ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (7,343)
  • 2010-2014  (7,313)
  • 2000-2004  (30)
  • 1980-1984
  • 1950-1954
  • Biogeosciences Discussions  (1,896)
  • Hydrology and Earth System Sciences Discussions  (1,487)
  • 42429
  • 54330
  • Geosciences  (7,343)
  • Political Science
Collection
  • Articles  (7,343)
Publisher
Years
Year
Topic
  • 1
    Publication Date: 2013-09-06
    Description: Imperfect scaling in distributions of radar-derived rainfall fields Hydrology and Earth System Sciences Discussions, 10, 11385-11422, 2013 Author(s): M. J. van den Berg, L. Delobbe, and N. E. C. Verhoest Fine scale rainfall observations for modeling exercises are often not available, but rather coarser data derived from a variety of sources are used. Effectively using these data sources in models often requires the probability distribution of the data at the applicable scale. Although numerous models for scaling distributions exist, these are often based on theoretical developments, rather than on data. In this study, we develop a model based on the α-stable distribution of rainfall fields, and tested on 5 min radar data from a Belgian weather radar. We use these data to estimate functions that describe parameters of the distribution over various scales. Moreover, we study how the mean of the distribution and the intermittency change with scale, and validate and design functions to describe the shape parameter of the distribution. This information was combined into an effective model of the distribution. Finally, the model was fitted to data from numerous storms, and the resulting parameters were compared to investigate the change in scaling behavior through time.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-09-06
    Description: Spatially resolved information on karst conduit flow from in-cave dye-tracing Hydrology and Earth System Sciences Discussions, 10, 11311-11335, 2013 Author(s): U. Lauber, W. Ufrecht, and N. Goldscheider Artificial tracers are powerful tools to investigate karst systems. Tracers are commonly injected into sinking streams or dolines, while springs serve as monitoring sites. The obtained flow and transport parameters represent mixed information from the vadose, epiphreatic and phreatic zones, i.e., the aquifer remains a black box. Accessible active caves constitute valuable but underexploited natural laboratories to gain detailed insights into the hydrologic functioning of the aquifer. Two multi-tracer tests in the catchment of a major karst spring (Blautopf, Germany) with injections and monitoring in two associated water caves aimed at obtaining spatially and temporally resolved information on groundwater flow in different compartments of the system. Two tracers were injected in the caves to characterize the hydraulic connections between them and with the spring. Two injections at the land surface, far from the spring, aimed at resolving the aquifer's internal drainage structure. Tracer breakthrough curves were monitored by field fluorimeters in caves and at the spring. Results demonstrate the dendritic drainage structure of the aquifer. It was possible to obtain relevant flow and transport parameters for different sections of this system. The highest mean flow velocities (275 m h −1 ) were observed in the near-spring epiphreatic section (open-channel flow), while velocities in the phreatic zone (pressurized flow) were one order of magnitude lower. Determined conduit water volumes confirm results of water balances and hydrograph analyses. In conclusion, experiments and monitoring in caves can deliver spatially resolved information on karst aquifer heterogeneity and dynamics that cannot be obtained by traditional investigative methods.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-09-06
    Description: On the lack of robustness of hydrologic models regarding water balance simulation – a diagnostic approach on 20 mountainous catchments using three models of increasing complexity Hydrology and Earth System Sciences Discussions, 10, 11337-11383, 2013 Author(s): L. Coron, V. Andréassian, C. Perrin, M. Bourqui, and F. Hendrickx This paper investigates the robustness of rainfall–runoff models when their parameters are transferred in time. More specifically, we studied their ability to simulate water balance on periods with different hydroclimatic characteristics. The testing procedure consisted in a series of parameter transfers between 10-yr periods and the systematic analysis of mean-volume errors. This procedure was applied to three conceptual models of different structural complexity over 20 mountainous catchments in southern France. The results showed that robustness problems are common. Errors on 10-yr-mean flows were significant for all three models and calibration periods, even when the entire record was used for calibration. Various graphical and numerical tools were used to show strong similarities between the shapes of mean flow biases calculated on a 10-yr-long sliding window when various parameter sets are used. Unexpected behavioural similarities were observed between the three models tested, considering their large differences in structural complexity. While the actual causes for robustness problems in these models remain unclear, this work stresses the limited transferability in time of the water balance adjustments made through parameter optimization. Although absolute differences between simulations obtained with different calibrated parameter sets were sometimes substantial, relative differences in simulated mean flows between time periods remained similar regardless of the calibrated parameter sets.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-09-11
    Description: Not all calcite ballast is created equal: differing effects of foraminiferan and coccolith calcite on the formation and sinking of aggregates Biogeosciences Discussions, 10, 14861-14885, 2013 Author(s): K. Schmidt, C. L. De La Rocha, M. Gallinari, and G. Cortese Correlation between particulate organic carbon (POC) and calcium carbonate sinking through the deep ocean has led to the idea that ballast provided by calcium carbonate is important for the export of POC from the surface ocean. While this idea is certainly to some extent true, it is worth considering in more nuance, for example, examining the different effects on the aggregation and sinking of POC of small, non-sinking calcite particles like coccoliths and large, rapidly sinking calcite like planktonic foraminiferan tests. We have done that here in a simple experiment carried out in roller tanks that allow particles to sink continuously without being impeded by container walls. Coccoliths were efficiently incorporated into aggregates that formed during the experiment, increasing their sinking speed compared to similarly sized aggregates lacking added calcite ballast. The foraminiferan tests, which sank as fast as 700 m d −1 , became associated with only very minor amounts of POC. In addition, when they collided with other, larger, foraminferan-less aggregates, they fragmented them into two smaller, more slowly sinking aggregates. While these effects were certainly exaggerated within the confines of the roller tanks, they clearly demonstrate that calcium carbonate ballast is not just calcium carbonate ballast- different forms of calcium carbonate ballast have notably different effects on POC aggregation, sinking, and export.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-09-11
    Description: Antecedent flow conditions and nitrate concentrations in the Mississippi River Basin Hydrology and Earth System Sciences Discussions, 10, 11451-11484, 2013 Author(s): J. C. Murphy, R. M. Hirsch, and L. A. Sprague The influence of antecedent flow conditions on nitrate concentrations was explored at eight sites in the Mississippi River Basin, USA. Antecedent moisture conditions have been shown to influence nutrient export from small, relatively homogenous basins, but this influence has not been observed at a regional or continental scale. Antecedent flow conditions were quantified as the ratio between the mean daily flow of the previous year and the mean daily flow from the period of record ( Q ratio), and the Q ratio was statistically related to nitrate anomalies (the unexplained variability in nitrate concentration after filtering out season, long-term trend, and contemporaneous flow effects) at each site. Nitrate anomaly and Q ratio were negatively related at three of the four major tributary sites and upstream in the Mississippi River, indicating that when the previous year was drier than average, at these sites, nitrate concentrations were higher than expected. The strength of these relationships increased when data were subdivided by contemporaneous flow conditions. Five of the eight sites had significant negative relationships ( p ≤ 0.05) at high or moderately high contemporaneous flows, suggesting nitrate that accumulates in these basins during a drought is flushed during subsequent storm events. At half of the sites, when flow during the previous year was 50% drier than average, nitrate concentration can be from 9 and 27% higher than nitrate concentrations that follow a year with average daily flow. Conversely, nitrate concentration can be from 8 and 21% lower than expected when the previous year was 50% wetter than average. These relationships between nitrate concentration and Q ratio serve as the basis for future studies that can better define specific hydrologic processes occurring during and after a drought, which influence nitrate concentration, such as the duration or magnitude of low flows, and the timing of low and high flows.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-09-12
    Description: Contribution of snow and glacier melt to discharge for highly glacierised catchments in Norway Hydrology and Earth System Sciences Discussions, 10, 11485-11517, 2013 Author(s): M. Engelhardt, T. V. Schuler, and L. M. Andreassen Glacierised catchments significantly alter the streamflow regime due to snow and glacier meltwater contribution to discharge. In this study, we modelled the mass balance and discharge rates for three highly glacierised catchments (〉50% glacier cover) in western Norway over the period 1961–2012. The spatial pattern of the catchments follows a gradient in climate continentality from west to east. The model uses gridded temperature and precipitation values from seNorge ( http://senorge.no ) as input which are available at a daily resolution. It accounts for accumulation of snow, transformation of snow to firn and ice, evaporation and melt. The model was calibrated for each catchment based on measurements of seasonal glacier mass-balances and daily discharge rates. For validation, daily melt rates were compared with measurements from sonic rangers located in the ablation zones of two of the glaciers and an uncertainty analysis was performed for the third catchment. The discharge contributions from snowmelt, glacier melt and rain were analysed with respect to spatial variations and temporal evolution. The model simulations reveal an increase of the relative contribution from glacier melt for the three catchments from less than 10% in the early 1990s to 15–30% in the late 2000s. The decline in precipitation by 10–20% in the same period was therefore overcompensated resulting in an increase of the annual discharge by 5–20%. Annual discharge sums and annual glacier melt are strongest correlated with annual and winter precipitation at the most maritime glacier and, with increased climate continentality, variations in both glacier melt contribution and annual discharge are becoming stronger correlated with variations in summer temperatures.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-09-14
    Description: Phenology as a strategy for carbon optimality: a global model Biogeosciences Discussions, 10, 15107-15152, 2013 Author(s): S. Caldararu, D. W. Purves, and P. I. Palmer Phenology is essential to our understanding of biogeochemical cycles and the climate system. We develop a global mechanistic model of leaf phenology based on the hypothesis that phenology is a strategy for optimal carbon gain at the canopy level so that trees adjust leaf gains and losses in response to environmental factors such as light, temperature and soil moisture, to achieve maximum carbon assimilation. We fit this model to five years of satellite observations of leaf area index (LAI) using a Bayesian fitting algorithm. We show that our model is able to reproduce phenological patterns for all vegetation types and use it to explore variations in growing season length and the climate factors that limit leaf growth for different biomes. Phenology in wet tropical areas is limited by leaf age physiological constraints while at higher latitude leaf seasonality is limited by low temperature and light availability. Leaf growth in grassland regions is limited by water availability but often in combination with other factors. This model will advance the current understanding of phenology for ecosystem carbon models and our ability to predict future phenological behaviour.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-09-14
    Description: Bias correction can modify climate model-simulated precipitation changes without adverse affect on the ensemble mean Hydrology and Earth System Sciences Discussions, 10, 11585-11611, 2013 Author(s): E. P. Maurer and D. W. Pierce When applied to remove climate model biases in precipitation, quantile mapping can in some settings modify the simulated trends. This has important implications when the precipitation will be used to drive an impacts model that is sensitive to changes in precipitation. We use daily precipitation output from 12 general circulation models (GCMs) over the conterminous United States interpolated to a common 1° grid, and gridded observations aggregated to the same scale, to compare precipitation differences before and after quantile mapping bias correction. The change in seasonal mean (winter, DJF, and summer, JJA) precipitation between different 30-yr historical periods is compared to examine (1) the consensus among GCMs as to whether the bias correction tends to amplify or diminish their simulated precipitation trends, and (2) whether the modification of the change in precipitation tends to improve or degrade the correspondence to observed changes in precipitation for the same periods. In some cases, for a particular GCM, the trend modification can be as large as the original simulated change, though the areas where this occurs varies among GCMs so the ensemble median shows smaller trend modification. In specific locations and seasons the trend modification by quantile mapping improves correspondence with observed trends, and in others it degrades it. In the majority of the domain the ensemble median is for little effect on the correspondence of simulated precipitation trends with observed. This highlights the need to use an ensemble of GCMs rather than relying on a small number of models to estimate impacts.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-09-17
    Description: Timing of sea ice retreat can alter phytoplankton community structure in the western Arctic Ocean Biogeosciences Discussions, 10, 15153-15180, 2013 Author(s): given_name prefix surname suffix, A. Fujiwara, T. Hirawake, K. Suzuki, I. Imai, and S.-I. Saitoh This study assesses the response of phytoplankton assemblages to recent climate change, especially with regard to the shrinking of sea ice in the northern Chukchi Sea of the western Arctic Ocean. Distribution patterns of phytoplankton groups in the late summers of 2008–2010 were analyzed based on HPLC pigment signatures and, the following four major algal groups were inferred via multiple regression and cluster analyses: prasinophytes, diatoms, haptophytes and dinoflagellates. A remarkable interannual difference in the distribution pattern of the groups was found in the northern basin area. Haptophytes dominated and dispersed widely in warm surface waters in 2008, whereas prasinophytes dominated in cold water in 2009 and 2010. A difference in the onset date of sea ice retreat was evident among years – the sea ice retreat in 2008 was 1–2 months earlier than in 2009 and 2010. The spatial distribution of early sea ice retreat matched the areas in which a shift in algal community composition was observed. Steel-Dwass's multiple comparison tests were used to assess the physical, chemical and biological parameters of the four clusters. We found a statistically significant difference in temperature between the haptophyte-dominated cluster and the other clusters, suggesting that the change in the phytoplankton communities was related to the earlier sea ice retreat in 2008 and the corollary increase in sea surface temperatures. Longer periods of open water during the summer, which are expected in the future, may affect food webs and biogeochemical cycles in the western Arctic due to shifts in phytoplankton community structure.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-09-24
    Description: Uptake of phytodetritus by benthic foraminifera under oxygen depletion at the Indian Margin (Arabian Sea) Biogeosciences Discussions, 10, 15305-15335, 2013 Author(s): A. J. Enge, U. Witte, M. Kucera, and P. Heinz Benthic foraminifera in sediments on the Indian margin of the Arabian Sea where the oxygen minimum zone (OMZ) impinges on the continental slope are exposed to particularly severe levels of oxygen depletion. Food supply for the benthic community is high but delivered in distinct pulses during upwelling and water mixing events associated with summer and winter monsoon periods. In order to investigate the response by benthic foraminifera to such pulsed food delivery under oxygen concentrations of less than 0.1 mL L −1 (4.5 μmol L −1 ), an in situ isotope labeling experiment ( 13 C, 15 N) was performed at the western continental slope of India at 540 m water depth (OMZ core region). The assemblage of living foraminifera (〉125 μm) in the uppermost centimeter at this depth is characterized by an unexpectedly high population density of 3982 ind. 10 cm −2 and a strong dominance by few calcareous species. For the experiment, we concentrated on the nine most abundant taxa, which constitute 93% of the entire foraminifera population at 0–1 cm sediment depth. Increased concentrations of 13 C and 15 N in the cytoplasm indicate that all investigated taxa took up the labeled phytodetritus during the 4 day experimental phase. In total, these nine species had assimilated 113.8 mg C m −2 (17.5% of the total added carbon). The uptake of nitrogen by the three most abundant taxa ( Bolivina aff. B. dilatata , Cassidulina sp., Bulimina gibba ) was 2.7 mg N m −2 (2% of the total added nitrogen) and showed the successful application of 15 N as tracer in foraminiferal studies. The short-term response to the offered phytodetritus varied largely among foraminiferal species with Uvigerina schwageri being by far the most important species in short-term processing whereas the most abundant taxa Bolivina aff. B. dilatata and Cassidulina sp. showed comparably low uptake of the offered food. We suggest that the observed species-specific differences are related to individual biomass of species and to specific feeding preferences. The high numbers of living foraminifera and their rapid response to deposited fresh phytodetritus demonstrate the importance of foraminifera in short-term carbon cycling under oxygen-depleted conditions. We propose that foraminifera at the studied site benefit from unique adaptations in their metabolisms to nearly anoxic conditions as well as from the exclusion of macrofauna and the resulting relaxation of competition for food and low predation pressure.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2013-09-26
    Description: Summertime canopy albedo is sensitive to forest thinning Biogeosciences Discussions, 10, 15373-15414, 2013 Author(s): J. Otto, D. Berveiller, F.-M. Bréon, N. Delpierre, G. Geppert, A. Granier, W. Jans, A. Knohl, A. Kuusk, B. Longdoz, E. Moors, M. Mund, B. Pinty, M.-J. Schelhaas, and S. Luyssaert Despite an emerging body of literature linking canopy albedo to forest management, understanding of the process is still fragmented. We combined a stand-level forest gap model with a canopy radiation transfer model and satellite-derived model parameters to quantify the effects of forest thinning, that is removing trees at a certain time during the forest rotation, on summertime canopy albedo. The effects of different forest species (pine, beech, oak) and four thinning strategies (light to intense thinning regimes) were examined. During stand establishment, summertime canopy albedo is driven by tree species. In the later stages of stand development, the effect of tree species on summertime canopy albedo decreases in favour of an increasing influence of forest thinning on summertime canopy albedo. These trends continue until the end of the rotation where thinning explains up to 50% of the variance in near-infrared canopy albedo and up to 70% of the variance in visible canopy albedo. More intense thinning lowers the summertime shortwave albedo in the canopy by as much as 0.02 compared to unthinned forest. The structural changes associated with forest thinning can be described by the change in LAI in combination with crown volume. However, forests with identical canopy structure can have different summertime albedo values due to their location: the further north a forest is situated, the more the solar zenith angle increases and thus the higher is the summertime canopy albedo, independent of the wavelength. Despite the increase of absolute summertime canopy albedo values with latitude, the difference in canopy albedo between managed and unmanaged forest decreases with increasing latitude. Forest management thus strongly altered summertime forest albedo.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2013-09-27
    Description: The effect of training image and secondary data integration with multiple-point geostatistics in groundwater modeling Hydrology and Earth System Sciences Discussions, 10, 11829-11860, 2013 Author(s): X. He, T. O. Sonnenborg, F. Jørgensen, and K. H. Jensen Multiple-point geostatistic simulation (MPS) has recently become popular in stochastic hydrogeology, primarily because of its capability to derive multivariate distributions from the training image (TI). However, its application in three dimensional simulations has been constrained by the difficulty of constructing 3-D TI. The object-based TiGenerator may be a useful tool in this regard; yet the sensitivity of model predictions to the training image has not been documented. Another issue in MPS is the integration of multiple geophysical data. The best way to retrieve and incorporate information from high resolution geophysical data is still under discussion. This work shows that TI from TiGenerator delivers acceptable results when used for groundwater modeling, although the TI directly converted from high resolution geophysical data leads to better simulation. The model results also indicate that soft conditioning in MPS is a convenient and efficient way of integrating secondary data such as 3-D airborne electromagnetic data, but over conditioning has to be avoided.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2013-09-27
    Description: Multi-decadal river flows variations in France Hydrology and Earth System Sciences Discussions, 10, 11861-11900, 2013 Author(s): J. Boé and F. Habets In this article, multi-decadal variations in French hydroclimate are investigated, with a specific focus on river flows. Based on long observed series, it is shown that river flows in France generally exhibit large multi-decadal variations on the historical period, especially in spring. Differences of means between two 21 yr periods of the 20th century as large as 40% are indeed found for many gauging stations. Multi-decadal spring river flows variations are associated with variations in spring precipitation and temperature. These multi-decadal variations in precipitation are themselves found to be driven by large-scale atmospheric circulation, more precisely by a multi-decadal oscillation in a sea level pressure dipole between western Europe and the East Atlantic. It is suggested that the Atlantic Multidecadal Variability, the main mode of decadal variability in the North Atlantic/Europe sector, controls those variations in large-scale circulation and is therefore the main ultimate driver of multi-decadal variations in spring river flows. Multi-decadal variations in river flows in other seasons, and in particular summer, are also noted. As they are not associated with significant surface climate anomalies (i.e. temperature, precipitation) in summer, other mechanisms are investigated based on hydrological simulations. The impact of climate variations in spring on summer soil moisture, and the impact of soil moisture in summer on the runoff to precipitation ratio, could potentially play a role in multi-decadal summer river flows variations. The large amplitude of the multi-decadal variations in French river flows suggests that internal variability may play a very important role in the evolution of river flows during the next decades, potentially temporarily limiting, reversing or seriously aggravating the long-term impacts of anthropogenic climate change.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2013-10-01
    Description: Oxygen minimum zone of the open Arabian Sea: variability of oxygen and nitrite from daily to decadal time scales Biogeosciences Discussions, 10, 15455-15517, 2013 Author(s): K. Banse, S. W. A. Naqvi, P. V. Narvekar, J. R. Postel, and D. A. Jayakumar The oxygen minimum zone (OMZ) of the Arabian Sea is the thickest of the three oceanic OMZs, which is of global biogeochemical significance because of denitrification in the upper part leading to N 2 and N 2 O production. The residence time of the OMZ water is believed to be less than a decade. The upper few hundred meters of this zone are nearly anoxic but non-sulfidic and still support animal (metazoan) pelagic life, possibly as a result of episodic injections of O 2 by physical processes. The very low O 2 values obtained with the new STOX sensor in the eastern tropical South Pacific probably also characterize the Arabian Sea OMZ, but there is no apparent reason as to why the temporal trends of the historic data should not hold. We report on discrete measurements of dissolved O 2 and NO 2 - , besides temperature and salinity, made between 1959 and 2004 well below the tops of the sharp pycno- and oxyclines near 150, 200, 300, 400, and 500 m depth. We assemble nearly all O 2 determinations (originally, 849 values, 695 in the OMZ) by the visual endpoint detection of the iodometric Winkler procedure, which in our data base yields about 0.04 mL L −1 (∼2 μM) O 2 above the endpoint from modern automated titration methods. We find 632 values acceptable (480 from 150 stations in the OMZ). The data are grouped in zonally-paired boxes of 1° lat. and 2° long. centered at 8°, 10°, 12°, 15°, 18°, 20°, and 21° N along 65° E and 67° E. The latitudes of 8–12° N, outside the OMZ, are only treated in passing. The principal results are as follows: (1) an O 2 climatology for the upper OMZ reveals a marked seasonality at 200 to 500 m depth with O 2 levels during the northeast monsoon and spring intermonsoon season elevated over those during the southwest monsoon season (median difference, 0.08 mL L −1 [3.5 μM]). The medians of the slopes of the seasonal regressions of O 2 on year for the NE and SW monsoon seasons are −0.0043 and −0.0019 mL L −1 a −1 , respectively (−0.19 and −0.08 μM a −1 ; n = 10 and 12, differing at p = 0.01); (2) four decades of statistically significant decreases of O 2 between 15° and 20° N but a trend to a similar increase near 21° N are observed. The balance of the mechanisms that more or less annually maintain the O 2 levels are still uncertain. At least between 300 and 500 m the annual reconstitution of the decrease is inferred to be due to lateral, isopycnal re-supply of O 2 , while at 200 (250?) m it is diapycnal, most likely by eddies. Similarly, recent models show large vertical advection of O 2 well below the pycno- cum -oxycline. The spatial (within drift stations) and temporal (daily) variability in hydrography and chemistry is large also below the principal pycnocline. The seasonal change of hydrography is considerable even at 500 m. There is no trend in the redox environment for a quarter of a century at a GEOSECS station near 20° N. In the entire OMZ the slopes on year within seasons for the quite variable NO 2 - (taken as an indicator of active denitrification) do not show a clear pattern. Also, future O 2 or nutrient budgets for the OMZ should not be based on single cruises or sections obtained during one season only. Steady state cannot be assumed any longer for the intermediate layers of the central Arabian Sea.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2013-10-01
    Description: Teleconnection analysis of runoff and soil moisture over the Pearl River basin in South China Hydrology and Earth System Sciences Discussions, 10, 11943-11982, 2013 Author(s): J. Niu, J. Chen, and B. Sivakumar This study explores the teleconnection of two climatic patterns, namely the El Niño-Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD), with hydrological processes over the Pearl River basin in South China. The Variable Infiltration Capacity (VIC) model is used to simulate the daily hydrological processes over the basin for the study period 1952–2000, and then, using the simulation results, the time series of the monthly runoff and soil moisture anomalies for its ten sub-basins are aggregated. Wavelet analysis is performed to explore the variability properties of these time series at 49 timescales ranging from 2 months to 9 yr. Use of wavelet coherence and rank correlation method reveals that the dominant variabilities of the time series of runoff and soil moisture are basically correlated with IOD. The influences of ENSO on the terrestrial hydrological processes are mainly found in the eastern sub-basins. The teleconnections between climatic patterns and hydrological variability also serve as a reference basis for inferences on the occurrence of extreme hydrological events (e.g. floods and droughts).
