage between typhoon track, rainfall patterns, and flood peak time. This study used spatially high-resolution radar-derived rainfall estimates from 38 storm events (∼2800 h) to investigate this linkage. The effect of spatial rainfall patterns on the timing of flood peak for the selected events was examined with the aid of a diffusive wave model. The results show that the typhoon rainfall was spatially aggregated and that the relative variations in the rainfall became smaller at higher rainfall rates. The maximum hourly rainfall was approximately twice the areal mean rainfall. Three major rainfall types were identified statistically, and different typhoon tracks appeared to have preferable rainfall types. This finding is presumably due to the interaction of the typhoon circulation and precipitation with the mountainous landscape. Flood lead times were derived for the different rainfall types, and it was found that differences in their lead times could be as large as ∼3 h over the studied mesoscale watershed. It is recommended that this empirical approach be incorporated into flood forecasting and warning systems.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2012-09-26
    Description: Quantification of precipitation extremes is important for flood planning purposes, and a common measure of extreme events is the T year return level. Extreme precipitation depths in Belgium are analyzed for accumulation durations ranging from 10 min to 30 days. Spatial generalized extreme value (GEV) models are presented by considering multisite data and relating GEV parameters to geographical/climatological covariates through a common regression relationship. Methods of combining data from several sites are in common use, and in such cases, there is likely to be nonnegligible intersite dependence. However, parameter estimation in GEV models is generally done with the maximum likelihood estimation method (MLE) that assumes independence. Estimates of uncertainty are adjusted for spatial dependence using methodologies proposed earlier. Consistency of GEV distributions for various durations is obtained by fitting a smooth function to the preliminary estimations of the shape parameter. Model quality has been assessed by various statistical tests and indicates the relevance of our approach. In addition, a methodology is applied to account for the fact that measurements have been made in fixed intervals (usually 09:00 UTC–09:00 UTC). The distribution of the annual sliding 24 h maxima was specified through extremal indices of a more than 110 year time series of 24 h aggregated 10 min rainfall and daily rainfall. Finally, the selected models are used for producing maps of precipitation return levels.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2012-09-26
    Description: In the present study a new method of calculating droplet concentration near cloud base is proposed. The ratio of maximum supersaturation Smax to the liquid water mixing ratio when Smax is reached near cloud base is found to be universal, and it does not depend on the vertical velocity w and droplet number concentration N. It is found that Smax depends on vertical velocity as Smax ∝ w3/4 and on droplet concentration as Smax ∝ N−1/2. The droplet concentration calculated using the simple approach agrees well with exact solutions obtained numerically using high precision parcel models. Comparison with the results of other parameterizations is presented. It is demonstrated that the approach proposed in the study can be applied to an arbitrary form of activation spectra or any CCN size distribution given either analytically or by tables. Moreover, it can be applied for the cases when the CCN size spectrum changes with time. Temperature dependencies of Smax and related quantities are analyzed.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2012-09-29
    Description: We investigate the representation of the Sierra Barrier Jet (SBJ) in four numerical models at different resolutions, primarily documenting its representation within a high-resolution (6 km), 11-year WRF reanalysis downscaling (WRF-RD). A comprehensive validation of this dynamical downscaling is undertaken during 11 cool seasons (water years 2001–2011, October to March) using available wind profiler data at Chico, CA (CCO). We identify SBJ cases in the observed CCO wind profiler data, as well as in WRF-RD at the closest grid point. WRF-RD's representation of the SBJ at CCO is compared with that of other reanalysis products with coarser horizontal resolutions (i.e., the North American Regional Reanalysis (NARR), the California Reanalysis downscaling, and the NCEP/NCAR Reanalysis) to assess whether downscaling is necessary to correctly capture this topographically induced low-level jet. Detailed comparisons across California between WRF-RD and NARR suggest downscaling is necessary: Only WRF-RD at 6 km resolution is well-capturing this dynamical feature. A catalog of modeled SBJ events that have significant timing overlap with observations is created and used to further assess WRF-RD's representation of SBJ events. In addition, observation-model comparisons of other meteorologically important variables (e.g., precipitation melting level, wind profiles, temperature, and relative humidity) are performed in order to evaluate WRF-RD's ability to capture the dynamical evolution of the SBJ. The detailed, case-by-case comparisons reveal WRF-RD accurately represents 56 percent of the 256 observed SBJ cases occurring during these 11 cool seasons, albeit with a weak wind bias that increases with jet maximum wind strength.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2012-09-29
