ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (6,666)
  • Oxford University Press  (6,666)
  • American Meteorological Society
  • American Society of Hematology
  • 2010-2014  (2,268)
  • 2000-2004  (1,883)
  • 1995-1999  (2,515)
  • Glycobiology  (424)
  • Journal of Biochemistry  (309)
  • 2589
  • 740
Collection
  • Articles  (6,666)
Publisher
  • Oxford University Press  (6,666)
  • American Meteorological Society
  • American Society of Hematology
Years
Year
Topic
  • 1
    Publication Date: 2013-09-08
    Description: O -GlcNAcylation is an inducible, highly dynamic and reversible post-translational modification, mediated by a unique enzyme named O -linked N -acetyl- d -glucosamine ( O -GlcNAc) transferase (OGT). In response to nutrients, O -GlcNAc levels are differentially regulated on many cellular proteins involved in gene expression, translation, immune reactions, protein degradation, protein–protein interaction, apoptosis and signal transduction. In contrast to eukaryotic cells, little is known about the role of O -GlcNAcylation in the viral life cycle. Here, we show that the overexpression of the OGT reduces the replication efficiency of Kaposi's sarcoma-associated herpesvirus (KSHV) in a dose-dependent manner. In order to investigate the global impact of O -GlcNAcylation in the KSHV life cycle, we systematically analyzed the 85 annotated KSHV-encoded open reading frames for O -GlcNAc modification. For this purpose, an immunoprecipitation (IP) strategy with three different approaches was carried out and the O -GlcNAc signal of the identified proteins was properly controlled for specificity. Out of the 85 KSHV-encoded proteins, 18 proteins were found to be direct targets for O -GlcNAcylation. Selected proteins were further confirmed by mass spectrometry for O -GlcNAc modification. Correlation of the functional annotation and the O -GlcNAc status of KSHV proteins showed that the predominant targets were proteins involved in viral DNA synthesis and replication. These results indicate that O -GlcNAcylation plays a major role in the regulation of KSHV propagation.
    Print ISSN: 0959-6658
    Electronic ISSN: 1460-2423
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Oxford University Press
    Publication Date: 2013-09-08
    Print ISSN: 0959-6658
    Electronic ISSN: 1460-2423
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-09-08
    Print ISSN: 0959-6658
    Electronic ISSN: 1460-2423
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-09-08
    Description: Galectins are potent adhesion/growth-regulatory effectors with characteristic expression profiles. Understanding the molecular basis of gene regulation in each case requires detailed information on copy number of genes and sequence(s) of their promoter(s). Our report reveals plasticity in this respect between galectins and species. We here describe occurrence of a two-gene constellation for human galectin (Gal)-7 and define current extent of promoter-sequence divergence. Interestingly, cross-species genome analyses also detected single-copy display. Because the regulatory potential will then be different, extrapolations of expression profiles are precluded between respective species pairs. Gal-4 coding in chromosomal vicinity was found to be confined to one gene, whereas copy-number variation also applied to Gal-9. The example of rat Gal-9 teaches the lesson that the presence of multiple bands in Southern blotting despite a single-copy gene constellation is attributable to two pseudogenes. The documented copy-number variability should thus be taken into consideration when studying regulation of galectin genes, in a species and in comparison between species.
    Print ISSN: 0959-6658
    Electronic ISSN: 1460-2423
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-09-08
    Description: In studying the molecular basis for the potent immune activity of previously described gamma and delta inulin particles and to assist in production of inulin adjuvants under Good Manufacturing Practice, we identified five new inulin isoforms, bringing the total to seven plus the amorphous form. These isoforms comprise the step-wise inulin developmental series amorphous -〉 alpha-1 (AI-1) -〉 alpha-2 (AI-2) -〉 gamma (GI) -〉 delta (DI) -〉 zeta (ZI) -〉 epsilon (EI) -〉 omega (OI) in which each higher isoform can be made either by precipitating dissolved inulin or by direct conversion from its precursor, both cases using regularly increasing temperatures. At higher temperatures, the shorter inulin polymer chains are released from the particle and so the key difference between isoforms is that each higher isoform comprises longer polymer chains than its precursor. An increasing trend of degree of polymerization is confirmed by end-group analysis using 1 H nuclear magnetic resonance spectroscopy. Inulin isoforms were characterized by the critical temperatures of abrupt phase-shifts (solubilizations or precipitations) in water suspensions. Such (aqueous) "melting" or "freezing" points are diagnostic and occur in strikingly periodic steps reflecting quantal increases in noncovalent bonding strength and increments in average polymer lengths. The (dry) melting points as measured by modulated differential scanning calorimetry similarly increase in regular steps. We conclude that the isoforms differ in repeated increments of a precisely repeating structural element. Each isoform has a different spectrum of biological activities and we show the higher inulin isoforms to be more potent alternative complement pathway activators.
    Print ISSN: 0959-6658
    Electronic ISSN: 1460-2423
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-09-08
    Description: The methylotrophic yeast, Pichia pastoris , is an important organism used for the production of therapeutic proteins. Previously, we have reported the glycoengineering of this organism to produce human-like N -linked glycans but up to now no one has addressed engineering the O -linked glycosylation pathway. Typically, O -linked glycans produced by wild-type P. pastoris are linear chains of four to five α-linked mannose residues, which may be capped with β- or phospho-mannose. Previous genetic engineering of the N-linked glycosylation pathway of P. pastoris has eliminated both of these two latter modifications, resulting in O -linked glycans which are linear α-linked mannose structures. Here, we describe a method for the co-expression of an α-1,2-mannosidase, which reduces these glycans to primarily a single O -linked mannose residue. In doing so, we have reduced the potential of these glycans to interact with carbohydrate-binding proteins, such as dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin. Furthermore, the introduction of the enzyme protein- O -linked-mannose β-1,2- N -acetylglucosaminyltransferase 1, resulted in the capping of the single O -linked mannose residues with N -acetylglucosamine. Subsequently, this glycoform was extended into human-like sialylated glycans, similar in structure to α-dystroglycan-type glycoforms. As such, this represents the first example of sialylated O -linked glycans being produced in yeast and extends the utility of the P. pastoris production platform beyond N -linked glycosylated biotherapeutics to include molecules possessing O -linked glycans.
    Print ISSN: 0959-6658
    Electronic ISSN: 1460-2423
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-10-02
    Description: A requirement for advancing antibody-based medicine is the development of proteins that can bind with high affinity to a specific epitope related to a critical protein activity site. As a part of generating such proteins, we have succeeded in creating a binding protein without changing epitope by complementarity-determining region 3 (CDR3) grafting (Inoue et al. , Affinity transfer to a human protein by CDR3 grafting of camelid VHH. Protein Sci. 20, 1971–1981). However, the affinity of the target-binding protein was low. In this manuscript, the affinity maturation of a target-binding protein was examined using CDR3-grafted camelid single domain antibody (VHH) as a model protein. Several amino acids in the CDR1 and CDR2 regions of VHH were mutated to tyrosines and/or serines and screened for affinity-matured proteins by using in silico analysis. The mutation of two amino acids in the CDR2 region to arginine and/or aspartic acid increased the affinity by decreasing the dissociation rate. The affinity of designed mutant increased by ~20-fold over that of the original protein. In the present study, candidate mutants were narrowed down using in silico screening and computational modelling, thus avoiding much in vitro analytical effort. Therefore, the method used in this study is expected to be one of the useful for promoting affinity maturation of antibodies.
    Print ISSN: 0021-924X
    Electronic ISSN: 1756-2651
    Topics: Biology , Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-10-02
    Description: A method was previously established for evaluating Asn deamidation by matrix-assisted laser desorption/ionization time of flight-mass spectrometry using endoproteinase Asp-N. In this study, we demonstrated that this method could be applied to the identification of the deamidation site of the humanized fragment antigen-binding (Fab). First, a system for expressing humanized Fab from methylotrophic yeast Pichia pastoris was constructed, resulting in the preparation of ~30 mg of the purified humanized Fab from 1 l culture. Analysis of the L-chain derived from recombinant humanized Fab that was heated at pH 7 and 100°C for 1 h showed the deamidation at Asn138 in the constant region. Then, we prepared L-N138D Fab and L-N138A Fab and examined their properties. The circular dichroism (CD) spectrum of the L-N138D Fab was partially different from that of the wild-type Fab. The measurement of the thermostability showed that L-N138D caused a significant decrease in the thermostability of Fab. On the other hand, the CD spectrum and thermostability of L-N138A Fab showed the same behaviour as the wild-type Fab. Thus, it was suggested that the introduction of a negative charge at position 138 in the L-chain by the deamidation significantly affected the stability of humanized Fab.
    Print ISSN: 0021-924X
    Electronic ISSN: 1756-2651
    Topics: Biology , Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Oxford University Press
    Publication Date: 2013-10-02
    Description: The tripartite motif (TRIM) or RBCC proteins are characterized by the TRIM composed of a RING finger, B-box and coiled-coil domains. TRIM proteins often play roles in the post-translational protein modification, including ubiquitylation and other ubiquitin-like modifications. Evidence has accumulated in regard to the contribution of TRIM proteins to diverse cellular processes, including such as cell cycle progression, apoptosis, immunity and transcriptional regulation. In particular, some of the TRIM proteins have been characterized to exert oncogenic or tumour suppressor-like functions depending on the context. A recent report by Inoue and his colleagues has revealed that Terf/TRIM17 stimulates the degradation of a kinetochore protein ZWINT and regulates the proliferation of breast cancer cells. Terf has also been paid attention as a factor promoting neuronal apoptosis, by degrading a Bcl2-like anti-apoptotic protein Mcl-1. Like aircraft trim tabs, TRIM proteins trim the balance of homoeostasis by modulating various biological pathways through protein–protein interactions.
    Print ISSN: 0021-924X
    Electronic ISSN: 1756-2651
    Topics: Biology , Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-10-02
    Description: Cyclin-dependent kinase (CDK) that plays a central role in preventing re-replication of DNA phosphorylates several replication proteins to inactivate them. MCM4 in MCM2-7 and RPA2 in RPA are phosphorylated with CDK in vivo . There are inversed correlations between the phosphorylation of these proteins and their chromatin binding. Here, we examined in vitro phosphorylation of human replication proteins of MCM2-7, RPA, TRESLIN, CDC45 and RECQL4 with CDK2/cyclinE, CDK2/cyclinA, CDK1/cyclinB, CHK1, CHK2 and CDC7/DBF4 kinases. MCM4, RPA2, TRESLIN and RECQL4 were phosphorylated with CDKs. Effect of the phosphorylation by CDK2/cyclinA on DNA-binding abilities of MCM2-7 and RPA was examined by gel-shift analysis. The phosphorylation of RPA did not affect its DNA-binding ability but that of MCM4 inhibited the ability of MCM2-7. Change of six amino acids of serine and threonine to alanines in the amino-terminal region of MCM4 rendered the mutant MCM2-7 insensitive to the inhibition with CDK. These biochemical data suggest that phosphorylation of MCM4 at these sites by CDK plays a direct role in dislodging MCM2-7 from chromatin and/or preventing re-loading of the complex to chromatin.
    Print ISSN: 0021-924X
    Electronic ISSN: 1756-2651
    Topics: Biology , Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2013-10-02
    Description: To determine the effects of alcohols on the low-frequency local motions that control slow changes in structural dynamics of native-like compact states of proteins, we have studied the effects of alcohols on structural fluctuation of M80-containing -loop by measuring the rate of thermally driven CO dissociation from a natively folded carbonmonoxycytochrome c under varying concentrations of alcohols (methanol, ethanol, 1-propanol, 2-propanol, 3°-butanol, 2,2,2-trifluoroethanol). As alcohol is increased, the rate coefficient of CO dissociation ( k diss ) first decreases in subdenaturing region and then increases on going from subdenaturing to denaturing milieu. This decrease in k diss is more for 2,2,2-trifluroethanol and 1-propanol and least for methanol, indicating that the first phase of motional constraint is due to the hydrophobicity of alcohols and intramolecular protein cross-linking effect of alcohols, which results in conformational entropy loss of protein. The thermal denaturation midpoint for ferrocytochrome c decreases with increase in alcohol, indicating that alcohol decrease the global stability of protein. The stabilization free energy ( G ) in alcohols’ solution was calculated from the slope of the Wyman–Tanford plot and water activity. The m -values obtained from the slope of G versus alcohols plot were found to be more negative for longer and linear chain alcohols, indicating destabilization of proteins by alcohols through disturbance of hydrophobic interactions and hydrogen bonding.
    Print ISSN: 0021-924X
    Electronic ISSN: 1756-2651
    Topics: Biology , Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2013-10-02
    Description: Ubiquitination is a post-translational modification involved in the regulation of a broad variety of cellular functions, such as protein degradation and signal transduction, including nuclear factor-B (NF-B) signalling. NF-B is crucial for inflammatory and immune responses, and aberrant NF-B signalling is implicated in multiple disorders. We found that linear ubiquitin chain assembly complex (LUBAC), composed of HOIL-1L, HOIP and SHARPIN, generates a novel type of Met1 (M1)-linked linear polyubiquitin chain and specifically regulates the canonical NF-B pathway. Moreover, specific deubiquitinases, such as CYLD, A20 (TNFAIP3) and OTULIN/gumby, inhibit LUBAC-induced NF-B activation by different molecular mechanisms, and several M1-linked ubiquitin-specific binding domains have been structurally defined. LUBAC and these linear ubiquitination-regulating factors contribute to immune and inflammatory processes and apoptosis. Functional impairments of these factors are correlated with multiple disorders, including autoinflammation, immunodeficiencies, dermatitis, B-cell lymphomas and Parkinson’s disease. This review summarizes the molecular basis and the pathophysiological implications of the linear ubiquitination-mediated NF-B activation pathway regulation by LUBAC.
    Print ISSN: 0021-924X
    Electronic ISSN: 1756-2651
    Topics: Biology , Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2013-10-02
    Description: We screened circadian-regulated genes in rat cartilage by using a DNA microarray analysis. In rib growth-plate cartilage, numerous genes showed statistically significant circadian mRNA expression under both 12:12 h light–dark and constant darkness conditions. Type II collagen and aggrecan genes—along with several genes essential for post-translational modifications of collagen and aggrecan, including prolyl 4-hydroxylase 1, lysyl oxidase, lysyl oxidase-like 2 and 3'-phosphoadenosine 5'-phosphosulphate synthase 2—showed the same circadian phase. In addition, the mRNA level of SOX9, a master transcription factor for the synthesis of type II collagen and aggrecan, has a similar phase of circadian rhythms. The circadian expression of the matrix-related genes may be critical in the development and the growth of various cartilages, because similar circadian expression of the matrix-related genes was observed in hip joint cartilage. However, the circadian phase of the major matrix-related genes in the rib permanent cartilage was almost the converse of that in the rib growth-plate cartilage under light–dark conditions. We also found that half of the oscillating genes had conserved clock-regulatory elements, indicating contribution of the elements to the clock outputs. These findings suggest that the synthesis of the cartilage matrix macromolecules is controlled by cell-autonomous clocks depending upon the in vivo location of cartilage.