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2013-09-07
    Description: Hydrological functions of sinkholes and characteristics of point recharge in groundwater basins Hydrology and Earth System Sciences Discussions, 10, 11423-11449, 2013 Author(s): N. Somaratne, K. Smettem, J. Lawson, K. Nguyen, and J. Frizenschaf Karstic limestone aquifers are hydrologically and hydrochemically extremely heterogeneous and point source recharge via sinkholes and fissures is a common feature. We studied three groundwater systems in karstic settings dominated by point source recharge in order to assess the relative contributions to total recharge from point sources using chloride and δ 18 O relations. Preferential groundwater flows were observed through an inter-connected network of highly conductive zones with groundwater mixing along flow paths. Measurements of salinity and chloride indicated that fresh water pockets exist at point recharge locations. A measurable fresh water plume develops only when a large quantity of surface water enters the aquifer as a point recharge source. The difference in chloride concentrations in diffuse and point recharge zones decreases as aquifer saturated thickness increases and the plumes become diluted through mixing. The chloride concentration in point recharge fluxes crossing the watertable plane can remain at or near surface runoff chloride concentrations, rather than in equilibrium with groundwater chloride. In such circumstances the conventional chloride mass balance method that assumes equilibrium of recharge water chloride with groundwater requires modification to include both point and diffuse recharge mechanisms.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2013-09-11
    Description: Stable isotopes dissect food webs from top to the bottom Biogeosciences Discussions, 10, 14923-14952, 2013 Author(s): J. J. Middelburg Stable isotopes have been used extensively to study food web functioning, i.e. the flow of energy and matter among organisms. Traditional food-web studies are based on the natural variability of carbon and nitrogen isotopes and are limited to larger organisms that can be physically separated from their environment. Recent developments allow isotope ratio measurements of microbes and this in turn allows then measurement of entire food webs, i.e. from small producers at the bottom to large consumers at the top. Here, I provide a concise review on the use and potential of stable isotope to reconstruct end-to-end food webs. I will first discuss food web reconstruction based on natural abundances isotope data and will then show that the use of stable isotopes as deliberately added tracers provides complementary information. Finally, challenges and opportunities for end-to-end food web reconstructions in a changing world are discussed.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2013-09-13
    Description: Climate information based streamflow and rainfall forecasts for Huai River Basin using Hierarchical Bayesian Modeling Hydrology and Earth System Sciences Discussions, 10, 11559-11584, 2013 Author(s): X. Chen, Z. Hao, N. Devineni, and U. Lall A Hierarchal Bayesian model for forecasting regional summer rainfall and streamflow season-ahead using exogenous climate variables for East Central China is presented. The model provides estimates of the posterior forecasted probability distribution for 12 rainfall and 2 streamflow stations considering parameter uncertainty, and cross-site correlation. The model has a multilevel structure with regression coefficients modeled from a common multivariate normal distribution results in partial-pooling of information across multiple stations and better representation of parameter and posterior distribution uncertainty. Covariance structure of the residuals across stations is explicitly modeled. Model performance is tested under leave-10-out cross-validation. Frequentist and Bayesian performance metrics used include Receiver Operating Characteristic, Reduction of Error, Coefficient of Efficiency, Rank Probability Skill Scores, and coverage by posterior credible intervals. The ability of the model to reliably forecast regional summer rainfall and streamflow season-ahead offers potential for developing adaptive water risk management strategies.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2013-09-14
    Description: Responses of carbon dioxide flux and plant biomass to drought in a treed peatland in northern Alberta: a climate change perspective Biogeosciences Discussions, 10, 14999-15031, 2013 Author(s): T. M. Munir, B. Xu, M. Perkins, and M. Strack Northern peatland ecosystems represent large carbon stocks that are susceptible to changes such as accelerated mineralization due to water table lowering expected under a climate change scenario. During the growing seasons of 2011 and 2012 we monitored CO 2 fluxes and plant biomass along a microtopographic gradient (hummocks-hollows) in an undisturbed dry continental boreal treed bog (control) and a nearby site that was drained (drained) in 2001. Ten years of drainage in the bog significantly increased coverage of shrubs at hummocks and lichens at hollows. Considering measured hummock coverage and including tree incremental growth, we estimate that the control site was a larger sink in 2011 of −40 than that of −13 g C m −2 in 2012 while the drained site was a source of 144 and 140 g C m −2 over the same years. We infer that, drainage induced changes in vegetation growth led to increased biomass to counteract a portion of soil carbon losses. These results suggest that spatial variability (microtopography) and changes in vegetation community in boreal peatlands will affect how these ecosystems respond to lowered water table potentially induced by climate change.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2013-09-14
    Description: The coccolithophores Emiliania huxleyi and Coccolithus pelagicus : extant populations from the Norwegian-Iceland Sea and Fram Strait Biogeosciences Discussions, 10, 15077-15106, 2013 Author(s): C. V. Dylmer, J. Giraudeau, V. Hanquiez, and K. Husum Extant coccolithophores and their relation to the governing oceanographic features in the northern North Atlantic were investigated along two zonal transects of surface water sampling, both conducted during summer 2011 and fall 2007. The northern transects crossed Fram Strait and its two opposing boundary currents (West Spitsbergen Current and East Greenland Current), while the southern transects sampled the Norwegian and Iceland Seas (passing the island Jan Mayen) from the Lofoten Islands to the continental margin off Eastern Greenland. The distribution of the dominant coccolithophore species Emiliania huxleyi and Coccolithus pelagicus is discussed in view of both the surface hydrology at the time of sampling and the structure of the surface mixed layer. Remote-sensing images as well as CTD and ARGO profiles are used to constrain the physico-chemical state of the surface water at the time of sampling. Both transects were characterized by strong seasonal differences in bulk coccolithophore standing stocks with maximum values of 53 × 10 3 cells L −1 for the northern transect and 72 × 10 3 cells L −1 for the southern transect in fall and summer, respectively. The highest recorded bulk cell densities are essentially explained by E. huxleyi . This species shows a zonal shift in peak abundance in the Norwegian-Iceland Seas from a summer maximum in the Lofoten gyre to peak cell densities around the island Jan Mayen in fall. Vertical mixing of Atlantic waters west of Lofoten Island, a phenomenom related to pervasive summer large scale atmospheric changes in the eastern Nordic Seas, on one hand, and strengthened influence of melt-water and related surface water stratification around the island Jan Mayen during fall, on the other hand, explains the observed seasonal migration of the E. huxleyi peak production area, as well as the seasonal change in dominating species within the Iceland Sea. In addition our datasets are indicative of a well-defined maximum boundary temperature of 6 °C for the production of C. pelagicus in the northern North Atlantic. The Fram Strait transects provides, to our knowledge, a first view of the zonal distribution of extant coccolithophores in this remote setting during summer and fall. Our datasets are indicative of a seasonal change in the species community from an E. huxleyi -dominated assemblage during summer to a C. pelagicus -rich population during fall. Here, higher irradiance and increased Atlantic water influence during summer favored the production of the opportunistic species E. huxleyi close to the Arctic Front, whereas the peak production area during fall, with high concentrations of C. pelagicus , lays in true Arctic/Polar waters.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2013-09-18
    Description: Anthropogenic and natural methane fluxes in Switzerland synthesized within a spatially-explicit inventory Biogeosciences Discussions, 10, 15181-15224, 2013 Author(s): R. V. Hiller, D. Bretscher, T. DelSontro, T. Diem, W. Eugster, R. Henneberger, S. Hobi, E. Hodson, D. Imer, M. Kreuzer, T. Künzle, L. Merbold, P. A. Niklaus, B. Rihm, A. Schellenberger, M. H. Schroth, C. J. Schubert, H. Siegrist, J. Stieger, N. Buchmann, and D. Brunner We present the first high-resolution (500 m × 500 m) gridded methane (CH 4 ) emission inventory for Switzerland, which integrates the national emission totals reported to the United Nations Framework Convention on Climate Change (UNFCCC) and recent CH 4 flux studies conducted by research groups across Switzerland. In addition to anthropogenic emissions, we also include natural and semi-natural CH 4 fluxes, i.e., emissions from lakes and reservoirs, wetlands, wild animals as well as uptake by forest soils. National CH 4 emissions were disaggregated using detailed geostatistical information on source locations and their spatial extent and process- or area-specific emission factors. In Switzerland, the highest CH 4 emissions in 2011 originated from the agricultural sector (150 Gg CH 4 yr −1 ), mainly produced by ruminants and manure management, followed by emissions from waste management (15 Gg CH 4 yr −1 ) mainly from landfills and the energy sector (12 Gg CH 4 yr −1 ), which was dominated by emissions from natural gas distribution. Compared to the anthropogenic sources, emissions from natural and semi-natural sources were relatively small (6 Gg CH 4 yr −1 ), making up only 3 % of the total emissions in Switzerland. CH 4 fluxes from agricultural soils were estimated to be not significantly different from zero (between −1.5 and 0 Gg CH 4 yr −1 ), while forest soils are a CH 4 sink (approx. −2.8 Gg CH 4 yr −1 ), partially offsetting other natural emissions. Estimates of uncertainties are provided for the different sources, including an estimate of spatial disaggregation errors deduced from a comparison with a global (EDGAR v4.2) and a European CH 4 inventory (TNO/MACC). This new spatially-explicit emission inventory for Switzerland will provide valuable input for regional scale atmospheric modeling and inverse source estimation.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2013-09-18
    Description: Seasonal trends of dry and bulk concentration of nitrogen compounds over a rain forest in Ghana Biogeosciences Discussions, 10, 15225-15255, 2013 Author(s): F. Fattore, T. Bertolini, S. Materia, S. Gualdi, A. Thongo M'Bou, G. Nicolini, R. Valentini, A. De Grandcourt, D. Tedesco, and S. Castaldi African tropical forests of the equatorial belt might receive significant input of extra nitrogen derived from biomass burning occurring in the north savanna belt and transported equator wards by NE winds. In order to test this hypothesis an experiment was set up in a tropical rain forest in the National park of Ankasa (Ghana) aiming at: quantifying magnitude and seasonal variability of concentrations of N compounds, present as gas and aerosol (dry nitrogen) or in the rainfall (bulk nitrogen), over the studied forest; relating their seasonal variability to trends of local and regional winds and rainfall and to variations of fire events in the region. Three Delta systems, implemented for monthly measurements of NO 2 , were mounted over a tower at 45 m height, 20 m above forest canopy to sample gas (NH 3 , NO 2 , HNO 3 , HCl, SO 2 ) and aerosol (NH 4 + , NO 3 − , and several ions), together with three tanks for bulk rainfall collection (to analyze NH 4 + , NO 3 − and ion concentration). The tower was provided with a sonic anemometer to estimate local wind data. The experiment started in October 2011 and data up to October 2012 are presented. To interpret the observed seasonal trends of measured compounds, local and regional meteo data and regional satellite fire data were analyzed. The concentration of N compounds significantly increased from December to April, during the drier period, peaking in December-February when North Eastern winds (Harmattan) were moving dry air masses over the West central African region and the inter tropical convergence zone (ITCZ) was at its minimum latitude over the equator. This period also coincided with peaks of fire in the whole region. On the contrary, N concentration in gas, aerosol and rain decreased from May to October when prevalent winds arrived from the sea (South-East), during the Monsoon period. Both ionic compositions of rain and analysis of local wind direction showed a significant and continuous presence of see-breeze at site. The ionic composition of rain water resulted much closer to see water and poorer in N compounds from May to October.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2013-09-24
    Description: Inferences from CO 2 and CH 4 concentration profiles at the Zotino Tall Tower Observatory (ZOTTO) on local summer-time ecosystem fluxes Biogeosciences Discussions, 10, 15337-15372, 2013 Author(s): J. Winderlich, C. Gerbig, O. Kolle, and M. Heimann The Siberian region is still sparsely covered by ecosystem observatories, which motivates to exploit existing datasets to gain spatially and temporally better-resolved carbon fluxes. The Zotino Tall Tower Observatory (ZOTTO, 60°48' N, 89°21' E) observations of CO 2 and CH 4 mole fractions as well as meteorological parameters from six different heights up to 301 m allow for an additional estimate of surface-atmosphere fluxes of CO 2 and CH 4 for the Middle-Siberian region since 2009. The total carbon flux is calculated from the storage and the turbulent flux component. The gradients between the different tower levels determine the storage flux component, which dominates the local fluxes, especially during night. As a correction term, the turbulent flux component was estimated by the modified Bowen ratio method based on the sensible heat flux measurements at the top of the tower. The gained average night time fluxes (23:00 to 04:00 local time) are 2.7 ± 1.1 μmol (m 2 s) −1 for CO 2 and 5.6 ± 4.5 nmol (m 2 s) −1 for CH 4 during the summer months June-September in 2009 and 2011. During day, the method is limited due to numeric instabilities from vanishing vertical gradients; however, the derived CO 2 fluxes exhibit reasonable diurnal shape and magnitude compared to the eddy covariance technique, which become available at the site in 2012. Therefore, the tall tower data facilitates the extension of the new eddy covariance flux dataset back in time. The diurnal signal of the CH 4 flux is predominantly characterized by a strong morning transition, which is explained by local topographic effects.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2013-09-24
    Description: Live foraminiferal faunas (Rose Bengal stained) from the northern Arabian Sea: links with bottom-water oxygenation Biogeosciences Discussions, 10, 15257-15304, 2013 Author(s): C. Caulle, K. A. Koho, M. Mojtahid, G. J. Reichart, and F. J. Jorissen Live (Rose Bengal stained) benthic foraminifera from the Murray Ridge, within and below the northern Arabian Sea Oxygen Minimum Zone (OMZ), were studied in order to determine the relationship between faunal composition, bottom-water oxygenation (BWO), pore-water chemistry and organic matter (organic carbon and phytopigment) distribution. A series of multicores were recovered from a ten-station oxygen (BWO: 2–78 μM) and bathymetric (885–3010 m depth) transect during the winter monsoon in January 2009. Foraminifera were investigated from three different size fractions (63–125 μm, 125–150 μm and 〉 150 μm). The larger foraminifera (〉 125 μm) were strongly dominated by agglutinated species (e.g. Reophax spp.). In contrast, in the 63–125 μm fraction, calcareous taxa were more abundant, especially in the core of the OMZ, suggesting an opportunistic behaviour. On the basis of a Principal Component Analysis, three foraminiferal groups were identified, reflecting the environmental parameters along the study transect. The faunas from the shallowest stations, in the core of the OMZ (BWO: 2 μM), were composed of "low oxygen" species, typical of the Arabian Sea OMZ (e.g., Rotaliatinopsis semiinvoluta , Praeglobobulimina spp. , Bulimina exilis, Uvigerina peregrina type parva ). These taxa are adapted to the very low BWO conditions and to high phytodetritus supplies. The transitional group, typical for the lower part of the OMZ (BWO: 5–16 μM), is composed of more cosmopolitan taxa tolerant to low-oxygen concentrations ( Globocassidulina subglobosa , Ehrenbergina trigona ). Below the OMZ (BWO: 26–78 μM), where food availability is more limited and becomes increasingly restricted to surficial sediments, more cosmopolitan calcareous taxa were present, such as Bulimina aculeata, Melonis barleeanus, Uvigerina peregrina and Epistominella exigua . Miliolids were uniquely observed in this last group, reflecting the higher BWO. At these deeper sites, the faunas exhibit a clear depth succession of superficial, intermediate and deep-infaunal microhabitats, because of the deeper oxygen and nitrate penetration into the sediment.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2013-09-24
    Description: A spatial bootstrap technique for parameter estimation of rainfall annual maxima distribution Hydrology and Earth System Sciences Discussions, 10, 11755-11794, 2013 Author(s): F. Uboldi, A. N. Sulis, C. Lussana, M. Cislaghi, and M. Russo Estimation of extreme event distributions and depth-duration-frequency (DDF) curves is achieved at any target site by repeated sampling among all available raingauge data in the surrounding area. The estimate is computed over a gridded domain in Northern Italy, using precipitation time series from 1929 to 2011, including data from historical analog stations and from the present-day automatic observational network. The presented local regionalisation naturally overcomes traditional station-point methods, with their demand of long historical series and their sensitivity to very rare events occurring at very few stations, possibly causing unrealistic spatial gradients in DDF relations. At the same time, the presented approach allows for spatial dependence, necessary in a geographical domain such as Lombardy, complex for both its topography and its climatology. The bootstrap technique enables evaluating uncertainty maps for all estimated parameters and for rainfall depths at assigned return periods.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2013-09-24
    Description: Overview of the first HyMeX Special Observation Period over Italy: observations and model results Hydrology and Earth System Sciences Discussions, 10, 11643-11710, 2013 Author(s): R. Ferretti, E. Pichelli, S. Gentile, I. Maiello, D. Cimini, S. Davolio, M. M. Miglietta, G. Panegrossi, L. Baldini, F. Pasi, F. S. Marzano, A. Zinzi, S. Mariani, M. Casaioli, G. Bartolini, N. Loglisci, A. Montani, C. Marsigli, A. Manzato, A. Pucillo, M. E. Ferrario, V. Colaiuda, and R. Rotunno During the first Hymex campaign (5 September–6 November 2012) referred to as Special Observation Period (SOP-1), dedicated to heavy precipitation events and flash floods in Western Mediterranean, three Italian hydro-meteorological monitoring sites were activated: Liguria-Tuscany, North-Eastern Italy and Central Italy. The extraordinary deployment of advanced instrumentation, including instrumented aircrafts, and the use of several different operational weather forecast models has allowed an unprecedented monitoring and analysis of high impact weather events around the Italian hydro-meteorological sites. This activity has seen the strict collaboration between the Italian scientific and operational communities. In this paper, an overview of the Italian organization during the SOP-1 is provided, and selected Intensive Observation Periods (IOPs) are described. A significant event for each Italian target area is chosen for this analysis: IOP2 (12–13 September 2012) in North-Eastern Italy, IOP13 (15–16 October 2012) in Central Italy and IOP19 (3–5 November 2012) in Liguria and Tuscany. For each IOP the meteorological characteristics, together with special observations and weather forecasts, are analyzed with the aim of highlighting strengths and weaknesses of the forecast modeling systems. Moreover, using one of the three events, the usefulness of different operational chains is highlighted.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2013-09-24
    Description: Correcting basin-scale snowfall in a mountainous basin using a distributed snowmelt model and remote sensing data Hydrology and Earth System Sciences Discussions, 10, 11711-11753, 2013 Author(s): M. Shrestha, L. Wang, T. Koike, H. Tsutsui, Y. Xue, and Y. Hirabayashi Adequate estimation of the spatial distribution of snowfall is critical in hydrologic modeling. However, this is a well-known problem in estimating basin-scale snowfall, especially in mountainous basins with data scarcity. This study focuses on correction and estimation of this spatial distribution, which considers topographic effects within the basin. A method is proposed that optimizes an altitude-based snowfall correction factor ( C fsnow ). This is done through multi-objective calibration of a spatially distributed, multilayer energy and water balance-based snowmelt model (WEB-DHM-S) with observed discharge and remotely sensed snow cover data from the Moderate Resolution Imaging Spectroradiometer (MODIS). The Shuffled Complex Evolution – University of Arizona automatic search algorithm is used to obtain the optimal value of C fsnow for minimum cumulative error in discharge and snow cover simulations. Discharge error is quantified by Nash–Sutcliffe efficiency and relative volume deviation, and snow cover error was estimated by pixel-by-pixel analysis. The study region is the heavily snow-fed Yagisawa Basin of the Upper Tone River in northeast Japan. First, the system was applied to one snow season (2002–2003), obtaining an optimized C fsnow of 0.0007 m −1 . For validation purposes, the optimized C fsnow was implemented to correct snowfall in 2004, 2002 and 2001. Overall, the system was effective, implying improvements in correlation of simulated vs. observed discharge and snow cover. The 4 yr mean of basin-average snowfall for the corrected spatial snowfall distribution was 1160 mm (780 mm before correction). Execution of sensitivity runs against other model input and parameters indicated that C fsnow could be affected by uncertainty in shortwave radiation and setting of the threshold air temperature parameter. Our approach is suitable to correct snowfall and estimate its distribution in poorly-gauged basins, where elevation dependence of snowfall amount is strong.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2013-09-26
