ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (8,248)
  • Oxford University Press  (8,248)
  • Glycobiology  (742)
  • Mutagenesis  (432)
  • 2589
  • 3644
  • 1
    Publication Date: 2015-08-20
    Description: It has been hypothesised that positive associations between age and levels of oxidative stress-generated damage to DNA may be related to an age-dependent decline in DNA repair activity. The objective of this study was to investigate the association between age and repair activity of oxidatively damaged DNA in peripheral blood mononuclear cells (PBMCs). We isolated PBMCs from subjects aged 18–83 years, as part of a health survey of the Danish population that focussed on lifestyle factors. The level of DNA repair activity was measured as incisions on potassium bromate-damaged DNA by the comet assay. There was an inverse association between age and DNA repair activity with a 0.65% decline in activity per year from age 18 to 83 (95% confidence interval: 0.16–1.14% per year). Univariate regression analysis also indicated inverse associations between DNA repair activity and waist-hip ratio ( P 〈 0.05) and plasma concentrations of glycosylated hemoglobin ( P = 0.07). However, multivariate regression analysis only showed an inverse association between age and DNA repair activity ( P 〈 0.05), indicating that the decline in repair activity was not mediated by metabolic risk factors. In summary, the results show an inverse association between age and DNA repair activity of oxidatively damaged DNA.
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-08-20
    Description: Exposure to traffic-related particulate matter (PM) has been associated with increased risk of lung disease, cancer and cardiovascular disease especially in elderly and overweight subjects. The proposed mechanisms involve intracellular production of reactive oxygen species (ROS), inflammation and oxidation-induced DNA damage studied mainly in young normal-weight subjects. We performed a controlled cross-over, randomised, single-blinded, repeated-measure study where 60 healthy subjects (25 males and 35 females) with age 55–83 years and body mass index above 25kg/m 2 were exposed for 5h to either particle-filtered or sham-filtered air from a busy street with number of concentrations and PM 2.5 levels of 1800/cm 3 versus 23 000/cm 3 and 3 µg/m 3 versus 24 µg/m 3 , respectively. Peripheral blood mononuclear cells (PBMCs) were collected and assayed for production of ROS with and without ex vivo exposure to nanosized carbon black as well as expression of genes related to inflammation ( chemokine (C-C motif) ligand 2 , interleukin-8 and tumour necrosis factor ), oxidative stress response ( heme oxygenase (decycling)-1 ) and DNA repair ( oxoguanine DNA glycosylase ). DNA strand breaks and oxidised purines were assayed by the alkaline comet assay. No statistically significant differences were found for any biomarker immediately after exposure to PM from urban street air although strand breaks and oxidised purines combined were significantly associated with the particle number concentration during exposure. In conclusion, 5h of controlled exposure to PM from urban traffic did not change the gene expression related to inflammation, oxidative stress or DNA repair, ROS production or oxidatively damaged DNA in PBMCs from elderly overweight human subjects.
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-08-20
    Description: Ionising radiation causes free radical–mediated damage in cellular DNA. This damage is manifested as chromosomal aberrations and micronuclei (MN) in proliferating cells. Sesamol, present in sesame seeds, has the potential to scavenge free radicals; therefore, it can reduce radiation-induced cytogenetic damage in cells. The aim of this study was to investigate the radioprotective potential of sesamol in bone marrow cells of mice and related haematopoietic system against radiation-induced genotoxicity. A comparative study with melatonin was designed for assessing the radioprotective potential of sesamol. C57BL/6 mice were administered intraperitoneally with either sesamol or melatonin (10 and 20mg/kg body weight) 30min prior to 2-Gy whole-body irradiation (WBI) and sacrificed after 24h. Total chromosomal aberrations (TCA), MN and cell cycle analyses were performed using bone marrow cells. The comet assay was performed on bone marrow cells, splenocytes and lymphocytes. Blood was drawn to study haematological parameters. Prophylactic doses of sesamol (10 and 20mg/kg) in irradiated mice reduced TCA and micronucleated polychromatic erythrocyte frequency in bone marrow cells by 57% and 50%, respectively, in comparison with radiation-only groups. Sesamol-reduced radiation-induced apoptosis and facilitated cell proliferation. In the comet assay, sesamol (20mg/kg) treatment reduced radiation-induced comets (% DNA in tail) compared with radiation only ( P 〈 0.05). Sesamol also increased granulocyte populations in peripheral blood similar to melatonin. Overall, the radioprotective efficacy of sesamol was found to be similar to that of melatonin. Sesamol treatment also showed recovery of relative spleen weight at 24h of WBI. The results strongly suggest the radioprotective efficacy of sesamol in the haematopoietic system of mice.
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-07-30
    Description: Sialic acid acetyl esterase (SIAE) removes acetyl moieties from the hydroxyl groups in position 9 and 4 of sialic acid. Recently, a dispute has been opened on its association to autoimmunity. In order to get new insights on human SIAE biology and to clarify its seemingly contradictory molecular properties, we combined in silico characterization, phylogenetic analysis and homology modeling with cellular studies in COS7 cells. Genomic and phylogenetic analysis revealed that in most tissues only the "long" isoform, originally referred to lysosomal sialic acid esterase, is detected. Using the homology modeling approach, we predicted a model of SIAE 3D structure, which fulfills the topological features of SGNH-hydrolase family. In addition, the model and site-directed mutagenesis experiments allowed the definition of the residues involved in catalysis. SIAE transient expression revealed that the protein is glycosylated and is active in vitro as an esterase with a pH optimum corresponding to 8.4–8.5. Moreover, glycosylation influences the biological activity of the enzyme and is essential for release of SIAE into the culture medium. According to these findings, co-localization experiments demonstrated the presence of SIAE in membranous structures corresponding to endoplasmic reticulum and Golgi complex. Thus, at least in COS7 cells, SIAE behaves as a typical secreted enzyme, subjected to glycosylation and located along the classical secretory route or in the extracellular space. In these environments, the enzyme could act on 9- O -acetylated sialic acid residues, contributing to the fine-tuning of the various functions played by this acidic sugar.
    Print ISSN: 0959-6658
    Electronic ISSN: 1460-2423
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-07-30
    Description: Vaccination against the ubiquitous parasite Toxoplasma gondii would provide the most efficient prevention against toxoplasmosis-related congenital, brain and eye diseases in humans. We investigated the immune response elicited by pathogen-specific glycosylphosphatidylinositol (GPI) glycoconjugates using carbohydrate microarrays in a BALB/c mouse model. We further examined the protective properties of the glycoconjugates in a lethal challenge model using the virulent T. gondii RH strain. Upon immunization, mice raised antibodies that bind to the respective GPIs on carbohydrate microarrays, but were mainly directed against an unspecific GPI epitope including the linker. The observed immune response, though robust, was unable to provide protection in mice when challenged with a lethal dose of viable tachyzoites. We demonstrate that anti-GPI antibodies raised against the here described semi-synthetic glycoconjugates do not confer protective immunity against T. gondii in BALB/c mice.
    Print ISSN: 0959-6658
    Electronic ISSN: 1460-2423
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-07-30
    Description: Carbohydrate antigens are valuable as components of vaccines for bacterial infectious agents and human immunodeficiency virus (HIV), and for generating immunotherapeutics against cancer. The crystal structures of anti-carbohydrate antibodies in complex with antigen reveal the key features of antigen recognition and provide information that can guide the design of vaccines, particularly synthetic ones. This review summarizes structural features of anti-carbohydrate antibodies to over 20 antigens, based on six categories of glyco-antigen: (i) the glycan shield of HIV glycoproteins; (ii) tumor epitopes; (iii) glycolipids and blood group A antigen; (iv) internal epitopes of bacterial lipopolysaccharides; (v) terminal epitopes on polysaccharides and oligosaccharides, including a group of antibodies to Kdo-containing Chlamydia epitopes; and (vi) linear homopolysaccharides.
    Print ISSN: 0959-6658
    Electronic ISSN: 1460-2423
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-07-30
    Description: Sialic acids (SAs) are widely expressed on immune cells and their levels and linkages named as sialylation status vary upon cellular environment changes related to both physiological and pathological processes. In this study, we performed a global profiling of the sialylation status of macrophages and their release of SAs in the cell culture medium by using flow cytometry, confocal microscopy and liquid chromatography tandem mass spectrometry (LC-MS/MS). Both flow cytometry and confocal microscopy results showed that cell surface α-2,3-linked SAs were predominant in the normal culture condition and changed slightly upon treatment with atorvastatin for 24 h, whereas α-2,6-linked SAs were negligible in the normal culture condition but significantly increased after treatment. Meanwhile, the amount of total cellular SAs increased about three times (from 369 ± 29 to 1080 ± 50 ng/mL) upon treatment as determined by the LC-MS/MS method. On the other hand, there was no significant change for secreted free SAs and conjugated SAs in the medium. These results indicated that the cell surface α-2,6 sialylation status of macrophages changes distinctly upon atorvastatin stimulation, which may reflect on the biological functions of the cells.
    Print ISSN: 0959-6658
    Electronic ISSN: 1460-2423
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-06-04
    Description: Prion diseases are transmissible neurodegenerative disorders associated with the conversion of the cellular prion protein, PrP C , to a misfolded isoform called PrP Sc . Although PrP Sc is a necessary component of the infectious prion, additional factors, or cofactors, have been shown to contribute to the efficient formation of transmissible PrP Sc . Glycosaminoglycans (GAGs) are attractive cofactor candidates as they can be found associated with PrP Sc deposits, have been shown to enhance PrP misfolding in vitro, are found in the same cellular compartments as PrP C and have been shown to be disease modifying in vivo. Here we investigated the effects of the sulfated GAGs, heparin and heparan sulfate (HS), on disease associated misfolding of full-length recombinant PrP. More specifically, the degree of sulfation of these molecules was investigated for its role in modulating the disease-associated characteristics of PrP. Both heparin and HS induced a β-sheet conformation in recombinant PrP that was associated with the formation of aggregated species; however, the biochemical properties of the aggregates formed in the presence of heparin or HS varied in solubility and protease resistance. Furthermore, these properties could be modified by changes in GAG sulfation, indicating that subtle changes in the properties of prion disease cofactors could initiate disease associated misfolding.
    Print ISSN: 0959-6658
    Electronic ISSN: 1460-2423
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-06-04
    Description: The display of cell-surface glycolipids and glycoproteins is essential for the motility, adhesion and colonization of pathogenic bacteria such as Campylobacter jejuni . Recently, the cell-surface display of C. jejuni glycoconjugates has been the focus of considerable attention; however, our understanding of the roles that glycosylation plays in bacteria still pales in comparison with our understanding of mammalian glycosylation. One of the reasons for this is that carbohydrate metabolic labeling, a powerful tool for studying mammalian glycans, is difficult to establish in bacterial systems and has a significantly more limited scope. Herein, we report the development of an alternative strategy that can be used to study bacterial cell-surface glycoconjugates. Galactose oxidase (GalO) is used to generate an aldehyde at C-6 of terminal GalNAc residues of C. jejuni glycans. This newly generated aldehyde can be conjugated with aminooxy-functionalized purification tags or fluorophores. The label can be targeted towards specific glycoconjugates using C. jejuni mutant strains with N -glycan or lipo-oligosaccharides (LOS) assembly defects. GalO-catalyzed labeling of cell-surface glycoproteins with biotin, allowed for the purification and identification of known extracellular N-linked glycoproteins as well as a recently identified O-linked glycan modifying PorA. To expand the scope of the GalO reaction, live-cell fluorescent labeling of C. jejuni was used to compare the levels of surface-exposed LOS to the levels of N-glycosylated, cell-surface proteins. While this study focuses on the GalO-catalyzed labeling of C. jejuni , it can in principle be used to evaluate glycosylation patterns and identify glycoproteins of interest in any bacteria.
    Print ISSN: 0959-6658
    Electronic ISSN: 1460-2423
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-06-04
    Description: Human sialidases (NEUs) catalyze the removal of N -acetyl neuraminic acids from the glycome of the cell and regulate a diverse repertoire of nominal cellular functions, such as cell signaling and adhesion. A greater understanding of their substrate permissivity is of interest in order to discern their physiological functions in disease states and in the design of specific and effective small molecule inhibitors. Towards this, we have synthesized soluble fluorogenic reporters of mammalian sialidase activity bearing unnatural sialic acids commonly incorporated into the cellular glycocalyx via metabolic glycoengineering. We found cell-surface sialidases in Jurkat capable of cleaving unnatural sialic acids with differential activities toward a variety of R groups on neuraminic acid. In addition, we observed modulated structure–activity relationships when cell-surface sialidases were presented glycans with unnatural bulky, hydrophobic or fluorinated moieties incorporated directly via glycoengineering. Our results confirm the importance of cell-surface sialidases in glycoengineering incorporation data. We demonstrate the flexibility of human NEUs toward derivatized sugars and highlight the importance of native glycan presentation to sialidase binding and activity. These results stand to inform not only metabolic glycoengineering efforts but also inhibitor design.
    Print ISSN: 0959-6658
    Electronic ISSN: 1460-2423
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2015-06-04
    Description: A defect in the assembly of the oligosaccharide donor (Dol-PP-GlcNAc 2 Man 9 Glc 3 ) for N-linked glycosylation causes hypoglycosylation of proteins by the oligosaccharyltransferase (OST). Mammalian cells express two OST complexes that have different catalytic subunits (STT3A or STT3B). We monitored glycosylation of proteins in asparagine-linked glycosylation 6 (ALG6) deficient cell lines that assemble Dol-PP-GlcNAc 2 Man 9 as the largest oligosaccharide donor. Based upon pulse labeling experiments, 30–40% of STT3A-dependent glycosylation sites and 20% of STT3B-dependent sites are skipped in ALG6-congenital disorders of glycosylation fibroblasts supporting previous evidence that the STT3B complex has a relaxed preference for the fully assembled oligosaccharide donor. Glycosylation of STT3B-dependent sites was more severely reduced in the ALG6 deficient MI8-5 cell line. Protein immunoblot analysis and RT–PCR revealed that MI8-5 cells express 2-fold lower levels of STT3B than the parental Chinese hamster ovary cells. The combination of reduced expression of STT3B and the lack of the optimal Dol-PP-GlcNAc 2 Man 9 Glc 3 donor synergize to cause very severe hypoglycosylation of proteins in MI8-5 cells. Thus, differences in OST subunit expression can modify the severity of hypoglycosylation displayed by cells with a primary defect in the dolichol oligosaccharide assembly pathway.
    Print ISSN: 0959-6658
    Electronic ISSN: 1460-2423
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2015-06-04
    Description: Xenopus laevis (African clawed frog) has two types of proto-type galectins that are similar to mammalian galectin-1 in amino acid sequence. One type, comprising xgalectin-Ia and -Ib, is regarded as being equivalent to galectin-1, and the other type, comprising xgalectin-Va and -Vb, is expected to be a unique galectin subgroup. The latter is considerably abundant in frog skin; however, its biological function remains unclear. We determined the crystal structures of two proto-type galectins, xgalectin-Ib and -Va. The structures showed that both galectins formed a mammalian galectin-1-like homodimer, and furthermore, xgalectin-Va formed a homotetramer. This tetramer structure has not been reported for other galectins. Gel filtration and other experiments indicated that xgalectin-Va was in a dimer–tetramer equilibrium in solution, and lactose binding enhanced the tetramer formation. The residues involved in the dimer–dimer association were conserved in xgalectin-Va and -Vb, and one of the Xenopus (Silurana) tropicalis proto-type galectins, but not in xgalectin-Ia and -Ib, and other galectin-1-equivalent proteins. Xgalectin-Va preferred Galβ1-3GalNAc and not Galβ1-4GlcNAc, while xgalectin-Ib preferred Galβ1-4GlcNAc as well as human galectin-1. Xgalectin-Va/Vb would have diverged from the galectin-1 group with accompanying acquisition of the higher oligomer formation and altered ligand selectivity.
    Print ISSN: 0959-6658
    Electronic ISSN: 1460-2423
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2015-06-04
    Description: Legionaminic acids (Leg) are bacterial analogs of neuraminic acid, with the same stereochemistry but different substituents at C5, C7 and C9. Hence they may be incorporated into useful analogs of sialoglycoconjugates, and we previously reported two sialyltransferases that could utilize cytidine monophosphate (CMP)-Leg5Ac7Ac for preparation of Leg glycoconjugates, which were resistant to sialidases [Watson DC, Leclerc S, Wakarchuk WW, Young NM. 2011. Enzymatic synthesis and properties of glycoconjugates with legionaminic acid as a replacement for neuraminic acid. Glycobiology . 21:99–108.]. These were the porcine ST3Gal1 and Pasteurella multocida sialyltransferases. We now report two additional sialyltransferases with superior Leg-transferase properties to the previous two. These are (i) a truncated form of a Photobacterium α2,6-sialyltransferase with an Ala-Met mutation in its active site, and (ii) an α2,3-sialyltransferase from Neisseria meningitidis MC58 with a higher transferase activity than the P. multocida enzyme, with either CMP-Neu5Ac or CMP-Leg5Ac7Ac as the donor. These enzymes will enable the production of useful Leg5Ac7Ac glycoconjugate derivatives with either α2,6 or α2,3 linkages and unique biological properties.
