ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Books
  • Articles  (540)
  • 2010-2014  (540)
  • 1980-1984
  • 1950-1954
  • 2011  (540)
  • Hydrology and Earth System Sciences  (270)
  • 33230
  • Geography  (540)
  • Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
  • 1
    Publication Date: 2011-06-10
    Description: Impact of changes in grain size and pore space on the hydraulic conductivity and spectral induced polarization response of sand Hydrology and Earth System Sciences, 15, 1785-1794, 2011 Author(s): K. Koch, A. Kemna, J. Irving, and K. Holliger Understanding the influence of pore space characteristics on the hydraulic conductivity and spectral induced polarization (SIP) response is critical for establishing relationships between the electrical and hydrological properties of surficial unconsolidated sedimentary deposits, which host the bulk of the world's readily accessible groundwater resources. Here, we present the results of laboratory SIP measurements on industrial-grade, saturated quartz samples with granulometric characteristics ranging from fine sand to fine gravel. We altered the pore space characteristics by changing (i) the grain size spectra, (ii) the degree of compaction, and (iii) the level of sorting. We then examined how these changes affect the SIP response, the hydraulic conductivity, and the specific surface area of the considered samples. In general, the results indicate a clear connection between the SIP response and the granulometric as well as pore space characteristics. In particular, we observe a systematic correlation between the hydraulic conductivity and the relaxation time of the Cole-Cole model describing the observed SIP effect for the entire range of considered grain sizes. The results do, however, also indicate that the detailed nature of these relations depends strongly on variations in the pore space characteristics, such as, for example, the degree of compaction. This underlines the complexity of the origin of the SIP signal as well as the difficulty to relate it to a single structural factor of a studied sample, and hence raises some fundamental questions with regard to the practical use of SIP measurements as site- and/or sample-independent predictors of the hydraulic conductivity.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-06-11
    Description: WRF simulation of a precipitation event over the Tibetan Plateau, China – an assessment using remote sensing and ground observations Hydrology and Earth System Sciences, 15, 1795-1817, 2011 Author(s): F. Maussion, D. Scherer, R. Finkelnburg, J. Richters, W. Yang, and T. Yao Meteorological observations over the Tibetan Plateau (TiP) are scarce, and precipitation estimations over this remote region are difficult. The constantly improving capabilities of numerical weather prediction (NWP) models offer the opportunity to reduce this problem by providing precipitation fields and other meteorological variables of high spatial and temporal resolution. Longer time periods of years to decades can be simulated by NWP models by successive model runs of shorter periods, which can be described by the term "regional atmospheric reanalysis". In this paper, we assess the Weather Research and Forecasting (WRF) models capacity in retrieving rain- and snowfall on the TiP in such a configuration using a nested approach: the simulations are conducted with three nested domains at spatial resolutions of 30, 10, and 2 km. A validation study is carried out for a one-month period with a special focus on one-week (22–28 October 2008), during which strong rain- and snowfall was observed on the TiP. The output of the model in each resolution is compared to the Tropical Rainfall Measuring Mission (TRMM) data set for precipitation and to the Moderate Resolution Imaging Spectroradiometer (MODIS) data set for snow extent. TRMM and WRF data are then compared to weather-station measurements. Our results suggest an overall improvement from WRF over TRMM with respect to weather-station measurements. Various configurations of the model with different nesting and forcing strategies, as well as physical parameterisation schemes are compared to propose a suitable design for a regional atmospheric reanalysis over the TiP. The WRF model showed good accuracy in simulating snow- and rainfall on the TiP for a one-month simulation period. Our study reveals that there is nothing like an optimal model strategy applicable for the high-altitude TiP, its fringing high-mountain areas of extremely complex topography and the low-altitude land and sea regions from which much of the precipitation on the TiP is originating. The choice of the physical parameterisation scheme will thus be always a compromise depending on the specific purpose of a model simulation. Our study demonstrates the high importance of orographic precipitation, but the problem of the orographic bias remains unsolved since reliable observational data are still missing. The results are relevant for anyone interested in carrying out a regional atmospheric reanalysis. Many hydrological analyses and applications like rainfall-runoff modelling or the analysis of flood events require precipitation rates at daily or even hourly intervals. Thus, our study offers a process-oriented alternative for retrieving precipitation fields of high spatio-temporal resolution in regions like the TiP, where other data sources are limited.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-06-21
    Description: Spatio-temporal variations in soil moisture and physicochemical properties of a typical semiarid sand-meadow-desert landscape as influenced by land use Hydrology and Earth System Sciences, 15, 1865-1877, 2011 Author(s): L. Duan, T. Liu, X. Wang, G. Wang, L. Ma, and Y. Luo A good understanding of the interrelations between land cover alteration and changes in hydrologic conditions (e.g., soil moisture) as well as soil physicochemical properties (e.g., fine soil particles and nutrients) is crucial for maintaining the fragile hydrologic and environmental conditions of semiarid land, such as the Horqin Sandy Land in China, but is lacking in existing literature. The objectives of this study were to examine: (1) spatio-temporal variations of soil moisture and physicochemical properties in semiarid land; and (2) how those variations are influenced by land cover alteration. Using the data collected in a 9.71 km 2 well-instrumented area of the Horqin Sandy Land, this study examined by visual examination and statistical analyses the spatio-temporal variations of soil moisture and physicochemical properties. The results indicated that for the study area, the soil moisture and physicochemical properties were dependent on local topography, soil texture, vegetation density, and human activity. Long-term reclamation for agriculture was found to reduce soil moisture by over 23 % and significantly (p-value 〈 0.05) lower the contents of soil organic matter, fine soil particles, and nutrients.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-06-28
    Description: Anatomy of extraordinary rainfall and flash flood in a Dutch lowland catchment Hydrology and Earth System Sciences, 15, 1991-2005, 2011 Author(s): C. C. Brauer, A. J. Teuling, A. Overeem, Y. van der Velde, P. Hazenberg, P. M. M. Warmerdam, and R. Uijlenhoet On 26 August 2010 the eastern part of The Netherlands and the bordering part of Germany were struck by a series of rainfall events lasting for more than a day. Over an area of 740 km 2 more than 120 mm of rainfall were observed in 24 h. This extreme event resulted in local flooding of city centres, highways and agricultural fields, and considerable financial loss. In this paper we report on the unprecedented flash flood triggered by this exceptionally heavy rainfall event in the 6.5 km 2 Hupsel Brook catchment, which has been the experimental watershed employed by Wageningen University since the 1960s. This study aims to improve our understanding of the dynamics of such lowland flash floods. We present a detailed hydrometeorological analysis of this extreme event, focusing on its synoptic meteorological characteristics, its space-time rainfall dynamics as observed with rain gauges, weather radar and a microwave link, as well as the measured soil moisture, groundwater and discharge response of the catchment. At the Hupsel Brook catchment 160 mm of rainfall was observed in 24 h, corresponding to an estimated return period of well over 1000 years. As a result, discharge at the catchment outlet increased from 4.4 × 10 −3 to nearly 5 m 3 s −1 . Within 7 h discharge rose from 5 × 10 −2 to 4.5 m 3 s −1 . The catchment response can be divided into four phases: (1) soil moisture reservoir filling, (2) groundwater response, (3) surface depression filling and surface runoff and (4) backwater feedback. The first 35 mm of rainfall were stored in the soil without a significant increase in discharge. Relatively dry initial conditions (in comparison to those for past discharge extremes) prevented an even faster and more extreme hydrological response.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-06-28
    Description: On the value of combined event runoff and tracer analysis to improve understanding of catchment functioning in a data-scarce semi-arid area Hydrology and Earth System Sciences, 15, 2007-2024, 2011 Author(s): M. Hrachowitz, R. Bohte, M. L. Mul, T. A. Bogaard, H. H. G. Savenije, and S. Uhlenbrook Hydrological processes in small catchments are not quite understood yet, which is true in particular for catchments in data scarce, semi-arid regions. This is in contrast with the need for a better understanding of water fluxes and the interactions between surface- and groundwater in order to facilitate sustainable water resources management in such environments, where both floods and droughts can result in severe crop loss. In this study, event runoff coefficient analysis and limited tracer data of four small, nested sub-catchments (0.4–25.3 km 2 ) in a data scarce, semi-arid region of Tanzania helped to characterize the distinct response of the study catchments and to gain insights into the dominant runoff processes. The estimated event runoff coefficients were very low and did not exceed 0.09. They were found to be significantly related to the 5-day antecedent precipitation totals as well as to base flow, indicating a close relation to changes in soil moisture and thus potential switches in runoff generation processes. The time scales of the "direct flow" reservoirs, used to compute the event runoff coefficients, were up to one order of magnitude reduced for extreme events, compared to "average" events, suggesting the activation of at least a third flow component, besides base- and direct flow, assumed to be infiltration overland flow. Analysis of multiple tracers highlighted the importance of pre-event water to total runoff, even during intense and high yield precipitation events. It further illustrated the distinct nature of the catchments, in particular with respect to the available water storage, which was suggested by different degrees of tracer damping in the individual streams. The use of multiple tracers subsequently allowed estimating uncertainties in hydrograph separations arising from the use of different tracers. The results highlight the presence of considerable uncertainties, emphasizing the need for multiple tracers in order to avoid misleading results. This study shows the value of hydrological data collection over one whole wet season using multi-tracers to improve the understanding of hydrological functioning and thus for water resources management in data scarce, semi-arid environments.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-06-28
    Description: Changes in land cover, rainfall and stream flow in Upper Gilgel Abbay catchment, Blue Nile basin – Ethiopia Hydrology and Earth System Sciences, 15, 1979-1989, 2011 Author(s): T. H. M. Rientjes, A. T. Haile, E. Kebede, C. M. M. Mannaerts, E. Habib, and T. S. Steenhuis In this study we evaluated changes in land cover and rainfall in the Upper Gilgel Abbay catchment in the Upper Blue Nile basin and how changes affected stream flow in terms of annual flow, high flows and low flows. Land cover change assessment was through classification analysis of remote sensing based land cover data while assessments on rainfall and stream flow data are by statistical analysis. Results of the supervised land cover classification analysis indicated that 50.9 % and 16.7 % of the catchment area was covered by forest in 1973 and 2001, respectively. This significant decrease in forest cover is mainly due to expansion of agricultural land. By use of a change detection procedure, three periods were identified for which changes in rainfall and stream flow were analyzed. Rainfall was analyzed at monthly base by use of the Mann-Kendall test statistic and results indicated a statistically significant, decreasing trend for most months of the year. However, for the wet season months of June, July and August rainfall has increased. In the period 1973–2005, the annual flow of the catchment decreased by 12.1 %. Low flow and high flow at daily base were analyzed by a low flow and a high flow index that is based on a 95 % and 5 % exceedance probability. Results of the low flow index indicated decreases of 18.1 % and 66.6 % for the periods 1982–2000 and 2001–2005 respectively. Results of high flows indicated an increase of 7.6 % and 46.6 % for the same periods. In this study it is concluded that over the period 1973–2005 stream flow has changed in the Gilgel Abbay catchment by changes in land cover and changes in rainfall.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-06-23
    Description: Hydropedological insights when considering catchment classification Hydrology and Earth System Sciences, 15, 1909-1919, 2011 Author(s): J. Bouma, P. Droogers, M. P. W. Sonneveld, C. J. Ritsema, J. E. Hunink, W. W. Immerzeel, and S. Kauffman Soil classification systems are analysed to explore the potential of developing classification systems for catchments. Soil classifications are useful to create systematic order in the overwhelming quantity of different soils in the world and to extrapolate data available for a given soil type to soils elsewhere with identical classifications. This principle also applies to catchments. However, to be useful, soil classifications have to be based on permanent characteristics as formed by the soil forming factors over often very long periods of time. When defining permanent catchment characteristics, discharge data would therefore appear to be less suitable. But permanent soil characteristics do not necessarily match with characteristics and parameters needed for functional soil characterization focusing, for example, on catchment hydrology. Hydropedology has made contributions towards the required functional characterization of soils as is illustrated for three recent hydrological catchment studies. However, much still needs to be learned about the physical behaviour of anisotropic, heterogeneous soils with varying soil structures during the year and about spatial and temporal variability. The suggestion is made therefore to first focus on improving simulation of catchment hydrology, possibly incorporating hydropedological expertise, before embarking on a catchment classification effort which involves major input of time and involves the risk of distraction. In doing so, we suggest to also define other characteristics for catchment performance than the traditionally measured discharge rates. Such characteristics may well be derived from societal issues being studied, as is illustrated for the Green Water Credits program.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-06-25
    Description: Quantifying spatial and temporal discharge dynamics of an event in a first order stream, using distributed temperature sensing Hydrology and Earth System Sciences, 15, 1945-1957, 2011 Author(s): M. C. Westhoff, T. A. Bogaard, and H. H. G. Savenije Understanding the spatial distribution of discharge can be important for water quality and quantity modeling. Non-steady flood waves can, particularly as a result of short high intensity summer rainstorms, influence small headwater streams significantly. The aim of this paper is to quantify the spatial and temporal dynamics of stream flow in a headwater stream during a summer rainstorm. These dynamics include gains and losses of stream water, the effect of bypasses that become active and hyporheic exchange fluxes that may vary over time as a function of discharge. We use an advection-dispersion model coupled with an energy balance model to simulate in-stream water temperature, which we compare with high resolution temperature observations obtained with Distributed Temperature Sensing. This model was used as a learning tool to stepwise unravel the complex puzzle of in-stream processes subject to varying discharge. Hypotheses were tested and rejected, which led to more insight in the spatial and temporal dynamics in discharge and hyporheic exchange processes. We showed that, for the studied stream infiltration losses increase during a small rain event, while gains of water remained constant over time. We conclude that, eventually, part of the stream water bypassed the main channel during peak discharge. It also seems that hyporheic exchange varies with varying discharge in the first 250 m of the stream; while further downstream it remains constant. Because we relied on solar radiation as the main energy input, we were only able to apply this method during a small summer storm and low flow conditions. However, when additional (artificial) energy is available, the presented method is also applicable in larger streams, during higher flow conditions or longer storms.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-06-25
    Description: Trend analysis of extreme precipitation in the Northwestern Highlands of Ethiopia with a case study of Debre Markos Hydrology and Earth System Sciences, 15, 1937-1944, 2011 Author(s): H. Shang, J. Yan, M. Gebremichael, and S. M. Ayalew Understanding extreme precipitation is very important for Ethiopia, which is heavily dependent on low-productivity rainfed agriculture but lacks structural and non-structural water regulating and storage mechanisms. There has been an increasing concern about whether there is an increasing trend in extreme precipitation as the climate changes. Existing analysis of this region has been descriptive, without taking advantage of the advances in extreme value modeling. After reviewing the statistical methodology on extremes, this paper presents an analysis based on the generalized extreme value modeling with daily time series of precipitation records at Debre Markos in the Northwestern Highlands of Ethiopia. We found no strong evidence to reject the null hypothesis that there is no increasing trend in extreme precipitation at this location.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2011-06-29
    Description: A framework for the quantitative assessment of climate change impacts on water-related activities at the basin scale Hydrology and Earth System Sciences, 15, 2025-2038, 2011 Author(s): D. Anghileri, F. Pianosi, and R. Soncini-Sessa While quantitative assessment of the climate change impact on hydrology at the basin scale is quite addressed in the literature, extension of quantitative analysis to impact on the ecological, economic and social sphere is still limited, although well recognized as a key issue to support water resource planning and promote public participation. In this paper we propose a framework for assessing climate change impact on water-related activities at the basin scale. The specific features of our approach are that: (i) the impact quantification is based on a set of performance indicators defined together with the stakeholders, thus explicitly taking into account the water-users preferences; (ii) the management policies are obtained by optimal control techniques, linking stakeholder expectations and decision-making; (iii) the multi-objective nature of the management problem is fully preserved by simulating a set of Pareto-optimal management policies, which allows for evaluating not only variations in the indicator values but also tradeoffs among conflicting objectives. The framework is demonstrated by application to a real world case study, Lake Como basin (Italy). We show that the most conflicting water-related activities within the basin (i.e. hydropower production and agriculture) are likely to be negatively impacted by climate change. We discuss the robustness of the estimated impacts to the climate natural variability and the approximations in modeling the physical system and the socio-economic system, and perform an uncertainty analysis of several sources of uncertainty. We demonstrate that the contribution of natural climate uncertainty is rather remarkable and that, among different modelling uncertainty sources, the one from climate modeling is very significant.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2011-06-10
    Description: Macroinvertebrate community responses to a dewatering disturbance gradient in a restored stream Hydrology and Earth System Sciences, 15, 1771-1783, 2011 Author(s): J. D. Muehlbauer, M. W. Doyle, and E. S. Bernhardt Dewatering disturbances are common in aquatic systems and represent a relatively untapped field of disturbance ecology, yet studying dewatering events along gradients in non-dichotomous (i.e. wet/dry) terms is often difficult. Because many stream restorations can essentially be perceived as planned hydrologic manipulations, such systems can make ideal test-cases for understanding processes of hydrological disturbance. In this study we used an experimental drawdown in a 440 ha stream/wetland restoration site to assess aquatic macroinvertebrate community responses to dewatering and subsequent rewetting. The geomorphic nature of the site and the design of the restoration allowed dewatering to occur predictably along a gradient and decoupled the hydrologic response from any geomorphic (i.e. habitat heterogeneity) effects. In the absence of such heterogeneous habitat refugia, reach-scale wetted perimeter and depth conditions exerted a strong control on community structure. The community exhibited an incremental response to dewatering severity over the course of this disturbance, which was made manifest not as a change in community means but as an increase in community variability, or dispersion, at each site. The dewatering also affected inter-species abundance and distributional patterns, as dewatering and rewetting promoted alternate species groups with divergent habitat tolerances. Finally, our results indicate that rapid rewetting – analogous to a hurricane breaking a summer drought – may represent a recovery process rather than an additional disturbance and that such processes, even in newly restored systems, may be rapid.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2011-06-18
    Description: The geomorphic structure of the runoff peak Hydrology and Earth System Sciences, 15, 1853-1863, 2011 Author(s): R. Rigon, P. D'Odorico, and G. Bertoldi This paper develops a theoretical framework to investigate the core dependence of peak flows on the geomorphic properties of river basins. Based on the theory of transport by travel times, and simple hydrodynamic characterization of floods, this new framework invokes the linearity and invariance of the hydrologic response to provide analytical and semi-analytical expressions for peak flow, time to peak, and area contributing to the peak runoff. These results are obtained for the case of constant-intensity hyetograph using the Intensity-Duration-Frequency (IDF) curves to estimate extreme flow values as a function of the rainfall return period. Results show that, with constant-intensity hyetographs, the time-to-peak is greater than rainfall duration and usually shorter than the basin concentration time. Moreover, the critical storm duration is shown to be independent of rainfall return period as well as the area contributing to the flow peak. The same results are found when the effects of hydrodynamic dispersion are accounted for. Further, it is shown that, when the effects of hydrodynamic dispersion are negligible, the basin area contributing to the peak discharge does not depend on the channel velocity, but is a geomorphic propriety of the basin. As an example this framework is applied to three watersheds. In particular, the runoff peak, the critical rainfall durations and the time to peak are calculated for all links within a network to assess how they increase with basin area.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2011-06-22
    Description: Downscaling of surface moisture flux and precipitation in the Ebro Valley (Spain) using analogues and analogues followed by random forests and multiple linear regression Hydrology and Earth System Sciences, 15, 1895-1907, 2011 Author(s): G. Ibarra-Berastegi, J. Saénz, A. Ezcurra, A. Elías, J. Diaz Argandoña, and I. Errasti In this paper, reanalysis fields from the ECMWF have been statistically downscaled to predict from large-scale atmospheric fields, surface moisture flux and daily precipitation at two observatories (Zaragoza and Tortosa, Ebro Valley, Spain) during the 1961–2001 period. Three types of downscaling models have been built: (i) analogues, (ii) analogues followed by random forests and (iii) analogues followed by multiple linear regression. The inputs consist of data (predictor fields) taken from the ERA-40 reanalysis. The predicted fields are precipitation and surface moisture flux as measured at the two observatories. With the aim to reduce the dimensionality of the problem, the ERA-40 fields have been decomposed using empirical orthogonal functions. Available daily data has been divided into two parts: a training period used to find a group of about 300 analogues to build the downscaling model (1961–1996) and a test period (1997–2001), where models' performance has been assessed using independent data. In the case of surface moisture flux, the models based on analogues followed by random forests do not clearly outperform those built on analogues plus multiple linear regression, while simple averages calculated from the nearest analogues found in the training period, yielded only slightly worse results. In the case of precipitation, the three types of model performed equally. These results suggest that most of the models' downscaling capabilities can be attributed to the analogues-calculation stage.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2011-06-22
    Description: The influence of constrained fossil fuel emissions scenarios on climate and water resource projections Hydrology and Earth System Sciences, 15, 1879-1893, 2011 Author(s): J. D. Ward, A. D. Werner, W. P. Nel, and S. Beecham Water resources planning requires long-term projections of the impact of climate change on freshwater resources. In addition to intrinsic uncertainty associated with the natural climate, projections of climate change are subject to the combined uncertainties associated with selection of emissions scenarios, GCM ensembles and downscaling techniques. In particular, unknown future greenhouse gas emissions contribute substantially to the overall uncertainty. We contend that a reduction in uncertainty is possible by refining emissions scenarios. We present a comprehensive review of the growing body of literature that challenges the assumptions underlying the high-growth emissions scenarios (widely used in climate change impact studies), and instead points to a peak and decline in fossil fuel production occurring in the 21st century. We find that the IPCC's new RCP 4.5 scenario (low-medium emissions), as well as the B1 and A1T (low emissions) marker scenarios from the IPCC's Special Report on Emissions Scenarios are broadly consistent with the majority of recent fossil fuel production forecasts, whereas the medium to high emissions scenarios generally depend upon unrealistic assumptions of future fossil fuel production. We use a simple case study of projected climate change in 2070 for the Scott Creek catchment in South Australia to demonstrate that even with the current suite of climate models, by limiting projections to the B1 scenario, both the median change and the spread of model results are reduced relative to equivalent projections under an unrealistic high emissions scenario (A1FI).