    Print ISSN: 0021-924X
    Electronic ISSN: 1756-2651
    Topics: Biology , Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2013-10-02
    Description: Human chromosome 7 open reading frame 24 (C7orf24)/-glutamyl cyclotransferase has been suggested to be a potential diagnostic marker for several cancers, including carcinomas in the bladder urothelium, breast and endometrial epithelium. We here investigated the epigenetic regulation of the human C7orf24 promoter in normal diploid ARPE-19 and IMR-90 cells and in the MCF-7 and HeLa cancer cell lines to understand the transcriptional basis for the malignant-associated high expression of C7orf24. Chromatin immunoprecipitation analysis revealed that histone modifications associated with active chromatin were enriched in the proximal region but not in the distal region of the C7orf24 promoter in HeLa and MCF-7 cells. In contrast, elevated levels of histone modifications leading to transcriptional repression and accumulation of heterochromatin proteins in the C7orf24 promoter were observed in the ARPE-19 and IMR-90 cells, compared to the levels in HeLa and MCF-7 cancer cells. In parallel, the CpG island of the C7orf24 promoter was methylated to a greater extent in the normal cells than in the cancer cells. These results suggest that the transcriptional silencing of the C7orf24 gene in the non-malignant cells is elicited through heterochromatin formation in its promoter region; aberrant expression of C7orf24 associated with malignant alterations results from changes in chromatin dynamics.
    Print ISSN: 0021-924X
    Electronic ISSN: 1756-2651
    Topics: Biology , Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2013-10-02
    Description: Abscisic acid (ABA) is a stress-inducible plant hormone comprising an inevitable component of the human diet. Recently, stress-induced accumulation of autocrine ABA was shown in humans, as well as ABA-mediated modulation of a number of disease-associated systems. Now, the application of a chemical proteomics approach to gain further insight into ABA mechanisms of action in mammalian cells is reported. An ABA mimetic photoaffinity probe was applied to intact mammalian insulinoma and embryonic cells, leading to the identification of heat shock protein 70 (HSP70) family members, (including GRP78 and HSP70-2) as putative human ABA-binding proteins. In vitro characterization of the ABA–HSP70 interactions yielded K d s in the 20–60 µM range, which decreased several fold in the presence of co-chaperone. However, ABA was found to have only variable- and co-chaperone-independent effects on the ATPase activity of these proteins. The potential implications of these ABA–HSP70 interactions are discussed with respect to the intracellular protein folding and extracellular receptor-like activities of these stress-inducible proteins. While mechanistic and functional relevance remain enigmatic, we conclude that ABA can bind to human HSP70 family members with physiologically relevant affinities and in a co-chaperone-dependent manner.
    Print ISSN: 0021-924X
    Electronic ISSN: 1756-2651
    Topics: Biology , Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2013-10-02
    Print ISSN: 0021-924X
    Electronic ISSN: 1756-2651
    Topics: Biology , Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    facet.materialart.
    Unknown
    Oxford University Press
    Publication Date: 2013-09-08
    Print ISSN: 0959-6658
    Electronic ISSN: 1460-2423
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2013-09-08
    Description: At weaning, the intestinal mucosa surface glycans change from predominantly sialylated to fucosylated. Intestinal adaptation from milk to solid food is regulated by intrinsic and extrinsic factors. The contribution by glucocorticoid, an intrinsic factor, and colonization by microbiota, an extrinsic factor, was measured as the induction of α1,2/3-fucosyltransferase and sucrase-isomaltase (SI) activity and gene expression in conventionally raised, germ-free, and bacteria-depleted mice. In conventionally raised mice, cortisone acetate (CA) precociously accelerated SI gene expression up to 3 weeks and fut2 to 4 weeks of age. In germ-free mice, CA treatment induces only SI expression but not fucosyltransferase. In post-weaning bacteria-deficient (germ-free and bacteria-depleted) mice, fut2 expression remains at low suckling levels. In microbiota deficient mice, intestinal fut2 (but not fut1 , fut4 or fut7 ) was induced only by adult microbiota, but not immature microbiota or CA. Fut2 induction could also be restored by colonization by Bacteroides fragilis , but not by a B. fragilis mutant unable to utilize fucose. Restoration of fut2 expression (by either microbiota or B. fragilis ) in bacteria-depleted mice is necessary for recovery from dextran sulfate sodium-induced mucosal injury. Thus, glucocorticoids and microbes regulate distinct aspects of gut ontogeny: CA precociously accelerates SI expression and, only in colonized mice, fut2 early expression. The adult microbiota is required for the fut2 induction responsible for the highly fucosylated adult gut phenotype and is necessary for recovery from intestinal injury. Fut2 -dependent recovery from inflammation may explain the high incidence of inflammatory disease (Crohn's and necrotizing enterocolitis) in populations with mutant FUT2 polymorphic alleles.
    Print ISSN: 0959-6658
    Electronic ISSN: 1460-2423
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2013-09-08
    Description: Selectins and their carbohydrate ligands mediate the homing of hematopoietic stem/progenitor cells (HSPCs) to the bone marrow. We have previously shown that ex vivo fucosylation of selectin ligands on HSPCs by α1,3 fucosyltransferase VI (FUT6) leads to improved human cord blood (CB)-HSPC engraftment in non-obese diabetic (NOD)/severe combined immune deficient (SCID) mice. In the present study, we determined whether surface fucosylation with α1,3 fucosyltransferase VII (FUT7), which is primarily expressed by hematopoietic cells, improves the function of selectin ligands on CB-HSPCs in comparison with FUT6. A saturating amount of either FUT6 or FUT7, which generates comparable levels of expression of fucosylated epitopes on CB CD34 + cells, was used for these experiments. In vitro, FUT7-treated CB CD34 + cells exhibited greater binding to P- or E-selectin than that of FUT6-treated CB CD34 + cells under static or physiological flow conditions. In vivo, FUT7 treatment, like FUT6, improved the early engraftment of CB CD34 + cells in the bone marrow of sublethally irradiated NOD/SCID interleukin (IL)-2R null (NSG) mice. FUT7 also exhibited marginally—yet statistically significant—increased engraftment at 4 and 6 weeks after transplantation. In addition, FUT7-treated CB CD34 + cells exhibited increased homing to the bone marrow of irradiated NSG mice relative to sham-treated cells. These data indicate that FUT7 is effective at improving the function of selectin ligands on CB-HSPCs in vitro and enhancing early engraftment of treated CB-HSPCs in the bone marrow of recipients.
    Print ISSN: 0959-6658
    Electronic ISSN: 1460-2423
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2013-09-08
    Description: Glycosphingolipids are expressed on the cell membrane and act as important factors in various events that occur across the plasma membrane. Lactosylceramide (LacCer) is synthesized from glucosylceramide and is a common precursor of various glycosphingolipids existing in whole body. Based on the enzyme purification, β1,4-galactosyltransferase 6 ( B4galt6 ) cDNA was isolated as a LacCer synthase-coding gene in the rat brain. We generated B4galt6 gene knockout (KO) mice and analyzed their phenotypes to examine roles of β4GalT6. B4galt6 KO mice were born and grew up apparently normal. LacCer synthase activity and the composition of acidic glycosphingolipids in the brain were almost equivalent or minimally different between wild-type and KO mice. Studies by mouse embryonic fibroblasts (MEFs) revealed that the silencing of B4galt5 gene resulted in the marked reduction in LacCer synthase activity and this reduction was more severe in MEFs derived from B4galt6 KO mice than those from wild-type mice. These results suggested that β4GalT6 plays a role as a LacCer synthase, whereas β4GalT5 acts as a main enzyme for LacCer biosynthesis in these tissues and cells.
    Print ISSN: 0959-6658
    Electronic ISSN: 1460-2423
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2013-09-08
    Description: Endoplasmic reticulum (ER) α-glucosidase I is an enzyme that trims the distal α1,2-linked glucose (Glc) residue from the Glc 3 Man 9 GlcNAc 2 oligosaccharide following its addition to nascent glycoproteins in the initial step of processing. This reaction is critical to the subsequent processing of N-glycans and thus defects in α-glucosidase I gene in human cause congenital disorder of glycosylation (CDG) type IIb. We identified the Caenorhabditis elegans α-glucosidase I gene (F13H10.4, designated agl-1 ) that encodes a polypeptide with 36% identity to human α-glucosidase I. The agl-1 cDNA restored the expression of complex-type N-glycans on the cell surface of α-glucosidase I-defective Chinese hamster ovary Lec23 cells. RNAi knockdown of agl-1 [ agl-1 (RNAi)] produced worms that were visibly similar to wild-type, but lifespan was reduced to about half of the control. Analyses of N -glycosylation in agl-1 (RNAi) animals by western blotting and mass spectrometry showed reduction of paucimannose and complex-type glycans and dramatic increase of glucosylated oligomannose glycans. In addition, a significant amount of unusual terminally fucosylated N-glycans were found in agl-1 (RNAi) animals. ER stress response was also provoked, leading to the accumulation of large amounts of triglucosylated free oligosaccharides (FOSs) (Glc 3 Man 4–5 GlcNAc 1–2 ) in agl-1 (RNAi) animals. Acceleration of ER-associated degradation in response to the accumulation of unfolded glycoproteins and insufficient interaction with calnexin/calreticulin in the ER lumen likely accounts for the increase of FOSs. Taken together, these studies in C. elegans demonstrate that decreased ER α-glucosidase I affects the entire N-glycan profile and induces chronic ER stress, which may contribute to the pathophysiology of CDG-IIb in humans.
    Print ISSN: 0959-6658
    Electronic ISSN: 1460-2423
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    facet.materialart.
    Unknown
    Oxford University Press
    Publication Date: 2012-12-28
    Print ISSN: 0959-6658
    Electronic ISSN: 1460-2423
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2012-12-28
    Description: Insect cells are widely used for recombinant glycoprotein production, but they cannot provide the glycosylation patterns required for some biotechnological applications. This problem has been addressed by genetically engineering insect cells to express mammalian genes encoding various glycoprotein glycan processing functions. However, for various reasons, the impact of a mammalian cytosine-5'-monophospho (CMP)-sialic acid transporter has not yet been examined. Thus, we transformed Spodoptera frugiperda (Sf9) cells with six mammalian genes to generate a new cell line, SfSWT-4, that can produce sialylated glycoproteins when cultured with the sialic acid precursor, N -acetylmannosamine. We then super-transformed SfSWT-4 with a human CMP-sialic acid transporter (hCSAT) gene to isolate a daughter cell line, SfSWT-6, which expressed the hCSAT gene in addition to the other mammalian glycogenes. SfSWT-6 cells had higher levels of cell surface sialylation and also supported higher levels of recombinant glycoprotein sialylation, particularly when cultured with low concentrations of N -acetylmannosamine. Thus, hCSAT expression has an impact on glycoprotein sialylation, can reduce the cost of recombinant glycoprotein production and therefore should be included in ongoing efforts to glycoengineer the baculovirus-insect cell system. The results of this study also contributed new insights into the endogenous mechanism and potential mechanisms of CMP-sialic acid accumulation in the Golgi apparatus of lepidopteran insect cells.
    Print ISSN: 0959-6658
    Electronic ISSN: 1460-2423
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2012-12-28
    Description: Chondroitin sulfate (CS) chains regulate the development of the central nervous system in vertebrates and are linear polysaccharides consisting of variously sulfated repeating disaccharides, [–4GlcUAβ1-3GalNAcβ1–] n , where GlcUA and GalNAc represent d -glucuronic acid and N -acetyl- d -galactosamine, respectively. CS chains containing D-disaccharide units [GlcUA(2- O -sulfate)-GalNAc(6- O -sulfate)] are involved in the development of cerebellar Purkinje cells and neurite outgrowth-promoting activity through interaction with a neurotrophic factor, pleiotrophin, resulting in the regulation of signaling. In this study, to obtain further structural information on the CS chains containing d -disaccharide units involved in brain development, oligosaccharides containing D-units were isolated from a shark fin cartilage. Seven novel hexasaccharide sequences, O-D-D, A-D-D, C-D-D, E-A-D, D-D-C, E-D-D and A-B-D, in addition to three previously reported sequences, C-A-D, C-D-C and A-D-A, were isolated from a CS preparation of shark fin cartilage after exhaustive digestion with chondroitinase AC-I, which cannot act on the galactosaminidic linkages bound to D-units. The symbol stands for a 4,5-unsaturated bond of uronic acids, whereas A, B, C, D, E and O represent [GlcUA-GalNAc(4- O -sulfate)], [GlcUA(2- O -sulfate)-GalNAc(4- O -sulfate)], [GlcUA-GalNAc(6- O -sulfate)], [GlcUA(2- O -sulfate)-GalNAc(6- O -sulfate)], [GlcUA-GalNAc(4- O -, 6- O -sulfate)] and [GlcUA-GalNAc], respectively. In binding studies using an anti-CS monoclonal antibody, MO-225, the epitopes of which are involved in cerebellar development in mammals, novel epitope structures, A-D-A, A-D-D and A-B-D, were revealed. Hexasaccharides containing two consecutive D-units or a B-unit will be useful for the structural and functional analyses of CS chains particularly in the neuroglycobiological fields.
    Print ISSN: 0959-6658
    Electronic ISSN: 1460-2423
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2012-12-28
    Description: Protein O -fucosyltransferase 1 (Pofut1) and protein O -fucosyltransferase 2 (Pofut2) add O -linked fucose at distinct consensus sequences in properly folded epidermal growth factor (EGF)-like repeats and thrombospondin type-1 (TSR) repeats, respectively. Glycan chain elongation past O -fucose can occur to yield a tetrasaccharide on EGF repeats and a disaccharide on TSRs. Elimination of Pofut1 in mice causes embryonic lethality with Notch-like phenotypes demonstrating that O -fucosylation of Notch is essential for its function. Similarly, elimination of Pofut2 results in an early embryonic lethal phenotype in mice, although the molecular mechanism for the lethality is unknown. The recent development of sugar analogs has revolutionized the study of glycans by providing a convenient method for labeling and tracking glycosylation. In order to study O -fucosylation, we took advantage of the recently developed reporter, 6-alkynyl fucose. Using the Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC), or "click" reaction, azido-biotin allows tagging and detection of 6AF-modified proteins. Here we examine whether proteins containing EGF repeats or TSRs with O -fucose consensus sequences are specifically modified with 6AF in cell culture. Using mass spectrometry (MS), we demonstrate that 6AF is efficiently incorporated onto the appropriate consensus sequences on EGF repeats and TSRs. Furthermore, the elongation of the O -fucose monosaccharide on EGF repeats and TSRs is not hampered when 6AF is used. These results show that 6AF is efficiently utilized in a truly bioorthogonal manner by Pofut1, Pofut2 and the enzymes that elongate O -fucose, providing evidence that 6AF is a significant new tool in the study of protein O -fucosylation.
