ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (12,843)
  • Elsevier  (12,843)
  • 2015-2019  (12,843)
  • 1945-1949
  • Biochemical and Biophysical Research Communications  (2,688)
  • 2665
  • Chemistry and Pharmacology  (12,843)
  • Geosciences
  • Architecture, Civil Engineering, Surveying
  • Process Engineering, Biotechnology, Nutrition Technology
Collection
  • Articles  (12,843)
Publisher
  • Elsevier  (12,843)
Years
Year
Topic
  • Chemistry and Pharmacology  (12,843)
  • Geosciences
  • Architecture, Civil Engineering, Surveying
  • Process Engineering, Biotechnology, Nutrition Technology
  • Physics  (12,843)
  • +
  • 1
    Publication Date: 2019
    Description: 〈p〉Publication date: 3 September 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biochemical and Biophysical Research Communications, Volume 516, Issue 4〈/p〉 〈p〉Author(s): Yanjie Hou, Tian Gong, Jiangtao Zhang, Xi Yang, Yurong Guo〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉The thinned-young apple polysaccharides from three varieties were obtained by hot water extraction at 88 ̊C for 120 min. The compositional monosaccharides of the three polysaccharides were shown to be the same (xylose, mannose, galactose and glucose) and the molecular weights of the polysaccharides were in the range of 200–300 kDa. Compared with “Qinyang” and “Pinklady”, the polysaccharide from “Jinshiji” had the highest emulsifying capacity. Moreover, the variations in pH and cation ion concentrations had also a significant effect on the emulsifying properties of the extracted polysaccharides. At pH 2.0–4.0, the prepared emulsion had smaller droplet sizes than at higher pH values. Although the emulsion was stable at low concentrations of Na〈sup〉+〈/sup〉 and Ca〈sup〉2+〈/sup〉 ions, high concentrations of Na〈sup〉+〈/sup〉 and Ca〈sup〉2+〈/sup〉 led to significant destabilization of the emulsion. Conclusively, our results demonstrated the potential application of thinned-young apple polysaccharide as a natural polysaccharide emulsifying agent.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 0006-291X
    Electronic ISSN: 1090-2104
    Topics: Biology , Chemistry and Pharmacology , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019
    Description: 〈p〉Publication date: 3 September 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biochemical and Biophysical Research Communications, Volume 516, Issue 4〈/p〉 〈p〉Author(s): Shuangdong Chen, Yixiao Gu, Qinxue Dai, Yanshu He, Junlu Wang〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Sirtuin1 (SIRT1), which is regulated by microRNA-34a (miR-34a), can modulate pathophysiology processes, including nonalcoholic fatty liver disease and intestinal ischemia/reperfusion injury. We previously reported that SIRT1, an NAD〈sup〉+〈/sup〉-dependent deacetylase, plays a vital role in the development of neuropathic pain. However, the role of miR-34a/SIRT1 in complete Freund's adjuvant (CFA)-induced inflammatory pain remains unclear. In the present study, we examined miR-34a and SIRT1 in CFA mice. MiR-34a levels increased, while SIRT1 decreased in the spinal cord. Inhibiting miR-34a by intrathecal injection of miR-34a antagomir attenuated CFA-induced pain behavior. Moreover, miR-34a antagomir inhibited the CFA-induced SIRT1 decrease in the spinal cord. Furthermore, the analgesic effect of miR-34a antagomir was abrogated by the SIRT1 inhibitor EX-527. Our data provide support that the underlying mechanisms of miR-34a in promoting inflammatory pain may involve negative regulation of SIRT1.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 0006-291X
    Electronic ISSN: 1090-2104
    Topics: Biology , Chemistry and Pharmacology , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019
    Description: 〈p〉Publication date: 3 September 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biochemical and Biophysical Research Communications, Volume 516, Issue 4〈/p〉 〈p〉Author(s): Lifang Cui, He Zhao, Yujun Yin, Chao Liang, Xiaolong Mao, Yingzheng Liu, Qilin Yu, Mingchun Li〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉〈em〉Candida albicans〈/em〉 is an important opportunistic pathogenic fungus in the human body. It is a common microbe inhabiting on the mucosa surfaces of healthy individuals, but may cause infections when the host immune system is weak. Autophagy is a “self-eating” process in eukaryotes, which can recover and utilize damaged organelles and misfolded proteins. Here we investigated the role of the autophagy-related protein Atg11 in 〈em〉C. albicans〈/em〉. Deletion of 〈em〉ATG11〈/em〉 led to the defect in growth under the nitrogen starvation condition. Western blotting and GFP localization further revealed that the transport and degradation of Atg8 was blocked in the 〈em〉atg11〈/em〉Δ/Δ mutant under both the nitrogen starvation and hypha-inducing conditions. Moreover, degradation of both Lap41 (the indicator of the cytoplasm-to-vacuole pathway) and Csp37 (the indicator of mitophagy) was also thoroughly suppressed in this mutant under nitrogen starvation. These results indicated that Atg11 plays an essential role in both non-selective and selective autophagy in 〈em〉C. albicans〈/em〉.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 0006-291X
    Electronic ISSN: 1090-2104
    Topics: Biology , Chemistry and Pharmacology , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019
    Description: 〈p〉Publication date: 3 September 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biochemical and Biophysical Research Communications, Volume 516, Issue 4〈/p〉 〈p〉Author(s): Yi-meng Cao, Meng-yu Liu, Zhuo-wei Xue, Yu Qiu, Jie Li, Yang Wang, Qing-kai Wu〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Promotion of wound healing is one of the most important fields in clinical medical research. This study aimed to evaluate the potential use of a new surface-structured bacterial cellulose(S-BC) biomaterial with human urine-derived stem cells (hUSCs) for wound healing. In vitro, EA.hy926 were inoculated on structured/non-structured bacterial cellulose, and the growth of EA.hy926 on bacterial cellulose in medium with/without conditioned medium of the hUSCs were observed to explore the effect of bacterial cellulose's surface structure and hUSCs-CM on vascular endothelial cell growth. In vivo, we covered wound surface with various BC materials and/or injected the hUSCs into the wound site on group BC, group S-BC, group hUSCs, group BC + hUSCs, group S-BC + hUSCs to evaluate the effect of S-BC and hUSCs on wound healing in rat full-thickness skin defect model. In vitro study, surface structure of S-BC could promote the growth and survival of EA.hy926, and the hUSCs-CM could further promote the proliferation of EA.hy926 on S-BC. In vivo study, wound healing rate of the group BC, group S-BC, group hUSCs was significantly accelerated, accompanied by faster re-epithelialization, collagen production and neovascularization than control group. It is note worthy that the effect of S-BC on wound healing was better than BC, the effect of S-BC + hUSCs on wound healing was better than BC + hUSCs. Moreover, the effect of S-BC combined with hUSCs on wound is better than treated with S-BC or hUSCs alone. All the findings suggest that the combination of S-BC and hUSCs could facilitate skin wound healing by promoting angiogenesis. This combination of the role of stem cells and biomaterial surface structures may provide a new way to address clinical wound healing problems.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 0006-291X
    Electronic ISSN: 1090-2104
    Topics: Biology , Chemistry and Pharmacology , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019
    Description: 〈p〉Publication date: 3 September 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biochemical and Biophysical Research Communications, Volume 516, Issue 4〈/p〉 〈p〉Author(s): Naohiro Katagiri, Satoru Nagatoishi, Kouhei Tsumoto, Hideya Endo〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Methionine aminopeptidase 2 (MetAP2) is one of the effector proteins of S100A4, a metastasis-associated calcium-binding protein. This interaction is involved in angiogenesis. The region of MetAP2 that interacts with S100A4 includes amino acids 170 to 208. A peptide corresponding to this region, named as NBD, has potent anti-angiogenic activity and suppresses tumor growth in a xenograft cancer model. However, the binding mode of NBD to S100A4 was totally unknown. Here we describe our analysis of the relationship between the inhibitory activity and the structure of NBD, which adopts a characteristic helix-turn-helix structure as shown by X-ray crystallographic analysis, and peptide fragments of NBD. We conducted physicochemical analyses of the interaction between S100A4 and the peptides, including surface plasmon resonance, microscale thermophoresis, and circular dichroism, and performed docking/molecular dynamics simulations. Active peptides had stable secondary structures, whereas inactive peptides had a little secondary structure. A computational analysis of the interaction mechanism led to the design of a peptide smaller than NBD, NBD-ΔN10, that possessed inhibitory activity. Our study provides a strategy for design for a specific peptide inhibitor against S100A4 that can be applied to the discovery of inhibitors of other protein-protein interactions.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 0006-291X
    Electronic ISSN: 1090-2104
    Topics: Biology , Chemistry and Pharmacology , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019
    Description: 〈p〉Publication date: 3 September 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biochemical and Biophysical Research Communications, Volume 516, Issue 4〈/p〉 〈p〉Author(s): Xue Mei Li, Soo Jung Kim, Dong-Kyun Hong, Kyoung Eun Jung, Chong Won Choi, Young-Joon Seo, Jeung-Hoon Lee, Young Lee, Chang-Deok Kim〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Kruppel-like factor 4 (KLF4) is a zinc-finger transcription factor that plays a role in terminal differentiation of epidermal keratinocytes. There are conflicting reports regarding the role of KLF4 in tumor development, with both the tumor suppressive and/or oncogenic properties depending on different conditions and cell types. In this study, we investigated the functional importance of KLF4 in cutaneous squamous cell carcinoma (SCC). Immunohistochemistry showed that KLF4 expression was relatively low in SCC lesion compared to normal epidermis. To examine the effects of KFL4, we transduced SCC lines (SCC12 and SCC13 cells) with the KLF4-expressing recombinant adenovirus. Overexpression of KLF4 significantly decreased cell proliferation and colony forming activity. In addition, overexpression of KLF4 markedly reduced invasive potential, along with the downregulation of epithelial-mesenchymal transition (EMT)-related molecules. In a mechanistic study, KLF4 inhibited SOX2, of which expression is critical for tumor initiation and growth of SCC. Further investigations indicated that SOX2 expression is induced by TGF-β/SMAD signaling, and that overexpression of KLF4 inhibited SMAD signaling via upregulation of SMAD7, an important inhibitory SMAD molecule. Based on these data, KLF4 plays a tumor suppressive role in cutaneous SCC cells.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 0006-291X
    Electronic ISSN: 1090-2104
    Topics: Biology , Chemistry and Pharmacology , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019
    Description: 〈p〉Publication date: 3 September 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biochemical and Biophysical Research Communications, Volume 516, Issue 4〈/p〉 〈p〉Author(s): Yan Shen, Shengnan Chen, Yan Zhao〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Hyperglycemia-induced podocyte injury plays a vital role in the development of diabetic nephropathy. Sulfiredoxin-1 (Srxn1) is emerging as a cytoprotective protein that protects from various insults in a wide range of cell types. However, whether Srxn1 is involved in regulating hyperglycemia-induced podocyte injury and participates in diabetic nephropathy remains unknown. In the present study, we aimed to explore the potential role of Srxn1 in regulating high glucose (HG)-induced apoptosis and oxidative stress of podocytes 〈em〉in vitro〈/em〉. Results demonstrated that Srxn1 was induced in HG-stimulated podocytes. The depletion of Srxn1 by Srxn1 siRNA-mediated gene silencing significantly exacerbated HG-induced apoptosis and the production of reactive oxygen species (ROS), while Srxn1 overexpression attenuated HG-induced apoptosis and ROS production. In-depth molecular mechanism research revealed that Srxn1 overexpression promoted the nuclear expression of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and reinforced antioxidant response element (ARE)-mediated transcription activity. Moreover, results confirmed that Srxn1 increased the activation of Nrf2/ARE signaling associated with inactivating glycogen synthase kinase (GSK)-3β. Notably, the inhibition of GSK-3β significantly reversed Srxn1 silencing-induced adverse effects in HG-treated cells, while the knockdown of Nrf2 abrogated the Srxn1-mediated protective effect against HG-induced podocyte injury. Taken together, our results demonstrated that Srxn1 protects podocytes from HG-induced injury by promoting the activation of Nrf2/ARE signaling associated with inactivating GSK-3β, indicating a potential role of Srxn1 in diabetic nephropathy. Our study suggests that Srxn1 may serve as a potential target for kidney protection.〈/p〉〈/div〉 〈/div〉 〈h5〉Graphical abstract〈/h5〉 〈div〉〈p〉〈figure〉〈img src="https://ars.els-cdn.com/content/image/1-s2.0-S0006291X19313178-fx1.jpg" width="398" alt="Image 1" title="Image 1"〉〈/figure〉〈/p〉〈/div〉
    Print ISSN: 0006-291X
    Electronic ISSN: 1090-2104
    Topics: Biology , Chemistry and Pharmacology , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019
    Description: 〈p〉Publication date: 3 September 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biochemical and Biophysical Research Communications, Volume 516, Issue 4〈/p〉 〈p〉Author(s): Yu-Lun Huang, Gota Kawai, Atsuhiko Hasegawa, Mari Kannagi, Takao Masuda〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Reverse transcription of retroviral RNA is accomplished through a minus-strand strong stop cDNA (-sscDNA) synthesis and subsequent strand-transfer reactions. We have previously reported a critical role of guanosine (G) number at 5′-terminal of HIV-1 RNA for successful strand-transfer of -sscDNA. In this study, role(s) of the cap consisting of 7-methyl guanosine (〈sup〉7m〈/sup〉G), a hallmark of transcripts generated by RNA polymerase II, at the 5′-end G nucleotide (5′-G) of HIV-1 RNA were examined. In parallel, contribution of highly conserved GGG tract located at the U3/R boundary in 3′ terminal region of viral RNA (3′-GGG tract) was also addressed. The in vitro reverse transcription analysis using synthetic HIV-1 RNAs possessing the 5′-G with cap or triphosphate form demonstrated that the 5′-cap significantly increased strand-transfer efficiency of -sscDNA. Meanwhile, effect of the 5′-cap on the strand-transfer was retained in the reaction using mutant HIV-1 RNAs in which two Gs were deleted from the 3′-GGG tract. Lack of apparent contribution of the 3′-GGG tract during strand-transfer events in vitro was reproduced in the context of HIV-1 replication within cells. Instead, we noticed that the 3′-GGG tract might be required for efficient gene expression from proviral DNA. These results indicated that 〈sup〉7m〈/sup〉G of the cap on HIV-1 RNA might not be reverse-transcribed and a possible role of the 3′-GGG tract to accept the non-template nucleotide addition during -sscDNA synthesis might be less likely. The 5′-G modifications of HIV-1 RNAs by the cap- or phosphate-removal enzyme revealed that the cap or monophosphate form of the 5′-G was preferred for the 1st strand-transfer compared to the triphosphate or non-phosphate form. Taken together, a status of the 5′-G determined strand-transfer efficiency of -sscDNA without affecting the non-template nucleotide addition, probably by affecting association of the 5′-G with 3′-end region of viral RNA.〈/p〉〈/div〉 〈/div〉 〈h5〉Graphical abstract〈/h5〉 〈div〉〈p〉〈figure〉〈img src="https://ars.els-cdn.com/content/image/1-s2.0-S0006291X19312926-fx1.jpg" width="307" alt="Image 1" title="Image 1"〉〈/figure〉〈/p〉〈/div〉
    Print ISSN: 0006-291X
    Electronic ISSN: 1090-2104
    Topics: Biology , Chemistry and Pharmacology , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019
    Description: 〈p〉Publication date: 3 September 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biochemical and Biophysical Research Communications, Volume 516, Issue 4〈/p〉 〈p〉Author(s): Xiong Wang, Huishou Zhao, Wenjun Yan, Yi Liu, Tao Yin, Shan Wang, Miaomiao Fan, Congye Li, Ling Zhang, Ling Tao〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Atherosclerosis is characterized by the accumulation of excess cholesterol in plaques. Reverse cholesterol transport (RCT) plays a key role in the removal of cholesterol. In the present study, we examined the effect of thioredoxin-1 (Trx-1) on RCT and explored the underlying mechanism. We found that Trx-1 promoted RCT 〈em〉in vivo〈/em〉, as did T0901317, a known liver X receptor (LXR) ligand. T0901317 also inhibited the development of atherosclerotic plaques but promoted liver steatosis. Furthermore, Trx-1 promoted macrophage cholesterol efflux to apoAI 〈em〉in vitro〈/em〉. Mechanistically, Trx-1 promoted nuclear translocation of LXRα and induced the expression of ATP-binding cassette transporter A1 (ABCA1). Apolipoprotein E knockout (apoE−/−) mice fed an atherogenic diet were daily injected intraperitoneally with saline or Trx-1 (0.33 mg/kg). Trx-1 treatment significantly inhibited the development of atherosclerosis and induced the expression of ABCA1 in macrophages retrieved from apoE−/− mice. Moreover, the liver steatosis was attenuated by Trx-1. Overall, we demonstrated that Trx-1 promotes RCT by upregulating ABCA1 expression through induction of nuclear translocation of LXRα, and protects liver from steatosis.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 0006-291X
    Electronic ISSN: 1090-2104
    Topics: Biology , Chemistry and Pharmacology , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    Elsevier
    Publication Date: 2019
    Description: 〈p〉Publication date: 13 August 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biochemical and Biophysical Research Communications, Volume 516, Issue 1〈/p〉 〈p〉Author(s): 〈/p〉
    Print ISSN: 0006-291X
    Electronic ISSN: 1090-2104
    Topics: Biology , Chemistry and Pharmacology , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2019
    Description: 〈p〉Publication date: 3 September 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biochemical and Biophysical Research Communications, Volume 516, Issue 4〈/p〉 〈p〉Author(s): Azuma Kosai, Nanao Horike, Yoshiaki Takei, Akihiro Yamashita, Kaori Fujita, Takashi Kamatani, Noriyuki Tsumaki〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉The maturation of chondrocytes is strictly regulated for proper endochondral bone formation. Although recent studies have revealed that intracellular metabolic processes regulate the proliferation and differentiation of cells, little is known about how changes in metabolite levels regulate chondrocyte maturation. To identify the metabolites which regulate chondrocyte maturation, we performed a metabolome analysis on chondrocytes of Sik3 knockout mice, in which chondrocyte maturation is delayed. Among the metabolites, acetyl-CoA was decreased in this model. Immunohistochemical analysis of the Sik3 knockout chondrocytes indicated that the expression levels of phospho-pyruvate dehydrogenase (phospho-Pdh), an inactivated form of Pdh, which is an enzyme that converts pyruvate to acetyl-CoA, and of Pdh kinase 4 (Pdk4), which phosphorylates Pdh, were increased. Inhibition of Pdh by treatment with CPI613 delayed chondrocyte maturation in metatarsal primordial cartilage in organ culture. These results collectively suggest that decreasing the acetyl-CoA level is a cause and not result of the delayed chondrocyte maturation. Sik3 appears to increase the acetyl-CoA level by decreasing the expression level of Pdk4. Blocking ATP synthesis in the TCA cycle by treatment with rotenone also delayed chondrocyte maturation in metatarsal primordial cartilage in organ culture, suggesting the possibility that depriving acetyl-CoA as a substrate for the TCA cycle is responsible for the delayed maturation. Our finding of acetyl-CoA as a regulator of chondrocyte maturation could contribute to understanding the regulatory mechanisms controlling endochondral bone formation by metabolites.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 0006-291X
    Electronic ISSN: 1090-2104
    Topics: Biology , Chemistry and Pharmacology , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2019
    Description: 〈p〉Publication date: 3 September 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biochemical and Biophysical Research Communications, Volume 516, Issue 4〈/p〉 〈p〉Author(s): Saujanya Acharya, Shubhankar Dutta, Sucheta Chopra, Kakoli Bose〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Human HtrA3 (High temperature requirement protease A3) is a trimeric PDZ bearing propapoptotic serine protease, which is involved in various diseases including cancer and pre-eclampsia. Proposed to be a tumor suppressor, its role as a potential therapeutic target is strongly advocated. Therefore, it becomes imperative to gain insights into its mechanism of action and regulation. Allostery is a well-known mechanism of catalytic activation for many HtrA3 homologs, which opens up avenues for manipulating enzyme functions for therapeutic intervention. In our study, through 〈em〉in silico〈/em〉 and biochemical approaches, we have reported for the first time that HtrA3 shows allosteric behaviour. We identified a novel selective binding pocket, which triggers conformational reorientations through signal propagation to the distantly situated active-site pocket via the functionally important loop regions. Using molecular docking, simulation studies and biochemical studies we have identified the regulatory movements at and around the active site pocket. Our study is the first one to report a non-classical binding site for HtrA3, which is instrumental for formation of a catalytically efficient orthosteric pocket upon substrate binding.〈/p〉〈/div〉 〈/div〉 〈h5〉Graphical abstract〈/h5〉 〈div〉〈p〉〈figure〉〈img src="https://ars.els-cdn.com/content/image/1-s2.0-S0006291X19313312-fx1.jpg" width="470" alt="Image 1" title="Image 1"〉〈/figure〉〈/p〉〈/div〉
    Print ISSN: 0006-291X
    Electronic ISSN: 1090-2104
    Topics: Biology , Chemistry and Pharmacology , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2019
    Description: 〈p〉Publication date: 3 September 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biochemical and Biophysical Research Communications, Volume 516, Issue 4〈/p〉 〈p〉Author(s): Farnoush Asghari-Paskiabi, Mohammad Imani, Hashem Rafii-Tabar, Mehdi Razzaghi-Abyaneh〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Selenium sulfide is a well-known bioactive chemical whose biosynthesis as a nanoparticle (NP) is a controversial issue. In the present study, we employed 〈em〉Saccharomyces cerevisiae〈/em〉 to generate a novel synthetic process of selenium sulfide NPs. The addition of selenium/sulfur precursors to 〈em〉S. cerevisiae〈/em〉 culture produced NPs, which we isolated and characterized the physicochemical properties, toxicity, and antifungal activity. Transmission electron microscopy indicated the presence of the NPs inside the cells. Selenium sulfide NPs were successfully synthesized with average size of 6.0 and 153 nm with scanning electron micrographs and 360 and 289 nm in Zeta sizer using different precursors. The presence of sulfur/selenium in the particles was confirmed by energy-dispersive X-ray spectroscopy and elemental mapping. Fourier-transform infrared spectroscopy supported the production of selenium sulfide NPs. X-ray diffractograms showed the presence of characteristic peaks of selenium sulfide NPs which were further confirmed by mass spectrometry. The obtained NPs strongly inhibited the growth of pathogenic fungi that belonged to the genera 〈em〉Aspergillus〈/em〉, 〈em〉Candida〈/em〉, 〈em〉Alternaria〈/em〉 and the dermatophytes, while no cytotoxicity was observed in MTT assay. In conclusion, efficient green synthesis of selenium sulfide NPs with appropriate physicochemical properties is possible in bio-systems like 〈em〉S. cerevisiae〈/em〉.〈/p〉〈/div〉 〈/div〉 〈h5〉Graphical abstract〈/h5〉 〈div〉〈p〉〈figure〉〈img src="https://ars.els-cdn.com/content/image/1-s2.0-S0006291X19313361-fx1.jpg" width="285" alt="Image 1" title="Image 1"〉〈/figure〉〈/p〉〈/div〉
