ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Journals
  • Articles  (12,888)
  • 2020-2024  (45)
  • 2015-2019  (12,843)
  • 2665
  • Physics  (12,888)
  • Biology  (12,888)
Collection
  • Journals
  • Articles  (12,888)
Publisher
Years
Year
Topic
  • 1
    Publication Date: 2019
    Description: 〈p〉Publication date: 3 September 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biochemical and Biophysical Research Communications, Volume 516, Issue 4〈/p〉 〈p〉Author(s): Yanjie Hou, Tian Gong, Jiangtao Zhang, Xi Yang, Yurong Guo〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉The thinned-young apple polysaccharides from three varieties were obtained by hot water extraction at 88 ̊C for 120 min. The compositional monosaccharides of the three polysaccharides were shown to be the same (xylose, mannose, galactose and glucose) and the molecular weights of the polysaccharides were in the range of 200–300 kDa. Compared with “Qinyang” and “Pinklady”, the polysaccharide from “Jinshiji” had the highest emulsifying capacity. Moreover, the variations in pH and cation ion concentrations had also a significant effect on the emulsifying properties of the extracted polysaccharides. At pH 2.0–4.0, the prepared emulsion had smaller droplet sizes than at higher pH values. Although the emulsion was stable at low concentrations of Na〈sup〉+〈/sup〉 and Ca〈sup〉2+〈/sup〉 ions, high concentrations of Na〈sup〉+〈/sup〉 and Ca〈sup〉2+〈/sup〉 led to significant destabilization of the emulsion. Conclusively, our results demonstrated the potential application of thinned-young apple polysaccharide as a natural polysaccharide emulsifying agent.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 0006-291X
    Electronic ISSN: 1090-2104
    Topics: Biology , Chemistry and Pharmacology , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019
    Description: 〈p〉Publication date: 3 September 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biochemical and Biophysical Research Communications, Volume 516, Issue 4〈/p〉 〈p〉Author(s): Shuangdong Chen, Yixiao Gu, Qinxue Dai, Yanshu He, Junlu Wang〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Sirtuin1 (SIRT1), which is regulated by microRNA-34a (miR-34a), can modulate pathophysiology processes, including nonalcoholic fatty liver disease and intestinal ischemia/reperfusion injury. We previously reported that SIRT1, an NAD〈sup〉+〈/sup〉-dependent deacetylase, plays a vital role in the development of neuropathic pain. However, the role of miR-34a/SIRT1 in complete Freund's adjuvant (CFA)-induced inflammatory pain remains unclear. In the present study, we examined miR-34a and SIRT1 in CFA mice. MiR-34a levels increased, while SIRT1 decreased in the spinal cord. Inhibiting miR-34a by intrathecal injection of miR-34a antagomir attenuated CFA-induced pain behavior. Moreover, miR-34a antagomir inhibited the CFA-induced SIRT1 decrease in the spinal cord. Furthermore, the analgesic effect of miR-34a antagomir was abrogated by the SIRT1 inhibitor EX-527. Our data provide support that the underlying mechanisms of miR-34a in promoting inflammatory pain may involve negative regulation of SIRT1.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 0006-291X
    Electronic ISSN: 1090-2104
    Topics: Biology , Chemistry and Pharmacology , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019
    Description: 〈p〉Publication date: 3 September 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biochemical and Biophysical Research Communications, Volume 516, Issue 4〈/p〉 〈p〉Author(s): Lifang Cui, He Zhao, Yujun Yin, Chao Liang, Xiaolong Mao, Yingzheng Liu, Qilin Yu, Mingchun Li〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉〈em〉Candida albicans〈/em〉 is an important opportunistic pathogenic fungus in the human body. It is a common microbe inhabiting on the mucosa surfaces of healthy individuals, but may cause infections when the host immune system is weak. Autophagy is a “self-eating” process in eukaryotes, which can recover and utilize damaged organelles and misfolded proteins. Here we investigated the role of the autophagy-related protein Atg11 in 〈em〉C. albicans〈/em〉. Deletion of 〈em〉ATG11〈/em〉 led to the defect in growth under the nitrogen starvation condition. Western blotting and GFP localization further revealed that the transport and degradation of Atg8 was blocked in the 〈em〉atg11〈/em〉Δ/Δ mutant under both the nitrogen starvation and hypha-inducing conditions. Moreover, degradation of both Lap41 (the indicator of the cytoplasm-to-vacuole pathway) and Csp37 (the indicator of mitophagy) was also thoroughly suppressed in this mutant under nitrogen starvation. These results indicated that Atg11 plays an essential role in both non-selective and selective autophagy in 〈em〉C. albicans〈/em〉.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 0006-291X
