ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (1,218)
  • Wiley  (1,218)
  • 2015-2019  (1,218)
  • 2010-2014
  • 1980-1984
  • 1960-1964
  • 1925-1929
  • 2019  (1,218)
  • 1984
  • 1926
  • Geophysical Research Letters  (1,218)
  • 4905
  • 1
    Publication Date: 2019
    Description: Abstract Deltaic deposits mapped along the martian crustal dichotomy boundary scarp have been suggested to delineate an ancient ocean in the northern lowlands of Mars. Using recently acquired orbital data, we have expanded the dichotomy delta inventory and performed an updated analysis of delta front elevations, a proxy for paleo‐water levels. Our analysis focused near Gale crater, home of the Curiosity rover. We found that delta front elevations vary by ca. 2400 meters, but these elevation variations do not correspond to modeled deformation from true polar wander or Tharsis. Locally, delta front elevations vary by ≤60 meters, and using present‐day topography, they correspond to distinct enclosed basins. We infer that these deltas formed in paleo‐lakes up to ca. 13,000 km2 and ca. 0.4 kilometers deep, perhaps coeval with paleo‐lakes in Gale. Our results suggest that a northern ocean is not needed to explain the deltaic deposits in the Gale crater region.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019
    Description: Abstract On 3 January 1975, the largest shallow moonquake (MW 4.1) occurred at Laue impact crater on the Moon. The fault responsible for the moonquake and origins of coseismic boulder avalanches are unknown. Our study reveals a set of previously unreported, seismically active, young lobate scarps near the epicenter. In addition, hundreds of boulder falls are observed on the interior walls of two impact craters on either side of the lobate scarps. The varying preservation levels and crater size‐frequency distributions of impact craters superimposed on the boulder falls indicate their episodic origins at 1.6 Ma and during the 1975 shallow moonquake. Our ground motion simulations confirm that the MW 4.1 moonquake along the lobate scarp at 1‐ to 5‐km focal depths produced strong ground shaking that triggered the boulder avalanches. Also, the fault slip along the Lorentz basin wall beneath the Laue crater floor produced the lobate scarps and the shallow moonquakes.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019
    Description: Abstract High‐speed video and electric field change data have been used to examine the initiation and propagation of 21 recoil leaders, 7 of which evolved into dart (or dart‐stepped) leaders (DLs) initiating return strokes and 14 were attempted leaders (ALs), in a Canton‐Tower upward flash. Three DLs and two ALs clearly exhibited bidirectional extension. Each DL was preceded by one or more ALs and initiated near the extremity of the positive end of the preceding AL. The positive end of each bidirectional DL generally appeared to be inactive (stationary) or intermittently propagated along the positive part of the preceding AL channel and extended into the virgin air. A sequence of two floating channel segments were formed ahead of the approaching positive end of one DL, causing its abrupt elongation.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019
    Description: Abstract On 24 December 2018, a violent eruption started at Mount Etna from a fissure on the southeastern flank. The intrusive phenomenon, accompanied by intense Strombolian and lava fountain activity, an ash‐rich plume, and lava flows, was marked by significant ground deformation and seismicity. In this work, we show how an integrated investigation combining high‐rate GPS data, volcano‐tectonic earthquakes, volcanic tremor, infrasound tremor, and infrasound events allows tracking the magma intrusion phenomenon spatially and temporally with unprecedented resolution. Moreover, it enabled showing how the central magma column lowered as a response to the flank eruption and to constrain the zone of interaction between the dike and the central plumbing system at a depth of 2–4 km below sea level. This is important for understanding flank and summit interaction, suggesting that explosive summit activity may in some cases be driven by lateral dike intrusions.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019
    Description: Abstract Arctic amplification (AA) is typically associated with Planck, lapse rate, and ice albedo feedbacks. However, the relative importance of poleward energy transport on AA remains uncertain. Here, we analyze integrations from a Chemistry Climate Model to investigate the impact of the Montreal Protocol on forcing, feedback, and transport contributions to AA. Two ensembles of future integrations are considered—one projecting decreasing ozone‐depleting substance concentrations and stratospheric ozone recovery and another assuming that ozone‐depleting substances are not regulated (the “World Avoided”). We find similar degrees of AA in both ensembles, despite a negative radiative forcing over the Arctic in the “World Avoided” from massive ozone loss. That negative radiative forcing is primarily balanced from positive atmospheric energy flux convergence and long‐wave cloud feedbacks. Our results highlight the impact of inhomogeneous radiative forcing on regional differences in forcing and feedback strength and the importance of radiative forcing meridional structure on poleward energy transport.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019
    Description: Abstract We examine oceanic drivers of widespread droughts over the contiguous United States (herein pan‐CONUS droughts) during the Common Era in what is one of the first analyses of the new Paleo Hydrodynamics Data Assimilation (PHYDA) product. The canonical understanding of oceanic influences on North American hydroclimate suggests that pan‐CONUS droughts are forced by a contemporaneous cold tropical Pacific Ocean and a warm tropical Atlantic Ocean. We test this hypothesis using the paleoclimate record. Composite analyses find a robust association between pan‐CONUS drought events and cold tropical Pacific conditions, but not with warm Atlantic conditions. Similarly, a self‐organizing map analysis shows that pan‐CONUS drought years are most commonly associated with a global sea surface temperature pattern displaying strong La Niña and cold Atlantic Multidecadal Oscillation (AMO) conditions. Our results confirm previous model‐based findings for the instrumental period and show that cold tropical Pacific Ocean conditions are the principal driver of pan‐CONUS droughts on annual timescales.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019
    Description: Abstract The cavi unit at the north pole of Mars is a deposit of aeolian sand and water ice underlying the Late Amazonian north polar layered deposits. Its strata of Middle to Late Amazonian age record wind patterns and past climate. The Mars Reconnaissance Orbiter Shallow Radar (SHARAD) reveals extensive internal and basal layering within the cavi unit, allowing us to determine its general structure and relative permittivity. Assuming a basalt composition for the sand (ε′ = 8.8), results indicate that cavi contains an average ice fraction between 62% in Olympia Planum and 88% in its northern reaches beneath the north polar layered deposits and thus represents one of the largest water reservoirs on the planet. Internal reflectors indicate vertical variability in composition, likely in the form of alternating ice and sand layers. The ice layers may be remnants of former polar caps and thus represent a unique record of climate cycles predating the north polar layered deposits.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019
    Description: Abstract In recent years, experimental results have consistently shown evidence of electromagnetic ion cyclotron (EMIC) wave‐driven electron precipitation down to energies as low as hundreds of keV. However, this is at odds with the limits expected from quasi‐linear theory. Recent analysis using nonlinear theory has suggested energy limits as low as hundreds of keV, consistent with the experimental results, although to date this has not been experimentally verified. In this study, we present concurrent observations from Polar‐orbiting Operational Environmental Satellite, Radiation Belt Storm Probes, Global Positioning System, and ground‐based instruments, showing concurrent EMIC waves and sub–MeV electron precipitation, and a global dropout in electron flux. We show through test particle simulation that the observed waves are capable of scattering electrons as low as hundreds of keV into the loss cone through nonlinear trapping, consistent with the experimentally observed electron precipitation.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019
    Description: Abstract Modelling and observations have shown that energy diffusion by chorus waves is an important source of acceleration of electrons to relativistic energies. By performing long‐term simulations using the three‐dimensional Versatile Electron Radiation Belt code, in this study, we test how the latitudinal dependence of chorus waves can affect the dynamics of the radiation belt electrons. Results show that the variability of chorus waves at high latitudes is critical for modelling of MeV electrons. We show that, depending on the latitudinal distribution of chorus waves under different geomagnetic conditions, they cannot only produce a net acceleration but also a net loss of MeV electrons. Decrease in high‐latitude chorus waves can tip the balance between acceleration and loss towards acceleration, or alternatively, the increase in high‐latitude waves can result in a net loss of MeV electrons. Variations in high‐latitude chorus may account for some of the variability of MeV electrons.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019
    Description: Abstract Wet scavenging of black carbon (BC) has been subject to large uncertainty, which importantly determines its atmospheric lifetime and indirect forcing impact on cloud microphysics. This study reveals the complex BC‐hydrometeor interactions in mixed‐phase clouds via single particle measurements in the real‐world environment, by capturing precipitation processes throughout cloud formation, cold rain/graupel, and subsequent snow events at a mountain site influenced by anthropogenic sources in wintertime. We found highly efficient BC wet scavenging during cloud formation, with large and thickly coated BC preferentially incorporated into droplets. During snow processes, BC core sizes in the interstitial phase steadily increased. A mechanism was proposed whereby the BC mass within each droplet was accumulated through droplet collision, leading to larger BC cores, which were then released back to the interstitial air through the Wegener‐Bergeron‐Findeisen processes when ice dominated. These results provide fundamental basis for constraining BC wet scavenging.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2019
    Description: Abstract Auroral kilometric radiation (AKR) can potentially produce serious damage to space‐borne systems by accelerating trapped radiation belt electrons to relativistic energies. Here we examine the global occurrences of AKR emissions in radiation belts based on Van Allen Probes observations from 1 October 2012 to 31 December 2016. The statistical results (1,848 events in total) show that AKR covers a broad region of L= 3–6.5 and 00–24 magnetic local time (MLT), with a higher occurrence on the nightside (20–24 MLT and 00–04 MLT) within L= 5–6.5. All the AKR events are observed to be accompanied with suprathermal (∼1 keV) electron flux enhancements. During active geomagnetic periods, both AKR occurrences and electron injections tend to be more distinct, and AKR emission extends to the dayside. The current study shows that AKR emissions from the remote sources are closely associated with electron injections.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2019
    Description: Abstract In a metal, as in Earth's core, the thermal and electrical conductivities are assumed to be correlated. In a planetary dynamo this implies a contradiction: that both electrical conductivity, which makes it easier to induce current and magnetic field, and conductive heat transport, which hinders thermal convection, should increase simultaneously. Here we show that this contradiction implies that the magnetic induction rate peaks at a particular value of electrical and thermal conductivity and derive the low‐ and high‐conductivity limits for thermal dynamo action. A dynamo regime diagram is derived as a function of electrical conductivity and temperature for Earth's core that identifies four distinct dynamo regimes: no dynamo, thermal dynamo, compositional dynamo, and thermocompositional dynamo. Estimates for the temperature‐dependent electrical conductivity of the core imply that the geodynamo may have come close to its high‐conductivity “no dynamo” limit prior to inner core nucleation, consistent with recent paleomagnetic observations.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2019