    Print ISSN: 0006-291X
    Electronic ISSN: 1090-2104
    Topics: Biology , Chemistry and Pharmacology , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2019
    Description: 〈p〉Publication date: 3 September 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biochemical and Biophysical Research Communications, Volume 516, Issue 4〈/p〉 〈p〉Author(s): Masashi Maekawa, Hiromi Hiyoshi, Jun Nakayama, Kohki Kido, Tatsuya Sawasaki, Kentaro Semba, Eiji Kubota, Takashi Joh, Shigeki Higashiyama〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Eukaryotic translation initiation factor 3 subunit D (EIF3D) binds to the 5′-cap of specific mRNAs, initiating their translation into polypeptides. From a pathological standpoint, EIF3D has been observed to be essential for cell growth in various cancer types, and cancer patients with high EIF3D mRNA levels exhibit poor prognosis, indicating involvement of EIF3D in oncogenesis. In this study, we found, by mass spectrometry, that Cullin-3 (CUL3)/KCTD10 ubiquitin (Ub) ligase forms a complex with EIF3D. We also demonstrated that EIF3D is K27-polyubiquitinated at the lysine 153 and 275 residues in a KCTD10-dependent manner in human hepatocellular carcinoma HepG2 cells. Similar to other cancers, high expression of EIF3D significantly correlated with poor prognosis in hepatocellular carcinoma patients, and depletion of EIF3D drastically suppressed HepG2 cell proliferation. These results indicate that EIF3D is a novel substrate of CUL3/KCTD10 Ub ligase and suggest involvement of K27-polyubiquitinated EIF3D in the development of hepatocellular carcinoma.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 0006-291X
    Electronic ISSN: 1090-2104
    Topics: Biology , Chemistry and Pharmacology , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2019
    Description: 〈p〉Publication date: 3 September 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biochemical and Biophysical Research Communications, Volume 516, Issue 4〈/p〉 〈p〉Author(s): Xiaobo Chen, Chun Xu, Hong He〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Sustained antibiotic release is important to prevent the infections after surgical treatments such as guided tissue regeneration (GTR). Electrospinning provides a simple way to fabricate nanofibers for drug delivery. In this study, a simple method to achieve sustained antibiotic release by introducing mesoporous silica nanoparticles (MSNs)with electrospinning is developed. The nanoparticles entrapped nanofibers (MSNs-PCL) were successfully fabricated, and a sustained release of gentamicin was demonstrated. The gentamicin loaded MSNs-PCL showed strong antimicrobial effects against 〈em〉E. coli〈/em〉, indicated the sustained release behavior and the retained bioactivity. The MSNs-PCL synthesized by electrospinning method shows great potential for biomedical applications such as fabricating GTR membranes.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 0006-291X
    Electronic ISSN: 1090-2104
    Topics: Biology , Chemistry and Pharmacology , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2019
    Description: 〈p〉Publication date: 3 September 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biochemical and Biophysical Research Communications, Volume 516, Issue 4〈/p〉 〈p〉Author(s): Abhishek Anil Dubey, Vikas Jain〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉〈em〉Mycobacterium smegmatis〈/em〉 possesses (〈em〉N〈/em〉,〈em〉N〈/em〉-dimethyl-4-nitrosoaniline)-dependent (NDMA) methanol dehydrogenase (Mno) to establish methylotrophy by utilizing methanol as the source of both carbon and energy. In this study, we show that Mno forms decamer and has NADPH as the bound cofactor. Interestingly, Mno uses NDMA and not NADP〈sup〉+〈/sup〉 as an electron acceptor in 〈em〉in vitro〈/em〉 reactions. We further show that the operon 〈em〉mftAD〈/em〉 required for the biosynthesis of mycofactocin, a ribosomally-synthesized electron carrier, is indispensable for the growth of 〈em〉M. smegmatis〈/em〉 on methanol. Our data obtained from 2,6-Dichlorophenolindophenol reduction assays also suggest that Mno uses mycofactocin as an 〈em〉in vivo〈/em〉 electron acceptor for the oxidation of methanol to formaldehyde. We thus provide here biochemical evidence for mycofactocin as an electron carrier in mycobacterial physiology.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 0006-291X
    Electronic ISSN: 1090-2104
    Topics: Biology , Chemistry and Pharmacology , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2019
    Description: 〈p〉Publication date: Available online 3 July 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biochemical and Biophysical Research Communications〈/p〉 〈p〉Author(s): Rastine Merat, Aurore Bugi-Marteyn, Ludovic J. Wrobel, Céline Py, Youssef Daali, Christoph Schwärzler, Nicolas Liaudet〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Strategies that aim to limit the adaptive response to pathway inhibition in BRAF-mutated melanoma face the inherent limit of signaling redundancy and multiplicity of possible bypass mechanisms. Drug-induced expression of selected RNA-binding proteins, like the ubiquitously expressed HuR, has the potential to differentially stabilize the expression of many genes involved in the compensatory mechanisms of adaptive response. Here, we detect in 〈em〉BRAF〈/em〉-mutated melanoma cell lines having a higher propensity for adaptive response and in non-responding melanoma tumors, a larger proportion of HuR〈sup〉Low〈/sup〉 cells in the expression distribution of HuR. Using knockdown experiments, we demonstrate, through expression profiling and phenotypic assays, that increasing the proportion of HuR〈sup〉Low〈/sup〉 cells favors the adaptive response to BRAF inhibition, provided that the HuR〈sup〉Low〈/sup〉 state stays reversible. The MAPK dependency of melanoma cells appears to be diminished as the proportion of HuR〈sup〉Low〈/sup〉 cells increases. In single-cell assays, we demonstrate that the HuR〈sup〉Low〈/sup〉 cells display plasticity in their growth expression profile. Importantly, the adaptive over-proliferating cells emerge in the subpopulation containing the HuR〈sup〉Low〈/sup〉 cells. Therapeutic concentrations of lithium salts, although they moderately increase the global expression of HuR, are sufficient to suppress the HuR〈sup〉Low〈/sup〉 cells, induce an overall less resistant expression profile and attenuate in a HuR-dependent manner the adaptive response of melanoma cells in 〈em〉ex vivo〈/em〉 assays. The therapeutic effectiveness of this approach is also demonstrated 〈em〉in vivo〈/em〉 in mice xenografts. This study has immediate clinical relevance for melanoma therapy and opens a new avenue of strategies to prevent the adaptive response to targeted cancer therapy.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 0006-291X
    Electronic ISSN: 1090-2104
    Topics: Biology , Chemistry and Pharmacology , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2019
    Description: 〈p〉Publication date: 3 September 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biochemical and Biophysical Research Communications, Volume 516, Issue 4〈/p〉 〈p〉Author(s): Akira Nakashima, Hisateru Yamaguchi, Yu Kodani, Yoko S. Kaneko, Miho Kawata, Hiroshi Nagasaki, Toshiharu Nagatsu, Akira Ota〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Tyrosine hydroxylase (TH), which catalyzes the conversion of 〈span〉l〈/span〉-tyrosine to 〈span〉l〈/span〉-DOPA, is the rate-limiting enzyme in the biosynthesis of catecholamines. It is well known that both α-synuclein and 14-3-3 protein family members bind to the TH molecule and regulate phosphorylation of its N-terminus by kinases to control the catalytic activity. In this present study we investigated whether other proteins aside from these 2 proteins might also bind to TH molecules. Nano-LC-MS/MS analysis revealed that 5′-nucleotidase domain-containing protein 2 (NT5DC2), belonging to a family of haloacid dehalogenase-type (HAD) phosphatases, was detected in the immunoprecipitate of PC12D cell lysates that had been reacted with Dynabeads protein G-anti-TH antibody conjugate. Surprisingly, NT5DC2 had already been revealed by Genome-Wide Association Studies (GWAS) as a gene implicated in neuropsychiatric disorders such as schizophrenia, bipolar disorder, which are diseases related to the abnormality of dopamine activity in the brain, although the role that NT5DC2 plays in these diseases remains unknown. Therefore, we investigated the effect of NT5DC2 on the TH molecule. The down-regulation of NT5DC2 by siRNA increased the synthesis of catecholamines (dopamine, noradrenaline, and adrenaline) in PC12D cells. These increases might be attributed to the catalytic activity of TH and not to the intracellular stability of TH, because the intracellular content of TH assessed by Western blotting was not changed by the down-regulation of NT5DC2. Collectively, our results indicate that NT5DC2 inhibited the synthesis of dopamine by decreasing the enzymatic activity of TH.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 0006-291X
    Electronic ISSN: 1090-2104
    Topics: Biology , Chemistry and Pharmacology , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2019
    Description: 〈p〉Publication date: 3 September 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biochemical and Biophysical Research Communications, Volume 516, Issue 4〈/p〉 〈p〉Author(s): Meilin Shi, Lina Dong, Shaohui Zheng, Pingfu Hou, Lulu Cai, Mingming Zhao, Xiuli Zhang, Qi Wang, Jingjing Li, Kai Xu〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉“Bottom-up” method is a popular approach for the preparation of molybdenum disulfide quantum dots (MoS〈sub〉2〈/sub〉 QDs) benefitting from less time consumption and no high-powered sonication required. But the relatively low fluorescent quantum yield of the obtained MoS〈sub〉2〈/sub〉 QDs and the rare study about their 〈em〉in vivo〈/em〉 behavior stimulate us to do more research in this area. In this paper, we proposed a “bottom-up” hydrothermal method to prepare MoS〈sub〉2〈/sub〉 QDs with a quantum yield (QY) of 34.55% by optimizing a series of reaction conditions. The successful fluorescence imaging of tumor cells 〈em〉in vitro〈/em〉 and 〈em〉in vivo〈/em〉 as well as the systematic 〈em〉in vivo〈/em〉 behavior study such as biocompatibility, biodistribution and metabolism route provided the good basis for their wider biomedical applications.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 0006-291X
    Electronic ISSN: 1090-2104
    Topics: Biology , Chemistry and Pharmacology , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2019
    Description: 〈p〉Publication date: 3 September 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biochemical and Biophysical Research Communications, Volume 516, Issue 4〈/p〉 〈p〉Author(s): Shan Li, Meilian Yao, Chengqun Niu, Dan Liu, Zhiming Tang, Chunming Gu, Hongyan Zhao, Jing Ke, Shengying Wu, Xiong Wang, Fuyun Wu〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Intracellular Ca〈sup〉2+〈/sup〉 signals play many important cellular functions such as migration, proliferation and differentiation. Store-operated Ca〈sup〉2+〈/sup〉 entry (SOCE) is a major route of Ca〈sup〉2+〈/sup〉 entry in nonexcitable cells. The activation of SOCE requires engagement between stromal interaction molecule 1 (STIM1) molecules on the endoplasmic reticulum and Ca〈sup〉2+〈/sup〉 release-activated Ca〈sup〉2+〈/sup〉 (CRAC) channel Orais (Orai1-3) on the plasma membrane. Accumulating evidence indicates that SOCE plays critical roles in cancer cell proliferation, invasion and metastasis. Here, we used the synthetic intracellular peptides derived from the C-termini of Orai channels to treat the breast cancer cells. We have found that Orai3-CT peptide exhibits stronger binding to STIM1 than Orai1-CT, and Orai3-CT peptide acts in a dominant negative fashion, blocking the STIM1-Orai1 interaction and reducing the Ca〈sup〉2+〈/sup〉 entry and proliferation of breast cancer cells.〈/p〉〈/div〉 〈/div〉 〈h5〉Graphical abstract〈/h5〉 〈div〉〈p〉Schematic model for Orai peptide inhibiting the proliferation of breast cancer cells. SOAR domain of STIM1 binding to CT and NT of Orai1 leads to the channel opened and calcium entry. The synthetic intracellular peptides derived from Orai channels competitive interact with STIM1, blocking the STIM1-Orai1 interaction and calcium entry, thus reducing the activation of Ca〈sup〉2+〈/sup〉-dependent transcription factors and inhibiting the proliferation of breast cells.〈figure〉〈img src="https://ars.els-cdn.com/content/image/1-s2.0-S0006291X19313075-fx1.jpg" width="283" alt="Image 1" title="Image 1"〉〈/figure〉〈/p〉〈/div〉
    Print ISSN: 0006-291X
    Electronic ISSN: 1090-2104
    Topics: Biology , Chemistry and Pharmacology , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2019
    Description: 〈p〉Publication date: 27 August 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biochemical and Biophysical Research Communications, Volume 516, Issue 3〈/p〉 〈p〉Author(s): Miho Sawada, Hiroyasu Yamamoto, Ayako Ogasahara, Yuya Tanaka, Shinji Kihara〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉 〈h6〉Backgroud〈/h6〉 〈p〉Among various myocyte-derived bioactive molecules (myokines), β-aminoisobutyric acid (BAIBA) is a unique myokine that attenuates skeletal muscle insulin resistance and inflammation, increases browning of white adipose tissue, and enhances hepatic fatty acid oxidation, resulting in upregulated energy expenditure of the whole body. In the present study, we investigated the effects of BAIBA on the vascular endothelial cell function.〈/p〉 〈/div〉 〈div〉 〈h6〉Methods〈/h6〉 〈p〉The mRNA levels of proinflammatory molecules, antioxidants, and their related transcription regulators were examined by quantitative RT-PCR in BAIBA-treated human aortic or umbilical vein endothelial cells (HAEC or HUVEC, respectively), with or without tumor necrosis factor (TNF)-α stimulation. The protein expression and phosphorylation of AMP-activated protein kinase (AMPK) and endothelial nitric oxide synthase (eNOS) were determined by Western blot analysis.〈/p〉 〈/div〉 〈div〉 〈h6〉Results〈/h6〉 〈p〉BAIBA pretreatment significantly suppressed the mRNA levels of the adhesion molecules in the TNF-α-stimulated HAEC and HUVEC. BAIBA treatment significantly increased the mRNA levels of antioxidant molecules, catalase, superoxide dismutases, thioredoxin, and gamma-glutamylcysteine ligases, together with mitochondrial biogenesis-related molecules, nuclear respiratory factor 1, and mitochondrial transcription factor A. In addition, BAIBA treatment significantly increased the transcription factors that regulated these genes [〈em〉i.e.〈/em〉, peroxisome proliferator-activated receptor (PPAR)-δ, PPAR-γ, estrogen-related receptor α (ERRα), and peroxisome proliferator-activated receptor gamma coactivator (PGC)-1β]. Adenovirus-mediated PGC-1β overexpression significantly increased the mRNA levels of all antioxidant molecules. The phosphorylation levels of AMPK and eNOS were unaltered by BAIBA.〈/p〉 〈/div〉 〈div〉 〈h6〉Conclusions〈/h6〉 〈p〉In vascular endothelial cells, BAIBA had antiatherogenic effects through the PGC-1β−ERRα/PPAR-δ and PPAR-γ pathway. This can explain the beneficial effects of exercise on vascular endothelial function.〈/p〉 〈/div〉 〈/div〉
    Print ISSN: 0006-291X
    Electronic ISSN: 1090-2104
    Topics: Biology , Chemistry and Pharmacology , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2019
    Description: 〈p〉Publication date: 27 August 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biochemical and Biophysical Research Communications, Volume 516, Issue 3〈/p〉 〈p〉Author(s): Yanli Lu, Linlin Wang, Jian Zhang, Jun Li, Guohua Wan〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Commensal microbiota modulates the anti-tumor immune response and alters the tumor infiltration of T cells in numerous human malignancies. Moreover, the existence of commensals and microbial metabolites has been directly observed inside numerous epithelial tumors. Their effects on the host immune system, independent of the pre-existing malignancy, are not completely understood. To resolve this issue, we compared immune modulatory roles of the fecal bacteria from healthy individuals and the fecal bacteria from colorectal cancer (CRC) patients. Peripheral blood mononuclear cells that were provided by healthy donors were used as study systems. Overall, fecal bacteria could potently activate the degranulation and cytotoxicity of CD8〈sup〉+〈/sup〉 T cells. Interestingly, fecal bacteria from CRC patients in general induced higher degranulation and higher cytotoxicity than fecal bacteria from healthy individuals. These effects were dependent on the presence of antigen-presenting cells, such as monocytes and B cells, as fecal bacteria added directly to isolated CD8〈sup〉+〈/sup〉 T cells failed to induce high cytotoxicity. Additionally, fecal bacteria from CRC patients induced stronger upregulation of CD80 and NOS2 expression in monocytes than fecal bacteria from healthy individuals. On the other hand, the viability of CD8〈sup〉+〈/sup〉 T cells was significantly reduced with increasing levels of bacterial stimulation. Overall, we demonstrated that fecal bacteria from CRC patients could upregulate degranulation and cytotoxicity of CD8〈sup〉+〈/sup〉 T cells in a manner that was dependent on antigen-presenting cells, and was more proinflammatory than fecal bacteria from healthy individuals.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 0006-291X
    Electronic ISSN: 1090-2104
    Topics: Biology , Chemistry and Pharmacology , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2019
    Description: 〈p〉Publication date: 27 August 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biochemical and Biophysical Research Communications, Volume 516, Issue 3〈/p〉 〈p〉Author(s): Xin Yan, Jian Wang, Yanting Zhu, Wei Feng, Cui Zhai, Lu Liu, Wenhua Shi, Qingting Wang, Qianqian Zhang, Limin Chai, Manxiang Li〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉The upregulation of osteopontin(OPN) has been found to contribute to the proliferation of pulmonary artery smooth muscle cells(PASMCs), and activation of PPARγ has been shown to suppress OPN expression in THP-1 cells. However, the molecular mechanisms underlying the upregulation of OPN expression and PPARγ agonist modulation of OPN expression in PASMCs remain largely unclear. Here we found that S1P stimulated PASMCs proliferation and up-regulated OPN expression in rat PASMCs, which was accompanied with the activation of phospholipase C(PLC), calcineurin and translocation of NFATc3 to nucleus. Further study showed that inhibition of PLC by U73122, suppression of calcineurin activity by cyclosporine A(CsA) or knockdown of NFATc3 using small interfering RNA suppressed S1P-induced OPN up-regulation. Activation of PPARγ by pioglitazone suppressed S1P-induced activation of calcineurin/NFATc3 signaling pathway and followed OPN up-regulation. Taken together, our study indicates that S1P stimulates OPN expression by activation of PLC/calcineurin/NFATc3 signaling pathway, and activation of PPARγ suppresses calcineurin/NFATc3-mediated OPN expression in PASMCs.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 0006-291X
    Electronic ISSN: 1090-2104
    Topics: Biology , Chemistry and Pharmacology , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2019
    Description: 〈p〉Publication date: 27 August 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biochemical and Biophysical Research Communications, Volume 516, Issue 3〈/p〉 〈p〉Author(s): Ryan A. Bennick, Alexis A. Nagengast, Justin R. DiAngelo〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉In Western societies where food is abundant, these excess nutrients are stored as fats mainly in adipose tissue. Fats are stored in structures known as lipid droplets, and a genome-wide screen performed in 〈em〉Drosophila〈/em〉 cells has identified several genes that are important for the formation of these droplets. One group of genes found during this screen included those that regulate mRNA splicing. Previous work from our lab has identified some splicing factors that play a role in regulating fat storage; however, the full complement of splicing proteins that regulate lipid metabolism is still unknown. In this study, the levels of a number of serine-arginine (SR) domain containing splicing factors (RSF1, RBP1, RBP1-like, SF2 and Srp-54) were decreased using RNAi in the adult fat body to assess their role in the control of 〈em〉Drosophila〈/em〉 metabolism. Decreasing SF2 and RBP1 showed increased triglycerides, while inducing RNAi towards RSF1, RBP1-Like and Srp-54 had no effect on triglycerides. Interestingly, the increased triglyceride phenotype in the SF2-RNAi flies was due to an increase in the amount of fat stored per cell while the RBP1-RNAi flies have more fat cells. In addition, the splicing of the β-oxidation enzyme, CPT1, was altered in the SF2-RNAi flies potentially promoting the increased triglycerides in these animals. Together, this study identifies novel splicing factors responsible for the regulation of lipid storage in the 〈em〉Drosophila〈/em〉 fat body and contributes to our understanding of the mechanisms, which influence the regulation of fat storage in adipose-like cells.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 0006-291X
    Electronic ISSN: 1090-2104
    Topics: Biology , Chemistry and Pharmacology , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2019
    Description: 〈p〉Publication date: 27 August 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biochemical and Biophysical Research Communications, Volume 516, Issue 3〈/p〉 〈p〉Author(s): Malena Landoni, Tamara Piñero, Luciana L. Soprano, Facundo Garcia-Bournissen, Laura Fichera, Monica I. Esteva, Vilma G. Duschak, Alicia S. Couto〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉This study shows the effects of tamoxifen, a known estrogen receptor antagonist used in the treatment of breast cancer, on the sphingolipid pathway of 〈em〉Trypanosoma cruzi,〈/em〉 searching for potential chemotherapeutic targets. A dose-dependent epimastigote growth inhibition at increasing concentration of tamoxifen was determined. In blood trypomastigotes, treatment with 10 μM showed 90% lysis, while 86% inhibition of intracellular amastigote development was obtained using 50 μM. Lipid extracts from treated and non-treated metabolically labelled epimastigotes evidenced by thin layer chromatography different levels of sphingolipids and MALDI-TOF mass spectrometry analysis assured the identity of the labelled species. Comparison by HPLC-ESI mass spectrometry of lipids, notably exhibited a dramatic increase in the level of ceramide in tamoxifen-treated parasites and a restrained increase of ceramide-1P and sphingosine, indicating that the drug is acting on the enzymes involved in the final breakdown of ceramide. The ultrastructural analysis of treated parasites revealed characteristic morphology of cells undergoing an apoptotic-like death process. Flow cytometry confirmed cell death by an apoptotic-like machinery indicating that tamoxifen triggers this process by acting on the parasitic sphingolipid pathway.〈/p〉〈/div〉 〈/div〉 〈h5〉Graphical abstract〈/h5〉 〈div〉〈p〉〈figure〉〈img src="https://ars.els-cdn.com/content/image/1-s2.0-S0006291X19312872-fx1.jpg" width="254" alt="Image 1" title="Image 1"〉〈/figure〉〈/p〉〈/div〉