    Print ISSN: 0959-6658
    Electronic ISSN: 1460-2423
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2015-06-04
    Description: The rare N-unsubstituted glucosamine ( $$\hbox{ GlcN }{{\hbox{ H }}_{3}}^{+}$$ ) residues in heparan sulfate (HS) have important biological and pathophysiological roles. Because of their low natural abundance, the use of chemically generated, structurally defined, N-unsubstituted heparin/HS oligosaccharides can greatly contribute to the investigation of their natural role in HS. However, the sequencing of mixtures of chemically generated oligosaccharides presents major challenges due to the difficulties in separating isomers and the available detection methods. In this study, we developed and validated a simple and sensitive method for the sequence analysis of N-unsubstituted heparin/HS oligosaccharides. This protocol involves pH 4 nitrous acid (HNO 2 ) degradation, size-exclusion HPLC and ion-pair reversed-phase liquid chromatography-ion trap/time-of-flight mass spectrometry (IPRP-LC-ITTOF MS). We unexpectedly found that absorbance at 232 nm (normally used for specific detection of C4–C5 unsaturated oligosaccharides) was, in most cases, still sufficiently sensitive to also simultaneously detect saturated oligosaccharides during HPLC, thus simplifying the positional analysis of $$\hbox{ GlcN }{{\hbox{ H }}_{3}}^{+}$$ residues. The IPRP-LC-ITTOF MS system can supply further structural information leading to full sequence determination of the original oligosaccharide. This new methodology has been used to separate and sequence a variety of chemically generated, N-unsubstituted dp6 species containing between 1 and 3 $$\hbox{ GlcN }{{\hbox{ H }}_{3}}^{+}$$ residues per oligosaccharide in different positional combinations. This strategy offers possibilities for the sequencing of natural N-unsubstituted oligosaccharides from HS and should also be applicable, with minor modification, for sequencing at N-sulfated residues using alternative pH 1.5 HNO 2 scission.
    Print ISSN: 0959-6658
    Electronic ISSN: 1460-2423
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2015-06-04
    Description: A major aspect of carbohydrate-dependent galectin functionality is their cross-linking capacity. Using a cell surface as biorelevant platform for galectin binding and a panel of 40 glycans as sensor part of a fluorescent polyacrylamide neoglycopolymer for profiling galectin reactivity, properties of related proteins can be comparatively analyzed. The group of the chicken galectins (CGs) is an especially suited system toward this end due to its relatively small size, compared with mammalian galectins. The experiments reveal particularly strong reactivity toward N -acetyllactosamine repeats for all tested CGs and shared reactivity of CG-1A and CG-2 to histo-blood group ABH determinants. In cross-species comparison, CG-1B's properties closely resembled those of human galectin-1, as was the case for the galectin-2 (but not galectin-3) ortholog pair. Although binding-site architectures are rather similar, reactivity patterns can well differ.
    Print ISSN: 0959-6658
    Electronic ISSN: 1460-2423
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    facet.materialart.
    Unknown
    Oxford University Press
    Publication Date: 2015-07-30
    Print ISSN: 0959-6658
    Electronic ISSN: 1460-2423
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2015-07-30
    Description: Glycosaminoglycans (GAG) play a ubiquitous role in tissues and cells. In eukaryotic cells, heparan sulfate (HS) is initially degraded by an endo-β-glucuronidase called heparanase-1 (HPSE). HS oligosaccharides generated by the action of HPSE intensify the activity of signaling molecules, activating inflammatory response, tumor metastasis, and angiogenesis. The aim of the present study was to understand if sulfated GAG could modulate HPSE, since the mechanisms that regulate HPSE have not been completely defined. CHO-K1 cells were treated with 4-methylumbelliferone (4-MU) and sodium chlorate, to promote total inhibition of GAG synthesis, and reduce the sulfation pattern, respectively. The GAG profile of the wild CHO-K1 cells and CHO-745, deficient in xylosyltransferase, was determined after [ 35 S]-sulfate labeling. HPSE expression was determined via real-time quantitative polymerase chain reaction. Total ablation of GAG with 4-MU in CHO-K1 inhibited HPSE expression, while the lack of sulfation had no effect. Interestingly, 4-MU had no effect in CHO-745 cells for these assays. In addition, a different enzyme location was observed in CHO-K1 wild-type cells, which presents HPSE mainly in the extracellular matrix, in comparison with the CHO-745 mutant cells, which is found in the cytoplasm. In view of our results, we can conclude that GAG are essential modulators of HPSE expression and location. Therefore, GAG profile could impact cell behavior mediated by the regulation of HPSE.
    Print ISSN: 0959-6658
    Electronic ISSN: 1460-2423
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2015-08-28
    Description: Glycomics may assist in uncovering the structure–function relationships of protein glycosylation and identify glycoprotein markers in colorectal cancer (CRC) research. Herein, we performed label-free quantitative glycomics on a carbon-liquid chromatography–tandem mass spectrometry-based analytical platform to accurately profile the N-glycosylation changes associated with CRC malignancy. N -Glycome profiling was performed on isolated membrane proteomes of paired tumorigenic and adjacent non-tumorigenic colon tissues from a cohort of five males (62.6 ± 13.1 y.o.) suffering from colorectal adenocarcinoma. The CRC tissues were typed according to their epidermal growth factor receptor (EGFR) status by western blotting and immunohistochemistry. Detailed N -glycan characterization and relative quantitation identified an extensive structural heterogeneity with a total of 91 N -glycans. CRC-specific N-glycosylation phenotypes were observed including an overrepresentation of high mannose, hybrid and paucimannosidic type N -glycans and an under-representation of complex N -glycans ( P 〈 0.05). Sialylation, in particular α2,6-sialylation, was significantly higher in CRC tumors relative to non-tumorigenic tissues, whereas α2,3-sialylation was down-regulated ( P 〈 0.05). CRC stage-specific N-glycosylation was detected by high α2,3-sialylation and low bisecting β1,4-GlcNAcylation and Lewis-type fucosylation in mid-late relative to early stage CRC. Interestingly, a novel link between the EGFR status and the N-glycosylation was identified using hierarchical clustering of the N -glycome profiles. EGFR-specific N -glycan signatures included high bisecting β1,4-GlcNAcylation and low α2,3-sialylation (both P 〈 0.05) relative to EGFR-negative CRC tissues. This is the first study to correlate CRC stage and EGFR status with specific N -glycan features, thus advancing our understanding of the mechanisms causing the biomolecular deregulation associated with CRC.
    Print ISSN: 0959-6658
    Electronic ISSN: 1460-2423
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2015-08-28
    Description: Fucosylated chondroitin sulfate (FCS) is a glycosaminoglycan found in sea cucumbers. It has a backbone like that of mammalian chondroitin sulfate (4-β- d -GlcA-1-〉3-β- d -GalNAc-1) n but substituted at the 3rd position of the β- d -glururonic acid residues with α-fucose branches. The structure of these branches varies among FCSs extracted from different species of sea cucumbers, as revealed by solution NMR spectroscopy. Some species ( Isostichopus badionotus and Patalus mollis ) contain branches formed by single α-fucose residues but with variable sulfation patterns (2,4-, 3,4- and 4-sulfation). FCS from Ludwigothurea grisea is distinguished because it contains preponderant branches formed by disaccharide units containing non-sulfated and 3-sulfated α-fucose units at the reducing and non-reducing ends, respectively. Despite the structural variability on their α-fucose branches, these FCSs have similar anticoagulant action on assays using purified reagents. They have serpin-dependent and serpin-independent effects. Pharmacological assays using experimental animals showed that the three types of FCSs have similar antithrombotic effect and bleeding tendency. They also activate factor XII on the same range of concentration. Based on these observations, we proposed that only few sulfated α-fucose branches along the FCS chain are enough to assure the binding of this glycosaminoglycan to proteins of the coagulation system. Substitution with additional sulfated α-fucose does not increase further the activity. Overall, the use of FCSs with marked variability on their branches of α-fucose allowed us to establish correlations between structures vs biological effects of these glycosaminoglycans on a more refined basis. It opens new avenues for therapeutic intervention using FCSs.
    Print ISSN: 0959-6658
    Electronic ISSN: 1460-2423
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2015-08-28
    Description: Enzymes that affect glycoproteins of the human immune system, and thereby modulate defense responses, are abundant among bacterial pathogens. Two endoglycosidases from the human pathogen Streptococcus pyogenes , EndoS and EndoS2, have recently been shown to hydrolyze N-linked glycans of human immunoglobulin G. However, detailed characterization and comparison of the hydrolyzing activities have not been performed. In the present study, we set out to characterize the enzymes by comparing the activities of EndoS and EndoS2 on a selection of therapeutic monoclonal antibodies (mAbs), cetuximab, adalimumab, panitumumab and denosumab. By analyzing the glycans hydrolyzed by EndoS and EndoS2 from the antibodies using matrix-assisted laser desorption ionization time of flight, we found that both the enzymes cleaved complex glycans and that EndoS2 hydrolyzed hybrid and oligomannose structures to a greater extent compared with EndoS. A comparison of ultra-high-performance liquid chromatography (LC) profiles of the glycan pool of cetuximab hydrolyzed with EndoS and EndoS2 showed that EndoS2 hydrolyzed hybrid and oligomannose glycans, whereas these peaks were missing in the EndoS chromatogram. We utilized this difference in glycoform selectivity, in combination with the IdeS protease, and developed a LC separation method to quantify high mannose content in the Fc fragments of the selected mAbs. We conclude that EndoS and EndoS2 hydrolyze different glycoforms from the Fc-glycosylation site on therapeutic mAbs and that this can be used for rapid quantification of high mannose content.
    Print ISSN: 0959-6658
    Electronic ISSN: 1460-2423
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2015-08-28
    Description: Calnexin (CNX), known as a lectin chaperone located in the endoplasmic reticulum (ER), specifically recognizes G 1 M 9 GN 2 -proteins and facilitates their proper folding with the assistance of ERp57 in mammalian cells. However, it has been left unidentified how CNX works in Aspergillus oryzae , which is a filamentous fungus widely exploited in biotechnology. In this study, we found that a protein disulfide isomerase homolog TigA can bind with A. oryzae CNX (AoCNX), which was revealed to specifically recognize monoglucosylated glycans, similarly to CNX derived from other species, and accelerate the folding of G 1 M 9 GN 2 -ribonuclease (RNase) in vitro. For refolding experiments, a homogeneous monoglucosylated high-mannose-type glycoprotein G 1 M 9 GN 2 -RNase was chemoenzymatically synthesized from G 1 M 9 GN-oxazoline and GN-RNase. Denatured G 1 M 9 GN 2 -RNase was refolded with highest efficiency in the presence of both soluble form of AoCNX and TigA. TigA contains two thioredoxin domains with CGHC motif, mutation analysis of which revealed that the one in N-terminal regions is involved in binding to AoCNX, while the other in catalyzing protein refolding. The results suggested that in glycoprotein folding process of A. oryzae , TigA plays a similar role as ERp57 in mammalian cells, as a partner protein of AoCNX.
    Print ISSN: 0959-6658
    Electronic ISSN: 1460-2423
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    facet.materialart.
    Unknown
    Oxford University Press
    Publication Date: 2015-08-28
    Print ISSN: 0959-6658
    Electronic ISSN: 1460-2423
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2015-08-28
    Description: Polysialic acid (polySia) is a linear polymer of sialic acid that modifies neural cell adhesion molecule (NCAM) in the vertebrate brain. PolySia is a large and exclusive molecule that functions as a negative regulator of cell–cell interactions. Recently, we demonstrated that polySia can specifically bind fibroblast growth factor 2 (FGF2) and BDNF; however, the protective effects of polySia on the proteolytic cleavage of these proteins remain unknown, although heparin/heparan sulfate has been shown to impair the cleavage of FGF2 by trypsin. Here, we analyzed the protective effects of polySia on the proteolytic cleavage of FGF2 and proBDNF/BDNF. We found that polySia protected intact FGF2 from tryptic activity via the specific binding of extended polySia chains on NCAM to FGF2. Oligo/polySia also functioned to impair the processing of proBDNF by plasmin via binding of oligo/polySia chains on NCAM. In addition, the polySia structure synthesized by mutated polysialyltransferase, ST8SIA2/STX(SNP7), which was previously identified from a schizophrenia patient, was impaired for these functions compared with polySia produced by normal ST8SIA2. Taken together, these data suggest that the protective effects of polySia toward FGF2 and proBDNF may be involved in the regulation of the concentrations of these neurologically active molecules.
    Print ISSN: 0959-6658
    Electronic ISSN: 1460-2423
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2016-06-23
    Description: The ICH S6(R1) recommendations on safety evaluation of biotherapeutics have led to uncertainty in determining what would constitute a cause for concern that would require genotoxicity testing. A Health and Environmental Sciences Institute’s Genetic Toxicology Technical Committee Workgroup was formed to review the current practice of genotoxicity assessment of peptide/protein-related biotherapeutics. There are a number of properties of peptide/protein-related biotherapeutics that distinguish such products from traditional ‘small molecule’ drugs and need to be taken into consideration when assessing whether genotoxicity testing may be warranted and if so, how to do it appropriately. Case examples were provided by participating companies and decision trees were elaborated to determine whether and when genotoxicity evaluation is needed for peptides containing natural amino acids, non-natural amino acids and other chemical entities and for unconjugated and conjugated proteins. From a scientific point of view, there is no reason for testing peptides containing exclusively natural amino acids irrespective of the manufacturing process. If non-natural amino acids, organic linkers and other non-linker chemical components have already been tested for genotoxicity, there is no need to re-evaluate them when used in different peptide/protein-related biotherapeutics. Unless the peptides have been modified to be able to enter the cells, it is generally more appropriate to evaluate the peptides containing the non-natural amino acids and other non-linker chemical moieties in vivo where the cleavage products can be formed. For linkers, it is important to determine if exposure to reactive forms are likely to occur and from which origin. When the linkers are anticipated to be potential mutagenic impurities they should be evaluated according to ICH M7. If linkers are expected to be catabolic products, it is recommended to test the entire conjugate in vivo , as this would ensure that the relevant ‘free’ linker forms stemming from in vivo catabolism are tested.
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2016-06-23
    Description: Genome sequences that contain tandem repeats of guanine can form stable four-stranded structures known as G-quadruplex, or G4 DNA. While the molecular mechanisms are not fully defined, such guanine-rich loci are prone to mutagenesis and recombination. Various repair pathways function to reduce the potential for genome instability by correcting base damage and replication errors; however, it is not yet fully defined how well these processes function at G4 DNA. One frequent form of base damage occurs from cytidine deamination, resulting in deoxyuracil and UG mismatches. In duplex and single-stranded DNA, uracil bases are recognised and excised by uracil glycosylases. Here, we tested the efficiency of uracil glycosylase activity in vitro on uracil bases located directly adjacent to guanine repeats and G4 DNA. We show that uracil excision by bacterial UDG and human hUNG2 is reduced at uracils positioned directly 5' or 3' of a guanine tetrad. Control reactions using oligonucleotides disrupted for G4 formation or reaction conditions that do not favour G4 formation resulted in full uracil excision activity. Based on these in vitro results, we suggest that folding of guanine-rich DNA into G4 DNA results in a DNA conformation that is resistant to uracil glycosylase-initiated repair and this has the potential to increase the risk of instability at guanine repeats in the genome.
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2016-06-23
    Description: Galectin-4 is a member of the galectin family which consists of 15 galactoside-binding proteins. Previously, galectin-4 has been shown to have a role in cancer progression and metastasis and it is found upregulated in many solid tumours, including colorectal cancer (CRC). Recently, the role in the metastatic process was suggested to be via promoting cancer cells to adhere to blood vascular endothelium. In the present study, the regulatory region of LGALS4 (galectin-4) in seven colon cell lines was investigated with respect to genetic variation that could be linked to expression levels and therefore a tumourigenic effect. Interestingly, qRT-PCR and sequencing results revealed that galectin-4 upregulation is associated with SNPs rs116896264 and rs73933062. By use of luciferase reporter- and pull-down assays, we confirmed the association between the gene upregulation and the two SNPs. Also, using pull-down assay followed by mass spectrometry, we found that the presence rs116896264 and rs73933062 is changing transcription factors binding sites. In order to assess the frequencies of the two SNPs among colon cancer patients and healthy individuals, we genotyped 75 colon cancer patients, 12 patients with adenomatous polyposis and 17 patients with ulcerative colitis and we performed data mining in the 1000 genomes databank. We found the two SNPs co-occuring in 21% of 75 CRC patients, 0 out of 12 patients of adenomatous polyposis, and 6 out of 17 patients (35%) with ulcerative colitis. Both in the patient samples and in the 1000 genomes project, the two SNPs were found to co-occur whenever present (D' = 1).