    Description: Decadal changes in surface air temperature (SAT) variability and cold surge characteristics over Northeast Asia during late winter (January–March) are analyzed for the past three decades. Power spectrum analysis of SAT reveals that the low-frequency variabilities with a period longer than 10 days are significantly enhanced, while the high-frequency variabilities with a period shorter than 10 days are weakened in the 1980s and 2000s. Moreover, cold surges were stronger and lasted longer during the 1980s and 2000s compared to those that occurred in the 1990s. Here, we propose that large-scale atmospheric conditions manifested by a different phase of the Arctic Oscillation (AO) provide preconditioning for a cold surge event, which showed a prominent decadal fluctuation. The more (less) frequent strong and long-lasting cold surge occurrences in the 1980s and 2000s (1990s) are preceded by the more dominant negative (positive) phase of the AO. Lag-composite analyses for cold surge events categorized by the AO phases indicate that stronger and longer-lasting cold air advection dominates at the lower-level, when upper-level wave train and coastal trough are developed over East Asia under the strong negative AO phase. These results suggest that the decadal changes in SAT variability and cold surge characteristics are strongly associated with the decadal changes in the phase distribution of the AO.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2012-09-29
    Description: Our previous studies examined how vegetation feedback at the seasonal time scale influenced the impact of soil moisture anomalies (SMAs) on subsequent summer precipitation with a modified version of the coupled Community Atmosphere Model-Community Land Model 3 that includes a predictive phenology scheme. Here we investigate the climatology sensitivity of soil moisture-vegetation-precipitation feedback using the same model as the baseline model (BASE) and its derivative with modifications to the model runoff parameterization as the experiment model (EXP), in which we eliminate the subsurface lateral drainage to reduce the known dry biases of BASE. With vegetation feedback ignored, precipitation is more sensitive to wet SMAs than dry SMAs in BASE; opposite to BASE, the wetter mean soil moisture in EXP leads to higher sensitivity of precipitation to dry SMAs than to wet SMAs. However, in both BASE and EXP, the impact of dry SMAs on subsequent precipitation persists longer than the impact of wet SMAs. With vegetation feedback included, EXP shows a positive feedback between vegetation and precipitation following both dry and wet SMAs in summer, while BASE shows a positive feedback following wet SMAs only, with no clear signal following dry SMAs due to dry soil biases. In BASE, the magnitude of precipitation changes due to vegetation feedback is comparable to that due to soil moisture feedback when more realistic SMAs are applied. In addition, a major difference is found in spring when the vegetation impact on subsequent precipitation is negative and significant in BASE, but not significant in EXP.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
  • 91
    Publication Date: 2012-09-29
    Description: In reservoirs used for geologic CO2 sequestration, brine films remaining on mineral surfaces can influence flow, diffusion, and reactions. We have investigated how the capillary (disjoining) potential influences the thickness of a KCsI2 brine film on both smooth and rough SiO2 surfaces [root mean square roughness (Rrms), 1.6 and 330 nm, respectively], under confinement with supercritical (sc) CO2. The thicknesses of brine films coating interior surfaces of SiO2 windows in a high-pressure cell were determined through synchrotron X-ray fluorescence of two tracer ions (I− and Cs+) at 7.8 MPa and 40°C (representative of conditions at about 0.78 km below the land surface), with scCO2 as the immiscible confining fluid. The measured area-averaged film thicknesses on the 330 nm Rrms silica surface ranged from 265 to 249 nm for capillary potentials measured within a narrow range from 0.18 to 3.7 kPa. Over this same range of potentials, film thicknesses measured on the smooth (1.6 nm Rrms) silica surface were about 2 nm, although equilibrium does not appear to have been achieved. The measured average brine film thicknesses were strongly controlled by surface roughness, with very weak variation in response to the fairly narrow range of tested capillary potentials.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2012-10-02