    Print ISSN: 0006-291X
    Electronic ISSN: 1090-2104
    Topics: Biology , Chemistry and Pharmacology , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2019
    Description: 〈p〉Publication date: 27 August 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biochemical and Biophysical Research Communications, Volume 516, Issue 3〈/p〉 〈p〉Author(s): Kaiyue Zhang, Wenwen Yang, Hongbin Yu, Can Fu, Xiaxia Liu, Jian Liu〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉The TFIIB-related factor (BRF) family plays vital roles in RNA polymerase (Pol) III transcription initiation. However, little is known about the role of BRF in plants. Here, we report BRF1 and BRF2 are involved in Arabidopsis reproduction. In this study, we generated BRF1 and BRF2 double mutant plants. We found that no homozygous double mutants of 〈em〉brf1brf2〈/em〉 were obtained when 〈em〉brf1〈/em〉 and 〈em〉brf2〈/em〉 were crossed, although 〈em〉brf1〈/em〉 and 〈em〉brf2〈/em〉 mutants individually developed and reproduced normally. Further experiments revealed that heterozygous 〈em〉brf1/〈/em〉 + 〈em〉brf2/〈/em〉 + produced abnormal pollen and had no seeds in some placentas of siliques. Genetic data derived from reciprocal crosses showed that BRF2 plays a dominant role in Arabidopsis reproduction. Taken together, a double mutation of BRF1 and BRF2 results in a high degree of aborted macrogametes and microgametes and complete failure in zygote generation, ultimately leading to sterility.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 0006-291X
    Electronic ISSN: 1090-2104
    Topics: Biology , Chemistry and Pharmacology , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2019
    Description: 〈p〉Publication date: 27 August 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biochemical and Biophysical Research Communications, Volume 516, Issue 3〈/p〉 〈p〉Author(s): Hai Yu, Suojun Zhang, Ahmed N. Ibrahim, Jia Wang, Zhong Deng, Maode Wang〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Regulator of chromosome condensation 2 (RCC2) is a regulator of cell-cycle progression linked in multiple cancers to pro-tumorigenic phenomena including promotion of tumor growth, tumor metastases and poorer patient prognoses. However, the role of RCC2 in GBM remains under-investigated. Here, we sought to determine the relevance of RCC2 in GBM, as well as its roles in GBM development, progression and prognosis. Initial clinical evaluation determined significant RCC2 enrichment in GBM when compared to normal brain tissue, and elevated expression was closely associated with a poorer prognosis in glioma patients. Via shRNA inhibition, we determined that RCC2 is essential to tumor proliferation and tumorigenicity 〈em〉in vitro〈/em〉 and 〈em〉in vivo〈/em〉. Additionally, RCC2 was determined to promote radioresistance of GBM tumor cells. Investigation of the underlying mechanisms implicated DNA mismatch repair, JAK-STAT pathway and activated transcription of DNA methyltransferase 1 (DNMT1). For validation, pharmacologic inhibition via administration of a DNMT1 inhibitor demonstrated attenuated GBM tumor growth both 〈em〉in vitro〈/em〉 and 〈em〉in vivo〈/em〉. Collectively, this study determined a novel therapeutic target for GBM in the form of RCC2, which plays a pivotal role in GBM proliferation and radio-resistance via regulation of DNMT1 expression in a p-STAT3 dependent manner.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 0006-291X
    Electronic ISSN: 1090-2104
    Topics: Biology , Chemistry and Pharmacology , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2019
    Description: 〈p〉Publication date: 27 August 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biochemical and Biophysical Research Communications, Volume 516, Issue 3〈/p〉 〈p〉Author(s): Ke Gong, Zi-Jun Gong, Pin-Xiang Lu, Xiao-ling Ni, Sheng Shen, Han Liu, Ji-Wen Wang, De-Xiang Zhang, Hou-Bao Liu, Tao Suo〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Gallbladder carcinoma (GBC) is always diagnosed at an advanced stage, and patients often miss the opportunity for surgery. Gemcitabine (GEM) and platinum-based drugs, including oxaliplatin (OXA), are mainstays of chemotherapy. However, drug resistance causes treatment failure. Hence, salvage mechanisms are critical to improve outcomes. This study revealed the positive correlation between placenta-specific protein 8 (PLAC8) overexpression and PD-L1 overexpression in GBC. Given the roles of PLAC8 and PD-L1 in chemotherapy resistance, GEM-resistant and OXA-resistant cell lines (SGC966GR and SGC966OR, respectively) were established to test whether and how PLAC8 and PD-L1 function in chemotherapy resistance. Drug-insensitive SGC966GR and SGC966OR cells upregulated MRP and MDR1 and had high expression of PLAC8. PLAC8 blockade using siRNA reversed chemotherapy resistance and downregulated MRP and MDR1 in SGC966GR and SGC966OR cells, suggesting that PLAC8 mediates chemotherapy resistance in GBC. Consistent with the increased mRNA levels of PD-L1 after the acquisition of resistance, PLAC8 knockdown reduced PD-L1 mRNA expression in SGC966GR and SGC966OR cells. In conclusion, PLAC8 overexpression in GBC patients positively correlated with PD-L1 expression. PLAC8 conferred resistance to GEM and OXA by upregulating PD-L1 expression, and PLAC8 or PD-L1 blockade may have potential for overcoming chemotherapy resistance, providing therapeutic options for chemotherapy-refractory GBC patients.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 0006-291X
    Electronic ISSN: 1090-2104
    Topics: Biology , Chemistry and Pharmacology , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2019
    Description: 〈p〉Publication date: 27 August 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biochemical and Biophysical Research Communications, Volume 516, Issue 3〈/p〉 〈p〉Author(s): Yuya Miki, Tomoaki Morioka, Atsushi Shioi, Kenta Fujimoto, Takeshi Sakura, Hideki Uedono, Yoshinori Kakutani, Akinobu Ochi, Katsuhito Mori, Tetsuo Shoji, Masanori Emoto, Masaaki Inaba〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Oncostatin M (OSM) is a cytokine of the interleukin-6 family and plays a role in various disorders such as cancer and inflammatory diseases, which are often accompanied by skeletal muscle atrophy, or sarcopenia. However, the role of OSM in the regulation of skeletal muscle mass remains to be identified. In this study, we investigated the effect of OSM on C2C12 myotube formation 〈em〉in vitro〈/em〉. C2C12 myoblasts were induced to differentiate into myotubes for 3 days and then treated with OSM for 24 or 48 h. The diameter of differentiated C2C12 myotubes were reduced by 18.7% and 23.3% compared to control cells after treatment with OSM for 24 and 48 h, respectively. The expression levels of MyoD and myogenin were decreased, while those of atrogin-1, CCAAT/enhancer binding protein δ, and OSM receptor were increased in C2C12 myotubes treated with OSM for 24 h compared to control cells. Furthermore, the inhibitory effect of OSM on myotube formation was significantly attenuated by pretreatment with an inhibitor of signal transducer and activator of transcription (STAT) 3 or by knockdown of 〈em〉Stat3〈/em〉. Finally, the OSM-induced changes in the expression levels of MyoD, myogenin, and atrogin-1 were reversed by pretreatment with an inhibitor of STAT3 or by 〈em〉Stat3〈/em〉 knockdown in C2C12 myotubes. In conclusion, OSM induces C2C12 myotube atrophy by inhibiting myogenic differentiation and activating muscle degradation in a STAT3-dependent manner.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 0006-291X
    Electronic ISSN: 1090-2104
    Topics: Biology , Chemistry and Pharmacology , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2019
    Description: 〈p〉Publication date: 27 August 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biochemical and Biophysical Research Communications, Volume 516, Issue 3〈/p〉 〈p〉Author(s): Paola Francini Fávero, Victor Augusto Vieira de Lima, Priscila Helena dos Santos, Ana Paula Marques Andrade, Leonardo Oliveira Mendes, Francis Lopes Pacagnelli, Anthony César de Souza Castilho〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉To assist in evaluating and quantifying tissue changes, fractal dimension (FD) is a useful method for assessing the organization in an image from fractals that describes the amount of space and the self-similarity of the structure, once FD detects subtle morphological changes and performs functional quantitative measures. Here, we hypothesized that fractal analysis may be different in functional and regressing bovine corpus luteum (CL) and may be correlated with differential expression of genes involved in extracellular matrix remodeling. CL presents two developmental stages, the functional and regressing CL, according to progesterone levels and morphology. First, we found a lower FD in functional CL using HE staining and picrosirius red approach. Additionally, we found a great amount of total collagen in regressing CL. Regarding gene expression, we showed an up regulation of 〈em〉COL1A1, COL1A2, MMP2〈/em〉, and 〈em〉MMP14〈/em〉 and a down regulation of 〈em〉TIMP1〈/em〉 and 〈em〉TIMP2〈/em〉 in regressing CL compared to the functional one. Thus, we concluded that differential FD observed during luteal regression is an effective method to evaluate the tissue changes observed during luteal development in cattle and is related to differential quantity of genes involved in extracellular matrix remodeling.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 0006-291X
    Electronic ISSN: 1090-2104
    Topics: Biology , Chemistry and Pharmacology , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2019
    Description: 〈p〉Publication date: 27 August 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biochemical and Biophysical Research Communications, Volume 516, Issue 3〈/p〉 〈p〉Author(s): Tangliang Zhao, Xiaolong Liang, Junming Chen, Yi Bao, Anbang Wang, Xinxin Gan, Xin Lu, Linhui Wang〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Angiopoietin-like proteins (ANGPTLs) 〈u〉comprise〈/u〉 a group of proteins that are structurally similar to angiopoietins. In our previous studies, we found that ANGPTL3 can inhibit sorafenib resistance in renal cell carcinoma (RCC). According to bioinformatics analysis based on data in the Cancer Genome Atlas (TCGA), we found that expression of ANGPTL3 was significantly lower in RCC tissues than in adjacent tissues and that disease-free survival and overall survival were significantly shorter in patients with lower ANGPTL3 levels than in those with higher ANGPTL3 levels. Consistent with these results, we demonstrated that RCC tissues exhibited lower ANGPTL3 mRNA and protein expression levels than paired adjacent tissues. Moreover, we found that ANGPTL3 upregulation was associated with better clinical outcomes in RCC patients. ANGPTL3 overexpression inhibited the metastatic ability in RCC cells. Mechanistically, ANGPTL3 〈u〉binds〈/u〉 to vasodilator-stimulated phosphoprotein (VASP) and inhibits its phosphorylation at amino acid 157 in RCC cells. Finally, ANGPTL3 expression and VASP-157 phosphorylation 〈u〉may〈/u〉 be combined to predict the prognosis of RCC patients. Overall, our findings describe the role of ANGPTL3 in inhibiting RCC metastasis and thus provide new molecular 〈u〉markers〈/u〉 for RCC treatment and prognosis.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 0006-291X
    Electronic ISSN: 1090-2104
    Topics: Biology , Chemistry and Pharmacology , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2019
    Description: 〈p〉Publication date: 27 August 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biochemical and Biophysical Research Communications, Volume 516, Issue 3〈/p〉 〈p〉Author(s): Yong Won Choi, Ga Eun Nam, Young Hwa Kim, Jung Eun Yoon, Ji Hee Park, Jang Hee Kim, Seok Yun Kang, Tae Jun Park〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉B-Raf〈sup〉V600E〈/sup〉 oncogene mutation occurs in various cancers and is associated with tumor initiation. However, genetic modification of B-Raf〈sup〉V600E〈/sup〉 in cells induces MAPK activation and results in oncogene-induced senescence. Overcoming the oncogene-induced senescence by B-Raf〈sup〉V600E〈/sup〉 requires activation of another oncogene pathway, such as AKT signaling. In the present study, we explored the factors involved in overcoming the senescence program in cells activated by B-Raf〈sup〉V600E〈/sup〉 and AKT signaling. B-Raf〈sup〉V600E〈/sup〉 activation caused a feedback inhibition of AKT phosphorylation and resulted in downregulation of FoxM1, one of the AKT downstream components. AKT activation by PTEN downregulation induced FoxM1 expression, and co-expression of B-Raf〈sup〉V600E〈/sup〉 and FoxM1 overcame the cellular senescence. These observations suggested that FoxM1 is critical downstream gene of AKT and functions to overcome B-Raf〈sup〉V600E〈/sup〉-induced senescence.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 0006-291X
    Electronic ISSN: 1090-2104
    Topics: Biology , Chemistry and Pharmacology , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2019
    Description: 〈p〉Publication date: Available online 29 August 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biochemical and Biophysical Research Communications〈/p〉 〈p〉Author(s): Jaehak Lee, Ilju Kim, Eunsu Yoo, Seung Joon Baek〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Non-steroidal anti-inflammatory drug activated gene-1 (NAG-1), also known as growth differentiation factor 15 (GDF15), is a TGF-β (transforming growth factor beta) superfamily protein with a distinctive secretion pathway. NAG-1 is associated with multiple diseases including cancer, wherein it plays a role in both pro- and anti-cancer activities. We previously reported that NAG-1 is translocated to different subcellular compartments and its activity depends on its localization. In this paper, we report that the transfection of a novel peptide corresponding to the nuclear localization signal (NLS) of NAG-1 blocks its translocation to the nucleus. Further, accumulation of NAG-1 in the cytoplasm decreased mitochondrial membrane potential, thus implying apoptosis induction as a consequence. Overall, our results indicate that the novel peptide derived from NAG-1 NLS sequence is a promising tool for enhancing the anti-tumorigenic activity of NAG-1.〈/p〉〈/div〉 〈/div〉 〈h5〉Graphical abstract〈/h5〉 〈div〉〈p〉〈figure〉〈img src="https://ars.els-cdn.com/content/image/1-s2.0-S0006291X19316134-fx1.jpg" width="350" alt="Image 1" title="Image 1"〉〈/figure〉〈/p〉〈/div〉
    Print ISSN: 0006-291X
    Electronic ISSN: 1090-2104
    Topics: Biology , Chemistry and Pharmacology , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2019
    Description: 〈p〉Publication date: Available online 29 August 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biochemical and Biophysical Research Communications〈/p〉 〈p〉Author(s): Yanjun Zeng, Qingwu Qin, Keyu Li, Haitao Li, Chao Song, Yi Li, Minhui Dai, Fengyu Lin, Zhi Mao, Qian Li, Yuan Long, Yifei Fan, Pinhua Pan〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉To explore the effect of double-stranded RNA-dependent kinase (PKR) in acute lung injury (ALI) and resultant acute respiratory distress syndrome (ARDS). A mouse model of lipopolysaccharide (LPS)-induced ALI was used to evaluate the levels of phosphorylated (p)-PKR and NLRP3 in lung tissue, and the protective effects of a PKR inhibitor on lung injury. And in vitro, macrophages were incubated with LPS, with or without PKR inhibitor pre-treatment. It was observed that the levels of p-PKR protein and NLRP3 protein were significantly increased compared with those in control tissues after LPS administration. Meanwhile, treatment with PKR inhibitor decreased inflammation, injury score, wet/dry weight ratio, bronchoalveolar lavage fluid (BALF) protein levels, neutrophil count in BALF, myeloperoxidase activity and expression of high-mobility group box1(HMGB1) and interleukin(IL)-1β in the lungs of LPS-challenged mice. In vitro, we demonstrated that the levels of p-PKR and NLRP3, and cell mortality rate were increased in macrophages which were incubated with LPS compared with those without LPS administration, and PKR inhibitor significantly suppressed the level of NLRP3, caspase-1, HMGB1 and IL-1β. These results indicate that PKR plays a key role in ALI through NLRP3-pyrotosis pathway and pharmacological inhibition of PKR may have potential therapeutic effects in the treatment of patients with ALI and ARDS.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 0006-291X
    Electronic ISSN: 1090-2104
    Topics: Biology , Chemistry and Pharmacology , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2019
    Description: 〈p〉Publication date: Available online 29 August 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biochemical and Biophysical Research Communications〈/p〉 〈p〉Author(s): Marcelo Gomes Granja, Luis Eduardo Gomes Braga, Raphael Monteiro de Oliveira, Eliezer de Mello Silva, Cassiano Felippe Gonçalves-de-Albuquerque, Adriana Ribeiro Silva, Hugo Caire de Castro-Faria-Neto, Aline Araujo dos Santos, Elizabeth Giestal-de-Araujo〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Trophic factors are involved in different cellular responses. Previously we demonstrated that IL-4 treatment induces an increase in retinal ganglion cell survival (RGCS) and regulates cholinergic differentiation of retinal cells 〈em〉in vitro〈/em〉. Data from literature show that IGF-1 also promotes RGCS, an effect mediated by PI-3K/AKT pathway. The aim of this study was to investigate the role of IGF-1 and IGF-1R on RGCS mediated by IL-4 treatment and the role of M1 acetylcholine receptors in this effect. Here we show that the effect of IL-4 on RGCS depends on IGF-1 and IGF-1R activation, the PI-3K/AKT and NFkB intracellular pathways and depends on M1 mAChRs activation. IGF-1 increases the levels of M1 mAChRs in 15min, 45min, 24 h and 48 h in mixed retinal cells culture, modulates the levels of IL-4, pIGF-1R, IGF-1R. IL-4 modulates IGF-1, pIGF-1R and IGF-1R levels in different time intervals. These results put in evidence a crosstalk between IL-4 and IGF-1 and a role of M1 mAChRs, IGF-1 and IGF-1R in RGCS mediated by IL-4.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 0006-291X
    Electronic ISSN: 1090-2104
    Topics: Biology , Chemistry and Pharmacology , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2019
    Description: 〈p〉Publication date: Available online 21 August 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biochemical and Biophysical Research Communications〈/p〉 〈p〉Author(s): Yunfen Huang, Yuying Li, Yingying Qu, Yue Zheng, Mengting Ouyang, Yunqing Zhang, Wei Lai, Qingfang Xu〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Autophagy has been associated with a variety of diseases especially aging. Human dermal fibroblasts (HDFs) can internalize and then degrade elastin, collagen and advanced glycation end products (AGEs) in lysosomes, which plays prominent roles in extracellular matrix homeostasis and AGEs removal in the dermis. Although autophagy has been reported to be decreased in photoaged fibroblasts, the underlying mechanism and its relevance to photoaging remain elusive. Here, we showed that GFP-LC3 puncta per cell, LC3Ⅰ/Ⅱ conversion and p62 expression were significantly increased, whereas beclin1 expression was not altered in UVA-induced photoaged fibroblasts compared with non-photoaged control. Moreover, autophagic flux was not significantly affected by chloroquine treatment, but was remarkably induced by rapamycin treatment in photoaged fibroblasts, suggesting that UVA-induced photoaging might inhibit autophagy at the degradation stage. Further lysosomal function studies demonstrated that degradation of formed autophagosomes, LC3Ⅱprotein and DQ-Green BSA was all dramatically decreased in photoaged fibroblasts. LysoSensor yellow/blue DND 160 staining and flow cytometry assays demonstrated that photoaging obviously attenuated lysosomal acidification. Also, decreased expression of cathepsin B, L and D was found in photoaged fibroblasts. These data suggest that lowered lysosomal acidity and decreased cathepsins expression might contribute to the inhibition of autophagic degradation, which might be crucial in the development of photoaging through impairing intracellular degradation.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 0006-291X
    Electronic ISSN: 1090-2104
    Topics: Biology , Chemistry and Pharmacology , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2019
    Description: 〈p〉Publication date: Available online 21 August 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biochemical and Biophysical Research Communications〈/p〉 〈p〉Author(s): Xuanzhong Wang, Shan Lu, Chuan He, Chongcheng Wang, Lei Wang, Meihua Piao, Guangfan Chi, Yinan Luo, Pengfei Ge〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉RSL3 is a type of small molecular compound which can inactivate glutathione peroxidase 4 (GPX4) and induce ferroptosis, but its role in glioma cell death remains unclear. In this study, we found RSL3 inhibited the viabilities of glioma cells and induced glioma cell death in a dose-dependent manner. In vitro studies revealed that RSL3-induced cell death was accompanied with the changes of autophagy-associated protein levels and was alleviated by pretreatment of 3-Methyladenine, bafilomycin A1 and knockdown of ATG5 with siRNA. The ATP and pyruvate content as well as the protein levels of HKII, PFKP, PKM2 were decreased in cells treated by RSL3, indicating that RSL3 induced glycolysis dysfunction in glioma cells. Moreover, supplement of exterior sodium pyruvate, which was a final product of glycolysis, not only inhibited the changes of autophagy-associated protein levels caused by RSL3, but also prevented RSL3-induced cell death. In vivo data suggested that the inhibitory effect of RSL3 on the growth of glioma cells was associated with glycolysis dysfunction and autophagy activation. Taken together, RSL3 induced autophagic cell death in glioma cells via causing glycolysis dysfunction.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 0006-291X
    Electronic ISSN: 1090-2104
    Topics: Biology , Chemistry and Pharmacology , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2019
    Description: 〈p〉Publication date: Available online 22 August 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biochemical and Biophysical Research Communications〈/p〉 〈p〉Author(s): Ning Luo, Dan-dan Chen, Li Liu, Li Li, Zhong-ping Cheng〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉The CXCL12/CXCR4 axis is strongly implicated as key determinant of tumor invasion and metastasis in ovarian cancer. However, little is known about the potential downstream signals of the CXCL12/CXCR4 axis that contribute to ovarian cancer cell invasion and metastasis. ARHGAP10, a member of Rho GTPase activating proteins is a potential tumor suppressor gene in ovarian cancer. In this study, a negative correlation between the protein levels of CXCL12, CXCR4, vascular endothelial growth factor (VEGF), vascular endothelial growth factor receptor-2 (VEGFR2) and ARHGAP10 was uncovered in ovarian cancer tissues and paired adjacent noncancerous tissues. CXCL12 stimulation reduced the expression of ARHGAP10. Furthermore, the pretreatment of CXCR4 inhibitor (AMD3100) or the vascular endothelial growth factor receptor-2 (VEGFR2) inhibitor (SU1498) abrogated the CXCL12-deduced expression of ARHGAP10. Finally, an 〈em〉in vitro〈/em〉 functional assay revealed that CXCL12 did not stimulate ovarian cancer cell invasion when ARHGAP10 was overexpressed or when ovarian cancer cells were pre-treated with AMD3100 or SU1498. Knockdown of ARHGAP10 significantly suppressed the inhibitory effects of SU1498 on ovarian cancer cell invasion and lung metastasis. In summary, these findings suggest that CXCL12/CXCR4 promotes ovarian cancer cell invasion by suppressing ARHGAP10 expression, which is mediated by VEGF/VEGFR2 signaling.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 0006-291X