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2016-06-23
    Description: The dose effect between nucleoplasmic bridges (NPB) and relatively low doses of ionising radiation remains unknown. Accordingly, this study investigated the NPB frequencies in human peripheral blood lymphocytes exposed to low-dose 60 Co -rays. Complex anomalies, including fused nuclei (FUS), horse-shoe nuclei (HS) and circular nuclei (CIR), which possibly originated from multiple NPBs, were also scored. Human peripheral blood samples were collected from three healthy males and irradiated with 0–1 and 0–0.4 Gy 60 Co -rays. A cytokinesis-block micronucleus cytome assay was then conducted to analyse NPB, PFHC (NPB plus three complex nuclear anomalies) and micronucleus (MN) in binucleated cells. All dose–response curves followed the linear model for both NPB frequency and PFHC cell frequency. The dose–response curves between NPB frequency and absorbed dose at 0–1 and 0–0.4 Gy were y = 0.0037 x + 0.0005 ( R 2 = 0.979, P 〈 0.05) and y = 0.0043 x + 0.0004 ( R 2 = 0.941, P 〈 0.05), respectively. The dose–response curves between PFHC cell frequency and absorbed dose at 0–1 and 0–0.4 Gy were y = 0.0044 x + 0.0007 ( R 2 = 0.982, P 〈 0.05) and y = 0.0059 x + 0.0005 ( R 2 = 0.969, P 〈 0.05), respectively. The statistical significance of differences between the irradiated groups (0–0.4 Gy) and background levels of NPB, PFHC and MN were also analysed. The lowest analysable doses of NPB, PFHC and MN were 0.12, 0.08 and 0.08 Gy, respectively. In conclusion, NPBs and PFHC positively correlated with the absorbed radiation at a relatively low dose.
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2016-06-23
    Description: The aim of the study was to investigate how coadministration of resveratrol (RSV) at different time after the start of irradiation influences the frequency of micronuclei (MN) in reticulocytes of bone marrow and peripheral blood, and if the RSV supplementation after termination of irradiation may influence the recovery process of damaged cells. Coadministration of RSV with 1-day delay after 1 Gy irradiation significantly decreased the levels of MN in bone marrow and in peripheral blood, whereas with 1-week delay, only in bone marrow reticulocytes. Above combined treatment did not improve the process of recovery. RSV supplementation with 1-day delay relatively to 0.5 Gy irradiation, significantly decreased the frequencies of MN, especially after coadministration with 28mg/kg bw of RSV. Coadministration of RSV since eighth day did not influence the frequencies of MN compared to irradiated cells. The recovery process in the presence of RSV proceeded faster. Supplementation of RSV following initiation of irradiation is beneficial in case of irradiation with lower doses. RSV should be supplemented as soon as possible. Supplementation of RSV after termination of irradiation significantly speed up the recovery. Current results confirmed the ability of RSV to mitigate the effect of irradiation.
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2016-06-23
    Description: Various naturally occurring stilbene-like compounds that are related to resveratrol (RSV) possess some of the beneficial effects of the parent molecule and provide even further benefits. Therefore, a series of methoxylated analogues of RSV were prepared with the aim of increasing antitumour and proapoptotic activity. In a previous article, we studied two methoxy-derivatives, pterostilbene (PTERO) and trimethoxystilbene (TRIMETHOXY), in which the first was formed by the substitution of two hydroxyl groups with two methoxy groups ( trans -3,5-dimethoxy-4'-hydroxystilbene) and the second was formed by the replacement of all three OH groups with methoxy groups ( trans -3,5,4'-trimethoxystilbene). Both methoxy-derivatives showed stronger antioxidant activity when compared with RSV. In the present article, we focused on the analysis of the ability of RSV and its two methoxylated derivatives to protect proliferating non-tumoural cells from the damage induced by ionising radiation (IR). First we showed that the methoxy derivatives, contrary to their parental compound, are unable to affect topoisomerase enzyme and consequently are not clastogenic per se . Second we showed that both PTERO and TRIMETHOXY more efficiently reduce the chromosome damage induced by IR. Furthermore, TRIMETHOXY, but not PTERO, causes a delay in cell proliferation, particularly in mitosis progression increasing the number of cells in metaphase at the expense of prophases and ana/telophases.
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2016-06-23
    Description: α-, β- and -asarone are naturally occurring phenylpropenes that occur in different plant families, mainly in Aristolochiaceae , Acoraceae and Lauraceae. Plants containing asarones are used as flavouring ingredients in alcoholic beverages (bitters), traditional phytomedicines and the rhizome of e.g. Acorus calamus is used to prepare tea. Although α- and β-asarone show a potential in the treatment of several diseases, previous studies have shown carcinogenicity in rodents (duodenum, liver). However, the mechanism of action remained unclear. Studies on the mutagenicity of propenylic α- and β-asarone are inconsistent and data on carcinogenicity and genotoxicity of allylic -asarone are lacking completely. Thus, the present study determined the mutagenicity of the three asarone isomers using the Ames fluctuation assay with and without exogenous metabolic activation (S9 mix) in the standard Salmonella typhimurium strains TA98 and TA100. A concentration dependent increase in mutagenicity could be verified for α- and β-asarone in strain TA100 in the presence of rat liver homogenate. The side-chain epoxides of α- and β-asarone, major metabolites formed in liver microsomes, caused mutations in TA100, supporting the hypothesis that epoxidation of the side chain plays a key role in mutagenicity of the propenylic alkenylbenzenes. The allylic -asarone, not undergoing detectable side-chain epoxidation in liver microsomes, was supposed to be activated via side-chain hydroxylation and further sulphonation, a typical pathway for other allylic alkenylbenzenes like estragole or methyleugenol. However, neither y-asarone nor 1'-OH--asarone showed any mutagenic effect even in the human SULT-expressing Salmonella strains (TA100-hSULT1A1 and TA100-hSULT1C2), while 1'-OH-methyleugenol used as a positive control was mutagenic under these conditions. These results indicate that the propenylic asarones are genotoxic via metabolic formation of side-chain epoxides while the side-chain hydroxylation/sulphonation pathway is either not operative or does not lead to mutagenicity with the allylic -asarone.
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2016-06-23
    Description: Prior to the downstream development of chemical substances, including pharmaceuticals and cosmetics, their influence on the genetic apparatus has to be tested. Several in vitro and in vivo assays have been developed to test for genotoxicity. In a first tier, a battery of two to three in vitro tests is recommended to cover mutagenicity, clastogenicity and aneugenicity as main endpoints. This regulatory in vitro test battery is known to have a high sensitivity, which is at the expense of the specificity. The high number of false positive in vitro results leads to excessive in vivo follow-up studies. In the case of cosmetics it may even induce the ban of the particular compound since in Europe the use of experimental animals is no longer allowed for cosmetics. In this article, an alternative approach to derisk a misleading positive Ames test is explored. Hereto we first tested the performance of five existing computational tools to predict the potential mutagenicity of a data set of 132 cosmetic compounds with a known genotoxicity profile. Furthermore, we present, as a proof-of-principle, a strategy in which a combination of computational tools and mechanistic information derived from in vitro transcriptomics analyses is used to derisk a misleading positive Ames test result. Our data shows that this strategy may represent a valuable tool in a weight-of-evidence approach to further evaluate a positive outcome in an Ames test.
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2016-06-23
    Description: Pioglitazone (PTZ) is an oral antidiabetic agent whose anti-cancer properties have been described recently. Since PTZ increases the production of reactive oxygen species in mammalian cells, the aim of current study was to evaluate the cytotoxic, mutagenic and recombinogenic effects of PTZ using respectively the in vitro mitotic index assay and the in vitro mammalian cell micronucleus test in human peripheral lymphocytes, and the in vivo homozygotization assay in Aspergillus nidulans , which detects the loss of heterozygosity due to somatic recombination. Although the lowest PTZ concentrations (4–36 μM) did not show any significant rise in the micronucleus production, the higher PTZ concentration (108 μM) produced a statistically higher number of micronuclei than the negative control and significantly altered the cell-proliferation kinetics, demonstrating the mutagenic and antiproliferative effects of PTZ, respectively. The recombinogenic activity of PTZ, demonstrated here for the first time, was observed at the highest tested concentration (400 μM) through the homozygotization index rates significantly different from the negative control. Taken together, our results show that PTZ is genotoxic at a concentration higher than the therapeutic plasma concentration. This PTZ genotoxicity may be a potential benefit to its previously described antitumour activity.
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2016-06-23
    Description: Environmental pollutants are complex mixtures in which metals are ubiquitous. Metal mixtures of arsenic, cadmium and lead are present in the occupational environment and generate health effects such as cardiovascular, renal and cancer diseases. Cell transformation induced by metal mixtures that depend on reactive oxygen species (ROS) generation, cell viability maintenance and avoidance of senescence was previously reported by our group. The aim of the present study was to explore the role of a Obg-like ATPase1 (OLA1) in the cell transformation of BALB/c 3T3 A31-1-1 clonal cells induced by a metal mixture (2 µM NaAsO 2 , 2 µM CdCl 2 and 5 µM Pb(C 2 H 3 O 2 ) 2 . 3H 2 O) through ROS generation. The interest in OLA1 is justified because this protein has been proposed to be a negative regulator of the cellular antioxidant response. Small interfering RNA (siRNA) was used to knockdown OLA1 before the initiation stage of the transformation assay. We evaluated (ROS) and OLA1 protein expression throughout the initiation and promotion stages of transformation. OLA1 knockdown modulated metal mixture-induced cell transformation more strongly when the metal mixture was an initiator stimulus than when it was a promoter. The ability of the metal mixture to initiate cell transformation was diminished by OLA1 knockdown, an effect that depended on intracellular ROS levels. The effect of OLA1 was synergistic with N -Acetyl- l -cysteine (NAC) co-treatment. Oxidative stress-associated transcription factors Egr1 and Smad were also down-regulated by the OLA1 knockdown, contributing to the rescue of metal mixture cell transformation.
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2016-06-23
    Description: G-quadruplexes (G4) are highly stable tetra-stranded DNA secondary structures known to mediate gene regulation and to trigger genomic instability events during replication. G4 structural stability can be affected by DNA methylation and oxidation modifications; thus nutrients such as folate that have the ability to alter these processes could potentially modify the genomic occurrence of G4 elements. Hela cells were cultured in a range of folate concentrations or in the presence or absence of 5-aza-2'-deoxycytidine, a DNA-methyltransferase inhibitor. G4 structures were then quantified by immunofluorescence using an automated quantitative imaging system. G4 frequency in Hela cells and nuclei area mean were increased in 20nM folate medium compared with 2000nM folate, as well as in the presence of 5-aza-2'-deoxycytidine when compared to cells non-exposed to 5-aza-2'-deoxycytidine. These changes were exacerbated when pyridostatin, a G4 stabilising ligand, was added to the culture medium. G4 intensity in Hela cells cultured in deficient folate condition with pyridostatin was highly correlated with DNA damage as measured by H2AX immunofluorescence ( r = 0.71). This study showed for the first time that cellular G4 balance is modifiable by low folate concentrations and that these changes may occur as a consequence of DNA hypomethylation. Although the exact mechanism by which these changes occur is unclear, these findings establish the possibility that nutrients could be utilised as a tool for sustaining genome integrity by modifying G4 frequency at a cellular level.
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2016-06-23
    Description: Metal oxide nanoparticles (NPs), including zinc oxide (ZnO) NPs have shown success for use as vehicles for drug delivery and targeting gene delivery in many diseases like cancer. Current anticancer chemotherapeutics fail to effectively differentiate between cancerous and normal cells. There is an urgent need to develop novel drug delivery system that can better target cancer cells while sparing normal cells and tissues. Particularly, ZnO NPs exhibit a high degree of cancer cell selectivity and induce cell death, oxidative stress, interference with the cell cycle progression and genotoxicity in cancerous cells. In this scenario, effective cellular uptake of NP seems to be crucial, which is shown to be affected by cell cycle progression. In the present study, the cytotoxic potential of ZnO NPs and the effect of different cell cycle phases on the uptake of ZnO NPs were examined in A431 cells. It is shown that the ZnO NPs led to cell death and reactive oxygen species generation and were able to induce cell cycle arrest in S and G 2 /M phase with the higher uptake in G 2 /M phase compared with other phases.
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2016-06-23
    Description: Malondialdehyde (MDA), a biomarker of lipid peroxidation and oxidative stress, is a mutagenic and carcinogenic compound that can react with DNA to form several types of DNA adducts including the deoxyguanosine adduct (M 1 dG). The aim of this cross-sectional study was to evaluate the association between individual dietary and lifestyle habits and M 1 dG levels, measured in peripheral leukocytes in a large representative sample of the general population of Florence City (Italy). Selected anthropometric measurements, detailed information on dietary and lifestyle habits and blood samples were available for 313 adults of the Florence City Sample enrolled in the frame of European Prospective Investigation into Cancer and nutrition (EPIC) study. A multivariate regression analysis adjusted for selected individual characteristics possibly related to M 1 dG levels (sex, age, BMI, smoke, physical activity level, education level, total caloric intake and a Mediterranean dietary score) was performed to estimate the association between these parameters and M 1 dG levels. M 1 dG levels were significantly higher in women ( P = 0.014) and lower in moderately active or active subjects ( P = 0.037).We also found a significant inverse association with the Modified Mediterranean dietary score ( P for trend = 0.049), particularly evident for the highest categories of adherence. Our results indicate that M 1 dG levels can be modulated by selected individual characteristics such as gender, physical activity and a Mediterranean dietary pattern.
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2013-09-08
    Description: O -GlcNAcylation is an inducible, highly dynamic and reversible post-translational modification, mediated by a unique enzyme named O -linked N -acetyl- d -glucosamine ( O -GlcNAc) transferase (OGT). In response to nutrients, O -GlcNAc levels are differentially regulated on many cellular proteins involved in gene expression, translation, immune reactions, protein degradation, protein–protein interaction, apoptosis and signal transduction. In contrast to eukaryotic cells, little is known about the role of O -GlcNAcylation in the viral life cycle. Here, we show that the overexpression of the OGT reduces the replication efficiency of Kaposi's sarcoma-associated herpesvirus (KSHV) in a dose-dependent manner. In order to investigate the global impact of O -GlcNAcylation in the KSHV life cycle, we systematically analyzed the 85 annotated KSHV-encoded open reading frames for O -GlcNAc modification. For this purpose, an immunoprecipitation (IP) strategy with three different approaches was carried out and the O -GlcNAc signal of the identified proteins was properly controlled for specificity. Out of the 85 KSHV-encoded proteins, 18 proteins were found to be direct targets for O -GlcNAcylation. Selected proteins were further confirmed by mass spectrometry for O -GlcNAc modification. Correlation of the functional annotation and the O -GlcNAc status of KSHV proteins showed that the predominant targets were proteins involved in viral DNA synthesis and replication. These results indicate that O -GlcNAcylation plays a major role in the regulation of KSHV propagation.
    Print ISSN: 0959-6658
    Electronic ISSN: 1460-2423
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    facet.materialart.
    Unknown
    Oxford University Press
    Publication Date: 2013-09-08
    Print ISSN: 0959-6658
    Electronic ISSN: 1460-2423
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2013-09-08
    Print ISSN: 0959-6658
    Electronic ISSN: 1460-2423
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2013-09-08
    Description: Galectins are potent adhesion/growth-regulatory effectors with characteristic expression profiles. Understanding the molecular basis of gene regulation in each case requires detailed information on copy number of genes and sequence(s) of their promoter(s). Our report reveals plasticity in this respect between galectins and species. We here describe occurrence of a two-gene constellation for human galectin (Gal)-7 and define current extent of promoter-sequence divergence. Interestingly, cross-species genome analyses also detected single-copy display. Because the regulatory potential will then be different, extrapolations of expression profiles are precluded between respective species pairs. Gal-4 coding in chromosomal vicinity was found to be confined to one gene, whereas copy-number variation also applied to Gal-9. The example of rat Gal-9 teaches the lesson that the presence of multiple bands in Southern blotting despite a single-copy gene constellation is attributable to two pseudogenes. The documented copy-number variability should thus be taken into consideration when studying regulation of galectin genes, in a species and in comparison between species.