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2011-06-24
    Description: Data-driven catchment classification: application to the pub problem Hydrology and Earth System Sciences, 15, 1921-1935, 2011 Author(s): M. Di Prinzio, A. Castellarin, and E. Toth A promising approach to catchment classification makes use of unsupervised neural networks (Self Organising Maps, SOM's), which organise input data through non-linear techniques depending on the intrinsic similarity of the data themselves. Our study considers ∼300 Italian catchments scattered nationwide, for which several descriptors of the streamflow regime and geomorphoclimatic characteristics are available. We compare a reference classification, identified by using indices of the streamflow regime as input to SOM, with four alternative classifications, which were identified on the basis of catchment descriptors that can be derived for ungauged basins. One alternative classification adopts the available catchment descriptors as input to SOM, the remaining classifications are identified by applying SOM to sets of derived variables obtained by applying Principal Component Analysis (PCA) and Canonical Correlation Analysis (CCA) to the available catchment descriptors. The comparison is performed relative to a PUB problem, that is for predicting several streamflow indices in ungauged basins. We perform an extensive cross-validation to quantify nationwide the accuracy of predictions of mean annual runoff, mean annual flood, and flood quantiles associated with given exceedance probabilities. Results of the study indicate that performing PCA and, in particular, CCA on the available set of catchment descriptors before applying SOM significantly improves the effectiveness of SOM classifications by reducing the uncertainty of hydrological predictions in ungauged sites.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2011-06-18
    Description: River flow time series using least squares support vector machines Hydrology and Earth System Sciences, 15, 1835-1852, 2011 Author(s): R. Samsudin, P. Saad, and A. Shabri This paper proposes a novel hybrid forecasting model known as GLSSVM, which combines the group method of data handling (GMDH) and the least squares support vector machine (LSSVM). The GMDH is used to determine the useful input variables which work as the time series forecasting for the LSSVM model. Monthly river flow data from two stations, the Selangor and Bernam rivers in Selangor state of Peninsular Malaysia were taken into consideration in the development of this hybrid model. The performance of this model was compared with the conventional artificial neural network (ANN) models, Autoregressive Integrated Moving Average (ARIMA), GMDH and LSSVM models using the long term observations of monthly river flow discharge. The root mean square error (RMSE) and coefficient of correlation ( R ) are used to evaluate the models' performances. In both cases, the new hybrid model has been found to provide more accurate flow forecasts compared to the other models. The results of the comparison indicate that the new hybrid model is a useful tool and a promising new method for river flow forecasting.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2011-06-17
    Description: Long term variability of the annual hydrological regime and sensitivity to temperature phase shifts in Saxony/Germany Hydrology and Earth System Sciences, 15, 1819-1833, 2011 Author(s): M. Renner and C. Bernhofer Recently, climatological studies report observational evidence of changes in the timing of the seasons, such as earlier timing of the annual cycle of surface temperature, earlier snow melt and earlier onset of the phenological spring season. Also hydrological studies report earlier timing and changes in monthly streamflows. From a water resources management perspective, there is a need to quantitatively describe the variability in the timing of hydrological regimes and to understand how climatic changes control the seasonal water budget of river basins. Here, the timing of hydrological regimes from 1930–2009 was investigated in a network of 27 river gauges in Saxony/Germany through a timing measure derived by harmonic function approximation of annual periods of runoff ratio series. The timing measure proofed to be robust and equally applicable to both mainly pluvial river basins and snow melt dominated regimes. We found that the timing of runoff ratio is highly variable, but markedly coherent across the basins analysed. Differences in average timing are largely explained by basin elevation. Also the magnitude of low frequent changes in the seasonal timing of streamflow and the sensitivity to the changes in the timing of temperature increase with basin elevation. This sensitivity is in turn related to snow storage and release, whereby snow cover dynamics in late winter explain a large part of the low- and high-frequency variability. A trend analysis based on cumulative anomalies revealed a common structural break around the year 1988. While the timing of temperature shifted earlier by 4 days, accompanied by a temperature increase of 1 K, the timing of runoff ratio within higher basins shifted towards occurring earlier about 1 to 3 weeks. This accelerated and distinct change indicates, that impacts of climate change on the water cycle may be strongest in higher, snow melt dominated basins.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2011-06-25
    Description: Modelling the statistical dependence of rainfall event variables through copula functions Hydrology and Earth System Sciences, 15, 1959-1977, 2011 Author(s): M. Balistrocchi and B. Bacchi In many hydrological models, such as those derived by analytical probabilistic methods, the precipitation stochastic process is represented by means of individual storm random variables which are supposed to be independent of each other. However, several proposals were advanced to develop joint probability distributions able to account for the observed statistical dependence. The traditional technique of the multivariate statistics is nevertheless affected by several drawbacks, whose most evident issue is the unavoidable subordination of the dependence structure assessment to the marginal distribution fitting. Conversely, the copula approach can overcome this limitation, by dividing the problem in two distinct parts. Furthermore, goodness-of-fit tests were recently made available and a significant improvement in the function selection reliability has been achieved. Herein the dependence structure of the rainfall event volume, the wet weather duration and the interevent time is assessed and verified by test statistics with respect to three long time series recorded in different Italian climates. Paired analyses revealed a non negligible dependence between volume and duration, while the interevent period proved to be substantially independent of the other variables. A unique copula model seems to be suitable for representing this dependence structure, despite the sensitivity demonstrated by its parameter towards the threshold utilized in the procedure for extracting the independent events. The joint probability function was finally developed by adopting a Weibull model for the marginal distributions.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2011-05-12
    Description: Copula-based downscaling of spatial rainfall: a proof of concept Hydrology and Earth System Sciences, 15, 1445-1457, 2011 Author(s): M. J. van den Berg, S. Vandenberghe, B. De Baets, and N. E. C. Verhoest Fine-scale rainfall data is important for many hydrological applications. However, often the only data available is at a coarse scale. To bridge this gap in resolution, stochastic disaggregation methods can be used. Such methods generally assume that the distribution of the field is stationary, i.e. the distribution for the entire (fine-scale) field is the same as the distribution of a smaller region within the field. This assumption is generally incorrect and we provide a proof of concept of a method to estimate the distribution of a smaller region. In this method, a copula is used to construct a bivariate distribution describing the relation between the scales. This distribution is then used to estimate the distribution of the fine-scale rainfall within a single coarse-scale pixel, by conditioning on the coarse-scale rainfall depth.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2011-05-14
    Description: Estimations of tidal characteristics and aquifer parameters via tide-induced head changes in coastal observation wells Hydrology and Earth System Sciences, 15, 1473-1482, 2011 Author(s): Y.-J. Chen, G.-Y. Chen, H.-D. Yeh, and D.-S. Jeng The groundwater fluctuations due to tidal variations at an observation well in a coastal aquifer can be used to determine the tidal characteristics and aquifer parameters without conducting an aquifer test. In this study, a method, comprised of Jeng et al.'s solution (2005) and simulated annealing (SA) algorithm, is developed to determine the coastal aquifer parameters (hydraulic diffusivity, beach slope, and aquifer thickness) as well as the tidal characteristics (bichromatic-tide amplitudes, bichromatic-tide wave frequencies, and tidal phase lag) from the analysis of the tide-induced well-water-level (WWL) data. The synthetic WWL data generated from Jeng et al.'s solution (2005) with assumed parameter values and field data obtained from Barrenjoey beach, Australia, are analyzed. The estimated parameter values obtained from analyzing synthetic WWL data by the present method show good agreements with the previously assumed parameter values. The parameter estimation procedure may however fail in the case of a large shallow water parameter which in fact violates the constraint on the use of Jeng et al.'s solution (2005). In the analysis of field WWL data, the results indicate that the aquifer parameters estimated from the present method with single or multiple well data are significantly different from those given in Nielsen (1990). Inspecting the observed WWL data and the WWL data predicted from Jeng et al.'s solution (2005) reveals that the present method may provide better estimations for the aquifer parameters than those given in Nielsen (1990).
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2011-05-19
    Description: Regional scale analysis of landform configuration with base-level (isobase) maps Hydrology and Earth System Sciences, 15, 1493-1504, 2011 Author(s): C. H. Grohmann, C. Riccomini, and M. A. C. Chamani Base-level maps (or "isobase maps", as originally defined by Filosofov, 1960), express a relationship between valley order and topography. The base-level map can be seen as a "simplified" version of the original topographic surface, from which the "noise" of the low-order stream erosion was removed. This method is able to identify areas with possible tectonic influence even within lithologically uniform domains. Base-level maps have been recently applied in semi-detail scale (e.g., 1:50 000 or larger) morphotectonic analysis. In this paper, we present an evaluation of the method's applicability in regional-scale analysis (e.g., 1:250 000 or smaller). A test area was selected in northern Brazil, at the lower course of the Araguaia and Tocantins rivers. The drainage network extracted from SRTM30_PLUS DEMs with spatial resolution of approximately 900 m was visually compared with available topographic maps and considered to be compatible with a 1:1,000 000 scale. Regarding the interpretation of regional-scale morphostructures, the map constructed with 2nd and 3rd-order valleys was considered to present the best results. Some of the interpreted base-level anomalies correspond to important shear zones and geological contacts present in the 1:5 000 000 Geological Map of South America. Others have no correspondence with mapped Precambrian structures and are considered to represent younger, probably neotectonic, features. A strong E-W orientation of the base-level lines over the inflexion of the Araguaia and Tocantins rivers, suggest a major drainage capture. A N-S topographic swath profile over the Tocantins and Araguaia rivers reveals a topographic pattern which, allied with seismic data showing a roughly N-S direction of extension in the area, lead us to interpret this lineament as an E-W, southward-dipping normal fault. There is also a good visual correspondence between the base-level lineaments and geophysical anomalies. A NW-SE lineament in the southeast of the study area partially corresponds to the northern border of the Mosquito lava field, of Jurassic age, and a NW-SE lineament traced in the northeastern sector of the study area can be interpreted as the Picos-Santa Inês lineament, identifiable in geophysical maps but with little expression in hypsometric or topographic maps.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2011-05-20
    Description: Evaluation of satellite rainfall estimates over Ethiopian river basins Hydrology and Earth System Sciences, 15, 1505-1514, 2011 Author(s): T. G. Romilly and M. Gebremichael High resolution satellite-based rainfall estimates (SREs) have enormous potential for use in hydrological applications, particularly in the developing world as an alternative to conventional rain gauges which are typically sparse. In this study, three SREs have been evaluated against collocated rain gauge measurements in Ethiopia across six river basins that represent different rainfall regimes and topography. The comparison is made using five-year (2003–2007) averages, and results are stratified by river basin, elevation and season. The SREs considered are: the Climate Prediction Center morphing method (CMORPH), Precipitation Estimation from Remotely Sensed Information Using Neural Networks (PERSIANN) and the real-time version of the Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) 3B42RT. Overall, the microwave-based products TMPA 3B42RT and CMORPH outperform the infrared-based product PERSIANN: PERSIANN tends to underestimate rainfall by 43 %, while CMORPH tends to underestimate by 11 % and TMPA 3B42RT tends to overestimate by 5 %. The bias in the satellite rainfall estimates depends on the rainfall regime, and, in some regimes, the elevation. In the northwest region, which is characterized mainly by highland topography, a humid climate and a strong Intertropical Convergence Zone (ITCZ) effect, elevation has a strong influence on the accuracy of the SREs: TMPA 3B42RT and CMORPH tend to overestimate at low elevations but give reasonably accurate results at high elevations, whereas PERSIANN gives reasonably accurate values at low elevations but underestimates at high elevations. In the southeast region, which is characterized mainly by lowland topography, a semi-arid climate and southerly winds, elevation does not have a significant influence on the accuracy of the SREs, and all the SREs underestimate rainfall across almost all elevations.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2011-05-21
    Description: Increasing parameter certainty and data utility through multi-objective calibration of a spatially distributed temperature and solute model Hydrology and Earth System Sciences, 15, 1547-1561, 2011 Author(s): C. Bandaragoda and B. T. Neilson To support the goal of distributed hydrologic and instream model predictions based on physical processes, we explore multi-dimensional parameterization determined by a broad set of observations. We present a systematic approach to using various data types at spatially distributed locations to decrease parameter bounds sampled within calibration algorithms that ultimately provide information regarding the extent of individual processes represented within the model structure. Through the use of a simulation matrix, parameter sets are first locally optimized by fitting the respective data at one or two locations and then the best results are selected to resolve which parameter sets perform best at all locations, or globally. This approach is illustrated using the Two-Zone Temperature and Solute (TZTS) model for a case study in the Virgin River, Utah, USA, where temperature and solute tracer data were collected at multiple locations and zones within the river that represent the fate and transport of both heat and solute through the study reach. The result was a narrowed parameter space and increased parameter certainty which, based on our results, would not have been as successful if only single objective algorithms were used. We also found that the global optimum is best defined by multiple spatially distributed local optima, which supports the hypothesis that there is a discrete and narrowly bounded parameter range that represents the processes controlling the dominant hydrologic responses. Further, we illustrate that the optimization process itself can be used to determine which observed responses and locations are most useful for estimating the parameters that result in a global fit to guide future data collection efforts.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2011-05-26
    Description: The green, blue and grey water footprint of crops and derived crop products Hydrology and Earth System Sciences, 15, 1577-1600, 2011 Author(s): M. M. Mekonnen and A. Y. Hoekstra This study quantifies the green, blue and grey water footprint of global crop production in a spatially-explicit way for the period 1996–2005. The assessment improves upon earlier research by taking a high-resolution approach, estimating the water footprint of 126 crops at a 5 by 5 arc minute grid. We have used a grid-based dynamic water balance model to calculate crop water use over time, with a time step of one day. The model takes into account the daily soil water balance and climatic conditions for each grid cell. In addition, the water pollution associated with the use of nitrogen fertilizer in crop production is estimated for each grid cell. The crop evapotranspiration of additional 20 minor crops is calculated with the CROPWAT model. In addition, we have calculated the water footprint of more than two hundred derived crop products, including various flours, beverages, fibres and biofuels. We have used the water footprint assessment framework as in the guideline of the Water Footprint Network. Considering the water footprints of primary crops, we see that the global average water footprint per ton of crop increases from sugar crops (roughly 200 m 3 ton −1 ), vegetables (300 m 3 ton −1 ), roots and tubers (400 m 3 ton −1 ), fruits (1000 m 3 ton −1 ), cereals (1600 m 3 ton −1 ), oil crops (2400 m 3 ton −1 ) to pulses (4000 m 3 ton −1 ). The water footprint varies, however, across different crops per crop category and per production region as well. Besides, if one considers the water footprint per kcal, the picture changes as well. When considered per ton of product, commodities with relatively large water footprints are: coffee, tea, cocoa, tobacco, spices, nuts, rubber and fibres. The analysis of water footprints of different biofuels shows that bio-ethanol has a lower water footprint (in m 3 GJ −1 ) than biodiesel, which supports earlier analyses. The crop used matters significantly as well: the global average water footprint of bio-ethanol based on sugar beet amounts to 51 m 3 GJ −1 , while this is 121 m 3 GJ −1 for maize. The global water footprint related to crop production in the period 1996–2005 was 7404 billion cubic meters per year (78 % green, 12 % blue, 10 % grey). A large total water footprint was calculated for wheat (1087 Gm 3 yr −1 ), rice (992 Gm 3 yr −1 ) and maize (770 Gm 3 yr −1 ). Wheat and rice have the largest blue water footprints, together accounting for 45 % of the global blue water footprint. At country level, the total water footprint was largest for India (1047 Gm 3 yr −1 ), China (967 Gm 3 yr −1 ) and the USA (826 Gm 3 yr −1 ). A relatively large total blue water footprint as a result of crop production is observed in the Indus river basin (117 Gm 3 yr −1 ) and the Ganges river basin (108 Gm 3 yr −1 ). The two basins together account for 25 % of the blue water footprint related to global crop production. Globally, rain-fed agriculture has a water footprint of 5173 Gm 3 yr −1 (91 % green, 9 % grey); irrigated agriculture has a water footprint of 2230 Gm 3 yr −1 (48 % green, 40 % blue, 12 % grey).
