ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (8,121)
  • Oxford University Press  (8,121)
  • Monthly Notices of the Royal Astronomical Society / Letters  (720)
  • Journal of Petrology  (514)
  • 2319
  • 55697
  • 1
    Publication Date: 2020-08-27
    Description: We present CO observations towards a sample of six H i-rich Ultradiffuse galaxies (UDGs) as well as one UDG (VLSB-A) in the Virgo Cluster with the Institut de RadioAstronomie Millimétrique (IRAM) 30-m telescope. CO J = 1–0 is marginally detected at 4σ level in AGC 122966, as the first detection of CO emission in UDGs. We estimate upper limits of molecular mass in other galaxies from the non-detection of CO lines. These upper limits and the marginal CO detection in AGC 122966 indicate low mass ratios between molecular and atomic gas masses. With the star formation efficiency derived from the molecular gas, we suggest that the inefficiency of star formation in such H i-rich UDGs is likely caused by the low efficiency in converting molecules from atomic gas, instead of low efficiency in forming stars from molecular gas.
    Print ISSN: 1745-3925
    Electronic ISSN: 1745-3933
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-07-24
    Description: Transformation of refractory cratonic mantle into more fertile lithologies is the key to the fate of cratonic lithosphere. This process has been extensively studied in the eastern North China Craton (NCC) while that of its western part is still poorly constrained. A comprehensive study of newly-found pyroxenite xenoliths from the Langshan area, in the northwestern part of this craton is integrated with a regional synthesis of pyroxenite and peridotite xenoliths to constrain the petrogenesis of the pyroxenites and provide an overview of the processes involved in the modification of the deep lithosphere. The Langshan pyroxenites are of two types, high-Mg# [Mg2+/(Mg2++Fe2+)*100 = ∼ 90, atomic ratios] olivine-bearing websterites with high equilibration temperatures (880 ∼ 970 oC), and low-Mg# (70 ∼ 80) plagioclase-bearing websterites with low equilibration temperatures (550 ∼ 835 oC). The high-Mg# pyroxenites show trade-off abundances of olivine and orthopyroxene, highly depleted bulk Sr-Nd (ƐNd = +11.41, 87Sr/86Sr = ∼0.7034) and low clinopyroxene Sr isotopic ratios (mean 87Sr/86Sr = ∼0.703). They are considered to reflect the reaction of mantle peridotites with silica-rich silicate melts derived from the convective mantle. Their depletion in fusible components (e.g., FeO, TiO2 and Na2O) and progressive exhaustion of incompatible elements suggest melt extraction after their formation. The low-Mg# pyroxenites display layered structures, convex-upward rare earth element patterns, moderately enriched bulk Sr-Nd isotopic ratios (ƐNd = -14.20 ∼ -16.74, 87Sr/86Sr = 0.7070 ∼ 0.7078) and variable clinopyroxene Sr-isotope ratios (87Sr/86Sr = 0.706-0.711). They are interpreted to be crustal cumulates from hypersthene-normative melts generated by interaction between the asthenosphere and heterogeneous lithospheric mantle. Combined with studies on regional peridotite xenoliths, it is shown that the thinning and refertilization of the lithospheric mantle was accompanied by crustal rejuvenation and that such processes occurred ubiquitously in the northwestern part of the NCC. A geodynamic model is proposed for the evolution of the deep lithosphere, which includes long-term mass transfer through a mantle wedge into the deep crust from the Paleozoic to the Cenozoic, triggered by subduction of the Paleo-Asian ocean and the Late Mesozoic lithospheric extension of eastern Asia.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-07-10