    Electronic ISSN: 1090-2104
    Topics: Biology , Chemistry and Pharmacology , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2019
    Description: 〈p〉Publication date: Available online 21 August 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biochemical and Biophysical Research Communications〈/p〉 〈p〉Author(s): Yojiro Ishida, Keiko Inouye, Ouyang Ming, Masayori Inouye〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉MazF is a sequence-specific endoribonuclease or mRNA interferase, which cleaves RNA at a specific sequence. Since the expression of a specific gene or a group of specific genes can be regulated by MazF, expanding the repertoire of recognition sequences by MazF mRNA interferases is highly desirable for biotechnological and medical applications. Here, we identified a gene for a MazF homologue (MazFme) from 〈em〉Methanohalobium evestigatum〈/em〉, an extremely halophilic archaeon. In order to suppress the toxicity of MazFme to the 〈em〉E. coli〈/em〉 cells, the C-terminal half of the cognate antitoxin MazEme was fused to the N-terminal end of MazFme. Since the fusion of the C-terminal half of MazEme to MazFme was able to neutralize MazFme toxicity, the MazEme-MazFme fusion protein was expressed in a large amount without any toxic effects. After purification of the MazEme, the free MazFme RNA cleavage specificity was determined by primer extension and synthetic ribonucleotides, revealing that MazFme is a CUGGU/UUGGU-specific endoribonuclease.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 0006-291X
    Electronic ISSN: 1090-2104
    Topics: Biology , Chemistry and Pharmacology , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2019
    Description: 〈p〉Publication date: Available online 21 August 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biochemical and Biophysical Research Communications〈/p〉 〈p〉Author(s): Takujiro Homma, Sho Kobayashi, Junichi Fujii〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Singlet oxygen causes a cytotoxic process in tumor cells in photodynamic therapy (PDT) and skin photoaging. The mechanism responsible for this cytotoxicity is, however, not fully understood. 1-Methylnaphthalene-4-propionate endoperoxide (MNPE) is a cell-permeable endoperoxide that generates pure singlet oxygen. We previously reported that cell death induced by MNPE did not show the typical profile of apoptosis, and the cause of this cell death remains elusive. We report herein on an investigation of the mechanism for MNPE-induced cell death from the view point of ferroptosis. The findings indicate that the MNPE treatment decreased the viabilities of mouse hepatoma Hepa 1-6 cells in vitro, and that this decrease was accompanied by increases in the concentrations of both intracellular ferrous iron and the level of lipid peroxidation, but that the caspase-mediated apoptotic pathway was not activated. The intracellular levels of cysteine and glutathione were not affected by the MNPE treatment. Importantly, an assay of lactate dehydrogenase activity revealed that the cell death caused by MNPE was suppressed by ferrostatin-1, a ferroptosis-specific inhibitor. Collectively, these results strongly indicate that ferroptosis is the main cell death pathway induced by singlet oxygen.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 0006-291X
    Electronic ISSN: 1090-2104
    Topics: Biology , Chemistry and Pharmacology , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2019
    Description: 〈p〉Publication date: Available online 21 August 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biochemical and Biophysical Research Communications〈/p〉 〈p〉Author(s): Tian Wang, Xi-Ya Sun, Ai-Ling Li, Ming-Xing Zhou, Yang Han, Jiao-Zhen Zhang, Dong-Mei Ren, Hong-Xiang Lou, Xiao-Ning Wang, Tao Shen〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Oxidative stress is one of the main pathogenesis for many human diseases. Nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant response element (ARE) signaling pathway plays a key role in regulating intracellular antioxidant responses, and thus activation of Nrf2/ARE signaling pathway is a potential chemopreventive or therapeutic strategy to treat diseases caused by oxidative damage. In the present study, we have found that treatment of Beas-2B cells with botrysphins D (BD) attenuated sodium arsenite [As (III)]-induced cell death and apoptosis. Meanwhile, BD was able to upregulate protein levels of Nrf2 and its downstream genes NQO1 and γ-GCS through inducing Nrf2 nuclear translocation, enhancing protein stability, and inhibiting ubiquitination. It was also found that BD-induced activation of the Nrf2/ARE pathway was regulated by PI3K, MEK1/2, PKC, and PERK kinases. Collectively, BD is a novel activator of Nrf2/ARE pathway, and is verified to be a potential preventive agent against oxidative stress-induced damage in human lung tissues.〈/p〉〈/div〉 〈/div〉 〈h5〉Graphical abstract〈/h5〉 〈div〉〈p〉〈figure〉〈img src="https://ars.els-cdn.com/content/image/1-s2.0-S0006291X19315918-fx1.jpg" width="496" alt="Image 1" title="Image 1"〉〈/figure〉〈/p〉〈/div〉
    Print ISSN: 0006-291X
    Electronic ISSN: 1090-2104
    Topics: Biology , Chemistry and Pharmacology , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2019
    Description: 〈p〉Publication date: Available online 21 August 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biochemical and Biophysical Research Communications〈/p〉 〈p〉Author(s): ChuanLing Tang, JiaPing Pan, Hui Li, Bin He, Ling Hong, XiaoMing Teng, DaJin Li〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Oxidative stress is associated with functional disorder of trophoblast cells. Our previous studies have demonstrated that cyclosporin A (CsA) promotes the activity of normal human trophoblast cells. We further investigated the role and mechanism of CsA on oxidative stress in trophoblast cells. JEG-3 cells were co-cultured with H〈sub〉2〈/sub〉O〈sub〉2〈/sub〉 and CsA. Cell viability and morphology were measured by MTT assay and inverted microscope. Reactive oxygen species (ROS) was analyzed by fluorescence microscopy. Cell mitochondrial membrane potential (MMP) was determined by flow cytometric analysis. Malondialdehyde (MDA) production, superoxide dismutase (SOD) and catalase (CAT) activities were examined using colorimetric assays. The expression and phosphorylation of FAK and Src kinase proteins were examined by western blotting. CsA increased JEG-3 cell viability and reduced the morphologic injury induced by H〈sub〉2〈/sub〉O〈sub〉2〈/sub〉 treatment. CsA decreased ROS and MDA production, increased SOD and CAT activities, and restored the MMP of H〈sub〉2〈/sub〉O〈sub〉2〈/sub〉 treated JEG-3 cells. CsA administration suppressed H〈sub〉2〈/sub〉O〈sub〉2〈/sub〉-induced reduction of FAK and Src phosphorylation. Blocking the activation of FAK or Src attenuated the protective effect of CsA on JEG-3 cells in H〈sub〉2〈/sub〉O〈sub〉2〈/sub〉-induced oxidative injury. CsA protects JEG-3 cells from H〈sub〉2〈/sub〉O〈sub〉2〈/sub〉-induced oxidative injury, and the FAK/Src signaling pathway plays an important role in this process.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 0006-291X
    Electronic ISSN: 1090-2104
    Topics: Biology , Chemistry and Pharmacology , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2019
    Description: 〈p〉Publication date: Available online 21 August 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biochemical and Biophysical Research Communications〈/p〉 〈p〉Author(s): Yu Zhao, Gautam Mahajan, Chandrasekhar R. Kothapalli, Xue-Long Sun〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Cell surface receptors are the key contributors of macrophage function. Most macrophage cell surface receptors are glycoproteins with sialic acids at the terminal of their glycans. It is well recognized that lipopolysaccharide (LPS) induces cell surface sialylation changes that may in turn contribute to macrophage functions. In addition, cellular mechanics such as elasticity is also a major determinant of macrophage function, which in turn is modulated by LPS. In this report, we characterized the sialylation status of macrophages upon LPS stimulation and assessed the changes in its mechanical properties and function. Specifically, we confirmed that sialylation status is closely related to macrophage biomechanical characteristics (elastic modulus, tether force, tether radius, adhesion force, and membrane tension) and thus directly involved in macrophage function. Further, we modulated macrophage sialylation status by feeding the cell with exogenous free sialic acid (Neu5Ac, Neu5Gc) and sialidase inhibitors, and examined the resulting effects on cellular mechanics and function. A systematic recognition of sialylation status related to cellular mechanics of macrophages will contribute to defining their phenotypes and elucidate macrophage functional diversity.〈/p〉〈/div〉 〈/div〉 〈h5〉Graphical abstract〈/h5〉 〈div〉〈p〉〈figure〉〈img src="https://ars.els-cdn.com/content/image/1-s2.0-S0006291X19316122-fx1.jpg" width="258" alt="Image 1" title="Image 1"〉〈/figure〉〈/p〉〈/div〉
    Print ISSN: 0006-291X
    Electronic ISSN: 1090-2104
    Topics: Biology , Chemistry and Pharmacology , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2019
    Description: 〈p〉Publication date: 8 October 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biochemical and Biophysical Research Communications, Volume 518, Issue 1〈/p〉 〈p〉Author(s): You-Jian Zhang, Jian-Rong Song, Ming-Jun Zhao〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Stroke is reported as a leading cause of mortality and disability in the world. Neuroinflammation is significantly induced responding to ischemic stroke, and this process is accompanied with microglial activation. However, the pathogenesis contributing to ischemic stroke remains unclear. NR4A1 (Nur77) is a nuclear receptor that is expressed in macrophages, playing a significant role in regulating inflammatory response. In the present study, we attempted to explore the effects of NR4A1 on ischemic stroke using 〈em〉in vivo〈/em〉 and 〈em〉in vitro〈/em〉 studies. Results suggested that NR4A1 expression in microglia was markedly increased after cerebral ischemic damage. Then, we found that NR4A1 knockout attenuated ischemia-triggered infarction volume and neuron injury. Also, cognitive impairments were improved in ischemic mice with NR4A1 deficiency, resulting in functional improvements. Moreover, M1 polarization in microglia and neutrophil recruitment was significantly alleviated by NR4A1 deletion, as evidenced by the reduced expression of M1 markers, chemokines, as well as intracellular adhesion molecule-1 (ICAM-1) and myeloperoxidase (MPO) levels. Importantly, we found that NR4A1 could interact with nuclear factor-κB (NF-κB)/p65 based on 〈em〉in vivo〈/em〉 and 〈em〉in vitro〈/em〉 results. Suppressing p65 activation by the use of its inhibitor clearly reduced the NR4A1 expression, M1 polarization and neutrophil recruitments, while rescued the expression of anti-inflammatory factors in microglia treated with oxygen-glucose deprivation (OGD). Therefore, NR4A1 suppression in microglia restrained neuroinflammation through interacting with NF-κB/p65 to attenuate ischemic stroke.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 0006-291X
    Electronic ISSN: 1090-2104
    Topics: Biology , Chemistry and Pharmacology , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2019
    Description: 〈p〉Publication date: Available online 21 August 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biochemical and Biophysical Research Communications〈/p〉 〈p〉Author(s): Deepika Sharma, Monika Choudhary, Jitendraa Vashistt, Rahul Shrivastava, Gopal Singh Bisht〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉〈em〉Acinetobacter baumannii〈/em〉 is one of the clinically important nosocomial pathogen that has become resistant to most of the conventional antimicrobials. Biofilms formed by 〈em〉A. baumannii〈/em〉 are difficult to eradicate, thereby highlighting the need for new therapeutic options to treat biofilm associated infections. Antimicrobial peptides have recently emerged as new alternatives to conventional antibiotics, but peptides often suffer with drawbacks such as poor proteolytic stability and high cost of production. To tackle these limitations, mimetics based on antimicrobial peptides are usually designed and synthesized. In this study we have designed and synthesized a peptoid based on a minimum amphipathic template of a twelve residue cationic peptide. Antimicrobial evaluation of peptide and peptoid was carried out against biofilm producing 〈em〉A. baumannii〈/em〉 strains〈em〉.〈/em〉 Further, proteolytic stability study of these compounds was carried out in human serum and morphological alterations caused by them on 〈em〉A. baumannii〈/em〉 were visualized by SEM analysis. In addition, these compounds were found to be non toxic to human erythrocytes at their minimum inhibitory concentrations against 〈em〉A. baumannii〈/em〉 strains. Overall results obtained in this study suggest that these compounds might be potential antimicrobial agents against biofilm forming 〈em〉A. baumannii〈/em〉 and it may be postulated that their mode of action on 〈em〉A. baumannii〈/em〉 is disruption of bacterial cell membrane.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 0006-291X
    Electronic ISSN: 1090-2104
    Topics: Biology , Chemistry and Pharmacology , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2019
    Description: 〈p〉Publication date: Available online 20 August 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biochemical and Biophysical Research Communications〈/p〉 〈p〉Author(s): Shahper N. Khan, Shakir Khan, Lama Misba, Muzammil Sharief, Amiruddin Hashmi, Asad U. Khan〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉〈em〉Candida albicans〈/em〉 frequently causes variety of superficial and invasive disseminated infections in HIV infected patients. Further, the emergence of non albicans species causing candidiasis predominantly in patients with advanced immune-suppression and drug resistance brings great apprehension. Hence, in this study we evaluate the capability of eugenol (EUG), a natural compound in combination with less toxic concentrations of amphotericin B (AmpB) for enhanced antifungal effects and reduced toxicity. Antifungal activity and time-kill assay were employed according to Clinical Laboratory Standard Institute (CLSI) guidelines with minor modifications on clinical isolates of 〈em〉Candida albicans〈/em〉. To confirm the synergistic interaction of EUG and AmpB, checkerboard experiments were employed. Interestingly, EUG-Amp B combination shows many fold higher anti-candida activity compared to single component treatment. Furthermore, our results depicts reactive oxygen species (ROS) driven killing and mitochondrial hyperpolarisation on treatment. Our data also suggests inhibition of calcium channel by EUG and predicts longer retainment of AmpB. Pronounced cellular damage was observed with combination treatment than to EUG and AmpB alone. Our finding is helpful for the removal of toxic concentrations of antifungal agents.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 0006-291X
    Electronic ISSN: 1090-2104
    Topics: Biology , Chemistry and Pharmacology , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2019
    Description: 〈p〉Publication date: Available online 20 August 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biochemical and Biophysical Research Communications〈/p〉 〈p〉Author(s): Yi Qian, Yaoshu Teng, Yuandong Li, Xiaojiang Lin, Ming Guan, Yong Li, Xiaolin Cao, Yueqiu Gao〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Dysregulated microRNAs (miRNAs) play crucial roles in the occurrence and development of multiple tumours, but their roles in the progression of nasal squamous cell carcinoma (NSCC) remain unknown. The aim of our study was to investigate the potential function and molecular mechanism of miR-143-3p in NSCC. Expression of miRNA and mRNA was detected by quantitative real-time reverse transcription-PCR (qRT-PCR). Forced overexpression of miR-143-3p was established by transfecting mimics into NSCC cell line. Then, we investigated the role of miR-143-3p in human NSCC cell proliferation, apoptosis, cycle and migration by using MTT, flow cytometry and transwell assays. Bioinformatics analysis, qRT-PCR, Western blot and luciferase reporter analysis were performed to validate the relationship between miR-143-3p and its potential targets. We found that miR-143-3p was substantially downregulated in human NSCC tissues and cell line. Forced upregulation of miR-143-3p significantly attenuated cell proliferation and migration. Furthermore, this change could induce apoptosis and G1-phase arrest of NSCC cells. Mechanistically, miR-143-3p directly targeted and significantly suppressed Bcl-2 and IGF1R expression. In summary, miR-143-3p regulation of the proliferation, apoptosis, cell cycle and migration of NSCC probably partly depends on inhibition of Bcl-2 and IGF1R, indicating that miR-143-3p may be a novel molecular therapeutic target for NSCC.〈/p〉〈/div〉 〈/div〉 〈h5〉Graphical abstract〈/h5〉 〈div〉〈p〉〈figure〉〈img src="https://ars.els-cdn.com/content/image/1-s2.0-S0006291X1931592X-fx1.jpg" width="272" alt="Image 1" title="Image 1"〉〈/figure〉〈/p〉〈/div〉
    Print ISSN: 0006-291X
    Electronic ISSN: 1090-2104
    Topics: Biology , Chemistry and Pharmacology , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2019
    Description: 〈p〉Publication date: Available online 20 August 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biochemical and Biophysical Research Communications〈/p〉 〈p〉Author(s): Emily M. Cross, David Aragão, Kate M. Smith, Karli I. Shaw, Jeffrey D. Nanson, Shane R. Raidal, Jade K. Forwood〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉〈em〉Acinetobacter baumannii〈/em〉 (〈em〉A. baumannii〈/em〉) is a clinically relevant, highly drug-resistant pathogen of global concern. An attractive approach to drug design is to specifically target the type II fatty acid synthesis (FASII) pathway which is critical in Gram negative bacteria and is significantly different to the type I fatty acid synthesis (FASI) pathway found in mammals. Enzymes involved in FASII include members of the short-chain dehydrogenase/reductase (SDR) superfamily. SDRs are capable of performing a diverse range of biochemical reactions against a broad spectrum of substrates whilst maintaining conserved structural features and sequence motifs. Here, we use X-ray crystallography to describe the structure of an SDR from the multi-drug resistant bacteria 〈em〉A. baumannii,〈/em〉 previously annotated as a putative FASII FabG enzyme. The protein was recombinantly expressed, purified, and crystallized. The protein crystals diffracted to 2.0 Å and the structure revealed a FabG-like fold. Functional assays revealed, however, that the protein was not active against the FabG substrate, acetoacetyl-CoA. This study highlights that database annotations may show the necessary structural hallmarks of such proteins, however, they may not be able to cleave substrates that are typical of FabG enzymes. These results are important for the selection of target enzymes in future drug development.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 0006-291X
    Electronic ISSN: 1090-2104
    Topics: Biology , Chemistry and Pharmacology , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2019
    Description: 〈p〉Publication date: Available online 21 August 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biochemical and Biophysical Research Communications〈/p〉 〈p〉Author(s): Taotao Li, Shiyan Yang, Xinke Kang, Wei Lei, Kang Qiao, Dawei Zhang, Honghui Lin〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Plant growth, development and interaction with the environment involve the action of transcription factor. bHLH proteins play an essential and often conserved role in the plant kingdom. However, bHLH proteins that participate in the cell division process are less well known. Here, we report that the bHLH transcription factor gene 〈em〉AtUPB1〈/em〉 is involved in mediating cell cycle progression and root development. In yeast cells, 〈em〉AtUPB1〈/em〉 inhibits cells proliferation and the cells had increased numbers of nuclei. 〈em〉UPB1〈/em〉 overexpression decreased the expression of the cell division marker 〈em〉CYCB1-1〈/em〉, and 〈em〉CDKA1〈/em〉 expression could overcome the defect of 〈em〉UPB1〈/em〉 overexpression. Moreover, 〈em〉UPB1〈/em〉 could directly bind to the promoter region of the 〈em〉SIM〈/em〉 and 〈em〉SMR1〈/em〉 genes to regulate cell cycle. These results support a new role for 〈em〉AtUPB1〈/em〉 regulating root meristem development by mediating the expression of 〈em〉SIM/SMR1〈/em〉 genes.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 0006-291X
    Electronic ISSN: 1090-2104
    Topics: Biology , Chemistry and Pharmacology , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2019
    Description: 〈p〉Publication date: Available online 21 August 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biochemical and Biophysical Research Communications〈/p〉 〈p〉Author(s): Takuto Fujii, Siriporn Phutthatiraphap, Takahiro Shimizu, Hiroshi Takeshima, Hideki Sakai〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉In the stomach, Sonic Hedgehog (Shh) is highly expressed in gastric parietal cells, and acts as a morphogen in early development of the organ. Here, we found that the cleaved N-terminal fragment of Shh (Shh-N) was abundantly expressed in hog gastric vesicles derived from the apical membrane of parietal cells. Interestingly, Shh-N recombinant significantly decreased K〈sup〉+〈/sup〉-dependent ATP-hydrolyzing activity, which is sensitive to an inhibitor of H〈sup〉+〈/sup〉,K〈sup〉+〈/sup〉-ATPase (SCH28080), in hog gastric tubulovesicles and membrane fractions of the H〈sup〉+〈/sup〉,K〈sup〉+〈/sup〉-ATPase-expressing cells. In the living cells, Shh-N recombinant inhibited the SCH28080-sensitive 〈sup〉86〈/sup〉Rb〈sup〉+〈/sup〉-uptake. Together, Shh-N may directly bind to extracellular side of H〈sup〉+〈/sup〉,K〈sup〉+〈/sup〉-ATPase, and negatively regulates the pump activity. This is the first report to explore non-morphogenic property of Shh on ion transporters.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 0006-291X
    Electronic ISSN: 1090-2104
    Topics: Biology , Chemistry and Pharmacology , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2019
    Description: 〈p〉Publication date: 24 September 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biochemical and Biophysical Research Communications, Volume 517, Issue 3〈/p〉 〈p〉Author(s): Sakthivel Srinivasan, Takuma Hosokawa, Pablo Vergara, Yoan Chérasse, Toshie Naoi, Takeshi Sakurai, Masanori Sakaguchi〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Simultaneous imaging and manipulation of a genetically defined neuronal population can provide a causal link between its activity and function. Here, we designed a miniaturized microscope (or ‘miniscope’) that allows fluorescence imaging and optogenetic manipulation at the cellular level in freely behaving animals. This miniscope has an integrated optical connector that accepts any combination of external light sources, allowing flexibility in the choice of sensors and manipulators. Moreover, due to its simple structure and use of open source software, the miniscope is easy to build and modify. Using this miniscope, we demonstrate the optogenetic silencing of hippocampal CA1 neurons using two laser light sources—one stimulating a calcium sensor (i.e., jGCaAMP7c) and the other serving as an optogenetic silencer (i.e., Jaws). This new miniscope can contribute to efforts to determine causal relationships between neuronal network dynamics and animal behavior.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 0006-291X