    Description: Attribution of hydrologic forecast uncertainty within scalable forecast windows Hydrology and Earth System Sciences Discussions, 10, 11795-11828, 2013 Author(s): L. Yang, F. Tian, Y. Sun, X. Yuan, and H. Hu Hindcasts based on the Extended Streamflow Prediction (ESP) approach are carried out in a typical rainfall-dominated basin in China, aiming to examine the roles of initial condition (IC), future atmospheric forcing (FC) and hydrologic model uncertainty (MU) in the streamflow forecast skill. The combined effects of IC and FC are explored within the framework of a forecast window. By implementing virtual numerical simulations without the consideration of MU, it is found that the dominance of IC could last up to 90 days in dry season, while its impact gives way to FC for lead times exceeding 30 days in the wet season. The combined effects of IC and FC on the forecast skill are further investigated by proposing a dimensionless parameter ( β ) that represents the ratio of the total amount of initial water storage and the incoming rainfall. The forecast skill increases exponentially with β , and varies greatly in different forecast windows. Moreover, the influence of MU on forecast skill is examined by focusing on the uncertainty of model parameters. Two different hydrologic model calibration strategies are carried out. The results indicate that the uncertainty of model parameters exhibits a more significant influence on the forecast skill in the dry season than in the wet season. The ESP approach is more skillful in monthly streamflow forecast during the transition period from wet to dry than otherwise. For the transition period from dry to wet, the low skill of the forecasts could be attributed to the combined effects of IC and FC, but less to the biases in the hydrologic model parameters. For the forecasting in dry season, the usefulness of the ESP approach is heavily dependent on the strategy of the model calibration.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2013-09-28
    Description: Landscape-scale changes in forest structure and functional traits along an Andes-to-Amazon elevation gradient Biogeosciences Discussions, 10, 15415-15454, 2013 Author(s): G. P. Asner, C. Anderson, R. E. Martin, D. E. Knapp, R. Tupayachi, T. Kennedy-Bowdoin, F. Sinca, and Y. Malhi Elevation gradients provide opportunities to explore environmental controls on forest structure and functioning, but plot-based studies have proven highly variable due to limited geographic scope. We used airborne imaging spectroscopy and LiDAR (light detection and ranging) to quantify changes in three-dimensional forest structure and canopy functional traits in a series of 25 ha landscapes distributed along a 3300 m elevation gradient from lowland Amazonia to treeline in the Peruvian Andes. Canopy greenness, photosynthetic fractional cover and exposed non-photosynthetic vegetation varied as much across lowland forests (100–200 m) as they did from the lowlands to the Andean treeline (3400 m). Elevation was positively correlated with canopy gap density and understory vegetation cover, and negatively related to canopy height and vertical profile. Increases in gap density were tightly linked to increases in understory plant cover, and larger gaps (20–200 m 2 produced 25–30 times the response in understory cover than did smaller gaps ( 〈 5 m 2 . Scaling of gap size to gap frequency was, however, relatively constant along the elevation gradient, which when combined with other canopy structural information, indicates equilibrium turnover patterns from the lowlands to treeline. Our results provide a first landscape-scale quantification of forest structure and canopy functional traits with changing elevation, thereby improving our understanding of disturbance, demography and ecosystem processes in the Andes-to-Amazon corridor.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2013-10-01
    Description: A conceptual model of check dam hydraulics for gully control Hydrology and Earth System Sciences Discussions, 10, 11901-11941, 2013 Author(s): C. Castillo, R. Pérez, and J. A. Gómez There is little information in scientific literature regarding the modifications induced by check dam systems in flow regimes in restored gully reaches, despite it being a crucial issue for the design of conservation measures. Here, we develop a conceptual model to classify flow regimes in straight rectangular channels for initial and dam-filling conditions as well as a method of estimating efficiency in order to provide guidelines for optimal design. The model integrates several previous mathematical approaches for assessing the main processes involved (hydraulic jump HJ, impact flow, gradually varied flows). Its performance was compared with the simulations obtained from IBER, a bi-dimensional hydrodynamic model. The impact of check dam spacing (defined by the geometric factor of influence c ) on efficiency was explored. Eleven main classifications of flow regimes were identified depending on the element and level of influence. The model produced similar results when compared with IBER, but led to higher estimations of HJ and impact lengths. Total influence guaranteed maximum efficiency and HJ control defining the location of the optimal c . Geometric total influence ( c = 1) was a valid criterion for the different stages of the structures in a wide range of situations provided that hydraulic roughness conditions remained high within the gully, e.g. through revegetation. Our total influence criterion involved shorter spacing than that habitually recommended in technical manuals for restoration, but was in line with those values found in spontaneous and stable step-pools systems, which might serve as a reference for man-made interventions.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2013-10-02
    Description: Senstitivity of water balance components to environmental changes in a mountainous watershed: uncertainty assessment based on models comparison Hydrology and Earth System Sciences Discussions, 10, 11983-12026, 2013 Author(s): E. Morán-Tejeda, J. Zabalza, K. Rahman, A. Gago-Silva, J. I. López-Moreno, S. Vicente-Serrano, A. Lehmann, C. L. Tague, and M. Beniston This paper evaluates the response of stream flow and other components of the water balance to changes in climate and land-use in a Pyrenean watershed. It further provides a measure of uncertainty in water resources forecasts by comparing the performance of two hydrological models: Soil and Water Assessment Tool (SWAT) and Regional Hydro-Ecological Simulation System (RHESSys). Regional Climate Model outputs for the 2021–2050 time-frame, and hypothetical (but plausible) land-use scenarios considering re-vegetation and wildfire processes were used as inputs to the models. Results indicate an overall decrease in river flows when the scenarios are considered, except for the post-fire vegetation scenario, in which stream flows are simulated to increase. However the magnitude of these projections varies between the two models used, as SWAT tends to produce larger hydrological changes under climate change scenarios, and RHESSys shows more sensitivity to changes in land-cover. The final prediction will therefore depend largely on the combination of the land-use and climate scenarios, and on the model utilized.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2013-10-02
    Description: Springtime phytoplankton dynamics in the Arctic Krossfjorden and Kongsfjorden (Spitsbergen) as a function of glacier proximity Biogeosciences Discussions, 10, 15519-15557, 2013 Author(s): A. M.-T. Piquet, W. H. van de Poll, R. J. W. Visser, C. Wiencke, H. Bolhuis, and A. G. J. Buma The hydrographic properties of the Kongsfjorden – Krossfjorden system (79° N, Spitsbergen) are affected by Atlantic water incursions as well as glacier meltwater runoff. This results in strong physical gradients (temperature, salinity and irradiance) within the fjords. Here, we tested the hypothesis that glaciers affect phytoplankton dynamics as early as the productive spring bloom period. During two campaigns in 2007 (late spring) and 2008 (early spring) we studied hydrographic characteristics and phytoplankton variability along 2 transects in both fjords, using HPLC-CHEMTAX pigment fingerprinting, molecular fingerprinting (DGGE) and sequencing of 18S rRNA genes. The sheltered inner fjord locations remained colder during spring as opposed to the outer locations. Vertical light attenuation coefficients increased from early spring onwards, at all locations, but in particular at the inner locations. During the end of spring, meltwater input had stratified surface waters throughout the fjords. The inner fjord locations were characterized by overall lower phytoplankton biomass. Furthermore HPLC-CHEMTAX data revealed that diatoms and Phaeocystis sp. were replaced by small nano- and picophytoplankton during late spring, coinciding with low nutrient availability. The innermost stations showed higher relative abundances of nano- and picophytoplankton throughout, notably of cyanophytes and cryptophytes. Molecular fingerprinting revealed a high similarity between inner fjord samples from early spring and late spring samples from all locations, while outer samples from early spring clustered separately. We conclude that glacier influence, mediated by early meltwater input, modifies phytoplankton biomass and composition already during the spring bloom period, in favor of low biomass and small cell size communities. This may affect higher trophic levels especially when regional warming further increases the period and volume of meltwater.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2013-10-03
    Description: Simulating microbial degradation of organic matter in a simple porous system using the 3-D diffusion based model MOSAIC Biogeosciences Discussions, 10, 15613-15640, 2013 Author(s): O. Monga, P. Garnier, V. Pot, E. Coucheney, N. Nunan, W. Otten, and C. Chenu This paper deals with the simulation of microbial degradation in soil within pore space at microscopic scale. Pore space was described using sphere network coming from a geometrical modeling algorithm. The biological model was improved regarding previous work in order to include transformation of dissolved organic compounds and diffusion processes. Our model was tested using experimental results of a simple substrate decomposition (Fructose) within a simple media (the sand). Diverse microbial communities were inoculated. Separated incubations in microcosms were carried out using 5 different bacterial communities at 2 different water potentials of −10 cm and −100 cm of water. We calibrated the biological parameters by means of experimental data obtained at high water content and we tested the model without any parameters change at low water content. Same as for experimental data, our simulation results showed the decrease in water content involved the decrease of mineralisation. The model was able to simulate the decrease of connectivity between substrate and microorganism due the decrease of water content.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2013-10-03
    Description: Influence of temperature and CO 2 on the strontium and magnesium composition of coccolithophore calcite Biogeosciences Discussions, 10, 15559-15586, 2013 Author(s): M. N. Müller, M. Lebrato, U. Riebesell, J. Barcelos e Ramos, K. G. Schulz, S. Blanco-Ameijeiras, S. Sett, A. Eisenhauer, and H. M. Stoll Marine calcareous sediments provide a fundamental basis for paleoceanographic studies aiming to reconstruct past oceanic conditions and understand key biogeochemical element cycles. Calcifying unicellular phytoplankton (coccolithophores) are a major contributor to both carbon and calcium cycling by photosynthesis and the production of calcite (coccoliths) in the euphotic zone and the subsequent long-term deposition and burial into marine sediments. Here we present data from controlled laboratory experiments on four coccolithophore species and elucidate the relation between the divalent cation (Sr, Mg and Ca) partitioning in coccoliths and cellular physiology (growth, calcification and photosynthesis). Coccolithophores were cultured under different seawater temperature and carbonate chemistry conditions. The partition coefficient of strontium ( D Sr ) was positively correlated with both carbon dioxide ( p CO 2 ) and temperature but displayed no coherent relation to particulate organic and inorganic carbon production rates. Furthermore, D Sr correlated positively with cellular growth rates when driven by temperature but no correlation was present when changes in growth rates were p CO 2 -induced. The results demonstrate the complex interaction between environmental forcing and physiological control on the strontium partitioning in coccolithophore calcite. The partition coefficient of magnesium ( D Mg ) displayed species-specific differences and elevated values under nutrient limitation. No conclusive correlation between coccolith D Mg and temperature was observed but p CO 2 induced a rising trend in coccolith D Mg . Interestingly, the best correlation was found between coccolith D Mg and chlorophyll a production suggesting that chlorophyll a and calcite associated Mg originate from the same intracellular pool. These results give an extended insight into the driving factors that lead to variations in the coccolith Mg / Ca ratio and can be used for Sr / Ca and Mg / Ca paleoproxy calibration.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2013-10-03
    Description: Forest NEP is significantly driven by previous year's weather Biogeosciences Discussions, 10, 15587-15611, 2013 Author(s): S. Zielis, S. Etzold, R. Zweifel, W. Eugster, M. Haeni, and N. Buchmann Understanding the response of forest net ecosystem productivity (NEP) to environmental drivers under climate change is highly relevant for predictions of annual forest carbon (C) flux budgets. Modeling annual forest NEP with soil–vegetation–atmosphere transfer models (SVATs), however, remains challenging due to unknown responses of forests to weather of the previous year. In this study, we addressed the influence of previous year's weather on the inter-annual variability of NEP for a subalpine spruce forest in Switzerland. Analysis of long-term (1997–2011) eddy covariance measurements showed that the Norway spruce forest Davos Seehornwald was a consistent sink for atmospheric CO 2 , sequestering 210 ± 88 g C m −2 per year on average. Previous year's weather strongly affected inter-annual variability of NEP, increasing the explained variance in linear models to 53% compared to 20% without previous year's weather. Thus, our results highlight the need to consider previous year's weather in modeling annual C budgets of forests. Furthermore, soil temperature in the current year's spring played a major role controlling annual NEP, mainly by influencing gross primary productivity early in the year, with spring NEP accounting for 56% of annual NEP. Consequently, we expect an increase in net CO 2 uptake with future climate warming, as long as no other resources become limiting.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2013-10-03
    Description: Hydrologic impact of climate change on Murray Hotham catchment of Western Australia: a projection of rainfall-runoff for future water resources planning Hydrology and Earth System Sciences Discussions, 10, 12027-12076, 2013 Author(s): S. A. Islam, M. A. Bari, and A. H. M. F. Anwar Reduction of rainfall and runoff in recent years across South West Western Australia (SWWA) has drawn attention about climate change impact on water resources and its availability in this region. In this paper, hydrologic impact of climate change on Murray Hotham catchment in SWWA is investigated using multi-model ensemble approach. The Land Use Change Incorporated Catchment (LUCICAT) model was used for hydrologic modelling. Model calibration was performed using (5 km) grid rainfall data from Australian Water Availability Project (AWAP). Downscaled and bias corrected rainfall data from 11 General Circulation Models (GCMs) for Intergovernmental Panel on Climate Change (IPCC) emission scenarios A2 and B1 was used in LUCICAT model to derive rainfall and runoff scenarios for 2046–2065 (mid this century) and 2081–2100 (late this century). The results of climate scenarios were compared with observed past (1961–1980) climate. The mean annual rainfall averaged over the catchment during recent time (1981–2000) was reduced by 2.3% with respect to observed past (1961–1980) and resulting runoff reduction was found 14%. Compared to the past, the mean annual rainfall reductions, averaged over 11 ensembles and over the period for the catchment for A2 scenario are 13.6 and 23.6% for mid and late this century respectively while the corresponding runoff reductions are 36 and 74%. For B1 scenario, the rainfall reductions were 11.9 and 11.6% for mid and late this century and corresponding runoff reductions were 31 and 38%. Spatial distribution of rainfall and runoff changes showed that the rate of changes were higher in high rainfall part compared to the low rainfall part. Temporal distribution of rainfall and runoff indicate that high rainfall in the catchment reduced significantly and further reductions are projected resulting significant runoff reductions. A catchment scenario map has been developed through plotting decadal runoff reduction against corresponding rainfall reduction at four gauging stations for observed and projected period. This could be useful for planning future water resources in the catchment. Projection of rainfall and runoff made based on the GCMs varied significantly for the time periods and emission scenarios. Hence, considerable uncertainty involved in this study though ensemble mean was used to explain the findings.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2013-10-03
    Description: Synoptic evaluation of carbon cycling in Beaufort Sea during summer: contrasting river inputs, ecosystem metabolism and air–sea CO 2 fluxes Biogeosciences Discussions, 10, 15641-15710, 2013 Author(s): A. Forest, P. Coupel, B. Else, S. Nahavandian, B. Lansard, P. Raimbault, T. Papakyriakou, Y. Gratton, L. Fortier, J.-É. Tremblay, and M. Babin The accelerated decline in Arctic sea ice combined with an ongoing trend toward a more dynamic atmosphere is modifying carbon cycling in the Arctic Ocean. A critical issue is to understand how net community production (NCP; the balance between gross primary production and community respiration) responds to changes and modulates air–sea CO 2 fluxes. Using data collected as part of the ArcticNet-Malina 2009 expedition in southeastern Beaufort Sea (Arctic Ocean), we synthesize information on sea ice, wind, river, water column properties, metabolism of the planktonic food web, organic carbon fluxes and pools, as well as air–sea CO 2 exchange, with the aim of identifying indices of ecosystem response to environmental changes. Data were analyzed to develop a non-steady-state carbon budget and an assessment of NCP against air–sea CO 2 fluxes. The mean atmospheric forcing was a mild upwelling-favorable wind (~5 km h −1 ) blowing from the N-E and a decaying ice cover ( 600 mg C m −2 d −1 ) over the shelf prior to our survey, (2) freshwater dilution by river runoff and ice melt, and (3) the presence of cold surface waters offshore. Only the Mackenzie River delta and localized shelf areas directly affected by upwelling were identified as substantial sources of CO 2 to the atmosphere (〉10mmol C m −2 d −1 ). Although generally
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2013-06-08
    Description: Upscaling of evapotranspiration fluxes from instantaneous to daytime scales for thermal remote sensing applications Hydrology and Earth System Sciences Discussions, 10, 7325-7350, 2013 Author(s): C. Cammalleri, M. C. Anderson, and W. P. Kustas Four upscaling methods for estimating daytime evapotranspiration (ET) from single time-of-day snapshots, as commonly retrieved using remote sensing, were compared. These methods are based on the assumption of self-preservation of the ratio between ET and a given reference variable over the daytime hours. The analysis was performed using eddy covariance data collected at 12 AmeriFlux towers, sampling a fairly wide range in climatic and land cover conditions. The choice of energy budget closure method significantly impacted performance using different scaling methodologies. Therefore, a statistical evaluation approach was adopted to better account for the inherent uncertainty in ET fluxes using eddy covariance technique. Overall, this approach suggests that at-surface solar radiation is the most robust reference variable amongst those tested, due to high accuracy of upscaled fluxes and absence of systematic biases. Top-of-atmosphere irradiance was also tested and proved to be reliable under near clear-sky conditions, but tended to overestimate the observed daytime ET during cloudy days. Use of reference ET as a scaling flux did not perform as well as the solar radiation method, but similarly had errors with little seasonal dependency. Finally, the commonly-used evaporative fraction method yielded satisfactory results only in summer months, July and August, and tended to underestimate the observations in the fall/winter seasons from November to January at the flux sites studied.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2013-06-11
    Description: Foraminiferal survival after long term experimentally induced anoxia Biogeosciences Discussions, 10, 9243-9284, 2013 Author(s): D. Langlet, E. Geslin, C. Baal, E. Metzger, F. Lejzerowicz, B. Riedel, M. Zuschin, J. Pawlowski, M. Stachowitsch, and F. J. Jorissen Anoxia has been successfully induced in four benthic chambers installed on the Northern Adriatic seafloor from 1 week to 10 months. To accurately determine whether benthic foraminifera can survive experimentally induced prolonged anoxia, the CellTrackerGreen method has been applied. Numerous individuals have been found living at all sampling times and at all sampling depths, showing that benthic foraminifera can survive up to 10 months of anoxia with co-occurring hydrogen sulphides. However, foraminiferal standing stocks decrease with sampling time in an irregular way. A large difference in standing stock between two cores samples in initial conditions indicates the presence of a large spatial heterogeneity of the foraminiferal faunas. An unexpected increase in standing stocks after 1 month is tentatively interpreted as a reaction to increased food availability due to the massive mortality of infaunal macrofaunal organisms. After this, standing stocks decrease again in a core sampled after 2 months of anoxia, to attain a minimum in the cores sampled after 10 months. We speculate that the trend of overall decrease of standing stocks is not due to the adverse effects of anoxia and hydrogen sulphides, but rather due to a continuous diminution of labile organic matter.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2013-06-11
    Description: Environmental controls on the Emiliania huxleyi calcite mass Biogeosciences Discussions, 10, 9285-9313, 2013 Author(s): M. T. Horigome, P. Ziveri, M. Grelaud, K.-H. Baumann, G. Marino, and P. G. Mortyn Although ocean acidification is expected to impact (bio)calcification by decreasing the seawater carbonate ion concentration, [CO 3 2− ], there exists evidence of non-uniform response of marine calcifying plankton to low seawater [CO 3 2− ]. This raises questions on the role of environmental factors other than acidification and on the complex physiological responses behind calcification. Here we investigate the synergistic effect of multiple environmental parameters, including temperature, nutrient (nitrate and phosphate) availability, and seawater carbonate chemistry on the coccolith calcite mass of the cosmopolitan coccolithophore Emiliania huxleyi , the most abundant species in the world ocean. We use a suite of surface (late Holocene) sediment samples from the South Atlantic and southwestern Indian Ocean taken from depths lying well above the modern lysocline. The coccolith calcite mass in our results presents a latitudinal distribution pattern that mimics the main oceanographic features, thereby pointing to the potential importance of phosphorus and temperature in determining coccolith mass by affecting primary calcification and possibly driving the E. huxleyi morphotype distribution. This evidence does not necessarily argue against the potentially important role of the rapidly changing seawater carbonate chemistry in the future, when unabated fossil fuel burning will likely perturb ocean chemistry beyond a critical point. Rather our study highlights the importance of evaluating the combined effect of several environmental stressors on calcifying organisms to project their physiological response(s) in a high CO 2 world and improve interpretation of paleorecords.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2013-06-12