    Description: The orogenic development after the continental collision between Laurussia and Gondwana, led to two contrasting associations of mantle-derived magmatic rocks on the territory of the Bohemian Massif: (i) a 340–310 Ma lamprophyre-lamproite orogenic association and (ii) a 300–275 Ma lamprophyre association of anorogenic affinity. Major types of potassic mantle-derived magmatic rocks recognised in the orogenic and anorogenic associations include: (i) calc-alkaline to alkaline lamprophyres, (ii) alkaline “orthopyroxene minettes” (and geochemically related rocks), and (iii) peralkaline lamproites. These three types significantly differ with respect to mineral, whole-rock and Sr–Nd–Pb–Li isotope composition, and spatial distribution. The calc-alkaline lamprophyres occur throughout the entire Saxo-Thuringian and Moldanubian zones, whereas the different types of malte-derived potassic rocks are spatially restricted to particular zones. Rocks of the Carboniferous lamprophyre-lamproite orogenic association are characterised by variable negative εNd(i) and variably radiogenic Sr(i), whereas the rocks of the Permian lamprophyre association of anorogenic affinity are characterised by positive εNd(i) and relatively young depleted-mantle Nd-model ages reflecting increasing input from upwelling asthenospheric mantle. The small variation in the Pb isotopic composition of post-collisional potassic mantle-derived magmatic rocks (of both the orogenic and anorogenic series) implies that the Pb budget of the mantle beneath the Bohemian Massif is dominated by the same crust-derived material, which itself may include material derived from several sources. The source rocks of “orthopyroxene minettes” are characterised by isotopically light (“eclogitic”) Li and strongly radiogenic (crustal) Sr and may have been metasomatised by high-pressure fluids along the edge of a subduction zone. In contrast, the strongly Al2O3 and CaO depleted mantle source of the lamproites is characterised by isotopically heavy Li and high SiO2 and extreme K2O contents. This mantle source may have been metasomatised predominantly by melts. The mantle source of the lamprophyres may have undergone metasomatism by both fluids and melts.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-07-16
    Description: We find that the minor axes of the ultra-diffuse galaxies (UDGs) in Abell 2634 tend to be aligned with the major axis of the central dominant galaxy, at a $gtrsim 95{{ m per cent}}$ confidence level. This alignment is produced by the bright UDGs with the absolute magnitudes Mr 〈 −15.3 mag, and outer-region UDGs with R 〉 0.5R200. The alignment signal implies that these bright, outer-region UDGs are very likely to acquire their angular momenta from the vortices around the large-scale filament before they were accreted into A2634, and form their extended stellar bodies outside of the cluster; in this scenario, the orientations of their primordial angular momenta, which are roughly shown by their minor axes on the images, should tend to be parallel to the elongation of the large-scale filament. When these UDGs fell into the unrelaxed cluster A2634 along the filament, they could still preserve their primordial alignment signal before violent relaxation and encounters. These bright, outer-region UDGs in A2634 are very unlikely to be the descendants of the high-surface-brightness dwarf progenitors under tidal interactions with the central dominant galaxy in the cluster environment. Our results indicate that the primordial alignment could be a useful probe of the origin of UDGs in large-scale structures.
    Print ISSN: 1745-3925
    Electronic ISSN: 1745-3933
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-07-11
    Description: We present a detailed analysis of the gaseous component of the Si K edge using high-resolution Chandra spectra of low-mass X-ray binaries. We fit the spectra with a modified version of the ISMabs model, including new photoabsorption cross-sections computed for all Si ionic species. We estimate column densities for Si i, Si ii, Si iii, Si xii, and Si xiii, which trace the warm, intermediate temperature, and hot phases of the Galactic interstellar medium. We find that the ionic fractions of the first two phases are similar. This may be due to the physical state of the plasma determined by the temperature or due to the presence of absorber material in the close vicinity of the sources. Our findings highlight the need for accurate modelling of the gaseous component before attempting to address the solid component.