    Print ISSN: 0959-6658
    Electronic ISSN: 1460-2423
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2013-09-08
    Description: In studying the molecular basis for the potent immune activity of previously described gamma and delta inulin particles and to assist in production of inulin adjuvants under Good Manufacturing Practice, we identified five new inulin isoforms, bringing the total to seven plus the amorphous form. These isoforms comprise the step-wise inulin developmental series amorphous -〉 alpha-1 (AI-1) -〉 alpha-2 (AI-2) -〉 gamma (GI) -〉 delta (DI) -〉 zeta (ZI) -〉 epsilon (EI) -〉 omega (OI) in which each higher isoform can be made either by precipitating dissolved inulin or by direct conversion from its precursor, both cases using regularly increasing temperatures. At higher temperatures, the shorter inulin polymer chains are released from the particle and so the key difference between isoforms is that each higher isoform comprises longer polymer chains than its precursor. An increasing trend of degree of polymerization is confirmed by end-group analysis using 1 H nuclear magnetic resonance spectroscopy. Inulin isoforms were characterized by the critical temperatures of abrupt phase-shifts (solubilizations or precipitations) in water suspensions. Such (aqueous) "melting" or "freezing" points are diagnostic and occur in strikingly periodic steps reflecting quantal increases in noncovalent bonding strength and increments in average polymer lengths. The (dry) melting points as measured by modulated differential scanning calorimetry similarly increase in regular steps. We conclude that the isoforms differ in repeated increments of a precisely repeating structural element. Each isoform has a different spectrum of biological activities and we show the higher inulin isoforms to be more potent alternative complement pathway activators.
    Print ISSN: 0959-6658
    Electronic ISSN: 1460-2423
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2013-09-08
    Description: The methylotrophic yeast, Pichia pastoris , is an important organism used for the production of therapeutic proteins. Previously, we have reported the glycoengineering of this organism to produce human-like N -linked glycans but up to now no one has addressed engineering the O -linked glycosylation pathway. Typically, O -linked glycans produced by wild-type P. pastoris are linear chains of four to five α-linked mannose residues, which may be capped with β- or phospho-mannose. Previous genetic engineering of the N-linked glycosylation pathway of P. pastoris has eliminated both of these two latter modifications, resulting in O -linked glycans which are linear α-linked mannose structures. Here, we describe a method for the co-expression of an α-1,2-mannosidase, which reduces these glycans to primarily a single O -linked mannose residue. In doing so, we have reduced the potential of these glycans to interact with carbohydrate-binding proteins, such as dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin. Furthermore, the introduction of the enzyme protein- O -linked-mannose β-1,2- N -acetylglucosaminyltransferase 1, resulted in the capping of the single O -linked mannose residues with N -acetylglucosamine. Subsequently, this glycoform was extended into human-like sialylated glycans, similar in structure to α-dystroglycan-type glycoforms. As such, this represents the first example of sialylated O -linked glycans being produced in yeast and extends the utility of the P. pastoris production platform beyond N -linked glycosylated biotherapeutics to include molecules possessing O -linked glycans.
    Print ISSN: 0959-6658
    Electronic ISSN: 1460-2423
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    facet.materialart.
    Unknown
    Oxford University Press
    Publication Date: 2013-09-08
    Print ISSN: 0959-6658
    Electronic ISSN: 1460-2423
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2013-09-08
    Description: At weaning, the intestinal mucosa surface glycans change from predominantly sialylated to fucosylated. Intestinal adaptation from milk to solid food is regulated by intrinsic and extrinsic factors. The contribution by glucocorticoid, an intrinsic factor, and colonization by microbiota, an extrinsic factor, was measured as the induction of α1,2/3-fucosyltransferase and sucrase-isomaltase (SI) activity and gene expression in conventionally raised, germ-free, and bacteria-depleted mice. In conventionally raised mice, cortisone acetate (CA) precociously accelerated SI gene expression up to 3 weeks and fut2 to 4 weeks of age. In germ-free mice, CA treatment induces only SI expression but not fucosyltransferase. In post-weaning bacteria-deficient (germ-free and bacteria-depleted) mice, fut2 expression remains at low suckling levels. In microbiota deficient mice, intestinal fut2 (but not fut1 , fut4 or fut7 ) was induced only by adult microbiota, but not immature microbiota or CA. Fut2 induction could also be restored by colonization by Bacteroides fragilis , but not by a B. fragilis mutant unable to utilize fucose. Restoration of fut2 expression (by either microbiota or B. fragilis ) in bacteria-depleted mice is necessary for recovery from dextran sulfate sodium-induced mucosal injury. Thus, glucocorticoids and microbes regulate distinct aspects of gut ontogeny: CA precociously accelerates SI expression and, only in colonized mice, fut2 early expression. The adult microbiota is required for the fut2 induction responsible for the highly fucosylated adult gut phenotype and is necessary for recovery from intestinal injury. Fut2 -dependent recovery from inflammation may explain the high incidence of inflammatory disease (Crohn's and necrotizing enterocolitis) in populations with mutant FUT2 polymorphic alleles.
    Print ISSN: 0959-6658
    Electronic ISSN: 1460-2423
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2013-09-08
    Description: Selectins and their carbohydrate ligands mediate the homing of hematopoietic stem/progenitor cells (HSPCs) to the bone marrow. We have previously shown that ex vivo fucosylation of selectin ligands on HSPCs by α1,3 fucosyltransferase VI (FUT6) leads to improved human cord blood (CB)-HSPC engraftment in non-obese diabetic (NOD)/severe combined immune deficient (SCID) mice. In the present study, we determined whether surface fucosylation with α1,3 fucosyltransferase VII (FUT7), which is primarily expressed by hematopoietic cells, improves the function of selectin ligands on CB-HSPCs in comparison with FUT6. A saturating amount of either FUT6 or FUT7, which generates comparable levels of expression of fucosylated epitopes on CB CD34 + cells, was used for these experiments. In vitro, FUT7-treated CB CD34 + cells exhibited greater binding to P- or E-selectin than that of FUT6-treated CB CD34 + cells under static or physiological flow conditions. In vivo, FUT7 treatment, like FUT6, improved the early engraftment of CB CD34 + cells in the bone marrow of sublethally irradiated NOD/SCID interleukin (IL)-2R null (NSG) mice. FUT7 also exhibited marginally—yet statistically significant—increased engraftment at 4 and 6 weeks after transplantation. In addition, FUT7-treated CB CD34 + cells exhibited increased homing to the bone marrow of irradiated NSG mice relative to sham-treated cells. These data indicate that FUT7 is effective at improving the function of selectin ligands on CB-HSPCs in vitro and enhancing early engraftment of treated CB-HSPCs in the bone marrow of recipients.
    Print ISSN: 0959-6658
    Electronic ISSN: 1460-2423
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2013-09-08
    Description: Glycosphingolipids are expressed on the cell membrane and act as important factors in various events that occur across the plasma membrane. Lactosylceramide (LacCer) is synthesized from glucosylceramide and is a common precursor of various glycosphingolipids existing in whole body. Based on the enzyme purification, β1,4-galactosyltransferase 6 ( B4galt6 ) cDNA was isolated as a LacCer synthase-coding gene in the rat brain. We generated B4galt6 gene knockout (KO) mice and analyzed their phenotypes to examine roles of β4GalT6. B4galt6 KO mice were born and grew up apparently normal. LacCer synthase activity and the composition of acidic glycosphingolipids in the brain were almost equivalent or minimally different between wild-type and KO mice. Studies by mouse embryonic fibroblasts (MEFs) revealed that the silencing of B4galt5 gene resulted in the marked reduction in LacCer synthase activity and this reduction was more severe in MEFs derived from B4galt6 KO mice than those from wild-type mice. These results suggested that β4GalT6 plays a role as a LacCer synthase, whereas β4GalT5 acts as a main enzyme for LacCer biosynthesis in these tissues and cells.
    Print ISSN: 0959-6658
    Electronic ISSN: 1460-2423
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2013-09-08
    Description: Endoplasmic reticulum (ER) α-glucosidase I is an enzyme that trims the distal α1,2-linked glucose (Glc) residue from the Glc 3 Man 9 GlcNAc 2 oligosaccharide following its addition to nascent glycoproteins in the initial step of processing. This reaction is critical to the subsequent processing of N-glycans and thus defects in α-glucosidase I gene in human cause congenital disorder of glycosylation (CDG) type IIb. We identified the Caenorhabditis elegans α-glucosidase I gene (F13H10.4, designated agl-1 ) that encodes a polypeptide with 36% identity to human α-glucosidase I. The agl-1 cDNA restored the expression of complex-type N-glycans on the cell surface of α-glucosidase I-defective Chinese hamster ovary Lec23 cells. RNAi knockdown of agl-1 [ agl-1 (RNAi)] produced worms that were visibly similar to wild-type, but lifespan was reduced to about half of the control. Analyses of N -glycosylation in agl-1 (RNAi) animals by western blotting and mass spectrometry showed reduction of paucimannose and complex-type glycans and dramatic increase of glucosylated oligomannose glycans. In addition, a significant amount of unusual terminally fucosylated N-glycans were found in agl-1 (RNAi) animals. ER stress response was also provoked, leading to the accumulation of large amounts of triglucosylated free oligosaccharides (FOSs) (Glc 3 Man 4–5 GlcNAc 1–2 ) in agl-1 (RNAi) animals. Acceleration of ER-associated degradation in response to the accumulation of unfolded glycoproteins and insufficient interaction with calnexin/calreticulin in the ER lumen likely accounts for the increase of FOSs. Taken together, these studies in C. elegans demonstrate that decreased ER α-glucosidase I affects the entire N-glycan profile and induces chronic ER stress, which may contribute to the pathophysiology of CDG-IIb in humans.
    Print ISSN: 0959-6658
    Electronic ISSN: 1460-2423
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2015-05-08
    Description: Determination of the mode of action of carcinogenic agents is an important factor in risk assessment and regulatory practice. To assess the ability of the erythrocyte-based Pig-a mutation assay to discriminate between genotoxic and non-genotoxic modes of action, the mutagenic response of Sprague Dawley rats exposed to methyl carbamate (MC) or ethyl carbamate (EC) was investigated. EC, a potent carcinogen, is believed to induce DNA damage through the formation of a DNA-reactive epoxide group, whereas the closely structurally related compound, MC, cannot form this epoxide and its weaker carcinogenic activity is thought to be secondary to inflammation and promotion of cell proliferation. The frequency of Pig-a mutant phenotype cells was monitored before, during, and after 28 consecutive days of oral gavage exposure to either MC (doses ranging from 125 to 500mg/kg/day) or EC (250mg/kg/day). Significant increases in the frequency of mutant reticulocytes were observed from Days 15 through 43, with a peak mean frequency of 19.9 x 10 –6 on Day 29 (i.e. 24.9-fold increase relative to mean vehicle control across all four sampling times). As expected, mutant erythrocyte responses lagged behind mutant reticulocyte responses, with a maximal mean frequency of 8.2 x 10 –6 on Day 43 (i.e. 16.4-fold increase). No mutagenic effects were observed with MC. A second indicator of in vivo genotoxicity, peripheral blood micronucleated reticulocytes, was also studied. This endpoint was responsive to EC (3.3-fold mean increase), but not to MC. These results support the hypothesis that genotoxicity contributes to the carcinogenicity of EC but not of MC, and illustrates the value of the Pig-a assay for discriminating between genotoxic and non-genotoxic modes of action.
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2015-05-08
    Description: As part of the international Pig-a validation trials, we examined the induction of Pig-a mutant reticulocytes and red blood cells (RET CD59– and RBC CD59– , respectively) in peripheral blood of male Sprague Dawley ® rats treated with urethane (25, 100 and 250mg/kg/day) or saline by oral gavage for 29 days. Additional endpoints integrated into this study were: micronucleated reticulocytes (MN-RET) in peripheral blood; chromosome aberrations (CAb) and DNA damage (%tail intensity via the comet assay) in peripheral blood lymphocytes (PBL); micronucleated polychromatic erythrocytes (MN-PCE) in bone marrow; and DNA damage (comet) in various organs at termination (the 29th dose was added for the comet endpoint at sacrifice). Ethyl methanesulfonate (EMS; 200mg/kg/day on Days 3, 4, 13, 14, 15, 27, 28 and 29) was evaluated as the concurrent positive control (PC). All animals survived to termination and none exhibited overt toxicity, but there were significant differences in body weight and body weight gain in the 250-mg/kg/day urethane group, as compared with the saline control animals. Statistically significant, dose-dependent increases were observed for urethane for: RET CD59– and RBC CD59– (on Days 15 and 29); MN-RET (on Days 4, 15 and 29); and MN-PCE (on Day 29). The comet assay yielded positive results in PBL (Day 15) and liver (Day 29), but negative results for PBL (Days 4 and 29) and brain, kidney and lung (Day 29). No significant increases in PBL CAb were observed at any sample time. Except for PBL CAb (likely due to excessive cytotoxicity), EMS-induced significant increases in all endpoints/tissues. These results compare favorably with earlier in vivo observations and demonstrate the utility and sensitivity of the Pig-a in vivo gene mutation assay, and its ability to be easily integrated, along with other standard genotoxicity endpoints, into 28-day rodent toxicity studies.
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2015-05-08
    Description: The Pig-a assay has shown promise as a regulatory assay for evaluating in vivo gene mutation. A recent International Workshop on Genotoxicity Testing workgroup discussed the state of the assay and identified several knowledge gaps in assay development. This Mutagenesis Special Topic includes a collection of reports that addresses some of these knowledge gaps, including identifying the mutations responsible for the Pig-a mutant phenotype, the effect of sex on the response, probing the robustness of the assay and expanding the number of agents tested in the assay, especially agents expected to yield negative responses.
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2015-05-08
    Description: The Pig-a assay has rapidly gained international interest as a useful tool for assessing the mutagenic potential of compounds in vivo . Although a large number of compounds, including both mutagens and non-mutagens, have been tested in the rat Pig-a assay in haematopoietic cells, there is limited understanding of how perturbations in haematopoiesis affect assay performance. Of particular concern is the possibility that regenerative haematopoiesis alone, without exposure to a genotoxic agent, could result in elevated Pig-a mutant cell frequencies. To address this concern, Wistar-Han rats were dosed by oral gavage with a non-genotoxic haemolytic agent, 2-butoxyethanol (2-BE). Dose levels ranging from 0 to 450mg/kg were tested using both single administration and 28-day treatment regimens. Haematology parameters were assessed at minimum within the first 24h of treatment and 8 days after the final administration. Pig-a mutant frequencies were assessed on Days 15 and ~30 for both treatment protocols and also on Days 43 and 57 for the 28-day protocol. Even at doses of 2-BE that induced marked intravascular lysis and strong compensatory erythropoiesis, the average Pig-a mutant phenotype red blood cell and reticulocyte frequencies were within the historical vehicle control distribution. 2-BE therefore showed no evidence of in vivo mutagenicity in these studies. The data suggest that perturbations in haematopoiesis alone do not lead to an observation of increased mutant frequency in the Pig-a assay.
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2015-05-08
    Description: The Pig-a assay is used for monitoring somatic cell mutation in laboratory animals and humans. The assay detects haematopoietic cells deficient in glycosylphosphatidylinositol (GPI)-anchored protein surface markers using flow cytometry. However, given that synthesis of the protein markers (and the expression of their genes) is independent of the expression of the X-linked Pig-a gene and the function of its enzyme product, the deficiency of markers at the surface of the cells may be caused by a number of events (e.g. by mutation or epigenetic silencing in the marker gene itself or in any of about two dozen autosomal genes involved in the synthesis of GPI). Here we provide direct evidence that the deficiency of the GPI-anchored surface marker CD48 in rat T-cells is accompanied by mutation in the endogenous X-linked Pig-a gene. We treated male F344 rats with N -ethyl- N -nitrosourea (ENU), and established colonies from flow cytometry-identified and sorted CD48-deficient spleen T-lymphocytes. Molecular analysis confirmed that the expanded sorted cells have mutations in the Pig-a gene. The spectrum of Pig-a mutation in our model was consistent with the spectrum of ENU-induced mutation determined in other in vivo models, mostly base-pair substitutions at A:T with the mutated T on the non-transcribed strand of Pig-a genomic DNA. We also used next generation sequencing to derive a similar mutational spectrum from a pool of 64 clones developed from flow-sorted CD48-deficient lymphocytes. Our findings confirm that Pig-a assays detect what they are designed to detect—gene mutation in the Pig-a gene.