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2011-05-27
    Description: Mechanisms of vegetation uprooting by flow in alluvial non-cohesive sediment Hydrology and Earth System Sciences, 15, 1615-1627, 2011 Author(s): K. Edmaier, P. Burlando, and P. Perona The establishment of riparian pioneer vegetation is of crucial importance within river restoration projects. After germination or vegetative reproduction on river bars juvenile plants are often exposed to mortality by uprooting caused by floods. At later stages of root development vegetation uprooting by flow is seen to occur as a consequence of a marked erosion gradually exposing the root system and accordingly reducing the mechanical anchoring. How time scales of flow-induced uprooting do depend on vegetation stages growing in alluvial non-cohesive sediment is currently an open question that we conceptually address in this work. After reviewing vegetation root issues in relation to morphodynamic processes, we then propose two modelling mechanisms (Type I and Type II), respectively concerning the uprooting time scales of early germinated and of mature vegetation. Type I is a purely flow-induced drag mechanism, which causes alone a nearly instantaneous uprooting when exceeding root resistance. Type II arises as a combination of substantial sediment erosion exposing the root system and resulting in a decreased anchoring resistance, eventually degenerating into a Type I mechanism. We support our conceptual models with some preliminary experimental data and discuss the importance of better understanding such mechanisms in order to formulate sounding mathematical models that are suitable to plan and to manage river restoration projects.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2011-05-07
    Description: Estimation of surface soil moisture and roughness from multi-angular ASAR imagery in the Watershed Allied Telemetry Experimental Research (WATER) Hydrology and Earth System Sciences, 15, 1415-1426, 2011 Author(s): S. G. Wang, X. Li, X. J. Han, and R. Jin Radar remote sensing has demonstrated its applicability to the retrieval of basin-scale soil moisture. The mechanism of radar backscattering from soils is complicated and strongly influenced by surface roughness. Additionally, retrieval of soil moisture using AIEM (advanced integrated equation model)-like models is a classic example of underdetermined problem due to a lack of credible known soil roughness distributions at a regional scale. Characterization of this roughness is therefore crucial for an accurate derivation of soil moisture based on backscattering models. This study aims to simultaneously obtain surface roughness parameters (standard deviation of surface height σ and correlation length cl) along with soil moisture from multi-angular ASAR images by using a two-step retrieval scheme based on the AIEM. The method firstly used a semi-empirical relationship that relates the roughness slope, Zs ( Zs = σ 2 /cl) and the difference in backscattering coefficient (Δσ) from two ASAR images acquired with different incidence angles. Meanwhile, by using an experimental statistical relationship between σ and cl, both these parameters can be estimated. Then, the deduced roughness parameters were used for the retrieval of soil moisture in association with the AIEM. An evaluation of the proposed method was performed in an experimental area in the middle stream of the Heihe River Basin, where the Watershed Allied Telemetry Experimental Research (WATER) was taken place. It is demonstrated that the proposed method is feasible to achieve reliable estimation of soil water content. The key challenge is the presence of vegetation cover, which significantly impacts the estimates of surface roughness and soil moisture.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2011-05-07
    Description: Assessing water resources adaptive capacity to climate change impacts in the Pacific Northwest Region of North America Hydrology and Earth System Sciences, 15, 1427-1443, 2011 Author(s): A. F. Hamlet Climate change impacts in Pacific Northwest Region of North America (PNW) are projected to include increasing temperatures and changes in the seasonality of precipitation (increasing precipitation in winter, decreasing precipitation in summer). Changes in precipitation are also spatially varying, with the northwestern parts of the region generally experiencing greater increases in cool season precipitation than the southeastern parts. These changes in climate are projected to cause loss of snowpack and associated streamflow timing shifts which will increase cool season (October–March) flows and decrease warm season (April–September) flows and water availability. Hydrologic extremes such as the 100 yr flood and extreme low flows are also expected to change, although these impacts are not spatially homogeneous and vary with mid-winter temperatures and other factors. These changes have important implications for natural ecosystems affected by water, and for human systems. The PNW is endowed with extensive water resources infrastructure and well-established and well-funded management agencies responsible for ensuring that water resources objectives (such as water supply, water quality, flood control, hydropower production, environmental services, etc.) are met. Likewise, access to observed hydrological, meteorological, and climatic data and forecasts is in general exceptionally good in the United States and Canada, and is often supported by federally funded programs that ensure that these resources are freely available to water resources practitioners, policy makers, and the general public. Access to these extensive resources support the argument that at a technical level the PNW has high capacity to deal with the potential impacts of natural climate variability on water resources. To the extent that climate change will manifest itself as moderate changes in variability or extremes, we argue that existing water resources infrastructure and institutional arrangements provide a reasonably solid foundation for coping with climate change impacts, and that the mandates of existing water resources policy and water resources management institutions are at least consistent with the fundamental objectives of climate change adaptation. A deeper inquiry into the underlying nature of PNW water resources systems, however, reveals significant and persistent obstacles to climate change adaptation, which will need to be overcome if effective use of the region's extensive water resources management capacity can be brought to bear on this problem. Primary obstacles include assumptions of stationarity as the fundamental basis of water resources system design, entrenched use of historical records as the sole basis for planning, problems related to the relatively short time scale of planning, lack of familiarity with climate science and models, downscaling procedures, and hydrologic models, limited access to climate change scenarios and hydrologic products for specific water systems, and rigid water allocation and water resources operating rules that effectively block adaptive response. Institutional barriers include systematic loss of technical capacity in many water resources agencies following the dam building era, jurisdictional fragmentation affecting response to drought, disconnections between water policy and practice, and entrenched bureaucratic resistance to change in many water management agencies. These factors, combined with a federal agenda to block climate change policy in the US during the Bush administration have (with some exceptions) contributed to widespread institutional "gridlock" in the PNW over the last decade or so despite a growing awareness of climate change as a significant threat to water management. In the last several years, however, significant progress has been made in surmounting some of these obstacles, and the region's water resources agencies at all levels of governance are making progress in addressing the fundamental challenges inherent in adapting to climate change.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2011-05-07
    Description: Technical note on measuring run-off dynamics from pavements using a new device: the weighable tipping bucket Hydrology and Earth System Sciences, 15, 1379-1386, 2011 Author(s): T. Nehls, Y. Nam Rim, and G. Wessolek Due to climate change, cities need to adapt to changing rainfall and rainwater run-off dynamics. In order to develop an corresponding process based run-off model for pavements, we had to improve the measurement technique to detect run-off dynamics in an appropriate high resolution. Traditional tipping buckets (TB) have a comparable low volume resolution, capable to quantify the highest intensities in a range of expected flows. This results in varying temporal resolutions for varying flow intensities, especially in low resolutions for small flow events. Therefore, their applicability for run-off measurements and other hydrological process studies is limited, especially when the dynamics of both small and big flow events shall be measured. We improved a TB by coupling it to a balance and called it weighable tipping bucket (WTB). This paper introduces the device set up and the according data processing concept. The improved volume and temporal resolution of the WTB are demonstrated. A systematic uncertainty of TB measurements compared to WTB measurements is calculated. The impact of that increased resolution on our understanding of run-off dynamics from paved urban soils are discussed, exemplary for the run-off and the surface storage of a paved urban soil. The study was conducted on a permeably paved lysimeter situated in Berlin, Germany. Referring to the paved surface, the TB has a resolution of 0.1 mm, while the WTB has a resolution of 0.001 mm. The temporal resolution of the WTB is 3 s, the TB detects individual tippings with 0.4 s between them. Therefore, the data processing concept combines both the benefits of the balance to measure small intensities with that of the TB to measure high flow intensities. During a five months period (July to November 2009) 154 rain events were detected. Accordingly, the TB and WTB detected 47 and 121 run-off events. The total run-off was 79.6 mm measured by the WTB which was 11 % higher than detected by the TB. 95 % of that difference can be appointed to water, which evaporated from the TB. To derive a surface storage estimation, we analyzed the WTB and TB data for rain events without run-off. According to WTB data, the surface storage of the permeable pavement is 1.7 mm, while using TB data leads to an overestimation of 47 % due to low volume resolution of the TB. Combining traditional TB with modern, fast, high resolution digital balances offers the opportunity to upgrade existing TB systems in order to improve their volume detection limit and their temporal resolution, which is of great advantage for the synchronization of water balance component measurements and the investigation of hydrological processes. Furthermore, we are able to quantify the uncertainty of flow measurements gained with traditional tipping buckets.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2011-05-07
    Description: Estimating surface fluxes over middle and upper streams of the Heihe River Basin with ASTER imagery Hydrology and Earth System Sciences, 15, 1403-1413, 2011 Author(s): W. Ma, Y. Ma, Z. Hu, Z. Su, J. Wang, and H. Ishikawa Land surface heat fluxes are essential measures of the strengths of land-atmosphere interactions involving energy, heat and water. Correct parameterization of these fluxes in climate models is critical. Despite their importance, state-of-the-art observation techniques cannot provide representative areal averages of these fluxes comparable to the model grid. Alternative methods of estimation are thus required. These alternative approaches use (satellite) observables of the land surface conditions. In this study, the Surface Energy Balance System (SEBS) algorithm was evaluated in a cold and arid environment, using land surface parameters derived from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data. Field observations and estimates from SEBS were compared in terms of net radiation flux ( R n ), soil heat flux ( G 0 ), sensible heat flux ( H ) and latent heat flux (λ E ) over a heterogeneous land surface. As a case study, this methodology was applied to the experimental area of the Watershed Allied Telemetry Experimental Research (WATER) project, located on the mid-to-upstream sections of the Heihe River in northwest China. ASTER data acquired between 3 May and 4 June 2008, under clear-sky conditions were used to determine the surface fluxes. Ground-based measurements of land surface heat fluxes were compared with values derived from the ASTER data. The results show that the derived surface variables and the land surface heat fluxes furnished by SEBS in different months over the study area are in good agreement with the observed land surface status under the limited cases (some cases looks poor results). So SEBS can be used to estimate turbulent heat fluxes with acceptable accuracy in areas where there is partial vegetation cover in exceptive conditions. It is very important to perform calculations using ground-based observational data for parameterization in SEBS in the future. Nevertheless, the remote-sensing results can provide improved explanations of land surface fluxes over varying land coverage at greater spatial scales.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2011-05-07
    Description: An objective approach for feature extraction: distribution analysis and statistical descriptors for scale choice and channel network identification Hydrology and Earth System Sciences, 15, 1387-1402, 2011 Author(s): G. Sofia, P. Tarolli, F. Cazorzi, and G. Dalla Fontana A statistical approach to LiDAR derived topographic attributes for the automatic extraction of channel network and for the choice of the scale to apply for parameter evaluation is presented in this paper. The basis of this approach is to use distribution analysis and statistical descriptors to identify channels where terrain geometry denotes significant convergences. Two case study areas with different morphology and degree of organization are used with their 1 m LiDAR Digital Terrain Models (DTMs). Topographic attribute maps (curvature and openness) for various window sizes are derived from the DTMs in order to detect surface convergences. A statistical analysis on value distributions considering each window size is carried out for the choice of the optimum kernel. We propose a three-step method to extract the network based (a) on the normalization and overlapping of openness and minimum curvature to highlight the more likely surface convergences, (b) a weighting of the upslope area according to these normalized maps to identify drainage flow paths and flow accumulation consistent with terrain geometry, (c) the standard score normalization of the weighted upslope area and the use of standard score values as non subjective threshold for channel network identification. As a final step for optimal definition and representation of the whole network, a noise-filtering and connection procedure is applied. The advantage of the proposed methodology, and the efficiency and accurate localization of extracted features are demonstrated using LiDAR data of two different areas and comparing both extractions with field surveyed networks.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2011-03-31
    Description: Assessment of a vertical high-resolution distributed-temperature-sensing system in a shallow thermohaline environment Hydrology and Earth System Sciences, 15, 1081-1093, 2011 Author(s): F. Suárez, J. E. Aravena, M. B. Hausner, A. E. Childress, and S. W. Tyler In shallow thermohaline-driven lakes it is important to measure temperature on fine spatial and temporal scales to detect stratification or different hydrodynamic regimes. Raman spectra distributed temperature sensing (DTS) is an approach available to provide high spatial and temporal temperature resolution. A vertical high-resolution DTS system was constructed to overcome the problems of typical methods used in the past, i.e., without disturbing the water column, and with resistance to corrosive environments. This paper describes a method to quantitatively assess accuracy, precision and other limitations of DTS systems to fully utilize the capacity of this technology, with a focus on vertical high-resolution to measure temperatures in shallow thermohaline environments. It also presents a new method to manually calibrate temperatures along the optical fiber achieving significant improved resolution. The vertical high-resolution DTS system is used to monitor the thermal behavior of a salt-gradient solar pond, which is an engineered shallow thermohaline system that allows collection and storage of solar energy for a long period of time. The vertical high-resolution DTS system monitors the temperature profile each 1.1 cm vertically and in time averages as small as 10 s. Temperature resolution as low as 0.035 °C is obtained when the data are collected at 5-min intervals.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2011-04-07
    Description: South African Weather Service operational satellite based precipitation estimation technique: applications and improvements Hydrology and Earth System Sciences, 15, 1131-1145, 2011 Author(s): E. de Coning and E. Poolman Extreme weather related to heavy or more frequent precipitation events seem to be a likely possibility for the future of our planet. While precipitation measurements can be done by means of rain gauges, the obvious disadvantages of point measurements are driving meteorologists towards remotely sensed precipitation methods. In South Africa more sophisticated and expensive nowcasting technology such as radar and lightning networks are available, supported by a fairly dense rain gauge network of about 1500 daily gauges. In the rest of southern Africa rainfall measurements are more difficult to obtain. The local version of the Unified Model and the Meteosat Second Generation satellite data are ideal components of precipitation estimation in data sparse regions such as Africa. In South Africa hourly accumulations of the Hydroestimator (originally from NOAA/NESDIS) are currently used as a satellite based precipitation estimator for the South African Flash Flood Guidance system, especially in regions which are not covered by radar. In this study the Hydroestimator and the stratiform rainfall field from the Unified Model are both bias corrected and then combined into a new precipitation field. The new product was tested over a two year period and provides a more accurate and comprehensive input to the Flash Flood Guidance systems in the data sparse southern Africa. Future work will include updating the period over which bias corrections were calculated.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2011-08-05
    Description: Impact of climate change on groundwater point discharge: backflooding of karstic springs (Loiret, France) Hydrology and Earth System Sciences, 15, 2459-2470, 2011 Author(s): E. Joigneaux, P. Albéric, H. Pauwels, C. Pagé, L. Terray, and A. Bruand Under certain hydrological conditions it is possible for spring flow in karst systems to be reversed. When this occurs, the resulting invasion by surface water, i.e. the backflooding, represents a serious threat to groundwater quality because the surface water could well be contaminated. Here we examine the possible impact of future climate change on the occurrences of backflooding in a specific karst system, having first established the occurrence of such events in the selected study area over the past 40 years. It would appear that backflooding has been more frequent since the 1980s, and that it is apparently linked to river flow variability on the pluri-annual scale. The avenue that we adopt here for studying recent and future variations of these events is based on a downscaling algorithm relating large-scale atmospheric circulation to local precipitation spatial patterns. The large-scale atmospheric circulation is viewed as a set of quasi-stationary and recurrent states, called weather types, and its variability as the transition between them. Based on a set of climate model projections, simulated changes in weather-type occurrence for the end of the century suggests that backflooding events can be expected to decrease in 2075–2099. If such is the case, then the potential risk for groundwater quality in the area will be greatly reduced compared to the current situation. Finally, our results also show the potential interest of the weather-type based downscaling approach for examining the impact of climate change on hydrological systems.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2011-05-31
    Description: Estimation of soil moisture using trapezoidal relationship between remotely sensed land surface temperature and vegetation index Hydrology and Earth System Sciences, 15, 1699-1712, 2011 Author(s): W. Wang, D. Huang, X.-G. Wang, Y.-R. Liu, and F. Zhou The trapezoidal relationship between land surface temperature ( T s ) and Vegetation Index (VI) was used to estimate soil moisture in the present study. An iterative algorithm is proposed to estimate the vertices of the T s ~ VI trapezoid theoretically for each pixel, and then Water Deficit Index (WDI) is calculated based on the T s ~ VI trapezoid using MODIS remotely sensed measurements of surface temperature and enhanced vegetation index (EVI). The capability of using WDI based on T s ~ VI trapezoid to estimate soil moisture is evaluated using soil moisture observations and antecedent precipitation in the Walnut Gulch Experimental Watershed (WGEW) in Arizona, USA. The result shows that, the T s ~ VI trapezoid based WDI can capture temporal variation in surface soil moisture well, but the capability of detecting spatial variation is poor for such a semi-arid region as WGEW.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2011-05-31
    Description: Runoff regime estimation at high-elevation sites: a parsimonious water balance approach Hydrology and Earth System Sciences, 15, 1661-1673, 2011 Author(s): E. Bartolini, P. Allamano, F. Laio, and P. Claps We develop a water balance model, parsimonious both in terms of parameterization and of required input data, to characterize the average runoff regime of high-elevation and scarcely monitored basins. The model uses a temperature threshold to partition precipitation into rainfall and snowfall, and to estimate evapotranspiration volumes. The role of snow in the transformation of precipitation into runoff is investigated at the monthly time scale through a specific snowmelt module that estimates melted quantities by a non-linear function of temperature. A probabilistic representation of temperature is also introduced, in order to mimic its sub-monthly variability. To account for the commonly reported rainfall underestimation at high elevations, a two-step precipitation adjustment procedure is implemented to guarantee the closure of the water balance. The model is applied to a group of catchments in the North-Western Italian Alps, and its performances are assessed by comparing measured and simulated runoff regimes both in terms of total bias and anomalies, by means of a new metric, specifically conceived to compare the shape of the two curves. The obtained results indicates that the model is able to predict the observed runoff seasonality satisfactorily, notwithstanding its parsimony (the model has only two parameters to be estimated). In particular, when the parameter calibration is performed separately for each basin, the model proves to be able to reproduce the runoff seasonality. At the regional scale (i.e., with uniform parameters for the whole region), the performance is less positive, but the model is still able to discern among different mechanisms of runoff formation that depend on the role of the snow storage. Because of its parsimony and the robustness in the approach, the model is suitable for application in ungauged basins and for large scale investigations of the role of climatic variables on water availability and runoff timing in mountainous regions.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2011-05-31
    Description: The International Soil Moisture Network: a data hosting facility for global in situ soil moisture measurements Hydrology and Earth System Sciences, 15, 1675-1698, 2011 Author(s): W. A. Dorigo, W. Wagner, R. Hohensinn, S. Hahn, C. Paulik, A. Xaver, A. Gruber, M. Drusch, S. Mecklenburg, P. van Oevelen, A. Robock, and T. Jackson In situ measurements of soil moisture are invaluable for calibrating and validating land surface models and satellite-based soil moisture retrievals. In addition, long-term time series of in situ soil moisture measurements themselves can reveal trends in the water cycle related to climate or land cover change. Nevertheless, on a worldwide basis the number of meteorological networks and stations measuring soil moisture, in particular on a continuous basis, is still limited and the data they provide lack standardization of technique and protocol. To overcome many of these limitations, the International Soil Moisture Network (ISMN; http://www.ipf.tuwien.ac.at/insitu ) was initiated to serve as a centralized data hosting facility where globally available in situ soil moisture measurements from operational networks and validation campaigns are collected, harmonized, and made available to users. Data collecting networks share their soil moisture datasets with the ISMN on a voluntary and no-cost basis. Incoming soil moisture data are automatically transformed into common volumetric soil moisture units and checked for outliers and implausible values. Apart from soil water measurements from different depths, important metadata and meteorological variables (e.g., precipitation and soil temperature) are stored in the database. These will assist the user in correctly interpreting the soil moisture data. The database is queried through a graphical user interface while output of data selected for download is provided according to common standards for data and metadata. Currently (status May 2011), the ISMN contains data of 19 networks and more than 500 stations located in North America, Europe, Asia, and Australia. The time period spanned by the entire database runs from 1952 until the present, although most datasets have originated during the last decade. The database is rapidly expanding, which means that both the number of stations and the time period covered by the existing stations are still growing. Hence, it will become an increasingly important resource for validating and improving satellite-derived soil moisture products and studying climate related trends. As the ISMN is animated by the scientific community itself, we invite potential networks to enrich the collection by sharing their in situ soil moisture data.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2011-06-01
    Description: Hydrological differentiation and spatial distribution of high altitude wetlands in a semi-arid Andean region derived from satellite data Hydrology and Earth System Sciences, 15, 1713-1727, 2011 Author(s): M. Otto, D. Scherer, and J. Richters High Altitude Wetlands of the Andes (HAWA) belong to a unique type of wetland within the semi-arid high Andean region. Knowledge about HAWA has been derived mainly from studies at single sites within different parts of the Andes at only small time scales. On the one hand, HAWA depend on water provided by glacier streams, snow melt or precipitation. On the other hand, they are suspected to influence hydrology through water retention and vegetation growth altering stream flow velocity. We derived HAWA land cover from satellite data at regional scale and analysed changes in connection with precipitation over the last decade. Perennial and temporal HAWA subtypes can be distinguished by seasonal changes of photosynthetically active vegetation (PAV) indicating the perennial or temporal availability of water during the year. HAWA have been delineated within a region of 12 800 km 2 situated in the Northwest of Lake Titicaca. The multi-temporal classification method used Normalized Differenced Vegetation Index (NDVI) and Normalized Differenced Infrared Index (NDII) data derived from two Landsat ETM+ scenes at the end of austral winter (September 2000) and at the end of austral summer (May 2001). The mapping result indicates an unexpected high abundance of HAWA covering about 800 km 2 of the study region (6 %). Annual HAWA mapping was computed using NDVI 16-day composites of Moderate Resolution Imaging Spectroradiometer (MODIS). Analyses on the relation between HAWA and precipitation was based on monthly precipitation data of the Tropical Rain Measurement Mission (TRMM 3B43) and MODIS Eight Day Maximum Snow Extent data (MOD10A2) from 2000 to 2010. We found HAWA subtype specific dependencies on precipitation conditions. A strong relation exists between perennial HAWA and snow fall ( r 2 : 0.82) in dry austral winter months (June to August) and between temporal HAWA and precipitation ( r 2 : 0.75) during austral summer (March to May). Annual changes in spatial extend of perennial HAWA indicate alterations in annual water supply generated from snow melt.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2011-10-08