    Electronic ISSN: 1090-2104
    Topics: Biology , Chemistry and Pharmacology , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2019
    Description: 〈p〉Publication date: Available online 28 September 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biochemical and Biophysical Research Communications〈/p〉 〈p〉Author(s): Li Ren, Qing Song, Yunhuan Liu, Lihua Zhang, Zhiming Hao, Wenke Feng〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Intrahepatic cholestasis of pregnancy (ICP) is gestation-specific liver disease associated with liver injury and increased serum and hepatic bile acids. Although the mechanism of ICP is still not fully understood, the reproductive hormones seem to play an important role. Recent studies show that a progesterone metabolite, epiallopregnanolone sulfate (PM5S), is supraphysiologically elevated in the serum of ICP patients, indicating it may play an etiology role in ICP. Bile acid homeostasis is controlled by multiple mechanisms including farnesoid X receptor (FXR)-mediated bile acid export and synthesis. It is known that cholic acid (CA), a primary bile acid, can activate FXR, which is inhibited by PM5S, an FXR antagonist. Here we employed a mouse model of concurrent exposure of CA and PM5S-induced liver injury and determined the effects of probiotic 〈em〉Lactobacillus rhamnosus〈/em〉 GG (LGG) in the prevention of the bile acid disorders and liver injury. Mice challenged with CA + PM5S had significantly increased levels of serum and hepatic bile acids and bilirubin and liver enzyme. Pretreatment with LGG significantly reduced bile acid and bilirubin levels associated with reduced liver enzyme level and mRNA expression levels of pro-inflammatory cytokines. We also showed that the beneficial effects of LGG is likely mediated by hepatic FXR activation and bile salt export pump (BSEP) upregulation. In conclusion, our results provide a rationale for the application of probiotics in the management of ICP through gut microbiota-mediated FXR activation.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 0006-291X
    Electronic ISSN: 1090-2104
    Topics: Biology , Chemistry and Pharmacology , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2019
    Description: 〈p〉Publication date: Available online 18 August 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biochemical and Biophysical Research Communications〈/p〉 〈p〉Author(s): Ashraf Yusuf Rangrez, Lucia Kilian, Katharina Stiebeling, Sven Dittmann, Eric Schulze-Bahr, Norbert Frey, Derk Frank〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉We recently identified a novel, heterozygous, and non-synonymous ACTC1 mutation (p.Gly247Asp or G247D) in a large, multi-generational family, causing atrial-septal defect followed by late-onset dilated cardiomyopathy (DCM). Molecular dynamics studies revealed possible actin polymerization defects as G247D mutation resides at the juncture of side-chain interaction, which was indeed confirmed by 〈em〉in vitro〈/em〉 actin polymerization assays. Since polymerization/de-polymerization is important for the activation of Rho-GTPase-mediated serum response factor (SRF)-signaling, we studied the effect of G247D mutation using luciferase assay. Overexpression of native human ACTC1 in neonatal rat cardiomyocytes (NRVCMs) strongly activated SRF-signaling both in C2C12 cells and NRVCMs, whereas, G247D mutation abolished this activation. Mechanistically, we found reduced GTP-bound Rho-GTPase and increased nuclear localization of globular actin in NRVCMs overexpressing mutant ACTC1 possibly causing inhibition of SRF-signaling activation. In conclusion, our data suggests that human G247D ACTC1 mutation negatively regulates SRF-signaling likely contributing to the late-onset DCM observed in mutation carrier patients.〈/p〉〈/div〉 〈/div〉 〈h5〉Graphical abstract〈/h5〉 〈div〉〈p〉〈strong〉G247D mutant ACTC1 leads to reduced actin polymerization and SRF-signaling resulting in cardiac defects.〈/strong〉 G247D: p. Gly247Asp, G-actin: Globular actin, F-actin: Filamentous actin, RhoA: Ras homolog family member A, GTP: Guanosine-triphosphate, SRF: Serum response factor, MKL1: Megakaryoblastic leukemia 1, ASD: Atrial septal defect, DCM: Dilated cardiomyopathy, RA: Right atrium, RV: Right ventricle, LA: Left atrium, LV: Left ventricle.〈figure〉〈img src="https://ars.els-cdn.com/content/image/1-s2.0-S0006291X19316043-fx1.jpg" width="154" alt="Image 1" title="Image 1"〉〈/figure〉〈/p〉〈/div〉
    Print ISSN: 0006-291X
    Electronic ISSN: 1090-2104
    Topics: Biology , Chemistry and Pharmacology , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2019
    Description: 〈p〉Publication date: Available online 19 August 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biochemical and Biophysical Research Communications〈/p〉 〈p〉Author(s): Yuanyuan Chen, Lulu Wang, Fei Shang, Wei Liu, Jing Lan, Jinli Chen, Nam-Chul Ha, Chunshan Quan, Ki Hyun Nam, Yongbin Xu〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Thiamin pyrophosphate (TPP) is an essential co-factor in amino acid and carbohydrate metabolic pathways. The TPP-related vitamin B1 biosynthetic pathway is found in most bacterial, plant and lower eukaryotic processes; however, it is not present in humans. In bacterial thiamin synthesis and salvage pathways, the 5-(hydroxyethyl)-methylthiazole kinase (ThiM) is essential in the pathway forming TPP. Thus, ThiM is considered to be an attractive antibacterial drug target. Here, we determined the crystal structures of ThiM from pathogenic 〈em〉Klebsiella pneumoniae〈/em〉 (KpThiM) and KpThiM in complex with its substrate 5-(hydroxyethyl)-4-methylthiazole (TZE). KpThiM, consisting of an α-β-α domain, shows a pseudosymmetric trimeric formation. TZE molecules are located in the interface between the KpThiM subunits in the trimer and interact with Met49 and Cys200. Superimposition of the apo and TZE-complexed structures of KpThiM show that the side chains of the amino acids interacting with TZE and Mg〈sup〉2+〈/sup〉 have a rigid configuration. Comparison of the ThiM structures shows that KpThiM could, in terms of sequence and configuration, be different from other ThiM proteins, which possess different amino acids that recognize TZE and Mg〈sup〉2+〈/sup〉. The structures will provide new insight into the ThiM subfamily proteins for antibacterial drug development.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 0006-291X
    Electronic ISSN: 1090-2104
    Topics: Biology , Chemistry and Pharmacology , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2019
    Description: 〈p〉Publication date: Available online 16 August 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biochemical and Biophysical Research Communications〈/p〉 〈p〉Author(s): Yunlan Tang, Wei Yu〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Nuclear Dbf2-related kinase 2 (NDR2) is a highly conserved kinase that belongs to the NDR/LATS serine-threonine kinase family. NDR2 is involved in many cellular processes as a kinase or a scaffolding protein. As a known kinase, NDR2 requires self-phosphorylation and 〈em〉trans〈/em〉-phosphorylation to become fully active. However, beside phosphorylation, little is known about other posttranslational modifications of NDR2. In this study, we found that NDR2 can be specially acetylated at K463 in cells. In addition, SIRT1 acts as the major deacetylase for NDR2, while p300 and CBP function as specific acetyltransferases for NDR2. Interestingly, in SIRT1 deficient cells HDAC6 and HDAC1/2 can deacetylate NDR2, which provides a novel insight in deacetylation regulation. Our results demonstrate that NDR2 is a reversible acetylated kinase regulated by SIRT1 and p300/CBP.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 0006-291X
    Electronic ISSN: 1090-2104
    Topics: Biology , Chemistry and Pharmacology , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2019
    Description: 〈p〉Publication date: Available online 16 August 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biochemical and Biophysical Research Communications〈/p〉 〈p〉Author(s): Miae Won, Yongyang Luo, Dong-Ho Lee, Eunkyoung Shin, Dae-Shik Suh, Tae-Hyoung Kim, Hanyong Jin, Jeehyeon Bae〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉The adaptor-related protein complex 5 subunit mu 1 (AP5M1) is an evolutionally conserved protein with ubiquitous expression in human tissues. However, the major function of AP5M1 in living organisms is unclear owing to few published studies. Here, we demonstrate that AP5M1 is a potent apoptosis-inducing molecule in cervical cancer cells. We also found that AP5M1 upregulated the level of BAX protein, a key pro-apoptotic B cell lymphoma (BCL)-2 family member regulating mitochondrial apoptotic cell death pathway. Moreover, AP5M1 completely lost its apoptotic activity in BAX-knockout or -knockdown cells, indicative of its functional dependence on BAX. Comparative analysis of cervical tissues from patients with cervical carcinoma and non-cancer control revealed a prominent downregulation in 〈em〉AP5M1〈/em〉 expression with a concomitant downregulation in 〈em〉BAX〈/em〉 expression; 〈em〉AP5M1〈/em〉 and 〈em〉BAX〈/em〉 mRNA expression levels in cervical tissues exhibited a strong positive correlation (〈em〉r〈/em〉 = 0.97). Thus, we identified AP5M1 as a previously unrecognized apoptotic protein that governs BAX expression and revealed the association between AP5M1 and malignancy.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 0006-291X
    Electronic ISSN: 1090-2104
    Topics: Biology , Chemistry and Pharmacology , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2019
    Description: 〈p〉Publication date: 8 October 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biochemical and Biophysical Research Communications, Volume 518, Issue 1〈/p〉 〈p〉Author(s): Toshihiko Machiguchi, Tatsuo Nakamura〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Transplantation of artificially treated metanephroi or pluripotent stem cell-injected blastocyst-derived whole kidneys will be established in the near future as a useful therapeutic method for renal failure. We have attempted 〈em〉in vivo〈/em〉 nephron generation for kidney repair by exploiting cellular interactions via conditioned media (CMs). In a previous report, we showed stimulative cross-talks between vascular endothelial cells (VECs) and tubular epithelial cells (TECs) on cell proliferation and morphological changes, the differentiation of mesenchymal stem cells (MSCs) into TECs by TEC-CM, and nephron generation from TECs or MSCs in rat subcutaneous spaces. In this study adding collecting duct cells (CDCs) and their CM, we demonstrate the suppressive actions of CDC-CM against VECs and TECs, in addition to stimulative cross-talks between VECs and TECs, during the above changes. Furthermore, CDC-CM, similar to TEC-CM, caused differentiation of MSCs into TECs. Thus, we injected CDC-CM-induced MSC-differentiated TECs into rat kidney cortices. The pretreatment of cells in 3-dimensional culture using a small amount of gel complex before implantation triggered the generation of much more nephron-like structures, compared to the implantation of non-pretreated cells. Our method of injecting pretreated TECs into kidney cortices might have applications for repairing dysfunctional kidney tissue.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 0006-291X
    Electronic ISSN: 1090-2104
    Topics: Biology , Chemistry and Pharmacology , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2019
    Description: 〈p〉Publication date: Available online 13 August 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biochemical and Biophysical Research Communications〈/p〉 〈p〉Author(s): Min Gao, Lu Sun, Yan-Li Liu, Jing-Wen Xie, Li Qin, Jing Xue, Yi-Ting Wang, Kai-Min Guo, Ming-Ming Ma, Xiao-Yan Li〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Uncontrollable vascular smooth cell proliferation is responsible for vascular remodeling during hypertension development. Glyoxalase 1 (GLO1), the major enzyme detoxifying methylglyoxal, has a critical role in regulating proliferation of several cell types. However, little is known whether GLO1 is involved in cerebrovascular remodeling and basilar smooth muscle cell (BASMC) proliferation during hypertension. Here we explored the role of GLO1 in angiotensin II (Ang II)-induced cerebrovascular remodeling and proliferation of BASMCs and the underlying mechanisms. The protein expression of GLO1 in basilar arteries from hypertensive mice was decreased, and GLO1 expression was negatively correlated with medial cross-sectional area and blood pressure in basilar arteries during hypertension. Knockdown of GLO1 promoted while overexpression of GLO1 prevented Ang II-induced cell proliferation and cell cycle transition in BASMCs. These results were related to the inhibitory effects of GLO1 on PI3K/AKT/CDK2 cascade activation upon Ang II treatment. In addition, in vivo study, GLO1 overexpression with adeno-associated virus harboring GLO1 cDNA improved cerebrovascular remodeling in basilar artery tissue during Ang II-induced hypertension development. These data indicate that GLO1 reduction mediates cerebrovascular modeling via PI3K/AKT/CDK2 cascade-dependent BASMC proliferation. GLO1 acts as a negative regulator of hypertension-induced cerebrovascular remodeling and targeting GLO1 may be a novel therapeutic strategy to prevent hypertension-associated cardiovascular complications such as stroke.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 0006-291X
    Electronic ISSN: 1090-2104
    Topics: Biology , Chemistry and Pharmacology , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2019
    Description: 〈p〉Publication date: Available online 13 August 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biochemical and Biophysical Research Communications〈/p〉 〈p〉Author(s): Rebecca Kerr, Shilpi Agrawal, Sanhita Maity, Bhanuprasanth Koppolu, Srinivas Jayanthi, Gayatri Suresh Kumar, Ravi Kumar Gundampati, David S. McNabb, David A. Zaharoff, Thallapuranam Krishnaswamy Suresh Kumar〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Acidic fibroblast growth factors (FGF1s) are heparin binding proteins that regulate a wide array of key cellular processes and are also candidates for promising biomedical applications. FGF1-based therapeutic applications are currently limited due to their inherent thermal instability and susceptibility to proteases. Using a wide range of biophysical and biochemical techniques, we demonstrate that reversal of charge on a well-conserved positively charged amino acid, R136, in the heparin binding pocket drastically increases the resistance to proteases, thermal stability, and cell proliferation activity of the human acidic fibroblast growth factor (hFGF1). Two-dimensional NMR data suggest that the single point mutations at position-136 (R136G, R136L, R136Q, R136K, and R136E) did not perturb the backbone folding of hFGF1. Results of the differential scanning calorimetry experiments show that of all the designed R136 mutations only the charge reversal mutation, R136E, significantly increases (ΔT〈sub〉m〈/sub〉 = 7 °C) the thermal stability of the protein. Limited trypsin and thrombin digestion results reveal that the R136E mutation drastically increases the resistance of hFGF1 to the action of the serine proteases. Isothermal titration calorimetry data show that the R136E mutation markedly decreases the heparin binding affinity of hFGF1. Interestingly, despite lower heparin binding affinity, the cell proliferation activity of the R136E variant is more than double of that exhibited by either the wild type or the other R136 variants. The R136E variant due to its increased thermal stability, resistance to proteases, and enhanced cell proliferation activity are expected to provide valuable clues for the development of hFGF1- based therapeutics for the management of chronic diabetic wounds.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 0006-291X
    Electronic ISSN: 1090-2104
    Topics: Biology , Chemistry and Pharmacology , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2019
    Description: 〈p〉Publication date: Available online 13 August 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biochemical and Biophysical Research Communications〈/p〉 〈p〉Author(s): Yoshihiro Tamamura, Kei Sakamoto, Ken-ichi Katsube, Akira Yamaguchi〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Fgf23 acts as a phosphaturic factor secreted from osteocytes in bone, but the mechanism regulating Fgf23 is not fully understood. Here, we showed the colocalization of Fgf23, Notch, and Hes1, a downstream target of Notch signaling, in numerous osteocytes in cortical bone of femur in wild-type mice. We generated NICD (Notch intracellular domain)-transgenic mice driven by a 2.3 kb collagenα1 (I) (Col1a1) promoter fragment. Western blot and RT-PCR analyses revealed upregulation of Notch protein and mRNA levels in the bones of transgenic mice compared with those in wild-type mice. In the transgenic mice, immunohistochemical studies demonstrated that numerous osteocytes and osteoblasts express Notch in the rib, whereas only osteoblasts exhibit Notch in the femur. 〈em〉NICD〈/em〉-transgenic mice were characterized by upregulation of 〈em〉Fgf2〈/em〉3 mRNA levels in the rib but not in the femur compared with that in wild type mice. These mice exhibited dwarfism associated with an osteomalacia phenotype. The expression of 〈em〉Alpl〈/em〉, 〈em〉Col1a1〈/em〉, and 〈em〉Bglap〈/em〉 decreased in NICD-transgenic mice compared with wild-type mice. UMR-106 cells cultured on Jagged1-immobilized wells significantly increased 〈em〉Fgf23〈/em〉 expressions associating with upregulation of 〈em〉Hes1〈/em〉 and 〈em〉Hey1〈/em〉. These results imply that Notch signaling is a positive regulator for Fgf23 expression in osteocytes.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 0006-291X
    Electronic ISSN: 1090-2104
    Topics: Biology , Chemistry and Pharmacology , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2019
    Description: 〈p〉Publication date: Available online 13 August 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biochemical and Biophysical Research Communications〈/p〉 〈p〉Author(s): Hiroki Tanno, Tadashi Fujii, Riichi Ose, Katsuaki Hirano, Takumi Tochio, Akihito Endo〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Kestose and nystose are short chain fructooligosaccharides (scFOSs) with degrees of polymerization of 3 and 4, respectively. A previous study revealed that these scFOSs have different growth stimulation properties against two human commensals, i.e. 〈em〉Bifidobacterium longum〈/em〉 subsp. 〈em〉longum〈/em〉 and butyrogenic 〈em〉Anaerostipes caccae〈/em〉. The present study characterized genes involved in FOS metabolism in these organisms. 〈em〉A. caccae〈/em〉 possesses a single gene cluster consisting of four genes, including a gene encoding the putative FOS degradation enzyme sucrose-6-phosphate hydrolase (S6PH). 〈em〉B. longum〈/em〉 possesses two gene clusters consisting of three genes each, including genes encoding β-fructofuranosidase (CscA) and sucrose phosphorylase (ScrP). In 〈em〉A. caccae〈/em〉, the genes were highly transcribed in cells cultured with sucrose or kestose but poorly in cells cultured with glucose or nystose. Heterologously expressed S6PH degraded sucrose and kestose but not nystose. In 〈em〉B. longum〈/em〉, transcription of the genes was high in cells cultured with sucrose or kestose but was poor or not detected in cells cultured with glucose or nystose. Heterologously expressed CscA degraded sucrose, kestose and nystose, but ScrP degraded only sucrose. These data suggested that the different growth stimulation activities of kestose and nystose are due to different substrate specificities of FOS degradation enzymes in the organisms and/or induction activity of the genes in the two scFOSs. This is the first study characterizing the FOS metabolism at the transcriptional level and substrate-specificity of the degradation enzyme in butyrogenic human gut anaerobes.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 0006-291X
    Electronic ISSN: 1090-2104
    Topics: Biology , Chemistry and Pharmacology , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2019
    Description: 〈p〉Publication date: 1 October 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biochemical and Biophysical Research Communications, Volume 517, Issue 4〈/p〉 〈p〉Author(s): Minxiao Chen, Hui Fu, Jingjing Zhang, He Huang, Peng Zhong〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉 〈h6〉Objectives〈/h6〉 〈p〉Cold-inducible RNA binding protein (CIRP) is a stress protein which is involved in regulating multiple cellular processes. However, its role in pathological heart diseases is still unknown. Our current study was aimed at addressing the response and functional role of CIRP in heart failure.〈/p〉 〈/div〉 〈div〉 〈h6〉Methods〈/h6〉 〈p〉CIRP protein level was evaluated in heart samples from patients with heart failure and mice with post-myocardial infarction (post-MI). Cardiac-derived H9C2 cells were utilized to test the effects of CIRP deficiency on cell survival and apoptosis in response to H〈sub〉2〈/sub〉O〈sub〉2〈/sub〉 treatment.〈/p〉 〈/div〉 〈div〉 〈h6〉Results〈/h6〉 〈p〉Reduced expression of cardiac CIRP was observed in patients with heart failure, mice with post-MI. In addition, knockdown of CIRP exacerbated cell apoptosis and cell death in response to H〈sub〉2〈/sub〉O〈sub〉2〈/sub〉 treatment, suggesting a protective role of CIRP in cell apoptosis induced by oxidative stress in the heart.〈/p〉 〈/div〉 〈div〉 〈h6〉Conclusions〈/h6〉 〈p〉Our findings suggest that altered expression of CIRP may be involved in the pathogenesis of heart failure and downregulation of CIRP may render cardiac cells prone to apoptosis in heart failure.〈/p〉 〈/div〉 〈/div〉
    Print ISSN: 0006-291X
    Electronic ISSN: 1090-2104
    Topics: Biology , Chemistry and Pharmacology , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2019
    Description: 〈p〉Publication date: 8 October 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biochemical and Biophysical Research Communications, Volume 518, Issue 1〈/p〉 〈p〉Author(s): Woo Sik Kim, Ha-Yeon Song, Jeong Moo Han, Eui-Baek Byun〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉GLM, a luteolin derivative, shows 〈em〉anti〈/em〉-melanogenic effect via regulation of various signal molecules; however, it is unclear whether it also exerts anti-inflammatory effect. This study investigated the mechanisms of the anti-inflammatory effect of GLM on activated dendritic cells (DCs) to elucidate its therapeutic potential for ulcerative colitis. The anti-inflammatory effect of GLM was firstly investigated based on its effect on DCs maturation and T cells proliferation/activation. GLM treatment downregulated pro-inflammatory cytokine productions, surface molecule expression, and antigen-presenting ability for MHC-II complex in LPS-activated DCs. Importantly, anti-inflammatory effect induced by GLM treatment were independent of MAPK/NF-κB signaling pathways. Furthermore, DCs that were co-treated with LPS and GLM impaired the proliferation and activation of naïve CD4〈sup〉+〈/sup〉 T cells. Interestingly, GLM exerted 〈em〉in vivo〈/em〉 protective effect in DSS-induced colitis models by decreasing Th1, Th2, and Th17 cells and myeloperoxidase (MPO) levels, as well as restoring body weight, disease activity, and DSS-induced pathology. Based on these results, GLM was shown to be a potential candidate treatment for ulcerative colitis.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 0006-291X