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2015-05-08
    Description: Validation of the Pig-a gene mutation assay has been based mainly on studies in male rodents. To determine if the mutagen-induced responses of the X-linked Pig-a gene differ in females compared to males, 7- or 14-week old male and female Sprague Dawley rats were exposed to N -ethyl- N -nitrosourea (ENU). In the study with the 7-week old rats, exposure was to 0, 1, 5 or 25mg ENU/kg/day for three consecutive days (study Days 1–3). Pig-a mutant phenotype reticulocyte (RET CD59– ) and mutant phenotype erythrocyte (RBC CD59– ) frequencies were determined on study Days –4, 15, 29 and 46 using immunomagnetic separation in conjunction with flow cytometric analysis ( In Vivo MutaFlow ® ). Additionally, blood samples collected on Day 4 were analysed for micronucleated reticulocyte (MN-RET) frequency ( In Vivo MicroFlow ® ). The percentage of reticulocytes (%RET) was markedly higher in the 7-week old males compared to females through Day 15 (2.39-fold higher on Day –4). At 25mg/kg/day, ENU reduced Day 4 RET frequencies in both sexes, and the two highest dose levels resulted in elevated MN-RET frequencies, with no sex or treatment x sex interaction. The two highest dose levels significantly elevated the frequencies of mean RET CD59– and RBC CD59– in both sexes from Day 15 onward. RET CD59– and RBC CD59– frequencies were somewhat lower for females compared to males at the highest dose level studied, and differences in RET CD59– resulted in a statistically significant interaction effect of treatment x sex. In the study with 14-week old rats, treatment was for 3 days with 0 or 25mg ENU/kg/day. RET frequencies differed to a lesser degree between the sexes, and in this case there was no evidence of a treatment x sex interaction. These results suggest that the slightly higher response in younger males than in the younger females may be related to differences in erythropoiesis function at that age. In conclusion, while some quantitative differences were noted, there were no qualitative differences in how males and females responded to a prototypical mutagen, and support the contention that both sexes are equally acceptable for Pig-a gene mutation studies.
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2015-05-08
    Description: Isothiocyanates are plant-derived compounds that may be beneficial in the prevention of certain chronic diseases. Yet, by stimulating the production of reactive oxygen species (ROS), isothiocyanates can be genotoxic. Whether antioxidants influence isothiocyanate-induced genotoxicity is unclear, but this situation was clarified appreciably herein. In HCT116 cells, phenethyl isothiocyanate (PEITC) increased ROS production, which was inhibited by N -acetylcysteine (NAC) and deferoxamine (DFO) but not by ascorbic acid (ASC) and trolox (TRX) that were found to be more potent radical scavengers. Surprisingly, ASC and TRX each intensified the DNA damage that was caused by PEITC, but neither ASC nor TRX by themselves caused any DNA damage. In contrast, NAC and DFO each not only attenuated PEITC-induced DNA damage but also attenuated the antioxidant-intensified, PEITC-induced DNA damage. To determine if the DNA damage could be related to possible changes in the major antioxidant defence system, glutathione (GSH) was investigated. PEITC lowered GSH levels, which was prevented by NAC, whereas ASC, TRX and DFO neither inhibited nor enhanced the GSH-lowering effect of PEITC. The GSH synthesis inhibitor, buthionine sulphoxime, intensified PEITC-induced DNA damage, although by itself buthionine sulphoxime did not directly cause DNA damage. The principal findings suggest that ASC and TRX make PEITC more genotoxic, which might be exploited in killing cancer cells as one approach in killing cancer cells is to extensively damage their DNA so as to initiate apoptosis.
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2015-05-08
    Description: The mycotoxin aflatoxin B 1 (AFB 1 ) may initiate cancer by causing oxidatively damaged DNA, specifically by causing 8-oxo-7,8-dihydro-2’-deoxyguanosine (8-oxodG) lesions. Base excision repair removes these lesions, with 8-oxoguanine glycosylase (OGG1) being the rate-limiting enzyme. The aim of this study was to determine the effect of ogg1 deficiency on AFB 1 -induced oxidatively damaged DNA and tumourigenesis. Female wild-type, heterozygous and homozygous ogg1 null mice were given a single dose of 50mg/kg AFB 1 or 40 µl dimethyl sulfoxide (DMSO) ip. Neither ogg1 genotype nor AFB 1 treatment affected levels of oxidised guanine in lung or liver 2h post-treatment. AFB 1 -treated ogg1 null mice showed exacerbated weight loss and mortality relative to DMSO-treated ogg1 null mice, but AFB 1 treatment did not significantly increase lung or liver tumour incidence compared with controls, regardless of ogg1 genotype. Suspect lung masses from three of the AFB 1 -treated mice were adenomas, and masses from two of the mice were osteosarcomas. No osteosarcomas were observed in DMSO-treated mice. All liver masses from AFB 1 -treated mice were adenomas, and one also contained a hepatocellular carcinoma. In DNA from the lung tumours, the K- ras mutation pattern was inconsistent with initiation by AFB 1 . In conclusion, ogg1 status did not have a significant effect on AFB 1 -induced oxidatively damaged DNA or tumourigenesis, but deletion of one or both alleles of ogg1 did increase susceptibility to other aspects of AFB 1 toxicity.
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2015-05-08
    Description: Integration of in vivo genotoxicity testing into standard toxicology studies presents multiple advantages as it reduces animal use and costs, accelerates data generation and provides concurrent data that are useful for interpreting results. The in vivo Pig-a assay is a mammalian gene mutation assay that utilises peripheral blood and thus has a high integration potential. Although inter-laboratory reproducibility has been well demonstrated, further characterisation is required for this assay. In this study, we evaluated intra-laboratory reproducibility of the in vivo Pig-a gene mutation assay (MutaFlow® kit) in rats through the conduct of an assay characterisation prior to subsequent use in Good Laboratory Practices (GLP) toxicology studies. To evaluate intra-laboratory reproducibility, intra-assay and inter-assay variability, ruggedness, robustness and blood storage stability were assessed. These assessments were performed using blood obtained from male Sprague–Dawley rats exposed to 0, 20 or 40mg/kg/day N -ethyl- N -nitrosourea via oral gavage for three consecutive days. Blood was collected from these rats on multiple occasions from Day 29 to Day 71 and samples were analysed for Pig-a mutation using the rat MutaFlow kit. Frequencies of reticulocytes (RET), mutant phenotype erythrocytes (RBC CD59– ) and mutant phenotype RET (RET CD59– ) were determined. Overall, the proportion of RET and frequencies of RBC CD59– and of RET CD59– were consistent throughout the different assessments. The assay demonstrated acceptable intra-run and inter-run variability with coefficients of variation of ≤4.8 and 20.6%, respectively. The method was shown to be independent of the analyst performing the assay and unaffected by small changes in assay conditions. Comparable results were obtained from freshly collected samples and samples refrigerated for up to 4 days. Although technically challenging, the rat Pig-a gene mutation assay using a high-throughput automated method was shown to be reliable. The different assay parameters evaluated during the conduct of this study yielded acceptable results. Thus, the method was considered suitable for use in GLP toxicology studies.
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2015-05-08
    Description: Research over the years has generated enough evidence to implicate areca nut, as a carcinogen in humans. Besides oral, significant rise in the incidence of cancers of the oesophagus, liver and stomach was seen among areca nut chewers. Early diagnosis seems key to understand the initial processes of carcinogenesis which is highly curable. In North-East India, betel quid contains raw areca nut (RAN), lime and small portion of betel leaf without any other constituents. This study was not intended to isolate any active ingredients from the RAN and to look its action. The present objective is to validate the screening of precocious anaphase and analysis of expression of Securin and p53 in non-target cells like human peripheral blood lymphocytes (PBLs) and mouse bone marrow cells (BMCs) as early indicative parameters of RAN + lime-induced cancers. A total of 35 mice were examined at different time points for following ad libitum administration of RAN extract in drinking water with lime. Peripheral blood was collected from 32 human donors of which, 24 were RAN + lime heavy chewers. Expression of genes was assessed by immunoblotting and/or by immunohistochemistry. Histological preparation of stomach tissue of mice revealed that RAN + lime induced stomach cancer. A gradual increase in the frequency of precocious anaphases and aneuploid cells was observed in both RAN + lime-treated mouse BMC and human PBL of RAN heavy chewers. Levels of p53 and Securin were increased in these cells during early days of RAN + lime exposure. The level of Securin was significantly higher in human tumour samples than their adjacent normal counterpart. The expression of Securin was increased significantly in RAN + lime-administered mice as well as in stomach tumour. Present study revealed that precocious anaphase and expression of p53 and Securin in non-target cells are significantly associated with an increased risk of RAN-induced cancer and thus these parameters can be of early diagnostic value.
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2015-05-08
    Description: Silver nanoparticles (AgNPs) are one of the most widely used nanomaterials due to their antibacterial properties. Owing to the recent boost in the usage of AgNPs-containing products, human exposure to AgNPs is increasing, highlighting the need for careful evaluation of AgNPs toxicity in humans. We used two cellular models, hepatic HepG2 and epithelial A549 cell lines, to study the mechanism of AgNPs-induced toxicity at the cellular level. These two cell lines differ significantly in their response to AgNPs treatment. In the case of A549 cells, a minor decrease in viability and increase in the extent of DNA breakage were observed. A markedly different response to AgNPs was observed in HepG2 cells. In short term, a massive induction of DNA breakage was observed, suggesting that the basal activity of antioxidant defence in these cells was not sufficient to effectively protect them from the nanoparticle-induced oxidative stress. After prolonged exposure, the extent of DNA breakage decreased to the level observed in the control cells proving that a successful adaptation to the new conditions had taken place. The cells that were unable to adapt must have died, as revealed by the Neutral Red assay that indicated less than half viable cells after 24-h treatment with 100 µg/ml of 20nm AgNPs. The gene expression analysis revealed that the observed adaptation was underlain by a pro-proliferative, anti-apoptotic signal leading to up-regulation of the genes promoting proliferation and inflammatory response ( EGR1 , FOS , JUN , HK2 , IL4 , MMP10 , VEGFA , WISP1 , CEBPB , IL8 , SELPLG ), genes coding the anti-apoptotic proteins ( BCL2A1 , CCL2 ) and factors involved in the response to stress ( HSPB1 , GADD45A ). Such a selection of highly resistant population of cells should be taken into account in the case of medical applications of nanoparticles since the sustained proliferative signalling and resistance to cell death are hallmarks of cancer, acquired by the cells in the process of carcinogenesis.
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2015-05-08
    Description: Ionising radiation induces single-strand breaks, double-strand breaks (DSB) and base damages in human cell. DSBs are the most deleterious and if not repaired may lead to genomic instability and cell death. DSB can be repaired through non-homologous end joining (NHEJ) pathway in resting lymphocytes. In this study, NHEJ genes and proteins were studied in irradiated human peripheral blood mononuclear cells (PBMC) at resting stage. Dose-response, time point kinetics and adaptive-response studies were conducted in irradiated PBMC at various end points such as DNA damage quantitation, transcription and protein expression profile. Venous blood samples were collected from 20 random, normal and healthy donors with written informed consent. PBMC was separated and irradiated with various doses between 0.1 and 2.0 Gy ( 60 CO- source) for dose-response study. Repair kinetics of DNA damage and time point changes in expression of genes and proteins were studied in post-irradiated PBMC at 2.0 Gy at various time points up to 240min. Adaptive-response study was conducted with a priming dose of 0.1 Gy followed by a challenging dose of 2.0 Gy after 4-h incubation. Our results revealed that Ku70, Ku80, XLF and Ligase IV were significantly upregulated ( P 〈 0.05) at 4-h post-irradiation at transcript and protein level. Adaptive-response study showed significantly increased expression of the proteins involved in NHEJ, suggesting their role in adaptive response in human PBMC at G 0 /G 1, which has important implications to human health.
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2015-05-08
    Description: Excision repair cross complementing group 1 (ERCC1) and X-ray repair cross-complementing groups 1 (XRCC1) are DNA repair enzymes. Polymorphisms in DNA repair genes may be important factors affecting cancer susceptibility, prognosis and therapy outcome. The purpose of this study was to investigate the correlation of ERCC1 and XRCC1 polymorphisms with colorectal cancer (CRC) risk, and explore the effect of polymorphisms on event-free, overall survival and oxaliplatin-based therapy in CRC patients. Genotyping was examined with the iMLDR technique. An unconditional logistic regression model was used to estimate the association of certain polymorphisms with CRC risk. The Kaplan–Meier method, log-rank test and Cox regression model were employed to evaluate the effects of polymorphisms on survival analysis. Results showed that Trp/Trp genotype of XRCC1 Arg194Trp and AA genotype of ERCC1 rs2336219 have a significantly increased risk of CRC; Trp allele of XRCC1 Arg194Trp and CC genotype of ERCC1 rs735482 were associated with lower response to oxaliplatin-based chemotherapy, a shorter survival and a higher risk of relapse or metastasis. 194Trp/280Arg/399Arg haplotype was associated with a significant resistance, and the ERCC1 protein expression was statistically higher in tumours with rs735482 CC genotype than with AA genotype. Our studies indicate that XRCC1 and ERCC1 polymorphisms probably affect susceptibility, chemotherapy response and survival of CRC patients.
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2015-05-08
    Description: Epigenetic control of gene expression in children remains poorly understood, but new technologies can help elucidate the relationship between expression and DNA methylation. Here, we utilized the nCounter Analysis System to characterise the expression of 60 genes in 69 9-year-old children from a cohort with a high prevalence of obesity. nCounter expression levels ranged broadly (from 3 to over 10000 messenger RNA counts) and were divided into four categories: high (〉2000 counts), moderate (200–1000 counts), low (100–200 counts) and marginal (〈100 counts). For a subset of five genes ( ADIPOR1 , PPARG1 , GSTM1 , PON1 and ACACA ) from different expression level categories, we validated nCounter data using reverse transcription-polymerase chain reaction (RT-PCR), and expanded RT-PCR analysis of ADIPOR1 to include 180 children. Expression data from the two methodologies were correlated for all five genes included in the validation experiment, with estimates ranging from r s = 0.26 ( P = 0.02) to r s = 0.88 ( P 〈 5 x 10 –6 ). ADIPOR1 and PPARG1 nCounter expression levels were negatively correlated ( r = –0.60, P 〈 5 x 10 –5 ), and this relationship was stronger in overweight children ( r = –0.73, P 〈 5 x 10 –5 ) than in normal weight children ( r = –0.42, P = 0.016). Using methylation data from the Infinium HumanMethylation450 BeadChip ( n = 180), we found eight CpG sites in ADIPOR1 and PPARG where methylation level was associated with expression by RT-PCR ( P 〈 0.05). Hypomethylation of PPARG gene body site cg10499651 was associated with increased expression as measured by both RT-PCR and nCounter ( P 〈 0.05). We found no statistically significant relationships between either expression or methylation of ADIPOR1 and PPARG and body mass index or waist circumference. In addition to demonstrating the validity of expression data derived from nCounter, our results illustrate the use of new technologies in assessing epigenetic effects on expression in children.
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2015-05-08
    Description: The in vitro micronucleus test is a well-known test for the screening of genotoxic compounds. However until now, most studies have been performed on either human peripheral lymphocytes or established cancer cell lines. This study provides human mesenchymal stem cells as an alternative to the conventional micronucleus test. We grew umbilical cord mesenchymal stem cells (UC-MSCs) on coverslips eliminating the cumbersome technique involving hypotonic treatment, fixation and preparing smears required for suspension culture (lymphocytes). The background frequency of nuclear blebs and micronuclei in UC-MSCs was found to be 7±5, in lymphocytes 16±3.5 and 9±3 and that for A549 cell line was 65±5 and 15±5 per 1000 cells, respectively, suggesting differences in the repair mechanism of normal and cancer cell lines. We inspected the cytotoxic and genotoxic effects of two known mutagens, mitomycin-C and hydrogen peroxide (H 2 O 2 ), on UC-MSCs, lymphocytes and A549 cells. Treatment with mitomycin-C and H 2 O 2 demonstrated drastic differences in the degree of cytotoxicity and genotoxicity suggesting a constitutional difference between normal and cancer cells. In addition we tested two solvents, dimethyl sulfoxide (DMSO) and ethanol, and two drugs, metformin and rapamycin. DMSO above 1% was found to be cytotoxic and genotoxic, whereas ethanol at same concentration was neither cytotoxic nor genotoxic indicating the minimal non-toxic level of the solvents. This study thus offers UC-MSCs as a better substitute to peripheral lymphocytes and cancer cell lines for high throughput screening of compounds and reducing the animal studies.