    Print ISSN: 0959-6658
    Electronic ISSN: 1460-2423
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
  • 27
    Publication Date: 2012-12-28
    Description: Xanthan is a polysaccharide secreted by Xanthomonas campestris that contains pentameric repeat units. The biosynthesis of xanthan involves an operon composed of 12 genes ( gumB to gumM ). In this study, we analyzed the proteins encoded by gumB and gumC . Membrane fractionation showed that GumB was mainly associated with the outer membrane, whereas GumC was an inner membrane protein. By in silico analysis and specific globomycin inhibition, GumB was characterized as a lipoprotein. By reporter enzyme assays, GumC was shown to contain two transmembrane segments flanking a large periplasmic domain. We confirmed that gumB and gumC mutant strains uncoupled the synthesis of the lipid-linked repeat unit from the polymerization process. We studied the effects of gumB and gumC gene amplification on the production, composition and viscosity of xanthan. Overexpression of GumB, GumC or GumB and GumC simultaneously did not affect the total amount or the chemical composition of the polymer. GumB overexpression did not affect xanthan viscosity; however, a moderate increase in xanthan viscosity was achieved when GumC protein levels were increased 5-fold. Partial degradation of GumC was observed when only that protein was overexpressed; but co-expression of GumB and GumC diminished GumC degradation and resulted in higher xanthan viscosity than individual GumB or GumC overexpression. Compared with xanthan from the wild-type strain, longer polymer chains from the strain that simultaneously overexpressed GumB and GumC were observed by atomic force microscopy. Our results suggest that GumB–GumC protein levels modulate xanthan chain length, which results in altered polymer viscosity.
    Print ISSN: 0959-6658
    Electronic ISSN: 1460-2423
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2012-12-28
    Description: Bifidobacterium bifidum is one of the most frequently found bifidobacteria in the intestines of newborn infants. We previously reported that B. bifidum possesses unique metabolic pathways for O -linked glycans on gastrointestinal mucin (Yoshida E, Sakurama H, Kiyohara M, Nakajima M, Kitaoka M, Ashida H, Hirose J, Katayama T, Yamamoto K, Kumagai H. 2012. Bifidobacterium longum subsp. infantis uses two different β-galactosidases for selectively degrading type-1 and type-2 human milk oligosaccharides. Glycobiology . 22:361–368). The nonreducing termini of O -linked glycans on mucin are frequently covered with histo-blood group antigens. Here, we identified a gene agabb from B. bifidum JCM 1254, which encodes glycoside hydrolase (GH) family 110 α-galactosidase. AgaBb is a 1289-amino acid polypeptide containing an N-terminal signal sequence, a GH110 domain, a carbohydrate-binding module (CBM) 51 domain, a bacterial Ig-like (Big) 2 domain and a C-terminal transmembrane region, in this order. The recombinant enzyme expressed in Escherichia coli hydrolyzed α1,3-linked Gal in branched blood group B antigen [Galα1-3(Fucα1-2)Galβ1-R], but not in a linear xenotransplantation antigen (Galα1-3Galβ1-R). The enzyme also acted on group B human salivary mucin and erythrocytes. We also revealed that CBM51 specifically bound blood group B antigen using both isothermal titration calorimetry and a solid-phase binding assay, and it enhanced the affinity of the enzyme toward substrates with multivalent B antigens. We suggest that this enzyme plays an important role in degrading B antigens to acquire nutrients from mucin oligosaccharides in the gastrointestinal tracts.
    Print ISSN: 0959-6658
    Electronic ISSN: 1460-2423
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2012-12-28
    Description: Alg3 of Saccharomyces cerevisiae catalyzes the mannosyl transfer from Man-P-Dol to Man 5 GlcNAc 2 -PP-Dol resulting in the formation of Man 6 GlcNAc 2 -PP-Dol, which is then further processed to the final precursor oligosaccharide Glc 3 Man 9 GlcNAc 2 for N-glycosylation of proteins. Here, we identified the alg3 gene of the mushroom-forming fungus Schizophyllum commune by homology search. Its function was confirmed by the complementation of the alg3 strain of S. cerevisiae . Inactivation of alg3 in S. commune resulted in the production of predominantly Man 3 GlcNAc 2 protein-linked N -glycans. No impact on growth nor a developmental phenotype due to the deletion was observed. This provides a first step toward engineering of a homogeneous, humanized N-glycosylation pattern for the production of therapeutic glycoproteins in mushrooms.
    Print ISSN: 0959-6658
    Electronic ISSN: 1460-2423
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2012-12-28
    Description: We previously demonstrated that Siglec-15, a member of the Siglec family of glycan-recognition proteins, is expressed on a subset of macrophages and preferentially recognizes the sialyl-Tn (sTn) antigen, a tumor-associated glycan structure. In this study, we report on the biological significance of the Siglec-15-mediated interaction between monocytes/macrophages and cancer cells. Siglec-15 is expressed on tumor-associated macrophages (TAMs) in various human tumor tissues. We further demonstrated that its expression is substantially elevated in macrophage colony-stimulating factor-induced M2-like macrophages, which produced more transforming growth factor-β (TGF-β) in response to sTn-positive cells than to negative cells. We designed a co-culture model of THP-1 (human monocytic leukemia) cells and H157 (human lung carcinoma) cells mimicking the interaction between monocytes/macrophages and cancer cells that recapitulated the enhanced TGF-β production in Siglec-15 expressing THP-1 cells by the cellular interaction with sTn expressing H157 cells. The enhanced TGF-β production required a direct interaction between the two cell lines through sialic acids. Siglec-15 associates with adaptor protein DNAX activation protein of 12 kDa (DAP12) at the binding determinant Lys 274 in the transmembrane domain and transduces a signal to spleen tyrosine kinase (Syk). The enhanced TGF-β secretion was significantly attenuated by Syk inhibitor treatment of THP-1 cells or by substitution of the Siglec-15 Lys 274 to Ala, which disrupts the molecular interaction between Siglec15 and DAP12. These findings indicate that Siglec-15 recognizes the tumoral sTn antigen and transduces a signal for enhanced TGF-β secretion in TAMs and further suggest that Siglec-15 on macrophages may contribute to tumor progression by the TGF-β-mediated modulation of intratumoral microenvironments.
    Print ISSN: 0959-6658
    Electronic ISSN: 1460-2423
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2012-12-28
    Print ISSN: 0959-6658
    Electronic ISSN: 1460-2423
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2012-12-22
    Description: Angiogenesis, a formation of neovessels, is regulated by the local balance between angiogenesis stimulators and inhibitors. A number of such endogenous regulators of angiogenesis have been found in the body. Recently, vasohibin-1 (VASH1) was isolated as a negative feedback regulator of angiogenesis produced by endothelial cells (ECs) and subsequently vasohibin-2 (VASH2) as a homologue of VASH1. It was then explored that VASH1 is expressed in ECs to terminate angiogenesis, whereas VASH2 is expressed in cells other than ECs to promote angiogenesis in the mouse model of angiogenesis. This review will focus on the vasohibin family members, which are novel regulators of angiogenesis.
    Print ISSN: 0021-924X
    Electronic ISSN: 1756-2651
    Topics: Biology , Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2012-12-22
    Description: Tertiary dentin is deposited inside teeth after various stimuli and serves as a major defensive wall to preserve pulp cells. However, the molecular mechanisms of the activation of quiescent odontoblasts, immature pulp cells and tertiary dentin formation are still unclear. Therefore, we performed a comprehensive gene expression analysis of pulp cells after cavity preparation of 9-week-old rat molars to clarify the critical molecules in tertiary dentinogenesis. As a result, mRNA expression of various molecules was up- or down-regulated. Notably, several members of the matrix metalloprotease family and their endogenous inhibitors were up-regulated after cavity preparation. In situ hybridization showed that tissue inhibitor of metalloprotease 1 ( Timp1 ) was widely and continuously distributed in the pulp beneath the cavity in vivo . We also observed accumulation of β-catenin in the pulp cells beneath the cavity by fluorescence immunohistochemistry. Furthermore, Timp1 transcription was repressed by a dominant-negative TCF4 in immature undifferentiated mesenchymal cells, but not altered in mature odontoblast-like cells. These results indicate that cavity preparation may activate the Wnt/β-catenin pathway and the Wnt/β-catenin pathway and Timp1 may be correlatively involved in pulp repair. Timp1 might play crucial roles in reactivation of immature pulp cells for tertiary dentinogenesis.
    Print ISSN: 0021-924X
    Electronic ISSN: 1756-2651
    Topics: Biology , Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2012-12-22
    Description: The activity of biological molecules is often affected by their phosphorylation state. Regulatory phosphorylation operates as a binary switch and is usually controlled by counteracting kinases and phosphatases. However, phosphatidylinositol (PtdIns) has three phosphorylation sites on its inositol ring. The phosphorylation status of PtdIns is controlled by multiple kinases and phosphatases with distinct substrate specificities, serving as a ‘lipid code’ or ‘phosphoinositide code’. Class I phosphoinositide 3-kinase (PI3K) converts PtdIns(4,5)P 2 to PtdIns(3,4,5)P 3 , which plays a pivotal role in signals controlling glucose uptake, cytoskeletal reorganization, cell proliferation and apoptosis. PI3K is pro-oncogenic, whereas phosphoinositide phosphatases that degrade PtdIns(3,4,5)P 3 are not always anti-oncogenic. Recent studies have revealed the unique characteristics of phosphoinositide 5-phosphatases.
    Print ISSN: 0021-924X
    Electronic ISSN: 1756-2651
    Topics: Biology , Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2012-12-22
    Description: Vascular endothelial growth factors (VEGFs) belong to the platelet-derived growth factor supergene family, and they play central roles in the regulation of angiogenesis and lymphangiogenesis. VEGF-A, the major factor for angiogenesis, binds to two tyrosine kinase (TK) receptors, VEGFR-1 (Flt-1) and VEGFR-2 (KDR/Flk-1), and regulates endothelial cell proliferation, migration, vascular permeability, secretion and other endothelial functions. VEGFR-2 exhibits a strong TK activity towards pro-angiogenic signals, whereas the soluble VEGFR-1 (sFlt-1) functions as an endogenous VEGF inhibitor. sFlt-1 is abnormally overexpressed in the placenta of preeclampsia patients, resulting in the major symptoms of the disease due to abnormal trapping of VEGFs. The VEGF-VEGFR system is crucial for tumour angiogenesis, and anti-VEGF-VEGFR molecules are now widely used in the clinical field to treat cancer patients. The efficacy of these molecules in prolonging the overall survival of patients has been established; however, some cancers do not respond well and reduced tumour sensitivity to anti-VEGF signals may occur after long-term treatment. The molecular basis of tumour refractoriness should be determined to improve anti-angiogenic therapy.
    Print ISSN: 0021-924X
    Electronic ISSN: 1756-2651
    Topics: Biology , Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2012-12-22
    Description: The actual levels of steroid hormones in organs are vital for endocrine, reproductive and neuronal health and disorders. We developed an accurate method to determine the levels of steroid hormones and steroid conjugates in various organs by an efficient preparation using a solid-phase-extraction cartridge. Each steroid was identified by the precursor ion spectra using liquid chromatography–electrospray ionization time-of-flight mass spectrometry, and the respective steroids were quantitatively analysed in the selected reaction monitoring mode by liquid chromatograph-mass spectrometry/mass spectrometry (LC-MS/MS). The data showed that significant levels of testosterone, corticosterone and precursors of both hormones were detected in all organs except liver. The glucuronide conjugates of steroid hormones and the precursors were detected in all organs except liver, but sulfate conjugates of these steroids were observed only in the target organs of the hormones and kidney. Interestingly, these steroids and the conjugates were not observed in the liver except pregnenolone. In conclusion, an accurate determination of tissue steroids was developed using LC-MS analysis. Biosynthesis of steroid hormones from the precursors was estimated even in the target organs, and the delivery of these steroid conjugates was also suggested via the circulation without any significant hepatic participation.
    Print ISSN: 0021-924X
    Electronic ISSN: 1756-2651
    Topics: Biology , Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2012-12-22
    Description: Papain-like cysteine protease activity that shows a unique transient expression profile in cotyledons of daikon radish during germination was detected. The enzyme showed a distinct elution pattern on DEAE-cellulose compared with cathepsin B-like and Responsive to dessication-21 cysteine protease. Although this activity was not detected in seed prior to imbibition, the activity increased markedly and reached a maximum at 2 days after imbibition and then decreased rapidly and completely disappeared after 5 days. Using cystatin-Sepharose, the 26 kDa cysteine protease (DRCP26) was isolated from cotyledons at 2 days after imbibition. The deduced amino acid sequence from the cDNA nucleotide sequence indicated that DRCP26 is an orthologue of Arabidopsis unidentified protein, germination-specific cysteine protease-1, belonging to the C1 family of cysteine protease predicted from genetic information. In an effort to characterize the enzymatic properties of DRCP26, the enzyme was purified to homogeneity from cotyledons at 48 h after imbibition. The best synthetic substrate for the enzyme was carbobenzoxy-Phe-Arg-4-methylcoumaryl-7-amide. All model peptides were digested to small peptides by the enzyme, suggesting that DRCP26 possesses broad cleavage specificity. These results indicated that DRCP26 plays a role in the mobilization of storage proteins in the early phase of seed germination.
    Print ISSN: 0021-924X
    Electronic ISSN: 1756-2651
    Topics: Biology , Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2013-02-26
    Description: Bacteriophage P22 recognizes O-antigen polysaccharides of Salmonella enterica subsp. enterica ( S. ) with its tailspike protein (TSP). In the serovars S. Typhimurium, S. Enteritidis, and S. Paratyphi A, the tetrasaccharide repeat units of the respective O-antigens consist of an identical main chain trisaccharide but different 3,6-dideoxyhexose substituents. Here, the epimers abequose, tyvelose and paratose determine the specific serotype. P22 TSP recognizes O-antigen octasaccharides in an extended binding site with a single 3,6-dideoxyhexose binding pocket. We have isolated S . Paratyphi A octasaccharides which were not available previously and determined the crystal structure of their complex with P22 TSP. We discuss our data together with crystal structures of complexes with S . Typhimurium and S . Enteritidis octasaccharides determined earlier. Isothermal titration calorimetry showed that S . Paratyphi A octasaccharide binds P22 TSP less tightly, with a difference in binding free energy of ~7 kJ mol –1 at 20°C compared with S. Typhimurium and S. Enteritidis octasaccharides. Individual protein–carbohydrate contacts were probed by amino acid replacements showing that the dideoxyhexose pocket contributes to binding of all three serotypes. However, S. Paratyphi A octasaccharides bind in a conformation with an energetically unfavorable / glycosidic bond angle combination. In contrast, octasaccharides from the other serotypes bind as solution-like conformers. Two water molecules are conserved in all P22 TSP complexes with octasaccharides of different serotypes. They line the dideoxyhexose binding pocket and force the S. Paratyphi A octasaccharides to bind as nonsolution conformers. This emphasizes the role of solvent as part of carbohydrate binding sites.
    Print ISSN: 0959-6658
    Electronic ISSN: 1460-2423
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2013-02-26
    Description: Here we report the bioactivity-guided isolation of novel galectins from the marine sponge Cinachyrella sp., collected from Iriomote Island, Japan. The lectin proteins, which we refer to as the Cinachyrella galectins (CchGs), were identified as the active principles in an aqueous sponge extract that modulated the function of mammalian ionotropic glutamate receptors. Aggregation of rabbit erythrocytes by CchGs was competed most effectively by galactosides but not mannose, a profile characteristic of members of the galectin family of oligosaccharide-binding proteins. The lectin activity was remarkably stable, with only a modest loss in hemagglutination after exposure of the protein to 100°C for 1 h, and showed little sensitivity to calcium concentration. CchG-1 and -2 appeared as 16 and 18 kDa in sodium dodecyl sulfate–polyacrylamide gel electrophoresis, respectively, whereas matrix-assisted laser desorption ionization-time-of-flight-mass spectrometry indicated broad ion clusters centered at 16,216 and 16,423, respectively. The amino acid sequences of the CchGs were deduced using a combination of Edman degradation and cDNA cloning and revealed that the proteins were distant orthologs of animal prototype galectins and that multiple isolectins comprised the CchGs. One of the isolectins was expressed as a recombinant protein and exhibited physico-chemical and biological properties comparable with those of the natural lectins. The biochemical properties of the CchGs as well as their unexpected activity on mammalian excitatory amino acid receptors suggest that further analysis of these new members of the galectin family will yield further glycobiological and neurophysiological insights.