    Electronic ISSN: 1090-2104
    Topics: Biology , Chemistry and Pharmacology , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2019
    Description: 〈p〉Publication date: 1 October 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biochemical and Biophysical Research Communications, Volume 517, Issue 4〈/p〉 〈p〉Author(s): Sanaz Alizadeh, Bagher Seyedalipour, Saeed Shafieyan, Abolfazl Kheime, Parvaneh Mohammadi, Nasser Aghdami〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Worldwide, impaired wound healing leads to a large burden of morbidity and mortality. Current treatments have several limitations. Recently, nanomaterials such as copper nanoparticles (CuNPs) have attracted considerable research interest. Here, we investigated the potential therapeutic effect of various CuNPs concentrations (1 μM, 10 μM, 100 μM, 1 mM, and 10 mM) and sizes (20 nm, 40 nm, 80 nm) in wound healing. Our results revealed that the 10 μM concentration of 40 nm CuNPs and the 1 μM concentration of 80 nm CuNPs were not toxic to the cultured fibroblast, endothelial, and keratinocyte cells, and also 1 μM concentration of 80 nm CuNPs enhanced endothelial cell migration and proliferation. Extensive assessment of 〈em〉in vivo〈/em〉 wound healing demonstrated that the 1 μM concentration of 80 nm CuNPs accelerated wound healing over a shorter time via formation of granulation tissue and higher new blood vessels. Importantly, serum biochemical analysis confirmed that the 40 nm CuNP (10 μM) and 80 nm CuNP (1 μM) did not show any accumulation in the liver during wound healing. Overall, our results have indicated that the 1 μM concentration of 80 nm CuNPs is a promising NP for wound healing applications without adverse side effects.〈/p〉〈/div〉 〈/div〉 〈h5〉Graphical abstract〈/h5〉 〈div〉〈p〉〈figure〉〈img src="https://ars.els-cdn.com/content/image/1-s2.0-S0006291X19314780-fx1.jpg" width="124" alt="Image 1" title="Image 1"〉〈/figure〉〈/p〉〈/div〉
    Print ISSN: 0006-291X
    Electronic ISSN: 1090-2104
    Topics: Biology , Chemistry and Pharmacology , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2019
    Description: 〈p〉Publication date: 1 October 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biochemical and Biophysical Research Communications, Volume 517, Issue 4〈/p〉 〈p〉Author(s): Haihong Lin, Yi Ling, Juanjuan Pan, Hui Gong〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Dilated cardiomyopathy (DCM) is considered as the final common response of myocardium to diverse genetic and environmental insults and characterized mainly by left ventricular systolic dysfunction. The current therapies for the treatment of DCM are costly high and outcomes are often unsatisfactory. To date, mesenchymal stem cells (MSCs) have been thought to be an ideal stem cell to repair damaged myocardium but was still within relatively small scales and few cases have been conducted in clinical trials. The use of erythropoietin (EPO), a growth factor produced in the kidneys have been found prevent cardiomyocyte apoptosis. This study was aimed to transplant MSCs into DCM rat bone marrow to express EPO in vivo and investigate the regulation of EPO on cell signaling pathways after transfection. The results found that transplantation of MSCs carrying EPO could significantly relief the cardiac dysfunctions of the DCM rat. This underylying mechanism involved with inhibiting p–NF–κB and p-P38, regulateing and promoting the anti-inflammatory balance, thereby alleviating tissue injury in DCM rats and exhibiting a protective role. Meanwhile, the MSCs + EPO treatment in DCM rat also activated the p-Akt pathway and thus protecting the myocardium from apoptosis in DCM rats. The study revealed an potential therapeutic effect of MSCs and EPO in clinical and provided a molecular mechanism of action for treating DCM.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 0006-291X
    Electronic ISSN: 1090-2104
    Topics: Biology , Chemistry and Pharmacology , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2019
    Description: 〈p〉Publication date: 8 October 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biochemical and Biophysical Research Communications, Volume 518, Issue 1〈/p〉 〈p〉Author(s): Arun Kanagaraj, Naoya Sakamoto, Lusheng Que, Yingfang Li, Md Mohiuddin, Miki Koura, Kousho Wakae, Makoto Kurachi, Masamichi Muramatsu, Kouichi Kitamura〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Some APOBEC3 family members have antiviral activity against retroviruses and DNA viruses. Hepatitis B virus (HBV) is a DNA virus that is the major causative factor of severe liver diseases such as cirrhosis and hepatocellular carcinoma. To determine whether APOBEC3 variants in humans have different anti-HBV activities, we evaluated natural variants of APOBEC3C, APOBEC3G, and APOBEC3H using an HBV-replicating cell culture model. Our data demonstrate that the APOBEC3C variant S188I had increased restriction activity and hypermutation frequency against HBV DNA. In contrast, the APOBEC3G variant H186R did not alter the anti-HBV and hypermutation activities. Among APOBEC3H polymorphisms (hap I-VII) and splicing variants (SV-200, SV-183, SV-182, and SV-154), hap II SV-183 showed the strongest restriction activity. These data suggest that the genetic variations in APOBEC3 genes may affect the efficiency of HBV elimination in humans.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 0006-291X
    Electronic ISSN: 1090-2104
    Topics: Biology , Chemistry and Pharmacology , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2019
    Description: 〈p〉Publication date: 1 October 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biochemical and Biophysical Research Communications, Volume 517, Issue 4〈/p〉 〈p〉Author(s): D.W. Russell, M. Hardison, K.R. Genschmer, T. Szul, P.E. Bratcher, M. Abdul Roda, X. Xu, L. Viera, J.E. Blalock, A. Gaggar, B.D. Noerager〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Neutrophil influx and activation contributes to organ damage in several major lung diseases. This inflammatory influx is initiated and propagated by both classical chemokines such as interleukin-8 and by downstream mediators such as the collagen fragment cum neutrophil chemokine Pro-Gly-Pro (PGP), which share use of the ELR + CXC receptor family. Benzyloxycarbonyl-proline-prolinal (ZPP) is known to suppress the PGP pathway via inhibition of prolyl endopeptidase (PE), the terminal enzyme in the generation of PGP from collagen. However, the structural homology of ZPP and PGP suggests that ZPP might also directly affect classical glutamate-leucine-arginine positive (ELR+) CXC chemokine signaling. In this investigation, we confirm that ZPP inhibits PE 〈em〉in vitro〈/em〉, demonstrate that ZPP inhibits both ELR + CXC and PGP-mediated chemotaxis in human and murine neutrophils, abrogates neutrophil influx induced by murine intratracheal challenge with LPS, and attenuates human neutrophil chemotaxis to sputum samples of human subjects with cystic fibrosis. Cumulatively, these data demonstrate that ZPP has dual, complementary inhibitory effects upon neutrophil chemokine/matrikine signaling which make it an attractive compound for clinical study of neutrophil inhibition in conditions (such as cystic fibrosis and chronic obstructive pulmonary disease) which evidence concurrent harmful increases of both chemokine and matrikine signaling.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 0006-291X
    Electronic ISSN: 1090-2104
    Topics: Biology , Chemistry and Pharmacology , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2019
    Description: 〈p〉Publication date: 8 October 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biochemical and Biophysical Research Communications, Volume 518, Issue 1〈/p〉 〈p〉Author(s): Jieqiong Chen, Fang Liu, Seul A. Lee, Siying Chen, Xiaoyan Zhou, Ping Ye, Stephen M. Riordan, Lu Liu, Li Zhang〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉〈em〉Campylobacter concisus〈/em〉 is an emerging bacterial pathogen that may play a role in the development of inflammatory bowel disease and oral inflammatory conditions such as periodontal disease. To elucidate the role and pathogenic mechanisms of 〈em〉C. concisus〈/em〉 in contributing to oral inflammation, this study examined the production of IL-1 family proinflammatory cytokines IL-18 and IL-1β in oral epithelial cells induced by 〈em〉C. concisus〈/em〉 strains using enzyme-linked immunosorbent assay (ELISA), Western-blot and quantitative real-time PCR. 〈em〉C. concisus〈/em〉 increased the mRNA levels of IL-18 and IL-1β in oral epithelial cells. Furthermore, a large amount of IL-18 in the supernatants of oral epithelial cells infected with 〈em〉C. concisus〈/em〉 strains was detected by ELISA, and various experiments demonstrated that this positive signal was derived from 〈em〉C. concisus〈/em〉 bacterium. The findings that 〈em〉C. concisus〈/em〉 upregulated IL-18 and IL-1β in oral epithelial cells from this study support a role of 〈em〉C. concisus〈/em〉 in oral inflammatory diseases. Furthermore, the finding that 〈em〉C. concisus〈/em〉 released a molecule that was strongly cross-reactive to anti-human IL-18 monoclonal antibodies suggests that in future studies examining cytokines induced by bacterial microbes, a bacterium control should be included.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 0006-291X
    Electronic ISSN: 1090-2104
    Topics: Biology , Chemistry and Pharmacology , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2019
    Description: 〈p〉Publication date: 1 October 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biochemical and Biophysical Research Communications, Volume 517, Issue 4〈/p〉 〈p〉Author(s): Yue-yi Wang, Dong Shen, Liu-jun Zhao, Nian Zeng, Teng-hui Hu〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Spinal cord injury (SCI) is a devastating neurological condition that results in progressive tissue loss, secondary to vascular dysfunction and inflammation. Lack of effective pharmacotherapies for SCI is mainly attributable to an incomplete understanding of its pathogenesis. Stimulator of interferon gene (Sting), also known as Transmembrane protein 173 (TMEM173), activates the type I interferon-regulated innate immune response, playing crucial role in modulating inflammation. However, the mechanism underlying Sting activation in SCI is still unclear. Here, we reported that Sting functioned as a positive regulator of SCI. Sting expression was increased in the injured spinal cord samples of SCI mice, along with significantly up-regulated levels of pro-inflammatory cytokines including tumor necrosis factor α (TNF-α), interleukin (IL)-1β and IL-6. Suppressing Sting expression in lipopolysaccharide-incubated mouse microglia markedly reduced the activation of nuclear factor-κB (NF-κB) and mitogen activated protein kinases (MAPKs) signaling pathways, as illustrated by the decreased phosphorylation of IKKβ, IκBα, NF-κB/p65, p38, ERK1/2 and JNK. Furthermore, LPS-stimulated release of pro-inflammatory cytokines in microglial cells was also reversed by Sting knockdown. In contrast, LPS-induced inflammation was further accelerated in microglial cells with Sting over-expression through potentiating NF-κB and MAPKs signaling. Mechanistically, Sting directly interacted with the TANK-binding kinase 1 (TBK1), thus promoting its phosphorylation and the activation of down-streaming NF-κB and MAPKs signaling pathways. Notably, the effects of Sting on SCI progression were verified in mice. Consistently, Sting knockout alleviated inflammatory response and facilitated recovery after SPI in mice through blocking TBK1 activation and subsequent NF-κB and MAPKs phosphorylation. In summary, our findings may provide a novel strategy for prevention and treatment of SCI by targeting Sting.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 0006-291X
    Electronic ISSN: 1090-2104
    Topics: Biology , Chemistry and Pharmacology , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2019
    Description: 〈p〉Publication date: 1 October 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biochemical and Biophysical Research Communications, Volume 517, Issue 4〈/p〉 〈p〉Author(s): Birgit Fendl, René Weiss, Tanja Eichhorn, Andreas Spittler, Michael B. Fischer, Viktoria Weber〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Human monocytes include CD14〈sup〉++〈/sup〉CD16〈sup〉−〈/sup〉 (classical), CD14〈sup〉++〈/sup〉CD16〈sup〉+〈/sup〉 (intermediate), and CD14〈sup〉+〈/sup〉CD16〈sup〉++〈/sup〉 (non-classical) subsets with divergent roles in immune regulation and inflammation. Since the functional characterization of monocyte subsets is most commonly performed using isolated monocytes, we investigated the influence of different monocyte isolation protocols on the relative abundance of monocyte subsets. Using flow cytometric subset characterization directly in whole blood as a reference, we found that monocyte isolation by enrichment of peripheral blood mononuclear cells and subsequent depletion of non-monocytes by magnetic labeling did not alter the distribution of monocyte subsets. Particularly, we failed to detect a loss of CD16〈sup〉+〈/sup〉 subsets upon monocyte isolation, although one of the negative depletion protocols used contained an anti-CD16 antibody to label granulocytes. Overnight storage of isolated monocytes induced a significant repartition of monocyte subsets towards CD14〈sup〉++〈/sup〉CD16〈sup〉+〈/sup〉 intermediate monocytes, which was barely seen in stored whole blood. We identified intermediate monocytes as main binding partners of platelet-derived extracellular vesicles (EVs) and propose that residual platelets contained in isolated monocyte preparations release EVs that induce the expression of the IgG receptor FcγRIII (CD16) on monocytes.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 0006-291X
    Electronic ISSN: 1090-2104
    Topics: Biology , Chemistry and Pharmacology , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2019
    Description: 〈p〉Publication date: 1 October 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biochemical and Biophysical Research Communications, Volume 517, Issue 4〈/p〉 〈p〉Author(s): Pengzhou Li, Xiang Gao, Xulong Sun, Weizheng Li, Bo Yi, Liyong Zhu〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Type II diabetes is a complex, chronic, and progressive disease. Previously, we demonstrate that FXR inhibits GLP-1 secretion via interacting with CREB to inhibit the transcriptional activity of CREB, thus promoting the development of type II diabetes. Epigenetic modifications, such as DNA methylation, histone acetylation, and post-transcriptional RNA regulation, are essential mediators contributing to diabetes-associated morbidity and mortality. Thus, we attempted to investigate the epigenetic mechanisms of FXR modulating GLP-1 secretion. Firstly, the involvement of histone acetylation, DNA methylation, and post-transcriptional regulation in FXR inhibiting GLP-1 secretion was verified. As FXR overexpression significantly inhibited the activity of GCG 3′-UTR, we hypothesize that miRNA might participate in the mechanism. Two online tools and real-time PCR revealed that FXR promoted miR-33 expression. Moreover, miR-33 inhibited the expression of GCG and CREB1 through direct targeting in STC-1 cells. FXR overexpression in STC-1 cells significantly reduced the mRNA expression and protein levels of both GCG and CREB1, as well as the secretion of GLP-1; miR-33 inhibition exerted opposing effects. More importantly, the effects of FXR overexpression were significantly reversed by miR-33 inhibition, indicating that FXR inhibited GLP-1 secretion through promoting miR-33 expression, therefore inhibiting the expression of miR-33 targets, GCG and CREB1. In conclusion, we provide a novel epigenetic mechanism by which FXR inhibits the secretion of GLP-1 through miR-33 and its two downstream targets, GCG and CREB1. These findings might provide innovative strategies for improving type II diabetes, which needs further 〈em〉in vivo〈/em〉 and clinical investigation.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 0006-291X
    Electronic ISSN: 1090-2104
    Topics: Biology , Chemistry and Pharmacology , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2019
    Description: 〈p〉Publication date: 1 October 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biochemical and Biophysical Research Communications, Volume 517, Issue 4〈/p〉 〈p〉Author(s): Rashmita Das, Chandan Goswami〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Transient receptor potential Vanilloid ion channel sub type 4 (TRPV4) is involved in complex Ca〈sup〉2+〈/sup〉-signaling. At least one copy of TRPV4 is present in all vertebrates and is involved in several physiological processes including sensory process and point mutations in TRPV4 leads to development of different pathophysiological disorders in human. R616Q mutant of TRPV4 has been referred as “gain-of-function” mutant causing abnormality in bone cells and develop pathophysiological condition known as “Brachyolmia”. In this work, we demonstrated that R616Q mutation is located in a very critical position of TRPV4 containing a cholesterol-binding motif sequence which is highly conserved in all vertebrates. Accordingly, TRPV4-Wt but not the TRPV4-R616Q localizes preferably in cholesterol-enriched lipid rafts in osteogenic cell line Saos2 and in DRG-neuron derived F11 cell line. Further, FRAP experiment suggest TRPV4-Wt but not the TRPV4-R616Q mutant is more mobile especially in cholesterol-reduced lipid membrane. GST-tagged TM4-Loop-TM5 fragment containing TRPV4-Wt but not R616Q sequence interacts with cholesterol, forms high-molecular weight complex and also show band shift in SDS-PAGE. TRPV4 is expressed in Mesenchymal stem cells and the localization of TRPV4 in lipid raft is dependent on temperature and cholesterol. Our data suggests that TRPV4-R616Q mutant behaves as a “loss-of-interaction” with cholesterol.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 0006-291X
    Electronic ISSN: 1090-2104
    Topics: Biology , Chemistry and Pharmacology , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2019
    Description: 〈p〉Publication date: 1 October 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biochemical and Biophysical Research Communications, Volume 517, Issue 4〈/p〉 〈p〉Author(s): Gregory Campbell, Sudha Swamynathan, Anil Tiwari, Shivalingappa K. Swamynathan〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉The secreted Ly-6/uPAR related protein-1 (SLURP1) is an anti-angiogenic and anti-inflammatory peptide highly expressed by the mucosal epithelial cells. SLURP1 is abundantly expressed by the corneal epithelial cells and is significantly downregulated when these cells are transformed and adapted for culture in vitro. Here we studied the effect of overexpressing SLURP1 in Human Corneal Limbal Epithelial (HCLE) cells cultured in vitro. The expression of DSP1, DSG1, TJP1 and E-Cadherin was significantly upregulated in two different SLURP1-overexpressing HCLE cell (HCLE-SLURP1) clones. HCLE-SLURP1 cells also displayed a significant decrease in tumor necrosis factor-α (TNF-α)-induced upregulation of (〈em〉i〈/em〉) IL-8 from 7.4- to 2.9- and 2.1-fold, (〈em〉ii〈/em〉) IL-1β from 4.9- to 3.9- and 2.9-fold, (〈em〉iii〈/em〉) CXCL1 from 9- to 3.3- and 5.5-fold, and (〈em〉iv〈/em〉) CXCL2 from 4.8- to 2.1- and 2.8-fold. ELISAs revealed a concomitant decrease in IL-8 levels in cell culture supernatants from 789 pg/ml in the control, to 503 and 352 pg/ml in HCLE-SLURP1 cells. Consistently, cytosolic IκB expression was elevated in HCLE-SLURP1 cells with a concurrent suppression of TNF-α-activated nuclear translocation of NF-κB. Collectively, these results elucidate the beneficial effects of SLURP1 in stabilizing the HCLE intercellular junctions and suppressing the TNF-α-induced upregulation of inflammatory cytokines by suppressing NF-κB nuclear translocation.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 0006-291X
    Electronic ISSN: 1090-2104
    Topics: Biology , Chemistry and Pharmacology , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2019
    Description: 〈p〉Publication date: 1 October 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biochemical and Biophysical Research Communications, Volume 517, Issue 4〈/p〉 〈p〉Author(s): Hong Bae Kim, Seho Lee, Yiming Shen, Pan-Dong Ryu, Yunmi Lee, Jong Hoon Chung, Chang Kyu Sung, Ku Youn Baik〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Electroporation is used for cancer therapy to efficiently destroy cancer tissues by transferring anticancer drugs into cancer cells or by irreversible tumor ablation without resealing pores. There is growing interest in the electroporation method for the treatment of lung cancer, which has the highest mortality rate among cancers. Improving the cancer cell selectivity has the potential to expand its use. However, the factors that influence the cell selectivity of electroporation are debatable. We aimed to identify the important factors that influence the efficiency of electroporation in lung cells. The electropermeabilization of lung cancer cells (H460, A549, and HCC1588) and normal lung cells (MRC5, WI26 and L132) was evaluated by the transfer of fluorescence dyes. We found that membrane permeabilization increased as cell size, membrane stiffness, resting transmembrane potential, and lipid cholesterol ratio increased. Among them, lipid composition was found to be the most relevant factor in the electroporation of lung cells. Our results provide insight into the differences between lung cancer cells and normal lung cells and provide a basis for enhancing the sensitivity of lung cancers cells to electroporation.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 0006-291X
    Electronic ISSN: 1090-2104
    Topics: Biology , Chemistry and Pharmacology , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2019
    Description: 〈p〉Publication date: 24 September 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biochemical and Biophysical Research Communications, Volume 517, Issue 3〈/p〉 〈p〉Author(s): Andrey Moiseenko, Natalia Loiko, Ksenia Tereshkina, Yana Danilova, Vladislav Kovalenko, Oleg Chertkov, Alexey V. Feofanov, Yurii F. Krupyanskii, Olga S. Sokolova〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉One of the universal mechanisms for the response of 〈em〉Escherichia coli〈/em〉 to stress is the increase of the synthesis of specific histone-like proteins that bind the DNA, Dps. As a result, two-and three-dimensional crystalline arrays may be observed in the cytoplasm of starving cells. Here, we determined the conditions to obtain very thin two-dimensional DNA-Dps co-crystals 〈em〉in vitro〈/em〉, and studied their projection structures, using electron microscopy. Analysis of the projection maps of the free Dps crystals revealed two lattice types: hexagonal and rectangular. We used the fluorescently labeled DNA to prove that the DNA is present within the co-crystals with Dps 〈em〉in vitro〈/em〉, and visualized its position using transmission electron microscopy. Molecular modeling confirmed the DNA position within the crystal. We have also suggested a structural model for the DNA-Dps co-crystal dissolving in the presence of Mg〈sup〉2+〈/sup〉 ions.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 0006-291X
    Electronic ISSN: 1090-2104
    Topics: Biology , Chemistry and Pharmacology , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2019