    Description: Global isoscapes for δ 18 O and δ 2 H in precipitation: improved prediction using regionalized climatic regression models Hydrology and Earth System Sciences Discussions, 10, 7351-7393, 2013 Author(s): S. Terzer, L. I. Wassenaar, L. J. Araguás-Araguás, and P. K. Aggarwal A Regionalized Climatic Water Isotope Prediction (RCWIP) approach, based on the Global Network for Isotopes in Precipitation (GNIP), was demonstrated for the purposes of predicting point- and large-scale spatiotemporal patterns of the stable isotope compositions of water (δ 2 H, δ 18 O) in precipitation around the world. Unlike earlier global domain and fixed regressor models, RCWIP pre-defined thirty-six climatic cluster domains, and tested all model combinations from an array of climatic and spatial regressor variables to obtain the best predictive approach to each cluster domain, as indicated by RMSE and variogram analysis. Fuzzy membership fractions were thereafter used as the weights to seamlessly amalgamate results of the optimized climatic zone prediction models into a single predictive mapping product, such as global or regional amount-weighted mean annual, mean monthly or growing-season δ 18 O/δ 2 H in precipitation. Comparative tests revealed the RCWIP approach outperformed classical global-fixed regression-interpolation based models more than 67% of the time, and significantly improved upon predictive accuracy and precision. All RCWIP isotope mapping products are available as gridded GeoTIFF files from the IAEA website ( www.iaea.org/water ) and are for use in hydrology, climatology, food authenticity, ecology, and forensics.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2013-06-13
    Description: UV-induced carbon monoxide emission from living vegetation Biogeosciences Discussions, 10, 9373-9388, 2013 Author(s): D. Bruhn, K. R. Albert, T. N. Mikkelsen, and P. Ambus The global burden of carbon monoxide (CO) is rather uncertain. In this paper we address the potential for UV-induced CO emission by living terrestrial vegetation surfaces. Real-time measurements of CO concentrations were made with a cavity enhanced laser spectrometer connected in closed loop to either an ecosystem chamber or a plant-leaf scale chamber. Leaves of all examined plant species exhibited emission of CO in response to artificial UV-radiation as well as the UV-component of natural solar radiation. The UV-induced rate of CO emission exhibited a rather low dependence on temperature, indicating an abiotic process. The emission of CO in response to the UV-component of natural solar radiation was also evident at the ecosystem scale.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2013-06-13
    Description: Water displacement by sewer infrastructure in the Grote Nete catchment, Belgium, and its hydrological regime effects Hydrology and Earth System Sciences Discussions, 10, 7425-7467, 2013 Author(s): D. Vrebos, T. Vansteenkiste, J. Staes, P. Willems, and P. Meire Urbanization and especially impervious areas, in combination with wastewater treatment infrastructure, can exert several pressures on the hydrological cycle. These pressures were studied for the Grote Nete catchment in Belgium (8.18% impervious area and 3.89% effective impervious area), based on a combination of empirical and model-based approaches. The effective impervious area, combined with the extent of the wastewater collection regions which do not coincide with the natural catchment boundaries, was used as an indicator for the urbanization pressure. Our study revealed changes in the total upstream areas of the subcatchments between −16% and +3%, and in upstream impervious areas between −99% and +64%. These changes lead to important inter-catchment water transfers. Based on simulations with a physically-based and spatially-distributed hydrological catchment model, profound impacts of effective impervious area on infiltration and runoff were found. The model results show that the changes in impervious areas and related water displacements in and between catchments due to the installation of the wastewater treatment infrastructure severely impacted low flows, peak flows and seasonal trends. They moreover show that it is difficult, but of utmost importance, to incorporate these pressures and artificial processes in an accurate way during the development of hydrological models for urbanized catchments.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2013-06-06
    Description: Nutrient dynamics in tropical rivers, estuarine-lagoons, and coastal ecosystems along the eastern Hainan Island Biogeosciences Discussions, 10, 9091-9147, 2013 Author(s): R. H. Li, S. M. Liu, Y. W. Li, G. L. Zhang, J. L. Ren, and J. Zhang Nutrient dynamics were studied along the eastern Hainan Island based on field observations during 2006–2009, to understand nutrient biogeochemical processes and to have an overview of human perturbations on coastal ecosystems in this tropical region. The concentrations of nutrients in the rivers had seasonal variations enriched with dissolved inorganic nitrogen (DIN). High riverine concentrations of nitrate were mainly originated from agricultural fertilizer input. The ratios of DIN : PO 4 3− ranged from 37 to 1063, suggesting preferential PO 4 3− relative to nitrogen in the rivers. The areal yields of dissolved silicate (DSi) varied from 76 to 448 × 10 3 mol km −2 yr −1 due to erosion over the drainage area, inducing high levels of DSi among worldwide tropical systems. Aquaculture ponds contained high concentrations of NH 4 + (up to 157 μM) and DON (up to 130 μM). Particulate phosphorus concentrations (0.5 ∼1.4 μM) were in lower level comparied with estuaries around the world. Particulate silicate levels in rivers and lagoons were lower than global average level. Nutrient biogeochemistry in coastal areas were affected by human activities (e.g. aquaculture, agriculture), as well as natural events such as typhoon. Nutrient concentrations were low because open sea water dispersed land-derived nutrients. Nutrient budgets were built based on a steady-state box model, which showed that riverine fluxes would be magnified by estuarine processes (e.g. regeneration, desorption) in the Wenchanghe/Wenjiaohe Estuary, Wanquan River estuary, and the Laoyehai Lagoon except in the Xiaohai Lagoon. Riverine and groundwater input were the major sources of nutrients to the Xiaohai Lagoon and the Laiyehai Lagoon, respectively. Riverine input and aquaculture effluent were the major sources of nutrients to the eastern coastal of Hainan Island. Nutrient inputs to the coastal ecosystem can be increased by typhoon-induced runoff of rainwater, and phytoplankton bloom in the sea would be caused.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2013-06-07
    Description: Virtual water trade and development in Africa Hydrology and Earth System Sciences Discussions, 10, 7291-7324, 2013 Author(s): M. Konar and K. Caylor A debate has long existed on the relationships between human population, natural resources, and development. Recent research has expanded this debate to include the impacts of trade; specifically, virtual water trade, or the water footprint of traded commodities. We conduct an empirical analysis of the relationships between virtual water trade, population, and development in Africa. We find that increases in virtual water imports do not lead to increases in population growth nor do they diminish human welfare. We establish a new index of virtual water trade openness and show that levels of undernourishment tend to fall with increased values of virtual water trade openness. Countries with small dam storage capacity obtain a higher fraction of their agricultural water requirements from external sources, which may indicate implicit "infrastructure sharing" across nations. Globally, increased crop exports tends to correlate with increased crop water use efficiency, though this relationship does not hold for Africa. However, internal African trade is much more efficient in terms of embodied water resources than any other region in the world. Thus, internal African trade patterns may be compensating for poor internal production systems.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2013-06-12
    Description: Southern Hemisphere imprint for Indo–Asian summer monsoons during the last glacial period as revealed by Arabian Sea productivity records Biogeosciences Discussions, 10, 9315-9343, 2013 Author(s): T. Caley, S. Zaragosi, J. Bourget, P. Martinez, B. Malaizé, F. Eynaud, L. Rossignol, T. Garlan, and N. Ellouz-Zimmermann The monsoon is one of the most important climatic phenomena: it promotes inter-hemispheric exchange of energy and affects the economical prosperity of several countries exposed to its seasonal seesaw. Previous studies in both the Indian and Asian monsoon systems have suggested a dominant north hemispheric (NH) control on summer monsoon dynamics at the scale of suborbital-millennial climatic changes, while the forcing/response of Indian and Asian monsoons at the orbital scale remains a matter of debate. Here nine marine sediment cores distributed across the whole Arabian Sea are used to build a regional surface marine productivity signal. The productivity signal is driven by the intensity of Indian summer monsoon winds. Results demonstrate the existence of an imprint of suborbital Southern Hemisphere (SH) temperature changes (i.e., Antarctica) on the Indian summer monsoon during the last glacial period, challenging the traditional and exclusive NH forcing hypothesis. Meanwhile, during the last deglaciation, the NH plays a more significant role. The δ 18 O signal recorded in the Asian monsoon speleothem records could be exported by winds from the Indian summer monsoon region, as recently proposed in modelling exercise, explaining the SH signature observed in Asian cave speleothems. Contrary to the view of a passive response of Indian and Asian monsoons to NH anomalies, the present results strongly suggest that the Indo–Asian summer monsoon plays an active role in amplifying millennial inter-hemispheric asymmetric patterns. Additionally, this study helps to decipher the observed differences between Indian and Asian-speleothem monsoonal records at the orbital-precession scale.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2013-06-13
    Description: Heterogeneity of impacts of high CO 2 on the North Western European Shelf Biogeosciences Discussions, 10, 9389-9413, 2013 Author(s): Y. Artioli, J. C. Blackford, G. Nondal, R. G. J. Bellerby, S. L. Wakelin, J.T. Holt, M. Butenschön, and J. I. Allen The increase in atmospheric CO 2 is a dual threat to the marine environment: from one side it drives climate change leading to changes in water temperature, circulation patterns and stratification intensity; on the other side it causes a decrease in pH (Ocean Acidification or OA) due to the increase in dissolved CO 2 . Assessing the combined impact of climate change and OA on marine ecosystems is a challenging task: the response of the ecosystem to a single driver is highly variable and still uncertain, as well as the interaction between these that could be either synergistic or antagonistic. In this work we use the coupled oceanographic-ecosystem model POLCOMS-ERSEM driven by climate forcing to study the interaction between climate change and OA. We focus in particular on primary production and nitrogen speciation. The model has been run in three different configurations in order to separate the impacts of ocean acidification from those due to climate change. The model shows significant interaction among the drivers and high variability in the spatial response of the ecosystem. Impacts of climate change and of OA on primary production have similar magnitude, compensating in some area and exacerbating in others. On the contrary, the direct impact of OA on nitrification is much lower than the one imposed by climate change.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2013-06-07
    Description: An interdisciplinary swat ecohydrological model to define catchment-scale hydrologic partitioning Hydrology and Earth System Sciences Discussions, 10, 7235-7290, 2013 Author(s): C. L. Shope, G. R. Maharjan, J. Tenhunen, B. Seo, K. Kim, J. Riley, S. Arnhold, T. Koellner, Y. S. Ok, S. Peiffer, B. Kim, J.-H. Park, and B. Huwe Land use and climate change have long been implicated in modifying ecosystem services, such as water quality and water yield, biodiversity, and agricultural production. To account for future effects on ecosystem services, the integration of physical, biological, economic, and social data over several scales must be implemented to assess the effects on natural resource availability and use. Our objective is to assess the capability of the SWAT model to capture short-duration monsoonal rainfall-runoff processes in complex mountainous terrain under rapid, event-driven processes in a monsoonal environment. To accomplish this, we developed a unique quality-control gap-filling algorithm for interpolation of high frequency meteorological data. We used a novel multi-location, multi-optimization calibration technique to improve estimations of catchment-wide hydrologic partitioning. We calibrated the interdisciplinary model to a combination of statistical, hydrologic, and plant growth metrics. In addition, we used multiple locations of different drainage area, aspect, elevation, and geologic substrata distributed throughout the catchment. Results indicate scale-dependent sensitivity of hydrologic partitioning and substantial influence of engineered features. While our model accurately reproduced observed discharge variability, the addition of hydrologic and plant growth objective functions identified the importance of culverts in catchment-wide flow distribution. The results of this study provide a valuable resource to describe landscape controls and their implication on discharge, sediment transport, and nutrient loading. This study also shows the challenges of applying the SWAT model to complex terrain and extreme environments. By incorporating anthropogenic features into modeling scenarios, we can greatly enhance our understanding of the hydroecological impacts on ecosystem services.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2013-06-11
    Description: On the role of mesoscale eddies for the biological productivity and biogeochemistry in the eastern tropical Pacific Ocean off Peru Biogeosciences Discussions, 10, 9179-9211, 2013 Author(s): L. Stramma, H. W. Bange, R. Czeschel, A. Lorenzo, and M. Frank Mesoscale eddies seem to play an important role for both the hydrography and biogeochemistry of the eastern tropical Pacific Ocean (ETSP) off Peru. However, detailed surveys of these eddies are not available, which has so far hampered an in depth understanding of their implications for nutrient distribution and biological productivity. In this study three eddies along a section at 16°45' S have been surveyed intensively during R/V Meteor cruise M90 in November 2012. A coastal mode water eddy, an open ocean mode water eddy and an open ocean cyclonic eddy have been identified and sampled in order to determine both their hydrographic properties and their influence on the biogeochemical setting of the ETSP. In the thermocline the temperature of the coastal anticyclonic eddy was up to 2 °C warmer, 0.2 more saline and the swirl velocity was up to 35 cm s –1 . The observed temperature and salinity anomalies, as well as swirl velocities of both types of eddies were about twice as large as had been described for the mean eddies in the ETSP and the observed heat and salt anomalies (AHA, ASA) show a much larger variability than the mean AHA and ASA. We found that the eddies contributed significantly to productivity by maintaining pronounced subsurface maxima of chlorophyll. Based on a comparison of the coastal (young) mode water eddy and the open ocean (old) mode water eddy we conclude that the aging of eddies when they detach from the coast and move westward to the open ocean considerably influences the eddies' properties: chlorophyll maxima are weaker and nutrients are subducted. The coastal mode water eddy was found to be a hotspot of nitrogen loss in the OMZ, whereas, the open ocean cyclonic eddy was of negligible importance for nitrogen loss. Our results show that the important role the eddies play in the ETSP can only be fully deciphered and understood through dedicated high spatial and temporal resolution oceanographic/biogeochemical surveys.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2013-06-11
    Description: Soil moisture modifies the response of soil respiration to temperature in a desert shrub ecosystem Biogeosciences Discussions, 10, 9213-9242, 2013 Author(s): B. Wang, T. S. Zha, X. Jia, B. Wu, Y. Q. Zhang, and S. G. Qin The response of soil respiration (Rs) to soil temperature and moisture have been well documented in forests, but data and information from desert shrub ecosystems are limited. Soil CO 2 efflux from a desert shrub ecosystem was measured continuously with automated chambers in Ningxia, northwest China, from June to October 2012. The responses of Rs to Ts was strongly affected diurnally by soil moisture, with the diel variation in Rs being strongly related to 10 cm soil temperature (Ts) at moderate and high soil volumetric water content (VWC), but less related to Ts at low VWC. Ts typically lagged Rs by 3–4 h, however, the lag time varied in relation to VWC, with increased lag times at low VWC. Over the seasonal cycle, daily mean Rs was positively correlated with Ts when VWC exceeded 0.08 m 3 m −3 , but became decoupled from Ts when VWC dropped below this threshold. The annual temperature sensitivity of Rs ( Q 10 ) was 1.5. The short-term sensitivity of Rs to Ts, computed using three-day windows, varied significantly over the seasonal cycle; the short-term Q 10 was negatively correlated with Ts and positively correlated with VWC. These results suggest the potential for a negative feedback to climate warming in desert ecosystems, related to the impact of low soil moisture on Rs. The results highlight the biological causes of diel hysteresis between Rs and Ts and the need for carbon cycle models to account for the interacting effects of Ts and VWC as joint determinants of Rs in desert ecosystem.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2013-06-11
    Description: Do successive climate extremes weaken the resistance of plant communities? An experimental study using plant assemblages Biogeosciences Discussions, 10, 9149-9177, 2013 Author(s): F. E. Dreesen, H. J. De Boeck, I. A. Janssens, and I. Nijs The probability that plant communities undergo successive climate extremes increases under climate change. Exposure to an extreme event might elicit acclimatory responses and thereby greater resistance to a subsequent event, but might also reduce resistance if the recovery period is too short or resilience too low. Using experimental plant assemblages, we compared the effects of two successive extremes (either two drought extremes, two heat extremes or two drought + heat extremes) to those of assemblages being exposed only to the second extreme. Additionally, the recovery period between the successive extremes was varied (2, 3.5 or 6 weeks). Among the different types of climate extremes, combined drought + heat extremes induced substantial leaf and plant mortality, while the effects of drought and heat extremes were smaller. Preceding drought + heat extremes lowered the resistance in terms of leaf survival to a subsequent drought + heat extreme if the recovery period was 2 weeks, even though the leaves had completely recovered during that interval. No reduced resistance to subsequent extremes was recorded with longer recovery times or with drought or heat extremes. Despite mortality on the short term, the drought + heat and the heat extremes increased the end-of-season aboveground biomass, independent of the number of events or the recovery period. These results show that the effect of a preceding extreme event disappears quite quickly, but that recurrent climate extremes with short time intervals can weaken the resistance of herbaceous plant assemblages. This can however be compensated afterwards through rapid recovery and secondary, positive effects in the longer term.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2013-04-06
    Description: Technical note: Method of Morris effectively reduces the computational demands of global sensitivity analysis for distributed watershed models Hydrology and Earth System Sciences Discussions, 10, 4275-4299, 2013 Author(s): J. D. Herman, J. B. Kollat, P. M. Reed, and T. Wagener The increase in spatially distributed hydrologic modeling warrants a corresponding increase in diagnostic methods capable of analyzing complex models with large numbers of parameters. Sobol ' sensitivity analysis has proven to be a valuable tool for diagnostic analyses of hydrologic models. However, for many spatially distributed models, the Sobol ' method requires a prohibitive number of model evaluations to reliably decompose output variance across the full set of parameters. We investigate the potential of the method of Morris, a screening-based sensitivity approach, to provide results sufficiently similar to those of the Sobol ' method at a greatly reduced computational expense. The methods are benchmarked on the Hydrology Laboratory Research Distributed Hydrologic Model (HL-RDHM) model over a six-month period in the Blue River Watershed, Oklahoma, USA. The Sobol ' method required over six million model evaluations to ensure reliable sensitivity indices, corresponding to more than 30 000 computing hours and roughly 180 gigabytes of storage space. We find that the method of Morris is able to correctly identify sensitive and insensitive parameters with 300 times fewer model evaluations, requiring only 100 computing hours and 1 gigabyte of storage space. Method of Morris proves to be a promising diagnostic approach for global sensitivity analysis of highly parameterized, spatially distributed hydrologic models.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2013-04-03