    Electronic ISSN: 1090-2104
    Topics: Biology , Chemistry and Pharmacology , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019
    Description: 〈p〉Publication date: 3 September 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biochemical and Biophysical Research Communications, Volume 516, Issue 4〈/p〉 〈p〉Author(s): Yi-meng Cao, Meng-yu Liu, Zhuo-wei Xue, Yu Qiu, Jie Li, Yang Wang, Qing-kai Wu〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Promotion of wound healing is one of the most important fields in clinical medical research. This study aimed to evaluate the potential use of a new surface-structured bacterial cellulose(S-BC) biomaterial with human urine-derived stem cells (hUSCs) for wound healing. In vitro, EA.hy926 were inoculated on structured/non-structured bacterial cellulose, and the growth of EA.hy926 on bacterial cellulose in medium with/without conditioned medium of the hUSCs were observed to explore the effect of bacterial cellulose's surface structure and hUSCs-CM on vascular endothelial cell growth. In vivo, we covered wound surface with various BC materials and/or injected the hUSCs into the wound site on group BC, group S-BC, group hUSCs, group BC + hUSCs, group S-BC + hUSCs to evaluate the effect of S-BC and hUSCs on wound healing in rat full-thickness skin defect model. In vitro study, surface structure of S-BC could promote the growth and survival of EA.hy926, and the hUSCs-CM could further promote the proliferation of EA.hy926 on S-BC. In vivo study, wound healing rate of the group BC, group S-BC, group hUSCs was significantly accelerated, accompanied by faster re-epithelialization, collagen production and neovascularization than control group. It is note worthy that the effect of S-BC on wound healing was better than BC, the effect of S-BC + hUSCs on wound healing was better than BC + hUSCs. Moreover, the effect of S-BC combined with hUSCs on wound is better than treated with S-BC or hUSCs alone. All the findings suggest that the combination of S-BC and hUSCs could facilitate skin wound healing by promoting angiogenesis. This combination of the role of stem cells and biomaterial surface structures may provide a new way to address clinical wound healing problems.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 0006-291X
    Electronic ISSN: 1090-2104
    Topics: Biology , Chemistry and Pharmacology , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019
    Description: 〈p〉Publication date: 3 September 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biochemical and Biophysical Research Communications, Volume 516, Issue 4〈/p〉 〈p〉Author(s): Naohiro Katagiri, Satoru Nagatoishi, Kouhei Tsumoto, Hideya Endo〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Methionine aminopeptidase 2 (MetAP2) is one of the effector proteins of S100A4, a metastasis-associated calcium-binding protein. This interaction is involved in angiogenesis. The region of MetAP2 that interacts with S100A4 includes amino acids 170 to 208. A peptide corresponding to this region, named as NBD, has potent anti-angiogenic activity and suppresses tumor growth in a xenograft cancer model. However, the binding mode of NBD to S100A4 was totally unknown. Here we describe our analysis of the relationship between the inhibitory activity and the structure of NBD, which adopts a characteristic helix-turn-helix structure as shown by X-ray crystallographic analysis, and peptide fragments of NBD. We conducted physicochemical analyses of the interaction between S100A4 and the peptides, including surface plasmon resonance, microscale thermophoresis, and circular dichroism, and performed docking/molecular dynamics simulations. Active peptides had stable secondary structures, whereas inactive peptides had a little secondary structure. A computational analysis of the interaction mechanism led to the design of a peptide smaller than NBD, NBD-ΔN10, that possessed inhibitory activity. Our study provides a strategy for design for a specific peptide inhibitor against S100A4 that can be applied to the discovery of inhibitors of other protein-protein interactions.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 0006-291X
    Electronic ISSN: 1090-2104
    Topics: Biology , Chemistry and Pharmacology , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019