    Print ISSN: 1745-3925
    Electronic ISSN: 1745-3933
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-07-14
    Description: The Lu–Hf isotope system and Sr–Nd–Hf–Os isotope systematics of mantle rocks are capable of unravelling the early processes in collision belts, especially in a hot subduction context where the Sm–Nd and U–Pb systems in crustal rocks are prone to resetting owing to high temperatures and interaction with melts during exhumation. To improve models of the Devonian–Carboniferous evolution of the Bohemian Massif, we investigated in detail mafic and ultramafic rocks (eclogite, pyroxenite, and peridotite) from the ultrahigh-pressure and ultrahigh-temperature Kutná Hora Crystalline Complex (KHCC: Úhrov, Bečváry, Doubrava, and Spačice localities). Petrography, multiphase solid inclusions, major and trace element compositions of rocks and minerals, and radiogenic isotopic data document contrasting sources and protoliths as well as effects of subduction-related processes for these rocks. The Úhrov peridotite has a depleted composition corresponding to the suboceanic asthenospheric mantle, whereas Bečváry and Doubrava peridotites represent lithospheric mantle that underwent melt refertilization by basaltic and SiO2-undersaturated melts, respectively. Multiphase solid inclusions enclosed in garnet from Úhrov and Bečváry peridotites represent trapped H2O ± CO2-bearing metasomatizing agents and Fe–Ti-rich melts. The KHCC eclogites either formed by high-pressure crystal accumulation from mantle-derived basaltic melts (Úhrov) or represent a fragment of mid-ocean ridge basalt-like gabbroic cumulate (Spačice) and crustal-derived material (Doubrava) both metamorphosed at high P–T conditions. The Lu–Hf age of 395 ± 23 Ma obtained for the Úhrov peridotite reflects garnet growth related to burial of the asthenospheric mantle during subduction of the oceanic slab. By contrast, Spačice and Doubrava eclogites yield younger Lu–Hf ages of ∼350 and 330 Ma, respectively, representing mixed ages as demonstrated by the strong granulite-facies overprint and trace element zoning in garnet grains. We propose a refined model for the Early Variscan evolution of the Bohemian Massif starting with the subduction of the oceanic crust (Saxothuringian ocean) and associated oceanic asthenospheric mantle (Úhrov) beneath the Teplá–Barrandian at ≥380 Ma, which was responsible for melt refertilization of the associated mantle wedge (Bečváry, Doubrava). This was followed by continental subduction (∼370–360 Ma?) accompanied by the oceanic slab break-off and incorporation of the upwelling asthenospheric mantle into the Moldanubian lithospheric mantle and subsequent coeval exhumation of mantle and crustal rocks at ∼350–330 Ma.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-07-11
    Description: The Changning–Menglian orogenic belt (CMOB) in the southeastern Tibetan Plateau is an important link between the Longmu Co–Shuanghu suture (LCSS) in the northern Tibetan Plateau and the Chiang Mai–Inthanon and Bentong–Raub sutures in Thailand and Peninsular Malaysia. These belts and sutures are generally regarded as containing the remnants of the oceanic crust of the Palaeo-Tethys that formed by seafloor spreading as a result of the separation of Gondwana- and Eurasia-derived blocks during the Middle Cambrian. In this paper we report the first discovery of abundant unaltered and retrograde eclogites that occur as irregular lenses and blocks in metasedimentary rocks of the CMOB, and these eclogites form an elongate and almost north–south-trending high-pressure (HP)–ultrahigh-pressure (UHP) metamorphic belt that is ∼200 km long and ∼50 km wide. The newly discovered phengite/talc/epidote–glaucophane eclogites, lawsonite–talc–phengite eclogites, dolomite/magnesite–kyanite eclogites and phengite–kyanite-bearing retrograde eclogites have enriched (E-) and normal mid-ocean ridge basalt (N-MORB)-like affinities and mainly positive as well as some negative whole-rock εNd values (–4·34 to +7·89), which suggest an enriched and depleted oceanic lithosphere source for their protoliths. Magmatic zircons separated from the epidote–glaucophane, magnesite–kyanite and (phengite–kyanite-bearing) retrograde eclogites gave protolith ages of 317–250 Ma, which fit well within the time frame of the opening of the Palaeo-Tethys during the Middle Cambrian and its closure during the Triassic. Abundant metamorphic zircons in the eclogites indicate a Triassic metamorphic event related to the subduction of the Palaeo-Tethys oceanic crust from 235 to 227 Ma. Taking into account previous isotopic age data, we now establish the periods of Early–Middle Triassic (246–227 Ma) and Late Triassic (222–209 Ma) as the ages of subduction and exhumation of the Palaeo-Tethyan oceanic crust, respectively. Thermodynamic modelling revealed that the eclogites record distinct HP–UHP peak metamorphic conditions of 23·0–25·5 kbar and 582–610 °C for the phengite–glaucophane eclogites, 24·0–25·5 kbar and 570–586 °C for