    Print ISSN: 0959-6658
    Electronic ISSN: 1460-2423
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2013-02-26
    Description: The glycobiology of the cestodes, a class of parasitic flatworms, is still largely unexplored. An important cestode species is Echinococcus granulosus , the tissue-dwelling larval stage of which causes hydatid disease. The E. granulosus larva is protected from the host by a massive mucin-based extracellular matrix termed laminated layer (LL). We previously reported ( Díaz et al. 2009 . Biochemistry 48:11678–11691) the molecular structure of the most abundant LL O-glycans, comprising up to six monosaccharide residues. These are based on Cores 1 and 2, in cases elongated by a chain of Gal p β1-3 residues, which can be capped by Gal p α1-4. In addition, the Core 2 GlcNAc p residue can be decorated with the Gal p α1-4Gal p β1-4 disaccharide. Larger glycans also detected contained additional HexNAc residues that could not be explained by the structural repertoire described above. In this work, we elucidate, by mass spectrometry (MS) and nuclear magnetic resonance (NMR), six additional glycans from the E. granulosus LL between six and eight residues in size. Their structures are related to those already described but in cases bear GlcNAc p β1-6 or Gal p α1-4Gal p β1-4GlcNAc p β1-6 as ramifications on the core Gal p β1-3 residue. We also obtained evidence that noncore Gal p β1-3 residues can be similarly ramified. Thus, the new motif together with the previous information may explain all the glycan compositions detected in the LL by MS. In addition, we show that the anti- Echinococcus monoclonal antibody E492 ( Parasite Immunol 21:141, 1999) recognizes Gal p α1-4Gal p β1-4GlcNAc p (the blood P 1 -antigen motif). This explains the antibody's reactivity with a range of Echinococcus tissues, as the P 1 -motif is also carried on non-LL N-glycans and glycolipids from this genus.
    Print ISSN: 0959-6658
    Electronic ISSN: 1460-2423
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2013-02-26
    Description: Uridine diphosphate-glucose pyrophosphorylase (UGP) occupies a central position in carbohydrate metabolism in all kingdoms of life, since its product uridine diphosphate-glucose (UDP-glucose) is essential in a number of anabolic and catabolic pathways and is a precursor for other sugar nucleotides. Its significance as a virulence factor in protists and bacteria has given momentum to the search for species-specific inhibitors. These attempts are, however, hampered by high structural conservation of the active site architecture. A feature that discriminates UGPs of different species is the quaternary organization. While UGPs in protists are monomers, di- and tetrameric forms exist in bacteria, and crystal structures obtained for the enzyme from yeast and human identified octameric UGPs. These octamers are formed by contacts between highly conserved amino acids in the C-terminal β-helix. Still under debate is the question whether octamerization is required for the functionality of the human enzyme. Here, we used single amino acid replacements in the C-terminal β-helix to interrogate the impact of highly conserved residues on octamer formation and functional activity of human UGP (hUGP). Replacements were guided by the sequence of Arabidopsis thaliana UGP, known to be active as a monomer. Correlating the data obtained in blue native PAGE, size exclusion chromatography and enzymatic activity testing, we prove that the octamer is the active enzyme form. This new insight into structure–function relationships in hUGP does not only improve the understanding of the catalysis of this important enzyme, but in addition broadens the basis for studies aimed at designing drugs that selectively inhibit UGPs from pathogens.
    Print ISSN: 0959-6658
    Electronic ISSN: 1460-2423
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2013-02-26
    Description: The infectious liver disease hepatitis C is caused by the small, enveloped, positive single-strand RNA hepatitis C virus (HCV). The HCV genome encodes for a single polyprotein precursor of ~3010 amino acid residues. Host and cellular proteases co- and posttranslational process the precursor creating six nonstructural (NS) proteins and four structural components. Properly folded forms of the envelope proteins E1 and E2 form the associated E1–E2 complex. This complex represents a significant antigenic component at the viral surface that can interact with several target cell receptors. Extent and type of glycosylation is an important factor for virulence and escape from the immune system. Detailed characterization of the glycosylated sites is helpful for the understanding of different phenotypes as well as for the development of E1/E2-related treatments of HCV infection. Here, we have investigated in detail the O-linked glycosylation of the HCV envelope protein E2 expressed in and isolated from human embryonic kidney (HEK 293) cells. Using nano-liquid chromatography and tandem mass spectrometry approaches, we clearly have identified six residues for O-linked glycosylation within isolated glycopeptides (Ser393, Thr396, Ser401, Ser404, Thr473 and Thr518), carrying mainly Core 1 and Core 2 mucin-type structures. Based on our data, Thr385 is probably glycosylated as well. In addition, we could show that Ser479 within the hyper variable region (HVR) I is not O-glycosylated. For most of these sites, different degrees of microheterogeneity could be verified. Concerning HCV E2, this is the first case of experimentally proven O-linked glycosylation in detail via mass spectrometry.
    Print ISSN: 0959-6658
    Electronic ISSN: 1460-2423
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2012-09-29
    Description: Single-molecule imaging is a powerful technique to visualize molecular interactions and movements. Translation is one of the most interesting targets for researchers with the molecular-imaging skills, since mRNA, tRNA and translation factors interact with or move inside or on the ribosome in an ordered manner. Trans -translation is a bacterial quality control system to rescue the ribosomes stalled at the 3' end of the mRNA, and this phenomenon is recapitulated in vitro with defined factors including two trans -translation-specific entities tmRNA and SmpB. Zhou et al. (Single molecule imaging of the trans -translation entry process via anchoring of the tagged ribosome. J Biochem 2011;149:609-618.) successfully visualized the interaction of the tmRNA–SmpB complex with the ribosome by immobilizing the ribosome on the quartz surface with the HaloTag technology. This ribosome-anchoring system may be useful for the imaging analysis of other processes of translation.
    Print ISSN: 0021-924X
    Electronic ISSN: 1756-2651
    Topics: Biology , Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2012-09-29
    Description: The lipid mediator sphingosine-1-phosphate (S1P) is generated within cells from sphingosine by two sphingosine kinases (SPHK1 and SPHK2). Intracellularly synthesized S1P is released into the extracellular fluid by S1P transporters, including SPNS2. Released S1P binds specifically to the G protein-coupled S1P receptors (S1PR1/S1P 1 –S1PR5/S1P 5 ), which activate a diverse range of downstream signalling pathways. Recent studies have proposed that one of the central physiological functions of intercellular S1P signalling is in lymphocyte trafficking in vivo because genetic disruption of SPHK1/2, SPNS2 or S1PR1/S1P 1 in mice induces a lymphopenia phenotype. In this review, we discuss the current understanding of intercellular S1P signalling in the context of immunity.
    Print ISSN: 0021-924X
    Electronic ISSN: 1756-2651
    Topics: Biology , Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2012-09-29
    Description: Cdc6 is the AAA+ ATPase that assembles prereplicative complexes on replication origins in eukaryotic chromosomes. Recently, the same Cdc6 protein was found to exert two more functions in mammalian cells to promote cell proliferation and survival: ATP-dependent activation of p21 CIP1 - or p27 KIP1 -bound Cdk2-cyclin A/E complexes and obstruction of apoptosome assembly and consequent cell death by forming stable complexes with activated Apaf-1 molecules. These findings not only redefined the biological role of mammalian Cdc6 but also led the discovery of entirely new mechanisms controlling Cdk2 activity and apoptosis. This review focuses on this multi-functional AAA+ ATPase and the newly discovered mechanisms by which it controls the G 1 –S transition and cell survival during proliferation.
    Print ISSN: 0021-924X
    Electronic ISSN: 1756-2651
    Topics: Biology , Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2012-09-29
    Description: The pyrimidine reductive catabolic pathway is important for the utilization of uracil and thymine as sources of nitrogen and carbon. The pathway is controlled by three enzymes: dihydropyrimidine dehydrogenase (DPD), dihydropyrimidinase and β-alanine synthase. The putative DPD genes, pydX and pydA , are tandemly arranged in the Pseudomonas putida genome. Intriguingly, a putative transcriptional regulator, PydR, homologous to Escherichia coli RutR, a repressor of the Rut-dependent pyrimidine degradation pathway, is located downstream of pydX and pydA . In this study, we show that a pydA strain of P. putida fails to grow on a minimal media containing uracil or thymine as a sole nitrogen source, demonstrating the physiological importance of DPD in the reductive pathway. The expression of pydA and DPD activity in the absence of uracil were significantly higher in a pydR strain than in the wild-type strain, indicating that PydR acts as a repressor of the pyrimidine reductive pathway in P. putida . Phylogenetic analysis of RutR and PydR suggests that these homologous repressors may have evolved from a common ancestral protein that regulates pyrimidine degradation.
    Print ISSN: 0021-924X
    Electronic ISSN: 1756-2651
    Topics: Biology , Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    facet.materialart.
    Unknown
    Oxford University Press
    Publication Date: 2012-09-29
    Description: Acute inflammation is an indispensable host response to foreign challenges or tissue injury. In healthy conditions, inflammatory processes are self-limiting and self-resolving, suggesting the existence of endogenous mechanisms for the control of inflammation and resolution. A comprehensive understanding of the cellular and molecular events of a well-orchestrated inflammatory response is required, and recent studies have uncovered the roles of endogenous lipid mediators derived from polyunsaturated fatty acids (i.e. lipoxins, resolvins, protectins) in controlling the resolution of inflammation. This review presents recent advances in understanding the formation and action of these mediators, especially focusing on the LC-MS/MS-based lipidomics approach and the emerging roles of eosinophils and eosinophil-derived lipid mediators in controlling acute inflammation and resolution.
    Print ISSN: 0021-924X
    Electronic ISSN: 1756-2651
    Topics: Biology , Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2012-09-29
    Description: The cytokine transforming growth factor-beta (TGF-β) has multiple effects in both physiological and pathological conditions. TGF-β is secreted as part of a tripartite complex from which it must be released in order to bind to its receptor. Sequestration of latent TGF-β in the extracellular matrix (ECM) is crucial for proper mobilization of the latent cytokine and its activation. However, contrary to expectation, loss-of-function mutations in genes encoding certain matrix proteins that bind TGF-β yield elevated, rather than decreased, TGF-β levels, posing a ‘TGF-β paradox.’ In this review, we discuss recent findings concerning the relationship of TGF-β, ECM molecules, and latent TGF-β activation and propose a model to resolve the ‘TGF-β paradox.’
    Print ISSN: 0021-924X
    Electronic ISSN: 1756-2651
    Topics: Biology , Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2012-09-29
    Description: Colicin E5 cleaves tRNAs for Tyr, His, Asn and Asp in their anticodons to abolish protein synthesis in Escherichia coli . We previously showed how its C-terminal RNase domain, E5-CRD, recognizes the anticodon bases but the catalytic mechanism remained to be elucidated. Although the reaction products with 5'-OH and 2',3'-cyclic phosphate ends suggested a similar mechanism to those of RNases A and T1, E5-CRD does not have the His residues necessary as a catalyst in usual RNases. To identify residues important for the catalytic reaction, mutants as to all residues within 5 Å from the central phosphorus of the scissile phosphodiester bond were prepared. Evaluation of the killing activities of the mutant colicins and the RNase activities of the mutant E5-CRDs suggested direct involvement of Arg33, Lys25, Gln29 and Lys60 in the reaction. Particularly, Arg33 plays a critical role and Ile94 provides a structural support of Arg33. Crystal structure of the complex of E5-CRD(R33Q)/dGpdUp showed structural and binding functional integrity of this mutant protein, suggesting involvement of Arg33 in the catalytic reaction. The structure of the free E5–CRD, we also determined, showed great flexibility of a flap region, which facilitates the access of Lys60 to the substrate in an induced-fit manner.
    Print ISSN: 0021-924X
    Electronic ISSN: 1756-2651
    Topics: Biology , Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2012-09-29
    Description: Sulfatide (HSO 3 -3-galactosylceramide), which enriched in lipid rafts of plasma membranes in various epithelial cell lines, is a critical component of host cells for effective production of influenza A virus. However, the function of sulfatide in other virus infections targeting epithelial cells remains unknown. In this study, the effect of sulfatide on infection of human parainfluenza virus type 3 (hPIV3) was demonstrated by using genetically produced sulfatide-enriched cells and by treatment of hPIV3-infected cells with anti-sulfatide monoclonal antibody (GS-5) as well as by addition of sulfatide to the cells. hPIV3 was found to bind to sulfatide in a virus overlay assay and a solid-phase binding assay. Genetic expression of sulfatide in COS-7 cells defective in sulfatide suppressed initial hPIV3 infection and formation of multinucleate virus-infected cells. Treatment of virus-infected LLC-MK2 cells with GS-5 promoted formation of multinucleate cells. In contrast, exogenous addition of sulfatide to hPIV3-infected COS-7 cells and cells expressing the hPIV3- hemagglutinin-neuraminidase ( HN ) gene and fusion ( F ) gene conspicuously reduced the formation of multinucleate cells. The results suggest that sulfatide negatively regulates the fusion process of hPIV3, possibly through interaction with HN or F glycoprotein on the cell surface.
    Print ISSN: 0021-924X
    Electronic ISSN: 1756-2651
    Topics: Biology , Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2012-09-29
    Description: Annexin A3 is a protein belonging to the annexin family, and it is mainly present in cellular membranes as a phospholipid-binding protein that binds via the calcium ion. However, its physiological function remains to be clarified. We examined the expression of annexin A3 in mouse tissues and found for the first time that annexin A3 mRNA and its protein were expressed more strongly in adipose tissues than in other tissues. In adipose tissues, annexin A3-expressing cells were present in the stromal vascular fraction, and precisely identical to Pref-1-positive preadipocytes, Pref-1 being an epidermal growth factor repeat-containing transmembrane protein that inhibits adipogenesis. In 3T3-L1 cells, used as a model of adipogenesis, annexin A3 was down-regulated at an early phase of adipocyte differentiation, and this pattern paralleled that of Pref-1. Suppression of annexin A3 in these cells with siRNA caused elevation of the PPAR2 mRNA level and lipid droplet accumulation. In conclusion, our data suggest that annexin A3 is a negative regulator of adipocyte differentiation.