    Description: Abstract Extreme El Niño events affect the number of intense tropical cyclones (ITCs) over the western North Pacific (WNP). In 1997 and 2015, both extreme El Niño years, ITC numbers were above normal in the WNP. In order to clarify how, and to what extent, sea surface temperature anomaly (SSTA) distributions control the ITCs genesis, the authors conducted 50‐member ensemble simulations using a high‐resolution global nonhydrostatic model that explicitly simulates ITCs. The ensemble simulations showed a clear relationship between the number of ITCs and their genesis locations in the WNP. However, the authors found that the simulated numbers of ITCs in the WNP were also closely related to the strength of the monsoon trough, which varies under given SSTA conditions. This indicates that reliable seasonal forecasting of ITCs depends on our ability to accurately reproduce the monsoon trough, whose strength is modulated mainly by internal atmospheric variability but also by SSTA.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2019
    Description: Abstract We analyzed new recordings of SPdKS seismic waveforms from a global set of broadband seismograms and horizontal tiltmeters from the Hi‐net array in Japan from 26 earthquakes in the Central American region. The anomalous waveforms are consistent with the presence of at least three ultralow‐velocity zones (ULVZs), on the core‐mantle boundary beneath northern Mexico and the southeastern United States. These ULVZs ring an area of high seismic wave speeds observed in tomographic models that has long been associated with past subduction. Waveform modeling using the PSVaxi method suggests that the ULVZs have S and P wave velocity decreases of 40% and 10%, respectively. These velocity decreases are likely best explained by a partially molten origin where the melt is generated through melting of mid‐ocean ridge basalt atop the subducted slab.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2019
    Description: Abstract Sea level rise after the Last Glacial Maximum inundated several million square kilometers of Arctic permafrost, while estimates of organic carbon (OC) quantity and vulnerability to mineralization are exceedingly uncertain. We compiled geophysical measurements from Arctic continental shelves to estimate current subsea permafrost OC stocks. We found that marine transgression since the Last Glacial Maximum inundated approximately 3.92×106 km2 of permafrost, which contained 1,460±1,010 Pg OC in the top 25 m of sediment. We estimated that current subsea permafrost underlies an area of 2.30×106 km2 and contains 860±590 Pg OC, not including methane hydrates. Most of the ~600 Pg of OC that thawed after the marine transgression is still present on the continental shelves. Although our estimates of subsea OC storage remain highly uncertain due to the sparse and uneven distribution of data, they suggest that current estimates of subsea OC substantially underestimate a major component of the global carbon cycle.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2019
    Description: Abstract MMS3 spacecraft passed the vicinity of the electron diffusion region of magnetotail reconnection on 3 July 2017, observing discrepancies between perpendicular electron bulk velocities and drift, and agyrotropic electron crescent distributions. Analyzing linear wave dispersions, Burch et al. (2019, https://doi.org/10.1029/2019GL082471) showed the electron crescent generates high‐frequency waves. We investigate harmonics of upper‐hybrid (UH) waves using both observation and particle‐in‐cell (PIC) simulation, and the generation of electromagnetic radiation from PIC simulation. Harmonics of UH are linearly polarized and propagate along the perpendicular direction to the ambient magnetic field. Compared with two‐dimensional PIC simulation and nonlinear kinetic theory, we show that the nonlinear beam‐plasma interaction between the agyrotropic electrons and the core electrons generates harmonics of UH. Moreover, PIC simulation shows that agyrotropic electron beam can lead to electromagnetic (EM) radiation at the plasma frequency and harmonics.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2019
    Description: Abstract We study, numerically, the behavior of capillary pressure (Pc) during slow immiscible displacement in a rough fracture as a function of the degree of fracture aperture heterogeneity that results from two distinct mechanisms: normal confining stress and fracture surface correlation. We generate synthetic self‐affine rough fractures at different correlation scales, solve the elastic contact problem to model the effect of confining stress, and simulate slow immiscible displacement of a wetting fluid by a nonwetting one using a modified invasion percolation model that accounts for in‐plane curvature of the fluid‐fluid interface. Our modeling results indicate that the power spectral density, S(f), of Pc, can be used to qualitatively characterize fracture aperture heterogeneity. We show that the distribution of forward avalanche sizes follows a power law , with exponent α=2, in agreement with previously reported values for porous media and equal to the expected theoretical exponent for a self‐organized criticality process.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2019
    Description: Abstract In this letter, detailed evolution process of parallel electromagnetic ion cyclotron waves in the inner magnetosphere has been investigated through quasilinear theory. A new saturation has been found to occur after the usual first saturation. During the interval between these two saturations, the energy transfers from H+ band to He+ band electromagnetic ion cyclotron waves. Moreover, through a best fitting, we obtain new model parameters for the anisotropy‐beta inverse relation of hot H+, which identifies the threshold of ion cyclotron instabilities in the inner magnetosphere. In situ observations of the Van Allen Probe mission also verify these new model parameters. Therefore, our results reveal the evolution process and saturation characteristics of parallel electromagnetic ion cyclotron waves in the inner magnetosphere.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2019
    Description: Abstract The processes that accompany the death of an oceanic plate, as a ridge nears a trench, remain enigmatic. How the plate might reorganize, fragment, and eventually be captured by one of the bounding plates are among the unresolved details. We present a tomographic model of the Pacific Northwest from onshore and offshore seismic data that reveals a hole in the subducted Juan de Fuca plate. We suggest that this hole is the result of a tear along a preexisting zone of weakness, is causing volcanism on the North American plate, and is causing deformation in the Juan de Fuca plate offshore. We propose that in the final stages of an oceanic plate's life, deformation on the surface can be driven by deeper dynamics and that the fragmentation and the eventual capture of oceanic plate fragments may be governed by a process that operates from the bottom up.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2019
    Description: Abstract Observations by the Lightning and Airglow Camera on Japan's Venus Climate Orbiter “Akatsuki” over its first 3 years in orbit are reported. Forty‐two opportunities during low‐altitude nightside passes have accumulated 16.8 hr of observation, yielding an area‐time product of 81.6 ×106 km2‐hr, by far the largest at Venus itself to date. No flashes attributable to lightning have been detected, whereas similar observations at Earth would yield thousands of detections. A low flash rate of ~0.005 per million km2‐hr indicated in ground‐based observations is not excluded (but would require that there are not many more smaller flashes). The allowable flash rate is incompatible with the much higher rates of bursts recorded by magnetic and electric field sensors at Venus, indicating that electrical discharges at Venus lack optical emission or that the electromagnetic detections have a nonlightning explanation or both.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2019
    Description: Abstract Retrievals of nitrogen dioxide (NO2) and other trace gases from satellite measurements rely on accurate calculation of an air mass factor (AMF) to account for the atmospheric light path. Scattering and absorption of sunlight by aerosols affects AMFs by impacting the sensitivity of satellite‐observed radiances to NO2 at different altitudes. Current NO2 retrievals either do not explicitly account for these effects or rely on aerosol information from an external source. Here we investigate a method for quantifying the impact of aerosols on NO2 AMFs using the Absorbing Aerosol Index, a satellite‐based measure of light absorption and scattering by aerosols. We find a robust relationship between the Absorbing Aerosol Index and the aerosol correction to NO2 AMFs using the GEOS‐Chem chemical transport model and the LIDORT radiative transfer model. This relationship enables estimating the impact of aerosols on AMFs using observed Absorbing Aerosol Index values, thus yielding an observation‐based aerosol correction for NO2 retrievals.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2019
    Description: Abstract The Global Moving Hotspot Reference Frame (GMHRF) has been claimed to fit hot spot tracks better than the fixed hot spot approximation mainly because the GMHRF predicts ≈1,000 km southward motion through the mantle of the Hawaiian mantle plume over the past 80 Ma. As the GMHRF is determined by starting at present and calculating backward in time, it should be most accurate and reliable for the recent geologic past. Here we compare the fit of the GMHRF and of fixed hot spots to the observed trends of young tracks of hot spots. Surprisingly, we find that the GMHRF fits the data significantly worse (p = 0.005) than does the fixed hot spot approximation. Thus, either plume conduits are not passively advected with the mantle flow calculated for the GMHRF or Earth's actual mantle velocity field differs substantially from that calculated for the GMHRF.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2019
    Description: Abstract Submesoscale processes are key in understanding physical and biological phenomena near the surface, but there remains a lack of observational evidence over large areas. We used hourly images from a geostationary satellite that can resolve variation in surface ocean color over an area of few hundred kilometers. The temporal variation in the surface chlorophyll a distribution captured by the satellite images was first used to generate a submesoscale‐permitting velocity field, from which we calculated the turbulence statistics such as kinetic energy spectra, velocity structure functions, and energy flux. Application to the April scenes in the East/Japan Sea showed that the kinetic energy spectra had a transition scale at 50 km that suggested two spectral regimes following k−3 and k−5/3, implying the coexistence of quasi‐geostrophic turbulence and surface quasi‐geostrophic turbulence. The chlorophyll a scalar spectrum suggested two spectral regimes of k−5/3 and k−1 with a transition at 3 km.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2019
    Description: Abstract A growing body of research has underscored the radiative impact of mineral dust in influencing Indian summer monsoon rainfall variability. However, the various aerosol‐cloud‐precipitation interaction mechanisms remain poorly understood. Here we analyze multisatellite observations to examine dust‐induced modification in ice clouds and precipitation susceptibility. We show contrasting dust‐induced changes in ice cloud regimes wherein despite a 25% reduction in ice particle radius in thin ice clouds, we find ~40% increase in ice particle radius and ice water path in thick ice clouds resulting in the cloud deepening and subsequently strengthened precipitation susceptibility, under strong updraft regimes. The observed dust‐ice cloud‐precipitation interactions are supported by a strong correlation between the interannual monsoon rainfall variability and dust frequency. This microphysical‐dynamical coupling appears to provide negative feedback to aerosol‐cloud interactions, which acts to buffer enhanced aerosol wet scavenging. Our results underscore the importance of incorporating meteorological regime‐dependent dust‐ice cloud‐precipitation interactions in climate simulations.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2019