the talc–glaucophane eclogites, 29·0–31·0 kbar and 675–712 °C for the dolomite–kyanite eclogites, and 30·0–32·0 kbar and 717–754 °C for the magnesite–kyanite eclogites. These P–T estimates and geochronological data indicate that the Palaeo-Tethys oceanic slab was subducted to different mantle depths from 75 km down to 95 km, forming distinct types of eclogite with a variety of peak eclogite-facies mineral assemblages. The eclogites consistently record clockwise metamorphic P–T–t paths characterized by a heating–compression prograde loop under a low geothermal gradient of 5–10 °C km–1, indicating the rapid subduction of cold oceanic crust at a rate of 4·5–6·0 km Ma–1, followed by isothermal or cooling–decompressive retrogression and exhumation at an average rate of 3·2–4·2 km Ma–1. The newly discovered eclogites of the CMOB with their signatures of ocean-crust subduction are petrologically, geochemically and geochronologically comparable with those of the LCSS, providing powerful support for the idea that a nearly 2000 km long HP–UHP eclogite belt extends from the northern Tibetan Plateau to the southeastern Tibetan Plateau, and that it represents the main boundary suture of the Palaeo-Tethyan domain. These results have far-reaching implications for the tectonic framework and complex metamorphic evolution of the Palaeo-Tethyan domain.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-07-11
    Description: Using state-of-the-art high-resolution fully GPU N-body simulations, we demonstrate for the first time that the infall of a dark matter-rich satellite naturally explains a present black hole offset by subparsecs in M31. Observational data of the tidal features provide stringent constraints on the initial conditions of our simulations. The heating of the central region of M31 by the satellite via dynamical friction entails a significant black hole offset after the first pericentric passage. After having reached its maximum offset, the massive black hole sinks towards the M31 centre due to dynamical friction and it is determined to be offset by subparsecs as derived by observations.
    Print ISSN: 1745-3925
    Electronic ISSN: 1745-3933
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-06-12
    Description: In two recent papers published in MNRAS, Namouni and Morais claimed evidence for the interstellar origin of some small Solar system bodies, including: (i) objects in retrograde co-orbital motion with the giant planets and (ii) the highly inclined Centaurs. Here, we discuss the flaws of those papers that invalidate the authors’ conclusions. Numerical simulations backwards in time are not representative of the past evolution of real bodies. Instead, these simulations are only useful as a means to quantify the short dynamical lifetime of the considered bodies and the fast decay of their population. In light of this fast decay, if the observed bodies were the survivors of populations of objects captured from interstellar space in the early Solar system, these populations should have been implausibly large (e.g. about 10 times the current main asteroid belt population for the retrograde co-orbital of Jupiter). More likely, the observed objects are just transient members of a population that is maintained in quasi-steady state by a continuous flux of objects from some parent reservoir in the distant Solar system. We identify in the Halley-type comets and the Oort cloud the most likely sources of retrograde co-orbitals and highly inclined Centaurs.
    Print ISSN: 1745-3925
    Electronic ISSN: 1745-3933
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-06-18
    Description: Strong gravitational lensing has been a powerful probe of cosmological models and gravity. To date, constraints in either domain have been obtained separately. We propose a new methodology through which the cosmological model, specifically the Hubble constant, and post-Newtonian parameter can be simultaneously constrained. Using the time-delay cosmography from strong lensing combined with the stellar kinematics of the deflector lens, we demonstrate that the Hubble constant and post-Newtonian parameter are incorporated in two distance ratios that reflect the lensing mass and dynamical mass, respectively. Through the re-analysis of the four publicly released lenses distance posteriors from the H0LiCOW (H0 Lenses in COSMOGRAIL’s Wellspring) collaboration, the simultaneous constraints of Hubble constant and post-Newtonian parameter are obtained. Our results suggest no deviation from the general relativity; $gamma _{t {PPN}}=0.87^{+0.19}_{-0.17}$ with a Hubble constant that favours the local Universe value, $H_0=73.65^{+1.95}_{-2.26}$ km s−1 Mpc−1. Finally, we forecast the robustness of gravity tests by using the time-delay strong lensing for constraints we expect in the next few years. We find that the joint constraint from 40 lenses is able to reach the order of $7.7{{ m per cent}}$ for the post-Newtonian parameter and $1.4{{ m per cent}}$ for the Hubble constant.