    Description: Climate and land use change impacts on global terrestrial ecosystems, fire, and river flows in the HadGEM2-ES Earth System Model using the Representative Concentration Pathways Biogeosciences Discussions, 10, 6171-6223, 2013 Author(s): R. A. Betts, N. Golding, P. Gonzalez, J. Gornall, R. Kahana, G. Kay, L. Mitchell, and A. Wiltshire A new generation of an Earth System Model now includes a number of land surface processes directly relevant to analyzing potential impacts of climate change. This model, HadGEM2-ES, allows us to assess the impacts of climate change, multiple interactions, and feedbacks as the model is run. This paper discusses the results of century-scale HadGEM2-ES simulations from an impacts perspective–specifically, terrestrial ecosystems and water resources–for four different scenarios following the Representative Concentration Pathways (RCPs), being used for next assessment report of the Intergovernmental Panel on Climate Change (IPCC). Over the 21st Century, simulated changes in global and continential-scale terrestrial ecosystems due to climate change appear to be very similar in all 4 RCPs, even though the level of global warming by the end of the 21st Century ranges from 2 °C in the lowest scenario to 5.5° in the highest. A warming climate generally favours broadleaf trees over needleleaf, needleleaf trees over shrubs, and shrubs over herbaceous vegetation, resulting in a poleward shift of temperate and boreal forests and woody tundra in all scenarios. Although climate related changes are slightly larger in scenarios of greater warming, the largest differences between scenarios arise at regional scales as a consequence of different patterns of anthropogenic land cover change. In the model, the scenario with the lowest global warming results in the most extensive decline in tropical forest cover due to a large expansion of agriculture. Under all four RCPs, fire potential could increase across extensive land areas, particularly tropical and sub-tropical latitudes. River outflows are simulated to increase with higher levels of CO 2 and global warming in all projections, with outflow increasing with mean temperature at the end of the 21st Century at the global scale and in North America, Asia, and Africa. In South America, Europe, and Australia, the relationship with climate warming and CO 2 rise is less clear, probably as a result of land cover change exerting a dominant effect in those regions.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2013-04-03
    Description: Horizontal distribution of Fukushima-derived radiocesium in zooplankton in the northwestern Pacific Ocean Biogeosciences Discussions, 10, 6143-6170, 2013 Author(s): M. Kitamura, Y. Kumamoto, H. Kawakami, E. C. Cruz, and K. Fujikura The magnitude of the 9.0 Tohoku earthquake and the ensuing tsunami on 11 March 2011, inflicted heavy damage on the Fukushima Dai-ichi nuclear power plant (FNPP1). Fission products were emitted, falling over a broad range in the northern hemisphere, and water contaminated with radionuclides leaked into the ocean. In this study, we described the horizontal distribution of the Fukushima-derived radiocesium in zooplankton and in seawater in the western North Pacific Ocean (500–2100 km from the FNPP1) 10 months after the accident. 134 Cs and 137 Cs were detected in zooplankton and seawater from all the stations. Because of its short half-lives, 134 Cs detected in our samples could only be derived from the FNPP1 accident. The highest 137 Cs activity in zooplankton was same order of magnitude as that one month after the accident, and average activity was one or two orders of magnitude higher than 137 Cs activities observed before the accident around Japan. Horizontally, the radiocesium activity concentrations in zooplankton were high at around 25° N while those in surface seawater were high at around the transition area between the Kuroshio and the Oyashio Currents (36–40° N). We observed subsurface radiocesium maxima in density range of the North Pacific Subtropical Mode Water and occurrence of many diel vertical migratory zooplanktons. These suggested that the high activity concentrations in the subtropical zooplankton at around 25° N were connected to the subsurface radiocesium and active vertical migration of zooplankton. However, the high activity concentrations of radiocesium in subsurface seawater did not necessarily follow the higher radiocesium activity in zooplankton. Biological characteristics of zooplankton community possibly influenced how large was contamination of radiocesium in the community but it is still unknown what kind of biological factors were important.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2013-04-03
    Description: Estimating carbonate parameters from hydrographic data for the intermediate and deep waters of the Southern Hemisphere Oceans Biogeosciences Discussions, 10, 6225-6257, 2013 Author(s): H. C. Bostock, S. E. Mikaloff Fletcher, and M. J. M. Williams Using GLODAP and CLIVAR ocean carbon data, we have developed several multiple linear regression (MLR) algorithms to estimate alkalinity and dissolved inorganic carbon (DIC) in the intermediate and deep waters of the Southern Hemisphere (south of 25° S) from only hydrographic data (temperature, salinity and dissolved oxygen). A Monte Carlo experiment was used to identify a potential density (σ θ ) of 27.5 as an optimal break point between the two regimes with different MLR algorithms. The algorithms provide a good estimate of DIC ( R 2 =0.98) and alkalinity ( R 2 =0.91), and excellent agreement for aragonite and calcite saturation states ( R 2 =0.99). Combining the algorithms with the CSIRO Atlas of Regional Seas (CARS), we have been able to map the calcite saturation horizon (CSH) and aragonite saturation horizon (ASH) for the Southern Ocean at a spatial resolution of 0.5°. These maps are more detailed and more consistent with oceanography than the gridded GLODAP data. The high resolution ASH map reveals a dramatic circumpolar shoaling at the Polar Front. North of 40° S the CSH is deepest in the Atlantic (~ 4000 m) and shallower in the Pacific Ocean (~ 2750 m), while the CSH sits between 3200 and 3400 m in the Indian Ocean.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2013-04-10
    Description: Socio-hydrology: conceptualising human-flood interactions Hydrology and Earth System Sciences Discussions, 10, 4515-4536, 2013 Author(s): G. Di Baldassarre, A. Viglione, G. Carr, L. Kuil, J. L. Salinas, and G. Blöschl Over history, humankind has tended to settle near streams because of the role of rivers as transportation corridors and the fertility of riparian areas. However, human settlements in floodplains have been threatened by the risk of flooding. Possible responses have been to resettle away and/or modify the river system by building flood control structures. This has led to a complex web of interactions and feedback mechanisms between hydrological and social processes in settled floodplains. This paper is an attempt to conceptualise these interplays for hypothetical human-flood systems. We develop a simple, dynamic model to represent the interactions and feedback loops between hydrological and social processes. The model is then used to explore the dynamics of the human-flood system and the effect of changing individual characteristics, including external forcing such as technological development. The results show that the conceptual model is able to reproduce reciprocal effects between floods and people as well as the emergence of typical patterns. For instance, when levees are built or raised to protect floodplain areas, their presence not only reduces the frequency of flooding, but also exacerbates high water levels. Then, because of this exacerbation, higher flood protection levels are required by the society. As a result, more and more flooding events are avoided, but rare and catastrophic events take place.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2013-04-11
    Description: Integration of remote sensing, RUSLE and GIS to model potential soil loss and sediment yield (SY) Hydrology and Earth System Sciences Discussions, 10, 4567-4596, 2013 Author(s): H. Kamaludin, T. Lihan, Z. Ali Rahman, M. A. Mustapha, W. M. R. Idris, and S. A. Rahim Land use activities within a basin serve as one of the contributing factors which cause deterioration of river water quality through its potential effect on erosion. Sediment yield in the form of suspended solid in the river water body which is transported to the coastal area occurs as a sign of lowering of the water quality. Hence, the aim of this study was to determine potential soil loss using the Revised Universal Soil Loss Equation (RUSLE) model and the sediment yield, in the Geographical Information Systems (GIS) environment within selected sub-catchments of Pahang River Basin. RUSLE was used to estimate potential soil losses and sediment yield by utilizing information on rainfall erosivity ( R ) using interpolation of rainfall data, soil erodibility ( K ) using field measurement and soil map, vegetation cover ( C ) using satellite images, topography (LS) using DEM and conservation practices ( P ) using satellite images. The results indicated that the rate of potential soil loss in these sub-catchments ranged from very low to extremely high. The area covered by very low to low potential soil loss was about 99%, whereas moderate to extremely high soil loss potential covered only about 1% of the study area. Sediment yield represented only 1% of the potential soil loss. The sediment yield (SY) value in Pahang River turned out to be higher closer to the river mouth because of the topographic character, climate, vegetation type and density, and land use within the drainage basin.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2013-04-11
    Description: Probability distributions for explaining hydrological losses in South Australian catchments Hydrology and Earth System Sciences Discussions, 10, 4597-4626, 2013 Author(s): S. H. P. W. Gamage, G. A. Hewa, and S. Beecham The wide variability of hydrological losses in catchments is due to multiple variables that affect the rainfall-runoff process. Accurate estimation of hydrological losses is required for making vital decisions in design applications that are based on design rainfall models and rainfall-runoff models. Using representative single values of losses, despite their wide variability, is common practice, especially in Australian studies. This practice leads to issues such as over or under estimation of design floods. Probability distributions can be used as a better representation of losses. In particular, using joint probability approaches (JPA), probability distributions can be incorporated into hydrological loss parameters in design models. However, lack of understanding of loss distributions limits the benefit of using JPA. The aim of this paper is to identify a probability distribution function that can successfully describe hydrological losses in South Australian (SA) catchments. This paper describes suitable parametric and non-parametric distributions that can successfully describe observed loss data. The goodness-of-fit of the fitted distributions and quantification of the errors associated with quantile estimation are also discussed a two-parameter Gamma distribution was identified as one that successfully described initial loss (IL) data of the selected catchments. Also, a non-parametric standardised distribution of losses that describes both IL and continuing loss (CL) data were identified. The results obtained for the non-parametric methods were compared with similar studies carried out in other parts of Australia and a remarkable degree of consistency was observed. The results will be helpful in improving design flood applications.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2013-04-06
    Description: Technical Note: Using wavelet analyses on water depth time series to detect glacial influence in high-mountain hydrosystems Hydrology and Earth System Sciences Discussions, 10, 4369-4395, 2013 Author(s): S. Cauvy-Fraunié, T. Condom, A. Rabatel, M. Villacis, D. Jacobsen, and O. Dangles Worldwide, the rapid shrinking of glaciers in response to ongoing climate change is currently modifying the glacial meltwater contribution to hydrosystems in glacierized catchments. Assessing the contribution of glacier run-off to stream discharge is therefore of critical importance to evaluate potential impact of glacier retreat on water quality and aquatic biota. This task has challenged both glacier hydrologists and ecologists over the last 20 yr due to both structural and functional complexity of the glacier-stream system interface. Here we propose a new methodological approach based on wavelet analyses on water depth time series to determine the glacial influence in glacierized catchments. We performed water depth measurement using water pressure loggers over ten months in 15 stream sites in two glacier-fed catchments in the Ecuadorian Andes (〉 4000 m). We determined the global wavelet spectrum of each time series and defined the Wavelet Glacier Signal (WGS) as the ratio between the global wavelet power spectrum value at a 24 h-scale and its corresponding significance value. To test the relevance of the WGS we compared it with the percentage of the glacier cover in the catchments, a metric of glacier influence often used in the literature. We then tested whether one month data could be sufficient to reliably determine the glacial influence. As expected we found that the WGS of glacier-fed streams decreased downstream with the increasing of non-glacial tributaries. We also found that the WGS and the percentage of the glacier cover in the catchment were significantly positively correlated and that one month data was sufficient to identify and compare the glacial influence between two sites, provided that the water level time series were acquired over the same period. Furthermore, we found that our method permits to detect glacial signal in supposedly non-glacial sites, thereby evidencing glacial meltwater infiltrations. While we specifically focused on the tropical Andes in this paper, our approach to determine glacier influence would be applicable to temperate and arctic glacierized catchments. The WGS therefore appears as a powerful and cost effective tool to better understand the hydrological links between glaciers and hydrosystems and assess the consequences of rapid glacier melting.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2013-04-06
    Description: Spatio-temporal heterogeneity of riparian soil morphology in a restored floodplain Hydrology and Earth System Sciences Discussions, 10, 4337-4367, 2013 Author(s): B. Fournier, C. Guenat, G. Bullinger-Weber, and E. A. D. Mitchell Floodplains have been intensively altered in industrialized countries, but are now increasingly being restored and it is therefore important to assess the effect of these restoration projects on the aquatic and terrestrial components of ecosystems. Soils are a functionally crucial component of terrestrial ecosystems but are generally overlooked in floodplain restoration assessment. We studied the spatio-temporal heterogeneity of soil morphology in a restored (riverbed widening) river reach along River Thur (Switzerland) using three criteria (soil diversity, dynamism and typicality) and their associated indicators. We hypothesized that these criteria would correctly discriminate the post-restoration changes in soil morphology within the study site, and that these changes correspond to patterns of vascular plant diversity. Soil diversity and dynamism increased five years after the restoration, but typical soils of braided rivers were still missing. Soil typicality and dynamism correlated to vegetation changes. These results suggest a limited success of the project in agreement with evaluations carried out at the same site using other, more resource demanding methods (e.g. soil fauna, fish, ecosystem functioning). Soil morphology provides structural and functional information on floodplain ecosystems and allows predicting broad changes in plant diversity. The spatio-temporal heterogeneity of soil morphology represents a cost-efficient ecological indicator that could easily be integrated into rapid assessment protocols of floodplain and river restoration projects.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2013-04-06
    Description: Space-time kriging extension of precipitation variability at 12 km spacing from tree-ring chronologies and its implications for drought analysis Hydrology and Earth System Sciences Discussions, 10, 4301-4335, 2013 Author(s): F. Biondi Understanding and preparing for future hydroclimatic variability greatly benefits from long (i.e., multi-century) records at seasonal to annual time steps that have been gridded at km-scale spatial intervals over a geographic region. Kriging is a geostatistical technique commonly used for optimal interpolation of environmental data, and space-time geostatistical models can improve kriging estimates when long temporal sequences of observations exist at relatively few points on the landscape. Here I present how a network of 22 tree-ring chronologies from single-leaf pinyon ( Pinus monophylla ) in the central Great Basin of North America was used to extend hydroclimatic records both temporally and spatially. First, the Line of Organic Correlation (LOC) method was used to reconstruct October–May total precipitation anomalies at each tree-ring site, as these ecotonal environments at the lower forest border are typically moisture limited. Individual site reconstructions were then combined using a hierarchical model of spatio-temporal kriging that produced annual anomaly maps on a 12 × 12 km grid during the period in common among all chronologies (1650–1976). Hydro-climatic episodes were numerically identified and modeled using their duration, magnitude, and peak. Spatial patterns were more variable during wet years than during dry years, and the evolution of drought episodes over space and time could be visualized and quantified. The most remarkable episode in the entire reconstruction was the early 1900s pluvial, followed by the late 1800s drought. The 1930s "Dust Bowl" drought was among the top ten hydroclimatic episodes in the past few centuries. These results directly address the needs of water and natural resource managers with respect to planning for "worst case" scenarios of drought duration and magnitude at the watershed level. For instance, it is possible to analyze which geographical areas are more likely to be impacted by severe and sustained droughts at annual or multiannual timescales and at spatial resolutions commonly used by regional climate models.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2013-04-06
    Description: Productivity of aboveground coarse wood biomass and stand age related to soil hydrology of Amazonian forests in the Purus-Madeira interfluvial area Biogeosciences Discussions, 10, 6417-6459, 2013 Author(s): B. B. L. Cintra, J. Schietti, T. Emillio, D. Martins, G. Moulatlet, P. Souza, C. Levis, C. A. Quesada, and J. Schöngart The ongoing demand for information on forest productivity has increased the number of permanent monitoring plots across the Amazon. Those plots, however, do not comprise the whole diversity of forest types in the Amazon. The complex effects of soil, climate and hydrology on the productivity of seasonally waterlogged interfluvial wetland forests are still poorly understood. The presented study is the first field-based estimate for tree ages and wood biomass productivity in the vast interfluvial region between the Purus and Madeira rivers. We estimate stand age and wood biomass productivity by a combination of tree-ring data and allometric equations for biomass stocks of eight plots distributed along 600 km in the Purus-Madeira interfluvial area that is crossed by the BR-319 highway. We relate stand age and wood biomass productivity to hydrological and edaphic conditions. Mean productivity and stand age were 5.6 ± 1.1 Mg ha −1 yr −1 and 102 ± 18 yr, respectively. There is a strong relationship between tree age and diameter, as well as between mean diameter increment and mean wood density within a plot. Regarding the soil hydromorphic properties we find a positive correlation with wood biomass productivity and a negative relationship with stand age. Productivity also shows a positive correlation with the superficial phosphorus concentration. In addition, superficial phosphorus concentration increases with enhanced soil hydromorphic condition. We raise three hypotheses to explain these results: (1) the reduction of iron molecules on the saturated soils with plinthite layers close to the surface releases available phosphorous for the plants; (2) the poor structure of the saturated soils creates an environmental filter selecting tree species of faster growth rates and shorter life spans and (3) plant growth on saturated soil is favored during the dry season, since there should be low restrictions for soil water availability.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2013-04-03
    Description: Sources and fate of terrestrial dissolved organic carbon in lakes of a Boreal Plains region recently affected by wildfire Biogeosciences Discussions, 10, 6093-6141, 2013 Author(s): D. Olefeldt, K. J. Devito, and M. R. Turetsky Downstream mineralization and sedimentation of terrestrial dissolved organic carbon (DOC) render lakes important for landscape carbon cycling in the boreal region, with regulating processes potentially sensitive to perturbations associated with climate change including increased occurrence of wildfire. In this study we assessed chemical composition and reactivity (during both dark and UV incubations) of DOC from lakes and terrestrial sources within a peatland-rich western boreal plains region partially affected by a recent wildfire. While wildfire was found to increase aromaticity of DOC in peat pore-water above the water table, it had no effect on concentrations or composition of DOC from peatland wells and neither affected mineral well or lake DOC characteristics. Lake DOC composition reflected a mixing of peatland and mineral groundwater, with a greater influence of mineral sources to lakes in coarse- than fine-textured settings. Peatland DOC was less biodegradable than mineral DOC, but both mineralization and sedimentation of peatland DOC increased substantially during UV incubations through selective removal of aromatic humic and fulvic acids. DOC composition in lakes with longer residence times had characteristics consistent with increased UV-mediated processing. We estimate that about half of terrestrial DOC inputs had been lost within lakes, mostly due to UV-mediated processes. The importance of within-lake losses of aromatic DOC from peatland sources through UV-mediated processes indicate that terrestrial-aquatic C linkages in the study region are largely disconnected from recent terrestrial primary productivity. Together, our results suggest that characteristics of the study region (climate, surface geology and lake morphometry) render linkages between terrestrial and aquatic C cycling insensitive to the effects of wildfire by determining dominant terrestrial sources and within-lake processes of DOC removal.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2013-04-03
    Description: Optimising predictor domains for spatially coherent precipitation downscaling Hydrology and Earth System Sciences Discussions, 10, 4015-4061, 2013 Author(s): S. Radanovics, J.-P. Vidal, E. Sauquet, A. Ben Daoud, and G. Bontron Statistical downscaling is widely used to overcome the scale gap between predictors from Numerical Weather Prediction (NWP) models or General Circulation Models (GCMs) and predictands like local precipitation, required for example for medium-term operational forecasts or climate change impact studies. The predictors are considered over a given spatial domain which is rarely optimised with respect to the target predictand location. In this study the geopotential predictor domains used by an analogue downscaling method are optimised for 608 target zones covering France. An extended version of the growing rectangular domain algorithm provides an ensemble of five near-optimum domains for each target zone. All five near-optimum domains are consistently equally skillful based on the Continuous Rank Probability Score. Relevance maps calculated for selected target zones first reveal high skill geopotential regions with specific shapes for locations in south-eastern France compared to the rest of the country. In all cases, the optimised domains tend to include the most relevant area on the relevance maps. The domain centers of the optimised domains are mainly distributed following the geographical location of the target location, but there are apparent differences between the windward and the lee side of mountain ridges. Moreover, domains for target zones located in south-eastern France are centered more east and south than the ones for target locations on the same longitude. The size of the optimised domains tends to be larger in the southeastern part of the country, while domains with a very small meridional extent can be found in a east-west band around 47° N. Sensitivity tests on the archive length for the analogue method show a general robustness except for zones with high interannual variability like in the Cévennes area. Moreover, results appear to be rather unsensitive to the starting point of the optimisation algorithm except for zones located in the transition area north of the zones having optimized domains with a small meridional extent. This study paves the way for defining regions with homogeneous geopotential predictor domains for precipitation downscaling over France.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2013-04-03