    Description: Abstract The paleogeographic relationship between South China and Gondwana is critical for understanding the dispersion of Gondwana, accretion of Asia, and evolution of the Paleo‐Tethys. However, the lack of robust Devonian paleomagnetic data prevents a confirmative reconstruction of South China's connection to Gondwana and its subsequent separation during the Paleozoic. Here we report a new paleopole (33.6°N, 236.4°E; A95 = 3°) from the Givetian red beds (~385 Ma) in central South China. Fitting apparent polar wander paths between South China and Gondwana suggests that South China was connected to East Gondwana from the earliest Cambrian to Early Devonian, with its position closed to NW Australia. Thereafter, South China separated from Gondwana during ~400–385 Ma, as evidenced by their decoupled apparent polar wander paths. The paleomagnetic data suggest that the Paleo‐Tethys Ocean between South China and East Gondwana had been up to ~1,600 km latitudinally wide by ~360 Ma.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2019
    Description: Abstract Simulations of stratospheric aerosol geoengineering have typically considered injections at a constant rate over the entire year. However, the seasonal variability of both sunlight and the stratospheric circulation suggests seasonally dependent injection strategies. We simulated single‐point injections of the same amount of SO2 in each of the four seasons and at five different latitudes (30°S, 15°S, equator, 15°N, and 30°N), 5 km above the tropopause. Our findings suggest that injecting only during one season reduces the amount of SO2 needed to achieve a certain aerosol optical depth, thus potentially reducing some of the side effects of geoengineering. We find, in particular, that injections at 15°N or 15°S in spring of the corresponding hemisphere results in the largest reductions in incoming solar radiation. Compared to annual injections, by injecting in the different seasons we identify additional distinct spatiotemporal aerosol optical depth patterns, thanks to seasonal differences in the stratospheric circulation.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2019
    Description: Abstract An experimental investigation of droplet generation by a plunging breaking wave is presented. In this work, simultaneous measurements of the wave crest profile evolution and of droplets ranging in radius down to 50 μm for a mechanically generated plunging breaker during many repeated breaking events in freshwater are performed. We find three distinct time zones of droplet production, first when the jet impacts the free surface upstream of the wave crest, second when the large air bubbles entrapped by the plunging jet impact reach the free surface and burst, and third when smaller bubbles burst upon reaching the free surface later in the breaking process. These subprocesses account for 22%, 44%, and 34%, respectively, of the average of 653 droplets produced per breaking event. The probability distributions of the ranges of large and small droplet radii are well represented by power law functions that intersect at a radius of 418 μm.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2019
    Description: Abstract Modes of climate variability are known to influence rainy season onset, but there is less understanding of how they impact flood timing. We use streamflow reanalysis and gauged observation datasets to examine the influence of the Indian Ocean Dipole (IOD) and El Niño Southern Oscillation (ENSO) across sub‐Saharan Africa. We find significant changes in flood timing between positive and negative phases of both IOD and ENSO; in some cases the difference in the timing of annual flood events is more than 3 months. Sensitivity to one or other mode of variability differs regionally. Changes in flood timing are larger than variability in rainy season onset reported in the literature, highlighting the need to understand how the hydrological system alters climate variability signals seen in rainy season onset, length and rainfall totals. Our insights into flood timing could support communities who rely on flood‐based farming systems to adapt to climate variability.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2019
    Description: Abstract Fluid‐induced stress perturbations in the crust at seismogenic depths caused by sources such as tidal or seasonal loading may trigger earthquakes. We investigate the role of small periodic pore pressure (Pp) perturbation in rupture nucleation by performing laboratory triaxial creep experiments on Fontainebleau sandstone, saturated in water, under sinusoidal Pp variations. Results show that recorded acoustic emissions (AEs) correlate with Pp as the rock approaches failure. More interestingly, AEs occur significantly more when Pp is decreasing, that is, when strain rate is maximum with a progressive increase of Pp‐AEs correlation in time as the rock approaches failure. This suggests that the correlation of small stress perturbations and AEs not only depends on Pp amplitude but also on the criticality of the rock. Observations at the laboratory scale support field observations where tidal loading may have modulated seismic rates during the nucleation phase of the 2004 Sumatra‐Andaman and 2011 Tohoku‐Oki earthquakes.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2019
    Description: Abstract The Lunar Reconnaissance Orbiter/Lyman Alpha Mapping Project (LAMP) UV instrument detected a 0.5‐2% icy regolith mix on the floor of some of the southern pole permanently shadowed craters of the Moon. We present calculations indicating that most or all of this icy regolith detected by LAMP (sensed to a depth of 〈 1 micron) has to be relatively young – less than 2000 years old‐ due to the surface erosional loss by plasma sputtering (external ionized gas‐surface interactions), meteoric impact vaporization, and meteoric impact ejection. These processes, especially meteoric impact ejection, will disperse water along the crater floor, even onto warm regions where it will then undergo desorption. We have determined that there should be a water exosphere over polar craters (e.g., like Haworth crater) and calculated that a model 40 km diameter crater should emit ~1019 H2O/s into the exosphere in the form of free molecules and ice‐embedded particulates.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2019
    Description: Abstract A recent airborne study obtained extensive measurements in the tropical tropopause layer (TTL) over the western Pacific and provided the first opportunity to examine the relationship between water vapor and temperature in the coldest region and season of the TTL using high‐resolution in situ data. Analysis of this data set verifies key hypotheses in Lagrangian simulations of TTL transport and freeze drying. Furthermore, the observations provide a number of new insights into the transport process: In the layer below the lapse rate tropopause, vertical transport from upward motion dominates the relative humidity structure; final dehydration, dominated by large‐scale horizontal advection, occurs in the layer transacting the cold point tropopause that is often above the lapse rate tropopause, resulting in water vapor mixing ratios with corresponding frost points consistent with the coldest temperatures of the region, lower than the temperatures of the local cold points.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2019
    Description: Abstract We study the influence of the solar extreme ultraviolet (EUV) flux intensity on the precipitating ion fluxes as seen by the Solar Wind Ion Analyzer, an energy and angular ion spectrometer aboard the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft. We defined three periods with significantly different EUV flux intensity (1.6 and 3.2 times the lowest EUV intensity) and compare the precipitating ion flux measured by MAVEN/Solar Wind Ion Analyzer during each period. At low energy [30–650] eV, we find that the median (average) precipitating ion flux during the medium and low EUV periods are, respectively, 1.7 (2.1) and 3 (3.5) times more intense than the flux during the high EUV period. At high energy [650–25,000] eV, a similar trend in the intensity of the precipitating ion flux is observed but with an increase by 50% (46%) and 70% (79%), respectively. A larger EUV flux does therefore not seem to favor heavy ion precipitation into Mars's atmosphere, contrary to modeling prediction and overall expectations.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2019
    Description: Abstract A single‐column model approach conducted in the context of the Madden–Julian Oscillation through the CINDY2011/Dynamics of the Madden–Julian Oscillation field campaign is used to disentangle the respective role of the parameterizations of surface turbulent fluxes and of model atmospheric physics in controlling the surface latent heat flux. The major differences between the models used in this study occur during the suppressed phases of deep convection. They are attributed to differences in model atmospheric physics which is shown to control the near‐surface relative humidity and thereby the surface latent heat flux. In contrast, during active phases of deep convection, turbulent air‐sea flux parameterizations impact the latent heat flux through the drag coefficient and can represent two thirds of the divergence caused by the different atmospheric physics. The combined effects need to be accounted for to improve both the representation of latent heat flux and the atmospheric variables used to compute it.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2019
    Description: Abstract Small, deep low‐frequency earthquakes (LFEs) with dominant frequencies of 2–8 Hz occur at depths of 20–40 km and are thought to be related to movement of magma or crustal fluid, but their physical source processes remain largely unknown. Therefore, we determine the focal mechanisms of LFEs beneath Zao volcano, Northeast Japan, using the S/P amplitude ratio. Most focal mechanisms are classified into five groups: three types of double couples, a compensated linear vector dipole group, and a single force group. Double couples in 2007–2012 are consistent with those expected for the regional stress field, but no such events have been observed since 2013. This transition in focal mechanisms was simultaneous with a rapid increase in LFE activity beneath Zao. Our results suggest that LFEs beneath Zao were controlled mainly by the local stress field, but the stress field changed about two years after the 2011 Tohoku earthquake.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2019
    Description: Abstract The sensitivity of gravity‐wave momentum flux in the Mei‐Yu front systems to moisture is investigated via idealized simulations with various degrees of initial moisture content. Gravity waves generated in moist experiments result in net northward momentum flux and drag forcing, and the drag is indistinctive in the lower stratosphere near the tropopause but strengthens with height. As moisture content increases, the meridional flux intensifies remarkably in both physical and spectral space and extends to smaller spatiotemporal scales. However, the change of moisture has little effect on the selectivity of the strongest flux to relatively large scales and specific phase speeds. At slow phase speeds, the fanlike waves excited by the front are effectively coupled with the convective waves excited by the prefrontal moist convection, which leads to the weakening of the coupled wave flux.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2019
    Description: Abstract Precipitation plays a crucial role in the Earth's energy balance, the water cycle, and the global atmospheric circulation. Aerosols, by direct interaction with radiation and by serving as cloud condensation nuclei, may affect clouds and rain formation. This effect can be examined in terms of energetic constraints, that is, any aerosol‐driven diabatic heating/cooling of the atmosphere will have to be balanced by changes in precipitation, radiative fluxes, or divergence of dry static energy. Using an aqua‐planet general circulation model (GCM), we show that tropical and extratropical precipitation have contrasting responses to aerosol perturbations. This behavior can be explained by contrasting ability of the atmosphere to diverge excess dry static energy in the two different regions. It is shown that atmospheric heating in the tropics leads to large‐scale thermally driven circulation and a large increase in precipitation, while the excess energy from heating in the extratropics is constrained due to the effect of the Coriolis force, causing the precipitation to decrease.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2019