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2015-05-08
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2015-05-08
    Description: Cells exhibiting radiation-induced genomic instability exhibit varied spectra of genetic and chromosomal aberrations. Even so, oxidative stress remains a common theme in the initiation and/or perpetuation of this phenomenon. Isolated oxidatively modified bases, abasic sites, DNA single strand breaks and clustered DNA damage are induced in normal mammalian cultured cells and tissues due to endogenous reactive oxygen species generated during n ormal cellular metabolism in an aerobic environment. While sparse DNA damage may be easily repaired, clustered DNA damage may lead to persistent cytotoxic or mutagenic events that can lead to genomic instability. In this study, we tested the hypothesis that DNA damage signatures characterised by altered levels of endogenous, potentially mutagenic, types of DNA damage and chromosomal breakage are related to radiation-induced genomic instability and persistent oxidative stress phenotypes observed in the chromosomally unstable progeny of irradiated cells. The measurement of oxypurine, oxypyrimidine and abasic site endogenous DNA damage showed differences in non-double-strand breaks (DSB) clusters among the three of the four unstable clones evaluated as compared to genomically stable clones and the parental cell line. These three unstable clones also had increased levels of DSB clusters. The results of this study demonstrate that each unstable cell line has a unique spectrum of persistent damage and lead us to speculate that alterations in DNA damage signaling and repair may be related to the perpetuation of genomic instability.
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2016-03-31
    Description: Aberrant glycosylation is highly associated with cancer progression. The aim of this study was to compare bifucosylated N -glycans in sera obtained from healthy controls and breast cancer patients, with the goal of identifying a potential indicator for monitoring the recurrence and metastasis of breast cancer. A unique structural pattern of bifucosylated N -glycan, with both core and antennary fucosylation, was identified in breast cancer patients. The spectrum of antennary fucosylation was a composite of the standard spectra of Lewis X and H2, indicating a mixture of the two epitopes. Permethylated N -glycans of the glycoproteins extracted from 91 breast cancer patients and 43 healthy controls were detected using linear ion-trap quadrupole-electrospray ionization mass spectrometry, which appeared to be a highly sensitive and useful approach in the detection and identification of N -glycans. To evaluate MS profile data, several statistical tools were applied, including Student's t -test, partial least squares discriminant analysis and receiver-operating characteristic curve. The results showed that the measurement of bifucosylation degree and CEA levels had an improved diagnostic performance compared with that of CEA alone. We compared the potential of bifucosylated N -glycan as an indicator of breast cancer recurrence with the current clinical biomarkers, i.e., CEA, CA 15-3 and CA125. The result revealed that, compared with CEA, CA 15-3 and CA125, the bifucosylation degree of N -glycans could be a more reliable indicator of breast cancer recurrence.
    Print ISSN: 0959-6658
    Electronic ISSN: 1460-2423
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2016-03-31
    Description: Colitose, also known as 3,6-dideoxy- l -galactose or 3-deoxy- l -fucose, is one of only five naturally occurring 3,6-dideoxyhexoses. Colitose was found in lipopolysaccharide of a number of infectious bacteria, including Escherichia coli O55 & O111 and Vibrio cholera O22 & O139. To date, no colitosyltransferase (ColT) has been characterized, probably due to the inaccessibility of the sugar donor, GDP-colitose. In this study, starting with chemically prepared colitose, 94.6 mg of GDP-colitose was prepared via a facile and efficient one-pot two-enzyme system involving an l -fucokinase/GDP- l -Fuc pyrophosphorylase and an inorganic pyrophosphatase (EcPpA). WbgN, a putative ColT from E. coli O55:H5 was then cloned, overexpressed, purified and biochemically characterized by using GDP-colitose as a sugar donor. Activity assay and structural identification of the synthetic product clearly demonstrated that wbgN encodes an α1,2-ColT. Biophysical study showed that WbgN does not require metal ion, and is highly active at pH 7.5–9.0. In addition, acceptor specificity study indicated that WbgN exclusively recognizes lacto- N -biose (Galβ1,3-GlcNAc). Most interestingly, it was found that WbgN exhibits similar activity toward GDP- l -Fuc ( k cat / K m = 9.2 min –1 mM –1 ) as that toward GDP-colitose ( k cat / K m = 12 min –1 mM –1 ). Finally, taking advantage of this, type 1 H-antigen was successfully synthesized in preparative scale.
    Print ISSN: 0959-6658
    Electronic ISSN: 1460-2423
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2016-03-31
    Description: Information about specificity and affinity is critical for use of carbohydrate-binding antibodies. Herein, we evaluated eight monoclonal antibodies to the blood group A (BG-A) antigen. Antibodies 87-G, 9A, HE-10, HE-24, HE-193, HE-195, T36 and Z2A were profiled on a glycan microarray to assess specificity, relative affinity and the influence of glycan density on recognition. Our studies highlight several noteworthy recognition properties. First, most antibodies bound GalNAcα1–3Gal and the BG-A trisaccharide nearly as well as larger BG-A oligosaccharides. Second, several antibodies only bound the BG-A trisaccharide when displayed on certain glycan chains. These first two points indicate that the carrier glycan chains primarily influence selectivity, rather than binding strength. Third, binding of some antibodies was highly dependent on glycan density, illustrating the importance of glycan presentation for recognition. Fourth, some antibodies recognized the tumor-associated Tn antigen, and one antibody only bound the variant composed of a GalNAc-alpha-linked to a serine residue. Collectively, these results provide new insights into the recognition properties of anti-BG-A antibodies.
    Print ISSN: 0959-6658
    Electronic ISSN: 1460-2423
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    facet.materialart.
    Unknown
    Oxford University Press
    Publication Date: 2015-12-27
    Description: During malignant transformation, glycosylation is heavily altered compared with healthy tissue due to differential expression of glycosyltransferases, glycosidases and monosaccharide transporters within the cancer microenvironment. One key change of malignant tissue glycosylation is the alteration of sialic acid processing that leads to a general upregulation of sialylated glycans (hypersialylation) on cell surfaces and an increased introduction of the non-human sialic acid N -glycolyl-neuraminic acid (Neu5Gc) instead of N -acetyl-neuraminic acid into cell surface glycans. These changes have been shown to be the result of altered sialyltransferase and sialidase expression. Functionally, cancer-associated hypersialylation appears to directly impact tumor cell interaction with the microenvironment, in particular the modulation of sialic acid-binding lectins on immune cells. Moreover, Neu5Gc expression in human tissues enhances inflammation due to an anti-Neu5Gc immune response, which can potentially influence inflammation-induced cancer and cancer-associated inflammation. In this review, we summarize the changes of sialic acid biology within the malignant microenvironment and the resulting effect on cancer immunity.
    Print ISSN: 0959-6658
    Electronic ISSN: 1460-2423
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2015-12-27
    Description: In this work, we present the first XOS degrading glycoside hydrolase from Weissella , W Xyn43, a two-domain enzyme from GH43. The gene was amplified from genomic DNA of the XOS utilizing Weissella strain 92, classified under the species-pair Weissella cibaria/W.confusa , and expressed in Escherichia coli . The enzyme is lacking a putative signal peptide and is, from a homology model, shown to be composed of an N-terminal 5-fold β-propeller catalytic domain and a C-terminal β-sandwich domain of unknown function. W Xyn43 hydrolyzed short (1–4)-β- d -xylooligosaccharides, with similar k cat / K M for xylobiose (X 2 ) and xylotriose (X 3 ) and clearly lower efficiency in xylotetraose (X 4 ) conversion. WXyn43 displays the highest reported k cat for conversion of X 3 (900 s –1 at 37°C) and X 4 (770 s –1 ), and k cat for hydrolysis of X 2 (907 s –1 ) is comparable with or greater than the highest previously reported. The purified enzyme adopted a homotetrameric state in solution, while a truncated form with isolated N-terminal catalytic domain adopted a mixture of oligomeric states and lacked detectable activity. The homology model shows that residues from both domains are involved in monomer–monomer hydrogen bonds, while the bonds creating dimer–dimer interactions only involved residues from the N-terminal domain. Docking of X 2 and X 3 in the active site shows interactions corresponding to subsites –1 and +1, while presence of a third subsite is unclear, but interactions between a loop and the reducing-end xylose of X 3 may be present.
    Print ISSN: 0959-6658
    Electronic ISSN: 1460-2423
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    facet.materialart.
    Unknown
    Oxford University Press
    Publication Date: 2015-12-27
    Print ISSN: 0959-6658
    Electronic ISSN: 1460-2423
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2015-12-27
    Description: The acquisition of mannose 6-phosphate (Man6 P ) on N-linked glycans of lysosomal enzymes is a structural requirement for their transport from the Golgi apparatus to lysosomes mediated by the mannose 6-phosphate receptors, 300 kDa cation-independent mannose 6-phosphate receptor (MPR300) and 46 kDa cation-dependent mannose 6-phosphate receptor (MPR46). Here we report that the single-chain variable domain (scFv) M6P-1 is a unique antibody fragment with specificity for Man6 P monosaccharide that, through an array-screening approach against a number of phosphorylated N -glycans, is shown to bind mono- and diphosphorylated Man 6 and Man 7 glycans that contain terminal αMan6 P (1 -〉 2)αMan(1 -〉 3)αMan. In contrast to MPR300, scFv M6P-1 does not bind phosphodiesters, monophosphorylated Man 8 or mono- or diphosphorylated Man 9 structures. Single crystal X-ray diffraction analysis to 2.7 Å resolution of Fv M6P-1 in complex with Man6 P reveals that specificity and affinity is achieved via multiple hydrogen bonds to the mannose ring and two salt bridges to the phosphate moiety. In common with both MPRs, loss of binding was observed for scFv M6P-1 at pH values below the second p K a of Man6 P (p K a = 6.1). The structures of Fv M6P-1 and the MPRs suggest that the change of the ionization state of Man6 P is the main driving force for the loss of binding at acidic lysosomal pH (e.g. lysosome pH ~ 4.6), which provides justification for the evolution of a lysosomal enzyme transport pathway based on Man6 P recognition.
    Print ISSN: 0959-6658
    Electronic ISSN: 1460-2423
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2015-12-31
    Description: In a previous study, we validated an in vitro genotoxicity assay based on H2AX quantification using the In-Cell Western (ICW) method in HepG2 cells. The assay demonstrated high sensitivity and specificity but failed to detect genotoxicity for few compounds that require specific metabolic bioactivation not sufficiently covered by HepG2 cells. The aim of the present study was to assess H2AX ICW sensitivity using a broader range of genotoxic molecules with HepG2 cells and three additional human cell lines with distinct biotransformation properties: two cell lines expressing some phase I and II bioactivation capabilities (LS-174T and Hep3B), and one with poor general bioactivation properties (ACHN). We evaluated the four cell lines by testing 24 compounds recommended by European Centre for the Validation of Alternative Methods and a set of 24 additional chemicals with different mode of genotoxic action (MOA) (aneugenicity, DNA adducts formation, induction of oxidative stress), including some known to require specific cytochrome P450 metabolic bioactivation. Results for the 48 compounds tested showed that the H2AX ICW assay was more sensitive with LS-174T and HepG2 cells than with Hep3B or ACHN cell lines. Among the 38 compounds tested with positive or equivocal carcinogenicity data, 36 (95%) showed a positive genotoxic response with the H2AX ICW assay compared to only 27 (71%) using the Ames assay. We confirm that the H2AX ICW assay on HepG2 cells, without an exogenous metabolic activation system, may be a suitable test to predict the in vivo genotoxicity of chemicals with different genotoxic MOA. Moreover, the use of the ACHN cell line in combination with LS-174T and HepG2 cells may permit in many cases to discriminate direct from bioactivated genotoxins. Overall, our results confirm the high sensitivity of the H2AX ICW assay which, in turn, should reduce the number of animals used for genotoxicity assessment.
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2015-12-31
    Description: Quantum dots (QD) have unique electronic and optical properties promoting biotechnological advances. However, our understanding of the toxicological structure–activity relationships remains limited. This study aimed to determine the biological impact of varying nanomaterial surface chemistry by assessing the interaction of QD with either a negative (carboxyl), neutral (hexadecylamine; HDA) or positive (amine) polymer coating with human lymphoblastoid TK6 cells. Following QD physico-chemical characterisation, cellular uptake was quantified by optical and electron microscopy. Cytotoxicity was evaluated and genotoxicity was characterised using the micronucleus assay (gross chromosomal damage) and the HPRT forward mutation assay (point mutagenicity). Cellular damage mechanisms were also explored, focusing on oxidative stress and mitochondrial damage. Cell uptake, cytotoxicity and genotoxicity were found to be dependent on QD surface chemistry. Carboxyl-QD demonstrated the smallest agglomerate size and greatest cellular uptake, which correlated with a dose dependent increase in cytotoxicity and genotoxicity. Amine-QD induced minimal cellular damage, while HDA-QD promoted substantial induction of cell death and genotoxicity. However, HDA-QD were not internalised by the cells and the damage they caused was most likely due to free cadmium release caused by QD dissolution. Oxidative stress and induced mitochondrial reactive oxygen species were only partially associated with cytotoxicity and genotoxicity induced by the QD, hence were not the only mechanisms of importance. Colloidal stability, nanoparticle (NP) surface chemistry, cellular uptake levels and the intrinsic characteristics of the NPs are therefore critical parameters impacting genotoxicity induced by QD.
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2015-12-31
    Description: We previously reported that a urate-null strain of Drosophila is hypersensitive to cigarette smoke (CS), and we suggested that CS induces oxidative stress in Drosophila because uric acid is a potent antioxidant. Although the carcinogenic risk of CS exposure is widely recognized; documentation of in vivo genotoxic activity of environmental CS, especially gaseous-phase CS, remains inconclusive. To date, somatic-cell mutations in Drosophila resulting from exposure to CS have not been detected via the somatic mutation and recombination test (wing spot test) with wild-type flies, a widely used Drosophila assay for the detection of somatic-cell mutation; moreover, genotoxicity has not been documented via a DNA repair test that involves DNA repair-deficient Drosophila. In this study, we used a new Drosophila strain ( y v ma-l; mwh ) to examine the mutagenicity induced by gaseous-phase CS; these flies are urate-null due to a mutation in ma-l , and they are heterozygous for multiple wing hair ( mwh ), a mutation that functions as a marker for somatic-cell mutation. In an assay with this newly developed strain, a superoxide anion-producing weed-killer, paraquat, exhibited significant mutagenicity; in contrast, paraquat was hardly mutagenic with a wild-type strain. Drosophila larvae were exposed to CS for 2, 4 or 6h, and then kept at 25 ° C on instant medium until adulthood. After eclosion, mutant spots, which consisted of mutant hairs on wings, were scored. The number of mutant spots increased significantly in an exposure time-dependent manner in the urate-null females ( ma-l (–/–)), but not in the urate-positive females ( ma-l (+/–)). In this study, we showed that short-term exposure to CS was mutagenic in this in vivo system. In addition, we obtained suggestive data regarding reactive oxygen species production in larva after CS exposure using the fluorescence probe H 2 DCFDA. These results suggest that oxidative damage, which might be countered by uric acid, was partly responsible for induction of somatic cell mutations in Drosophila larvae exposed to CS.
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2015-12-31
    Description: DNA repair pathways play a critical role in maintaining cellular homeostasis by repairing DNA damage induced by endogenous processes and xenobiotics, including environmental chemicals. Induction of DNA damage may lead to genomic instability, disruption of cellular homeostasis and potentially tumours. Isogenic chicken DT40 B-lymphocyte cell lines deficient in DNA repair pathways can be used to identify genotoxic compounds and aid in characterising the nature of the induced DNA damage. As part of the US Tox21 program, we previously optimised several different DT40 isogenic clones on a high-throughput screening platform and confirmed the utility of this approach for detecting genotoxicants by measuring differential cytotoxicity in wild-type and DNA repair-deficient clones following chemical exposure. In the study reported here, we screened the Tox21 10K compound library against two isogenic DNA repair-deficient DT40 cell lines ( KU70 –/– / RAD54 –/– and REV3 –/– ) and the wild-type cell line using a cell viability assay that measures intracellular adenosine triphosphate levels. KU70 and RAD54 are genes associated with DNA double-strand break repair processes, and REV3 is associated with translesion DNA synthesis pathways. Active compounds identified in the primary screening included many well-known genotoxicants (e.g. adriamycin, melphalan) and several compounds previously untested for genotoxicity. A subset of compounds was further evaluated by assessing their ability to induce micronuclei and phosphorylated H2AX. Using this comprehensive approach, three compounds with previously undefined genotoxicity—2-oxiranemethanamine, AD-67 and tetraphenylolethane glycidyl ether—were identified as genotoxic. These results demonstrate the utility of this approach for identifying and prioritising compounds that may damage DNA.