    Description: Opportunities and challenges for the use of scintillometer-based catchment-averaged evapotranspiration estimates as model forcing Hydrology and Earth System Sciences Discussions, 10, 3973-4013, 2013 Author(s): B. Samain and V. R. N. Pauwels To date, lumped rainfall-runoff models rely on rough estimates of catchment-averaged potential evapotranspiration (ET p ) rates as meteorological forcing. A model parameter converts this ET p input into actual evapotranspiration (ET act ) estimates. This paper examines the potential use of scintillometer-based ET act rates for rainfall-runoff modeling. It has been found that the reservoir-structure of the rainfall-runoff model functions as a low-pass filter for the ET p input. If the long-term volume of the ET p used in the model simulations is consistent with the data set used for calibration, a good match of the seasonal pattern, using temporally constant ET p data, is sufficient to obtain adequate discharge simulations. However, these results are then obtained with strongly erroneous evapotranspiration estimates. A better match of the diurnal cycle does not lead to better model results. Replacing the ET p inputs by scintillometer-based ET act estimates does not lead to better model predictions. Small underestimations of ET act under stable conditions, which occur at night and during the Winter, and which accumulate to significant amounts, are the cause of this problem. Consistent with other studies, the scintillometer-based ET act estimates can be considered reliable and realistic under unstable conditions. These values can thus be used as forcing for rainfall-runoff models.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2013-04-04
    Description: Temporal stability of soil moisture patterns measured by proximal ground-penetrating radar Hydrology and Earth System Sciences Discussions, 10, 4063-4097, 2013 Author(s): J. Minet, N. E. C. Verhoest, S. Lambot, and M. Vanclooster We analyzed the temporal stability of soil moisture patterns acquired using a proximal ground-penetrating radar (GPR) in a 2.5 ha agricultural field at five different dates over three weeks. The GPR system was mounted on a mobile platform, allowing for real-time mapping of soil moisture with a high spatial resolution (2–5 m). The spatio-temporal soil moisture patterns were in accordance with the meteorological data and with soil moisture measurements from soil core sampling. Time-stable areas showing the field-average moisture could be revealed by two methods: (1) by the computation of temporal stability indicators based on relative differences of soil moisture to the field-average and (2) by the spatial intersection of the areas showing the field-average. Locations where the mean relative difference was below 0.02 m 3 m −3 extended up to 10% of the field area whereas the intersection of areas showing the field-average within a tolerance of 0.02 m 3 m −3 covered 5% of the field area. Compared to most of the previous studies about temporal stability of soil moisture, time-stable areas and their spatial patterns could be revealed instead of single point locations, owing to the advanced GPR method for real-time mapping. It is believed that determining spatially coherent time-stable areas is more informative rather than determining time-stable points. Other acquisitions over larger time periods would be necessary to assert the robustness of the time-stable areas.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2013-04-11
    Description: Solute specific scaling of inorganic nitrogen and phosphorus uptake in streams Biogeosciences Discussions, 10, 6671-6693, 2013 Author(s): R. O. Hall Jr., M. A. Baker, E. J. Rosi-Marshall, and J. L. Tank Stream ecosystem processes such as nutrient cycling may vary with stream position in the watershed. Using a scaling approach, we examined the relationship between stream size and nutrient uptake length, which represents the mean distance that a dissolved solute travels prior to removal from the water column. Ammonium uptake length increased proportionally with stream size measured as specific discharge (discharge/stream width) with a scaling exponent = 1.01. In contrast, the scaling exponent for nitrate (NO 3 − ) was 1.19 and for soluble reactive phosphorus (SRP) was 1.35, suggesting that uptake lengths for these nutrients increased more rapidly than increases in specific discharge. Additionally, the ratio of nitrogen (N) uptake length to SRP uptake length declined with stream size; there was lower demand for SRP relative to N as stream size increased. Ammonium and NO 3 − uptake velocity positively related with stream metabolism, while SRP did not. Finally, we related the scaling of uptake length and specific discharge to that of stream length using Hack's law and downstream hydraulic geometry. Ammonium uptake length increased less than proportionally with distance from the headwaters, suggesting a strong role for larger streams and rivers in regulating nutrient transport.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2013-04-11
    Description: Responses of lower trophic-level organisms to typhoon passage on the outer shelf of the East China Sea: an incubation experiment Biogeosciences Discussions, 10, 6605-6635, 2013 Author(s): N. Yasuki, K. Suzuki, and A. Tsuda Typhoons can induce vertical mixing, upwelling, or both in the water column due to strong wind stress. These events can induce phytoplankton blooms in the oligotrophic ocean after typhoon passage. However, little is known about the responses of lower trophic-level organisms or changes in the community structure following the passage of typhoons, particularly in offshore regions. Therefore, we evaluated community succession on the outer shelf of the East China Sea through on-deck bottle incubation experiments simulating hydrographic conditions after the passage of a typhoon. Under all of the experimental conditions we tested, chlorophyll a concentrations increased more than 9-fold within 6 days, and these algal cells were mainly composed of large diatoms (〉10 μm). Ciliates also increased along with the diatom bloom. These results suggest that increases in diatom and ciliate populations may enhance biogenic carbon export in the water column. Typhoons can affect not only phytoplankton productivity, but also the composition of lower trophic-level organisms and biogeochemical processes in oligotrophic offshore regions.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2013-04-11
    Description: Impacts of tropical cyclones on hydrochemistry of a subtropical forest Hydrology and Earth System Sciences Discussions, 10, 4537-4566, 2013 Author(s): C. T. Chang, S. P. Hamburg, J. L. Hwong, N. H. Lin, M. L. Hsueh, M. C. Chen, and T. C. Lin Tropical cyclones (typhoons/hurricanes) have major impacts on the biogeochemistry of forest ecosystems, but the stochastic nature and the long intervals between storms means that there are limited data on their effects. We characterized the impacts of 14 typhoons over six years on hydrochemistry of a subtropical forest plantation in Taiwan, a region experiencing frequent typhoons. Typhoons contributed 1/3 of annual rainfall on average, but ranged from 4% to 55%. The stochastic nature of annual typhoon related precipitation poses a challenge with respect to managing the impacts of these extreme events. This challenge is exacerbated by the fact that typhoon-related rainfall is not significantly correlated with wind velocity, the current focus of weather forecasts. Thus little advance warning is provided for the hydrological impacts of these storms. The typhoons we studied contributed approximately one third of the annual input and output of most nutrients (except nitrogen) during an average 9.5d yr −1 period, resulting in nutrient input/output rates an order of magnitude greater than during non-typhoon period. Nitrate output balanced input during the non-typhoon period, but during the typhoon period an average of 10 kg ha −1 yr −1 nitrate was lost. Streamwater chemistry exhibited similarly high variability during typhoon and non-typhoon periods and returned to pre-typhoon levels one to three weeks following each typhoon. The streamwater chemistry appears to be very resilient in response to typhoons, resulting in minimal loss of nutrients.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2013-09-07
    Description: Icehouse-greenhouse variations in marine denitrification Biogeosciences Discussions, 10, 14769-14813, 2013 Author(s): T. J. Algeo, P. A. Meyers, R. S. Robinson, H. Rowe, and G. Q. Jiang Long-term secular variation in the isotopic composition of seawater fixed nitrogen (N) is poorly known. Here, we document variation in the N-isotopic composition of marine sediments (δ 15 N sed ) since 660 Ma (million years ago) in order to understand major changes in the marine N cycle through time and their relationship to first-order climate variation. During the Phanerozoic, greenhouse climate modes were characterized by low δ 15 N sed (∼ −2 to +2‰) and icehouse climate modes by high δ 15 N sed (∼ +4 to +8‰). Shifts toward higher δ 15 N sed occurred rapidly during the early stages of icehouse modes, prior to the development of major continental glaciation, suggesting a potentially important role for the marine N cycle in long-term climate change. Reservoir box modeling of the marine N cycle demonstrates that secular variation in δ 15 N sed was likely due to changes in the dominant locus of denitrification, with a shift in favor of sedimentary denitrification during greenhouse modes owing to higher eustatic (global sea-level) elevations and greater on-shelf burial of organic matter, and a shift in favor of water-column denitrification during icehouse modes owing to lower eustatic elevations, enhanced organic carbon sinking fluxes, and expanded oceanic oxygen-minimum zones. The results of this study provide new insights into operation of the marine N cycle, its relationship to the global carbon cycle, and its potential role in modulating climate change at multimillion-year timescales.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2013-09-07
    Description: Technical Note: Disturbance of soil structure can lead to release of methane entrapped in glacier forefield soils Biogeosciences Discussions, 10, 14815-14834, 2013 Author(s): P. A. Nauer, E. Chiri, J. Zeyer, and M. H. Schroth Investigations of sources and sinks of atmospheric CH 4 are needed to understand the global CH 4 cycle and climate-change mitigation options. Glaciated environments might play a critical role due to potential feedbacks with global glacial meltdown. In an emerging glacier forefield, an ecological shift occurs from an anoxic, potentially methanogenic subglacial sediment to an oxic proglacial soil, in which soil-microbial consumption of atmospheric CH 4 is initiated. The development of this change in CH 4 turnover can be quantified by soil-gas profile analysis. We found evidence for CH 4 entrapped in glacier forefield soils when comparing two methods for the collection of soil-gas samples: a modified steel rod (SR) designed for one-time sampling and rapid screening (samples collected ~ 1 min after hammering the SR into the soil), and a novel multi-level sampler (MLS) for repetitive sampling through a previously installed access tube (samples collected weeks after access-tube installation). In glacier forefields on siliceous bedrock, sub-atmospheric CH 4 concentrations were observed with both methods. Conversely, elevated soil-CH 4 concentrations were observed in calcareous glacier forefields, but only in samples collected with the SR, while MLS samples all showed sub-atmospheric CH 4 concentrations. Time-series SR soil-gas sampling (additional samples collected 2, 3, 5, and 7 min after hammering) confirmed the transient nature of the elevated soil-CH 4 concentrations, which were decreasing from ~ 100 μL L −1 towards background levels within minutes. This hints towards the existence of entrapped CH 4 in calcareous glacier forefield soil that can be released when sampling soil-gas with the SR. Laboratory experiments with miniature soil cores collected from two glacier forefields confirmed CH 4 entrapment in these soils. Treatment by sonication and acidification resulted in a massive release of CH 4 from calcareous cores (on average 0.3–1.8 μg CH 4 (g d.w.) −1 ); release from siliceous cores was 1–2 orders of magnitude lower (0.02–0.03 μg CH 4 (g d.w.) −1 ). Clearly, some form of CH 4 entrapment exists in calcareous glacier forefield soils, and to a much lesser extent in siliceous glacier forefield soils. Its nature and origin remain unclear and will be subject of future investigations.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2013-09-07
    Description: Dynamics of particulate organic carbon flux in a global ocean model Biogeosciences Discussions, 10, 14715-14767, 2013 Author(s): I. D. Lima, P. J. Lam, and S. C. Doney The sinking of particulate organic carbon (POC) is a key component of the ocean carbon cycle and plays an important role in the global climate system. However, the processes controlling the fraction of primary production that is exported from the euphotic zone (export ratio) and how much of it survives respiration in the mesopelagic to be sequestered in the deep ocean (transfer efficiency) are not well understood. In this study, we use a three-dimensional, coupled physical-biogeochemical model (CCSM-BEC) to investigate the processes controlling the export of particulate organic matter from the euphotic zone and its flux to depth. We also compare model results with sediment trap data and other parameterizations of POC flux to depth to evaluate model skill and gain further insight into the causes of error and uncertainty in POC flux estimates. In the model, export ratios are mainly a function of diatom relative abundance and temperature while absolute fluxes and transfer efficiency are driven by mineral ballast composition of sinking material. The temperature dependence of the POC remineralization length scale is modulated by denitrification under low O 2 concentrations and lithogenic (dust) fluxes. Lithogenic material is an important control of transfer efficiency in the model, but its effect is restricted to regions of strong atmospheric dust deposition. In the remaining regions, CaCO 3 content of exported material is the main factor affecting transfer efficiency. The fact that mineral ballast composition is inextricably linked to plankton community structure results in correlations between export ratios and ballast minerals fluxes (opal and CaCO 3 ), and transfer efficiency and diatom relative abundance that do not necessarily reflect ballast or direct ecosystem effects, respectively. This suggests that it might be difficult to differentiate between ecosystem and ballast effects in observations. The model's skill at reproducing sediment trap observations is equal to or better than that of other parameterizations. However, the sparseness and relatively large uncertainties of sediment trap data makes it difficult to accurately evaluate the skill of the model and other parameterizations. More POC flux observations, over a wider range of ecological regimes, are necessary to thoroughly evaluate and test model results and better understand the processes controlling POC flux to depth in the ocean.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2013-09-10
    Description: Thin terrestrial sediment deposits on intertidal sandflats: effects on pore water solutes and juvenile bivalve burial behaviour Biogeosciences Discussions, 10, 14835-14860, 2013 Author(s): A. Hohaia, K. Vopel, and C. A. Pilditch Changes in land use and climate increase the supply of terrestrial sediment (hereafter, TS) to coastal waters worldwide but the effects of these sediments on benthic ecosystem functioning are not well known. Past experiments with defaunated, intertidal sediment suggested a link between the de-oxygenation of sediments underlying a thin (mm) layer of TS and reduced burial rates of juvenile macrofaunal recruits. We examined this link predicting that surficial TS deposits will still negatively affect burial when applied to sediments that are initially well oxygenated due to bioturbation (C) or depleted of organic matter (D). We observed the behaviour of post-settlement juveniles of the tellinid bivalve \textit{Macomona liliana} on the surface of four treatments; C, D, and the same sediments to which we added a thin layer of TS (CTS, DTS). Pore water analyses confirmed that the diffusive impedance of the 1.7–1.9 mm TS deposit decreased the oxygenation of the underlying intertidal sediment (CTS) but not that of the depleted sediment (DTS). Unexpectedly, (1) the application of a TS deposit significantly increased but not decreased the probability of burial, irrespectively of treatment, and (2) juveniles more likely buried into C than into D. We attribute the failure to document a negative effect of TS on the recruits' burial to the activity of the resident macroinfauna (CTS) or the absence of organic matter (DTS). Our results underline the important role of the resident macrofauna in mediating the stress response of benthic ecosystems.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2013-09-11
    Description: Calcium carbonate corrosivity in an Alaskan inland sea Biogeosciences Discussions, 10, 14887-14922, 2013 Author(s): W. Evans, J. T. Mathis, and J. N. Cross Ocean acidification is the hydrogen ion increase caused by the oceanic uptake of anthropogenic CO 2 , and is a focal point in marine biogeochemistry, in part, because this chemical reaction reduces calcium carbonate (CaCO 3 ) saturation states (Ω) to levels that are corrosive (i.e. Ω ≤ 1) to shell-forming marine organisms. However, other processes can drive CaCO 3 corrosivity; specifically, the addition of tidewater glacial melt. Carbonate system data collected in May and September from 2009 through 2012 in Prince William Sound (PWS), a semi-enclosed inland sea located on the south-central coast of Alaska that is ringed with fjords containing tidewater glaciers, reveal the unique impact of glacial melt on CaCO 3 corrosivity. Initial limited sampling was expanded in September 2011 to span large portions of the western and central sound, and included two fjords proximal to tidewater glaciers: Icy Bay and Columbia Bay. The observed conditions in these fjords affected CaCO 3 corrosivity in the upper water column (
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2013-09-12
    Description: Surface circulation and upwelling patterns around Sri Lanka Biogeosciences Discussions, 10, 14953-14998, 2013 Author(s): A. de Vos, C. B. Pattiaratchi, and E. M. S. Wijeratne Sri Lanka occupies a unique location within the equatorial belt in the northern Indian Ocean with the Arabian Sea on its western side and the Bay of Bengal on its eastern side. The region is characterised by bi-annually reversing monsoon winds resulting from seasonal differential heating and cooling of the continental land mass and the ocean. This study explored elements of the dynamics of the surface circulation and coastal upwelling in the waters around Sri Lanka using satellite imagery and the Regional Ocean Modelling System (ROMS) configured to the study region and forced with ECMWF interim data. The model was run for 2 yr to examine the seasonal and shorter term (∼10 days) variability. The results confirmed the presence of the reversing current system in response to the changing wind field: the eastward flowing Southwest Monsoon Current (SMC) during the Southwest (SW) monsoon transporting 11.5 Sv and the westward flowing Northeast Monsoon Current (NMC) transporting 9.5 Sv during the Northeast (NE) monsoon, respectively. A recirculation feature located to the east of Sri Lanka during the SW monsoon, the Sri Lanka Dome, is shown to result from the interaction between the SMC and the Island of Sri Lanka. Along the eastern and western coasts, during both monsoon periods, flow is southward converging along the south coast. During the SW monsoon the Island deflects the eastward flowing SMC southward whilst along the east coast the southward flow results from the Sri Lanka Dome recirculation. The major upwelling region, during both monsoon periods, is located along the south coast and is shown to be due to flow convergence and divergence associated with offshore transport of water. Higher surface chlorophyll concentrations were observed during the SW monsoon. The location of the flow convergence and hence the upwelling centre was dependent on the relative strengths of wind driven flow along the east and west coasts: during the SW (NE) monsoon the flow along the western (eastern) coast was stronger and hence the upwelling centre was shifted to the east (west). The presence of upwelling along the south coast during both monsoon periods may explain the blue whale ( Balaenoptera musculus ) aggregations in this region.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2013-09-13
    Description: Hurricane impacts on a pair of coastal forested watersheds: implications of selective hurricane damage to forest structure and streamflow dynamics Hydrology and Earth System Sciences Discussions, 10, 11519-11557, 2013 Author(s): A. D. Jayakaran, T. M. Williams, H. Ssegane, D. M. Amatya, B. Song, and C. C. Trettin Hurricanes are infrequent but influential disruptors of ecosystem processes in the southeastern Atlantic and Gulf coasts. Every southeastern forested wetland has the potential to be struck by a tropical cyclone. We examined the impact of Hurricane Hugo on two paired coastal watersheds in South Carolina in terms of stream flow and vegetation dynamics, both before and after the hurricane's passage in 1989. The study objectives were to quantify the magnitude and timing of changes including a reversal in relative streamflow-difference between two paired watersheds, and to examine the selective impacts of a hurricane on the vegetative composition of the forest. We related these impacts to their potential contribution to change watershed hydrology through altered evapotranspiration processes. Using over thirty years of monthly rainfall and streamflow data we showed that there was a significant transformation in the hydrologic character of the two watersheds – a transformation that occurred soon after the hurricane's passage. We linked the change in the rainfall-runoff relationship to a catastrophic shift in forest vegetation due to selective hurricane damage. While both watersheds were located in the path of the hurricane, extant forest structure varied between the two watersheds as a function of experimental forest management techniques on the treatment watershed. We showed that the primary damage was to older pines, and to some extent larger hardwood trees. We believe that lowered vegetative water use impacted both watersheds with increased outflows on both watersheds due to loss of trees following hurricane impact. However, one watershed was able to recover to pre hurricane levels of canopy transpiration at a quicker rate due to the greater abundance of pine seedlings and saplings in that watershed.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2013-09-14