    Description: Abstract The Muslim pilgrimage or Hajj, which is one of the five pillars of Muslim faith, takes place outdoors in and surrounding Mecca in the Saudi Arabian desert. The U.S. National Weather Service defines an extreme danger heat stress threshold which is approximately equivalent to a wet‐bulb temperature of about 29.1 °C—a combined measure of temperature and humidity. Here, based on results of simulations using an ensemble of coupled atmosphere‐ocean global climate models, we project that future climate change with and without mitigation will elevate heat stress to levels that exceed this extreme danger threshold through 2020 and during the periods of 2047 to 2052 and 2079 to 2086, with increasing frequency and intensity as the century progresses. If climate change proceeds on the current trajectory or even on a trajectory with considerable mitigation, aggressive adaptation measures will be required during years of high heat stress risk.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2019
    Description: Abstract Each spring, the climatological westerly winds of the Northern Hemisphere (NH) stratospheric polar vortex turn easterly as the stratospheric equator‐to‐pole temperature gradient relaxes. The timing of this event is dictated both by the annual return of sunlight to the pole and by dynamical influences from the troposphere. Here we consider the predictability of NH final stratospheric warmings in multi‐model hindcasts from the Sub‐seasonal to Seasonal (S2S) project database. We evaluate how well the S2S prediction systems perform in capturing the timing of final warmings. We compare the predictability of early warmings (which are more strongly driven by wave forcing) and late warmings, and find that late warmings are more skillfully predicted at longer lead times. Finally, we find significantly increased predictive skill of NH near‐surface temperature anomalies at week 3‐4 lead times following only early final warmings.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2019
    Description: Abstract We analyze slip distribution and rupture kinematics of a Mw3.3 induced event that occurred in the St. Gallen geothermal reservoir (NE Switzerland) in 2013. We carry out a two‐step procedure: (1) path effects are deconvolved from the seismograms using an empirical Green's function, resulting in relative source time functions at all seismic stations; (2) the relative source time functions are back‐projected to the corresponding isochrones on the fault plane. Results reveal that the mainshock rupture propagates toward NNE from the hypocenter with an average velocity of 2,000 m/s. Spatiotemporal organization of foreshocks and aftershocks shows that the mainshock broke a previously less active portion of the fault and suggests that the aftershock sequence could be mainly driven by stress transfer. Applying this method in an operational environment could enable fast retrieval of seismic slip, allowing assessment of fault asperities and structures involved in the reservoir creation process.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2019
    Description: Abstract The Indonesian Throughflow (ITF) operates as an important link in global thermohaline circulation, and ITF variability probably modulated Pliocene climate change. Yet, whether ITF variability accounted for oceanographic change south of Northwest Cape remains controversial. Here, we present a multiproxy oceanographic reconstruction from the Perth Basin and reconstruct the Pliocene history of the Leeuwin Current (LC). We show that the LC was active throughout the Pliocene, albeit with fluctuations in intensity and scope. Three main factors controlled LC strength. First, a tectonic ITF reorganization caused an abrupt and permanent LC reduction at 3.7 Ma. On shorter timescales, eustatic sea level and direct orbital forcing of wind patterns hampered or promoted the LC. At 3.3 Ma, for instance, LC intensity plunged in response to a eustatic ITF restriction. Site U1459 then fell outside the extent of a weakened LC, and the latitudinal sea surface temperature gradient along West Australia doubled its steepness.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2019
    Description: Abstract Until recently, there were only a few ground‐based observations of terrestrial gamma ray flashes (TGFs). Since the Telescope Array in Utah, USA, started reporting detections of high‐energy particles correlated with lightning, their number has greatly increased. Ground observations of TGFs represent a valuable addition to space‐borne detectors. The proximity to the event and the ability to observe an event with several detectors may reveal new information about the production of TGFs. In this paper, we study downward directed TGFs using Monte Carlo modeling of photon transport through the atmosphere. The Telescope Array‐observed pulses of gamma rays spread over periods of a few hundred microseconds. We predict such structures to be observable at satellite altitude, given sufficient time resolution. Additionally, we demonstrate how various source spectra would lead to different number of photons reaching ground, which impacts the conclusions one can draw using observational data.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2019
    Description: Abstract Coral reef calcification is expected to decline due to climate change stressors such as ocean acidification and warming. Projections of future coral reef health are based on our understanding of the environmental drivers that affect calcification and dissolution. One such driver that may impact coral reef health is heterotrophy of oceanic‐sourced particulate organic matter, but its link to calcification has not been directly investigated in the field. In this study, we estimated net ecosystem calcification (NEC) and oceanic particulate organic carbon (POCoc) uptake across the Kāneʻohe Bay barrier reef in Hawai‘i. We show that higher rates of POCoc uptake correspond to greater NEC rates, even under low aragonite saturation states (Ωar). Hence, reductions in offshore productivity may negatively impact coral reefs by decreasing the food supply required to sustain calcification. Alternatively, coral reefs that receive ample inputs of POCoc may maintain higher calcification rates, despite a global decline in Ωar.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2019
    Description: Abstract While power‐law distributions in seismic moment and inter‐event times are ubiquitous in regional earthquake catalogs, the statistics of individual faults remains controversial. Continuum fault models without heterogeneity typically produce characteristic earthquakes or a narrow range of sizes, leading to the view that regional statistics originate from interaction of multiple faults. I present theoretical arguments and numerical simulations demonstrating that seismicity on homogeneous planar faults can span several orders of magnitude in rupture dimensions and inter‐event times, if the fault dimension W is sufficiently large compared to a characteristic length Lcrit, related to the nucleation dimension. Large faults are increasingly less characteristic, with the fraction of system‐size ruptures proportional to (Lcrit/W)1/2. Earthquake statistics for large W/Lcrit is remarkably close to nature, exhibiting Omori decay and power‐law distributed rupture lengths. Simple crack models are consistent with a Gutenberg‐Richter distribution with b=3/4, and provide a physical basis for these distributions on individual faults.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2019
    Description: Abstract Southeast Greenland has been a major participant in the ice sheet mass loss over the last several decades. Interpreting the evolution of glacier fronts requires information about their depth below sea level and ocean thermal forcing, which are incompletely known in the region. Here, we combine airborne gravity and multibeam echo sounding data from NASA's Oceans Melting Greenland (OMG) mission with ocean probe and fishing‐boat depth data to reconstruct the bathymetry extending from the glacier margins to the edges of the continental shelf. We perform a three‐dimensional inversion of the gravity data over water and merge the solution with a mass conservation reconstruction of bed topography over land. In contrast with other parts of Greenland, we find few deep troughs connecting the glaciers to the sources of warm Atlantic water, amidst a relatively uniform, shallow (350 m) continental shelf. The deep channels include the Kangerlugssuaq, Sermilik, Gyldenløve and Tingmiarmiut troughs.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2019
    Description: Abstract Small ponds—farm ponds, detention ponds, or impoundments below 0.01 km2—serve important human needs throughout most large river basins. Yet the role of small ponds in regional nutrient and sediment budgets is essentially unknown, currently making it impossible to evaluate their management potential to achieve water quality objectives. Here we used new hydrography datasets and found that small ponds, depending on their spatial position within both their local catchments and the larger river network, can dominate the retention of nitrogen, phosphorus, and sediment compared to rivers, lakes, and reservoirs. Over 300,000 small ponds are collectively responsible for 34%, 69%, and 12% of the mean annual retention of nitrogen, phosphorus, and sediment in the Northeastern United States, respectively, with a dominant influence in headwater catchments (54%, 85%, and 50%, respectively). Small ponds play a critical role among the many aquatic features in long‐term nutrient and sediment loading to downstream waters.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2019
    Description: Abstract The 2018 eruption of Kīlauea volcano, Hawai‘i, was its most effusive in over 200 years. We apply the airborne Glacier and Ice Surface Topography Interferometer (GLISTIN‐A) interferometric synthetic aperture radar (InSAR) instrument to measure topographic change associated with the eruption. The GLISTIN‐A radar flew in response to the eruption, acquiring observations of Kīlauea on 7 days between 18 May and 15 September 2018. Topography differences were computed relative to GLISTIN‐A observations in 2017. Bare‐Earth topography and offshore bathymetry were used to correct for vegetation and creation of new coastal land within the lower East Rift Zone (LERZ) lava flow field. We estimate that the LERZ subaerial flows total bulk volume is 0.593 ± 0.011 km3 and that the summit collapse volume is −0.836 ± 0.002 km3. Within the temporal sampling and uncertainty from submarine flow volumes, we find that both the LERZ and caldera volume changes were approximately linear.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2019
    Description: Abstract Longwave Infrared Camera (LIR) onboard Akatsuki first revealed the global structure of the thermal tides in the upper cloud layer of Venus. The data were acquired over three Venusian years, and the analysis was done over the areas from the equator to the mid‐latitudes in both hemispheres and over the whole local time. Thermal tides at two vertical levels were analyzed by comparing data at two different emission angles. Dynamical wave modes consisting of tides were identified; the diurnal tide consisted mainly of Rossby‐wave and gravity‐wave modes, while the semidiurnal tide predominantly consisted of a gravity‐wave mode. The revealed vertical structures were roughly consistent with the above wave modes, but some discrepancy remained if the waves were supposed to be monochromatic. In turn, the heating profile that excites the tidal waves can be constrained to match this discrepancy, which would greatly advance the understanding of the Venusian atmosphere.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2019
    Description: Abstract Mars’ atmosphere typically supports dust aerosol with an effective radius near 1.5 μm, varying from ~1 μm during low dust times near northern summer solstice to ~2 μm during higher dust times in southern spring and summer. After global dust events, size variations outside this range have not previously been observed. We report on imaging and spectral observations by the Curiosity rover through the 2018 global dust event. These observations show that the dust effective radius was seasonally normal prior to the local onset of increased opacity, increased rapidly above 4 μm with increasing opacity, remained above 3 μm over a period of ~50 Martian solar days, then returned to seasonal values before the opacity did so. This demonstrates lifting and regional scale transport of a dust population ~3 times the size of typical dust aerosol.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2019
    Description: Abstract We analyze source parameters of Mw ‐3.9 to ‐3.1 induced earthquakes during an in‐situ fluid injection experiment in France using the spectral ratio method based on empirical Green's function (eGf). We choose 10 master and eGf event pairs with highly‐similar waveforms and resolve their spectral ratios using multiple S–wave windows. We find that master events ruptured meter‐scale source patches with 〈1 micrometer slip in a preexisting fracture network oriented differently from the injected plane. The temporal correlation between master earthquake occurrence and injection pressure peak and the relatively low ratio of stress drop to crustal strength suggest that both fluid pressure perturbation and aseismic deformation play important roles in inducing the earthquakes. The comparison between stress drops of induced earthquakes in the experiment and in the central US indicates a dependency of stress drop on crustal shear strength.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2019