    Description: 〈p〉Publication date: Available online 18 August 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biochemical and Biophysical Research Communications〈/p〉 〈p〉Author(s): David Danielpour, Sandhya Purighalla, Eric Wang, Patrick M. Zmina, Antara Sarkar, Guang Zhou〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Recent evidence support that the c-〈u〉J〈/u〉un 〈u〉a〈/u〉ctivation domain-〈u〉b〈/u〉inding protein 〈u〉1〈/u〉 (JAB1)/COPS5 has an oncogenic function in various tissues. We show that JAB1 amplification in human prostate cancer (PCa) correlates with reduced overall survival and disease-free progression. Immunohistochemical staining shows enhanced expression of JAB1 in the cytoplasmic compartment of PCa cells compared to the normal prostate epithelium, indicating the activity/function of JAB1 is altered in PCa. To test the function of JAB1 in PCa, we efficiently silenced JAB1 expression using four unique shRNAs in three PCa cell lines (LNCaP, C4-2, and PC-3) and an immortalized prostate epithelial cell line, RWPE-1. Our data clearly show that silencing JAB1 robustly suppresses the growth of PCa cells, but not RWPE-1 cells, suggesting that PCa cells become addicted to JAB1. To study the potential mechanism by which JAB1 controls PCa growth, we profiled gene expression changes by whole transcriptome microarray analysis of C4-2 cells silenced for JAB1 using a pool of 3 shRNAs compared to scrambled shRNA control. We identified 1268 gene changes ≥1.5 fold by silencing JAB1 in C4-2. Western blot confirmation and bioinformatics pathway analyses support that PCa cells become addicted to JAB1 through controlling the following signaling pathways: cell cycle, p53 signaling, DNA replication, TGF-β/BMP, MAPK, TNF, and steroid hormone biosynthesis. We propose that UGT2B28, UGT2B10, UGT2B11, Skp2, EZH2, MDM2, BIRC5 (Survivin), UBE2C, and Smads 1/5/8, which are all associated with the abovementioned key oncogenic pathways, may play critical roles in the putative oncogenic function of JAB1 in PCa.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 0006-291X
    Electronic ISSN: 1090-2104
    Topics: Biology , Chemistry and Pharmacology , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2019
    Description: 〈p〉Publication date: Available online 19 August 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biochemical and Biophysical Research Communications〈/p〉 〈p〉Author(s): Hideki Kusunoki, Toshiyuki Tanaka, Toshiyuki Kohno, Hirokazu Kimura, Kazuo Hosoda, Kaori Wakamatsu, Isao Hamaguchi〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Hepatitis B virus X protein (HBx) possesses a BH3-like motif that directly interacts with the anti-apoptotic proteins, Bcl-2 and Bcl-x〈sub〉L〈/sub〉. Here we report the interaction between the HBx BH3-like motif and Bcl-x〈sub〉L〈/sub〉, as revealed by nuclear magnetic resonance spectroscopy. Our results showed that this motif binds to the common BH3-binding hydrophobic groove on the surface of Bcl-x〈sub〉L〈/sub〉, with a binding affinity of 89 μM. Furthermore, we examined the role of the tryptophan residue (Trp120) in this motif in Bcl-x〈sub〉L〈/sub〉 binding using three mutants. The W120A mutant showed weaker binding affinity (294 μM) to Bcl-x〈sub〉L〈/sub〉, whereas the W120L and W120F mutants exhibited almost equivalent binding affinity to the wild-type. These results indicate that the bulky hydrophobic residues are important for Bcl-x〈sub〉L〈/sub〉 binding. The findings will be helpful in understanding the apoptosis networks between viral proteins and host factors.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 0006-291X
    Electronic ISSN: 1090-2104
    Topics: Biology , Chemistry and Pharmacology , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2019
    Description: 〈p〉Publication date: Available online 19 August 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biochemical and Biophysical Research Communications〈/p〉 〈p〉Author(s): Taichi Miura, Noriyuki Yuasa, Hayato Ota, Masato Habu, Mitsuko Kawano, Fumiaki Nakayama, Shoko Nishihara〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Human induced pluripotent stem (hiPS) cells are attracting attention as a tool for regenerative medicine. However, several problems need to be overcome for their widespread and safe use, for example, the high cost of maintaining hiPS cells and the possibility of xenogeneic cell contamination in hiPS cell cultures. One of the main contributors to the high cost of maintaining hiPS cells is basic fibroblast growth factor (bFGF), which is essential for such cultures. Xenogeneic contamination can occur because of the use of mouse-derived feeder cells to culture hiPS cells. To overcome the problems of cell culture cost and xenogeneic contamination, we have developed a novel culture method in which the undifferentiated state and pluripotency of hiPS cells can be maintained under feeder-free and bFGF-free conditions. Our new approach involves the addition to the culture medium of highly sulfated hyaluronic acid (HA-HS), in which the hydroxyl groups of 〈span〉d〈/span〉-glucuronic acid (GlcA) and 〈em〉N〈/em〉-acetyl-〈span〉d〈/span〉-glucosamine (GlcNAc) are chemically sulfated. HA-HS promotes bFGF signaling and maintains the undifferentiated state and pluripotency of hiPS cells under feeder-free and bFGF-free conditions. By contrast, non-sulfated hyaluronic acid and low sulfated hyaluronic acid do not maintain the undifferentiated state and pluripotency of hiPS cells. These results indicate that the maintenance of hiPS cells under feeder-free and bFGF-free conditions is an HA-HS specific effect. This study is the first to demonstrate the effects of sulfated hyaluronic acid on mammalian pluripotent stem cells, and provides a novel method for maintaining hiPS cells using HA-HS.〈/p〉〈/div〉 〈/div〉 〈h5〉Graphical abstract〈/h5〉 〈div〉〈p〉〈figure〉〈img src="https://ars.els-cdn.com/content/image/1-s2.0-S0006291X19316055-fx1.jpg" width="395" alt="Image 1" title="Image 1"〉〈/figure〉〈/p〉〈/div〉
    Print ISSN: 0006-291X
    Electronic ISSN: 1090-2104
    Topics: Biology , Chemistry and Pharmacology , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2019
    Description: 〈p〉Publication date: 8 October 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biochemical and Biophysical Research Communications, Volume 518, Issue 1〈/p〉 〈p〉Author(s): Liuping Cai, Canfeng Hua, Yali Geng, Qu Chen, Liqiong Niu, Shiyu Tao, Yingdong Ni, Ruqian Zhao〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Chronic stress has a profound effect on health in both animals and humans. Dexamethasone (Dex), a synthetic glucocorticoid, is used to induce chronic stress in many studies. The impact of chronic stress on epithelial cells of hindgut of ruminants is still unknown. In this study, we investigated the effect of chronic stress induced by long term injection of low dosage of Dex on the colonic epithelium of goats. The results showed that Dex exposure increased the number of TUNEL-positive cells, upregulated caspase-3 and caspase-8 enzyme activity, but decreased protein expression of cell proliferation markers proliferating cell nuclear antigen (PCNA) and Cyclin D2(CCND2). It also activated TLR-4 and NF-κB pathway and increased the transcription levels of vital inflammatory cytokines such as interleukin-10 (IL-10), interleukin-1β (IL-1β), and inducible nitric oxide synthase 2 (iNOS2). Chronic stress down-regulated the methylation level of total DNA, suggesting a mechanism for the transcriptional activation of genes, such as claudin-1, claudin-4, ZO-1, and cell cycle-related genes. Taken together, long-term injection of a low dosage of Dex caused damage to the colon epithelium accompanied with the inhibition of cell proliferation and the activation of cell apoptosis and inflammation. However, a general up-regulation of genes expression induced by Dex is due to a lower level of genomic DNA methylation.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 0006-291X
    Electronic ISSN: 1090-2104
    Topics: Biology , Chemistry and Pharmacology , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2019
    Description: 〈p〉Publication date: Available online 17 August 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biochemical and Biophysical Research Communications〈/p〉 〈p〉Author(s): Sepideh Haghighi-Poodeh, Latifeh Navidpour, Parichehreh Yaghmaei, Azadeh Ebrahim-Habibi〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉 〈p〉Insulin is a small protein with 51 residues that mediates glucose uptake, and an interesting model for studying protein misfolding and aggregation. The aggregated forms of insulin undergo loss of activity and can provoke unwanted immune responses.〈/p〉 〈p〉Use of small molecules is considered to be an affordable method to counteract this aggregation process and stabilize insulin. In this study, aggregated forms of human recombinant insulin have been produced following exposure to high temperature. Aggregation process was followed over time by checking absorbance with spectrophotometry in presence and absence of various concentrations of small phenolic compounds including eugenol and epinephrine. Effects of these compounds on the structure and function of incubated insulin were evaluated by spectrofluorimetry, melting temperature (Tm) measurement and insulin tolerance test on Wistar rats. Formation of heat-induced insulin aggregation can be effectively inhibited by 1 mM eugenol and epinephrine and both compounds were found to preserve insulin activity to a considerable extent. In conclusion, simple aromatic compounds could be tailored to act as potent anti-aggregation compounds for insulin.〈/p〉 〈/div〉 〈/div〉 〈h5〉Graphical abstract〈/h5〉 〈div〉〈p〉〈figure〉〈img src="https://ars.els-cdn.com/content/image/1-s2.0-S0006291X19315815-fx1.jpg" width="348" alt="Image 1" title="Image 1"〉〈/figure〉〈/p〉〈/div〉
    Print ISSN: 0006-291X
    Electronic ISSN: 1090-2104
    Topics: Biology , Chemistry and Pharmacology , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2019
    Description: 〈p〉Publication date: Available online 17 August 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biochemical and Biophysical Research Communications〈/p〉 〈p〉Author(s): C.S. Madhu, K.S. Balaji, J. Shankar, A.C. Sharada〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉In the present study, chitin specific lectin was purified from fruit exudates of 〈em〉Praecitrullus fistulosus〈/em〉. The lectin was purified and analyzed using affinity chromatography, RP-HPLC and electrophoretic studies. Furthermore, protein was identified by MALDI-MS/MS and peptide mass fingerprinting. Purified lectin (〈em〉PfL〈/em〉) effectively agglutinates RBC, lymphocytes and displayed strong cytotoxicity against colon cancer (line HT29) cells among screened cells. 〈em〉PfL〈/em〉 induced apoptosis by altering the expression of apoptotic proteins via caspadse-3 dependent pathway. 〈em〉In vivo〈/em〉 studies using EAC mice model proves the efficacy of 〈em〉PfL〈/em〉 by activating apoptosis and inhibiting the tumor neovasculature by targeting the MVD, VEGF and MMP's secretion. More importantly, the 〈em〉PfL〈/em〉 treatment leads to effective inhibition of tumor growth and a ∼2.71 fold increase in the lifespan of EAC mice. Collectively, our study provides comprehensive evidence that the role of dietary lectins with significant cytotoxic potential by targeting tumor angiogenesis and activating apoptosis in cancer study models.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 0006-291X
    Electronic ISSN: 1090-2104
    Topics: Biology , Chemistry and Pharmacology , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    facet.materialart.
    Unknown
    Elsevier
    Publication Date: 2019
    Description: 〈p〉Publication date: 1 October 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biochemical and Biophysical Research Communications, Volume 517, Issue 4〈/p〉 〈p〉Author(s): 〈/p〉
    Print ISSN: 0006-291X
    Electronic ISSN: 1090-2104
    Topics: Biology , Chemistry and Pharmacology , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2019
    Description: 〈p〉Publication date: Available online 17 August 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biochemical and Biophysical Research Communications〈/p〉 〈p〉Author(s): Takashi Matsumoto, Ryosuke Nakashima, Akihito Yamano, Kunihiko Nishino〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉The structure determination of organic compounds is desirable for the development of medicines, aroma chemicals, and agricultural chemicals. However, the crystallization of organic compounds is often troublesome, because crystallization requires a relatively large quantity of high purity compounds and crystallization trials often need to be performed repetitively using different conditions. Some proteins are known to be able to bind to various organic compounds. The multidrug-resistance regulator protein RamR is one such protein. We have developed a structure determination method for organic compounds using RamR. RamR bound to organic compounds, including one compound that was not a known ligand for RamR, and the structures of the complexes were successfully determined. Because the RamR crystal is hydrophilic, this method may be useful for compounds that cannot be handled by the crystalline sponge method.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 0006-291X
    Electronic ISSN: 1090-2104
    Topics: Biology , Chemistry and Pharmacology , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2019
    Description: 〈p〉Publication date: 8 October 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biochemical and Biophysical Research Communications, Volume 518, Issue 1〈/p〉 〈p〉Author(s): Kazuoki Hirano, Motoki Fujimaki, Yukiko Sasazawa, Akihiro Yamaguchi, Kei-Ichi Ishikawa, Kengo Miyamoto, Sanae Souma, Norihiko Furuya, Yoko Imamichi, Daisuke Yamada, Hideyuki Saya, Wado Akamatsu, Shinji Saiki, Nobutaka Hattori〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉 〈h6〉Introduction〈/h6〉 〈p〉Chemical intervention of autophagy has been investigated in clinical trials for various age-related conditions such as sarcopenia and neurodegeneration. However, at present, no autophagy inducer has been established as a disease-modifying agent against neurodegenerative diseases.〈/p〉 〈/div〉 〈div〉 〈h6〉Methods〈/h6〉 〈p〉We screened a library consisting of 796 medicines clinically approved (in Japan) for autophagy enhancers as potential neurodegeneration therapeutics using HeLa cells stably expressing green fluorescent protein-microtubule-associated protein light chain 3 (GFP-LC3) followed by an analysis of the molecular mechanisms using various neuronal models.〈/p〉 〈/div〉 〈div〉 〈h6〉Results〈/h6〉 〈p〉The primary screening identified 152 hits in a static cellular state. A widely available Alzheimer's disease drug, memantine, which antagonizes N-Methyl-〈span〉d〈/span〉-aspartate receptor (NMDAR), was one of the hits. Memantine increased the levels of LC3-II in a dose-dependent and time-dependent manner, and upregulated autophagic flux. In addition, the pharmacological effects of memantine on autophagy were independent of mTORC1 activity and NMDAR activation. Furthermore, a VPS34 inhibitor suppressed the memantine-induced LC3-II upregulation, suggesting that memantine may affect VPS34 complex activity. Notably, intracellular Huntington's disease-specific aggregates of elongated huntingtin, a well-established autophagy substrate, were significantly decreased by memantine. In addition, memantine enhanced elimination of degraded mitochondrial in neurons derived from induced pluripotent stem cells of PARK2 or PARK6 patients, who exhibited defective PINK1/parkin-mediated mitophagy, suggests that memantine accelerated the clearance of damaged mitochondria.〈/p〉 〈/div〉 〈div〉 〈h6〉Conclusion〈/h6〉 〈p〉These findings indicate that memantine may be beneficial for the treatment of neurodegeneration characterized by the abnormal accumulation of autophagy or mitophagy substrates.〈/p〉 〈/div〉 〈/div〉
    Print ISSN: 0006-291X
    Electronic ISSN: 1090-2104
    Topics: Biology , Chemistry and Pharmacology , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2019
    Description: 〈p〉Publication date: Available online 16 August 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biochemical and Biophysical Research Communications〈/p〉 〈p〉Author(s): Tianqi Lyu, Ziwei Hu, Weimiao Liu, Jiashu Cao〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Cys〈sub〉2〈/sub〉/His〈sub〉2〈/sub〉 zinc-finger protein (C2H2-ZFP) is widely involved in the reproductive development of plants, but its role in pollen development is still elusive. Here, we identified a pollen-related C2H2-ZFP gene named as 〈em〉MALE FERTILITY-ASSOCIATED ZINC FINGER PROTEIN 1〈/em〉 (〈em〉MAZ1〈/em〉), which was first isolated from 〈em〉Arabidopsis thaliana〈/em〉. 〈em〉MAZ1〈/em〉 showed a preferential expression pattern in early anther development. Its mutation resulted in aberrant primexine deposition at the tetrad stage, followed by a defective multiple-layer pattern of exine with irregular baculum and no tectum. Furthermore, microspore development was arrested, and no intine layer was formed. These developmental defects led to fertility reduction and pollen abortion. This study reveals the essential role of MAZ1 in pollen wall development.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 0006-291X
    Electronic ISSN: 1090-2104
    Topics: Biology , Chemistry and Pharmacology , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2019
    Description: 〈p〉Publication date: 8 October 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biochemical and Biophysical Research Communications, Volume 518, Issue 1〈/p〉 〈p〉Author(s): Fengguang Zhao, Jingwen Li, Kerui Lin, Hong Chen, Ying Lin, Suiping Zheng, Shuli Liang, Shuangyan Han〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉We screened a haploid library of 〈em〉Saccharomyces cerevisiae〈/em〉 single-gene deletion mutants to identify nonessential genes associated with increased sensitivity to or resistance against the cell wall antagonist calcofluor white. Through a genome-wide screen, we isolated 537 strains that had an altered growth rate relative to wild type, of which 485 showed increased sensitivity and 52 showed increased resistance to calcofluor white. The MAPK signaling pathway, N-glycan biosynthesis, endocytosis, vacuole acidification, autophagy, and the sulfur relay system were identified as being associated with calcofluor white sensitivity. Resistance genes were mainly involved in chitin metabolism and the RIM101 pathway or encoded several components of the ESCRT complexes or related to cysteine and methionine metabolism and RNA degradation. Further investigation indicated a clear global response network that 〈em〉S. cerevisiae〈/em〉 relies on in the presence of the cell wall antagonist calcofluor white, which may help us to understand fungal cell wall remodeling and the mechanisms of toxicity of calcofluor white with respect to eukaryotic cells.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 0006-291X
    Electronic ISSN: 1090-2104
    Topics: Biology , Chemistry and Pharmacology , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2019
    Description: 〈p〉Publication date: 8 October 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biochemical and Biophysical Research Communications, Volume 518, Issue 1〈/p〉 〈p〉Author(s): Zoheb Ahmed, Harinath Doodhi, Arijit Bhaumik, Shyamalava Mazumdar, Krishanu Ray〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Association between two motor subunits through the rod/stalk domain enables molecular motors to walk processively on protein filaments. Previous studies suggested that structural flexibility in the coiled-coil stalk of kinesins is essential for processive runs. The stalk of heterotrimeric kinesin-2, a comparatively less processive motor, is unstable at ambient temperature. How this structural instability impacts the motor function is unclear. Here, using the Förster Resonance Energy Transfer based assays, we show that the 〈em〉Drosophila〈/em〉 kinesin-2α/β stalk heterodimer is dynamic at physiological conditions. We further show that insertion of a missense mutation (Glu551-Lys) at the C-terminal half of kinesin-2α stalk reduces the dynamics of the heterodimeric stalk 〈em〉in vitro〈/em〉. The mutation, isolated as a recessive lethal allele in a forward genetic screen, is reported to disrupt the motor function in axonal transport and cilia development. Together these two results suggest that the dynamic instability of the kinesin-2 stalk could play a crucial role in maintaining its biological function.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 0006-291X
    Electronic ISSN: 1090-2104
    Topics: Biology , Chemistry and Pharmacology , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2019
    Description: 〈p〉Publication date: 1 October 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biochemical and Biophysical Research Communications, Volume 517, Issue 4〈/p〉 〈p〉Author(s): Minting Liang, David W. Ow〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Survival of a species depends on reproductive fitness and a plant's floral transition is controlled by developmental and environmental signals. In 〈em〉Arabidopsis〈/em〉, the floral integrators SOC1 (SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1) and FT (FLOWERING LOCUS T) sense various pathway signals to activate floral meristem identity genes. At high stress intensity, greater nuclear accumulation of the zinc-finger transcription factor OXS2 (OXIDATIVE STRESS 2) activates an early-flowering stress-escape response. Curiously, accumulation of OXS2 in the cytoplasm can delay flowering, prompting the hypothesis that in absence of stress, OXS2 helps to maintain vegetative growth. While the mechanism of stress-escape was identified as the OXS2-mediated transcription of 〈em〉SOC1〈/em〉, how cytoplasmic OXS2 delays flowering was unknown. Here, we report that OXS2 can interact indirectly with florigen FT and transcription factor FD (FLOWERING LOCUS D), the two proteins known to induce floral transition. By using 14-3-3Ω as a bridge linker, OXS2 can alter the subcellular distribution of FT. This lead to a speculation on how cytoplasmic OXS2 is able to prevent early flowering, by keeping FT from the nucleus.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 0006-291X
    Electronic ISSN: 1090-2104
    Topics: Biology , Chemistry and Pharmacology , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2019
    Description: 〈p〉Publication date: 8 October 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biochemical and Biophysical Research Communications, Volume 518, Issue 1〈/p〉 〈p〉Author(s): Kyung Wook Been, Hye-Jin Yoon, Seung Taeg Jeon, Hyung Ho Lee〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉C-di-GMP, bis-(3′-5′)-cyclic dimeric guanosine monophosphate, is a key signaling molecule that regulates many important physiological processes in bacteria. C-di-GMP is synthesized by diguanylate cyclase (DGC) containing the homodimeric GGDEF domain. There are many uncharacterized hypothetical proteins annotated as a putative DGC in bacteria including hyperthermophiles; however, their structures still remain unexplored. Here, we solved the crystal structure of the GGDEF-like domain of Tm0107 protein from 〈em〉Thermotoga maritima〈/em〉 at a resolution of 2.1 Å, which shares sequence similarities with DGC proteins in other bacteria. Tm0107 consists of an N-terminal coiled-coil and C-terminal GGDEF-like domain. We showed that the GGDEF-like domain of Tm0107 exists as monomer in solution and is structurally similar to other GGDEF domains. Two zinc ions are coordinated at the interface between two Tm0107 monomers. Based on our measurements of the Stokes radii of Tm0107 by analytical gel filtration, we propose a dimer model of Tm0107 containing both the N-terminal coiled coil and C-terminal GGDEF-like domains. Based on the model, Tm0107 forms a homodimer in a manner different compared to other structurally characterized DGC proteins. These results provide useful structural information about putative DGC proteins containing protein sequences similar to that of Tm0107, which is widely conserved in hyperthermophiles.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 0006-291X
    Electronic ISSN: 1090-2104
    Topics: Biology , Chemistry and Pharmacology , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    facet.materialart.