    Description: Strong sensitivity of Southern Ocean carbon uptake and nutrient cycling to wind stirring Biogeosciences Discussions, 10, 15033-15076, 2013 Author(s): K. B. Rodgers, O. Aumont, S. E. Mikaloff Fletcher, Y. Plancherel, L. Bopp, C. de Boyer Montégut, D. Iudicone, R. F. Keeling, G. Madec, and R. Wanninkhof Here we test the hypothesis that winds have an important role in determining the rate of exchange of CO 2 between the atmosphere and ocean through wind stirring over the Southern Ocean. This is tested with a sensitivity study using an ad hoc parameterization of wind stirring in an ocean carbon cycle model. The objective is to identify the way in which perturbations to the vertical density structure of the planetary boundary in the ocean impacts the carbon cycle and ocean biogeochemistry. Wind stirring leads to reduced uptake of CO 2 by the Southern Ocean over the period 2000–2006, with differences of order 0.9 Pg C yr −1 over the region south of 45° S. Wind stirring impacts not only the mean carbon uptake, but also the phasing of the seasonal cycle of carbon and other species associated with ocean biogeochemistry. Enhanced wind stirring delays the seasonal onset of stratification, and this has large impacts on both entrainment and the biological pump. It is also found that there is a strong sensitivity of nutrient concentrations exported in Subantarctic Mode Water (SAMW) to wind stirring. This finds expression not only locally over the Southern Ocean, but also over larger scales through the impact on advected nutrients. In summary, the large sensitivity identified with the ad hoc wind stirring parameterization offers support for the importance of wind stirring for global ocean biogeochemistry, through its impact over the Southern Ocean.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2013-09-18
    Description: Recent evolution of China's virtual water trade: analysis of selected crops and considerations for policy Hydrology and Earth System Sciences Discussions, 10, 11613-11641, 2013 Author(s): J. Shi, J. Liu, and L. Pinter China has dramatically increased its virtual water import unconsciously for recent years. Many studies have focused on the quantity of traded virtual water but very few go into analysing geographic distribution and the properties of China's virtual water trade network. This paper provides a calculation and analysis of the crop-related virtual water trade network of China based on 27 major primary crops between 1986 and 2009. The results show that China is a net importer of virtual water from water-abundant areas of North and South America, and a net virtual water exporter to water-stressed areas of Asia, Africa, and Europe. Virtual water import is far larger than virtual water export and in both import and export a small number of trade partners control the supply chain. Grain crops are the major contributors to virtual water trade, and among grain crops soybeans, mostly imported from the US, Brazil and Argentina are the most significant. As crop yield and crop water productivity in North and South America are generally higher than those in Asia and Africa, the effect of China's crop-related virtual water trade positively contributes to optimizing crop water use efficiency at the global scale. In order to mitigate water scarcity and secure the food supply, virtual water should be actively incorporated into national water management strategies. From the national perspective, China should reduce the export and increase the import of water-intensive crops. But the sources of virtual water import need to be further diversified to reduce supply chain risks and increase resilience.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2014-12-13
    Description: Extending periodic eddy covariance latent heat fluxes through tree sapflow measurements to estimate long-term total evaporation in a peat swamp forest Hydrology and Earth System Sciences Discussions, 11, 13607-13661, 2014 Author(s): A. D. Clulow, C. S. Everson, M. G. Mengistu, J. S. Price, A. Nickless, and G. P. W. Jewitt A combination of measurement and modelling was used to find a pragmatic solution to estimate the annual total evaporation (ET) from the rare and indigenous Nkazana Peat Swamp Forest (PSF) on the east coast of Southern Africa to improve the water balance estimates within the area. Total evaporation was measured during three window periods (between seven and nine days each) using an eddy covariance (EC) system on a telescopic mast above the forest canopy. Sapflow of an understory and an emergent tree was measured using a low maintenance heat pulse velocity system for an entire hydrological year (October 2009 to September 2010). An empirical model was derived, describing the relationship between the observed ET of the Nkazana PSF measured during two of the window periods ( R 2 = 0.92 and 0.90) which, overlapped with sapflow measurements, thereby providing hourly estimates of predicted ET of the Nkazana PSF for a year, totalling 1125 mm (while rainfall was 650 mm). In building the empirical model, it was found that including the understory tree sapflow provided no benefit to the model performance. In addition, the observed emergent tree sapflow relationship with observed ET between the two field campaigns was consistent and could be represented by a single empirical model ( R 2 = 0.90; RMSE = 0.08 mm). During the window periods of EC measurement, no single meteorological variable was found to describe the Nkazana PSF ET satisfactorily. However, in terms of evaporation models, the hourly FAO56 Penman–Monteith equation best described the observed ET from EC during the August 2009 ( R 2 = 0.75), November 2009 ( R 2 = 0.85) and March 2010 ( R 2 = 0.76) field campaigns, compared to the Priestley–Taylor model ( R 2 = 0.54, 0.74 and 0.62 during the respective field campaigns). From the empirical model of ET and the FAO56 Penman–Monteith equation, a monthly crop factor ( K c ) was derived for the Nkazana PSF providing a method of estimating long-term swamp forest ET from meteorological data. The monthly crop factor indicated two distinct periods. From February to May, it was between 1.2 and 1.4 compared with June to January, when the crop factor was 0.8 to 1.0. The derived monthly K c values were verified as accurate (to one significant digit) using historical data measured at the same site, also using EC, from a~previous study. The measurements provided insights into the microclimate within a subtropical peat swamp forest and the contrasting sapflow of emergent and understory trees. They showed that expensive, high maintenance equipment can be used during manageable window periods in conjunction with low maintenance systems, dedicated to individual trees, to derive a model to estimate long-term ET over remote heterogeneous forests. In addition, the contrast in ET and rainfall emphasises the reliance of the Nkazana PSF on groundwater.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2014-12-16
    Description: Dye tracing for investigating flow and transport properties of hydrocarbon-polluted Rabots glaciär, Kebnekaise, Sweden Hydrology and Earth System Sciences Discussions, 11, 13711-13744, 2014 Author(s): C. C. Clason, C. Coch, J. Jarsjö, K. Brugger, P. Jansson, and G. Rosqvist Over 11 000 L of hydrocarbon pollution was deposited on the surface of Rabots glaciär on the Kebnekaise Massif, northern Sweden, following the crash of a Royal Norwegian Air Force aircraft in March 2012. An environmental monitoring programme was subsequently commissioned, including water, snow and ice sampling. The scientific programme further included a series of dye tracing experiments during the 2013 melt season, conducted to investigate flow pathways for pollutants through the glacier hydrological system, and to gain new insight to the internal hydrological system of Rabots glaciär. Results of dye tracing reveal a degree of homogeneity in the topology of the drainage system throughout July and August, with an increase in efficiency as the season progresses, as reflected by decreasing temporary storage and dispersivity. Early onset of melting likely led to formation of an efficient, discrete drainage system early in the melt season, subject to decreasing sinuosity and braiding as the season progressed. Analysis of turbidity-discharge hysteresis further supports the formation of discrete, efficient drainage, with clockwise diurnal hysteresis suggesting easy mobilisation of readily-available sediments in channels. Dye injection immediately downstream of the pollution source zone revealed prolonged storage of dye followed by fast, efficient release. Twinned with a low dye recovery, and supported by sporadic detection of hydrocarbons in the proglacial river, we suggest that meltwater, and thus pollutants in solution, may be released periodically from this zone of the glacier hydrological system. The here identified dynamics of dye storage, dispersion and breakthrough indicate that the ultimate fate and permanence of pollutants in the glacier system is likely to be governed by storage of pollutants in the firn layer and ice mass, or within the internal hydrological system, where it may refreeze. This shows that future studies on the fate of hydrocarbons in pristine, glaciated mountain environments should address the extent to which pollutants in solution act like water molecules or whether they are more susceptible to, for example, refreezing into the surrounding ice, becoming stuck in micro-fractures and pore spaces, or sorption onto subglacial sediments.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2014-12-17
    Description: Impact of seawater Ca 2+ on the calcification and calcite Mg/Ca of Amphistegina lessonii Biogeosciences Discussions, 11, 17463-17489, 2014 Author(s): A. Mewes, G. Langer, S. Thoms, G. Nehrke, G.-J. Reichart, L. J. de Nooijer, and J. Bijma Mg/Ca ratios in foraminiferal tests are routinely used as paleo temperature proxy, but on long timescales, also hold the potential to reconstruct past seawater Mg/Ca. Impact of both temperature and seawater Mg/Ca on Mg incorporation in foraminifera have been quantified by a number of studies. The underlying mechanism responsible for Mg incorporation in foraminiferal calcite and its sensitivity to environmental conditions, however, is not fully identified. A recently published biomineralization model (Nehrke et al., 2013) proposes a combination of transmembrane transport and seawater leakage or vacuolization to link calcite Mg/Ca to seawater Mg/Ca and explains inter-species variability in Mg/Ca ratios. To test the assumptions of this model, we conducted a culture study in which seawater Mg/Ca was manipulated by varying [Ca 2+ ] and keeping [Mg 2+ ] constant. Foraminiferal growth rates, test thickness and calcite Mg/Ca of newly formed chambers were analyzed. Results showed optimum growth rates and test thickness at Mg/Ca closest to that of ambient seawater. Calcite Mg/Ca is positively correlated to seawater Mg/Ca, indicating that not absolute seawater [Ca 2+ ] and [Mg 2+ ], but the telative ratio controls Mg/Ca in tests. These results demonstrate that the calcification process cannot be based only on seawater vacuolization, supporting the mixing model proposed by Nehrke et al. (2013). Here we, however, suggest a transmembrane transport fractionation that is not as strong as suggested by Nehrke et al. (2013).
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2014-11-07
    Description: Fluxes of carbon and nutrients to the Iceland Sea surface layer and inferred primary productivity and stoichiometry Biogeosciences Discussions, 11, 15399-15433, 2014 Author(s): E. Jeansson, R. G. J. Bellerby, I. Skjelvan, H. Frigstad, S. R. Ólafsdóttir, and J. Ólafsson Fluxes of carbon and nutrients to the upper 100 m of the Iceland Sea are evaluated. The study utilises hydro-chemical data from the Iceland Sea time-series station (68.00° N, 12.67° W), for the years between 1993 and 2006. By comparing data of dissolved inorganic carbon (DIC) and nutrients in the surface layer (upper 100 m), and a sub-surface layer (100–200 m), we calculate monthly deficits in the surface, and use these to deduce the surface layer fluxes that affect the deficits: vertical mixing, horizontal advection, air–sea exchange, and biological activity. The deficits show a clear seasonality with a minimum in winter, when the mixed layer is at the deepest, and a maximum in early autumn, when biological uptake has removed much of the nutrients. The annual vertical fluxes of DIC and nitrate amounts to 1.7 ± 0.3 and 0.23 ± 0.07 mol m −2 yr −1 , respectively, and the annual air–sea uptake of atmospheric CO 2 is 4.4 ± 1.1 mol m −2 yr −1 . The biologically driven changes in DIC during the year relates to net community production (NCP), and the net annual NCP corresponds to export production, and is here calculated to 6.1 ± 0.9 mol C m −2 yr −1 . The typical, median C : N ratio during the period of net community uptake is 11, and thus clearly higher than Redfield, but is varying during the season.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2014-11-08
    Description: Technical Note: Artificial coral reef mesocosms for ocean acidification investigations Biogeosciences Discussions, 11, 15463-15505, 2014 Author(s): J. Leblud, L. Moulin, A. Batigny, P. Dubois, and P. Grosjean The design and evaluation of replicated artificial mesocosms are presented in the context of a thirteen month experiment on the effects of ocean acidification on tropical coral reefs. They are defined here as (semi)-closed (i.e. with or without water change from the reef) mesocosms in the laboratory with a more realistic physico-chemical environment than microcosms. Important physico-chemical parameters (i.e. pH, p O 2 , p CO 2 , total alkalinity, temperature, salinity, total alkaline earth metals and nutrients availability) were successfully monitored and controlled. Daily variations of irradiance and pH were applied to approach field conditions. Results highlighted that it was possible to maintain realistic physico-chemical parameters, including daily changes, into artificial mesocosms. On the other hand, the two identical artificial mesocosms evolved differently in terms of global community oxygen budgets although the initial biological communities and physico-chemical parameters were comparable. Artificial reef mesocosms seem to leave enough degrees of freedom to the enclosed community of living organisms to organize and change along possibly diverging pathways.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2014-11-08
    Description: Phytoplankton community structure in the North Sea: coupling between remote sensing and automated in situ analysis at the single cell level Biogeosciences Discussions, 11, 15621-15662, 2014 Author(s): M. Thyssen, S. Alvain, A. Lefèbvre, D. Dessailly, M. Rijkeboer, N. Guiselin, V. Creach, and L.-F. Artigas Phytoplankton observation in the ocean can be a challenge in oceanography. Accurate estimations of their biomass and dynamics will help to understand ocean ecosystems and refine global climate models. This requires relevant datasets of phytoplankton at a functional level and on a daily and sub meso scale. In order to achieve this, an automated, high frequency, dedicated scanning flow cytometer (SFC, Cytobuoy, NL), has been developed to cover the entire size range of phytoplankton cells whilst simultaneously taking pictures of the largest of them. This cytometer was directly connected to the water inlet of a~pocket Ferry Box during a cruise in the North Sea, 8–12 May 2011 (DYMAPHY project, INTERREG IV A "2 Seas"), in order to identify the phytoplankton community structure of near surface waters (6 m) with a high resolution spacial basis (2.2 ± 1.8 km). Ten groups of cells, distinguished on the basis of their optical pulse shapes, were described (abundance, size estimate, red fluorescence per unit volume). Abundances varied depending on the hydrological status of the traversed waters, reflecting different stages of the North Sea blooming period. Comparisons between several techniques analyzing chlorophyll a and the scanning flow cytometer, using the integrated red fluorescence emitted by each counted cell, showed significant correlations. The community structure observed from the automated flow cytometry was compared with the PHYSAT reflectance anomalies over a daily scale. The number of matchups observed between the SFC automated high frequency in situ sampling and the remote sensing was found to be two to three times better than when using traditional water sampling strategies. Significant differences in the phytoplankton community structure within the two days for which matchups were available, suggest that it is possible to label PHYSAT anomalies not only with dominant groups, but at the level of the community structure.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2014-11-08
    Description: Long term effects on regional European boreal climate due to structural vegetation changes Biogeosciences Discussions, 11, 15507-15547, 2014 Author(s): J. H. Rydsaa, F. Stordal, and L. M. Tallaksen Amplified warming at high latitudes over the past decades has led to changes in the boreal and arctic climate system, such as structural changes in high latitude ecosystems and soil moisture properties. These changes trigger land-atmosphere feedbacks, through altered energy partitioning in response to changes in albedo and surface water fluxes. Local scale changes in the arctic and boreal zone may propagate to affect large scale climatic features. In this study, MODIS land surface data are used with the Weather Research and Forecasting model (WRF V3.5.1) and Noah LSM, in a series of experiments to simulate the influence of structural vegetation changes over a Northern European boreal ecosystem. Emphasis is placed on surface energy partitioning and near surface atmospheric variables, in order to investigate changes in atmospheric response due to observed and anticipated structural vegetation changes. We find that a northward migration of evergreen needle leaf forest into tundra regions causes an increase in latent rather than sensible heat fluxes, increased near surface temperatures and boundary layer height. Shrub expansion in tundra areas has only small effects on surface fluxes. However, it influences near surface wind speeds and boundary layer height. Northward migration of mixed forest across the present southern border of the boreal forest has largely opposite effects on surface fluxes and the near surface atmosphere, and acts to moderate the overall mean regional effects of boreal forest migration on the near surface atmosphere.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2014-11-08
    Description: Sampling frequency trade-offs in the assessment of mean transit times of tropical montane catchment waters under semi-steady-state conditions Hydrology and Earth System Sciences Discussions, 11, 12443-12488, 2014 Author(s): E. Timbe, D. Windhorst, R. Celleri, L. Timbe, P. Crespo, H.-G. Frede, J. Feyen, and L. Breuer Stream and soil waters were collected on a weekly basis in a tropical montane cloud forest catchment for two years and analyzed for stable water isotopes in order to infer transit time distribution functions and to define the mean transit times. Depending on the water type (stream or soil water), lumped distribution functions such as Exponential-Piston flow, Linear-Piston flow and Gamma models using temporal isotopic variations of precipitation event samples as input, were fitted. Samples were aggregated to daily, weekly, biweekly, monthly and bimonthly time scales in order to check the sensitivity of temporal sampling on model predictions. The study reveals that the effect of decreasing sampling frequency depends on the water type. For soil waters with transit times in the order of weeks to months, there was a clear trend of over prediction. In contrast, the trend of prediction for stream waters, with a dampened isotopic signal and mean transit times in the order of 2 to 4 years, was less clear and depending on the type of model used. The trade-off to coarse data resolutions could potentially lead to misleading conclusions on how water actually moves through the catchment, while at the same time predictions can reach better fitting efficiencies, lesser uncertainties, errors and biases. For both water types an optimal sampling frequency seems to be one or at most two weeks. The results of our analyses provide information for the planning (in particular in terms of cost-benefit and time requirements) of future fieldwork in similar Andean or other catchments.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2014-11-05
    Description: Spatial variability and hotspots of soil N 2 O fluxes from intensively grazed grassland Biogeosciences Discussions, 11, 15327-15360, 2014 Author(s): N. J. Cowan, P. Norman, D. Famulari, P. E. Levy, D. S. Reay, and U. M. Skiba One hundred N 2 O flux measurements were made from an area of intensively managed grazed grassland in central Scotland using a high resolution dynamic chamber method. The field contained a variety of features from which N 2 O fluxes were measured including a manure heap, patches of decaying grass silage, and areas of increased sheep activity. Individual fluxes varied significantly across the field varying from 2 to 79 000 μg N 2 O-N m −2 h −1 . Soil samples were collected at 55 locations to investigate relationships between soil properties and N 2 O flux. Fluxes of N 2 O correlated strongly with soil NO 3 − concentrations. Distribution of NO 3 − and the high spatial variability of N 2 O flux across the field are shown to be linked to the distribution of waste from grazing animals and the resultant reactive nitrogen compounds in the soil which are made available for microbiological processes. Features within the field such as shaded areas and manure heaps contained significantly higher available nitrogen than the rest of the field. Although these features only represented 1.1% of the area of the field, they contributed to over 55% of the total estimated daily N 2 O flux.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2014-11-05
    Description: Size-fractionated dissolved primary production and carbohydrate composition of the coccolithophore Emiliania huxleyi Biogeosciences Discussions, 11, 15289-15325, 2014 Author(s): C. Borchard and A. Engel Extracellular release (ER) by phytoplankton is the major source of fresh dissolved organic carbon (DOC) in marine ecosystems and accompanies primary production during all growth phases. Little is known, so far, on size and composition of released molecules, and to which extent ER occurs passively, by leakage, or actively, by exudation. Here, we report on ER by the widespread and bloom-forming coccolithophore Emiliania huxleyi grown under steady state conditions in phosphorus controlled chemostats (N : P = 29, growth rate of μ = 0.2 d −1 ). 14 C incubations were accomplished to determine primary production (PP), comprised by particulate (PO 14 C) and dissolved organic carbon (DO 14 C), and the concentration and composition of particulate combined carbohydrates (pCCHO), and of high molecular weight (〉1 kDa, HMW) dissolved combined carbohydrates (dCCHO) as major components of ER. Information on size distribution of ER products was obtained by investigating distinct size classes (
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2014-11-05