    Description: 〈p〉Publication date: 3 September 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biochemical and Biophysical Research Communications, Volume 516, Issue 4〈/p〉 〈p〉Author(s): Xue Mei Li, Soo Jung Kim, Dong-Kyun Hong, Kyoung Eun Jung, Chong Won Choi, Young-Joon Seo, Jeung-Hoon Lee, Young Lee, Chang-Deok Kim〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Kruppel-like factor 4 (KLF4) is a zinc-finger transcription factor that plays a role in terminal differentiation of epidermal keratinocytes. There are conflicting reports regarding the role of KLF4 in tumor development, with both the tumor suppressive and/or oncogenic properties depending on different conditions and cell types. In this study, we investigated the functional importance of KLF4 in cutaneous squamous cell carcinoma (SCC). Immunohistochemistry showed that KLF4 expression was relatively low in SCC lesion compared to normal epidermis. To examine the effects of KFL4, we transduced SCC lines (SCC12 and SCC13 cells) with the KLF4-expressing recombinant adenovirus. Overexpression of KLF4 significantly decreased cell proliferation and colony forming activity. In addition, overexpression of KLF4 markedly reduced invasive potential, along with the downregulation of epithelial-mesenchymal transition (EMT)-related molecules. In a mechanistic study, KLF4 inhibited SOX2, of which expression is critical for tumor initiation and growth of SCC. Further investigations indicated that SOX2 expression is induced by TGF-β/SMAD signaling, and that overexpression of KLF4 inhibited SMAD signaling via upregulation of SMAD7, an important inhibitory SMAD molecule. Based on these data, KLF4 plays a tumor suppressive role in cutaneous SCC cells.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 0006-291X
    Electronic ISSN: 1090-2104
    Topics: Biology , Chemistry and Pharmacology , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019
    Description: 〈p〉Publication date: 3 September 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biochemical and Biophysical Research Communications, Volume 516, Issue 4〈/p〉 〈p〉Author(s): Yan Shen, Shengnan Chen, Yan Zhao〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Hyperglycemia-induced podocyte injury plays a vital role in the development of diabetic nephropathy. Sulfiredoxin-1 (Srxn1) is emerging as a cytoprotective protein that protects from various insults in a wide range of cell types. However, whether Srxn1 is involved in regulating hyperglycemia-induced podocyte injury and participates in diabetic nephropathy remains unknown. In the present study, we aimed to explore the potential role of Srxn1 in regulating high glucose (HG)-induced apoptosis and oxidative stress of podocytes 〈em〉in vitro〈/em〉. Results demonstrated that Srxn1 was induced in HG-stimulated podocytes. The depletion of Srxn1 by Srxn1 siRNA-mediated gene silencing significantly exacerbated HG-induced apoptosis and the production of reactive oxygen species (ROS), while Srxn1 overexpression attenuated HG-induced apoptosis and ROS production. In-depth molecular mechanism research revealed that Srxn1 overexpression promoted the nuclear expression of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and reinforced antioxidant response element (ARE)-mediated transcription activity. Moreover, results confirmed that Srxn1 increased the activation of Nrf2/ARE signaling associated with inactivating glycogen synthase kinase (GSK)-3β. Notably, the inhibition of GSK-3β significantly reversed Srxn1 silencing-induced adverse effects in HG-treated cells, while the knockdown of Nrf2 abrogated the Srxn1-mediated protective effect against HG-induced podocyte injury. Taken together, our results demonstrated that Srxn1 protects podocytes from HG-induced injury by promoting the activation of Nrf2/ARE signaling associated with inactivating GSK-3β, indicating a potential role of Srxn1 in diabetic nephropathy. Our study suggests that Srxn1 may serve as a potential target for kidney protection.〈/p〉〈/div〉 〈/div〉 〈h5〉Graphical abstract〈/h5〉 〈div〉〈p〉〈figure〉〈img src="https://ars.els-cdn.com/content/image/1-s2.0-S0006291X19313178-fx1.jpg" width="398" alt="Image 1" title="Image 1"〉〈/figure〉〈/p〉〈/div〉
    Print ISSN: 0006-291X
    Electronic ISSN: 1090-2104
    Topics: Biology , Chemistry and Pharmacology , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019