    Description: Forest cover influence on regional flood frequency assessment in Mediterranean catchments Hydrology and Earth System Sciences, 15, 3077-3090, 2011 Author(s): F. Preti, G. Forzieri, and G. B. Chirico The paper aims at evaluating to what extent the forest cover can explain the component of runoff coefficient as defined in a regional flood frequency analysis based on the application of the rational formula coupled with a regional model of the annual maximum rainfall depths. The analysis is addressed to evaluate the component of the runoff coefficient which cannot be captured by the catchment lithology alone. Data mining is performed on 75 catchments distributed from South to Central Italy. Cluster and correlation structure analyses are conducted for distinguishing forest cover effects within catchments characterized by hydro-morphological similarities. We propose to improve the prediction of the runoff coefficient by a linear regression model, exploiting the ratio of the forest cover to the catchment critical rainfall depth as dependent variable. The proposed regression enables a significant bias correction of the runoff coefficient, particularly for those small mountainous catchments, characterised by larger forest cover fraction and lower critical rainfall depth.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2011-10-12
    Description: Technical Note: Assessing a 24/7 solution for monitoring water quality loads in small river catchments Hydrology and Earth System Sciences, 15, 3093-3100, 2011 Author(s): P. Jordan and R. Cassidy Quantifying nutrient and sediment loads in catchments is difficult owing to diffuse controls related to storm hydrology. Coarse sampling and interpolation methods are prone to very high uncertainties due to under-representation of high discharge, short duration events. Additionally, important low-flow processes such as diurnal signals linked to point source impacts are missed. Here we demonstrate a solution based on a time-integrated approach to sampling with a standard 24 bottle autosampler configured to take a sample every 7 h over a week according to a Plynlimon design. This is evaluated with a number of other sampling strategies using a two-year dataset of sub-hourly discharge and phosphorus concentration data. The 24/7 solution is shown to be among the least uncertain in estimating load (inter-quartile range: 96% to 110% of actual load in year 1 and 97% to 104% in year 2) due to the increased frequency raising the probability of sampling storm events and point source signals. The 24/7 solution would appear to be most parsimonious in terms of data coverage and certainty, process signal representation, potential laboratory commitment, technology requirements and the ability to be widely deployed in complex catchments.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2011-10-05
    Description: Inverse modelling of in situ soil water dynamics: investigating the effect of different prior distributions of the soil hydraulic parameters Hydrology and Earth System Sciences, 15, 3043-3059, 2011 Author(s): B. Scharnagl, J. A. Vrugt, H. Vereecken, and M. Herbst In situ observations of soil water state variables under natural boundary conditions are often used to estimate the soil hydraulic properties. However, many contributions to the soil hydrological literature have demonstrated that the information content of such data is insufficient to accurately and precisely estimate all the soil hydraulic parameters. In this case study, we explored to which degree prior information about the soil hydraulic parameters can help improve parameter identifiability in inverse modelling of in situ soil water dynamics under natural boundary conditions. We used percentages of sand, silt, and clay as input variables to the ROSETTA pedotransfer function that predicts the parameters in the van Genuchten-Mualem (VGM) model of the soil hydraulic functions. To derive additional information about the correlation structure of the predicted parameters, which is not readily provided by ROSETTA, we employed a Monte Carlo approach. We formulated three prior distributions that incorporate to different extents the prior information about the VGM parameters derived with ROSETTA. The inverse problem was posed in a formal Bayesian framework and solved using Markov chain Monte Carlo (MCMC) simulation with the DiffeRential Evolution Adaptive Metropolis (DREAM) algorithm. Synthetic and real-world soil water content data were used to illustrate the approach. The results of this study demonstrated that prior information about the soil hydraulic parameters significantly improved parameter identifiability and that this approach was effective and robust, even in case of biased prior information. To be effective and robust, however, it was essential to use a prior distribution that incorporates information about parameter correlation.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2011-10-08
    Description: Corrigendum to "A distributed stream temperature model using high resolution temperature observations" published in Hydrol. Earth Syst. Sci., 11, 1469–1480, 2007 Hydrology and Earth System Sciences, 15, 3091-3091, 2011 Author(s): M. C. Westhoff, H. H. G. Savenije, W. M. J . Luxemburg, G. S. Stelling, N. C. van de Giesen, J. S. Selker, L. Pfister, and S. Uhlenbrook No abstract available.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2011-10-12
    Description: Integrating coarse-scale uncertain soil moisture data into a fine-scale hydrological modelling scenario Hydrology and Earth System Sciences, 15, 3101-3114, 2011 Author(s): H. Vernieuwe, B. De Baets, J. Minet, V. R. N. Pauwels, S. Lambot, M. Vanclooster, and N. E. C. Verhoest In a hydrological modelling scenario, often the modeller is confronted with external data, such as remotely-sensed soil moisture observations, that become available to update the model output. However, the scale triplet (spacing, extent and support) of these data is often inconsistent with that of the model. Furthermore, the external data can be cursed with epistemic uncertainty. Hence, a method is needed that not only integrates the external data into the model, but that also takes into account the difference in scale and the uncertainty of the observations. In this paper, a synthetic hydrological modelling scenario is set up in which a high-resolution distributed hydrological model is run over an agricultural field. At regular time steps, coarse-scale field-averaged soil moisture data, described by means of possibility distributions (epistemic uncertainty), are retrieved by synthetic aperture radar and assimilated into the model. A method is presented that allows to integrate the coarse-scale possibility distribution of soil moisture content data with the fine-scale model-based soil moisture data. The method is subdivided in two steps. The first step, the disaggregation step, employs a scaling relationship between field-averaged soil moisture content data and its corresponding standard deviation. In the second step, the soil moisture content values are updated using two alternative methods.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2011-12-08
    Description: Spatial variation of the longitudinal dispersion coefficient in an estuary Hydrology and Earth System Sciences, 15, 3679-3688, 2011 Author(s): D. C. Shaha, Y.-K. Cho, M.-T. Kwak, S. R. Kundu, and K. T. Jung The effective longitudinal dispersion is a primary tool for determining property distributions in estuaries. Most previous studies have examined the longitudinal dispersion coefficient for the average tidal condition. However, information on spatial and temporal variations of this coefficient at low and high tides is scarce. Three years of hydrographic data taken at low and high tide along the main axis of the Sumjin River Estuary (SRE), Korea are used to estimate the spatial and temporal variation of the effective longitudinal dispersion coefficient. The range of the dispersion coefficient is rather broad at high water slack (HWS) and narrower at low water slack (LWS) because of the different tidal amplitudes. The spatially varying dispersion coefficient has maximal values (〉300 m 2 s −1 ) near the mouth at high water and decreases gradually upstream, with fluctuations. The temporally varying dispersion coefficient appears to be positively correlated with river discharges at both low and high tide. The dispersion varies with the square root of river discharges at HWS and LWS. The dispersive salt fluxes increases with increasing river discharges and decreases with decreasing river discharges at HWS and LWS. Estimation of the numerical values of the effective longitudinal dispersion coefficient in the SRE can be useful for better understanding of the distributions of other tracers in the SRE as well as for developing and testing hypotheses about various mixing mechanisms.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2011-12-08
    Description: Shallow rainwater lenses in deltaic areas with saline seepage Hydrology and Earth System Sciences, 15, 3659-3678, 2011 Author(s): P. G. B. de Louw, S. Eeman, B. Siemon, B. R. Voortman, J. Gunnink, E. S. van Baaren, and G. H. P. Oude Essink In deltaic areas with saline seepage, freshwater availability is often limited to shallow rainwater lenses lying on top of saline groundwater. Here we describe the characteristics and spatial variability of such lenses in areas with saline seepage and the mechanisms that control their occurrence and size. Our findings are based on different types of field measurements and detailed numerical groundwater models applied in the south-western delta of the Netherlands. By combining the applied techniques we could extrapolate measurements at point scale (groundwater sampling, temperature and electrical soil conductivity (TEC)-probe measurements, electrical cone penetration tests (ECPT)) to field scale (continuous vertical electrical soundings (CVES), electromagnetic survey with EM31), and even to regional scale using helicopter-borne electromagnetic measurements (HEM). The measurements show a gradual mixing zone between infiltrating fresh rainwater and upward flowing saline groundwater. The mixing zone is best characterized by the depth of the centre of the mixing zone D mix , where the salinity is half that of seepage water, and the bottom of the mixing zone B mix , with a salinity equal to that of the seepage water (Cl-conc. 10 to 16 g l −1 ). D mix is found at very shallow depth in the confining top layer, on average at 1.7 m below ground level (b.g.l.), while B mix lies about 2.5 m b.g.l. The model results show that the constantly alternating upward and downward flow at low velocities in the confining layer is the main mechanism of mixing between rainwater and saline seepage and determines the position and extent of the mixing zone ( D mix and B mix ). Recharge, seepage flux, and drainage depth are the controlling factors.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2011-12-02
    Description: A structure generator for modelling the initial sediment distribution of an artificial hydrologic catchment Hydrology and Earth System Sciences, 15, 3617-3638, 2011 Author(s): T. Maurer, A. Schneider, and H. H. Gerke Artificially-created hydrological catchments are characterised by sediment structures from technological construction processes that can potentially be important for modelling of flow and transport and for understanding initial soil and ecosystem development. The subsurface spatial structures of such catchments have not yet been sufficiently explored and described. Our objective was to develop a structure generator programme for modelling the 3-D spatial distribution patterns of dumped sediments depending on the technical earth-moving and deposition processes. We are focussing in a first step on integrating sediment dumping, particle size, and bulk density modification processes on the catchment scale. For the model development, the artificially-constructed hydrological catchment "Chicken Creek" located in Lower Lusatia, Germany, served as an example. The structure generator describes 3-D technological sediment distributions at two scales: (i) for a 2-D-vertical cross-section, texture and bulk density distributions are generated within individual spoil cones that result from mass dumping, particle segregation, and compaction and (ii) for the whole catchment, the spoil cones are horizontally arranged along trajectories of mass dumping controlled by the belt stacker-machine relative to the catchment's clay layer topography. The generated 3-D texture and bulk density distributions are interpolated and visualised as a gridded 3-D-volume body using 3-D computer-aided design software. The generated subsurface sediment distribution for the Chicken Creek catchment was found to correspond to observed patterns already without calibration. Spatial aggregation and interpolation in the gridded volume body modified the generated distributions towards more uniform (unimodal) distributions and lower values of the standard deviations. The modelling approach is generally applicable to all situations where large masses of unconsolidated sediment are moved and dumped thereby allowing generation of basic soil structures and patterns of hydrological systems.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2011-12-07
    Description: Analysis of predicted and observed accumulated convective precipitation in the area with frequent split storms Hydrology and Earth System Sciences, 15, 3651-3658, 2011 Author(s): M. Ćurić and D. Janc Convective clouds generate extreme rainfall events and flash floods in small areas with both large spatial and temporal variability. For this reason, the monitoring of the total accumulated precipitation fields at the surface with rain gauges and meteorological radars has both strengths and weakness. Alternatively, a numerical cloud model may be a useful tool to simulate convective precipitation for various analyses and predictions. The main objective of this paper is to show that the cloud-resolving model reproduces well the accumulated convective precipitation obtained from the rain gauge network data in the area with frequent split storms. We perform comparisons between observations and model samples of the areal accumulated convective precipitation for a 15-year period over treated area. Twenty-seven convective events have been selected. Statistical analyses reveal that the model areal accumulated convective precipitation closely match their observed values with a correlation coefficient of 0.80.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2011-11-18
    Description: Sensitivity of a data-driven soil water balance model to estimate summer evapotranspiration along a forest chronosequence Hydrology and Earth System Sciences, 15, 3461-3473, 2011 Author(s): J. A. Breña Naranjo, M. Weiler, and K. Stahl The hydrology of ecosystem succession gives rise to new challenges for the analysis and modelling of water balance components. Recent large-scale alterations of forest cover across the globe suggest that a significant portion of new biophysical environments will influence the long-term dynamics and limits of water fluxes compared to pre-succession conditions. This study assesses the estimation of summer evapotranspiration along three FLUXNET sites at Campbell River, British Columbia, Canada using a data-driven soil water balance model validated by Eddy Covariance measurements. It explores the sensitivity of the model to different forest succession states, a wide range of computational time steps, rooting depths, and canopy interception capacity values. Uncertainty in the measured EC fluxes resulting in an energy imbalance was consistent with previous studies and does not affect the validation of the model. The agreement between observations and model estimates proves that the usefulness of the method to predict summer AET over mid- and long-term periods is independent of stand age. However, an optimal combination of the parameters rooting depth, time step and interception capacity threshold is needed to avoid an underestimation of AET as seen in past studies. The study suggests that summer AET could be estimated and monitored in many more places than those equipped with Eddy Covariance or sap-flow measurements to advance the understanding of water balance changes in different successional ecosystems.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2011-11-19
    Description: Climate change impact on water resource extremes in a headwater region of the Tarim basin in China Hydrology and Earth System Sciences, 15, 3511-3527, 2011 Author(s): T. Liu, P. Willems, X. L. Pan, An. M. Bao, X. Chen, F. Veroustraete, and Q. H. Dong The Tarim river basin in China is a huge inland arid basin, which is expected to be highly vulnerable to climatic changes, given that most water resources originate from the upper mountainous headwater regions. This paper focuses on one of these headwaters: the Kaidu river subbasin. The climate change impact on the surface and ground water resources of that basin and more specifically on the hydrological extremes were studied by using both lumped and spatially distributed hydrological models, after simulation of the IPCC SRES greenhouse gas scenarios till the 2050s. The models include processes of snow and glacier melting. The climate change signals were extracted from the grid-based results of general circulation models (GCMs) and applied on the station-based, observed historical data using a perturbation approach. For precipitation, the time series perturbation involves both a wet-day frequency perturbation and a quantile perturbation to the wet-day rainfall intensities. For temperature and potential evapotranspiration, the climate change signals only involve quantile based changes. The perturbed series were input into the hydrological models and the impacts on the surface and ground water resources studied. The range of impact results (after considering 36 GCM runs) were summarized in high, mean, and low results. It was found that due to increasing precipitation in winter, snow accumulation increases in the upper mountainous areas. Due to temperature rise, snow melting rates increase and the snow melting periods are pushed forward in time. Although the qualitive impact results are highly consistent among the different GCM runs considered, the precise quantitative impact results varied significantly depending on the GCM run and the hydrological model.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2011-11-19
    Description: Sand box experiments to evaluate the influence of subsurface temperature probe design on temperature based water flux calculation Hydrology and Earth System Sciences, 15, 3495-3510, 2011 Author(s): M. Munz, S. E. Oswald, and C. Schmidt Quantification of subsurface water fluxes based on the one dimensional solution to the heat transport equation depends on the accuracy of measured subsurface temperatures. The influence of temperature probe setup on the accuracy of vertical water flux calculation was systematically evaluated in this experimental study. Four temperature probe setups were installed into a sand box experiment to measure temporal highly resolved vertical temperature profiles under controlled water fluxes in the range of ±1.3 m d −1 . Pass band filtering provided amplitude differences and phase shifts of the diurnal temperature signal varying with depth depending on water flux. Amplitude ratios of setups directly installed into the saturated sediment significantly varied with sand box hydraulic gradients. Amplitude ratios provided an accurate basis for the analytical calculation of water flow velocities, which matched measured flow velocities. Calculated flow velocities were sensitive to thermal properties of saturated sediment and to temperature sensor spacing, but insensitive to thermal dispersivity equal to solute dispersivity. Amplitude ratios of temperature probe setups indirectly installed into piezometer pipes were influenced by thermal exchange processes within the pipes and significantly varied with water flux direction only. Temperature time lags of small sensor distances of all setups were found to be insensitive to vertical water flux.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2011-11-23
    Description: Seasonal hydrologic prediction in the United States: understanding the role of initial hydrologic conditions and seasonal climate forecast skill Hydrology and Earth System Sciences, 15, 3529-3538, 2011 Author(s): S. Shukla and D. P. Lettenmaier Seasonal hydrologic forecasts derive their skill from knowledge of initial hydrologic conditions and climate forecast skill associated with seasonal climate outlooks. Depending on the type of hydrological regime and the season, the relative contributions of initial hydrologic conditions and climate forecast skill to seasonal hydrologic forecast skill vary. We seek to quantify these contributions on a relative basis across the Conterminous United States. We constructed two experiments – Ensemble Streamflow Prediction and reverse-Ensemble Streamflow Prediction – to partition the contributions of the initial hydrologic conditions and climate forecast skill to overall forecast skill. In ensemble streamflow prediction (first experiment) hydrologic forecast skill is derived solely from knowledge of initial hydrologic conditions, whereas in reverse-ensemble streamflow prediction (second experiment), it is derived solely from atmospheric forcings (i.e. perfect climate forecast skill). Using the ratios of root mean square error in predicting cumulative runoff and mean monthly soil moisture of each experiment, we identify the variability of the relative contributions of the initial hydrologic conditions and climate forecast skill spatially throughout the year. We conclude that the initial hydrologic conditions generally have the strongest influence on the prediction of cumulative runoff and soil moisture at lead-1 (first month of the forecast period), beyond which climate forecast skill starts to have greater influence. Improvement in climate forecast skill alone will lead to better seasonal hydrologic forecast skill in most parts of the Northeastern and Southeastern US throughout the year and in the Western US mainly during fall and winter months; whereas improvement in knowledge of the initial hydrologic conditions can potentially improve skill most in the Western US during spring and summer months. We also observed that at a short lead time (i.e. lead-1) contribution of the initial hydrologic conditions in soil moisture forecasts is more extensive than in cumulative runoff forecasts across the Conterminous US.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2011-11-30
    Description: A trading-space-for-time approach to probabilistic continuous streamflow predictions in a changing climate – accounting for changing watershed behavior Hydrology and Earth System Sciences, 15, 3591-3603, 2011 Author(s): R. Singh, T. Wagener, K. van Werkhoven, M. E. Mann, and R. Crane Projecting how future climatic change might impact streamflow is an important challenge for hydrologic science. The common approach to solve this problem is by forcing a hydrologic model, calibrated on historical data or using a priori parameter estimates, with future scenarios of precipitation and temperature. However, several recent studies suggest that the climatic regime of the calibration period is reflected in the resulting parameter estimates and model performance can be negatively impacted if the climate for which projections are made is significantly different from that during calibration. So how can we calibrate a hydrologic model for historically unobserved climatic conditions? To address this issue, we propose a new trading-space-for-time framework that utilizes the similarity between the predictions under change (PUC) and predictions in ungauged basins (PUB) problems. In this new framework we first regionalize climate dependent streamflow characteristics using 394 US watersheds. We then assume that this spatial relationship between climate and streamflow characteristics is similar to the one we would observe between climate and streamflow over long time periods at a single location. This assumption is what we refer to as trading-space-for-time. Therefore, we change the limits for extrapolation to future climatic situations from the restricted locally observed historical variability to the variability observed across all watersheds used to derive the regression relationships. A typical watershed model is subsequently calibrated (conditioned) on the predicted signatures for any future climate scenario to account for the impact of climate on model parameters within a Bayesian framework. As a result, we can obtain ensemble predictions of continuous streamflow at both gauged and ungauged locations. The new method is tested in five US watersheds located in historically different climates using synthetic climate scenarios generated by increasing mean temperature by up to 8 °C and changing mean precipitation by −30% to +40% from their historical values. Depending on the aridity of the watershed, streamflow projections using adjusted parameters became significantly different from those using historically calibrated parameters if precipitation change exceeded −10% or +20%. In general, the trading-space-for-time approach resulted in a stronger watershed response to climate change for both high and low flow conditions.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2011-11-30
    Description: Building hazard maps of extreme daily rainy events from PDF ensemble, via REA method, on Senegal River Basin Hydrology and Earth System Sciences, 15, 3605-3615, 2011 Author(s): J. D. Giraldo Osorio and S. G. García Galiano The Sudano-Sahelian zone of West Africa, one of the poorest of the Earth, is characterized by high rainfall variability and rapid population growth. In this region, heavy storm events frequently cause extensive damage. Nonetheless, the projections for change in extreme rainfall values have shown a great divergence between Regional Climate Models (RCM), increasing the forecast uncertainty. Novel methodologies should be applied, taking into account both the variability provided by different RCMs, as well as the non-stationary nature of time series for the building of hazard maps of extreme rainfall events. The present work focuses on the probability density functions (PDFs)-based evaluation and a simple quantitative measure of how well each RCM considered can capture the observed annual maximum daily rainfall (AMDR) series on the Senegal River basin. Since meaningful trends have been detected in historical rainfall time series for the region, non-stationary probabilistic models were used to fit the PDF parameters to the AMDR time series. In the development of PDF ensemble by bootstrapping techniques, Reliability Ensemble Averaging (REA) maps were applied to score the RCMs. The REA factors were computed using a metric to evaluate the agreement between observed -or best estimated- PDFs, and that simulated with each RCM. The assessment of plausible regional trends associated to the return period, from the hazard maps of AMDR, showed a general rise, owing to an increase in the mean and the variability of extreme precipitation. These spatial-temporal distributions could be considered by Organization for the Development of the Senegal River (Organisation pour la mise en valeur du fleuve Sénégal, OMVS), in such a way as to reach a better balance between mitigation and adaptation.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2011-11-16