    Print ISSN: 0021-924X
    Electronic ISSN: 1756-2651
    Topics: Biology , Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2012-09-29
    Description: Protein phosphorylation by protein tyrosine (Tyr) kinases plays important roles in a variety of signalling pathways in cell growth, differentiation and oncogenesis in animals. Despite the absence of classical Tyr kinases in plants, a similar ratio of phosphotyrosine residues in phosphorylated proteins was found in Arabidopsis thaliana as in human. However, protein kinases responsible for tyrosine phosphorylation in plants except some dedicated dual-specificity kinases still remain unclear. In this study, we found that PKL01, a nuclear Dbf2-related (Ndr) kinase homologue in Lotus japonicus , was autophosphorylated at a tyrosine residue when it was expressed in Escherichia coli , but kinase-dead mutant of PKL01 was not. Tyrosine phophorylation site in PKL01 was identified as Tyr-56 by LC-MS/MS analysis. Recombinant PKL01, which had been dephosphorylated by an alkaline phosphatase, could be phosphorylated again at the Tyr residue when it was incubated with ATP. Furthermore, other Ndr kinases in plants and PKL01 phosphorylated on Tyr residues in the exogenous substrates such as poly(Glu, Tyr) 4:1 and casein. Therefore, the Ndr kinases in plants, which had been assumed as protein serine (Ser)/threonine (Thr) kinases, turned out to be dual-specificity kinases responsible for phosphorylation of Tyr residues and Ser/Thr residues in plant proteins.
    Print ISSN: 0021-924X
    Electronic ISSN: 1756-2651
    Topics: Biology , Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2012-09-29
    Description: Mouse UDP-glucuronosyltransferase 1a6 (Ugt1a6) contains two functional copies of 1a6a and 1a6b that share high sequence homology (98%). Only 10 amino acids located around the substrate recognition region are different out of 531 total residues. Although Ugt1a6 plays important roles in conjugating phenolic compounds, the functional characteristics of these isozymes are unclear. We performed functional analyses of mouse Ugt1a6a and Ugt1a6b using two isomeric polyphenols ( trans - and cis -resveratrol). The cDNAs of mouse Ugt1a6a and Ugt1a6b were cloned and constructed as recombinant proteins using a yeast expression system, and kinetic parameters were evaluated. The wild-type Ugt1a6a and Ugt1a6b proteins catalysed trans - and cis -resveratrol 3- O -glucuronidation. Although the K m value for trans -resveratrol was significantly lower for Ugt1a6a compared with Ugt1a6b, the K m values for cis -resveratrol were comparable for the isozymes. Despite high sequence homology, significant kinetic differences were observed between the isozymes. To identify the critical residues for resveratrol glucuronidation, we constructed 10 variants of Ugt1a6a (T81P, N96R, H98Q, L100V, S104P, N115S, I117L, V118T, V119L and D120E). The I117L variant had Ugt1a6b-like enzymatic properties of K m in trans -resveratrol, and V max and K si in cis -form, suggesting that the residues located at position 117 of Ugt1a6a and Ugt1a6b play an important role in resveratrol glucuronidation.
    Print ISSN: 0021-924X
    Electronic ISSN: 1756-2651
    Topics: Biology , Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    facet.materialart.
    Unknown
    Oxford University Press
    Publication Date: 2012-08-23
    Print ISSN: 0959-6658
    Electronic ISSN: 1460-2423
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2012-04-05
    Description: Fucose (Fuc)-containing glycoconjugates play important roles in numerous physiological and pathological processes. Given the biological importance of post-translational glycosylation, a specific and robust strategy for the identification of fucosylated glycoproteins is highly desirable. In this study, we demonstrate an alternative way of labeling of fucosylated structures by metabolic engineering, using a chemoenzymatic approach. In this approach, the activities of Bacteroides fragilis 9343 l -fucokinase/guanosine-5'-diphosphate-Fuc pyrophosphorylase and human α1,3-fucosyltransferase 9 are combined in a Namalwa cellular model. Interestingly, this system could be applied to labeling of alkyne-modified fucosylated glycoproteins. N -Glycan site mapping and identification were done using an in vitro selective chemical ligation reaction and isotope-coded glycosylation site-specific tagging, subsequent to liquid chromatography-tandem mass spectrometry analysis. This work illustrates the use of a click chemistry-based strategy combined with a glycoproteomic technique to get further insight into the pattern of Fuc-mediated biological processes and functions.
    Print ISSN: 0959-6658
    Electronic ISSN: 1460-2423
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    facet.materialart.
    Unknown
    Oxford University Press
    Publication Date: 2012-04-05
    Print ISSN: 0959-6658
    Electronic ISSN: 1460-2423
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2012-04-05
    Description: CpGH89 is a family 89 glycoside hydrolase with exo -α- d - N -acetylglucosaminidase activity that is produced by the human and animal pathogen Clostridium perfringens . This enzyme is active on the α- d -Glc p NAc-(1 -〉 4)- d -Gal p motif that is displayed on the class III mucins within the gastric mucosa. Other members of this enzyme family, such as human NAGLU, are active on heparan. A truncated version of CpGH89 was rendered inactive through the mutation of two key catalytic residues, the protein crystallized and its structure determined in complex with α- d -Glc p NAc-(1 -〉 4)- d -Gal p to reveal the molecular details of how this unique disaccharide is recognized by CpGH89. An analysis of this substrate complex not only provides insight into how this enzyme selects for its mucin-presented substrate but also advances our understanding of how its clinically relevant mammalian counterparts are specific for heparan.
    Print ISSN: 0959-6658
    Electronic ISSN: 1460-2423
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2012-04-05
    Description: A series of six full-term placentas and umbilical cords were examined using the in situ detection of globotriaosylceramide (Gb3Cer), GM1 ganglioside (GM1), GM3 ganglioside (GM3), cholesterol and caveolin 1. Immunohistochemical study showed uniform distinct staining of the apical membrane of villous capillary endothelial cells for Gb3Cer, GM1, GM3 and cholesterol. There was also a strong signal for caveolin 1. The immunophenotype suggests the presence of caveola-associated raft microdomains. The immunophenotype was almost completely shared with the extravillous intravascular trophoblast in the basal plate. It was absent in the endothelial cells of umbilical vessels and in the capillaries of somatic structures (heart, lung, skeletal muscle and skin) in neonates as well as in adults, including capillaries of the proliferative endometrium. Results of in situ analyses were confirmed by lipid chromatographic analysis of tissue homogenates and by tandem mass spectrometry. Lysosomal Gb3Cer turnover was followed in three placentas including umbilical cords from Fabry disease (α-galactosidase A deficiency). Lysosomal storage was restricted to vascular smooth muscle cells and to endothelial cells of umbilical vessels. Placental villous capillary endothelial cells displaying a strong non-lysosomal staining for Gb3Cer were free of lysosomal storage.
    Print ISSN: 0959-6658
    Electronic ISSN: 1460-2423
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2012-04-05
    Description: A lectin was purified from the mushroom Hygrophorus russula by affinity chromatography on a Sephadex G-50 column and BioAssist S cation exchange chromatography and designated H. russula lectin (HRL). The results of sodium dodecyl sulfate–polyaclylamidegel electrophoresis, gel filtration and matrix-assisted laser desorption ionization time-of-flight mass spectrometry of HRL indicated that it was composed of four identical 18.5 kDa subunits with no S-S linkage. Isoelectric focusing of the lectin showed bands near pI 6.40. The complete sequence of 175 amino acid residues was determined by amino acid sequencing of intact or enzyme-digested HRL. The sequence showed homology with Grifola frondosa lectin. The cDNA of HRL was cloned from RNA extracted from the mushroom. The open reading frame of the cDNA consisted of 528 bp encoding 176 amino acids. In hemagglutination inhibition assay, α1-6 mannobiose was the strongest inhibitor and isomaltose, Glcα1-6Glc, was the second strongest one, among mono- and oligosaccharides tested. Frontal affinity chromatography indicated that HRL had the highest affinity for Manα1-6(Manα1-3)Manβ1-4GlcNAcβ1-4GlcNAc, and non-reducing terminal Manα1-6 was essential for the binding of HRL to carbohydrate chains. The sugar-binding specificity of HRL was also analyzed by using BIAcore. The result from the analysis exhibited positive correlations with that of the hemagglutination inhibition assay. All the results suggested that HRL recognized the α1-6 linkage of mannose and glucose, especially the Manα1-6 bond. HRL showed a mitogenic activity against spleen lymph cells of an F344 rat. Furthermore, an enzyme-linked immunosorbent assay showed strong binding of HRL to human immunodeficiency virus type-1 gp120.
    Print ISSN: 0959-6658
    Electronic ISSN: 1460-2423
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2012-04-05
    Description: α-Dystroglycan (DG) is a key component of the dystrophin–glycoprotein complex. Aberrant glycosylation of the protein has been linked to various forms of congenital muscular dystrophy. Unusually α-DG has previously been demonstrated to be modified with both O - N -acetylgalactosamine and O -mannose initiated glycans. In the present study, Fc-tagged recombinant mouse α-DG was expressed and purified from human embryonic kidney 293T cells. α-DG glycopeptides were characterized by glycoproteomic strategies using both nano-liquid chromatography matrix-assisted laser desorption ionization and electrospray tandem mass spectrometry. A total of 14 different peptide sequences and 38 glycopeptides were identified which displayed heterogeneous O-glycosylation. These data provide new insights into the complex domain-specific O-glycosylation of α-DG.
    Print ISSN: 0959-6658
    Electronic ISSN: 1460-2423
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2012-04-05
    Description: Immune responses induced by glycans upon infection with Schistosoma mansoni may be mediated by either schistosomal glycoproteins or glycosphingolipids. In this study, we have elucidated the structural features of both carbohydrate moieties and respective ceramide units of complex glycosphingolipids from adult S. mansoni . Obtained data revealed a vast structural heterogeneity due to manifold combinations of different oligosaccharides and ceramide entities. Observed carbohydrate moieties included Lewis X (Le X ; Gal(β1-4)[Fuc(α1-3)]GlcNAc) as well as, in part, multiply fucosylated LacdiNAc (LDN; GalNAc(β1-4)GlcNAc) carbohydrate epitopes. Corresponding lipid portions comprised predominantly C18-sphingosine as well as C18- and C20-phytosphingosine derivatives. Intriguingly, glycosphingolipids carrying an Le X epitope contained predominantly C18-sphingosine, whereas LDN-based species exhibited mostly phytosphingosine derivatives, in addition to C18-sphingosine, indicating that the two classes of glycosphingolipids might be synthesized via different biosynthetic routes. Compared with literature data, adult worm glycosphingolipids with Le X epitopes revealed clear structural differences in comparison to corresponding cercarial species which have been shown to exhibit mainly sphinganine bases with 18–21 carbon atoms. Therefore, it may be hypothesized that the divergent structural features of the respective ceramide moieties are responsible for the published observation that only adult worm, but not cercarial glycosphingolipids are able to induce dendritic cell activation skewing the T-cell response toward a Th1 profile.
    Print ISSN: 0959-6658
    Electronic ISSN: 1460-2423
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2012-04-05
    Description: Scavenger receptor expressed by endothelial cells (SREC-I) mediates the endocytosis of chemically modified lipoproteins such as acetylated low-density lipoprotein (Ac-LDL) and oxidized LDL and is implicated in atherogenesis. We produced recombinant SREC-I in Chinese hamster ovary-K1 cells and identified three potential glycosylation sites, Asn 289 , Asn 382 and Asn 393 , which were all glycosylated. To determine the function of N -glycans in SREC-I, we characterized SREC-I mutant proteins by intracellular distribution and the cellular incorporation rate of Ac-LDL. N382Q/N393Q and N289Q/N382Q/N393Q were sequestered in the endoplasmic reticulum, resulting in a severe reduction in the cellular incorporation of Ac-LDL. N382Q showed a normal cell surface residency and an enhanced affinity for Ac-LDL, resulting in an elevated Ac-LDL cellular incorporation. These results indicate that the N -glycan of Asn 393 regulates the intracellular sorting of SREC-I and that the N -glycan of Asn 382 controls ligand-binding affinity. Furthermore, we detected an enhanced trypsin sensitivity of the N289Q. Glycan structure analyses revealed that the core-fucosylated bi-antennary is the common major structure at all glycosylation sites. In addition, tri- and tetra-antennary were detected as minor constituents at Asn 289 . A bisecting GlcNAc was also detected at Asn 382 and Asn 393 . Structural analyses and homology modeling of SREC-I suggest that the N -glycan bearing a β1-6GlcNAc branch at Asn 289 protects from proteinase attack and thus confers a higher stability on SREC-I. These data indicate that Asn 289 -, Asn 382 - and Asn 393 -linked N -glycans of SREC-I have distinct functions in regulating proteolytic resistance, ligand-binding affinity and subcellular localization, all of which might be involved in the development of atherogenesis.
    Print ISSN: 0959-6658
    Electronic ISSN: 1460-2423
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2012-04-05
    Description: We recently presented a model for site-specific protein N-glycosylation in Trypanosoma brucei whereby the TbSTT3A oligosaccharyltransferase (OST) first selectively transfers biantennary Man 5 GlcNAc 2 from the lipid-linked oligosaccharide (LLO) donor Man 5 GlcNAc 2 -PP-Dol to N-glycosylation sequons in acidic to neutral peptide sequences and TbSTT3B selectively transfers triantennary Man 9 GlcNAc 2 to any remaining sequons. In this paper, we investigate the specificities of the two OSTs for their preferred LLO donors by glycotyping the variant surface glycoprotein (VSG) synthesized by bloodstream-form T. brucei TbALG12 null mutants. The TbALG12 gene encodes the α1-6-mannosyltransferase that converts Man 7 GlcNAc 2 -PP-Dol to Man 8 GlcNAc 2 -PP-Dol. The VSG synthesized by the TbALG12 null mutant in the presence and the absence of α-mannosidase inhibitors was characterized by electrospray mass spectrometry both intact and as pronase glycopetides. The results show that TbSTT3A is able to transfer Man 7 GlcNAc 2 as well as Man 5 GlcNAc 2 to its preferred acidic glycosylation site at Asn263 and that, in the absence of Man 9 GlcNAc 2 -PP-Dol, TbSTT3B transfers both Man 7 GlcNAc 2 and Man 5 GlcNAc 2 to the remaining site at Asn428, albeit with low efficiency. These data suggest that the preferences of TbSTT3A and TbSTT3B for their LLO donors are based on the c-branch of the Man 9 GlcNAc 2 oligosaccharide, such that the presence of the c-branch prevents recognition and/or transfer by TbSTT3A, whereas the presence of the c-branch enhances recognition and/or transfer by TbSTT3B.
    Print ISSN: 0959-6658
    Electronic ISSN: 1460-2423
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2013-02-13
    Description: We sought to evaluate the mechanism(s) associated with pro matrix metalloprotease 2 (proMMP-2) activation in bovine pulmonary artery smooth muscle cells. Preincubation of cells with anti-TNFR1 antibody prevented tumour necrosis factor-α (TNF-α)-induced proMMP-2 activation and increase in membrane type 1 matrix metalloprotease (MT1-MMP) expression as well as inhibition of tissue inhibitor of metalloproteinase 2 (TIMP-2) expression, indicating the role of TNFR1 receptor during TNF-α stimulation. Anti-MT1-MMP antibody abrogated proMMP-2 activation by TNF-α-stimulated cell membrane, suggesting the involvement of MT1-MMP in proMMP-2 activation. Induction of MT1-MMP expression in response to TNF-α occurs via activation of nuclear factor (NF)-B on inhibitory B kinase (IKK) activation and subsequently phosphorylation/degradation of IB-α. Inhibition of protein kinase C (PKC)-α activity by Go6976 and PKC-α siRNA prevented TNF-α-induced IKK activity, IB-α phosphorylation/degradation and NF-B activation. Inhibition of PKC-α activity also prevented TNF-α-induced MT1-MMP expression and proMMP-2 activation as well as down regulation of TIMP-2 expression. Inhibition of IB-α phosphorylation by PS-1145, an IKK selective inhibitor, prevented TNF-α-induced increase in MT1-MMP expression and proMMP-2 activation, which although did not alter inhibition of TIMP-2 expression. Overall, we unravelled a hitherto unknown mechanism of the involvement of PKC-α in proMMP-2 activation and inhibition of TIMP-2 expression by NF-B–MT1-MMP–dependent and –independent pathway, respectively, during TNF-α stimulation in pulmonary artery smooth muscle cells.