    Description: We provide a new quasi-analytical method to compute the subgrid topographic influences on the shortwave radiation fluxes and the effective albedo in complex terrain as required for large-scale meteorological, land surface, or climate models. We investigate radiative transfer in complex terrain via the radiosity equation on isotropic Gaussian random fields. Under controlled approximations we derive expressions for domain-averaged fluxes of direct, diffuse, and terrain radiation and the sky view factor. Domain-averaged quantities can be related to a type of level-crossing probability of the random field, which is approximated by long-standing results developed for acoustic scattering at ocean boundaries. This allows us to express all nonlocal horizon effects in terms of a local terrain parameter, namely, the mean-square slope. Emerging integrals are computed numerically, and fit formulas are given for practical purposes. As an implication of our approach, we provide an expression for the effective albedo of complex terrain in terms of the Sun elevation angle, mean-square slope, the area-averaged surface albedo, and the ratio of atmospheric direct beam to diffuse radiation. For demonstration we compute the decrease of the effective albedo relative to the area-averaged albedo in Switzerland for idealized snow-covered and clear-sky conditions at noon in winter. We find an average decrease of 5.8% and spatial patterns which originate from characteristics of the underlying relief. Limitations and possible generalizations of the method are discussed.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2012-10-02
    Description: The upper troposphere and lower stratosphere (UTLS) plays an important role in climate and atmospheric chemistry. Despite its importance on the point of causing deep intrusions of tropics originated air into the midlatitudes, the quasi-horizontal transport process in the UTLS, represented by global chemistry-transport models (CTMs) or chemistry-climate models (CCMs), cannot easily be diagnosed with conventional analyses on isobaric surfaces. We use improved diagnostic tools to better evaluate CTMs and CCMs relative to satellite observations in the region of UTLS. Using the Hellinger distance, vertical profiles of probability density functions (PDFs) of chemical tracers simulated by the Model for OZone And Related chemical Tracers 3.1 (MOZART-3.1) are quantitatively compared with satellite data from the Microwave Limb Sounder (MLS) instrument in the tropopause relative altitude coordinate to characterize features of tracer distributions near the tropopause. Overall, the comparison of PDFs between MLS and MOZART-3.1 did not satisfy the same population assumption. Conditional PDFs are used to understand the meteorological differences between global climate models and the real atmosphere and the conditional PDFs between MOZART-3.1 and MLS showed better agreement compared to the original PDFs. The low static stability during high tropopause heights at midlatitudes suggests that the variation of tropopause height is related to transport processes from the tropics to midlatitudes. MOZART-3.1 with the GEOS4 GCM winds reproduces episodes of the tropical air intrusions. However, our diagnostic analyses show that the GEOS4 GCM did not properly reproduce the high tropopause cases at midlatitudes especially in spring.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2012-10-02
    Description: A well-established precept in forest hydrology is that any reduction of forest cover will always have a progressively smaller effect on floods with increasing return period. The underlying logic in snow environments is that during the largest snowmelt events the soils and vegetation canopy have little additional storage capacity and under these conditions much of the snowmelt will be converted to runoff regardless of the amount or type of vegetation cover. Here we show how this preconceived physical understanding, reinforced by the outcomes of numerous paired watershed studies, is indefensible because it is rationalized outside the flood frequency distribution framework. We conduct a meta-analysis of postharvest data at four catchments (3–37 km2) with moderate level of harvesting (33%–40%) to demonstrate how harvesting increases the magnitude and frequency of all floods on record (19–99 years) and how such effects can increase unchecked with increasing return period as a consequence of changes to both the mean (+11% to +35%) and standard deviation (−12% to +19%) of the flood frequency distribution. We illustrate how forest harvesting has substantially increased the frequency of the largest floods in all study sites regardless of record length and this also runs counter to the prevailing wisdom in hydrological science. The dominant process responsible for these newly emerging insights is the increase in net radiation associated with the conversion from longwave-dominated snowmelt beneath the canopy to shortwave-dominated snowmelt in harvested areas, further amplified or mitigated by basin characteristics such as aspect distribution, elevation range, slope gradient, amount of alpine area, canopy closure, and drainage density. Investigating first order environmental controls on flood frequency distributions, a standard research method in stochastic hydrology, represents a paradigm shift in the way harvesting effects are physically explained and quantified in forest hydrology literature.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2012-10-02