    Description: Regional-scale identification of groundwater-surface water interaction using hydrochemistry and multivariate statistical methods, Wairarapa Valley, New Zealand Hydrology and Earth System Sciences, 15, 3383-3398, 2011 Author(s): M. R. Guggenmos, C. J. Daughney, B. M. Jackson, and U. Morgenstern Identifying areas of interaction between groundwater and surface water is crucial for effective environmental management, because this interaction is known to influence water quantity and quality. This paper applies hydrochemistry and multivariate statistics to identify locations and mechanisms of groundwater-surface water interaction in the pastorally dominated Wairarapa Valley, New Zealand. Hierarchical Cluster Analysis (HCA) and Principal Components Analysis (PCA) were conducted using site-specific median values of Ca, Mg, Na, K, HCO 3 , Cl, SO 4 and electrical conductivity from 22 surface water sites and 246 groundwater sites. Surface water and groundwater monitoring sites were grouped together in three of the seven clusters identified by HCA, with the inference made that similarities in hydrochemistry indicate groundwater-surface water interaction. PCA indicated that the clusters were largely differentiated by total dissolved solids concentration, redox condition and ratio of major ions. Shallow aerobic groundwaters, located in close proximity to losing reaches of rivers, were grouped with similar Ca-HCO 3 type surface waters, indicating potential recharge to aquifers from these river systems. Groundwaters that displayed a rainfall-recharged chemical signature with higher Na relative to Ca, higher Cl relative to HCO 3 and an accumulation of NO 3 were grouped with neighbouring surface waters, suggesting the provision of groundwater base flow to these river systems and the transfer of this chemical signature from underlying aquifers. The hydrochemical techniques used in this study did not reveal groundwater-surface water interaction in some parts of the study area, specifically where deep anoxic groundwaters, high in total dissolved solids with a distinct Na-Cl signature, showed no apparent link to surface water. The drivers of hydrochemistry inferred from HCA and PCA are consistent with previous measurements of 18 O, water age and excess air. Overall, this study has shown that multivariate statistics can be used as a rapid method to identify groundwater-surface water interaction at a regional scale using existing hydrochemical datasets.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2011-11-17
    Description: Catchment classification: hydrological analysis of catchment behavior through process-based modeling along a climate gradient Hydrology and Earth System Sciences, 15, 3411-3430, 2011 Author(s): G. Carrillo, P. A. Troch, M. Sivapalan, T. Wagener, C. Harman, and K. Sawicz Catchment classification is an efficient method to synthesize our understanding of how climate variability and catchment characteristics interact to define hydrological response. One way to accomplish catchment classification is to empirically relate climate and catchment characteristics to hydrologic behavior and to quantify the skill of predicting hydrologic response based on the combination of climate and catchment characteristics. Here we present results using an alternative approach that uses our current level of hydrological understanding, expressed in the form of a process-based model, to interrogate how climate and catchment characteristics interact to produce observed hydrologic response. The model uses topographic, geomorphologic, soil and vegetation information at the catchment scale and conditions parameter values using readily available data on precipitation, temperature and streamflow. It is applicable to a wide range of catchments in different climate settings. We have developed a step-by-step procedure to analyze the observed hydrologic response and to assign parameter values related to specific components of the model. We applied this procedure to 12 catchments across a climate gradient east of the Rocky Mountains, USA. We show that the model is capable of reproducing the observed hydrologic behavior measured through hydrologic signatures chosen at different temporal scales. Next, we analyze the dominant time scales of catchment response and their dimensionless ratios with respect to climate and observable landscape features in an attempt to explain hydrologic partitioning. We find that only a limited number of model parameters can be related to observable landscape features. However, several climate-model time scales, and the associated dimensionless numbers, show scaling relationships with respect to the investigated hydrological signatures (runoff coefficient, baseflow index, and slope of the flow duration curve). Moreover, some dimensionless numbers vary systematically across the climate gradient, possibly as a result of systematic co-variation of climate, vegetation and soil related time scales. If such co-variation can be shown to be robust across many catchments along different climate gradients, it opens perspective for model parameterization in ungauged catchments as well as prediction of hydrologic response in a rapidly changing environment.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2011-11-24
    Description: Correction of upstream flow and hydraulic state with data assimilation in the context of flood forecasting Hydrology and Earth System Sciences, 15, 3555-3575, 2011 Author(s): S. Ricci, A. Piacentini, O. Thual, E. Le Pape, and G. Jonville The present study describes the assimilation of river water level observations and the resulting improvement in flood forecasting. The Kalman Filter algorithm was built on top of a one-dimensional hydraulic model which describes the Saint-Venant equations. The assimilation algorithm folds in two steps: the first one was based on the assumption that the upstream flow can be adjusted using a three-parameter correction; the second one consisted of directly correcting the hydraulic state. This procedure was applied using a four-day sliding window over the flood event. The background error covariances for water level and discharge were represented with anisotropic correlation functions where the correlation length upstream of the observation points is larger than the correlation length downstream of the observation points. This approach was motivated by the implementation of a Kalman Filter algorithm on top of a diffusive flood wave propagation model. The study was carried out on the Adour and the Marne Vallage (France) catchments. The correction of the upstream flow as well as the control of the hydraulic state during the flood event leads to a significant improvement in the water level and discharge in both analysis and forecast modes.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2011-11-26
    Description: The sensitivity of land emissivity estimates from AMSR-E at C and X bands to surface properties Hydrology and Earth System Sciences, 15, 3577-3589, 2011 Author(s): H. Norouzi, M. Temimi, W. B. Rossow, C. Pearl, M. Azarderakhsh, and R. Khanbilvardi Microwave observations at low frequencies exhibit more sensitivity to surface and subsurface properties with little interference from the atmosphere. The objective of this study is to develop a global land emissivity product using passive microwave observations from the Advanced Microwave Scanning Radiometer – Earth Observing System (AMSR-E) and to investigate its sensitivity to land surface properties. The developed product complements existing land emissivity products from SSM/I and AMSU by adding land emissivity estimates at two lower frequencies, 6.9 and 10.65 GHz (C- and X-band, respectively). Observations at these low frequencies penetrate deeper into the soil layer. Ancillary data used in the analysis, such as surface skin temperature and cloud mask, are obtained from International Satellite Cloud Climatology Project (ISCCP). Atmospheric properties are obtained from the TIROS Operational Vertical Sounder (TOVS) observations to determine the small upwelling and downwelling atmospheric emissions as well as the atmospheric transmission. A sensitivity test confirms the small effect of the atmosphere but shows that skin temperature accuracy can significantly affect emissivity estimates. Retrieved emissivities at C- and X-bands and their polarization differences exhibit similar patterns of variation with changes in land cover type, soil moisture, and vegetation density as seen at SSM/I-like frequencies (Ka and Ku bands). The emissivity maps from AMSR-E at these higher frequencies agree reasonably well with the existing SSM/I-based product. The inherent discrepancy introduced by the difference between SSM/I and AMSR-E frequencies, incidence angles, and calibration has been assessed. Significantly greater standard deviation of estimated emissivities compared to SSM/I land emissivity product was found over desert regions. Large differences between emissivity estimates from ascending and descending overpasses were found at lower frequencies due to the inconsistency between thermal IR skin temperatures and passive microwave brightness temperatures which can originate from below the surface. The mismatch between day and night AMSR-E emissivities is greater than ascending and descending differences of SSM/I emissivity. This is because of unique orbit time of AMSR-E (01:30 a.m./p.m. LT) while other microwave sensors have orbit time of 06:00 to 09:00 (a.m./p.m.). This highlights the importance of considering the penetration depth of the microwave signal and diurnal variability of the temperature in emissivity retrieval. The effect of these factors is greater for AMSR-E observations than SSM/I observations, as AMSR-E observations exhibit a greater difference between day and night measures. This issue must be addressed in future studies to improve the accuracy of the emissivity estimates especially at AMSR-E lower frequencies.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2011-11-16
    Description: Evaluating uncertainty estimates in hydrologic models: borrowing measures from the forecast verification community Hydrology and Earth System Sciences, 15, 3367-3382, 2011 Author(s): K. J. Franz and T. S. Hogue The hydrologic community is generally moving towards the use of probabilistic estimates of streamflow, primarily through the implementation of Ensemble Streamflow Prediction (ESP) systems, ensemble data assimilation methods, or multi-modeling platforms. However, evaluation of probabilistic outputs has not necessarily kept pace with ensemble generation. Much of the modeling community is still performing model evaluation using standard deterministic measures, such as error, correlation, or bias, typically applied to the ensemble mean or median. Probabilistic forecast verification methods have been well developed, particularly in the atmospheric sciences, yet few have been adopted for evaluating uncertainty estimates in hydrologic model simulations. In the current paper, we overview existing probabilistic forecast verification methods and apply the methods to evaluate and compare model ensembles produced from two different parameter uncertainty estimation methods: the Generalized Uncertainty Likelihood Estimator (GLUE), and the Shuffle Complex Evolution Metropolis (SCEM). Model ensembles are generated for the National Weather Service SACramento Soil Moisture Accounting (SAC-SMA) model for 12 forecast basins located in the Southeastern United States. We evaluate the model ensembles using relevant metrics in the following categories: distribution, correlation, accuracy, conditional statistics, and categorical statistics. We show that the presented probabilistic metrics are easily adapted to model simulation ensembles and provide a robust analysis of model performance associated with parameter uncertainty. Application of these methods requires no information in addition to what is already available as part of traditional model validation methodology and considers the entire ensemble or uncertainty range in the approach.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2011-11-17
    Description: Simple physics-based models of compensatory plant water uptake: concepts and eco-hydrological consequences Hydrology and Earth System Sciences, 15, 3431-3446, 2011 Author(s): N. J. Jarvis Many land surface schemes and simulation models of plant growth designed for practical use employ simple empirical sub-models of root water uptake that cannot adequately reflect the critical role water uptake from sparsely rooted deep subsoil plays in meeting atmospheric transpiration demand in water-limited environments, especially in the presence of shallow groundwater. A failure to account for this so-called "compensatory" water uptake may have serious consequences for both local and global modeling of water and energy fluxes, carbon balances and climate. Some purely empirical compensatory root water uptake models have been proposed, but they are of limited use in global modeling exercises since their parameters cannot be related to measurable soil and vegetation properties. A parsimonious physics-based model of uptake compensation has been developed that requires no more parameters than empirical approaches. This model is described and some aspects of its behavior are illustrated with the help of example simulations. These analyses demonstrate that hydraulic lift can be considered as an extreme form of compensation and that the degree of compensation is principally a function of soil capillarity and the ratio of total effective root length to potential transpiration. Thus, uptake compensation increases as root to leaf area ratios increase, since potential transpiration depends on leaf area. Results of "scenario" simulations for two case studies, one at the local scale (riparian vegetation growing above shallow water tables in seasonally dry or arid climates) and one at a global scale (water balances across an aridity gradient in the continental USA), are presented to illustrate biases in model predictions that arise when water uptake compensation is neglected. In the first case, it is shown that only a compensated model can match the strong relationships between water table depth and leaf area and transpiration observed in riparian forest ecosystems, where sparse roots in the capillary fringe contribute a significant proportion of the water uptake during extended dry periods. The results of the second case study suggest that uncompensated models may give biased estimates of long-term evapotranspiration at the continental scale. In the example presented here, the uncompensated model underestimated total evapotranspiration by 5–7% in climates of intermediate aridity, while the ratio of transpiration to evaporation was also smaller than for the compensated model, especially in arid climates. It is concluded that the parsimonious physics-based model concepts described here may be useful in the context of eco-hydrological modeling at local, regional and global scales.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2011-11-17
    Description: Improving the characterization of initial condition for ensemble streamflow prediction using data assimilation Hydrology and Earth System Sciences, 15, 3399-3410, 2011 Author(s): C. M. DeChant and H. Moradkhani Within the National Weather Service River Forecast System, water supply forecasting is performed through Ensemble Streamflow Prediction (ESP). ESP relies both on the estimation of initial conditions and historically resampled forcing data to produce seasonal volumetric forecasts. In the western US, the accuracy of initial condition estimation is particularly important due to the large quantities of water stored in mountain snowpack. In order to improve the estimation of snow quantities, this study explores the use of ensemble data assimilation. Rather than relying entirely on the model to create single deterministic initial snow water storage, as currently implemented in operational forecasting, this study incorporates SNOTEL data along with model predictions to create an ensemble based probabilistic estimation of snow water storage. This creates a framework to account for initial condition uncertainty in addition to forcing uncertainty. The results presented in this study suggest that data assimilation has the potential to improve ESP for probabilistic volumetric forecasts but is limited by the available observations.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2011-12-02
    Description: Deepwater Horizon oil spill impacts on Alabama beaches Hydrology and Earth System Sciences, 15, 3639-3649, 2011 Author(s): J. S. Hayworth, T. P. Clement, and J. F. Valentine From mid June 2010 to early August 2010, the white sandy beaches along Alabama's Gulf coast were inundated with crude oil discharged from the Deepwater Horizon well. The long-term consequences of this environmental catastrophe are still unfolding. Although BP has attempted to clean up some of these beaches, there still exist many unanswered questions regarding the physical, chemical, and ecological state of the oil contaminated beach system. In this paper, we present our understanding of what is known and known to be unknown with regard to the current state of Alabama's beaches in the aftermath of the Deepwater Horizon disaster. Motivated by our observations of the evolving distribution of oil in Alabama's beaches and BP's clean-up activities, we offer our thoughts on the lessons learned from this oil spill disaster.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2011-10-21
    Description: Diffuse hydrological mass transport through catchments: scenario analysis of coupled physical and biogeochemical uncertainty effects Hydrology and Earth System Sciences, 15, 3195-3206, 2011 Author(s): K. Persson, J. Jarsjö, and G. Destouni This paper quantifies and maps the effects of coupled physical and biogeochemical variability on diffuse hydrological mass transport through and from catchments. It further develops a scenario analysis approach and investigates its applicability for handling uncertainties about both physical and biogeochemical variability and their different possible cross-correlation. The approach enables identification of conservative assumptions, uncertainty ranges, as well as pollutant/nutrient release locations and situations for which further investigations are most needed in order to reduce the most important uncertainty effects. The present scenario results provide different statistical and geographic distributions of advective travel times for diffuse hydrological mass transport. The geographic mapping can be used to identify potential hotspot areas with large mass loading to downstream surface and coastal waters, as well as their opposite, potential lowest-impact areas within the catchment. Results for alternative travel time distributions show that neglect or underestimation of the physical advection variability, and in particular of those transport pathways with much shorter than average advective solute travel times, can lead to substantial underestimation of pollutant and nutrient loads to downstream surface and coastal waters. This is particularly true for relatively high catchment-characteristic product of average attenuation rate and average advective travel time, for which mass delivery would be near zero under assumed transport homogeneity but can be orders of magnitude higher for variable transport conditions. A scenario of high advection variability, with a significant fraction of relatively short travel times, combined with a relevant average biogeochemical mass attenuation rate, emerges consistently from the present results as a generally reasonable, conservative assumption for estimating maximum diffuse mass loading, when the prevailing physical and biogeochemical variability and cross-correlation are uncertain.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2011-10-21
    Description: Effects of disregarding seasonality on the distribution of hydrological extremes Hydrology and Earth System Sciences, 15, 3207-3215, 2011 Author(s): P. Allamano, F. Laio, and P. Claps This paper deals with the seasonality of hydroclimatic extremes and with the problem of accounting for their non-homogeneous character in determining the design value. To this aim we devise a simple stochastic experiment in which extremes are produced by a non-homogeneous extreme value generation process. The design values are estimated in closed analytical form both in a peak over threshold framework and by using the standard annual maxima approach. In this completely controlled world of generated hydrological extremes, a statistical measure of the error associated to the adoption of a homogeneous model is introduced. The sensitivity of this measure, named return period ratio, to the typology and strength of seasonality is investigated. We find that neglecting seasonality induces a downward bias in design value estimators. The magnitude of the bias may be large when the peak over threshold approach is adopted, while the return period distortion is limited when the annual maxima are considered. An application to rainfall data from a 30 000 km 2 region located in North-Western Italy is presented to better clarify the effects of disregarding seasonality in a real case.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2011-10-26
    Description: Applying sequential Monte Carlo methods into a distributed hydrologic model: lagged particle filtering approach with regularization Hydrology and Earth System Sciences, 15, 3237-3251, 2011 Author(s): S. J. Noh, Y. Tachikawa, M. Shiiba, and S. Kim Data assimilation techniques have received growing attention due to their capability to improve prediction. Among various data assimilation techniques, sequential Monte Carlo (SMC) methods, known as "particle filters", are a Bayesian learning process that has the capability to handle non-linear and non-Gaussian state-space models. In this paper, we propose an improved particle filtering approach to consider different response times of internal state variables in a hydrologic model. The proposed method adopts a lagged filtering approach to aggregate model response until the uncertainty of each hydrologic process is propagated. The regularization with an additional move step based on the Markov chain Monte Carlo (MCMC) methods is also implemented to preserve sample diversity under the lagged filtering approach. A distributed hydrologic model, water and energy transfer processes (WEP), is implemented for the sequential data assimilation through the updating of state variables. The lagged regularized particle filter (LRPF) and the sequential importance resampling (SIR) particle filter are implemented for hindcasting of streamflow at the Katsura catchment, Japan. Control state variables for filtering are soil moisture content and overland flow. Streamflow measurements are used for data assimilation. LRPF shows consistent forecasts regardless of the process noise assumption, while SIR has different values of optimal process noise and shows sensitive variation of confidential intervals, depending on the process noise. Improvement of LRPF forecasts compared to SIR is particularly found for rapidly varied high flows due to preservation of sample diversity from the kernel, even if particle impoverishment takes place.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2011-10-29
    Description: Recent developments in predictive uncertainty assessment based on the model conditional processor approach Hydrology and Earth System Sciences, 15, 3253-3274, 2011 Author(s): G. Coccia and E. Todini The work aims at discussing the role of predictive uncertainty in flood forecasting and flood emergency management, its relevance to improve the decision making process and the techniques to be used for its assessment. Real time flood forecasting requires taking into account predictive uncertainty for a number of reasons. Deterministic hydrological/hydraulic forecasts give useful information about real future events, but their predictions, as usually done in practice, cannot be taken and used as real future occurrences but rather used as pseudo-measurements of future occurrences in order to reduce the uncertainty of decision makers. Predictive Uncertainty (PU) is in fact defined as the probability of occurrence of a future value of a predictand (such as water level, discharge or water volume) conditional upon prior observations and knowledge as well as on all the information we can obtain on that specific future value from model forecasts. When dealing with commensurable quantities, as in the case of floods, PU must be quantified in terms of a probability distribution function which will be used by the emergency managers in their decision process in order to improve the quality and reliability of their decisions. After introducing the concept of PU, the presently available processors are introduced and discussed in terms of their benefits and limitations. In this work the Model Conditional Processor (MCP) has been extended to the possibility of using two joint Truncated Normal Distributions (TNDs), in order to improve adaptation to low and high flows. The paper concludes by showing the results of the application of the MCP on two case studies, the Po river in Italy and the Baron Fork river, OK, USA. In the Po river case the data provided by the Civil Protection of the Emilia Romagna region have been used to implement an operational example, where the predicted variable is the observed water level. In the Baron Fork River example, the data set provided by the NOAA's National Weather Service, within the DMIP 2 Project, allowed two physically based models, the TOPKAPI model and TETIS model, to be calibrated and a data driven model to be implemented using the Artificial Neural Network. The three model forecasts have been combined with the aim of reducing the PU and improving the probabilistic forecast taking advantage of the different capabilities of each model approach.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2011-11-05
    Description: Simplifying a hydrological ensemble prediction system with a backward greedy selection of members – Part 2: Generalization in time and space Hydrology and Earth System Sciences, 15, 3327-3341, 2011 Author(s): D. Brochero, F. Anctil, and C. Gagné An uncertainty cascade model applied to stream flow forecasting seeks to evaluate the different sources of uncertainty of the complex rainfall-runoff process. The current trend focuses on the combination of Meteorological Ensemble Prediction Systems (MEPS) and hydrological model(s). However, the number of members of such a HEPS may rapidly increase to a level that may not be operationally sustainable. This paper evaluates the generalization ability of a simplification scheme of a 800-member HEPS formed by the combination of 16 lumped rainfall-runoff models with the 50 perturbed members from the European Centre for Medium-range Weather Forecasts (ECMWF) EPS. Tests are made at two levels. At the local level, the transferability of the 9th day hydrological member selection for the other 8 forecast horizons exhibits an 82% success rate. The other evaluation is made at the regional or cluster level, the transferability from one catchment to another from within a cluster of watersheds also leads to a good performance (85% success rate), especially for forecast time horizons above 3 days and when the basins that formed the cluster presented themselves a good performance on an individual basis. Diversity, defined as hydrological model complementarity addressing different aspects of a forecast, was identified as the critical factor for proper selection applications.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2011-11-18