    Description: Quantitative high-resolution observations of soil water dynamics in a complicated architecture with time-lapse Ground-Penetrating Radar Hydrology and Earth System Sciences Discussions, 11, 12365-12404, 2014 Author(s): P. Klenk, S. Jaumann, and K. Roth High-resolution time-lapse Ground-Penetrating Radar (GPR) observations of advancing and retreating water tables can yield a wealth of information about near-surface water content dynamics. In this study, we present and analyze a series of imbibition, drainage and infiltration experiments which have been carried out at our artificial ASSESS test site and observed with surface based GPR. The test site features a complicated but known subsurface architecture constructed with three different kinds of sand. It allows studying soil water dynamics with GPR under a wide range of different conditions. Here, we assess in particular (i) the accurate determination of soil water dynamics averaged over the whole vertical extent by evaluating the bottom reflection and (ii) the feasibility of monitoring the dynamic shape of the capillary fringe reflection. The phenomenology of the GPR response of a dynamically changing capillary fringe is developed from a soil physical point of view. We then explain experimentally observed phenomena based on numerical simulations of both the water content dynamics and the expected GPR response.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2014-11-05
    Description: Simulating long-term past changes in the balance between water demand and availability and assessing their main drivers at the river basin management scale Hydrology and Earth System Sciences Discussions, 11, 12315-12364, 2014 Author(s): J. Fabre, D. Ruelland, A. Dezetter, and B. Grouillet The aim of this study was to assess the balance between water demand and availability and its spatial and temporal variability from 1971 to 2009 in the Herault (2500 km 2 , France) and the Ebro (85 000 km 2 , Spain) catchments. Natural streamflow was evaluated using a conceptual hydrological model. The regulation of river flow was accounted for through a widely applicable demand-driven reservoir management model applied to the largest dam in the Herault basin and to 11 major dams in the Ebro basin. Urban water demand was estimated from population and monthly unit water consumption data. Water demand for irrigation was computed from irrigated area, crop and soil data, and climatic forcing. Finally, a series of indicators comparing water supply and water demand at strategic resource and demand nodes were computed at a 10 day time step. Variations in water stress in each catchment over the past 40 years were successfully modeled, taking into account climatic and anthropogenic pressures and changes in water management strategies over time. Observed changes in discharge were explained by separating human and hydro-climatic pressures on water resources: respectively 20 and 3% of the decrease in the Ebro and the Herault discharges were linked to human-induced changes. Although key areas of the Herault basin were shown to be highly sensitive to hydro-climatic variability, the balance between water uses and availability in the Ebro basin appears to be more critical, owing to high agricultural pressure on water resources. The proposed modeling framework is currently being used to assess water stress under climatic and socio-economic prospective scenarios. Further research will investigate the effectiveness of adaptation policies aimed at maintaining the balance between water use and availability.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2014-11-05
    Description: Time-series analysis of the long-term hydrologic impacts of afforestation in the Águeda watershed of North-Central Portugal Hydrology and Earth System Sciences Discussions, 11, 12223-12256, 2014 Author(s): D. Hawtree, J. P. Nunes, J. J. Keizer, R. Jacinto, J. Santos, M. E. Rial-Rivas, A.-K. Boulet, F. Tavares-Wahren, and K.-H. Feger The north-central region of Portugal has undergone significant afforestation of the species Pinus pinaster and Eucalyptus globulus since the early 1900s; however, the long-term hydrologic impacts of this land cover change are not fully understood. To contribute to a better understanding of the potential hydrologic impacts of this land cover change, this study examines the temporal trends in 7 years of data from the Águeda watershed (part of the Vouga Basin) over the period of 1936 to 2010. Meteorological and hydrological records were analysed using a combined Thiel–Sen/Mann–Kendall trend testing approach, to assess the magnitude and significance of patterns in the observed data. These trend tests indicated that there had been no significant reduction in streamflow yield over either the entire test period, or during sub-record periods, despite the large-scale afforestation which had taken place. This lack of change is attributed to both the characteristics of the watershed and the nature of the land cover change. By contrast, a number of significant trends were found for baseflow index, which showed positive trends in the early data record (primarily during Pinus pinaster afforestation), followed by a reversal to negative trends later in the data record (primarily during Eucalyptus globulus afforestation). These changes are attributed to vegetation impacts on streamflow generating processes, both due to the species differences and to alterations in soil properties (i.e. promoting water repellency of the topsoil). These results highlight the importance of considering both vegetation types/dynamics and watershed characteristic when assessing hydrologic impacts, in particular with respect to soil properties.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2014-11-05
    Description: Reply to D. L. Peters' comment on "Streamflow input to Lake Athabasca, Canada" by Rasouli et al. (2013) Hydrology and Earth System Sciences Discussions, 11, 12257-12270, 2014 Author(s): K. Rasouli, M. A. Hernández-Henríquez, and S. J. Déry This paper provides a reply to a comment from Peters (2014) on our recent effort focused on evaluating changes in streamflow input to Lake Athabasca, Canada. Lake Athabasca experienced a 21.2% decline in streamflow input between 1960 and 2010 that has led to a marked decline in its water levels in recent decades. A reassessment of trends in naturalized Lake Athabasca water levels shows insignificant changes from our previous findings reported in Rasouli et al. (2013), and hence our previous conclusions remain unchanged. The reply closes with recommendations for future research to minimize uncertainties in historical assessments of trends in Lake Athabasca water levels and to better project its future water levels driven by climate change and anthropogenic activities in the Athabasca Lake Basin.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2014-11-05
    Description: Is sinuosity a function of slope and bankfull discharge? – A case study of the meandering rivers in the Pannonian Basin Hydrology and Earth System Sciences Discussions, 11, 12271-12290, 2014 Author(s): J. Petrovszki, G. Timár, and G. Molnár Pre-regulation channel sinuosities of the meandering rivers of the Pannonian Basin are analysed in order to define a mathematical model to estimate the influence of the bankfull discharge and the channel slope on them. As a primary database, data triplets of slope, discharge and sinuosity values were extracted from historical and modern datasets and pre-regulation historical topographic maps. Channel slope values were systematically modified to estimate figures valid before the river regulation works. The bankfull discharges were estimated from the average discharges using a robust yet complex method. The "classical" graphs of Leopold and Wolman (1957), Ackers and Charlton (1970b) and Schumm and Khan (1972) were compiled to a set up a theoretical surface, whose parameters are estimated by the real values of the above database, containing characteristics of the Pannonian Basin rivers. As a result it occurred that there is a two-dimensional function of the bankfull discharges, which provides a good estimation of the most probable sinuosity values of the rivers with the given slope and discharge characteristics. The average RMS error of this estimation is around 15% on this dataset and believed to be the effect of the non-analysed changes in the sediment discharge and size distribution.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2014-11-05
    Description: Technical Note: Field experiences using UV/VIS sensors for high-resolution monitoring of nitrate in groundwater Hydrology and Earth System Sciences Discussions, 11, 12291-12314, 2014 Author(s): M. Huebsch, F. Grimmeisen, M. Zemann, O. Fenton, K. G. Richards, P. Jordan, A. Sawarieh, P. Blum, and N. Goldscheider Two different in-situ spectrophotometers are compared that were used in the field to determine nitrate-nitrogen (NO 3 -N) concentrations at two distinct spring discharge sites. One sensor was a double wavelength spectrophotometer (DWS) and the other a multiple wavelength spectrophotometer (MWS). The objective of the study was to review the hardware options, determine ease of calibration, accuracy, influence of additional substances and to assess positive and negative aspects of the two sensors as well as troubleshooting and trade-offs. Both sensors are sufficient to monitor highly time-resolved NO 3 -N concentrations in emergent groundwater. However, the chosen path length of the sensors had a significant influence on the sensitivity and the range of detectable NO 3 -N. The accuracy of the calculated NO 3 -N concentrations of the sensors can be affected, if the content of additional substances such as turbidity, organic matter, nitrite or hydrogen carbonate significantly varies after the sensors have been calibrated to a particular water matrix. The MWS offers more possibilities for calibration and error detection, but requires more expertise compared with the DWS.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2014-12-16
    Description: Autonomous profiling float observations of the high biomass plume downstream of the Kerguelen plateau in the Southern Ocean Biogeosciences Discussions, 11, 17413-17462, 2014 Author(s): M. Grenier, A. Della Penna, and T. W. Trull Natural iron fertilisation from Southern Ocean islands results in high primary production and phytoplankton biomass accumulations readily visible in satellite ocean colour observations. These images reveal great spatial complexity with highly varying concentrations of chlorophyll, presumably reflecting both variations in iron supply and conditions favouring phytoplankton accumulation. To examine the second aspect, in particular the influences of variations in temperature and stratification, we deployed four autonomous profiling floats in the Antarctic Circumpolar Current near the Kerguelen plateau in the Indian sector of the Southern Ocean. Each "bio-profiler" measured more than 250 profiles of temperature ( T ), salinity ( S ), dissolved oxygen, chlorophyll fluorescence (Chl a ), and particle backscatter in the top 300 m of the water column, sampling up to 5 profiles per day along meandering trajectories extending up to 1000 km. Comparison of surface Chl a estimates (top 50 m depth; analogous to values from satellite images) with total water column inventories revealed largely linear relationships, suggesting that dilution of chlorophyll by mixed layer depth variations plays only a minor role in the spatial distributions observed by satellite, and correspondingly that these images provide credible information on total and not just surface biomass accumulations. Regions of very high Chl a accumulation (1.5–10 μg L -1 ) were associated predominantly with a narrow T – S class of surface waters, which appears to derive from the northern Kerguelen plateau. In contrast, waters with only moderate Chl a enrichments (0.5–1.5 μg L -1 ) displayed no clear correlation with water properties, including no dependence on mixed layer depth, suggesting a diversity of sources of iron and/or its efficient dispersion across filaments of the plume. The lack of dependence on mixed layer depth also indicates a limited influence on production by light limitation. One float became trapped in a cyclonic eddy, allowing temporal evaluation of the water column in early autumn. During this period, decreasing surface Chl a inventories corresponded with decreases in oxygen inventories on sub-mixed layer density surfaces, consistent with significant export of organic matter and its respiration and storage as dissolved inorganic carbon in the ocean interior. These results are encouraging for the expanded use of autonomous observing platforms to study biogeochemical, carbon cycle, and ecological problems, although the complex blend of Lagrangian and Eulerian sampling achieved by the floats suggests that arrays rather than single floats will often be required.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2014-12-16
    Description: Complex networks, streamflow, and hydrometric monitoring system design Hydrology and Earth System Sciences Discussions, 11, 13663-13710, 2014 Author(s): M. Halverson and S. Fleming Network theory is applied to an array of streamflow gauges located in the Coast Mountains of British Columbia and Yukon, Canada. The goal of the analysis is to assess whether insights from this branch of mathematical graph theory can be meaningfully applied to hydrometric data, and more specifically, whether it may help guide decisions concerning stream gauge placement so that the full complexity of the regional hydrology is efficiently captured. The streamflow data, when represented as a complex network, has a global clustering coefficient and average shortest path length consistent with small-world networks, which are a class of stable and efficient networks common in nature, but the results did not clearly suggest a scale-free network. Stability helps ensure that the network is robust to the loss of nodes; in the context of a streamflow network, stability is interpreted as insensitivity to station removal at random. Community structure is also evident in the streamflow network. A community detection algorithm identified 10 separate communities, each of which appears to be defined by the combination of its median seasonal flow regime (pluvial, nival, hybrid, or glacial, which in this region in turn mainly reflects basin elevation) and geographic proximity to other communities (reflecting shared or different daily meteorological forcing). Betweenness analyses additionally suggest a handful of key stations which serve as bridges between communities and might therefore be highly valued. We propose that an idealized sampling network should sample high-betweenness stations, as well as small-membership communities which are by definition rare or undersampled relative to other communities, while retaining some degree of redundancy to maintain network robustness.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2014-12-09
    Description: Monitoring and modelling of soil–plant interactions: the joint use of ERT, sap flow and Eddy Covariance data to characterize the volume of an orange tree root zone Hydrology and Earth System Sciences Discussions, 11, 13353-13384, 2014 Author(s): G. Cassiani, J. Boaga, D. Vanella, M. T. Perri, and S. Consoli Mass and energy exchanges between soil, plants and atmosphere control a number of key environmental processes involving hydrology, biota and climate. The understanding of these exchanges also play a critical role for practical purposes e.g. in precision agriculture. In this paper we present a methodology based on coupling innovative data collection and models in order to obtain quantitative estimates of the key parameters of such complex flow system. In particular we propose the use of hydro-geophysical monitoring via 4-D Electrical Resistivity Tomography (ERT) in conjunction with measurements of plant transpiration via sap flow and evapotranspiration from Eddy Covariance (EC). This abundance of data is fed to a spatially distributed soil model in order to characterize the distribution of active roots. We conducted experiments in an orange orchard in Eastern Sicily (Italy), characterized by the typical Mediterranean semi-arid climate. The subsoil dynamics, particularly influenced by irrigation and root uptake, were characterized mainly by the ERT setup, consisting of 48 buried electrodes on 4 instrumented micro boreholes (about 1.2 m deep) placed at the corners of a square (about 1.3 m in side) surrounding the orange tree, plus 24 mini-electrodes on the surface spaced 0.1 m on a square grid. During the monitoring, we collected repeated ERT and TDR soil moisture measurements, soil water samples, sap flow measurements from the orange tree and EC data. We conducted a laboratory calibration of the soil electrical properties as a function of moisture content and pore water electrical conductivity. Irrigation, precipitation, sap flow and ET data are available allowing knowledge of the system's long term forcing conditions on the system. This information was used to calibrate a 1-D Richards' equation model representing the dynamics of the volume monitored via 3-D ERT. Information on the soil hydraulic properties was collected from laboratory and field experiments. The successful results of the calibrated modeling exercise allow the quantification of the soil volume interested by root water uptake. This volume is much smaller (with a surface area less than 2 m 2 , and about 40 cm thickness) than expected and assumed in the design of classical drip irrigation schemes that prove to be losing at least half of the irrigated water that is not uptaken by the plants.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2014-12-10
    Description: On the use of the post-closure method uncertainty band to evaluate the performance of land surface models against eddy covariance flux data Biogeosciences Discussions, 11, 16911-16951, 2014 Author(s): J. Ingwersen, K. Imukova, P. Högy, and T. Streck The energy balance of eddy covariance (EC) flux data is normally not closed. Therefore, at least if used for modeling, EC flux data are usually post-closed, i.e. the measured turbulent fluxes are adjusted so as to close the energy balance. At the current state of knowledge, however, it is not clear how to partition the missing energy in the right way. Eddy flux data therefore contain some uncertainty due to the unknown nature of the energy balance gap, which should be considered in model evaluation and the interpretation of simulation results. We propose to construct the post-closure method uncertainty band (PUB), which essentially designates the differences between non-adjusted flux data and flux data adjusted with the three post-closure methods (Bowen ratio, latent heat flux (LE) and sensible heat flux ( H ) method). To demonstrate this approach, simulations with the NOAH-MP land surface model were evaluated based on EC measurements conducted at a winter wheat stand in Southwest Germany in 2011, and the performance of the Jarvis and Ball–Berry stomatal resistance scheme was compared. The width of the PUB of the LE was up to 110 W m –2 (21% of net radiation). Our study shows that it is crucial to account for the uncertainty of EC flux data originating from lacking energy balance closure. Working with only a single post-closing method might result in severe misinterpretations in model-data comparisons.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2014-12-10
    Description: Carbon, oxygen and biological productivity in the Southern Ocean in and out the Kerguelen plume: CARIOCA drifter results Biogeosciences Discussions, 11, 16877-16909, 2014 Author(s): L. Merlivat, J. Boutin, and F. d'Ovidio The Kerguelen Plateau region in the Indian sector of the Southern Ocean supports annually a large-scale phytoplankton bloom which is naturally fertilized with iron. As part of the second Kerguelen Ocean and Plateau compared Study expedition (KEOPS2) in austral spring (October–November 2011), one Carioca buoy was deployed east of the Kerguelen plateau. It drifted eastward downstream in the Kerguelen plume. Hourly surface measurements of p CO 2 , O 2 and ancillary observations were collected between 1 November 2011 to 12 February 2012 with the aim of characterizing the spatial and temporal variability of the biological Net Community Production (NCP) downstream the Kerguelen plateau, assess the impact of iron-induced productivity on the biological carbon consumption and consequently on the CO 2 flux exchanged at the air–sea interface. The trajectory of the buoy until mid-December was within the longitude range, 72–83° E, close to the polar front and then in the polar frontal zone, PFZ, until 97° E. From 17 November to 16 December, the buoy drifted within the Kerguelen plume following a filament carrying dissolved iron, DFe, for a total distance of 700 km. In the first part of the trajectory, the ocean surface waters are a sink for CO 2 and a source for CO 2 , with fluxes of respective mean values equal to −8 and +38 mmol CO 2 m −2 d −1 . Eastward, as the buoy escapes the iron enriched filament, the fluxes are in opposite direction, with respective mean values of +5 and −48 mmol O 2 m −2 d −1 . These numbers clearly indicate the strong impact of biological processes on the biogeochemistry in the surface waters within the Kerguelen plume in November-mid-December, while it is undetectable eastward in the PFZ from mid-December to mid-February. While the buoy follows the Fe enriched filament, simultaneous observations of dissolved inorganic carbon, DIC, and dissolved oxygen, O 2 , highlight biological events lasting from 2 to 4 days. Stoichiometric ratios, O 2 /C, between 1.1 and 1.4 are observed indicating new and regenerated production regimes. NCP estimates range from 60 to 140 mmol C m −2 d −1 . Based on the relationship between the time a water parcel has left the plateau and its iron content, we have highlighted that the main control on the value of NCP is the availability of iron in the upper water column, with the largest NCP occurring in waters that have recently left the plateau and presented the highest iron concentrations.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2014-12-10
    Description: Comparison of UV/Vis and FDOM sensors for in situ monitoring of stream DOC concentrations Biogeosciences Discussions, 11, 16855-16876, 2014 Author(s): G.-Y. Yoo, Y. Jeong, E.-J. Lee, J.-H. Park, and N.-H. Oh Optical measurements using ultra-violet/visible (UV/Vis) spectrophotometric sensors and fluorescent dissolved organic matter (FDOM) sensors have recently been used as proxies of dissolved organic carbon (DOC) concentrations of streams and rivers at high temporal resolution. Despite of the merits of the sensors, temperature changes and particulate matter in water can interfere the sensor readings, over- or under-estimating DOC concentrations. However, little efforts have been made to compare responses of the two types of the sensors in natural conditions. We conducted both laboratory experiments and in situ monitoring with a UV/Vis sensor and a FDOM sensor during the three storm events in the fall of 2012 and the spring of 2013 in a forest stream in Korea in order to compare their performance. Laboratory experiments using the Suwannee River natural organic matter, humic acid, and fulvic acid demonstrated strong linear relationships between both the sensor signals and measured DOC concentrations with R 2 ≥ 0.98. Although temperature compensation might not be needed for the UV/Vis sensor, it was sensitive to relativley small changes in turbidity. In contrast, the FDOM sensor was insenstive to relatively low turbidity while the FDOM sensor outputs decreased significantly as temperature increased, requiring temperature compensated FDOM (e.g. FDOM 20 for 20 °C) for in situ monitoring of DOC. The results suggest that both sensors can be employed as a~proxy for stream DOC concentrations after temperature and turbidity compensation in a forest stream where terrestrially derived humic-like materials are dominant components.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...