    Unknown
    Elsevier
    Publication Date: 2019
    Description: 〈p〉Publication date: 24 September 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biochemical and Biophysical Research Communications, Volume 517, Issue 3〈/p〉 〈p〉Author(s): 〈/p〉
    Print ISSN: 0006-291X
    Electronic ISSN: 1090-2104
    Topics: Biology , Chemistry and Pharmacology , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2019
    Description: 〈p〉Publication date: 8 October 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biochemical and Biophysical Research Communications, Volume 518, Issue 1〈/p〉 〈p〉Author(s): Jiro Kikuchi, Nakanobu Hayashi, Naoki Osada, Masahiko Sugitani, Yusuke Furukawa〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉The potential application of human induced pluripotent stem cells (hiPSCs) brings great expectations to regenerative medicine. However, several safety concerns, such as oncogenic transformation, remain. A number of methods have been developed to produce hiPSCs with potentially reduced risks. Cell-penetrating peptides (CPPs) are expected to improve the efficiency of nonviral reprogramming by delivering biologically active molecules into cells. Here, we show that the transfection of CPPs alone into normal adult human fibroblasts generated embryonic body (EB)-like cell clusters in the absence of reprogramming factors. The CPP-generated cell clusters were positive for a set of multipotency markers and differentiated into endodermal, ectodermal, and mesodermal cells 〈em〉in vitro〈/em〉. These results suggest that CPPs converted normal human adult somatic cells into multipotent cells. Moreover, we show that CPPs dissociated histone deacetylase 1 and lysine-specific demethylase 1 from the promoter/enhancer regions of reprogramming factors to reactivate their expression. This is the first report of an easy and quick method for somatic cell reprogramming by CPPs and a novel mechanism of reprogramming. The potential application of CPP-generated multipotent cells resolves several concerns, especially safety issues, in regenerative medicine.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 0006-291X
    Electronic ISSN: 1090-2104
    Topics: Biology , Chemistry and Pharmacology , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2019
    Description: 〈p〉Publication date: 8 October 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biochemical and Biophysical Research Communications, Volume 518, Issue 1〈/p〉 〈p〉Author(s): Yueqing Wang, Qun Gu, Keyue Yan, Yan Zhu, Tan Tan, Yanbo Zheng, Xiaojing Wang, Taiyang Zou, Qianjin Liang〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉INMAP was first identified as a spindle protein that plays important roles in cell-cycle progression, and previous studies have revealed that its abnormal expression leads to mitotic disorder and the growth inhibition of human tumor xenografts, but the underlying mechanism is still unclear. In this study, we knocked out 〈em〉INMAP〈/em〉 in HEK293T cells, a strain of human embryonic renal cells, through CRISPR-Cas9 gene editing technology, resulting in obvious cell growth inhibition. In this system, the deletion of 〈em〉INMAP〈/em〉 caused obviously apoptosis. And we also found that knockout of 〈em〉INMAP〈/em〉 caused micronuclei formation, chromosome aberration, and γH2AX expression upregulation, suggesting DNA damage induction and genomic stability impairment. As a principal component of spindle, the expression of β-tubulin, detected through Western blot, is obviously upregulated in HEK293T-〈em〉INMAP〈/em〉〈sup〉〈em〉−/−〈/em〉〈/sup〉. Meanwhile, the level of Cyclin B is also upregulated, whereas, that of Cyclin E, downregulated, with the postponement of mitotic exit and the assembly anomaly of spindle. These results suggest that the deletion of 〈em〉INMAP〈/em〉 block the formation of spindle, leading to arrest of cell cycle and DNA damage, finally blocking cell proliferation and inducing apoptosis. Therefore, INMAP is an indispensable factor for genomic integrity and normal mitotic exit.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 0006-291X
    Electronic ISSN: 1090-2104
    Topics: Biology , Chemistry and Pharmacology , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2019
    Description: 〈p〉Publication date: 8 October 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biochemical and Biophysical Research Communications, Volume 518, Issue 1〈/p〉 〈p〉Author(s): Madhurima Datta, Shashanka Aroli, Kapudeep Karmakar, Somnath Dutta, Dipshikha Chakravortty, Umesh Varshney〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Uracil is not always a mistakenly occurring base in DNA. Uracils in DNA genomes are known to be important in the life cycles of 〈em〉Bacillus subtilis〈/em〉 phages (PBS1/2) and the malarial parasite, 〈em〉Plasmodium falciparum〈/em〉; and have been implicated in the development of fruit fly and antibody maturation in B-lymphocytes. Availability of a sensitive, specific and robust technique for the detection uracils in genes/genomes is essential to understand its varied biological roles. 〈em〉Mycobacterium smegmatis〈/em〉 UdgX (〈em〉Msm〈/em〉UdgX), identified and characterised in our laboratory, forms covalent complexes with the uracil sites in DNA in a specific manner. 〈em〉Msm〈/em〉UdgX cleaves the glycosidic bond between uracil and the deoxyribose sugar in DNA to produce uracilate and oxocarbenium ions. The oxocarbenium ion is then captured into a covalent complex by the nucleophilic attack of a histidine side chain of 〈em〉Msm〈/em〉UdgX. Here, we describe the use of a fusion protein, mCherry tagged 〈em〉Msm〈/em〉UdgX (mChUdgX), which combines the property of 〈em〉Msm〈/em〉UdgX to covalently and specifically bind the uracil sites in the genome, with the sensitivity of fluorescent detection of mCherry as a reporter. We show that both the purified mChUdgX and the 〈em〉Escherichia coli〈/em〉 cell-extracts overexpressing mChUdgX provide high sensitivity and specificity of detecting uracils in DNA.〈/p〉〈/div〉 〈/div〉 〈h5〉Graphical abstract〈/h5〉 〈div〉〈p〉〈figure〉〈img src="https://ars.els-cdn.com/content/image/1-s2.0-S0006291X19315074-fx1.jpg" width="500" alt="Image 1" title="Image 1"〉〈/figure〉〈/p〉〈/div〉
    Print ISSN: 0006-291X
    Electronic ISSN: 1090-2104
    Topics: Biology , Chemistry and Pharmacology , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2019
    Description: 〈p〉Publication date: 8 October 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biochemical and Biophysical Research Communications, Volume 518, Issue 1〈/p〉 〈p〉Author(s): Na Wang, Wenying Meng, Rongrong Jia, Shihao Xiang〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Acute pancreatitis (AP) is a severe inflammatory disease. Caerulin induces significant pro-inflammatory responses in macrophages, causing serve damage to pancreatic acinar cells. The potential role of Rab GTPase 21 (Rab21) in this process was tested in this study. In murine bone marrow-derived macrophages (BMDMs), caerulin induced Rab21-TRAF3-MKK3 complex association. Rab21 silencing (by targeted shRNAs) or knockout (by CRISPR/Cas9 method) largely inhibited caerulin-induced MKK3-TRAF3 association, downstream MKK3-p38 activation and production of several pro-inflammatory cytokines (IL-1β, TNF-α and IL-17). Conversely, ectopic Rab21 overexpression in BMDMs potentiated caerulin-induced MKK3-TRAF3 association and pro-inflammatory cytokines production. The cytotoxicity of caerulin-activated BMDMs to co-cultured pancreatic acinar cells was alleviated by Rab21 knockdown or knockout, but exacerbated with Rab21 overexpression. 〈em〉In vivo〈/em〉, administration of Rab21 shRNA lentivirus significantly attenuated pancreatic and systemic inflammations in caerulin-injected AP mice. Collectively, our results suggest that Rab21 mediates caerulin-induced MKK3-p38 activation and pro-inflammatory responses.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 0006-291X
    Electronic ISSN: 1090-2104
    Topics: Biology , Chemistry and Pharmacology , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2019
    Description: 〈p〉Publication date: 1 October 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biochemical and Biophysical Research Communications, Volume 517, Issue 4〈/p〉 〈p〉Author(s): Shazia Parveen, Sonali Singh, Sneha Sudha Komath〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Ras proteins are highly conserved small GTPases in eukaryotes. GTP-bound Ras binds to effectors to trigger signaling cascades. In order to understand how extensive is the functional homology between the highly homologous proteins, 〈em〉S. cerevisiae〈/em〉 Ras2 and 〈em〉C. albicans〈/em〉 Ras1, we examined whether ScRas2 could functionally complement CaRas1 in activating hyphal morphogenesis as well as GPI anchor biosynthesis. We show that ScRas2 functionally complements CaRas1 in rescuing growth as well as activating hyphal growth, a process that involves plasma membrane localized Ras activating cAMP/PKA signaling via Cyr1. However, ScRas2 is unable to activate the GPI-〈em〉N〈/em〉-acetylglucosaminyl transferase (GPI-GnT) which catalyzes the first step of GPI biosynthesis. That CaRas1 alone activates GPI-GnT and not ScRas2 suggests that this process is cAMP independent. Interestingly, CaRas1 transcriptionally activates 〈em〉CaGPI2〈/em〉, encoding a GPI-GnT subunit that has been shown to interact with CaRas1 physically. In turn, 〈em〉CaGPI2〈/em〉 downregulates 〈em〉CaGPI19,〈/em〉 encoding another GPI-GnT subunit. This has direct consequences for expression of 〈em〉CaERG11,〈/em〉 encoding the target of azole antifungals. This effect too is specific to CaRas1 and ScRas2 is unable to replicate it.〈/p〉〈/div〉 〈/div〉 〈h5〉Graphical abstract〈/h5〉 〈div〉〈p〉〈figure〉〈img src="https://ars.els-cdn.com/content/image/1-s2.0-S0006291X19315025-fx1.jpg" width="291" alt="Image 1" title="Image 1"〉〈/figure〉〈/p〉〈/div〉
    Print ISSN: 0006-291X
    Electronic ISSN: 1090-2104
    Topics: Biology , Chemistry and Pharmacology , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2019
    Description: 〈p〉Publication date: 1 October 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biochemical and Biophysical Research Communications, Volume 517, Issue 4〈/p〉 〈p〉Author(s): Na Li, Yufeng Wu, Liangyi Zhu, Yang Huang, Zongran Liu, Min Shi, David Soltys, Jing Zhang, Qing Chang〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Biological functions of extracellular vesicles (EVs) are being discovered to be critical in neurodegenerative disorders, including Parkinson's disease (PD). A previous study using cellular models of PD has suggested that EVs derived from microglia exposed to aggregated α-synuclein (α-Syn) leads to enhanced neurotoxicity. However, the function of EVs derived from microglia not treated with aggregated a-Syn or treated with monomeric α-Syn are unclear. Here, employing a widely used cellular model of PD, i.e. SH-SY5Y cells treated with MPP〈sup〉+〈/sup〉, a well-established parkinsonian toxicant, we revealed that microglial EVs, when not stimulated by aggregated α-Syn, appeared to be protective, and the mechanisms, though remain to be defined further, appeared to involve mitochondrial dynamics, especially mitochondrial fission.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 0006-291X
    Electronic ISSN: 1090-2104
    Topics: Biology , Chemistry and Pharmacology , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2019
    Description: 〈p〉Publication date: 1 October 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biochemical and Biophysical Research Communications, Volume 517, Issue 4〈/p〉 〈p〉Author(s): Xingwei Xu, Xi Zhu, Chenyang Wang, Yang Li, Chaogang Fan, Xiaoming Kao〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Ulcerative colitis (UC), a serious threat to public health, is one of the main forms of inflammatory bowel disease, whereas the molecular mechanisms underlying ulcerative colitis induced by inflammation still remain elusive. NPLR6 gene is previously shown to regulate intestinal homeostasis and regulate the colonic microbial ecology. Here, we report that microRNA-650 (miR-650) plays an important role in the pathogenesis of UC as an upstream regulator of NPLR6 gene. MiR-650 is proved overexpressed in the inflamed mucosa of patients with ulcerative colitis and the DSS induced colitis model mice by qRT-PCR. Over-expression of miR-650 leads to increased apoptosis of Caco-2 and IEC-6 cells, and the DSS-induced mice aggravation, while knock-down of miR-650 shows opposite effects. Through constructing luciferase reporter genes containing 3′-untranslated regions of NLRP6, we further demonstrate that miR-650 inhibits NLRP6 through binding to its 3′-untranslated regions. Overexpression of NLRP6 in Caco-2 and IEC-6 cells suppress the increase apoptosis induced by miR-650 overexpression. Overall, the findings of this study indicate the role of miR-650 in ulcerative colitis, which provides a new target for therapeutic treatment.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 0006-291X
    Electronic ISSN: 1090-2104
    Topics: Biology , Chemistry and Pharmacology , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2019
    Description: 〈p〉Publication date: 8 October 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biochemical and Biophysical Research Communications, Volume 518, Issue 1〈/p〉 〈p〉Author(s): Junya Kakegawa, Naoki Sakane, Kensuke Suzuki, Takayuki Yoshida〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉JTE-607 is a small molecule that was developed as an inflammatory cytokine inhibitor and also as an anti-leukemia reagent for monocytic leukemia. However, the mode of action of JTE-607 remains unknown. In this study, we identified JTE-607 to be a prodrug compound that is converted to an active form by ester hydrolysis. Furthermore, we determined that the active form of JTE-607 bound cleavage and polyadenylation specificity factor subunit 3 (CPSF3), using compound-immobilized affinity chromatography. CPSF3 is a 73-kDa subunit of the cleavage and polyadenylation specificity factor complex, which functions as an RNA endonuclease. The protein is involved in the 3′-end processing of messenger RNA precursors (pre-mRNAs) at the cleavage site located downstream of the poly(A) addition signal. We found that treatment with JTE-607 caused accumulation of pre-mRNAs. Furthermore, knockdown experiments showed that CPSF3 deficiency also caused accumulation of pre-mRNAs and suppressed the expression of inflammatory cytokines, like JTE-607. These findings indicated that CPSF3 is a direct target of JTE-607 and a new potential target for the treatment of disease-related abnormal cytokine production.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 0006-291X
    Electronic ISSN: 1090-2104
    Topics: Biology , Chemistry and Pharmacology , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    facet.materialart.
    Unknown
    Elsevier
    Publication Date: 2019
    Description: 〈p〉Publication date: 17 September 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biochemical and Biophysical Research Communications, Volume 517, Issue 2〈/p〉 〈p〉Author(s): 〈/p〉
    Print ISSN: 0006-291X
    Electronic ISSN: 1090-2104
    Topics: Biology , Chemistry and Pharmacology , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2019
    Description: 〈p〉Publication date: 1 October 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biochemical and Biophysical Research Communications, Volume 517, Issue 4〈/p〉 〈p〉Author(s): Ryotaro Kojima, Kotaro Horiguchi, Yuta Mochimaru, Shiori Musha, Syo Murakami, Masahito Deai, Chihiro Mogi, Koichi Sato, Fumikazu Okajima, Hideaki Tomura〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Extracellular acidification regulates endocrine cell functions. Ovarian cancer G protein-coupled receptor 1 (OGR1), also known as GPR68, is a proton-sensing G protein-coupled receptor and is activated by extracellular acidification, resulting in the activation of multiple intracellular signaling pathways. In the present study, we found that OGR1 was expressed in some gonadotropic cells in rat anterior pituitary and in LβΤ2 cells, which are used as a model of gonadotropic cells. When we reduced extracellular pH, a transient intracellular Ca〈sup〉2+〈/sup〉 increase was detected in LβT2 cells. The Ca〈sup〉2+〈/sup〉 increase was inhibited by a G〈sub〉q/11〈/sub〉 inhibitor and Cu〈sup〉2+〈/sup〉, which is known as an OGR1 antagonist. We also found that extracellular acidification enhanced GnRH-induced Gaussia luciferase secretion from LβT2 cells. These results suggest that OGR1 may play a role in the regulation of gonadotropic cell function such as its hormone secretion.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 0006-291X
    Electronic ISSN: 1090-2104
    Topics: Biology , Chemistry and Pharmacology , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...