    Description: Surface transient storage (STS) has functional significance in stream ecosystems because it increases solute interaction with sediments. After volume, mean residence time is the most important metric of STS, but it is unclear how this can be measured accurately or related to other timescales and field-measureable parameters. We studied mean residence time of lateral STS in small streams over Reynolds numbers (Re) 5000–200,000 and STS width to length (W/L) aspect ratios between 0.2–0.75. Lateral STS have flow fields characterized by a shear layer spanning the length of the STS entrance, and one primary gyre and one or more secondary gyre(s) in the STS. The study's purpose was to define, measure, and compare residence timescales: volume to discharge ratio (Langmuir timescale); area under normalized concentration curve; and characteristic time of exponential decay, and to compare these timescales to field measureable parameters. The best estimate of STS mean residence time—primary gyre residence time—was determined to be the first characteristic time of exponential decay. An apparent mean residence time can arise, which is considerably larger than other timescales, if probes are placed within secondary gyre(s). The Langmuir timescale is the minimum mean residence time, and is linearly correlated to channel velocity and STS width. The lateral STS mean residence time can be predicted using a physically based hydromorphic timescale derived by Uijttewaal et al. (2001) with an entrainment coefficient of 0.031 ± 0.009 for the Re and W/L studied.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2012-10-03
    Description: Multidecadal-scale changes in atmospheric temperature have been measured by both radiosondes and the satellite-borne microwave sounding unit (MSU). Both measurement systems exhibit substantial time varying biases that need to removed to the extent possible from the raw data before they can be used to assess climate trends. A number of methods have been developed for each measurement system, leading to the creation of several homogenized data sets. In this work, we evaluate the agreement between MSU and homogenized radiosonde data sets on multiyear (predominantly 5-year) time scales and find that MSU data sets are often more similar to each other than to radiosonde data sets and vice versa. Furthermore, on these times scales the differences between MSU data sets are often not larger than published internal uncertainty estimates for the RSS product alone and therefore may not be statistically significant when the internal uncertainty in each data set is taken into account. Given the data limitations it is concluded that using radiosondes to validate multidecadal-scale trends in MSU data, or vice versa, or trying to use such metrics alone to pick a ‘winner’ is an ill-conditioned approach and has limited utility without one or more of additional independent measurements, or methodological, or physical analysis.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2012-10-05
    Description: Gas and fine particle (PM2.5) phase formic acid concentrations were measured with online instrumentation during separate one-month studies in the summer of 2010 in Los Angeles (LA), CA, and Atlanta, GA. In both urban environments, median gas phase concentrations were on the order of a few ppbv (LA 1.6 ppbv, Atlanta 2.3 ppbv) and median particle phase concentrations were approximately tens of ng/m3 (LA 49 ng/m3, Atlanta 39 ng/m3). LA formic acid gas and particle concentrations had consistent temporal patterns; both peaked in the early afternoon and generally followed the trends in photochemical secondary gases. Atlanta diurnal trends were more irregular, but the mean diurnal profile had similar afternoon peaks in both gas and particle concentrations, suggesting a photochemical source in both cities. LA formic acid particle/gas (p/g) ratios ranged between 0.01 and 12%, with a median of 1.3%. No clear evidence that LA formic acid preferentially partitioned to particle water was observed, except on three overcast periods of suppressed photochemical activity. Application of Henry's Law to predict partitioning during these periods greatly under-predicted particle phase formate concentrations based on bulk aerosol liquid water content (LWC) and pH estimated from thermodynamic models. In contrast to LA, formic acid partitioning in Atlanta appeared to be more consistently associated with elevated relative humidity (i.e., aerosol LWC), although p/g ratios were somewhat lower, ranging from 0.20 to 5.8%, with a median of 0.8%. Differences in formic acid gas absorbing phase preferences between these two cities are consistent with that of bulk water-soluble organic carbon reported in a companion paper.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2012-10-04