    Description: Comparison of hydrological model structures based on recession and low flow simulations Hydrology and Earth System Sciences, 15, 3447-3459, 2011 Author(s): M. Staudinger, K. Stahl, J. Seibert, M. P. Clark, and L. M. Tallaksen Low flows are often poorly reproduced by commonly used hydrological models, which are traditionally designed to meet peak flow situations. Hence, there is a need to improve hydrological models for low flow prediction. This study assessed the impact of model structure on low flow simulations and recession behaviour using the Framework for Understanding Structural Errors (FUSE). FUSE identifies the set of subjective decisions made when building a hydrological model and provides multiple options for each modeling decision. Altogether 79 models were created and applied to simulate stream flows in the snow dominated headwater catchment Narsjø in Norway (119 km 2 ). All models were calibrated using an automatic optimisation method. The results showed that simulations of summer low flows were poorer than simulations of winter low flows, reflecting the importance of different hydrological processes. The model structure influencing winter low flow simulations is the lower layer architecture, whereas various model structures were identified to influence model performance during summer.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2011-11-18
    Description: Use of ENVISAT ASAR Global Monitoring Mode to complement optical data in the mapping of rapid broad-scale flooding in Pakistan Hydrology and Earth System Sciences, 15, 3475-3494, 2011 Author(s): D. O'Grady, M. Leblanc, and D. Gillieson Envisat ASAR Global Monitoring Mode (GM) data are used to produce maps of the extent of the flooding in Pakistan which are made available to the rapid response effort within 24 h of acquisition. The high temporal frequency and independence of the data from cloud-free skies makes GM data a viable tool for mapping flood waters during those periods where optical satellite data are unavailable, which may be crucial to rapid response disaster planning, where thousands of lives are affected. Image differencing techniques are used, with pre-flood baseline image backscatter values being deducted from target values to eliminate regions with a permanent flood-like radar response due to volume scattering and attenuation, and to highlight the low response caused by specular reflection by open flood water. The effect of local incidence angle on the received signal is mitigated by ensuring that the deducted image is acquired from the same orbit track as the target image. Poor separability of the water class with land in areas beyond the river channels is tackled using a region-growing algorithm which seeks threshold-conformance from seed pixels at the center of the river channels. The resultant mapped extents are tested against MODIS SWIR data where available, with encouraging results.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2011-11-24
    Description: A review of regionalisation for continuous streamflow simulation Hydrology and Earth System Sciences, 15, 3539-3553, 2011 Author(s): Y. He, A. Bárdossy, and E. Zehe Research on regionalisation in hydrology has been constantly advancing due to the need for prediction of streamflow in ungauged catchments. There are two types of studies that use regionalisation techniques for ungauged catchments. One type estimates parameters of streamflow statistics, flood quantiles in most cases. The other type estimates parameters of a rainfall-runoff model for simulating continuous streamflow or estimates continuous streamflow without using a model. Almost all methods applied to the latter can be applied to the former. This paper reviews all methods that are applied to continuous streamflow estimation for ungauged catchments. We divide them into two general categories: (1) distance-based and (2) regression-based. Methods that fall within each category are reviewed first and followed with a discussion on merits or problems associated with these various methods.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2011-10-21
    Description: From precipitation to groundwater baseflow in a native prairie ecosystem: a regional study of the Konza LTER in the Flint Hills of Kansas, USA Hydrology and Earth System Sciences, 15, 3181-3194, 2011 Author(s): D. R. Steward, X. Yang, S. Y. Lauwo, S. A. Staggenborg, G. L. Macpherson, and S. M. Welch Methods are developed to study hydrologic interactions across the surficial/groundwater interface in a native prairie ecosystem. Surficial ecohydrologic processes are simulated with the USDA's EPIC model using daily climate data from the Kansas Weather Data Library, vegetation and soil data from the USDA, and current land-use management practices. Results show that mean annual precipitation (from 1985–2005) is partitioned into 13% runoff regionally and 14% locally over the Konza LTER, lateral flow through soil is 1% regionally and 2% locally, groundwater recharge is 11% regionally and 9% locally, and evapotranspiration accounts for the remaining 75%. The spatial distribution of recharge was used in a regional Modflow groundwater model that was calibrated to existing groundwater observations and field measurements gathered for this study, giving a hydraulic conductivity in the Flint Hills region of 1–2 m day −1 with a local zone (identified here) of 0.05–0.1 m day −1 . The resistance was set to fixed representative values during model calibration of hydraulic conductivity, and simple log-log relations correlate the enhanced recharge beneath ephemeral upland streams and baseflow in perennial lowland streams to the unknown resistance of the streambeds. Enhanced recharge due to stream transmission loss (the difference between terrestrial runoff and streamflow) represents a small fraction of streamflow in the ephemeral upland and the resistance of this streambed is 100 000 day. Long-term baseflow in the local Kings Creek watershed (2% of the groundwater recharge over the watershed) is met when the resistance of the lowland streambed is 1000 day. The coupled framework developed here to study surficial ecohydrological processes using EPIC and groundwater hydrogeological processes using Modflow provides a baseline hydrologic assessment and a computational platform for future investigations to examine the impacts of climate change, vegetative cover, soils, and management practices on hydrologic forcings.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2011-09-09
    Description: Climate change impacts on snow water availability in the Euphrates-Tigris basin Hydrology and Earth System Sciences, 15, 2789-2803, 2011 Author(s): M. Özdoğan This study investigates the effects of projected climate change on snow water availability in the Euphrates-Tigris basin using the Variable Infiltration Capacity (VIC) macro scale hydrologic model and a set of regional climate-change outputs from 13 global circulation models (GCMs) forced with two greenhouse gas emission scenarios for two time periods in the 21st century (2050 and 2090). The hydrologic model produces a reasonable simulation of seasonal and spatial variation in snow cover and associated snow water equivalent (SWE) in the mountainous areas of the basin, although its performance is poorer at marginal snow cover sites. While there is great variation across GCM outputs influencing snow water availability, the majority of models and scenarios suggest a significant decline (between 10 and 60 percent) in available snow water, particularly under the high-impact A2 climate change scenario and later in the 21st century. The changes in SWE are more stable when multi-model ensemble GCM outputs are used to minimize inter-model variability, suggesting a consistent and significant decrease in snow-covered areas and associated water availability in the headwaters of the Euphrates-Tigris basin. Detailed analysis of future climatic conditions point to the combined effects of reduced precipitation and increased temperatures as primary drivers of reduced snowpack. Results also indicate a more rapid decline in snow cover in the lower elevation zones than the higher areas in a changing climate but these findings also contain a larger uncertainty. The simulated changes in snow water availability have important implications for the future of water resources and associated hydropower generation and land-use management and planning in a region already ripe for interstate water conflict. While the changes in the frequency and intensity of snow-bearing circulation systems or the interannual variability related to climate were not considered, the simulated changes in snow water availability presented here are likely to be indicative of climate change impacts on the water resources of the Euphrates-Tigris basin.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2011-09-16
    Description: Catchment classification: empirical analysis of hydrologic similarity based on catchment function in the eastern USA Hydrology and Earth System Sciences, 15, 2895-2911, 2011 Author(s): K. Sawicz, T. Wagener, M. Sivapalan, P. A. Troch, and G. Carrillo Hydrologic similarity between catchments, derived from similarity in how catchments respond to precipitation input, is the basis for catchment classification, for transferability of information, for generalization of our hydrologic understanding and also for understanding the potential impacts of environmental change. An important question in this context is, how far can widely available hydrologic information (precipitation-temperature-streamflow data and generally available physical descriptors) be used to create a first order grouping of hydrologically similar catchments? We utilize a heterogeneous dataset of 280 catchments located in the Eastern US to understand hydrologic similarity in a 6-dimensional signature space across a region with strong environmental gradients. Signatures are defined as hydrologic response characteristics that provide insight into the hydrologic function of catchments. A Bayesian clustering scheme is used to separate the catchments into 9 homogeneous classes, which enable us to interpret hydrologic similarity with respect to similarity in climatic and landscape attributes across this region. We finally derive several hypotheses regarding controls on individual signatures from the analysis performed here.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2011-09-20
    Description: On the spatio-temporal analysis of hydrological droughts from global hydrological models Hydrology and Earth System Sciences, 15, 2963-2978, 2011 Author(s): G. A. Corzo Perez, M. H. J. van Huijgevoort, F. Voß, and H. A. J. van Lanen The recent concerns for world-wide extreme events related to climate change have motivated the development of large scale models that simulate the global water cycle. In this context, analysis of hydrological extremes is important and requires the adaptation of identification methods used for river basin models. This paper presents two methodologies that extend the tools to analyze spatio-temporal drought development and characteristics using large scale gridded time series of hydrometeorological data. The methodologies are classified as non-contiguous and contiguous drought area analyses (i.e. NCDA and CDA). The NCDA presents time series of percentages of areas in drought at the global scale and for pre-defined regions of known hydroclimatology. The CDA is introduced as a complementary method that generates information on the spatial coherence of drought events at the global scale. Spatial drought events are found through CDA by clustering patterns (contiguous areas). In this study the global hydrological model WaterGAP was used to illustrate the methodology development. Global gridded time series of subsurface runoff (resolution 0.5°) simulated with the WaterGAP model from land points were used. The NCDA and CDA were developed to identify drought events in runoff. The percentages of area in drought calculated with both methods show complementary information on the spatial and temporal events for the last decades of the 20th century. The NCDA provides relevant information on the average number of droughts, duration and severity (deficit volume) for pre-defined regions (globe, 2 selected hydroclimatic regions). Additionally, the CDA provides information on the number of spatially linked areas in drought, maximum spatial event and their geographic location on the globe. Some results capture the overall spatio-temporal drought extremes over the last decades of the 20th century. Events like the El Niño Southern Oscillation (ENSO) in South America and the pan-European drought in 1976 appeared clearly in both analyses. The methodologies introduced provide an important basis for the global characterization of droughts, model inter-comparison of drought identified from global hydrological models and spatial event analyses.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2011-09-29
    Description: On the validity of modeling concepts for the simulation of groundwater flow in lowland peat areas – case study at the Zegveld experimental field Hydrology and Earth System Sciences, 15, 3017-3031, 2011 Author(s): P. Trambauer, J. Nonner, J. Heijkers, and S. Uhlenbrook The groundwater flow models currently used in the western part of The Netherlands and in other similar peaty areas are thought to be a too simplified representation of the hydrological reality. One of the reasons is that, due to the schematization of the subsoil, its heterogeneity cannot be represented adequately. Moreover, the applicability of Darcy's law in these types of soils has been questioned, but this law forms the basis of most groundwater flow models. With the purpose of assessing the typical heterogeneity of the subsoil and to verify the applicability of Darcy's law, geo-hydrological fieldwork was completed at an experimental field within a research area in the western part of The Netherlands. The assessments were carried out for the so-called Complex Confining Layer (CCL), which is the Holocene peaty to clayey layer overlying Pleistocene sandy deposits. Borehole drilling through the CCL with a hand auger was completed and revealed the typical heterogeneous character of this layer, showing a dominance of muddy, humified peat which is alternated with fresher peat and clay. Slug tests were carried out to study the applicability of Darcy's law, given that previous studies suggested its non-validity for humified peat soils due to a variable horizontal hydraulic conductivity K h with head differences. For higher humification degrees, the experiments indeed suggested a variable K h , but this appeared to be the result of the inappropriate use of steady-state formulae for transient experiments in peaty environments. The muddy peat sampled has a rather plastic nature, and the high compressibility of this material leads to transient behavior. However, using transient formulae, the slug tests conducted for different initial groundwater heads showed that there was hardly any evidence of a variation of the hydraulic conductivity with the applied head differences. Therefore, Darcy's law can be used for typical peat soils present in The Netherlands. The heterogeneity of the subsoil and the apparent applicability of Darcy's law were taken into account for the detailed heterogeneous model that was prepared for the research area. A MODFLOW model consisting of 13 layers in which 4 layers represent the heterogeneous CCL was set up for an average year, assuming steady-state conditions; and for the winter of 2009 to 2010, adopting transient conditions. The transient model was extended to simulate for longer periods with the objective of visualizing the flow paths through the CCL. The results from these models were compared with a 10 layer model, whereby the CCL is represented by a single layer assuming homogeneity. From the comparison of the two model types, the conclusion could be drawn that a single layer schematization of the CCL produces flowpath patterns which are not the same but still quite similar to a 4 layer representation of the CCL. However, the single layer schematization results in a considerable underestimation of the flow velocity, and subsequently a longer travel time, through the CCL. Therefore, a single layer model of the CCL seems quite appropriate to represent the general flow behavior of the shallow groundwater system, but would be inappropriate for transport modeling through the CCL.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2011-07-09
    Description: Hydraulic analysis of river training cross-vanes as part of post-restoration monitoring Hydrology and Earth System Sciences, 15, 2119-2126, 2011 Author(s): T. A. Endreny and M. M. Soulman River restoration design methods are incrementally improved by studying and learning from monitoring data in previous projects. In this paper we report post-restoration monitoring data and simulation analysis for a Natural Channel Design (NCD) restoration project along 1600 m of the Batavia Kill (14 km 2 watershed) in the Catskill Mountains, NY. The restoration project was completed in 2002 with goals to reduce bank erosion and determine the efficacy of NCD approaches for restoring headwater streams in the Catskill Mountains, NY. The NCD approach used a reference-reach to determine channel form, empirical relations between the project site and reference site bankfull dimensions to size channel geometry, and hydraulic and sediment computations based on a bankfull (1.3 yr return interval) discharge to test channel capacity and sediment stability. The NCD project included 12 cross-vanes and 48 j-hook vanes as river training structures along 19 meander bends to protect against bank erosion and maintain scour pools for fish habitat. Monitoring data collected from 2002 to 2004 were used to identify aggradation of pools in meander bends and below some structures. Aggradation in pools was attributed to the meandering riffle-pool channel trending toward step-pool morphology and cross-vane arms not concentrating flow in the center of the channel. The aggradation subsequently caused flow splitting and 4 partial point bar avulsions during a spring 2005 flood with a 25-yr return interval. Processing the pre-flood monitoring data with hydraulic analysis software provided clues the reach was unstable and preventative maintenance was needed. River restoration and monitoring teams should be trained in robust hydraulic analytical methods that help them extend project restoration goals and structure stability.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2011-06-07
    Description: Heterogeneity of soil carbon pools and fluxes in a channelized and a restored floodplain section (Thur River, Switzerland) Hydrology and Earth System Sciences, 15, 1757-1769, 2011 Author(s): E. Samaritani, J. Shrestha, B. Fournier, E. Frossard, F. Gillet, C. Guenat, P. A. Niklaus, N. Pasquale, K. Tockner, E. A. D. Mitchell, and J. Luster Due to their spatial complexity and dynamic nature, floodplains provide a wide range of ecosystem functions. However, because of flow regulation, many riverine floodplains have lost their characteristic heterogeneity. Restoration of floodplain habitats and the rehabilitation of key ecosystem functions, many of them linked to organic carbon (C) dynamics in riparian soils, has therefore become a major goal of environmental policy. The fundamental understanding of the factors that drive the processes involved in C cycling in heterogeneous and dynamic systems such as floodplains is however only fragmentary. We quantified soil organic C pools (microbial C and water extractable organic C) and fluxes (soil respiration and net methane production) in functional process zones of adjacent channelized and widened sections of the Thur River, NE Switzerland, on a seasonal basis. The objective was to assess how spatial heterogeneity and temporal variability of these pools and fluxes relate to physicochemical soil properties on one hand, and to soil environmental conditions and flood disturbance on the other hand. Overall, factors related to seasonality and flooding (temperature, water content, organic matter input) affected soil C dynamics more than soil properties did. Coarse-textured soils on gravel bars in the restored section were characterized by low base-levels of organic C pools due to low TOC contents. However, frequent disturbance by flood pulses led to high heterogeneity with temporarily and locally increased C pools and soil respiration. By contrast, in stable riparian forests, the finer texture of the soils and corresponding higher TOC contents and water retention capacity led to high base-levels of C pools. Spatial heterogeneity was low, but major floods and seasonal differences in temperature had additional impacts on both pools and fluxes. Soil properties and base levels of C pools in the dam foreland of the channelized section were similar to the gravel bars of the restored section. By contrast, spatial heterogeneity, seasonal effects and flood disturbance were similar to the forests, except for indications of high CH 4 production that are explained by long travel times of infiltrating water favoring reducing conditions. Overall, the restored section exhibited both a larger range and a higher heterogeneity of organic C pools and fluxes as well as a higher plant biodiversity than the channelized section. This suggests that restoration has indeed led to an increase in functional diversity.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2011-07-13
    Description: A novel explicit approach to model bromide and pesticide transport in connected soil structures Hydrology and Earth System Sciences, 15, 2127-2144, 2011 Author(s): J. Klaus and E. Zehe The present study tests whether an explicit treatment of worm burrows and tile drains as connected structures is feasible for simulating water flow, bromide and pesticide transport in structured heterogeneous soils at hillslope scale. The essence is to represent worm burrows as morphologically connected paths of low flow resistance in a hillslope model. A recent Monte Carlo study (Klaus and Zehe, 2010, Hydrological Processes, 24, p. 1595–1609) revealed that this approach allowed successful reproduction of tile drain event discharge recorded during an irrigation experiment at a tile drained field site. However, several "hillslope architectures" that were all consistent with the available extensive data base allowed a good reproduction of tile drain flow response. Our second objective was thus to find out whether this "equifinality" in spatial model setups may be reduced when including bromide tracer data in the model falsification process. We thus simulated transport of bromide for the 13 spatial model setups that performed best with respect to reproduce tile drain event discharge, without any further calibration. All model setups allowed a very good prediction of the temporal dynamics of cumulated bromide leaching into the tile drain, while only four of them matched the accumulated water balance and accumulated bromide loss into the tile drain. The number of behavioural model architectures could thus be reduced to four. One of those setups was used for simulating transport of Isoproturon, using different parameter combinations to characterise adsorption according to the Footprint data base. Simulations could, however, only reproduce the observed leaching behaviour, when we allowed for retardation coefficients that were very close to one.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2011-06-07
    Description: Hydrological response to climate change in the Lesse and the Vesdre catchments: contribution of a physically based model (Wallonia, Belgium) Hydrology and Earth System Sciences, 15, 1745-1756, 2011 Author(s): A. Bauwens, C. Sohier, and A. Degré The Meuse is an important rain-fed river in North-Western Europe. Nine million people live in its catchment, split over five countries. Projected changes in precipitation and temperature characteristics due to climate change would have a significant impact on the Meuse River and its tributaries. In this study, we focused on the impacts of climate change on the hydrology of two sub-catchments of the Meuse in Belgium, the Lesse and the Vesdre, placing the emphasis on the water-soil-plant continuum in order to highlight the effects of climate change on plant growth, and water uptake on the hydrology of two sub-catchments. These effects were studied using two climate scenarios and a physically based distributed model, which reflects the water-soil-plant continuum. Our results show that the vegetation will evapotranspirate between 10 and 17 % less at the end of the century because of water scarcity in summer, even if the root development is better under climate change conditions. In the low scenario, the mean minimal 7 days discharge value could decrease between 19 and 24 % for a two year return period, and between 20 and 35 % for a fifty year return period. It will lead to rare but severe drought in rivers, with potentially huge consequences on water quality.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2011-11-04
    Description: Hydrological landscape classification: investigating the performance of HAND based landscape classifications in a central European meso-scale catchment Hydrology and Earth System Sciences, 15, 3275-3291, 2011 Author(s): S. Gharari, M. Hrachowitz, F. Fenicia, and H. H. G. Savenije This paper presents a detailed performance and sensitivity analysis of a recently developed hydrological landscape classification method based on dominant runoff mechanisms. Three landscape classes are distinguished: wetland, hillslope and plateau, corresponding to three dominant hydrological regimes: saturation excess overland flow, storage excess sub-surface flow, and deep percolation. Topography, geology and land use hold the key to identifying these landscapes. The height above the nearest drainage (HAND) and the surface slope, which can be easily obtained from a digital elevation model, appear to be the dominant topographical controls for hydrological classification. In this paper several indicators for classification are tested as well as their sensitivity to scale and resolution of observed points (sample size). The best results are obtained by the simple use of HAND and slope. The results obtained compared well with the topographical wetness index. The HAND based landscape classification appears to be an efficient method to ''read the landscape'' on the basis of which conceptual models can be developed.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2011-11-05
    Description: Simplifying a hydrological ensemble prediction system with a backward greedy selection of members – Part 1: Optimization criteria Hydrology and Earth System Sciences, 15, 3307-3325, 2011 Author(s): D. Brochero, F. Anctil, and C. Gagné Hydrological Ensemble Prediction Systems (HEPS), obtained by forcing rainfall-runoff models with Meteorological Ensemble Prediction Systems (MEPS), have been recognized as useful approaches to quantify uncertainties of hydrological forecasting systems. This task is complex both in terms of the coupling of information and computational time, which may create an operational barrier. The main objective of the current work is to assess the degree of simplification (reduction of the number of hydrological members) that can be achieved with a HEPS configured using 16 lumped hydrological models driven by the 50 weather ensemble forecasts from the European Centre for Medium-range Weather Forecasts (ECMWF). Here, Backward Greedy Selection (BGS) is proposed to assess the weight that each model must represent within a subset that offers similar or better performance than a reference set of 800 hydrological members. These hydrological models' weights represent the participation of each hydrological model within a simplified HEPS which would issue real-time forecasts in a relatively short computational time. The methodology uses a variation of the k -fold cross-validation, allowing an optimal use of the information, and employs a multi-criterion framework that represents the combination of resolution, reliability, consistency, and diversity. Results show that the degree of reduction of members can be established in terms of maximum number of members required (complexity of the HEPS) or the maximization of the relationship between the different scores (performance).