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2015-12-31
    Description: Cleidocranial dysplasia (CCD; MIM 119600) is an autosomal dominant skeletal dysplasia characterised by hypopalstic and/or aplastic clavicles, midface hypoplasia, absent or delayed closure of cranial sutures, moderately short stature, delayed eruption of permanent dentition and supernumerary teeth. The molecular pathogenesis can be explained in about two-thirds of CCD patients by haploinsufficiency of the RUNX2 gene. In our current study, we identified a novel and rare variant of the RUNX2 gene (c.181_189dupGCGGCGGCT) in a Japanese patient with phenotypic features of CCD. The insertion led an alanine tripeptide expansion (+3Ala) in the polyalanine tract. To date, a RUNX2 variant with alanine decapeptide expansion (+10Ala) is the only example of a causative variant of RUNX2 with polyalanine tract expansion to be reported, whilst RUNX2 (+1Ala) has been isolated from the healthy population. Thus, precise analyses of the RUNX2 (+3Ala) variant were needed to clarify whether the tripeptide expanded RUNX2 is a second disease-causing mutant with alanine tract expansion. We therefore investigated the biochemical properties of the mutant RUNX2 (+3Ala), which contains 20 alanine residues in the polyalanine tract. When transfected in COS7 cells, RUNX2 (+3Ala) formed intracellular ubiquitinated aggregates after 24h, and exerted a dominant negative effect in vitro . At 24h after gene transfection, whereas slight reduction was observed in RUNX2 (+10Ala), all of these mutants significantly activated osteoblast-specific element-2, a cis-acting sequence in the promoter of the RUNX2 target gene osteocalcin. The aggregation growth of RUNX2 (+3Ala) was clearly lower and slower than that of RUNX2 (+10Ala). Furthermore, we investigated several other RUNX2 variants with various alanine tract lengths, and found that the threshold for aggregation may be RUNX2 (+3Ala). We conclude that RUNX2 (+3Ala) is the cause of CCD in our current case, and that the accumulation of intracellular aggregates in vitro is related to the length of the alanine tract.
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    facet.materialart.
    Unknown
    Oxford University Press
    Publication Date: 2015-12-31
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2015-12-31
    Description: In Saccharomyces cerevisiae , disruption of genes by deletion allowed elucidation of the molecular mechanisms of a series of human diseases, such as in Wilson disease (WD). WD is a disorder of copper metabolism, due to inherited mutations in human copper-transporting ATPase ( ATP7B ). An orthologous gene is present in S. cerevisiae , CCC2 gene. Copper is required as a cofactor for a number of enzymes. In excess, however, it is toxic, potentially carcinogenic, leading to many pathological conditions via oxidatively generated DNA damage. Deficiency in ATP7B (human) or Ccc2 (yeast) causes accumulation of intracellular copper, favouring the generation of reactive oxygen species. Thus, it becomes important to study the relative importance of proteins involved in the repair of these lesions, such as Ogg1 . Herein, we addressed the influence Ogg1 repair in a ccc2 deficient strain of S. cerevisiae . We constructed ccc 2-disrupted strains from S. cerevisiae ( ogg 1 ccc2 and ccc 2), which were analysed in terms of viability and spontaneous mutator phenotype. We also investigated the impact of 4-nitroquinoline-1-oxide (4-NQO) on nuclear DNA damage and on the stability of mitochondrial DNA. The results indicated a synergistic effect on spontaneous mutagenesis upon OGG1 and CCC2 double inactivation, placing 8-oxoguanine as a strong lesion-candidate at the origin of spontaneous mutations. The ccc2 mutant was more sensitive to cell killing and to mutagenesis upon 4-NQO challenge than the other studied strains. However, Ogg1 repair of exogenous-induced DNA damage revealed to be toxic and mutagenic to ccc2 deficient cells, which can be due to a detrimental action of Ogg1 on DNA lesions induced in ccc2 cells. Altogether, our results point to a critical and ambivalent role of BER mediated by Ogg1 in the maintenance of genomic stability in eukaryotes deficient in CCC2 gene.
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    facet.materialart.
    Unknown
    Oxford University Press
    Publication Date: 2015-12-27
    Print ISSN: 0959-6658
    Electronic ISSN: 1460-2423
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2015-12-27
    Description: The role of aberrant protein modifications in cancer and its diagnosis have emerged as a promising research field. Nonenzymatic glyco-oxidation of proteins under oxidative stress has been associated with carcinogenesis through advanced glycation end products (AGE)–receptors for advanced glycation end products (RAGE) axis. Modified proteins that are immunogenic and stimulate cellular and humoral immune responses are being studied to develop early detection markers of cancer. This study has probed the structural alternations; leading to the formation of adducts and aggregates, in histone H2A upon in vitro modification by methylglyoxal (MG). The immunogenicity of modified histone H2A and its binding with cancer autoantibodies was also assessed. MG induced lysine side chain modifications, blocking of free amino groups and the formation of condensed cross structures in histone H2A; and its effect was inhibited by carbonyl scavengers. It led to the adduct formation and generation of N -epsilon-(carboxyethyl)lysine (CEL) and its decomposition forms as revealed by Matrix-assisted laser desorption ionization–mass spectrometry, high-performance liquid chromatography and LC–MS. MG-H2A showed amorphous aggregate formation under electron microscopy and altered binding with DNA in circular dichroism studies. The modified histone elicited high titer immunogen-specific antibodies in rabbits when compared with the native, thus pointing toward the generation of neo-epitopes in MG-H2A. The autoantibodies derived from cancer patients exhibited enhanced binding with MG-H2A as compared with the native histone in enzyme-linked immunosorbent assay and gel retardation assay. This reflects sharing of epitopes on MG-H2A and histones in cancer patients. The neo-epitopes on H2A may be responsible for induction and elevated levels of antibodies in cancer patients. Thus, MG-H2A may be considered as potential antigenic candidate for auto-immune response in cancer.
    Print ISSN: 0959-6658
    Electronic ISSN: 1460-2423
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2015-12-27
    Description: E-cadherin is often dysregulated in aggressive lung cancer, the mechanism of which cannot always be explained at the level of transcription. In 66 patients with lung cancer, immunohistochemical staining demonstrated that co-localization of E-cadherin and core fucose by Lens culinaris agglutinin was significantly less extensive in tumor than in nontumor tissue. Through gain and loss of fucosylation experiments in the giant lung carcinoma cell lines 95C and 95D, our results revealed that E-cadherin core fucosylation in 95C cells overexpressing α-1, 6-fucosyltransferase (Fut8) inhibited Fut8-95C cell migration, whereas knockdown of Fut8 in 95D cells enhanced migration of short-interfering RNA-targeting Fut8 (siFut8)-95D cells. The level of active Src (phosphorylated Src [Y416]) was significantly reduced in Fut8-95C cells, but elevated in siFut8-95D cells. In protein complexes immunoprecipitated from Fut8-95C cell lysates with anti-E-cadherin, less phosphorylated Src (Y416) and more β-catenin were observed, but immunoprecipitates from siFut8-95D cells, containing less core fucosylated E-cadherin, contained an elevated level of phospho-Src Y416. In Fut8-95C cells, phosphorylation of Akt (Y315, Y326) and GSK-3β (S9) was significantly reduced, but β-catenin (S37) phosphorylation was enhanced. Expression of N-cadherin and Snail1 was also reduced in Fut8-95C cells, but significantly increased in siFut8-95D cells. Intriguingly, when Src kinase activity was inhibited by treatment of cells with PP2 and SU6656, regulation of N-cadherin, Snail1 and cell migration by E-cadherin core fucosylation was abrogated in both Fut8-95C and siFut8-95D cells. Therefore, posttranslational modification of E-cadherin by less core fucosylation recruited and activated Src, and induced an epithelial–mesenchymal transition-like process in lung cancer cells.
    Print ISSN: 0959-6658
    Electronic ISSN: 1460-2423
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2015-12-27
    Description: Statins, which specifically inhibit HMG Co-A reductase, the rate-limiting step of cholesterol biosynthesis, are widely prescribed to reduce serum cholesterol and cardiac risk, but many other effects are seen. We now show an effect of these drugs to induce profound changes in the step-wise synthesis of glycosphingolipids (GSLs) in the Golgi. Glucosylceramide (GlcCer) was increased several-fold in all cell lines tested, demonstrating a widespread effect. Additionally, de novo or elevated lactotriaosylceramide (Lc3Cer; GlcNAcβ1-3Galβ1-4GlcCer) synthesis was observed in 70%. Western blot showed that GlcCer synthase (GCS) was elevated by statins, and GCS and Lc3Cer synthase (Lc3S) activities were increased; however, transcript was elevated for Lc3S only. Supplementation with the isoprenoid precursor, geranylgeranyl pyrophosphate (GGPP), a downstream product of HMG Co-A reductase, reversed statin-induced glycosyltransferase and GSL elevation. The Rab geranylgeranyl transferase inhibitor 3-PEHPC, but not specific inhibitors of farnesyl transferase, or geranylgeranyl transferase I, was sufficient to replicate statin-induced GlcCer and Lc3Cer synthesis, supporting a Rab prenylation-dependent mechanism. While total cholesterol was unaffected, the trans-Golgi network (TGN) cholesterol pool was dissipated and medial Golgi GCS partially relocated by statins. GSL-dependent vesicular retrograde transport of Verotoxin and cholera toxin to the Golgi/endoplasmic reticulum were blocked after statin or 3-PEHPC treatment, suggesting aberrant, prenylation-dependent vesicular traffic as a basis of glycosyltransferase increase and GSL remodeling. These in vitro studies indicate a previously unreported link between Rab prenylation and regulation of GCS activity and GlcCer metabolism.
    Print ISSN: 0959-6658
    Electronic ISSN: 1460-2423
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2015-12-27
    Description: Galectin-3 is a ubiquitous lectin exerting multiple cellular functions such as RNA splicing, protein trafficking and apoptosis. Its expression is positively correlated with the poor prognosis in lung cancer patients. Galectin-3 can promote cancer progression through its effects on cell proliferation, cell survival or cancer metastasis. However, the role of galectin-3 in the regulation of cancer stem-like cells (CSCs) is still unclear. Here, we investigated the hypothesis that galectin-3 might regulate lung CSCs via the EGF receptor (EGFR) signaling pathway. In our study, galectin-3 facilitated EGFR activation and enhanced the sphere formation activity of lung cancer cells. Furthermore, galectin-3 promoted Sox2 expression in an EGFR activation-dependent manner; importantly, forced expression of Sox2 blunted the effect of galectin-3 knockdown on lung cancer sphere formation ability. These results suggest that galectin-3 promotes EGFR activation leading to the upregulation of Sox2 expression and lung CSCs properties. Moreover, we showed that the carbohydrate-binding activity of galectin-3 was important for the regulation of EGFR activation, Sox2 expression and sphere formation. We have recently reported that c-Myc is a transcriptional activator of Sox2. We further found that galectin-3 enhanced c-Myc protein stability leading to increased c-Myc binding to the Sox2 gene promoter. We also examined the effect of the stemness factors, Oct4, Nanog and Sox2 on the expression of galectin-3. We found that Oct4 enhanced galectin-3 expression. Our results together suggest that galectin-3 enhances lung cancer stemness through the EGFR/c-Myc/Sox2 axis; Oct4, in turn, promotes galectin-3 expression, forming a positive regulatory loop in lung CSCs.
    Print ISSN: 0959-6658
    Electronic ISSN: 1460-2423
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2015-12-27
    Description: β-1,2-Linked mannosides are expressed on numerous cell-wall glycoconjugates of the opportunistic pathogen yeast Candida albicans . Several studies evidenced their implication in the host–pathogen interaction and virulence mechanisms. In the present study, we characterized the in vitro activity of CaBmt3, a β-1,2-mannosyltransferase involved in the elongation of β-1,2-oligomannosides oligomers onto the cell-wall polymannosylated N -glycans. A recombinant soluble enzyme Bmt3p was produced in Pichia pastoris and its enzyme activity was investigated using natural and synthetic oligomannosides as potential acceptor substrates. Bmt3p was shown to exhibit an exquisite enzymatic specificity by adding a single terminal β-mannosyl residue to α-1,2-linked oligomannosides capped by a Manβ1–2Man motif. Furthermore, we demonstrated that the previously identified CaBmt1 and CaBmt3 efficiently act together to generate Manβ1-2Manβ1–2[Manα1–2] n sequence from α-1,2-linked oligomannosides onto exogenous and endogenous substrates.
    Print ISSN: 0959-6658
    Electronic ISSN: 1460-2423
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2015-06-17
    Description: Formaldehyde (FA) is a commonly used chemical in anatomy and pathology laboratories as a tissue preservative and fixative. Because of its sensitising properties, irritating effects and cancer implication, FA accounts probably for the most important chemical-exposure hazard concerning this professional group. Evidence for genotoxic effects and carcinogenic properties in humans is insufficient and conflicting, particularly in regard to the ability of inhaled FA to induce toxicity on other cells besides first contact tissues, such as buccal and nasal cells. To evaluate the effects of exposure to FA in human peripheral blood lymphocytes, a group of 84 anatomy pathology laboratory workers exposed occupationally to FA and 87 control subjects were tested for chromosomal aberrations (CAs) and DNA damage (comet assay). The level of exposure to FA in the workplace air was evaluated. The association between genotoxicity biomarkers and polymorphic genes of xenobiotic-metabolising and DNA repair enzymes were also assessed. The estimated mean level of FA exposure was 0.38±0.03 ppm. All cytogenetic endpoints assessed by CAs test and comet assay % tail DNA (%TDNA) were significantly higher in FA-exposed workers compared with controls. Regarding the effect of susceptibility biomarkers, results suggest that polymorphisms in CYP2E1 and GSTP1 metabolic genes, as well as, XRCC1 and PARP1 polymorphic genes involved in DNA repair pathways are associated with higher genetic damage in FA-exposed subjects. Data obtained in this study show a potential health risk situation of anatomy pathology laboratory workers exposed to FA (0.38 ppm). Implementation of security and hygiene measures may be crucial to decrease risk. The obtained information may also provide new important data to be used by health care programs and by governmental agencies responsible for occupational health and safety.
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    facet.materialart.
    Unknown
    Oxford University Press
    Publication Date: 2015-06-17
    Description: Nitrous oxide (N 2 O) has been widely used as a dental and surgical anaesthetic for over 150 years. However, results from a recent study suggested that increased DNA damage was seen in lymphocytes from surgical patients and this led to its continued clinical use to be questioned. The data can be challenged on technical grounds and must be considered with other studies in order to assess any possible risk. There are other studies indicating that N 2 O has weak genotoxicity in man, but these are confused by exposure of the populations to other anaesthetic gases including isoflurane and sevoflurane, both of which have also been reported to increase DNA damage. It should be noted that the suggested genotoxic mechanisms are all indirect, including folate deficiency, oxidative stress and homocysteine toxicity. Further, results from in vitro studies indicate that N 2 O has no direct DNA reactivity as negative results were obtained in a bacterial mutation (Ames) test and an assay for mutation at the hprt locus in Chinese hamster lung cells. Although not performed to definitive study designs, no evidence of carcinogenicity was seen in two long-term tests in mice and another in rats. Although there is some evidence that N 2 O is weakly genotoxic in humans, this appears to be similar to that reported for isoflurane and sevoflurane and all the postulated mechanisms have clear thresholds with no evidence of direct DNA reactivity. Because any potential genotoxic mechanism would have a threshold, it seems reasonable to conclude that neither occasional high exposure to patients as an anaesthetic nor low-level exposure to staff within published recommended exposure limits presents any significant carcinogenic risk.
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2015-06-17
    Description: A high risk of neoplastic transformation of nasal and paranasal sinuses mucosa is related to the occupational exposure to wood dust. However, the role of occupational exposures in the aetiology of the airway cancers remains largely unknown. Here, an in vitro model was performed to investigate the carcinogenic effect of wood dusts. Human bronchial epithelial cells were incubated with hard and soft wood dusts and the DNA damage and response to DNA damage evaluated. Wood dust exposure induced accumulation of oxidised DNA bases, which was associated with a delay in DNA repair activity. By exposing cells to wood dust at a prolonged time, wood dust-initiated cells were obtained. Initiated-cells were able to form colonies in soft agar, and to induce blood vessel formation. These cells showed extensive autophagy, reduced DNA repair, which was associated with reduced OGG1 expression and oxidised DNA base accumulation. These events were found related to the activation of EGFR/AKT/mTOR pathway, through phosphorylation and subsequent inactivation of tuberin. The persistence in the tissue of wood dusts, their repetitious binding with EGFR may continually trigger the activation switch, leading to chronic down-regulation of genes involved in DNA repair, leading to cell transformation and proliferation.