    Print ISSN: 1745-3925
    Electronic ISSN: 1745-3933
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2020-07-10
    Description: One of the proposed channels of binary black hole mergers involves dynamical interactions of three black holes. In such scenarios, it is possible that all three black holes merge in a so-called hierarchical merger chain, where two of the black holes merge first and then their remnant subsequently merges with the remaining single black hole. Depending on the dynamical environment, it is possible that both mergers will appear within the observable time window. Here, we perform a search for such merger pairs in the public available LIGO and Virgo data from the O1/O2 runs. Using a frequentist p-value assignment statistics, we do not find any significant merger pair candidates, the most significant being GW170809-GW151012 pair. Assuming no observed candidates in O3/O4, we derive upper limits on merger pairs to be ∼11–110 yr−1 Gpc−3, corresponding to a rate that relative to the total merger rate is ∼0.1−1.0. From this, we argue that both a detection and a non-detection within the next few years can be used to put useful constraints on some dynamical progenitor models.
    Print ISSN: 1745-3925
    Electronic ISSN: 1745-3933
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2020-07-10
    Description: We present extremely deep upper limits on the radio emission from 4U 1957+11, an X-ray binary that is generally believed to be a persistently accreting black hole that is almost always in the soft state. We discuss a more comprehensive search for Type I bursts than in past work, revealing a stringent upper limit on the burst rate, bolstering the case for a black hole accretor. The lack of detection of this source at the 1.07 μJy/beam noise level indicates jet suppression that is stronger than expected even in the most extreme thin disc models for radio jet production – the radio power here is 1500–3700 times lower than the extrapolation of the hard state radio/X-ray correlation, with the uncertainties depending primarily on the poorly constrained source distance. We also discuss the location and velocity of the source and show that it must have either formed in the halo or with a strong asymmetric natal kick.
    Print ISSN: 1745-3925
    Electronic ISSN: 1745-3933
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2020-06-12
    Description: Swift J004427.3−734801 is an X-ray source in the Small Magellanic Cloud (SMC) that was first discovered as part of the Swift S-CUBED programme in 2020 January. It was not detected in any of the previous 3 yr worth of observations. The accurate positional determination from the X-ray data has permitted an optical counterpart to be identified that has the characteristics of an O9V−B2III star. Evidence for the presence of an infrared excess and significant I-band variability strongly suggests that this is an OBe-type star. Over 17 yr worth of optical monitoring by the OGLE (Optical Gravitational Lensing Experiment) project reveals periods of time in which quasi-periodic optical flares occur at intervals of ∼21.5 d. The X-ray data obtained from the S-CUBED project reveal a very soft spectrum, too soft to be that from accretion on to a neutron star or black hole. It is suggested here that this is a rarely identified Be star–white dwarf binary in the SMC.
    Print ISSN: 1745-3925
    Electronic ISSN: 1745-3933
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2020-07-10
    Description: Gravitational microlensing can detect isolated stellar-mass black holes (BHs), which are believed to be the dominant form of Galactic BHs according to population synthesis models. Previous searches for BH events in microlensing data focused on long time-scale events with significant microlensing parallax detections. Here we show that, although BH events preferentially have long time-scales, the microlensing parallax amplitudes are so small that in most cases the parallax signals cannot be detected statistically significantly. We then identify OGLE-2006-BLG-044 to be a candidate BH event because of its long time-scale and small microlensing parallax. Our findings have implications to future BH searches in microlensing data.