    Description: Abstract A full‐spectrum characterization of past interglacial climate is a necessary prerequisite for the detection and attribution of climate changes during the current interglacial. Here we present a speleothem record of Asian summer monsoon (ASM) during Marine Isotope Stage (MIS) 11 interglacial (MIS 11c), from Yongxing cave, China. The record's unprecedented chronologic constraints and decadal‐scale temporal resolution allow a precise and direct comparison of ASM between the MIS 11c and the Holocene. Our data suggest that orbital‐centennial patterns of ASM were remarkably similar during both interglacial, including their pacing and structure. Notably, a multi‐millennial stronger monsoon late in MIS 11c, the “Late‐MIS 11c shift,” is similar to the Late Holocene strengthening of the ASM, the “2‐Kyr shift.” Thus, the multicentennial ASM weakening at the end of the Late‐MIS 11c shift could imply that the current century‐long ASM waning trend may persist into the future, if only natural forcings are considered.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2019
    Description: Abstract This studyinvestigates the correlation between the upwelling microwave brightness temperature measured by satellite radiometer and surface precipitation rate from ground radar observations at different time lags. Results show that brightness temperatures correlate more strongly with the lagged surface precipitation rate than the simultaneous surface precipitation rate. The lag time for snowfall ranges from 30 to 60 min. This time lag effect has an important influence when evaluating the satellite retrieval results relative to ground observations. For example, the falsely identified pixels can decrease by as much as 23.88% when considering a 30‐min lag time. Furthermore, the satellite‐retrieved snowfall rate shows much stronger correlation with the time‐lagged surface snowfall rate than the simultaneous snowfall rate in cold environments and for tall storms. This work implies that the time of the level‐2 swath‐retrieved snowfall rate needs to shift forward when incorporated into the level‐3 gridded products.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2019
    Description: Abstract Bering Sea sea‐ice during winter 2017‐2018 was the lowest ever recorded. Ecosystem effects of low ice have been observed in the southeastern Bering Sea (SEBS), but never in the northern Bering Sea (NBS). Observations in both systems included weakened water column stratification, delayed spring bloom, and low abundances of large crustacean zooplankton. Summer Cold Pool presence was extremely limited. Young Walleye Pollock production and condition were similar to prior warm years, though catches of other pelagic forage fishes were low. Summer seabird die offs were observed in the NBS, and to lesser extent in the SEBS, and reproductive success was poor at monitored colonies. Selected bottom‐up responses to lack of sea‐ice in the North were similar to those in the South, potentially providing environmental indicators to project ecosystem effects in a lesser‐studied system. Results offer a potential glimpse of the broader Bering Sea pelagic ecosystem under future low‐ice projections.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2019
    Description: Abstract We consider a new mechanism for the thermal electron heat fluxes formation over the sunlit polar cap in the presence of the potential jumps that are created by the photoelectron escape along the open magnetic field lines. Photoelectrons traveling into the magnetosphere experience small Coulomb collisional scattering and the low energy part of their spectra becomes trapped between the potential jump and upper ionosphere creating the thermal electron energy fluxes that support the formation of electron temperature at the ionospheric altitudes. This mechanism eliminates the need for the customary practice of assuming arbitrary electron heat fluxes at the upper ionospheric boundary in order to explain the measured electron temperature in the topside ionosphere.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2019
    Description: Abstract Observed and model projected sea ice loss enhances warming in the Arctic. We investigate to what extent warming on Greenland can be attributed to changes in the sea ice cover in different parts of the Arctic. Using CMIP5 model projections of the future, we perform multi‐linear regressions to separate the simulated warming on Greenland in two parts; one following global warming and one following regional sea ice changes. This reveals the magnitude and spatial pattern of warming on Greenland, which can be attributed to sea ice loss in different Arctic regions. The results indicate that the impact of sea ice loss is largely confined to the coastal parts of Greenland. We find the strongest links to sea ice loss in adjacent regions; remote regions only have a limited impact. Overall, warming attributable to sea ice variability is a minor contribution, but can be a dominant signal locally in coastal regions.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2019
    Description: Abstract In the past 20+ years, GEO Imagers with infrared 6.5 μm bands have been observing the Earth's atmosphere, providing useful information of upper tropospheric moisture. Due to the instrumental differences and local viewing angles in GEO satellites, these observations are not consistent for generating climate data records (CDR). In this study, a methodology has been developed to homogenize the 6.5 μm radiances from the international GEO satellites, to generate a consistent CDR. Validations with IASI radiances from Metops for 2015‐2017 for seven GEO Imager sensors show that the GEO radiances are homogenized well with small standard deviation and biases of the differences (smaller for newer sensors), temporally stable radiometric accuracy, and weak angle dependency (even weaker for sensors with two WV bands). The homogenized 20+ years of consistent 6.5 μm radiance CDR can be used to evaluate reanalysis and climate models, especially the diurnal variation of the model simulation.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2019
    Description: Abstract The upper bound of 50 parts per trillion by volume for Mars methane above 5 km established by the ExoMars Trace Gas Orbiter, substantially lower than the 410 parts per trillion by volume average measured overnight by the Curiosity Rover, places a strong constraint on the daytime methane flux at the Gale crater. We propose that these measurements may be largely reconciled by the inhibition of mixing near the surface overnight, whereby methane emitted from the subsurface accumulates within meters of the surface before being mixed below detection limits at dawn. A model of this scenario allows the first precise calculation of microseepage fluxes at Gale to be derived, consistent with a constant 1.5 × 10−10 kg·m−2·sol−1 (5.4 × 10−5 tonnes·km−2·year−1) source at depth. Under this scenario, only 2.7 × 104 km2 of Mars's surface may be emitting methane, unless a fast destruction mechanism exists.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2019
    Description: Abstract The rate that Earth's inner core rotates relative to the mantle and crust has been debated for decades. Nonrotational processes, including internal deformation and flow in the outer core, have also been proposed to explain observed seismic changes. The observed changes thus far have been so inconsistent and weak as to hamper convincing interpretation. Here, we examine waves backscattered from within the inner core, which can more robustly evaluate rotation, from two nuclear tests 3 years apart in Novaya Zemlya, Russia. We have extended our previous analysis of these explosions using precise station corrections and the full Large Aperture Seismic Array, thus revealing how the time shifts depend on slowness and lag time and halving our rotation rate estimate. Our derived 0.07°/year inner core superrotation rate from 1971 to 1974 is more robust and slower than most previous estimates and may require interesting reinterpretations of localized signals previously interpreted as inner core rotation.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2019
    Description: Abstract A highly stressed area where eventual ruptures have often been observed to nucleate is characterized by low b values of earthquake frequency‐size distribution. Crustal deformation due to the occurrence of large earthquakes causes stress perturbation in nearby regions, so an investigation into spatiotemporal b values can play a crucial role in the distribution of postseismic hazards after the 2016 Kumamoto earthquake sequence along the Futagawa‐Hinagu fault zone, which culminated in the magnitude 7.3 mainshock. Together with an analysis of aftershock decay p value that can be used to infer stressing history, a highly stressed area with a characteristic dimension of 10 km at the southern end of the causative faults was found. Our observation is explained by postseismic deformation due to an afterslip on the causative faults and viscoelastic relaxation model. Similar to the Kumamoto mainshock rupture, which started at a low‐b‐value area, the observed highly stressed area shows a high likelihood of future earthquake ruptures.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2019
    Description: Abstract The response of the polar mesosphere to the 11‐year solar cycle is investigated using satellite observations from 1979 to 2018. Solar maximum is expected to cause higher temperatures and lower water vapor in the upper mesosphere, thus reducing the amount of ice in polar mesospheric clouds (PMCs). While PMCs showed a clear anticorrelation with the solar cycle before roughly 2002, this response is absent during recent years. PMCs are controlled by temperature and water vapor, which were examined using mesospheric observations during 1992–2018. The main cause of the diminished solar cycle in PMCs near 68°S and 68°N appears to be a dramatic suppression of the solar cycle response of water vapor. The solar cycle response of temperature also decreases after 2002, but calculations show that the decreased H2O response had more than 3 times the impact on PMCs than the reduction in temperature response.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2019
    Description: Abstract We study the 2018 Martian Global Dust Storm (GDS 2018) over the Southern Polar Region using images obtained by the Visual Monitoring Camera (VMC) on board Mars Express during June and July 2018. Dust penetrated into the polar cap region but never covered the cap completely, and its spatial distribution was nonhomogeneous and rapidly changing. However, we detected long but narrow aerosol curved arcs with a length of ~ 2,000 – 3,000 km traversing part of the cap and crossing the terminator into the night side. Tracking discrete dust clouds allowed measurements of their motions that were towards the terminator with velocities up to 100 ms‐1. The images of the dust projected into the Martian limb show maximum altitudes of ~ 70 km but with large spatial and temporal variations. We discuss these results in the context of the predictions of a numerical model for dust storm scenario.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2019
    Description: Abstract As a dominant source of tropical variability, the Madden‐Julian oscillation (MJO) influences the ocean in many ways. One approach to observe the atmosphere‐ocean relationship is by examining sea surface salinity (SSS) due to direct freshening by MJO precipitation. The convectively enhanced (suppressed) phase of the MJO is associated with negative (positive) SSS anomalies that propagate eastward along the equatorial Indian and Pacific oceans. In this study, primary MJO events are identified, and their SSS signatures are compared for the first time across multiple satellite salinity products (the European Space Agency's Soil Moisture Ocean Salinity; the National Aeronautics and Space Administration's Aquarius and Soil Moisture Active Passive) from 2010 to 2017. While all satellite missions are capable of detecting MJO signals and primary events on an unprecedented observational scale, we find that the use of the combined active passive algorithm increases signal robustness, with the strongest signal response in Soil Moisture Active Passive and Soil Moisture Ocean Salinity (±0.2 psu) and the lowest in Aquarius (±0.1 psu).