    Print ISSN: 0021-924X
    Electronic ISSN: 1756-2651
    Topics: Biology , Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2013-02-13
    Description: Tumour growth is dependent on angiogenesis, and tumour blood vessels are recognized as an important target for cancer therapy. Tumour endothelial cells (TECs) are the main targets of anti-angiogenic therapy. Unlike the traditionally held view, some TECs may be genetically abnormal and might acquire drug resistance. Therefore, we investigated the drug resistance of TECs and the mechanism by which it is acquired. TECs show resistance to paclitaxel through greater mRNA expression of multidrug resistance 1, which encodes P-glycoprotein, as compared with normal endothelial cells. We found that high levels of vascular endothelial growth factor in tumour-conditioned medium may be responsible for upregulated P-glycoprotein expression. This is a novel mechanism for the acquisition of drug resistance by TECs in a tumour microenvironment. This review focuses on the possibility that TECs can acquire drug resistance.
    Print ISSN: 0021-924X
    Electronic ISSN: 1756-2651
    Topics: Biology , Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2013-02-13
    Description: We previously reported a novel pathway for the biosynthesis of phosphatidylinositol in mycobacteria via phosphatidylinositol phosphate (PIP) [Morii H., Ogawa, M., Fukuda, K., Taniguchi, H., and Koga, Y (2010) J. Biochem . 148, 593–602]. PIP synthase in the pathway is a promising target for the development of new anti-mycobacterium drugs. In the present study, we evaluated the characteristics of the PIP synthase of Mycobacterium tuberculosis . Four types of compounds were chemically synthesized based on the assumption that structural homologues of inositol 1-phosphate, a PIP synthase substrate, would act as PIP synthase inhibitors, and the results confirmed that all synthesized compounds inhibited PIP synthase activity. The phosphonate analogue of inositol 1-phosphate (Ino-C-P) had the greatest inhibitory effect among the synthesized compounds examined. Kinetic analysis indicated that Ino-C-P acted as a competitive inhibitor of inositol 1-phosphate. The IC 50 value for Ino-C-P inhibition of the PIP synthase activity was estimated to be 2.0 mM. Interestingly, Ino-C-P was utilized in the same manner as the normal PIP synthase substrate, leading to the synthesis of a phosphonate analogue of PIP (PI-C-P), which had a structure similar to that of the natural product, PIP. In addition, PI-C-P had high inhibitory activity against PIP synthase.
    Print ISSN: 0021-924X
    Electronic ISSN: 1756-2651
    Topics: Biology , Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2013-02-13
    Description: We investigated whether transforming growth factor (TGF)-β1 promoted epithelial–mesenchymal transition (EMT) and migration of human oral squamous cell carcinoma (hOSCC) cells. Among 6 hOSCC cell lines investigated, Smad2 phosphorylation and TGF-β target genes expression were most clearly upregulated following TGF-β1 stimulation in HSC-4 cells, indicating that HSC-4 cells were the most responsive to TGF-β1. In addition, the expression levels of the mesenchymal markers N-cadherin and vimentin were most clearly induced in HSC-4 cells among the hOSCC cell lines by TGF-β1 stimulation. Interestingly, E-cadherin and β-catenin at the cell surface were internalized in HSC-4 cells stimulated with TGF-β1. In addition, the expression levels of the EMT-related transcription factor Slug was significantly upregulated on TGF-β1 stimulation. Moreover, the downregulation of Slug by RNA interference clearly inhibited the TGF-β1-induced expression of mesenchymal marker and the migration of HSC-4 cells. Proteomics analysis also revealed that the expression levels of integrin α3β1-targeted proteins were upregulated in TGF-β1-stimulated HSC-4 cells. Neutral antibodies against integrin α3 and β1, as well as a focal adhesion kinase (FAK) inhibitor, clearly suppressed TGF-β1-induced cell migration. These results suggest that the EMT and integrin α3β1/FAK pathway–mediated migration of TGF-β1-stimulated HSC-4 hOSCC cells is positively controlled by Slug.
    Print ISSN: 0021-924X
    Electronic ISSN: 1756-2651
    Topics: Biology , Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2013-02-13
    Description: The importance of interconnective signalling networks between distinct GTPases and their regulators is being recognized. EPI64C/TBC1D10C/carabin, a haematopoietically enriched GTPase-activating protein (GAP) for Rab35, has been shown to exhibit RasGAP activity. Owing to the diverged Rab specificities among the EPI64 members (EPI64A–C) and the relatively weak sequence conservation between EPI64A/B and EPI64C in their catalytic TBC domains, it is difficult to predict whether EPI64A and B will also have RasGAP activities. Therefore, in this study, we examined the RasGAP activities of all three EPI64 subfamily members. We found that EPI64A–C exhibited in vivo GAP activities towards Ras using three independent methods, spectrofluorometry with Förster resonance energy transfer (FRET) sensors, the Bos' pull-down assay and time-lapse FRET imaging. EPI64A and B were predominantly localized at the periphery of COS-7 cells. In COS-7 cells, confocal FRET imaging showed that H-Ras activity was higher at the Golgi than at the plasma membrane. Thus, we propose that EPI64A and B, which are ubiquitously expressed members of the EPI64 subfamily, inactivate Ras and certain Rabs at the periphery of cells.
    Print ISSN: 0021-924X
    Electronic ISSN: 1756-2651
    Topics: Biology , Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2013-02-13
    Description: Capsid-like particles consisting of a hepatitis B core (HBc) protein have been studied for their potential as carriers for drug delivery systems (DDS). The hollow HBc particle, which is formed by the self-assembly of core proteins comprising 183 aa residues, has the ability to bind to various cells non-specifically via the action of an arginine-rich domain. In this study, we developed an engineered HBc particle that specifically recognizes and targets human epidermal growth factor receptor-related 2 (HER2)-expressing breast cancer cells. To despoil the non-specific binding property of an HBc particle, we genetically deleted the C-terminal 150–183 aa part of the core protein that encodes the arginine-rich domain (HBc). Then, we genetically inserted a Z HER2 affibody molecule into the 78–81 aa position of the core protein to confer the ability of target-cell-specific recognition. The constructed Z HER2 -displaying HBc (Z HER2 -HBc) particle specifically recognized HER2-expressing SKBR3 and MCF-7 breast cancer cells. In addition, the Z HER2 -HBc particle exhibited different binding amounts in accordance with the HER2 expression levels of cancer cells. These results show that the display of other types of affibody molecules on HBc particles would be an expandable strategy for targeting several kinds of cancer cells that would help enable a pinpoint DDS.
    Print ISSN: 0021-924X
    Electronic ISSN: 1756-2651
    Topics: Biology , Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2013-02-13
    Description: The P2X4 purinergic receptor is a key molecule in neuropathic pain, particularly in the allodynia after peripheral nerve injury. We therefore sought to establish an anti-P2X4 receptor monoclonal antibody that would be useful for detection and characterization of the P2X4 receptor. We first prepared the refolded extracellular domain of the rat P2X4 receptor expressed in Escherichia coli . Then, we established a B-cell hybridoma producing the monoclonal antibody for the head domain of the rat P2X4 receptor with strict recognition, including S-S bond formation. In addition, we succeeded in the detection and immune precipitation of rat P2X4 receptor molecules on cultured cells. As the antibody specifically binds to the rat P2X4 receptor molecule, it is expected that the established monoclonal antibody will be applicable as a tool for detecting increasing expression levels of the P2X4 receptor molecule accompanied with increasing intensity of neuropathic pain.
    Print ISSN: 0021-924X
    Electronic ISSN: 1756-2651
    Topics: Biology , Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2013-02-13
    Description: We developed an efficient method for introduction of 3-azidotyrosine (N 3 -Y) into proteins in Escherichia coli cells. We constructed a plasmid that is adaptable for the constitutive expression of both Methanosarcina acetivorans tyrosyl-tRNA synthetase (TyrRS) and tRNA ( CUA) , and made an orthogonal tRNA (CUA) that is recognized as a substrate only by the archaeal TyrRS. Random mutations were introduced into M. acetivorans TyrRS around the tyrosine binding pocket, and a TyrRS mutant recognizing N 3 -Y was selected. We then expressed rat calmodulin (CaM) containing N 3 -Y, using the CaM gene with an amber codon at position 80. Mass analyses confirmed production of CaM containing N 3 -Y, but a significant amount of CaM containing 3-aminotyrosine was also detected. To more efficiently express CaM containing N 3 -Y, we added an arabinose-inducible gene for the mutant TyrRS to the plasmid carrying the mutant TyrRS/tRNA ( CUA) gene. Although the yields of full-length CaM increased ~ 3-fold, the ratio of N 3 -Y introduction was not significantly improved. Following screening for a suitable host cell, we found that CaM expressed in E. coli SHuffle (K-12) had 97% N 3 -Y at the pre-determined site. Finally, we obtained up to 2 mg of CaM containing N 3 -Y per 100 ml of culture media, sufficient for use in various proteomics experiments, including photo-crosslinking.
    Print ISSN: 0021-924X
    Electronic ISSN: 1756-2651
    Topics: Biology , Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2013-02-13
    Description: Trypanosoma brucei is a parasite that causes human African trypanosomiasis (HAT). The parasites depend on the cyanide-insensitive trypanosome alternative oxidase (TAO) for their vital aerobic respiration. Ascofuranone (AF), a potent and specific sub-nanomolar inhibitor of the TAO quinol oxidase, is a potential novel drug with selectivity for HAT, because mammalian hosts lack the enzyme. To elucidate not only the inhibition mechanism but also the inhibitor–enzyme interaction, AF derivatives were designed and synthesized, and the structure–activity relationship was evaluated. Here we identified the pharmacophore of AF that interacts with TAO. The detailed inhibitory profiles indicated that the 1-formyl and 6-hydroxyl groups, which might contribute to intramolecular hydrogen bonding and/or serve as hydrogen-bonding donors, were responsible for direct interaction with the enzyme.
    Print ISSN: 0021-924X
    Electronic ISSN: 1756-2651
    Topics: Biology , Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2012-08-29
    Description: Feed additives such as ractopamine and salbutamol are pharmacologically active compounds, acting primarily as β-adrenergic agonists. This study was designed to investigate whether the sulfation of ractopamine and salbutamol may occur under the metabolic conditions and to identify the human cytosolic sulfotransferases (SULTs) that are capable of sulfating two major feed additive compounds, ractopamine and salbutamol. A metabolic labelling study showed the generation and release of [ 35 S]sulfated ractopamine and salbutamol by HepG2 human hepatoma cells labelled with [ 35 S]sulfate in the presence of these two compounds. A systematic analysis using 11 purified human SULTs revealed SULT1A3 as the major SULT responsible for the sulfation of ractopamine and salbutamol. The pH dependence and kinetic parameters were analyzed. Moreover, the inhibitory effects of ractopamine and salbutamol on SULT1A3-mediated dopamine sulfation were investigated. Cytosol or S9 fractions of human lung, liver, kidney and small intestine were examined to verify the presence of ractopamine-/salbutamol-sulfating activity in vivo . Of the four human organs, the small intestine displayed the highest activity towards both compounds. Collectively, these results imply that the sulfation mediated by SULT1A3 may play an important role in the metabolism and detoxification of ractopamine and salbutamol.
    Print ISSN: 0021-924X
    Electronic ISSN: 1756-2651
    Topics: Biology , Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2012-08-23
    Description: Streptococcus equisimilis hyaluronan (HA) synthase (SeHAS) contains four cysteines (C226, C262, C281 and C367) that are conserved in the mammalian HAS family. Previous studies of single Cys-to-Ser and all possible Cys-to-Ala mutants of SeHAS found that: the Cys-null mutant is active, Cys modification inhibits HAS activity and the conserved cysteines are clustered at the membrane–enzyme interface in substrate-binding sites (Kumari K, Weigel PH. 2005. Identification of a membrane-localized cysteine cluster near the substrate binding sites of the Streptococcus equisimilis hyaluronan synthase. Glycobiology . 15:529–539). We re-examined these Cys mutants using a single technique (size exclusion chromatography–multi-angle laser light scattering) that allows simultaneous assays on the same sample for both HA synthesis activity and HA product size. Among 18 mutants compared with wild type, 4 showed no change in either function and 3 showed changes in both (decreased activity and HA size). Only one of the two functions was altered in 11 other mutants, which showed either decreased polymerizing activity or product size. No mutants made larger HA, 8 made smaller HA and 10 showed no change in HA size. Nine mutants showed no change in activity and nine were less active. The mutants fell into four of nine possible groups in terms of changes in HA size or synthesis rate (i.e. none, increased or decreased). Specific Cys residues were associated with each mutant group and the pattern of effects on both functions. Thus, the four conserved Cys residues, individually and in specific combinations, influence the rate of sugar assembly by HAS and HA product size, but their participation in one function is independent of the other.
    Print ISSN: 0959-6658
    Electronic ISSN: 1460-2423
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2012-08-23
    Description: Gangliosides—sialylated glycosphingolipids—are the major glycoconjugates of nerve cells. The same four structures—GM1, GD1a, GD1b and GT1b—comprise the great majority of gangliosides in mammalian brains. They share a common tetrasaccharide core (Galβ1–3GalNAcβ1-4Galβ1-4Glcβ1-1'Cer) with one or two sialic acids on the internal galactose and zero (GM1 and GD1b) or one (GD1a and GT1b) α2–3-linked sialic acid on the terminal galactose. Whereas the genes responsible for the sialylation of the internal galactose are known, those responsible for terminal sialylation have not been established in vivo. We report that St3gal2 and St3gal3 are responsible for nearly all the terminal sialylation of brain gangliosides in the mouse. When brain ganglioside expression was analyzed in adult St3gal1 -, St3gal2 -, St3gal3 - and St3gal4 -null mice, only St3gal2 -null mice differed significantly from wild type, expressing half the normal amount of GD1a and GT1b. St3gal1 / 2 -double-null mice were no different than St3gal2 -single-null mice; however, St3gal2 / 3 -double-null mice were 〉95% depleted in gangliosides GD1a and GT1b. Total ganglioside expression (lipid-bound sialic acid) in the brains of St3gal2/3 -double-null mice was equivalent to that in wild-type mice, whereas total protein sialylation was reduced by half. St3gal2/3 -double-null mice were small, weak and short lived. They were half the weight of wild-type mice at weaning and displayed early hindlimb dysreflexia. We conclude that the St3gal2 and St3gal3 gene products (ST3Gal-II and ST3Gal-III sialyltransferases) are largely responsible for ganglioside terminal α2-3 sialylation in the brain, synthesizing the major brain gangliosides GD1a and GT1b.