    Print ISSN: 1745-3925
    Electronic ISSN: 1745-3933
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2020-07-10
    Description: Replacive symplectites (vermicular intergrowths of two or more minerals) are an important feature of layered igneous intrusions, recording evidence of late-stage reactions between interstitial liquid and crystals. They are common throughout the Layered Series of the 564 Ma Sept Iles layered intrusion in Quebec, Canada, and fall into three types: oxy-symplectites, ‘Type I’ symplectites, and ‘Type II’ symplectites. Oxy-symplectites are comprised of magnetite and orthopyroxene, nucleate on olivine primocrysts, and form via the reaction Olivine + O2 → Orthopyroxene + Magnetite; Type I symplectites (of which there are 3 distinct categories) are comprised of anorthitic plagioclase with pyroxene, amphibole, or olivine vermicules, grow from primocryst oxide grains, and replace primary plagioclase; and Type II symplectites (of which there are 2 distinct categories) are comprised of anorthitic plagioclase with orthopyroxene ± amphibole vermicules, grow from primocryst olivine grains, and replace primocryst plagioclase. Rare symplectites composed of biotite and plagioclase are also present. Symplectite growth occurred at 700-1030 °C with pressure constraints of 1-2 kbar. We propose that Type I symplectites, and some Type II symplectites, formed from interaction of primocrysts with residual Fe-rich liquid as a consequence of differential loss of an immiscible Si-rich liquid conjugate from the crystal mush. However, redistribution and concentration of hydrous fluids in incompletely solidified rock, or an increase in water activity of the interstitial melt, may be more plausible processes responsible for the formation of replacive symplectites comprising abundant hydrous mineral assemblages.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
  • 17
    Publication Date: 2007-01-09
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2007-06-01
    Print ISSN: 1745-3925
    Electronic ISSN: 1745-3933
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2007-06-01
    Print ISSN: 1745-3925
    Electronic ISSN: 1745-3933
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2015-08-14
    Description: We present a sub-100 pc-scale analysis of the CO molecular gas emission and kinematics of the gravitational lens system SDP.81 at redshift 3.042 using Atacama Large Millimetre/submillimetre Array (ALMA) science verification data and a visibility-plane lens reconstruction technique. We find clear evidence for an excitation-dependent structure in the unlensed molecular gas distribution, with emission in CO (5–4) being significantly more diffuse and structured than in CO (8–7). The intrinsic line luminosity ratio is r 8–7/5–4  = 0.30 ± 0.04, which is consistent with other low-excitation starbursts at z  ~ 3. An analysis of the velocity fields shows evidence for a star-forming disc with multiple velocity components that is consistent with a merger/post-coalescence merger scenario, and a dynamical mass of M (〈1.56 kpc) = 1.6 ± 0.6  x  10 10 M . Source reconstructions from ALMA and the Hubble Space Telescope show that the stellar component is offset from the molecular gas and dust components. Together with Karl G. Jansky Very Large Array CO (1–0) data, they provide corroborative evidence for a complex ~2 kpc-scale starburst that is embedded within a larger ~15 kpc structure.
    Print ISSN: 1745-3925
    Electronic ISSN: 1745-3933
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2015-08-24
    Description: Regardless of the physical origin of stellar magnetic fields – fossil or dynamo induced - an inclination angle between the magnetic and rotation axes is very often observed. Absence of observational evidence in this direction in the solar case has led to generally assume that its global magnetic field and rotation axes are well aligned. We present the detection of a monthly periodic signal of the photospheric solar magnetic field at all latitudes, and especially near the poles, revealing that the main axis of the Sun's magnetic field is not aligned with the surface rotation axis. This result reinforces the view of our Sun as a common intermediate-mass star. Furthermore, this detection challenges and imposes a strong observational constraint to modern solar dynamo theories.