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2015-06-17
    Description: We investigated the inflammatory response, acute phase response and genotoxic effect of diesel exhaust particles (DEPs, NIST1650b) following a single intratracheal instillation. C57BL/6J BomTac mice received 18, 54 or 162 µg/mouse and were killed 1, 3 and 28 days post-exposure. Vehicle controls and the benchmark particle carbon black (CB, Printex 90; 162 µg/mouse) were tested alongside for comparison. The cellular composition and protein concentration were determined in bronchoalveolar lavage (BAL) fluid as markers for an inflammatory response. Pulmonary and systemic genotoxicity was analysed by the alkaline comet assay as DNA strand breaks in BAL cells, lung and liver tissue. The pulmonary acute phase response was analysed by Saa3 mRNA levels by real-time quantitative polymerase chain reaction. Instillation of DEP induced a strong neutrophil influx 1 and 3 days, but not 28 days post-exposure. Saa3 mRNA levels were increased at all time point for the highest dose and 28 days post-exposure for the middle dose. DEP increased levels of DNA strand breaks in lung tissue for all doses 1 day post-exposure and after 28 days for mid- and high-dose groups. Pulmonary exposure to DEP induced transient inflammation but long-lasting pulmonary acute phase response as well as genotoxicity in lung tissue 28 days post-exposure. The observed long-term pulmonary genotoxicity by DEP was less than the previously observed genotoxicity for CB using identical experimental set-up.
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2015-06-17
    Description: As a toxic secondary metabolite of Aspergillus species, Aflatoxin B1 (AFB1) is a major food and feed contaminant in tropical and sub-tropical regions with high temperature and humidity. It has been reported to be toxic to the female reproductive system in laboratory and domestic animals. In the present study, the influence of acute exposure to AFB1 (10 and 50 μM, 44h) on porcine oocyte maturation and its possible mechanism were investigated. The maturation rates of oocytes decreased significantly in the presence of 50 μM of AFB1. Cell cycle analysis showed that most oocytes were arrested at germinal vesicle breakdown or meosis I stage. However, actin assembly, spindle structure and chromosome alignment were not disrupted after exposure to 50 μM AFB1. Further study showed that DNA methylation levels increased in treated oocytes (50 μM). Histone methylation levels were also analysed after treatment (50 μM): H3K27me3 and H3K4me2 levels decreased, whereas H3K9me3 level increased, indicating that epigenetic modification was affected. AFB1 treatment (50 μM) also induced oxidative stress and further led to autophagy, as shown by accumulation of reactive oxygen species, up-regulated LC3 protein expression and increased mRNA levels of ATG3 , ATG5 and ATG7 . Annexin V-FITC staining assay revealed that AFB1 treatment (50 μM) resulted in oocyte early apoptosis, which was confirmed by increased Bak , Bax , Bcl-xl mRNA levels. Collectively, our results suggest that AFB1 disrupts porcine oocyte maturation through changing epigenetic modifications as well as inducing oxidative stress, excessive autophagy and apoptosis.
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2015-06-17
    Description: Epidemiological studies have demonstrated a close association between infection with Helicobacter pylori ( H.pylori ) and the development of gastric carcinoma. Chronic H.pylori infection increases the frequency of mutation in gastric epithelial cells. However, the mechanism by which infection of H.pylori leads to mutation in gastric epithelial cells is unclear. We suspected that components in H.pylori may be related to the mutagenic response associated with DNA alkylation, and could be detected with the Ames test using a more sensitive strain for alkylating agents. Our investigation revealed that an extract of H.pylori was mutagenic in the Ames test with Salmonella typhimurium YG7108, which is deficient in the DNA repair of O 6 -methylguanine. The extract of H.pylori may contain methylating or alkylating agents, which might induce O 6 -alkylguanine in DNA. Mutagenicity of the alkylating agents N -methyl- N -nitrosourea (MNU) and N -methyl- N '-nitro- N -nitrosoguanidine in the Ames test with S.typhimurium TA1535 was enhanced significantly in the presence of the extract of H.pylori. The tested extracts of H.pylori resulted in a significant induction of micronuclei in human-derived lymphoblastoid cells. Heat instability and dialysis resistance of the extracts of H.pylori suggest that the mutagenic component in the extracts of H.pylori is a heat-unstable large molecule or a heat-labile small molecule strongly attached or adsorbed to a large molecule. Proteins in the extracts of H.pylori were subsequently fractionated using ammonium sulphate precipitation. However, all fractions expressed enhancing effects toward MNU mutagenicity. These results suggest the mutagenic component is a small molecule that is absorbed into proteins in the extract of H.pylori , which resist dialysis. Continuous and chronic exposure of gastric epithelial cells to the alkylative mutagenic component from H.pylori chronically infected in the stomach might be a causal factor in the gastric carcinogenesis associated with H.pylori .
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2015-06-17
    Description: The buccal micronucleus cytome (BMCyt) assay is a minimally invasive approach for measuring DNA damage, cell proliferation, cell differentiation and cell death in exfoliated buccal cells. The main limitation for its use is the lack of knowledge about inter- and intra-laboratory variability in scoring micronuclei and other end points included in the cytome approach. In order to identify the main sources of variability across the BMCyt biomarkers, a scoring exercise was carried out between three experienced laboratories using the same set of slides and an identical set of detailed scoring criteria and associated images for the different end points. Single batches of slides were prepared from pooled samples of four groups of subjects characterised by different frequencies of cell types and micronuclei, namely Down syndrome patients, head and neck cancer patients undergoing radiotherapy and two age- and gender-matched control groups. A good agreement among the laboratories in the identification of normal differentiated cells and of micronuclei was obtained. A 3-fold and 20-fold increase in the frequency of micronucleated cells and micronuclei in differentiated cells of Down syndrome patients and in cancer patients, respectively, compared to matched controls, was a consistent result in the three laboratories. The scores of other cell types and nuclear anomalies, such as basal, binucleated, condensed chromatin and karyorrhectic cells showed significant disagreement between and within laboratories indicating that their evaluation using the current visual scoring protocol does not yield robust results for these parameters. The guidelines for BMCyt assay application could be improved by combining the anomalies associated with cell death (condensed chromatin and karyorrhectic cells) in a single category and by defining more stringent criteria in classifying basal cell, binucleated cells and buds.
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2015-06-17
    Description: Deregulation of Wnt/β-catenin signalling plays an important role in the pathogenesis of colorectal cancer. Interestingly, this pathway has been recently implicated in transcriptional control of cytochrome P450 (CYP) family 1 enzymes, which are responsible for bioactivation of a number of dietary carcinogens. In the present study, we investigated the impact of inhibition of Wnt/β-catenin pathway on metabolism and genotoxicity of benzo[a]pyrene (BaP), a highly mutagenic polycyclic aromatic hydrocarbon and an efficient ligand of the aryl hydrocarbon receptor, which is known as a primary regulator of CYP1 expression, in cellular models derived from colorectal tumours. We observed that a synthetic inhibitor of β-catenin, JW74, significantly increased formation of BaP-induced DNA adducts in both colorectal adenoma and carcinoma-derived cell lines. Using the short interfering RNA (siRNA) targeting β-catenin, we then found that β-catenin knockdown in HCT116 colon carcinoma cells significantly enhanced formation of covalent DNA adducts by BaP and histone H2AX phosphorylation, as detected by 32 P-postlabelling technique and immunocytochemistry, respectively, and it also induced expression of DNA damage response genes, such as CDKN1A or DDB2 . The increased formation of DNA adducts formed by BaP upon β-catenin knockdown corresponded with enhanced production of major BaP metabolites, as well as with an increased expression/activity of CYP1 enzymes. Finally, using siRNA-mediated knockdown of CYP1A1, we confirmed that this enzyme plays a major role in formation of BaP-induced DNA adducts in HCT116 cells. Taken together, the present results indicated that the siRNA-mediated inhibition of β-catenin signalling, which is aberrantly activated in a majority of colorectal cancers, modulated genotoxicity of dietary carcinogen BaP in colon cell model in vitro , via a mechanism involving up-regulation of CYP1 expression and activity.
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2015-08-28
    Description: The epidermal growth factor (EGF)-like repeat is a common, evolutionarily conserved motif found in secreted proteins and the extracellular domain of transmembrane proteins. EGF repeats harbor six cysteine residues which form three disulfide bonds and help generate the three-dimensional structure of the EGF repeat. A subset of EGF repeats harbor consensus sequences for the addition of one or more specific O -glycans, which are initiated by O -glucose, O -fucose or O - N -acetylglucosamine. These glycans are relatively rare compared to mucin-type O -glycans. However, genetic experiments in model organisms and cell-based assays indicate that at least some of the glycosyltransferases involved in the addition of O -glycans to EGF repeats play important roles in animal development. These studies, combined with state-of-the-art biochemical and structural biology experiments have started to provide an in-depth picture of how these glycans regulate the function of the proteins to which they are linked. In this review, we will discuss the biological roles assigned to EGF repeat O -glycans and the corresponding glycosyltransferases. Since Notch receptors are the best studied proteins with biologically-relevant O -glycans on EGF repeats, a significant part of this review is devoted to the role of these glycans in the regulation of the Notch signaling pathway. We also discuss recently identified proteins other than Notch which depend on EGF repeat glycans to function properly. Several glycosyltransferases involved in the addition or elongation of O -glycans on EGF repeats are mutated in human diseases. Therefore, mechanistic understanding of the functional roles of these carbohydrate modifications is of interest from both basic science and translational perspectives.
    Print ISSN: 0959-6658
    Electronic ISSN: 1460-2423
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    facet.materialart.
    Unknown
    Oxford University Press
    Publication Date: 2015-08-28
    Print ISSN: 0959-6658
    Electronic ISSN: 1460-2423
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2015-07-30
    Description: The sialyl Lewis a and x (sLe a/x ) antigens frequently displayed on the surface of tumor cells are involved in metastasis. Their synthesis has been attributed to altered expression of selective glycosyltransferases. Identification of these glycosyltransferases and the glycoproteins that carry these carbohydrate antigens should help advance our understanding of selectin-mediated cancer metastasis. In this study, quantitative real-time polymerase chain reaction analysis coupled with in situ proximity ligation assay and small interference RNA treatment shows involvement of β3galactosyltransferase-V in the synthesis of MUC16-associated sLe a in H292 cells. Also, α3fucosyltransferase-V, which is absent in BEAS-2B human immortalized bronchial epithelial cells and A549 lung carcinoma cells, participates in the synthesis of MUC1-associated sLe x in CFT1 human immortalized bronchial epithelial cells and H292 lung carcinoma cells. Neither selectin ligand is found on MUC1 in BEAS-2B and A549 cells. Knockdown of either enzyme suppresses migration, and selectin tethering and rolling properties of H292 cells under dynamic flow as determined by wound healing and parallel plate flow chamber assays, respectively. These results provide insights into how the synthesis of mucin-associated selectin ligands and the metastatic properties of cancer cells can be regulated by selective glycosyltransferases that work on mucins. They may help develop novel anticancer drugs.
    Print ISSN: 0959-6658
    Electronic ISSN: 1460-2423
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    facet.materialart.
    Unknown
    Oxford University Press
    Publication Date: 2015-07-30
    Print ISSN: 0959-6658
    Electronic ISSN: 1460-2423
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2015-07-30
    Description: Chondroitin sulfate E (CSE) is a polysaccharide containing mainly disaccharide units of d -glucuronic acid (GlcA) and 4,6- O -disulfated N -acetyl- d -galactosamine (GalNAc) residues (E-unit) in the amount of ~60%. CSE is involved in many biological and pathological processes. In this study, we established new monoclonal antibodies, termed E-12C and E-18H, by using CSE that contained more than 70% of E-units as an immunogen. These antibodies recognized CSE but not other CSs isomers or dermatan sulfate (DS). We evaluated the reactivities of the antibodies to 6- O -sulfated CSA (6S-CSA) and DS (6S-DS) that possessed ~60% of GalNAc (4S, 6S) moieties in their structures. Neither of the antibodies reacted with 6S-DS. The antibodies strictly distinguished the structural difference of GlcA and l -iduronic acid in the polysaccharide. Binding affinities of the antibodies were determined by a surface plasmon resonance assay using CSE and 6S-CSA. The binding affinities were strongly associated with the molecular weight of CSE and the E-unit content of 6S-CSA. Moreover, we demonstrated that the antibodies are applicable to histochemical analysis. In conclusion, the new anti-CSE monoclonal antibodies specifically recognize the E-unit of CSE. The antibodies will become useful tools for the investigation of the biological and pathological significance of CSE.
    Print ISSN: 0959-6658
    Electronic ISSN: 1460-2423
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2015-07-30
    Description: D-Galactose-binding lectin from the octocoral, Sinularia lochmodes (SLL-2), distributes densely on the cell surface of microalgae, Symbiodinium sp., an endosymbiotic dinoflagellate of the coral, and is also shown to be a chemical cue that transforms dinoflagellate into a non-motile (coccoid) symbiotic state. SLL-2 binds with high affinity to the Forssman antigen ( N -acetylgalactosamine(GalNAc)α1-3GalNAcβ1-3Galα1-4Galβ1-4Glc-ceramide), and the presence of Forssman antigen-like sugar on the surface of Symbiodinium CS-156 cells was previously confirmed. Here we report the crystal structures of SLL-2 and its GalNAc complex as the first crystal structures of a lectin involved in the symbiosis between coral and dinoflagellate. N -Linked sugar chains and a galactose derivative binding site common to H-type lectins were observed in each monomer of the hexameric SLL-2 crystal structure. In addition, unique sugar-binding site-like regions were identified at the top and bottom of the hexameric SLL-2 structure. These structural features suggest a possible binding mode between SLL-2 and Forssman antigen-like pentasaccharide.
    Print ISSN: 0959-6658
    Electronic ISSN: 1460-2423
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2016-08-21
    Description: Arsenic-induced health effects may be associated with critically shortened telomeres. However, few data are available on the effects of arsenic exposure on telomere length. The aim of this study was to investigate the effects of chronic arsenic exposure on leukocyte telomere length (LTL) as well as the contribution of common polymorphisms in genes implicated in arsenic metabolism (GSTT1 and GSTM1) and DNA repair (hOGG1 and XRCC1). A group of 241 healthy subjects was enrolled from four areas of Italy known to be affected by natural or anthropogenic arsenic pollution. Urine samples were tested for inorganic As (iAs), monomethylarsinic (MMA) and dimethylarsinic acid (DMA). LTL was evaluated by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). Genotyping was carried out by PCR-RFLP on leukocyte DNA. In multiple linear regression analysis, LTL was significantly and inversely correlated with age (β = –0.231, P = 0.006) and showed a certain trend toward significance with iAs urinary concentration (log 10 iAs, β = –0.106, P = 0.08). The genotype distribution showed significant associations between GSTT1 and the As concentration (log 10 iAs, P = 0.01) and metabolite patterns (log 10 DMA, P = 0.05) in the urine. However, GST genes did not interact with arsenic exposure in the modulation of LTL. Conversely, the combined presence of a higher level of iAs + MMA + DMA ≥ 19.3 μg/l ( F = 6.0, P interaction = 0.01), Asi ≥ 3.86 ( F = 3.9, P interaction = 0.04) μg/l, iAs + MMA + DMA ≥ 15 μg/l ( F = 4.2, P interaction = 0.04) and hOGG1 Cys allele was associated with a significantly lower LTL. An interaction between XRCC1 Arg399Gln and arsenic exposure was also observed (all P interaction = 0.04). These findings suggest that telomere shortening may represent a mechanism that contributes to arsenic-related disease. The interaction of hOGG1 and XRCC1 DNA repair polymorphisms and exposure enhances telomeric DNA damage. Future studies are warranted to understand better the epidemiologic impact of arsenic on telomere function as well as to identify the subgroups of exposed subjects who need better health surveillance.
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2016-08-21
    Description: The comet assay is frequently used in human biomonitoring for the detection of exposure to genotoxic agents. Peripheral blood samples are most frequently used and tested either as whole blood or after isolation of lymphocytes (i.e. peripheral blood mononuclear cells, PBMC). To investigate a potential impact of lymphocyte isolation on induced DNA damage in human blood samples, we exposed blood ex vivo to mutagens with different modes of genotoxic action. The comet assay was performed either directly with whole blood at the end of the exposure period or with lymphocytes isolated directly after exposure. In addition to the recommended standard protocol for lymphocyte isolation, a shortened protocol was established to optimise the isolation procedure. The results indicate that the effects of induced DNA strand breaks and alkali-labile sites induced by ionising radiation and alkylants, respectively, are significantly reduced in isolated lymphocytes. In contrast, oxidative DNA base damage (induced by potassium bromate) and stable bulky adducts (induced by benzo[ a ]pyrene-7,8-dihydrodiol-9,10-epoxide; BPDE) seem to be less affected. Our findings suggest that in vivo -induced DNA damage might also be reduced in isolated lymphocytes in comparison with the whole blood depending of the types of DNA damage induced. Because only small genotoxic effects can generally be expected in human biomonitoring studies with the comet assay after occupational and environmental exposure to genotoxic agents, any loss might be relevant and should be avoided. The possibility of such effects and their potential impact on variability of comet assay results in human biomonitoring should be considered when performing or evaluating such kind of studies.
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...