    Print ISSN: 0959-6658
    Electronic ISSN: 1460-2423
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2012-08-23
    Description: IspC is a novel peptidoglycan (PG) hydrolase that is conserved in Listeria monocytogenes serotype 4b strains and is involved in virulence. The aim of this study was to establish the hydrolytic bond specificity of IspC. Purified L. monocytogenes peptidoglycan was digested by recombinant IspC and the resulting muropeptides were separated by reverse phase high-performance liquid chromatography. The structure of each muropeptide was determined using matrix-assisted laser desorption ionization (MALDI)-time-of-flight mass spectrometry in combination with MALDI-post-source decay mass spectrometry. The structure of muropeptides resulting from IspC-mediated hydrolysis indicated that IspC has N- acetylglucosaminidase activity. These muropeptides also had a high proportion of N -acetylated glucosamine residues. To determine whether IspC is more effective at hydrolysing N -acetylated peptidoglycan than de- N -acetylated peptidoglycan, a peptidoglycan deacetylase (PgdA) in-frame deletion mutant was created. This mutant was shown to have fully N -acetylated peptidoglycan and was more susceptible to hydrolysis by IspC when compared with the partially de- N -acetylated wild-type peptidoglycan. This indicates that IspC is more efficient when hydrolysing a fully N -acetylated peptidoglycan substrate. The finding that IspC acts as an N -acetylglucosaminidase is consistent with its categorization, based on amino acid sequence, as a member of the GH73 family. As with other members of this family, de- N -acetylation seems to be an important mechanism for regulating the activity of IspC.
    Print ISSN: 0959-6658
    Electronic ISSN: 1460-2423
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2012-08-23
    Description: A family of nine genes encoding proteins involved in the synthesis of β-1,2 mannose adhesins of Candida albicans has been identified. Four of these genes, BMT1 – 4 , encode enzymes acting stepwise to add β-mannoses on to cell-wall phosphopeptidomannan (PPM). None of these acts on phospholipomannan (PLM), a glycosphingolipid member of the mannose-inositol-phosphoceramide family, which contributes with PPM to β-mannose surface expression. We show that deletion of BMT5 and BMT6 led to a dramatic reduction of PLM glycosylation and accumulation of PLM with a truncated β-oligomannoside chain, respectively. Disruptions had no effect on sphingolipid biosynthesis and on PPM β-mannosylation. β-Mannose surface expression was not affected, confirming that β-mannosylation is a process based on specificity of acceptor molecules, but liable to global regulation.
    Print ISSN: 0959-6658
    Electronic ISSN: 1460-2423
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    facet.materialart.
    Unknown
    Oxford University Press
    Publication Date: 2012-08-23
    Print ISSN: 0959-6658
    Electronic ISSN: 1460-2423
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2012-08-29
    Description: Information on the structural scaffold for tau aggregation is important in developing a method of preventing Alzheimer’s disease (AD). Tau contains a microtubule binding domain (MBD) consisting of three or four repeats of 31 and 32 similar residues in its C-terminal half. Although the key event in tau aggregation has been considered to be the formation of β-sheet structures from a short hexapeptide 306 VQIVYK 311 in the third repeat of MBD, its aggregation pathway to filament formation differs between the three- and four-repeated MBDs, owing to the intermolecular and intramolecular disulphide bond formations, respectively. Therefore, the elucidation of a common structural element necessary for the self-assembly of three-/four-repeated full-length tau is an important research subject. Expanding the previous results on the aggregation mechanism of MBD, in this paper, we report that the C–H ... interaction between the Ile308 and Tyr310 side chains in the third repeat of MBD is indispensable for the self-assembly of three-/four-repeated full-length tau, where the interaction provides a conformational seed for triggering the molecular association. On the basis of the aggregation behaviours of a series of MBD and full-length tau mutants, a possible self-association model of tau is proposed and the relationship between the aggregation form (filament or granule) and the association pathway is discussed.
    Print ISSN: 0021-924X
    Electronic ISSN: 1756-2651
    Topics: Biology , Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2012-08-29
    Description: The lymphatic vascular system, also known as the second vascular system in vertebrates, plays crucial roles in various physiological and pathological processes. It participates in the maintenance of normal tissue fluid balance, trafficking of the immune cells and absorption of fatty acids in the gut. Furthermore, lymphatic system is associated with the pathogenesis of a number of diseases, including lymphedema, inflammatory diseases and tumour metastasis. Lymphatic vessels are comprised of lymphatic endothelial cells (LECs), which are differentiated from blood vascular endothelial cells. This review highlights recent advances in our understanding of the transcriptional control of LEC fate determination and reflects on efforts to understand the roles of transcriptional networks during this discrete developmental process.
    Print ISSN: 0021-924X
    Electronic ISSN: 1756-2651
    Topics: Biology , Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2012-08-29
    Description: The Mediator complex consists of more than 20 subunits. This is composed of four modules: head, middle, tail and CDK/Cyclin. Importantly, Mediator complex is known to play pivotal roles in transcriptional regulation, but its molecular mechanisms are still elusive. Many studies, including our own, have revealed that CDK8, a kinase subunit of the CDK/Cyclin module, is one of the key subunits involved in these roles. Additionally, we previously demonstrated that a novel CDK component, CDK19, played similar roles. It is assumed that various factors that directly affect transcriptional regulation target these two CDKs; thus, we conducted yeast two-hybrid screenings to isolate the CDK19-interacting proteins. From a screening of 40 million colonies, we obtained 287 clones that provided positive results encoded mRNAs, and it turned out that 59 clones of them encoded nuclear proteins. We checked the reading frames of the candidate clones and obtained three positive clones, all of which encoded the transcriptional cofactors, Brahma-related gene 1, B-cell CLL/lymphoma 6 and suppressor of zeste 12 homolog. Intriguingly, these three cofactors are also related to chromatin regulation. Further studies demonstrated that those could bind not only to CDK19 but also to CDK8. These results help elucidate the functional mechanism for the mutual regulations between transcription and chromatin.
    Print ISSN: 0021-924X
    Electronic ISSN: 1756-2651
    Topics: Biology , Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2012-08-29
    Description: The metalloprotease ADAMTS13 affects platelet adhesion and aggregation through depolymerization of von Willebrand factor (VWF) multimers. Identification of ADAMTS13-binding proteins would reveal the hitherto unrecognized mechanisms underlying microvascular thrombus. To identify ADAMTS13-binding proteins, we performed a yeast two-hybrid screen using the Cys-rich and spacer domains of ADAMTS13, the critical regions for the binding and cleavage of VWF, as a bait region. We identified Lys-plasminogen, an amino-terminal truncated form of plasminogen, as the binding protein to ADAMTS13. Intact Glu-plasminogen did not bind to ADAMTS13. Active-site blocked Lys-plasmin bound to ADAMTS13. Domain truncation of ADAMTS13 and elastase digest of plasminogen indicated that the Cys-rich and spacer domains of ADAMTS13 and the kringle 5 and protease domains of plasminogen served as the main binding sites. Biacore measurements revealed that Lys-plasminogen bound to ADAMTS13 with a K d of 1.9 ± 0.1 x 10 –7 M and Glu-plasminogen exhibited a significantly lower affinity to ADAMTS13. Specific activity measurements revealed that ADAMTS13 and Lys-plasmin were still active even after the binary complex was formed. The binding of ADAMTS13 to Lys-plasminogen may play an important role to localize these two proteases at sites of thrombus formation or vascular injury where the fibrinolytic system is activated.
    Print ISSN: 0021-924X
    Electronic ISSN: 1756-2651
    Topics: Biology , Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2012-08-29
    Description: It is generally accepted that the mitochondria play central roles in energy production of most eukaryotes. In contrast, it has been thought that Plasmodium spp., the causative agent of malaria, rely mainly on cytosolic glycolysis but not mitochondrial oxidative phosphorylation for energy production during blood stages. However, Plasmodium spp. possesses all genes necessary for the tricarboxylic acid (TCA) cycle and most of the genes for electron transport chain (ETC) enzymes. Therefore, it remains elusive whether oxidative phosphorylation is essential for the parasite survival. To elucidate the role of TCA metabolism and ETC in malaria parasites, we deleted the gene for flavoprotein (Fp) subunit, Pbsdha , one of four components of complex II, a catalytic subunit for succinate dehydrogenase activity. The Pbsdha(-) parasite grew normally at blood stages in mouse. In contrast, ookinete formation of Pbsdha(-) parasites in the mosquito stage was severely impaired. Finally, Pbsdha(-) ookinetes failed in oocyst formation, leading to complete malaria transmission blockade. These results suggest that malaria parasite may switch the energy metabolism from glycolysis to oxidative phosphorylation to adapt to the insect vector where glucose is not readily available for ATP production.
    Print ISSN: 0021-924X
    Electronic ISSN: 1756-2651
    Topics: Biology , Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    facet.materialart.
    Unknown
    Oxford University Press
    Publication Date: 2012-08-29
    Description: Yes-associated protein (YAP) has been shown to play a critical role in the growth of various tumours. Phosphorylation of Ser127 of YAP leads to the inhibition of YAP translocation into nucleus and subsequent failure to regulate the expression of target genes that induce cell proliferation. Chemical manipulation of YAP localization or expression may provide an efficient method for cancer treatment. In a recent work published by Bao et al. ( J. Biochem . 2011;150:199–208), various compounds were screened in human osteosarcoma cells that stably express Green Fluorescent Protein-labeled YAP by monitoring subcellular localization of GFP-YAP. Using this cell-based assay, they found that dobutamine, a β-adrenergic receptor agonist, attenuated YAP-dependent transcription by inhibiting its nuclear translocation. The authors suggest dobutamine as a possible drug for cancer treatment.
    Print ISSN: 0021-924X
    Electronic ISSN: 1756-2651
    Topics: Biology , Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2012-08-29
    Description: In the N-terminal domain of thermolysin, two anti-parallel β-strands, Asn112–Ala113–Phe114–Trp115 and Ser118–Gln119–Met120–Val121–Tyr122 are connected by an Asn116–Gly117 turn to form a β-hairpin structure. In this study, we examined the role of Asn116 in the activity and stability of thermolysin by site-directed mutagenesis. Of the 19 Asn116 variants, four (N116A, N116D, N116T and N116Q) were produced in Escherichia coli , by co-expressing the mature and pro domains separately, while the other 15 were not. In the hydrolysis of N -[3-(2-furyl)acryloyl]-glycyl- l -leucine amide (FAGLA) at 25°C, the intrinsic k cat / K m value of N116D was 320% of that of the wild-type thermolysin (WT), and in the hydrolysis of N -carbobenzoxy- l -aspartyl- l -phenylalanine methyl ester (ZDFM) at pH 7.5 at 25°C, the k cat / K m value of N116D was 140% of that of WT, indicating that N116D exhibited higher activity than WT. N116Q exhibited similar activity as WT, and N116A and N116T exhibited reduced activities. The first-order rate constants, k obs , of the thermal inactivation at 80°C were in the order N116A, N116D, N116T 〉 N116Q 〉 WT at all CaCl 2 concentrations examined (1–100 mM), indicating that all variants exhibited reduced stabilities. These results suggest that Asn116 plays an important role in the activity and stability of thermolysin presumably by stabilizing this β-hairpin structure.
    Print ISSN: 0021-924X
    Electronic ISSN: 1756-2651
    Topics: Biology , Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2012-08-29
    Description: The Myxococcus xanthus protein phosphatase Pph3 belongs to the Mg 2+ - or Mn 2+ -dependent protein phosphatase (PPM) family. Bacterial PPMs contain three divalent metal ions and a flap subdomain. Putative metal- or phosphate-ion binding site-specific mutations drastically reduced enzymatic activity. Pph3 contains a cyclic nucleotide monophosphate (cNMP)-binding domain in the C-terminal region, and it requires 2-mercaptoethanol for phosphatase activity; however, the C-terminal deletion mutant showed high activity in the absence of 2-mercaptoethanol. The phosphatase activity of the wild-type enzyme was higher in the presence of cAMP than in the absence of cAMP, whereas a triple mutant of the cNMP-binding domain showed slightly lower activities than those of wild-type, without addition of cAMP. In addition, mutational disruption of a disulphide bond in the wild-type enzyme increased the phosphatase activity in the absence of 2-mercaptoethanol, but not in the C-terminal deletion mutant. These results suggested that the presence of the C-terminal region may lead to the formation of the disulphide bond in the catalytic domain, and that disulphide bond cleavage of Pph3 by 2-mercaptoethanol may occur more easily with cAMP bound than with no cAMP bound.
    Print ISSN: 0021-924X
    Electronic ISSN: 1756-2651
    Topics: Biology , Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2012-08-29
    Description: Emerging evidence indicates that vitamin D (VD) is an important modulator of brain development and function. To investigate whether VD modulates neurosteroid biosynthesis in neural cells, we investigated the effect of VD 3 on steroidogenic gene expression in human glioma GI-1 cells. We found that VD 3 enhanced CYP11A1 and 3β-hydroxysteroid dehydrogenase gene expression. The induction of CYP11A1 gene expression by VD 3 was dose- and incubation time-dependent. Calcipotriol, a VD 3 receptor (VDR) agonist, also induced CYP11A1 gene expression in GI-1 cells, indicating that VDR is involved in this induction. The induction of progesterone (PROG) de novo synthesis was observed along with the induction of steroidogenic genes by VD 3 . Furthermore, VD 3 enhanced all- trans retinoic acid (ATRA)-induced CYP11A1 gene expression and PROG production. This suggests cooperative regulation of steroidogenic gene expression by the two fat-soluble vitamins, A and D. In addition, a mixed culture of neuronal IMR-32 cells and GI-1 cells treated with ATRA and VD 3 resulted in the induction of PROG-responsive gene expression in the IMR-32 cells. This result shows a paracrine action of PROG that is induced in and released by the GI-1 cells. The relationship between neurological dysfunction associated with VD deficiency and neurosteroid induction by VD is discussed.
    Print ISSN: 0021-924X
    Electronic ISSN: 1756-2651
    Topics: Biology , Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2012-08-23
    Description: An agaran-type polysaccharide, GFP08, isolated from Grateloupia filicina (C. Agardh) Lamouroux, was mainly composed of 1,3-linked β- d -galactose partially sulfated at position O-2 and 1,4-linked α- l -galactose O-2, O-3-disulfate, α- l -galactose O-6-sulfate and 3,6-anhydro-α- l -galactose. Small quantities of xylose, 4,6- O -(1'-carboxyethylidene) and 6- O -methyl-β- d -galactose were also present. In mice bearing sarcoma-180 cells, GFP08 decreased tumor weight in a dose-dependent manner. The antiangiogenic activity of GFP08 was evaluated using the chicken chorioallantoic membrane assay, and the results showed that GFP08 dose-dependently reduced new vessel formation. Meanwhile, GFP08 inhibited the differentiation of human umbilical vein endothelial cells (HUVECs) into capillary-like structures in vitro and reduced the number of migrated cells. However, there was no observed cytotoxicity of GFP08 toward HUVECs. Further study revealed that GFP08 decreased tissue factor (TF) expression without affecting the activities of matrix metalloproteinase-2 and -9. All those data indicated that GFP08 had an antitumor effect that might be associated in part with its antiangiogenic effect through down-regulating the expression of TF protein.