    Print ISSN: 1745-3925
    Electronic ISSN: 1745-3933
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2015-08-21
    Description: We use the ‘Evolution and Assembly of GaLaxies and their Environments’ ( eagle ) suite of hydrodynamical cosmological simulations to measure offsets between the centres of stellar and dark matter components of galaxies. We find that the vast majority (〉95 per cent) of the simulated galaxies display an offset smaller than the gravitational softening length of the simulations (Plummer-equivalent  = 700 pc), both for field galaxies and satellites in clusters and groups. We also find no systematic trailing or leading of the dark matter along a galaxy's direction of motion. The offsets are consistent with being randomly drawn from a Maxwellian distribution with  ≤ 196 pc. Since astrophysical effects produce no feasible analogues for the $1.62^{+0.47}_{-0.49}$  kpc offset recently observed in Abell 3827, the observational result is in tension with the collisionless cold dark matter model assumed in our simulations.
    Print ISSN: 1745-3925
    Electronic ISSN: 1745-3933
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2015-08-24
    Description: The solar wind magnetic field contains rotations at a broad range of scales, which have been extensively studied in the magnetohydrodynamics range. Here, we present an extension of this analysis to the range between ion and electron kinetic scales. The distribution of rotation angles was found to be approximately lognormal, shifting to smaller angles at smaller scales almost self-similarly, but with small, statistically significant changes of shape. The fraction of energy in fluctuations with angles larger than α was found to drop approximately exponentially with α, with e-folding angle 9.8° at ion scales and 0 $_{.}^{\circ}$ 66 at electron scales, showing that large angles (α 〉 30°) do not contain a significant amount of energy at kinetic scales. Implications for kinetic turbulence theory and the dissipation of solar wind turbulence are discussed.
    Print ISSN: 1745-3925
    Electronic ISSN: 1745-3933
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2015-08-12
    Description: We report the broad-band spectral properties of the X-ray pulsar Cep X-4 by using a Suzaku observation in 2014 July. The 0.8–70 keV spectrum was found to be well described by three continuum models – Negative and Positive power-law with Exponential cut-off (NPEX), high-energy cut-off power-law and CompTT models. Additional components such as a cyclotron line at ~28 keV and two Gaussian components for iron lines at 6.4 and 6.9 keV were required in the spectral fitting. Apart from these, an additional absorption feature at ~45 keV was clearly detected in residuals obtained from the spectral fitting. This additional feature at ~45 keV was clearly seen in phase-resolved spectra of the pulsar. We identified this feature as the first harmonic of the fundamental cyclotron line at ~28 keV. The ratio between the first harmonic and fundamental line energies (1.7) was found to be in disagreement with the conventional factor of 2, indicating that the heights of line-forming regions are different or viewed at larger angles. The phase-resolved spectroscopy of the fundamental and first harmonic cyclotron lines shows significant pulse-phase variation of the line parameters. This can be interpreted as the effect of viewing angle or the role of complicated magnetic field of the pulsar.
    Print ISSN: 1745-3925
    Electronic ISSN: 1745-3933
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2015-08-14
    Description: The spin-down of a neutron star, e.g. due to magneto-dipole losses, results in compression of the stellar matter and induces nuclear reactions at phase transitions between different nuclear species in the crust. We show that this mechanism is effective in heating recycled pulsars, in which the previous accretion process has already been compressing the crust, so it is not in nuclear equilibrium. We calculate the corresponding emissivity and confront it with available observations, showing that it might account for the likely thermal ultraviolet emission of PSR J0437–4715.
    Print ISSN: 1745-3925
    Electronic ISSN: 1745-3933
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2015-08-14
    Description: New insights into the formation of interstellar formamide, a species of great relevance in prebiotic chemistry, are provided by electronic structure and kinetic calculations for the reaction NH 2 + H 2 CO -〉 NH 2 CHO + H. Contrarily to what previously suggested, this reaction is essentially barrierless and can, therefore, occur under the low temperature conditions of intestellar objects thus providing a facile formation route of formamide. The rate coefficient parameters for the reaction channel leading to NH 2 CHO + H have been calculated to be A = 2.6 x 10 –12  cm 3  s –1 , β = –2.1 and = 26.9 K in the range of temperatures 10–300 K. Including these new kinetic data in a refined astrochemical model, we show that the proposed mechanism can well reproduce the abundances of formamide observed in two very different interstellar objects: the cold envelope of the Sun-like protostar IRAS16293–2422 and the molecular shock L1157-B2. Therefore, the major conclusion of this Letter is that there is no need to invoke grain-surface chemistry to explain the presence of formamide provided that its precursors, NH 2 and H 2 CO, are available in the gas phase.