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2011-11-05
    Description: On the return period and design in a multivariate framework Hydrology and Earth System Sciences, 15, 3293-3305, 2011 Author(s): G. Salvadori, C. De Michele, and F. Durante Calculating return periods and design quantiles in a multivariate environment is a difficult problem: this paper tries to make the issue clear. First, we outline a possible way to introduce a consistent theoretical framework for the calculation of the return period in a multi-dimensional environment, based on Copulas and the Kendall's measure. Secondly, we introduce several approaches for the identification of suitable design events: these latter quantities are of utmost importance in practical applications, but their calculation is yet limited, due to the lack of an adequate theoretical environment where to embed the problem. Throughout the paper, a case study involving the behavior of a dam is used to illustrate the new concepts outlined in this work.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2011-11-08
    Description: Long-range forecasting of intermittent streamflow Hydrology and Earth System Sciences, 15, 3343-3354, 2011 Author(s): F. F. van Ogtrop, R. W. Vervoort, G. Z. Heller, D. M. Stasinopoulos, and R. A. Rigby Long-range forecasting of intermittent streamflow in semi-arid Australia poses a number of major challenges. One of the challenges relates to modelling zero, skewed, non-stationary, and non-linear data. To address this, a statistical model to forecast streamflow up to 12 months ahead is applied to five semi-arid catchments in South Western Queensland. The model uses logistic regression through Generalised Additive Models for Location, Scale and Shape (GAMLSS) to determine the probability of flow occurring in any of the systems. We then use the same regression framework in combination with a right-skewed distribution, the Box-Cox t distribution, to model the intensity (depth) of the non-zero streamflows. Time, seasonality and climate indices, describing the Pacific and Indian Ocean sea surface temperatures, are tested as covariates in the GAMLSS model to make probabilistic 6 and 12-month forecasts of the occurrence and intensity of streamflow. The output reveals that in the study region the occurrence and variability of flow is driven by sea surface temperatures and therefore forecasts can be made with some skill.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2011-10-18
    Description: The impact of land surface temperature on soil moisture anomaly detection from passive microwave observations Hydrology and Earth System Sciences, 15, 3135-3151, 2011 Author(s): R. M. Parinussa, T. R. H. Holmes, M. T. Yilmaz, and W. T. Crow For several years passive microwave observations have been used to retrieve soil moisture from the Earth's surface. Low frequency observations have the most sensitivity to soil moisture, therefore the current Soil Moisture and Ocean Salinity (SMOS) and future Soil Moisture Active and Passive (SMAP) satellite missions observe the Earth's surface in the L-band frequency. In the past, several satellite sensors such as the Advanced Microwave Scanning Radiometer-EOS (AMSR-E) and WindSat have been used to retrieve surface soil moisture using multi-channel observations obtained at higher microwave frequencies. While AMSR-E and WindSat lack an L-band channel, they are able to leverage multi-channel microwave observations to estimate additional land surface parameters. In particular, the availability of Ka-band observations allows AMSR-E and WindSat to obtain coincident surface temperature estimates required for the retrieval of surface soil moisture. In contrast, SMOS and SMAP carry only a single frequency radiometer and therefore lack an instrument suited to estimate the physical temperature of the Earth. Instead, soil moisture algorithms from these new generation satellites rely on ancillary sources of surface temperature (e.g. re-analysis or near real time data from weather prediction centres). A consequence of relying on such ancillary data is the need for temporal and spatial interpolation, which may introduce uncertainties. Here, two newly-developed, large-scale soil moisture evaluation techniques, the triple collocation (TC) approach and the R value data assimilation approach, are applied to quantify the global-scale impact of replacing Ka-band based surface temperature retrievals with Modern Era Retrospective-analysis for Research and Applications (MERRA) surface temperature output on the accuracy of WindSat and AMSR-E based surface soil moisture retrievals. Results demonstrate that under sparsely vegetated conditions, the use of MERRA land surface temperature instead of Ka-band radiometric land surface temperature leads to a relative decrease in skill (on average 9.7%) of soil moisture anomaly estimates. However the situation is reversed for highly vegetated conditions where soil moisture anomaly estimates show a relative increase in skill (on average 13.7%) when using MERRA land surface temperature. In addition, a pre-processing technique to shift phase of the modelled surface temperature is shown to generally enhance the value of MERRA surface temperature estimates for soil moisture retrieval. Finally, a very high correlation ( R 2 = 0.95) and consistency between the two evaluation techniques lends further credibility to the obtained results.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2011-10-19
    Description: Subsurface lateral flow from hillslope and its contribution to nitrate loading in streams through an agricultural catchment during subtropical rainstorm events Hydrology and Earth System Sciences, 15, 3153-3170, 2011 Author(s): B. Zhang, J. L. Tang, Ch. Gao, and H. Zepp Subsurface lateral flow from agricultural hillslopes is often overlooked compared with overland flow and tile drain flow, partly due to the difficulties in monitoring and quantifying. The objectives of this study were to examine how subsurface lateral flow generated through soil pedons from cropped hillslopes and to quantify its contribution to nitrate loading in the streams through an agricultural catchment in the subtropical region of China. Profiles of soil water potential along hillslopes and stream hydro-chemographs in a trenched stream below a cropped hillslope and at the catchment outlet were simultaneously recorded during two rainstorm events. The dynamics of soil water potential showed positive matrix soil water potential over impermeable soil layer at 0.6 to 1.50 m depths during and after the storms, indicating soil water saturation and drainage processes along the hillslopes irrespective of land uses. The hydro-chemographs in the streams, one trenched below a cropped hillslope and one at the catchment outlet, showed that the concentrations of particulate nitrogen and phosphorus corresponded well to stream flow during the storm, while the nitrate concentration increased on the recession limbs of the hydrographs after the end of the storm. All the synchronous data revealed that nitrate was delivered from the cropped hillslope through subsurface lateral flow to the streams during and after the end of the rainstorms. A chemical mixing model based on electricity conductivity (EC) and H + concentration was successfully established, particularly for the trenched stream. The results showed that the subsurface lateral flow accounted for 29% to 45% of total stream flow in the trenched stream, responsible for 86% of total NO 3 − -N loss (or 26% of total N loss), and for 5.7% to 7.3% of total stream flow at the catchment outlet, responsible for about 69% of total NO 3 − -N loss (or 28% of total N loss). The results suggest that subsurface lateral flow through hydraulically stratified soil pedons have to be paid more attention for controlling non-point source surface water pollution from intensive agricultural catchment particularly in the subtropical areas with great soil infiltration.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2011-10-19
    Description: Effects of antecedent soil moisture on runoff modeling in small semiarid watersheds of southeastern Arizona Hydrology and Earth System Sciences, 15, 3171-3179, 2011 Author(s): Y. Zhang, H. Wei, and M. A. Nearing This study presents unique data on the effects of antecedent soil moisture on runoff generation in a semi-arid environment, with implications for process-based modeling of runoff. The data were collected from four small watersheds measured continuously from 2002 through 2010 in an environment where evapo-transpiration approaches 100% of the infiltrated water on the hillslopes. Storm events were generally intense and of short duration, and antecedent volumetric moisture conditions were dry, with an average in the upper 5 cm soil layer over the nine year period of 8% and a standard deviation of 3%. Sensitivity analysis of the model showed an average of 0.05 mm change in runoff for each 1% change in soil moisture, indicating an approximate 0.15 mm average variation in runoff accounted for by the 3% standard deviation of measured antecedent soil moisture. This compared to a standard deviation of 4.7 mm in the runoff depths for the measured events. Thus the low variability of soil moisture in this environment accounts for a relative lack of importance of storm antecedent soil moisture for modeling the runoff. Runoff characteristics simulated with a nine year average of antecedent soil moisture were statistically identical to those simulated with measured antecedent soil moisture, indicating that long term average antecedent soil moisture could be used as a substitute for measured antecedent soil moisture for runoff modeling of these watersheds. We also found no significant correlations between measured runoff ratio and antecedent soil moisture in any of the four watersheds.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2011-10-26
    Description: What do moisture recycling estimates tell us? Exploring the extreme case of non-evaporating continents Hydrology and Earth System Sciences, 15, 3217-3235, 2011 Author(s): H. F. Goessling and C. H. Reick Moisture recycling estimates are diagnostic measures that could ideally be used to deduce the response of precipitation to modified land-evaporation. Recycling estimates are based on moisture-budget considerations in which water is treated as a passive tracer. But in reality water is a thermodynamically active component of the atmosphere. Accordingly, recycling estimates are applicable to deduce the response to a perturbation only if other mechanisms by which evaporation affects climate do not dominate the response – a condition that has not received sufficient attention in the literature. In our analysis of what moisture recycling estimates tell us, we discuss two such additional mechanisms that result from water's active role. These are (I) local coupling, by which precipitation is affected locally via the thermal structure of the atmosphere, and (II) the atmospheric circulation, by which precipitation is affected on a large spatial scale. We perform two global climate model experiments: One with and another without continental evaporation. By this extreme perturbation we test the predictive utility of a certain type of recycling measure, the "continental recycling ratio". Moreover, by such a strong perturbation the whole spectrum of possible responses shows up simultaneously, giving us the opportunity to discuss all concurrent mechanisms jointly. The response to this extreme perturbation largely disagrees with the hypothesis that moisture recycling is the dominant mechanism. Instead, most of the response can be attributed to changes in the atmospheric circulation, while the contributions to the response by moisture recycling as well as local coupling, though noticeable, are smaller. By our case study it is not possible to give a general answer to the question posed in the title, but it demonstrates that recycling estimates do not necessarily mirror the consequences of land-use change for precipitation.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2011-03-06
    Description: Holistic versus monomeric strategies for hydrological modelling of human-modified hydrosystems Hydrology and Earth System Sciences, 15, 743-758, 2011 Author(s): I. Nalbantis, A. Efstratiadis, E. Rozos, M. Kopsiafti, and D. Koutsoyiannis The modelling of human-modified basins that are inadequately measured constitutes a challenge for hydrological science. Often, models for such systems are detailed and hydraulics-based for only one part of the system while for other parts oversimplified models or rough assumptions are used. This is typically a bottom-up approach, which seeks to exploit knowledge of hydrological processes at the micro-scale at some components of the system. Also, it is a monomeric approach in two ways: first, essential interactions among system components may be poorly represented or even omitted; second, differences in the level of detail of process representation can lead to uncontrolled errors. Additionally, the calibration procedure merely accounts for the reproduction of the observed responses using typical fitting criteria. The paper aims to raise some critical issues, regarding the entire modelling approach for such hydrosystems. For this, two alternative modelling strategies are examined that reflect two modelling approaches or philosophies: a dominant bottom-up approach, which is also monomeric and, very often, based on output information, and a top-down and holistic approach based on generalized information. Critical options are examined, which codify the differences between the two strategies: the representation of surface, groundwater and water management processes, the schematization and parameterization concepts and the parameter estimation methodology. The first strategy is based on stand-alone models for surface and groundwater processes and for water management, which are employed sequentially. For each model, a different (detailed or coarse) parameterization is used, which is dictated by the hydrosystem schematization. The second strategy involves model integration for all processes, parsimonious parameterization and hybrid manual-automatic parameter optimization based on multiple objectives. A test case is examined in a hydrosystem in Greece with high complexities, such as extended surface-groundwater interactions, ill-defined boundaries, sinks to the sea and anthropogenic intervention with unmeasured abstractions both from surface water and aquifers. Criteria for comparison are the physical consistency of parameters, the reproduction of runoff hydrographs at multiple sites within the studied basin, the likelihood of uncontrolled model outputs, the required amount of computational effort and the performance within a stochastic simulation setting. Our work allows for investigating the deterioration of model performance in cases where no balanced attention is paid to all components of human-modified hydrosystems and the related information. Also, sources of errors are identified and their combined effect are evaluated.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2011-03-06
    Description: Evapotranspiration modelling at large scale using near-real time MSG SEVIRI derived data Hydrology and Earth System Sciences, 15, 771-786, 2011 Author(s): N. Ghilain, A. Arboleda, and F. Gellens-Meulenberghs We present an evapotranspiration (ET) model developed in the framework of the EUMETSAT "Satellite Application Facility" (SAF) on Land Surface Analysis (LSA). The model is a simplified Soil-Vegetation-Atmosphere Transfer (SVAT) scheme that uses as input a combination of remote sensed data and atmospheric model outputs. The inputs based on remote sensing are LSA-SAF products: the Albedo (AL), the Downwelling Surface Shortwave Flux (DSSF) and the Downwelling Surface Longwave Flux (DSLF). They are available with the spatial resolution of the MSG SEVIRI instrument. ET maps covering the whole MSG field of view are produced from the model every 30 min, in near-real-time, for all weather conditions. This paper presents the adopted methodology and a set of validation results. The model quality is evaluated in two ways. First, ET results are compared with ground observations (from CarboEurope and national weather services), for different land cover types, over a full vegetation cycle in the Northern Hemisphere in 2007. This validation shows that the model is able to reproduce the observed ET temporal evolution from the diurnal to annual time scales for the temperate climate zones: the mean bias is less than 0.02 mm h −1 and the root-mean square error is between 0.06 and 0.10 mm h −1 . Then, ET model outputs are compared with those from the European Centre for Medium-Range Weather Forecasts (ECMWF) and the Global Land Data Assimilation System (GLDAS). From this comparison, a high spatial correlation is noted, between 80 to 90%, around midday. Nevertheless, some discrepancies are also observed and are due to the different input variables and parameterisations used.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2011-03-06
    Description: Remotely sensed latent heat fluxes for model error diagnosis: a case study Hydrology and Earth System Sciences, 15, 759-769, 2011 Author(s): J. M. Schuurmans, F. C. van Geer, and M. F. P. Bierkens This study shows that remotely sensed ET act is useful in hydrological modelling for the procedure of model calibration and shows it potential to update soil moisture predictions. Comparison of modeled and remotely sensed ET act together with the outcomes of our data assimilation procedure points out potential model errors, both conceptual and flux-related. Assimilation of remotely sensed ET act results in a realistic spatial adjustment of soil moisture, except for the area where the model suffers from conceptual errors (forest with deep groundwater levels). By using operational (i.e. available for community in practice) data and models we aim to show the potential and limitations of using remotely sensed ET act in the practice of hydrological modelling. We use satellite data of both ASTER and MODIS for the same two days in the summer of 2006 that, in association with the Surface Energy Balance Algorithm for Land (SEBAL), provides us the spatial distribution of daily ET act . The model, used by the local water board, is a physically based distributed hydrological model of a small catchment (70 km 2 ) in The Netherlands that simulates the water flow in both the unsaturated and saturated zone. Model outcomes of ET act show values that are at least 20% lower than those estimated by SEBAL, which is due to the fact that different evapotranspiration methods are used. The spatial pattern of ET act from the hydrological model resembles the soil map, whereas the ET act from SEBAL resembles the land use map. As both ASTER and MODIS images were available for the same days, this study provides an opportunity to compare the worth of these two satellite sources. It is shown that, although ASTER provides better insight in the spatial distribution of ET act due to its higher spatial resolution than MODIS, they appeared in this study just as useful.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2011-03-06
    Description: Smooth regional estimation of low-flow indices: physiographical space based interpolation and top-kriging Hydrology and Earth System Sciences, 15, 715-727, 2011 Author(s): S. Castiglioni, A. Castellarin, A. Montanari, J. O. Skøien, G. Laaha, and G. Blöschl Recent studies highlight that spatial interpolation techniques of point data can be effectively applied to the problem of regionalization of hydrometric information. This study compares two innovative interpolation techniques for the prediction of low-flows in ungauged basins. The first one, named Physiographical-Space Based Interpolation (PSBI), performs the spatial interpolation of the desired streamflow index (e.g., annual streamflow, low-flow index, flood quantile, etc.) in the space of catchment descriptors. The second technique, named Topological kriging or Top-kriging, predicts the variable of interest along river networks taking both the area and nested nature of catchments into account. PSBI and Top-kriging are applied for the regionalization of Q 355 (i.e., a low-flow index that indicates the streamflow that is equalled or exceeded 355 days in a year, on average) over a broad geographical region in central Italy, which contains 51 gauged catchments. The two techniques are cross-validated through a leave-one-out procedure at all available gauges and applied to a subregion to produce a continuous estimation of Q 355 along the river network extracted from a 90m elevation model. The results of the study show that Top-kriging and PSBI present complementary features. Top-kriging outperforms PSBI at larger river branches while PSBI outperforms Top-kriging for headwater catchments. Overall, they have comparable performances (Nash-Sutcliffe efficiencies in cross-validation of 0.89 and 0.83, respectively). Both techniques provide plausible and accurate predictions of Q 355 in ungauged basins and represent promising opportunities for regionalization of low-flows.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2011-03-09