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2019
    Description: Abstract Hydrochlorofluorocarbons (HCFCs), the main substitutes of chlorofluorocarbons, are regulated by the Montreal Protocol. Chinese HCFC emissions increased fast from the beginning of this century. However, limit reports based on atmospheric measurement are available for years after 2011, an important period when significant changes are expected. Combining atmospheric observations at seven sites across China with a FLEXible PARTicle dispersion model‐based Bayesian inversion technique, we estimate emission magnitudes and changes of four major HCFCs in China during 2011–2017. The emissions of all four HCFCs reached peaks before 2015. Our results agreed well with the reported bottom‐up inventories. The Chinese ozone depletion potential (ODP)‐weighted emission of the three most abundant HCFCs accounted for 37% of global totals from 2011 to 2016. The total emission of HCFC‐22 from China, the European Union, and the United States accounted approximately a half of the global totals, suggesting large HCFC emission emitted from the rest of the world.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2019
    Description: Abstract Mallick et al. (2012, https://doi.org/10.1029/2012JD017555) discovered that subsequent‐stroke leaders in natural negative lightning could be more prolific producers of hard X‐rays and gamma rays than the first‐stroke leader in the same flash. However, they had no optical records to confirm that their subsequent leaders followed the same path to ground as the first leader, as opposed to forging a new path to ground through cold air. In this paper, we present new observations, including optical data, showing that a second stroke produced more detectable X‐ray pulses than the first stroke, with both strokes following the same channel to ground. Additionally, we present data for the fifth stroke from a different flash, which show the occurrence of X‐ray emission at the onset of the common streamer zone between the hot channels of the downward negative dart‐stepped leader and upward positive connecting leader. However, there were no detectable X‐rays associated with negative leader steps.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2019
    Description: Abstract We report the first global, time‐dependent simulation of the Mars upper atmospheric responses to a realistic solar flare event, an X8.2 eruption on 10 September 2017. The Mars Global Ionosphere‐Thermosphere Model runs with realistically specified flare irradiance, giving results in reasonably good agreement with the Mars Atmosphere and Volatile EvolutioN spacecraft measurements. It is found that the ionized and neutral regimes of the upper atmosphere are significantly disturbed by the flare but react differently. The ionospheric electron density enhancement is concentrated below ∼110‐km altitude due to enhanced solar X‐rays, closely following the time evolution of the flare. The neutral atmospheric perturbation increases with altitude and is important above ∼150‐km altitude, in association with atmospheric upwelling driven by solar extreme ultraviolet heating. It takes ∼2.5 hr past the flare peak to reach the maximum disturbance and then additional ∼10 hr to generally settle down to preflare levels.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2019
    Description: Abstract There is an emerging understanding toward the importance of land‐atmosphere interactions in the monsoon system, but the effects of specific land and water management practices remain unclear. Here, using regional process‐based experiments, we demonstrate that monsoon precipitation is sensitive to the choice of irrigation practices in South Asia. Experiments with realistic representation of unmanaged irrigation and paddy cultivation over north‐northwest India exhibit an increase in the late season terrestrial monsoon precipitation and intensification of widespread extreme events over Central India, consistent with changes in observations. Such precipitation changes exhibit substantially different spatial patterns in experiments with a well‐managed irrigation system, indicating that increase in unmanaged irrigation might be a factor driving the observed changes in the intraseasonal monsoon characteristics. Our findings stress the need for accurate representation of irrigation practices to improve the reliability of earth system modeling over South Asia.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2019
    Description: Abstract Electron scale magnetic cavities are electron vortex structures formed in turbulent plasma, while the evolution and electron dynamics of these structures have not been fully understood. Recently, high‐energy, angular, and temporal electron measurements from Magnetospheric Multiscale have enabled the application of an energetic particle sounding technique to these structures. This study analyzes an electron scale magnetic cavity observed by Magnetospheric Multiscale on 7 May 2015 in the plasma sheet. A comprehensive sounding technique is applied to obtain the geometry and propagation velocities of the boundaries. The result shows that the scale size of the structure is ∼90 km, and the leading and trailing boundaries are moving in the same direction but with different speeds (∼11.5 ± 2.2 and ∼18.1 ± 3.4 km/s, respectively). The speed difference suggests a shrinking of the structure that may play a significant role in magnetic energy dissipation and electron energization of electron scale magnetic cavities.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2019
    Description: Abstract The export of dissolved organic carbon (DOC) from catchments is considered as an important energy flux through streams and a major connection between terrestrial and aquatic systems. However, the impact that predicted hydrological changes due to glacier retreat and reduction in snow cover changes will have on DOC export from high‐mountain streams remains unclear. In this study, we measured daily runoff and DOC yield during 1 year in Alpine streams draining catchments with different levels of glacier coverage. DOC yield showed a varied response to runoff across the catchments and varied seasonally as a function of the degree of glaciation and vegetation cover. Using space‐for‐time substitution, our results indicate that the controls on DOC yield from Alpine catchments change from chemostasis to transport limitation as glaciers shrink.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2019
    Description: Abstract Ionospheric outflow has been shown to be a dominant ion source of Earth's magnetosphere. However, most studies in the literature are about ionospheric outflow injected into the nightside magnetosphere. We still know little about ionospheric outflow injected into the dayside magnetosphere and its further energization after it enters the magnetosphere. Here, with data from Magnetospheric Multiscale mission, we report direct observations of the modulation of dayside ionospheric outflow ions by ultralow frequency (ULF) waves. The observations indicate that the modulation is mass dependent, which demonstrates the possibility of using ULF waves as a mass spectrometer to identify ion species. Moreover, the measurement suggests that polarization drift may play a role in O+ modulation, which may lead to a true acceleration and even nonadiabatic behavior of O+. This interaction scenario can work throughout the whole magnetosphere and impact upon the plasma environment and dynamics.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2019
    Description: Abstract The polar ice caps are the largest reservoir of water ice on Mars. The north polar ice cap is composed of the ice‐rich north polar layered deposit (NPLD) and a lower‐lying, silicate‐rich basal unit (BU). Together, these units represent a record of Martian climate history throughout the Amazonian period. Here we place a bulk compositional constraint on the BU by modeling its gravity signature in both spatial and spectral domains using two independent approaches. We find the density of the BU to be kg/m3, suggesting that it may contain 55 + 25% water ice. We estimate that the BU contains ~1.5‐m global equivalent layer of water making it one of the largest reservoir of water‐ice on Mars. Our compositional constraint suggests that the north pole of Mars was not only a cold trap for ices but also an aeolian trap for silicates during the Amazonian period.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2019
    Description: Abstract The Tibetan Plateau, which is climatically dominated by the westerlies and the Asian monsoon, has a major influence on the atmospheric circulation and water resources of Asia. However, it remains unclear of the long‐term (e.g., millennial‐ and orbital‐scale) status and origin of the water resources in the plateau. In this study, we used the presence of a long‐distance pollen component (e.g., Tsuga) in a sedimentary section from eastern Pamir as a tracer to characterize the air movements in the western Tibetan Plateau during the late Holocene. Based on modern backward trajectory analysis, we suggest that the pollen of Tsuga was transported by the paleo‐monsoon from the southeastern Tibetan Plateau to eastern Pamir during the late Holocene (e.g., 3,200–1,750 cal years B.P.). Our findings provide evidence of paleo‐monsoon movement and potential moisture transport paths from the southeastern Tibetan Plateau to eastern Pamir during the late Holocene.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2019
    Description: Abstract Energetic positive and negative cloud‐to‐ground (CG) flashes are both capable of producing sprites. Negative CGs typically outnumber the positive ones by 10 to 1. However, 〉99.9 % of reported sprites were found to be initiated by positive CGs—thus the polarity paradox. Here, sprites recorded by the Imager of Sprites and Upper Atmospheric Lightning (ISUAL) mission were analyzed along with extremely low‐frequency band magnetic field data to resolve this paradox. Approximately twenty‐five percent of the sprites are found to be associated with negative CG lightning. “Negative” sprites mainly congregate in the latitudinal regions below 20°, while positive sprites scatter up to 50°. The ISUAL negative sprites are evidently beyond the observable ranges of the ground sites reported in previous studies. Hence, the sprite polarity paradox is likely a selection effect of the middle‐ to high‐altitudinal observation sites. The charge moment changes and accompanying transient luminous events of sprites were also examined and found to be polarity dependent.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2019
    Description: Abstract Three transient National Center for Atmospheric Research Community Climate System Model, version 3 model simulations were analyzed to study the responses of El Niño–Southern Oscillation (ENSO) and the equatorial Pacific annual cycle (AC) to external forcings over the last 300,000 years. The time‐varying boundary conditions of insolation, greenhouse gases, and continental ice sheets, accelerated by a factor of 100, were sequentially added in these simulations. The simulated ENSO and AC amplitudes change in phase, and both have pronounced precession band variance (~21,000 years). The precession‐modulated slow (orbital time scales) ENSO evolution is dominated linearly by the change of the coupled ocean‐atmosphere instability, notably the Ekman upwelling feedback and thermocline feedback. In contrast, the greenhouse gases and ice sheet forcings (~100,000‐year cycles) are opposed to each other as they influence ENSO variability through changes in AC amplitude via a common nonlinear frequency entrainment mechanism. The acceleration technique could dampen and delay the precession signals below the surface ocean associated with ENSO intensity.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2019
    Description: Abstract We present first observations of OH and (HO2 + RO2) carried out in Antarctica outside the summer season. Measurements were made over 23 days in spring at the coastal Antarctic station Halley. Increases in concentrations were evident during the measurement period due to rapidly increasing solar irradiance, and clear diurnal cycles were present throughout. There were also notable differences in air mass composition depending on wind direction. Air masses that had traversed the sea‐ice‐zone had both higher concentrations of OH and a larger OH:(HO2 + RO2) ratio. We use steady‐state kinetic arguments and a 0‐D box model to probe the chemical drivers. We find that differences in bromine chemistry, previously measured at Halley, are sufficient to account for the observed differences in OH concentration as well as the ratio. There is some evidence also that chlorine chemistry is influencing concentrations of RO2.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2019
    Description: ABSTRACT Post‐seismic debris flows are an important hazard following large earthquakes, propagating destruction downstream from hillslopes where co‐seismic landslides occur and extending damage for years after shaking stops. Datasets of post‐seismic debris flows are necessary to predict initiation and runout characteristics, but are presently scarce. We used satellite imagery supplemented by field observations to compile an inventory of 〉1000 debris flows associated with the 2015 Gorkha Earthquake in Nepal. We identified two distinct debris flow types: 1) material from a co‐seismic landslide was remobilized in a steep channel during a later monsoon; and 2) a new post‐seismic hillslope failure occurred in saturated conditions and became fluidized and channelized. Runout distance was constrained by channel confluences and may be related to confluence geometry. Unstable landslide debris was largely flushed from steep channels during the first monsoon following the earthquake, and the rate of new hillslope failures tailed off over a few years.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2019