    Description: 〈p〉Publication date: 3 September 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biochemical and Biophysical Research Communications, Volume 516, Issue 4〈/p〉 〈p〉Author(s): Yu-Lun Huang, Gota Kawai, Atsuhiko Hasegawa, Mari Kannagi, Takao Masuda〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Reverse transcription of retroviral RNA is accomplished through a minus-strand strong stop cDNA (-sscDNA) synthesis and subsequent strand-transfer reactions. We have previously reported a critical role of guanosine (G) number at 5′-terminal of HIV-1 RNA for successful strand-transfer of -sscDNA. In this study, role(s) of the cap consisting of 7-methyl guanosine (〈sup〉7m〈/sup〉G), a hallmark of transcripts generated by RNA polymerase II, at the 5′-end G nucleotide (5′-G) of HIV-1 RNA were examined. In parallel, contribution of highly conserved GGG tract located at the U3/R boundary in 3′ terminal region of viral RNA (3′-GGG tract) was also addressed. The in vitro reverse transcription analysis using synthetic HIV-1 RNAs possessing the 5′-G with cap or triphosphate form demonstrated that the 5′-cap significantly increased strand-transfer efficiency of -sscDNA. Meanwhile, effect of the 5′-cap on the strand-transfer was retained in the reaction using mutant HIV-1 RNAs in which two Gs were deleted from the 3′-GGG tract. Lack of apparent contribution of the 3′-GGG tract during strand-transfer events in vitro was reproduced in the context of HIV-1 replication within cells. Instead, we noticed that the 3′-GGG tract might be required for efficient gene expression from proviral DNA. These results indicated that 〈sup〉7m〈/sup〉G of the cap on HIV-1 RNA might not be reverse-transcribed and a possible role of the 3′-GGG tract to accept the non-template nucleotide addition during -sscDNA synthesis might be less likely. The 5′-G modifications of HIV-1 RNAs by the cap- or phosphate-removal enzyme revealed that the cap or monophosphate form of the 5′-G was preferred for the 1st strand-transfer compared to the triphosphate or non-phosphate form. Taken together, a status of the 5′-G determined strand-transfer efficiency of -sscDNA without affecting the non-template nucleotide addition, probably by affecting association of the 5′-G with 3′-end region of viral RNA.〈/p〉〈/div〉 〈/div〉 〈h5〉Graphical abstract〈/h5〉 〈div〉〈p〉〈figure〉〈img src="https://ars.els-cdn.com/content/image/1-s2.0-S0006291X19312926-fx1.jpg" width="307" alt="Image 1" title="Image 1"〉〈/figure〉〈/p〉〈/div〉
    Print ISSN: 0006-291X
    Electronic ISSN: 1090-2104
    Topics: Biology , Chemistry and Pharmacology , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019
    Description: 〈p〉Publication date: 3 September 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biochemical and Biophysical Research Communications, Volume 516, Issue 4〈/p〉 〈p〉Author(s): Xiong Wang, Huishou Zhao, Wenjun Yan, Yi Liu, Tao Yin, Shan Wang, Miaomiao Fan, Congye Li, Ling Zhang, Ling Tao〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Atherosclerosis is characterized by the accumulation of excess cholesterol in plaques. Reverse cholesterol transport (RCT) plays a key role in the removal of cholesterol. In the present study, we examined the effect of thioredoxin-1 (Trx-1) on RCT and explored the underlying mechanism. We found that Trx-1 promoted RCT 〈em〉in vivo〈/em〉, as did T0901317, a known liver X receptor (LXR) ligand. T0901317 also inhibited the development of atherosclerotic plaques but promoted liver steatosis. Furthermore, Trx-1 promoted macrophage cholesterol efflux to apoAI 〈em〉in vitro〈/em〉. Mechanistically, Trx-1 promoted nuclear translocation of LXRα and induced the expression of ATP-binding cassette transporter A1 (ABCA1). Apolipoprotein E knockout (apoE−/−) mice fed an atherogenic diet were daily injected intraperitoneally with saline or Trx-1 (0.33 mg/kg). Trx-1 treatment significantly inhibited the development of atherosclerosis and induced the expression of ABCA1 in macrophages retrieved from apoE−/− mice. Moreover, the liver steatosis was attenuated by Trx-1. Overall, we demonstrated that Trx-1 promotes RCT by upregulating ABCA1 expression through induction of nuclear translocation of LXRα, and protects liver from steatosis.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 0006-291X
    Electronic ISSN: 1090-2104
    Topics: Biology , Chemistry and Pharmacology , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    Elsevier
    Publication Date: 2019
    Description: 〈p〉Publication date: 13 August 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biochemical and Biophysical Research Communications, Volume 516, Issue 1〈/p〉 〈p〉Author(s): 〈/p〉
    Print ISSN: 0006-291X
    Electronic ISSN: 1090-2104
    Topics: Biology , Chemistry and Pharmacology , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...