    Description: Hydraulic stimulation of subsurface rocks is performed in developing geothermal and hydrocarbon reservoirs to create permeable zones and enhance flow and transport in low-permeability formations. Borehole fluid injection often induces measurable microearthquakes (MEQs). While the nature and source of the processes that lead to triggering of these events is yet to be fully understood, a major hypothesis has linked these events to an increase in pore pressure that decreases the effective compressional stress and causes sliding along preexisting cracks. Based on this hypothesis, the distribution of the resulting microseismicity clouds can be viewed as monitoring data that carry important information about the spatial distribution of hydraulic rock properties. However, integration of fluid-induced microseismicity events into prior rock permeability distributions is complicated by the discrete nature of the MEQ events, which is not amenable to well-established inversion methods. We use kernel density estimation to first interpret the MEQ data events as continuous seismicity density measurements and, subsequently, assimilate them to estimate rock permeability distribution. We apply the ensemble Kalman filter (EnKF) for microseimic data integration where we update a prior ensemble of permeability distributions to obtain a new set of calibrated models for prediction. The EnKF offers several advantages for this application, including the ensemble formulation for uncertainty assessment, convenient gradient-free implementation, and the flexibility to incorporate various failure mechanisms and additional data types. Using several numerical experiments, we illustrate the suitability of the proposed approach for characterization of reservoir hydraulic properties from discrete MEQ monitoring measurements.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2012-10-13
    Description: Multiple descriptors of wind climates over the contiguous USA from a suite of thirteen simulations conducted with five Regional Climate Models (RCMs) nested within reanalysis data and four Global Climate Models are evaluated relative to the North American Regional Reanalysis (NARR) and independent observations. Application of the RCMs improves ‘forecasts’ of wind climates during 1979–2000 relative to the driving reanalysis, and the RCMs exhibit some skill in depicting historical wind regimes. However, the relative paucity of reference data sets for wind climates represents a significant challenge to evaluation of the modeled wind climates. Simulation of intense and extreme wind speeds by the RCMs are, to some degree, independent of the lateral boundary conditions, and instead exhibit greater dependence on the RCM architecture. RCMs that do not employ a hydrostatic formulation have higher skill in manifesting the macro-scale variability of extreme (20 and 50 year return period) wind speeds even when the RCM are applied at the spatial resolution of 50 km. Output from RCM simulations conducted for the middle of the current century (2041–2062) indicate some evidence of lower intense wind speeds particularly in the western U.S., but no difference in extreme wind speeds, relative to 1979–2000.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2012-10-13
    Description: The local ensemble transform (ET) analysis perturbation scheme is adapted to generate perturbations to both atmospheric variables and sea-surface temperature (SST). The adapted local ET scheme is used in conjunction with a prognostic model of SST diurnal variation and the Navy Operational Global Atmospheric Prediction System (NOGAPS) global spectral model to generate a medium-range forecast ensemble. When compared to a control ensemble, the new forecast ensemble with SST variation exhibits notable differences in various physical properties including the spatial patterns of surface fluxes, outgoing longwave radiation (OLR), cloud radiative forcing, near-surface air temperature and wind speed, and 24-h accumulated precipitation. The structure of the daily cycle of precipitation also is substantially changed, generally exhibiting a more realistic midday peak of precipitation. Diagnostics of ensemble performance indicate that the inclusion of SST variation is very favorable to forecasts in the Tropics. The forecast ensemble with SST variation outscores the control ensemble in the Tropics across a broad set of metrics and variables. The SST variation has much less impact in the Midlatitudes. Further comparison shows that SST diurnal variation and the SST analysis perturbations are each individually beneficial to the forecast from an overall standpoint. The SST analysis perturbations have broader benefit in the Tropics than the SST diurnal variation, and inclusion of the SST analysis perturbations together with the SST diurnal variation is essential to realize the greatest gains in forecast performance.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...