    Description: Abstract Sand cays are valuable paleo‐archives that can significantly increase our understanding of Holocene tropical cyclone variability. Here we conducted detailed sedimentological and chronological analyses from a 195‐cm‐depth pit excavated on Guangjin Island (northern South China Sea), a cay influenced by frequent tropical cyclones. Radiometric dating of multiple deposits revealed that foraminifera, soft coral spicules, and gastropod shells yielded variable age distributions, while U/Th ages of pristine Acropora branches provided a clear record of deposition and cay formation. Based on this robust chronostratigraphy, the proportions of 〉2‐mm grain size fraction within the deposits corresponded with the frequency of paleotyphoons recorded by historical records in recent centuries. U/Th ages (CE 1687 ± 12, CE 1735 ± 6, and CE 1813 ± 5) of Acropora branches from the deposits matched with three known historical typhoon events. Our results highlight the potential of cyclone‐deposited sand cays as new archives for recording paleocyclones.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2019
    Description: Abstract New broadband seismic data from Botswana and South Africa have been combined with existing data from the region to develop improved P and S wave velocity models for investigating the upper mantle structure of southern Africa. Higher craton‐like velocities are imaged beneath the Rehoboth Province and parts of the northern Okwa Terrane and the Magondi Belt, indicating that the northern edge of the greater Kalahari Craton lithosphere lies along the northern boundary of these terranes. Lower off‐craton velocities are imaged beneath the Damara‐Ghanzi‐Chobe Belt, and may in part reflect thinning of the lithosphere beneath the incipient Okavango Rift. Lower velocities are also imaged to the north and northwest of the Bushveld Complex beneath parts of the Okwa Terrane, Magondi Belt, and Limpopo Belt, indicating that cratonic upper mantle in some areas beneath these terranes may have been modified by the 2.05‐Ga Bushveld and/or 1.1‐Ga Umkondo magmatic events.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2019
    Description: Abstract Since near‐term predictions of present‐day climate are controlled by both initial condition (IC) predictability and boundary condition predictability, initialized prediction experiments aim to augment the external‐forcing related predictability realized in uninitialized projections with IC‐related predictability by appropriate observation‐based initialization. However, and notwithstanding the considerable effort expended in finding such "good" initial states, a striking feature of current, state‐of‐the‐art, initialized decadal hindcasts is their tendency to quickly drift away from the initialized state, with attendant loss of skill. We derive a dynamical model for such drift and after validating it, we show that including a recalibrated version of the model in a post‐processing framework is able to significantly augment skill of initialized predictions beyond that achieved by a use of current techniques of post‐processing alone. We also show that the new methodology provides further crucial insights into issues related to initialized predictions.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2019
    Description: Abstract Advancing the leading time for onset prediction of the Indian summer monsoon (ISM) onset is an imperative task; however, it has remained a challenging subject. In particular, the land‐atmosphere coupling associated with monsoon onset prediction is poorly understood. Here, we attempt to investigate the land factor as the ISM onset precursor through studying the internal mechanism of atmospheric heating, which is distinguished by monsoon onset. The low (high) soil moisture in the Iranian desert during March and April advances (delays) ISM onset by enhancing (disturbing) the vertical easterly wind shear. In addition, mid‐tropospheric heating is affected by soil moisture in the Iranian desert. By investigating the internal atmospheric heating process and suggesting the relationship between low soil moisture and ISM onset, these findings clarify the monsoon onset mechanism in terms of the vertical atmospheric profile and land–atmosphere interaction, which eventually extend the lead‐time for the onset prediction.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2019
    Description: Abstract Strain partitioning related to oblique plate convergence has long been debated in Northern Lesser Antilles. Geophysical data acquired during the ANTITHESIS cruises highlight that the sinistral strike‐slip Bunce Fault develops along the vertical, long and linear discontinuity between the sedimentary wedge and a more rigid backstop. The narrowness of the 20‐30‐km‐wide accretionary wedge and its continuity over ~850 km is remarkable. The Bunce Fault extends as far south as 18.5°N where it anastomoses within the accretionary prism where the sharp increase in convergence obliquity possibly acts as a mechanical threshold. Surface traces related to subducting seamounts suggest that 80% of the lateral component of the convergent motion is taken up by internal deformation within the accretionary prism and by the Bunce Fault. The absence of crustal‐scale, long‐term tectonic system south of the Anegada Passage casts doubt upon the degree of strain partitioning in the Northern Lesser Antilles.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2019
    Description: Abstract We measured shear wave velocities in the shallow subsurface by applying seismic interferometry to earthquake records from eight vertical borehole arrays in eastern Hokkaido, Japan. We detected an increase of several percent in the seismic velocity during January to March due to seasonal frost dynamics. The velocity changes associated with seasonal frozen soil are affected by the frost depth and the extent of freezing, while the frost depth and the extent of freezing are mainly controlled by the cumulative temperature and the current temperature, respectively. Thus, a weighted cumulative freezing degree day is proposed to consider these two factors and used for stage division of the annual freeze‐thaw cycle. Based on the results of observation, we present an empirical model to relate the velocity changes with the weighted cumulative freezing degree days, which allows us to estimate the influence of seasonal frozen soil on near‐surface seismic velocity.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2019
    Description: Abstract At‐many‐stations hydraulic geometry (AMHG), while useful for estimating river discharge from satellite data, remains empirical and has yet to be reconciled with the at‐a‐station hydraulic geometry (AHG) from which it was originally derived. Here we present evidence, using United States Geological Survey field measurements of channel hydraulics for 155 rivers, that AMHG can be hydraulically and geomorphically reconciled with AHG. Our results indicate that AMHG is rightly understood as an expression of a river‐wide model of hydraulics driven by changes in slope imposed upon AHG physics. The explanatory power of AHG and this river‐wide model combine to determine whether AMHG exists: if both AHG and the river‐wide model adequately describe hydraulics, then we show that AMHG is a necessary mathematical consequence of these two phenomena. We also orient these findings in the context of river discharge estimation and other applications.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2019
    Description: Abstract Fast dropout of relativistic and ultrarelativistic electrons at both high and low L* regions were observed during the intense coronal mass ejection driven storm in June 2015. An improved radial diffusion model, using an event‐specific last closed drift shell and newly available radial diffusion coefficients (DLL), is implemented to simulate the magnetopause shadowing loss of electrons. The model captures the fast shadowing loss of electrons well at high L* regions after both interplanetary shocks, and reproduces the initial adiabatic loss of the high‐energy storage ring at low L* regions after the second strong shock. We show for the first time that using the event‐specific and K‐dependent last closed drift shell and improved DLL is critical to reproduce the observed dropout features, including the timing, location, and the butterfly electron pitch angle distribution. Future inclusion of the electromagnetic ion cyclotron wave scattering process is needed to model the observed further depletion of the storage ring.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2019
    Description: Abstract High‐quality single‐crystals of (Al,Fe)‐bearing bridgmanite, Mg0.88 Fe3+0.065Fe2+0.035Al0.14Si0.90O3, of hundreds of micrometer size were synthesized at 24 GPa and 1800 °C in a Kawai‐type apparatus from the starting hydrous melt containing ~6.7 wt% water. Analyses of synthesized bridgmanite using petrographic microscopy, scanning electron microscopy, and transmission electron microscopy show that the crystals are chemically homogeneous and inclusion‐free in micrometer‐ to nanometer‐spatial resolutions. Nano‐secondary ion mass spectrometry (NanoSIMS) analyses on selected platelets show ~1020(±70) ppm wt water (hydrogen). The high water concentration in the structure of bridgmanite was further confirmed using polarized and unpolarized Fourier‐transform infrared (FTIR) analyses with two pronounced OH‐stretching bands at ~3230 and ~3460 cm‐1. Our results indicate that lower‐mantle bridgmanite can accommodate relatively high amount of water. Therefore, dehydration melting at the topmost lower mantle by downward flow of transition zone materials would require water contents exceeding ~0.1 wt%.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2019
    Description: Abstract Laboratory experiments report that detectable seismic velocity changes should occur in the vicinity of fault zones prior to earthquakes. However, operating permanent active seismic sources to monitor natural faults at seismogenic depth is found to be nearly impossible to achieve. We show that seismic noise generated by vehicle traffic, and especially heavy freight trains, can be turned into a powerful repetitive seismic source to continuously probe the Earth's crust at a few kilometers depth. Results of an exploratory seismic experiment in Southern California demonstrate that correlations of train‐generated seismic signals allow daily reconstruction of direct P body waves probing the San Jacinto Fault down to 4‐km depth. This new approach may facilitate monitoring most of the San Andreas Fault system using the railway and highway network of California.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2019
    Description: Abstract The lowest winter‐maximum areal sea‐ice coverage on record (1980–2019) in the Bering Sea occurred in the winter of 2017/2018. Sea ice arrived late due to warm southerly winds in November. More typical northerly winds (albeit warm) in December and January advanced the ice, but strong, warm southerlies in February and March forced the ice to retreat. The cold pool (shelf region with bottom water 〈 2 °C) was the smallest on record, because of two related mechanisms: (1) lack of direct cooling in winter by melting sea ice and (2) weaker vertical stratification (no ice melt reduced the vertical salinity gradient) allowing surface heating to penetrate into the near bottom water during summer. February 2019 exhibited another outbreak of warm southerly winds forcing ice to retreat. The number of 〉31‐day outbreaks of southerly winds in winter has increased since 2016.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2019
    Description: Abstract At 0735 UT on December 13 2015,the Rocket Experiment for Neutral Upwelling‐2 (RENU2) experiment launched north towards the auroral cusp region from Andoya, Norway. The instrumented rocket included an electron spectrometer, photometers that measured the auroral redline and greenline, and an instrument that measured ionospheric thermal electron temperature. On the down leg, just south of Svalbard, the rocket entered a region of poleward moving auroral forms (PMAFs) that were characterized by narrow structures due to a combination of spatial and temporal variations. A noticeable feature was that the redline to greenline brightness ratio was much smaller than expected. A model is developed that shows that these emissions can be used to estimate the lifetimes of bursty electron precipitation. This model is shown to be consistent with some PMAF lifetimes being on the order of 100 ms. The correlation between the precipitation and temperature bursts suggest that some transport occurred.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2019
    Description: Abstract We present the electron density (ne) altitude profiles of Saturn's ionosphere at near‐equatorial latitudes from all 23 orbits of Cassini's Grand Finale. The data are collected by the Langmuir probe part of the Radio and Plasma Wave Science investigation. A high degree of variability in the electron density profiles is observed. However, organizing them by consecutive altitude ranges revealed clear differences between the southern and northern hemispheres. The ne profiles are shown to be more variable and connected to the D‐ring below 5,000 km in the southern hemisphere compared to the northern hemisphere. This observed variability is explained to be a consequence of an electrodynamic interaction with the D‐ring. Moreover, a density altitude profile is constructed for the northern hemisphere indicating the presence of three different ionospheric layers. Similar properties were observed during Cassini's final plunge, where the main ionospheric peak is crossed at ∼1,550‐km altitude.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2019