    Print ISSN: 0959-6658
    Electronic ISSN: 1460-2423
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2012-08-23
    Description: The trans -sialidase of Trypanosoma cruzi (TcTS) catalyzes the transfer of sialic acid from host glycoconjugates to terminal β-galactopyranosides in the mucins of the parasite. During infection, the enzyme is actively shed by the parasite to the bloodstream inducing hematological alterations. Lactitol prevents cell apoptosis caused by the TcTS, although it is rapidly eliminated from the circulatory system. Linear polyethyleneglycol (PEG) conjugates of lactose analogs were prepared but their clearance from blood was still quite fast. With the aim of improving their circulating half-lives in vivo, we now synthesized covalent conjugates of eight-arm PEG. The star-shape of these conjugates allows an increase in the molecular weight together with the loading of the active sugar. Two approaches were used for PEGylation of disaccharide derivatives containing β- d -Gal p as the non-reducing unit. (1) Amide formation between benzyl β- d -galactopyranosyl-(1-〉6)-2-amino-2-deoxy-α- d -glucopyranoside and a succinimide-activated PEG. (2) Conjugation of lactobionolactone with amino end-functionalized PEG. Two 8-arm PEG derivatives (20 and 40 kDa) were used for each sugar. Substitution of all arms was proved by 1 H nuclear magnetic resonance (NMR) spectroscopy. The bioavailability of the conjugates in mice plasma was considerably improved with respect to the 5 kDa linear PEG conjugates retaining their inhibitory properties.
    Print ISSN: 0959-6658
    Electronic ISSN: 1460-2423
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2012-08-23
    Description: Mechanisms accounting for the protection of the fetal semi-allograft from maternal immune cells remain incompletely understood. In previous studies, we showed that galectin-1 (Gal1), an immunoregulatory glycan-binding protein, hierarchically triggers a cascade of tolerogenic events at the mouse fetomaternal interface. Here, we show that Gal1 confers immune privilege to human trophoblast cells through the modulation of a number of regulatory mechanisms. Gal1 was mainly expressed in invasive extravillous trophoblast cells of human first trimester and term placenta in direct contact with maternal tissue. Expression of Gal1 by the human trophoblast cell line JEG-3 was primarily controlled by progesterone and pro-inflammatory cytokines and impaired T-cell responses by limiting T cell viability, suppressing the secretion of Th1-type cytokines and favoring the expansion of CD4 + CD25 + FoxP3 + regulatory T (T reg ) cells. Targeted inhibition of Gal1 expression through antibody (Ab)-mediated blockade, addition of the specific disaccharide lactose or retroviral-mediated siRNA strategies prevented these immunoregulatory effects. Consistent with a homeostatic role of endogenous Gal1, patients with recurrent pregnancy loss showed considerably lower levels of circulating Gal1 and had higher frequency of anti-Gal1 auto-Abs in their sera compared with fertile women. Thus, endogenous Gal1 confers immune privilege to human trophoblast cells by triggering a broad tolerogenic program with potential implications in threatened pregnancies.
    Print ISSN: 0959-6658
    Electronic ISSN: 1460-2423
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2012-08-23
    Description: Bacteria from the Burkholderia cepacia complex (Bcc) cause highly contagious pneumonia among cystic fibrosis (CF) patients. Among them, Burkholderia cenocepacia is one of the most dangerous in the Bcc and is the most frequent cause of morbidity and mortality in CF patients. Indeed, it is responsible of "cepacia syndrome", a deadly exacerbation of infection, that is the main cause of poor outcomes in lung transplantation. Burkholderia cenocepacia produces several soluble lectins with specificity for fucosylated and mannosylated glycoconjugates. These lectins are present on the bacterial cell surface and it has been proposed that they bind to lipopolysaccharide epitopes. In this work, we report on the interaction of one B. cenocepacia lectin, BC2L-A, with heptose and other manno configured sugar residues. Saturation transfer difference NMR spectroscopy studies of BC2L-A with different mono- and disaccharides demonstrated the requirement of manno configuration with the hydroxyl or glycol group at C6 for the binding process. The crystal structure of BC2L-A complexed with the methyl-heptoside confirmed the location of the carbohydrate ring in the binding site and elucidated the orientation of the glycol tail, in agreement with NMR data. Titration calorimetry performed on monosaccharides, heptose disaccharides and bacterial heptose-containing oligosaccharides and polysaccharides confirmed that bacterial cell wall contains carbohydrate epitopes that can bind to BC2L-A. Additionally, the specific binding of fluorescent BC2L-A lectin on B. cenocepacia bacterial surface was demonstrated by microscopy.
    Print ISSN: 0959-6658
    Electronic ISSN: 1460-2423
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2012-08-23
    Description: Removal of α-glucose residues from nascent glycoproteins in the early secretory pathway is a requirement for further N -glycan maturation. Although deglucosylation is a stepwise process mediated by endoplasmic reticulum-associated glucosidases I and II for most glycoproteins, Golgi endo-α-mannosidase provides a backup mechanism for glycoprotein deglucosylation. Although conserved in mammals, in certain cell lines, endomannosidase activity in vitro appears to differ from its activity in cells following glucosidase inhibition. Here, we show that in bovine cells this is explained by restricted substrate specificity allowing processing of Glc 1 Man 7 GlcNAc 1/2 and Glc 1 Man 5 GlcNAc 1/2 but not fully glucosylated glycans that build up when glucosidases are inhibited. Our data further demonstrate that such specificity is determined genetically rather than post-translationally. We also demonstrate that the bovine endomannosidase is transcriptionally upregulated by comparison with glucosidase II in Madin–Darby bovine kidney cells and speculate that this is to compensate for the reduced catalytic activity as measured in the recombinant form of the enzyme.
    Print ISSN: 0959-6658
    Electronic ISSN: 1460-2423
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2012-08-23
    Description: The O antigen is an essential component of the lipopolysaccharides on the surface of Gram-negative bacteria and its variation provides a major basis for serotyping schemes. The Escherichia coli O-antigen form O180 was first designated in 2004, and O180 strains were found to contain virulence factors and cause diarrhea. Different O-antigen forms are almost entirely due to genetic variations in the O-antigen gene clusters. In this study, the chemical structure and gene cluster of E. coli O180 O antigen were investigated. A tetrasaccharide repeating unit with the following structure: -〉4)-β- d -Man p NAc3NAcA-(1 -〉 2)-α- l -Rha p I -(1 -〉 3)-β- l -Rha p II -(1 -〉 4)-α- d -Glc p NAc-(1-〉was identified in the E. coli O180 O antigen, including the residue d -Man p NAc3NAcA (2,3–diacetamido-2,3-dideoxy- d -mannopyranuronic acid) that had not been hitherto identified in E. coli . Genes in the O-antigen gene cluster were assigned functions based on their similarities with those from available databases, and five genes involved in the synthesis of UDP- d -Man p NAc3NAcA (the nucleotide-activated form of d -Man p NAc3NAcA) were identified. The gnaA gene, encoding the enzyme involved in the initial step of the UDP- d -Man p NAc3NAcA biosynthetic pathway, was cloned and the enzyme product was expressed, purified and assayed for its activity. GnaA was characterized using capillary electrophoresis and electrospray ionization mass spectrometry and identified as a UDP-GlcNAc 6-dehydrogenase. The kinetic and physicochemical parameters of GnaA also were determined.
    Print ISSN: 0959-6658
    Electronic ISSN: 1460-2423
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2012-08-23
    Description: Heparan sulfate (HS) 6- O -endosulfatase (Sulf) catalyzes the hydrolysis of 6- O -sulfo groups from HS polysaccharides. The resultant HS has reduced sulfation levels and displays altered biological activities. The Sulfs have been associated with several cancers and developmental problems and could function as a tool for editing specific HS structures. Here, we characterize the substrate specificity of human Sulf-2 using site-specifically radiolabeled synthetic polysaccharides. The enzyme was expressed and harvested from the conditioned medium of Chinese hamster ovary cells transfected with Sulf-2 expression plasmids. The uniquely [ 35 S]sulfated polysaccharides were prepared using purified recombinant HS biosynthetic enzymes. We found that Sulf-2 is particularly effective in removing the 6- O -sulfo group residing in the trisulfated disaccharide repeating unit comprising 2- O -sulfated uronic acid and N -sulfated 6- O -sulfo glucosamine, but can also hydrolyze sulfo groups from N - and 6- O -sulfated disaccharides. In addition, we found that Sulf-2 treatment significantly decreases HS's ability to bind to platelet factor 4 (PF4), a chemokine, while binding to antithrombin is maintained. Because HS–PF4 complexes are the initiating cause of heparin-induced thrombocytopenia, this finding provides a promising strategy for developing heparin therapies with reduced side effects. Further understanding of Sulf-2 activity will help elucidate HS structure–function relationships and provide a valuable tool in tailoring HS-based anticoagulant drugs.
    Print ISSN: 0959-6658
    Electronic ISSN: 1460-2423
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2012-07-05
    Description: Reactive oxygen species (ROS) produced by plant NADPH oxidases (NOXes) are important in plant innate immunity. The Oryza sativa respiratory burst oxidase homologue B ( OsRbohB ) gene encodes a NOX the regulatory mechanisms of which are largely unknown. Here, we used a heterologous expression system to demonstrate that OsRbohB shows ROS-producing activity. Treatment with ionomycin, a Ca 2+ ionophore, and calyculin A, a protein phosphatase inhibitor, activated ROS-producing activity; it was thus OsRbohB activated by both Ca 2+ and protein phosphorylation. Mutation analyses revealed that not only the first EF-hand motif but also the upstream amino-terminal region were necessary for Ca 2+ -dependent activation, while these regions are not required for phosphorylation-induced ROS production.
    Print ISSN: 0021-924X
    Electronic ISSN: 1756-2651
    Topics: Biology , Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2012-07-05
    Description: RASSF6, a member of RASSF tumour suppressor proteins, binds to mammalian Ste20-like kinases (MST1/2), core kinases of the proapoptotic Hippo pathway and cooperates with the Hippo pathway to induce apoptosis. We originally identified RASSF6 as a putative interactor of membrane-associated guanylate kinase inverted (MAGI)-1 by the yeast two-hybrid screening. We used human kidney cDNA library for the screening. MAGI-1 is abundantly expressed in kidney and is a core component of the slit diaphragm. These findings suggest that RASSF6 is expressed in kidney. However, the function of RASSF6 in kidney is not yet studied. We performed this study to confirm the interaction of RASSF6 with MAGI-1, to analyse the expression of RASSF6 in kidney and to gain insight into the function of RASSF6 in kidney. RASSF6 binds to PDZ domains of MAGI-1 through its C-terminal PDZ-binding motif and is coimmunoprecipitated with MAGI-1 from rat liver. RASSF6 is localized in normal kidney glomerulus but disappears when the slit diaphragm is disrupted in nephrotic kidney. RASSF6 is also localized on apical membranes in renal proximal tubular epithelial cells. We demonstrated that RASSF6 as well as the Hippo pathway are involved in the sorbitol-induced apoptosis in immortalized human proximal renal tubular epithelial HK-2 cells.
    Print ISSN: 0021-924X
    Electronic ISSN: 1756-2651
    Topics: Biology , Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2012-07-05
    Description: Three members of p53 family, p53, p63 and p73, can transactivate their specific target genes through a p53 consensus sequence-binding motif which consists with direct repeats of PuPuPuC(T/A)(T/A)GPyPyPy as a whole-site of p53-binding site. p63, an epidermal stem cells marker, can regulate epidermal development and differentiation, but p53 has no similar biological activity. One isoform of p63, TAp63α, can active an epidermal basal cell marker, keratin 14. However, the p53-binding site does not exist as a whole-site in the K14 promoter region, although it contains three putative p53 half-binding sites at –269 to –1 of the K14 promoter. Two of three putative half-sites of the p53-binding site can be bound by p63α by electrophoresis mobility shift assay and DNA affinity purification assay. Only mutation of the p53 half-binding site at –140 to –131, the TAp63α induced K14 promoter activity can be abolished. This half-site was specifically activated by p63, but not by p53. Once we extend this p53 half-site to a whole p53-binding site in K14 promoter, both p53 and p63 expression vectors can activate its activity. Therefore, we propose that the different length of p53-binding site would determinate the gene regulated by different p53 family proteins.
    Print ISSN: 0021-924X
    Electronic ISSN: 1756-2651
    Topics: Biology , Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    facet.materialart.
    Unknown
    Oxford University Press
    Publication Date: 2012-07-05
    Description: Autophagy has long been thought of as a bulk degradation system in which cytoplasmic components are sequestered by double-membrane structures called autophagosomes, and the contents are then degraded after autophagosomes fuse with lysosomes. Genetic experiments in yeast identified a set of Autophagy-related (ATG) genes that are essential for autophagy. We have since elucidated many of the molecular underpinnings of autophagy and the physiologic roles of these processes in various systems. This review summarizes the physiologic roles of autophagy with a particular focus on liver autophagy based on analyses of knockout mice lacking Atg genes.
    Print ISSN: 0021-924X
    Electronic ISSN: 1756-2651
    Topics: Biology , Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2012-07-05
    Description: Maintenance of undifferentiated states of pluripotent embryonic stem cells is regulated by a complex network of transcription factors and signaling pathways. Recent reports revealed that developmental pluripotency-associated 2 (Dppa2), which regulates chromatin structures, plays important roles in the maintenance of pluripotency and proliferation of embryonic stem cells. Interestingly, developmental pluripotency-associated 2 is involved not only in the normal development of lung but also in the pathogenesis of non-small cell lung cancers. These results suggest that an epigenetic regulator of pluripotent stem cells plays important roles in normal development and tumorigenesis.
    Print ISSN: 0021-924X
    Electronic ISSN: 1756-2651
    Topics: Biology , Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2012-07-05
    Description: Since pyrimidine motif triplex DNA is unstable at physiological neutral pH, triplex stabilization at physiological neutral pH is important for improvement of its potential to be applied to various methods in vivo , such as repression of gene expression, mapping of genomic DNA and gene-targeted mutagenesis. For this purpose, we studied the thermodynamic and kinetic effects of a chemical modification, 2'- O ,4'- C -ethylene bridged nucleic acid (ENA) modification of triplex-forming oligonucleotide (TFO), on pyrimidine motif triplex formation at physiological neutral pH. Thermodynamic investigations indicated that the modification achieved more than 10-fold increase in the binding constant of the triplex formation. The increased number of the modification in TFO enhanced the increased magnitude of the binding constant. On the basis of the obtained thermodynamic parameters, we suggested that the remarkably increased binding constant by the modification may result from the increased stiffness of TFO in the unbound state. Kinetic studies showed that the considerably decreased dissociation rate constant resulted in the observed increased binding constant by the modification. We conclude that ENA modification of TFO could be a useful chemical modification to promote the triplex formation under physiological neutral condition, and may advance various triplex formation-based methods in vivo.
    Print ISSN: 0021-924X
    Electronic ISSN: 1756-2651
    Topics: Biology , Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...