    Description: Sediment management modelling in the Blue Nile Basin using SWAT model Hydrology and Earth System Sciences, 15, 807-818, 2011 Author(s): G. D. Betrie, Y. A. Mohamed, A. van Griensven, and R. Srinivasan Soil erosion/sedimentation is an immense problem that has threatened water resources development in the Nile river basin, particularly in the Eastern Nile (Ethiopia, Sudan and Egypt). An insight into soil erosion/sedimentation mechanisms and mitigation methods plays an imperative role for the sustainable water resources development in the region. This paper presents daily sediment yield simulations in the Upper Blue Nile under different Best Management Practice (BMP) scenarios. Scenarios applied in this paper are (i) maintaining existing conditions, (ii) introducing filter strips, (iii) applying stone bunds (parallel terraces), and (iv) reforestation. The Soil and Water Assessment Tool (SWAT) was used to model soil erosion, identify soil erosion prone areas and assess the impact of BMPs on sediment reduction. For the existing conditions scenario, the model results showed a satisfactory agreement between daily observed and simulated sediment concentrations as indicated by Nash-Sutcliffe efficiency greater than 0.83. The simulation results showed that applying filter strips, stone bunds and reforestation scenarios reduced the current sediment yields both at the subbasins and the basin outlets. However, a precise interpretation of the quantitative results may not be appropriate because some physical processes are not well represented in the SWAT model.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2011-03-11
    Description: Monitoring water quality in estuarine environments: lessons from the MAGEST monitoring program in the Gironde fluvial-estuarine system Hydrology and Earth System Sciences, 15, 831-840, 2011 Author(s): H. Etcheber, S. Schmidt, A. Sottolichio, E. Maneux, G. Chabaux, J.-M. Escalier, H. Wennekes, H. Derriennic, M. Schmeltz, L. Quéméner, M. Repecaud, P. Woerther, and P. Castaing The Gironde Estuary, one of the largest European ones, presents temporary low dissolved oxygen content in its fluvial section close to the Bordeaux urban area. In a context of population growth and of long-term environmental changes, the development of a high-frequency monitoring programme of the fluvial-estuarine system of the Gironde, called MAGEST (MArel Gironde ESTuary), had appeared essential to address current and future water-quality issues/evaluations. The objectives of the MAGEST survey program are to establish a reference database to improve the knowledge of the Gironde Estuary functioning, encompassing the aspects of hydrology, sediment dynamics and biogeochemistry. Through examples of results from intratidal to seasonal time scales, we demonstrate how such a long-term, high-frequency monitoring of a fluvio-estuarine system is of valuable interest to extract the main trends of its functioning and of the water quality in relation to external forcings (climatology, urban wastes, land use, ...) and to predict the future evolution of an estuary with global and environmental changes.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2011-03-12
    Description: Potential of high-resolution detection and retrieval of precipitation fields from X-band spaceborne synthetic aperture radar over land Hydrology and Earth System Sciences, 15, 859-875, 2011 Author(s): F. S. Marzano, S. Mori, M. Chini, L. Pulvirenti, N. Pierdicca, M. Montopoli, and J. A. Weinman X-band Synthetic Aperture Radars (X-SARs), able to image the Earth's surface at metric resolution, may provide a unique opportunity to measure rainfall over land with spatial resolution of about few hundred meters, due to the atmospheric moving-target degradation effects. This capability has become very appealing due to the recent launch of several X-SAR satellites, even though several remote sensing issues are still open. This work is devoted to: (i) explore the potential of X-band high-resolution detection and retrieval of rainfall fields from space using X-SAR signal backscattering amplitude and interferometric phase; (ii) evaluate the effects of spatial resolution degradation by precipitation and inhomogeneous beam filling when comparing to other satellite-based sensors. Our X-SAR analysis of precipitation effects has been carried out using both a TerraSAR-X (TSX) case study of Hurricane "Gustav" in 2008 over Mississippi (USA) and a COSMO-SkyMed (CSK) X-SAR case study of orographic rainfall over Central Italy in 2009. For the TSX case study the near-surface rain rate has been retrieved from the normalized radar cross section by means of a modified regression empirical algorithm (MREA). A relatively simple method to account for the geometric effect of X-SAR observation on estimated rainfall rate and first-order volumetric effects has been developed and applied. The TSX-retrieved rain fields have been compared to those estimated from the Next Generation Weather Radar (NEXRAD) in Mobile (AL, USA). The rainfall detection capability of X-SAR has been tested on the CSK case study using the repeat-pass coherence response and qualitatively comparing its signature with ground-based Mt. Midia C-band radar in central Italy. A numerical simulator to represent the effect of the spatial resolution and the antenna pattern of TRMM satellite Precipitation Radar (PR) and Microwave Imager (TMI), using high-resolution TSX-retrieved rain images, has been also set up in order to evaluate the rainfall beam filling phenomenon. As expected, the spatial average can modify the statistics of the high-resolution precipitation fields, strongly reducing its dynamics in a way non-linearly dependent on the rain rate local average value.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2011-03-12
    Description: Generalized versus non-generalized neural network model for multi-lead inflow forecasting at Aswan High Dam Hydrology and Earth System Sciences, 15, 841-858, 2011 Author(s): A. El-Shafie and A. Noureldin Artificial neural networks (ANN) have been found efficient, particularly in problems where characteristics of the processes are stochastic and difficult to describe using explicit mathematical models. However, time series prediction based on ANN algorithms is fundamentally difficult and faces problems. One of the major shortcomings is the search for the optimal input pattern in order to enhance the forecasting capabilities for the output. The second challenge is the over-fitting problem during the training procedure and this occurs when ANN loses its generalization. In this research, autocorrelation and cross correlation analyses are suggested as a method for searching the optimal input pattern. On the other hand, two generalized methods namely, Regularized Neural Network (RNN) and Ensemble Neural Network (ENN) models are developed to overcome the drawbacks of classical ANN models. Using Generalized Neural Network (GNN) helped avoid over-fitting of training data which was observed as a limitation of classical ANN models. Real inflow data collected over the last 130 years at Lake Nasser was used to train, test and validate the proposed model. Results show that the proposed GNN model outperforms non-generalized neural network and conventional auto-regressive models and it could provide accurate inflow forecasting.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2011-03-12
    Description: Series distance – an intuitive metric to quantify hydrograph similarity in terms of occurrence, amplitude and timing of hydrological events Hydrology and Earth System Sciences, 15, 877-896, 2011 Author(s): U. Ehret and E. Zehe Applying metrics to quantify the similarity or dissimilarity of hydrographs is a central task in hydrological modelling, used both in model calibration and the evaluation of simulations or forecasts. Motivated by the shortcomings of standard objective metrics such as the Root Mean Square Error (RMSE) or the Mean Absolute Peak Time Error (MAPTE) and the advantages of visual inspection as a powerful tool for simultaneous, case-specific and multi-criteria (yet subjective) evaluation, we propose a new objective metric termed Series Distance, which is in close accordance with visual evaluation. The Series Distance quantifies the similarity of two hydrographs neither in a time-aggregated nor in a point-by-point manner, but on the scale of hydrological events. It consists of three parts, namely a Threat Score which evaluates overall agreement of event occurrence, and the overall distance of matching observed and simulated events with respect to amplitude and timing. The novelty of the latter two is the way in which matching point pairs on the observed and simulated hydrographs are identified: not by equality in time (as is the case with the RMSE), but by the same relative position in matching segments (rise or recession) of the event, indicating the same underlying hydrological process. Thus, amplitude and timing errors are calculated simultaneously but separately, from point pairs that also match visually, considering complete events rather than only individual points (as is the case with MAPTE). Relative weights can freely be assigned to each component of the Series Distance, which allows (subjective) customization of the metric to various fields of application, but in a traceable way. Each of the three components of the Series Distance can be used in an aggregated or non-aggregated way, which makes the Series Distance a suitable tool for differentiated, process-based model diagnostics. After discussing the applicability of established time series metrics for hydrographs, we present the Series Distance theory, discuss its properties and compare it to those of standard metrics used in Hydrology, both at the example of simple, artificial hydrographs and an ensemble of realistic forecasts. The results suggest that the Series Distance quantifies the degree of similarity of two hydrographs in a way comparable to visual inspection, but in an objective, reproducible way.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2011-03-17
    Description: Improving the rainfall rate estimation in the midstream of the Heihe River Basin using raindrop size distribution Hydrology and Earth System Sciences, 15, 943-951, 2011 Author(s): G. Zhao, R. Chu, T. Zhang, J. Li, J. Shen, and Z. Wu During the intensive observation period of the Watershed Allied Telemetry Experimental Research (WATER), a total of 1074 raindrop size distribution were measured by the Parsivel disdrometer, the latest state-of-the-art optical laser instrument. Because of the limited observation data in Qinghai-Tibet Plateau, the modelling behaviour was not well done. We used raindrop size distributions to improve the rain rate estimator of meteorological radar in order to obtain many accurate rain rate data in this area. We got the relationship between the terminal velocity of the raindrop and the diameter (mm) of a raindrop: v(D) = 4.67 D 0.53 . Then four types of estimators for X-band polarimetric radar are examined. The simulation results show that the classical estimator R ( Z H ) is most sensitive to variations in DSD and the estimator R ( K DP , Z H , Z DR ) is the best estimator for estimating the rain rate. An X-band polarimetric radar (714XDP) is used for verifying these estimators. The lowest sensitivity of the rain rate estimator R ( K DP , Z H , Z DR ) to variations in DSD can be explained by the following facts. The difference in the forward-scattering amplitudes at horizontal and vertical polarizations, which contributes K DP , is proportional to the 3rd power of the drop diameter. On the other hand, the exponent of the backscatter cross-section, which contributes to Z H , is proportional to the 6th power of the drop diameter. Because the rain rate R is proportional to the 3.57th power of the drop diameter, K DP is less sensitive to DSD variations than Z H .
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2011-03-18
    Description: Magnitude and variability of land evaporation and its components at the global scale Hydrology and Earth System Sciences, 15, 967-981, 2011 Author(s): D. G. Miralles, R. A. M. De Jeu, J. H. Gash, T. R. H. Holmes, and A. J. Dolman A process-based methodology is applied to estimate land-surface evaporation from multi-satellite information. GLEAM (Global Land-surface Evaporation: the Amsterdam Methodology) combines a wide range of remotely-sensed observations to derive daily actual evaporation and its different components. Soil water stress conditions are defined from a root-zone profile of soil moisture and used to estimate transpiration based on a Priestley and Taylor equation. The methodology also derives evaporationfrom bare soil and snow sublimation. Tall vegetation rainfall interception is independently estimated by means of the Gash analytical model. Here, GLEAM is applied daily, at global scale and a quarter degree resolution. Triple collocation is used to calculate the error structure of the evaporation estimates and test the relative merits of two different precipitation inputs. The spatial distribution of evaporation – and its different components – is analysed to understand the relative importance of each component over different ecosystems. Annual land evaporation is estimated as 67.9 × 10 3 km 3 , 80% corresponding to transpiration, 11% to interception loss, 7% to bare soil evaporation and 2% snow sublimation. Results show that rainfall interception plays an important role in the partition of precipitation into evaporation and water available for runoff at a continental scale. This study gives insights into the relative importance of precipitation and net radiation in driving evaporation, and how the seasonal influence of these controls varies over different regions. Precipitation is recognised as an important factor driving evaporation, not only in areas that have limited soil water availability, but also in areas of high rainfall interception and low available energy.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2011-03-18
    Description: Urban hydrology in mountainous middle eastern cities Hydrology and Earth System Sciences, 15, 953-966, 2011 Author(s): T. Grodek, J. Lange, J. Lekach, and S. Husary The Mediterranean climate together with the type of urban setting found in mountainous Middle Eastern cities generate much lower runoff yields than previously reported and than usually estimated for urban design. In fact, a close analysis shows that most of the rainwater remains within the cities as a possible source for urban groundwater recharge. The present study examined two locales – Ramallah, an old traditional Palestinian Arab town, and Modiin, a new township in Israel – both situated on the karstic Yarkon Taninim aquifer. This aquifer supplies the only high-quality drinking water in the region (one quarter of the Israeli-Palestinian water demand), which is characterized by dense populations and limited water resources. This paper provides the first measured information on the hydrological effects of urbanization in the area. It was found that the shift of the mountainous natural steep slopes into a series of closed-terraces with homes and gardens create areas that are disconnected from the urban runoff response. Roofs drained into the attached gardens create favorable recharge units. Mainly low-gradient roads became the principal source for urban runoff already following 1–4 mm of rainfall. Parallel roads converted single peak hydrographs towards multi-peak runoff responses, increasing flow duration and reducing peak discharges. The remaining urban area (public parks, natural areas, etc.) generated runoff only as a result of high-magnitude rainstorms. All of the above conditions limited urban runoff coefficients to an upper boundary of only 35% and 30% (Ramallah and Modiin, respectively). During extreme rainstorms (above 100 mm) similar runoff coefficients were measured in urban and natural catchments as a result of the limited areas contributing to runoff in the urban areas, while natural terrain does not have these artificial limits. Hence, the effects of urbanization decrease with event magnitude and there is significant potential for urban groundwater recharge. However, frequent low-magnitude rainstorms often generate highly polluted stormwater in urban sewer systems and this water should only be used with great caution.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2011-03-22
    Description: Exchange between a river and groundwater, assessed with hydrochemical data Hydrology and Earth System Sciences, 15, 983-988, 2011 Author(s): E. Hoehn and A. Scholtis We describe the chemical composition of groundwater from an alluvial granular aquifer in a valley fill flood plain (River Thur Valley). The river flows along this valley and is mostly downwelling on its way, indirectly through an unsaturated zone in the upstream part, and directly through the water-saturated bed in the downstream part. River Thur has been channelized with barriers for more than a century. In 1992, the authorities started to restore a section of River Thur with riverbed enlargements. The land use in the flood plain and the seasonal and climatic conditions (e.g., hot dry summer 2003) result in alterations of the natural geochemical composition of the river water. This groundwater is partly to mainly recharged by bank filtration. Several wells exist near the river that draw groundwater for drinking. In some of these wells, the groundwater has a very short residence time in the subsurface of days to weeks. Bed enlargements and other operations for an enhancement of the exchange of water between the river and groundwater increase the contamination risk of the nearby wells. During bank filtration, the groundwater changes gradually its composition, with increasing distance from the river and with depth in the aquifer. From today's changes of the water quality during riverbank filtration, we tried to extrapolate to the groundwater quality that may arise from future river restorations. Today the groundwater body consists of a mixture of groundwater from the seepage of precipitation and from riverbank filtration. The main difference between river water and groundwater results from the microbial activity in riverbed and bank materials. This activity leads to a consumption of O 2 and to a higher partial pressure of CO 2 in the groundwater. Criteria for the distinction of different groundwater compositions are the distance of a well from the river and the subsurface residence time of the groundwater to reach this well.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2011-03-24
    Description: Hydrological real-time modelling in the Zambezi river basin using satellite-based soil moisture and rainfall data Hydrology and Earth System Sciences, 15, 999-1008, 2011 Author(s): P. Meier, A. Frömelt, and W. Kinzelbach Reliable real-time forecasts of the discharge can provide valuable information for the management of a river basin system. For the management of ecological releases even discharge forecasts with moderate accuracy can be beneficial. Sequential data assimilation using the Ensemble Kalman Filter provides a tool that is both efficient and robust for a real-time modelling framework. One key parameter in a hydrological system is the soil moisture, which recently can be characterized by satellite based measurements. A forecasting framework for the prediction of discharges is developed and applied to three different sub-basins of the Zambezi River Basin. The model is solely based on remote sensing data providing soil moisture and rainfall estimates. The soil moisture product used is based on the back-scattering intensity of a radar signal measured by a radar scatterometer. These soil moisture data correlate well with the measured discharge of the corresponding watershed if the data are shifted by a time lag which is dependent on the size and the dominant runoff process in the catchment. This time lag is the basis for the applicability of the soil moisture data for hydrological forecasts. The conceptual model developed is based on two storage compartments. The processes modeled include evaporation losses, infiltration and percolation. The application of this model in a real-time modelling framework yields good results in watersheds where soil storage is an important factor. The lead time of the forecast is dependent on the size and the retention capacity of the watershed. For the largest watershed a forecast over 40 days can be provided. However, the quality of the forecast increases significantly with decreasing prediction time. In a watershed with little soil storage and a quick response to rainfall events, the performance is relatively poor and the lead time is as short as 10 days only.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2011-03-24
    Description: Hydrologic similarity among catchments under variable flow conditions Hydrology and Earth System Sciences, 15, 989-997, 2011 Author(s): S. Patil and M. Stieglitz An assessment of regional similarity in catchment stream response is often needed for accurate predictions in ungauged catchments. However, it is not clear whether similarity among catchments is preserved at all flow conditions. We address this question through the analysis of flow duration curves for 25 gauged catchments located across four river basins in the northeast United States. The coefficient of variation of streamflow percentiles is used as a measure of variability among catchments across flow conditions. Results show that similarity in catchment stream response is dynamic and highly dependent on flow conditions. Specifically, within each of the four basins, the coefficient of variation is high at low flow percentiles and gradually reduces for higher flow percentiles. Analysis of the inter-annual variation in streamflow percentiles shows a similar reduction in variability from low flow to high flow percentiles. Greater similarity in streamflows is observed during the winter and spring (wet) seasons compared to the summer and fall (dry) seasons. Results suggest that the spatial variability in streamflow at low flows is primarily controlled by the dominance of high evaporative demand during the warm period. On the other hand, spatial variability at high flows during the cold period is controlled by the increased dominance of precipitation input over evapotranspiration. By evaluating variability over the entire range of streamflow percentiles, this work explores the nature of hydrologic similarity from a seasonal perspective.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...