    Description: Abstract The Rocket Experiment for Neutral Upwelling 2 (RENU2) rocket was launched on Dec 13, 2015 at 07:34 UT. The payload transited the cusp region during a neutral upwelling event, supported by a comprehensive set of onboard and ground‐based instrumentation. RENU2 data highlight two important processes. One is that a proper understanding of neutral upwelling by Poleward Moving Auroral Forms (PMAFs) requires a treatment that mimics the quasi‐periodic passage of a sequence of PMAFs. As a PMAF reaches a fluxtube, its physical consequences must be determined including the residual history of effects from previous passages, implying that understanding such a process requires an accounting of the system hysteresis. Second, RENU2 observations suggest that neutral density enhancements driven by precipitation and/or Joule heating can be highly structured in altitude and latitude. In addition, timescales involving neutral dynamics suggest that the structuring must be slowly‐changing, e.g., over the course of 10 to 10s of minutes.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2019
    Description: Abstract The Rocket Experiment for Neutral Upwelling 2 (RENU2) sounding rocket launched from the Andøya Space Center on 13 December 2015 into the dayside polar cusp. An ultraviolet photomultiplier tube (UV PMT) on the RENU2 payload was oriented to look up along the spin axis for emissions of neutral atomic oxygen above the payload. Data from the UV PMT has been compared to predicted auroral emissions calculated by the Global Airglow (GLOW) model. The comparison between GLOW calculations driven by RENU2 electron precipitation measurements and UV PMT data suggest enhanced neutral density in the cusp at altitudes above the RENU2 trajectory.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2019
    Description: Abstract The polar orbit of Juno at Jupiter provides a unique opportunity to observe high latitude energetic particle injections. We measure energy‐dispersed impulsive injections of protons and electrons. Ion injection signatures are just as prevalent as electron signatures, contrary to previous equatorial observations. Included are previously unreported observations of high energy banded structures believed to be remnants of much earlier injections, where the particles have had time to disperse around Jupiter. A model fit of the injections used to estimate timing fits the shape of the proton signatures better than it does the electron shapes, suggesting that electrons and protons are different in their abilities to escape the injection region. We present UV observations of Jupiter's aurora and discuss the relationship between auroral injection features and in situ injection events. We find, unexpectedly, that the presence of in situ particle injections does not necessarily result in auroral injection signatures.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2019
    Description: Abstract During the 2018 Multidisciplinary Arctic Program– Last Ice in the Lincoln Sea we sampled 45 multiyear (MYI) and 34 first‐year ice (FYI) cores, combined with snow depth, ice thickness and transmittance surveys from adjacent level‐FYI and undeformed‐MYI. FYI sites show a decoupling between bottom‐ice chlorophyll a (chl a) and snow depth, however, MYI showed a significant correlation between ice‐algal chl a biomass and snow depth. Topographic control of the snow cover resulted in greater spatio‐temporal variability of the snow over the level FYI, and consequently transmittance, compared to MYI with an undulating surface. The coupled patterns of snow depth, transmittance, and chl a indicate that MYI provides an environment with more stable light conditions for ice algal growth. The importance of sea ice surface topography for ice algal habitat underpins the potential ecological changes associated with projected increased ice dynamics and deformation.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2019
    Description: Abstract A magnetosphere controls a planet's evolution by suppressing or enhancing atmospheric loss to space. In situ measurements of Uranus' magnetosphere from the Voyager 2 flyby in 1986 provide the only direct evidence of magnetospheric transport processes responsible for this atmospheric escape at Uranus. Analysis of high‐resolution Voyager 2 magnetic field data in Uranus' magnetotail reveals the presence of a loop‐like plasmoid filled with planetary plasma traveling away from the planet. This first plasmoid observation in an Ice Giant magnetosphere elucidates that: (1) both internal and external forces play a role in Uranus' magnetospheric dynamics; (2) magnetic reconnection contributes to the circulation of plasma and magnetic flux at Uranus; and (3) plasmoids may be a dominant transport mechanism for mass loss through Uranus' magnetotail.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2019
    Description: Abstract Seasonally flooded forests along tropical rivers cover extensive areas, yet the processes driving air‐water exchanges of radiatively active gases are uncertain. To quantify the controls on gas transfer velocities, we combined measurements of water‐column temperature, meteorology in the forest and adjacent open water, turbulence with an acoustic Doppler velocimeter, gas concentrations, and fluxes with floating chambers. Under cooling, measured turbulence, quantified as the rate of dissipation of turbulent kinetic energy (ε), was similar to buoyancy flux computed from the surface energy budget, indicating convection dominated turbulence production. Under heating, turbulence was suppressed unless winds in the adjacent open water exceeded 1 m/s. Gas transfer velocities obtained from chamber measurements ranged from 1 to 5 cm/hr and were similar to or slightly less than predicted using a turbulence‐based surface renewal model computed with measured ε and ε predicted from wind and cooling.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2019
    Description: Abstract This study describes a model of Phillips' Λ(c) distribution, which is the expected length of breaking fronts (per unit surface area) moving with velocity c to c+dc, providing a framework for coupled atmosphere‐wave‐ocean models to explicitly account for wave breaking related air‐sea fluxes. The model of Λ depends on the spectral saturation, based on the statistics of the lengths of crest exceeding wave slope criteria, including long‐wave short‐wave modulation. A wave breaking dissipation function based on Λ was implemented in the model WaveWatchIII. The wave solutions are consistent with the observations, including several metrics of the spectrum and Λ(c) distributions. The whitecap coverage derived from Λ reproduces recent parameterizations saturating at high winds. The wave breaking variability due to wave‐current interaction is significant at submesoscales (order 1 km or smaller). The wave breaking model can be further developed to model gas transfer coefficients and aerosol production.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2019
    Description: Abstract The equilibrium climate sensitivity, that is, the global‐mean surface‐air temperature change in response to a doubling of the carbon dioxide concentration is a widely used metric in climate change studies. Its exact value is rarely known because its estimation requires a long integration time of several thousand years. We propose a method to estimate an accurate value of the equilibrium response from fully coupled climate models at a reasonable computational cost. Using this method, our state‐of‐the‐art climate model CNRM‐CM6‐1 reaches a stationary state after only few hundred of years of integration. This “Fast‐Forward” method consists of an optimal two‐step forcing pathway designed using the framework of a two‐layer energy balance model. It can be applied easily to any coupled climate model.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2019
    Description: Abstract We examine the role of ions and electrons in reconnection using the highest resolution observations from the MMS mission on kinetic ion and electron scales. We report magnetic field and plasma observations from several approaches to the electron diffusion region in the current sheet in 2018. Besides magnetic field reversals, changes in the direction of flow velocity, ion and electron heating, MMS observed large fluctuations in the electron flow speeds in the magnetotail. We have verified that when the field lines and plasma become decoupleda large reconnecting electric field related to the Hall current (1‐10 mV/m) is responsible for the fast reconnection in the ion diffusion region. Although inertial acceleration forces remain moderate (1‐2 mV/m), the electric fields resulting from the electron pressure tensor provide the main contribution to the generalized Ohm's law at the neutral sheet (as large as 200 mV/m). This illustrates that when ions decouple electron physics dominates.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2019
    Description: Abstract It is assumed that the potential intensity of tropical cyclones (TC) will increase with rising global temperature. The western North Pacific is one of the three principal TC centers, but TC records from the region are scarce and sometimes controversial. Here we present grain‐size distributions and element contents of sediment cores from the East China Sea, in the western North Pacific. We interpret changes in the mean grain size of the coarse fraction as a proxy for TC intensity, and we infer a linkage of TC intensity to temperature changes over the last two millennia. Supported by model simulations, our results show that TC intensity increased (decreased) during relatively warm (cool) periods, confirming the control of temperature on TC intensity on a multicentennial scale. Our results suggest that long‐term TC intensity in the western North Pacific may increase with continued global warming.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2019
    Description: Abstract Surface evaporation in arid regions determines the fraction of rainfall that remains to support vegetation and recharge. The surface evaporation capacitor approach was used to estimate rainfall partitioning to surface evaporation and leakage into deeper layers. The surface evaporation capacitor estimates a soil‐specific surface evaporation depth and critical storage capacitance that defines rainfall events that exceed local capacitance and result in leakage into deeper layers protected from surface evaporation. A decade‐long record of hydrologic observations in deep and barren lysimeters near Las Vegas revealed the dominance of a few large rainfall events in generating leakage and increasing interannual soil water storage. The surface evaporation capacitor was used to estimate mean annual surface evaporation and leakage protected from surface evaporation in all arid regions globally. About 13% of arid region rainfall contributes to soil water storage (in the absence of vegetation), similar to 11% found in the lysimeter study.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2019
    Description: Abstract Global climate models generally overestimate recent tropospheric warming trends. While a number of explanations have been suggested, their relative impacts have not been quantified. In particular, interannual and long‐term variability of tropospheric temperatures (TTT) is known to be strongly constrained by near‐surface conditions in ocean regions of deep convection. Here, we analyze the role played by tropical sea surface temperature (SST) variability in recent decades in setting TTT. We find that Coupled Model Intercomparison Project Phase 5 models and observations agree on the interannual relationship between SSTs in regions of deep, tropical convection and TTT. Over the 1979–2018 period, most of the difference between model and satellite‐based TTT trends can be explained by respective differences in SST warming trends in regions of deep convection. While large multidecadal patterns of SST variability certainly play a role, notably in the Pacific Ocean, other mechanisms may also contribute to the overestimation of recent SST warming in climate models.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2019
    Description: Abstract The low‐altitude, high‐velocity trajectory of the Juno spacecraft enables the Jovian Auroral Distributions Experiment to make the first in situ observations of the high‐latitude ionospheric plasma. Ions are observed to energies below 1 eV. The high‐latitude ionospheric ions are observed simultaneously with a loss cone in the magnetospheric ions, suggesting precipitating magnetospheric ions contribute to the heating of the upper ionosphere, raising the scale height, and pushing ionospheric ions to altitudes of 0.5 RJ above the planet where they are observed by Jovian Auroral Distributions Experiment. The source of the magnetospheric ions is tied to the Io torus and plasma sheet, indicated by the cutoff seen in both the magnetospheric and ionospheric plasma at the Io M‐shells. Equatorward of the Io M‐shell boundary, the ionospheric ions are not observed, indicating a drop in the scale height of the ionospheric ions at those latitudes.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...