    Print ISSN: 1745-3925
    Electronic ISSN: 1745-3933
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2015-09-23
    Description: The Matachewan Large Igneous Province (LIP) is interpreted to have formed during the early stages of mantle plume-induced continental break-up in the early Proterozoic. When the Matachewan LIP is reconstructed to its original configuration with units from the Superior Craton and other formerly adjacent blocks (Karelia, Kola, Wyoming and Hearne), the dyke swarms, layered intrusions and flood basalts, emplaced over the lifetime of the province, form one of the most extensive magmatic provinces recognized in the geological record. New geochemical data allow, for the first time, the Matachewan LIP to be considered as a single, coherent entity and show that Matachewan LIP rocks share a common tholeiitic composition and trace element geochemistry, characterized by enrichment in the most incompatible elements and depletion in the less incompatible elements. This signature, ubiquitous in early Proterozoic continental magmatic rocks, may indicate that the Matachewan LIP formed through contamination of the primary magmas with lithospheric material or that the early Proterozoic mantle had a fundamentally different composition from the modern mantle. In addition to the radiating geometry of the dyke swarms, a plume origin for the Matachewan LIP is consistent with the geochemistry of some of the suites; these suites are used to constrain a source mantle potential temperature of c. 1500–1550°C. Comparison of these mantle potential temperatures with estimated temperatures for the early Proterozoic upper mantle indicates that they are consistent with a hot mantle plume source for the magmatism. Geochemical data from coeval intrusions suggest that the plume head was compositionally heterogeneous and sampled material from both depleted and enriched mantle. As has been documented with less ancient but similarly vast LIPs, the emplacement of the Matachewan LIP probably had a significant impact on the early Proterozoic global environment. Compilation of the best age estimates for various suites shows that the emplacement of the Matachewan LIP occurred synchronously with the Great Oxidation Event. We explore the potential for the eruption of this LIP and the emission of its associated volcanic gases to have been a driver of the irreversible oxygenation of the Earth.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2015-09-23
    Description: Olivine major and trace element compositions from 12 basalts from the southern Payenia volcanic province in Argentina have been analyzed by electron microprobe and laser ablation inductively coupled plasma mass spectrometry. The olivines have high Fe/Mn and low Ca/Fe and many fall at the end of the global olivine array, indicating that they were formed from a pyroxene-rich source distinct from typical mantle peridotite. The olivines with the highest Fe/Mn have higher Zn/Fe, Zn and Co and lower Co/Fe than the olivines with lower Fe/Mn, also suggesting contributions from a pyroxene-rich source. Together with whole-rock radiogenic isotopes and elemental concentrations, the samples indicate mixing between two mantle sources: (1) a pyroxene-rich source with EM-1 ocean island basalt type trace element and isotope characteristics; (2) a peridotitic source with more radiogenic Pb that was metasomatized by subduction-zone fluids and/or melts. The increasing contributions from the pyroxene-rich source in the southern Payenia basalts are correlated with an increasing Fe-enrichment, which caused the olivines to have lower forsterite contents at a given Ni content. Al-in-olivine crystallization temperatures measured on olivine–spinel pairs are between 1155 and 1243°C and indicate that the magmas formed at normal upper mantle (asthenospheric) temperatures of ~1350°C. The pyroxene-rich material is interpreted to have been brought up from the deeper parts of the upper mantle by vigorous asthenospheric upwelling caused by break-off of the Nazca slab south of Payenia during the Pliocene and roll-back of the subducting slab beneath Payenia. The pyroxene-rich mantle mixed with peridotitic metasomatized South Atlantic mantle in the mantle wedge beneath Payenia.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2015-09-23
    Description: To reconstruct the magmatic–hydrothermal processes leading to porphyry Mo ore formation at the Climax Mo mine, Colorado, four magma units that were emplaced before, during and shortly after the mineralization events were investigated: (1) a pre-mineralization white dike of the Alma district; (2) the syn-mineralization Chalk Mountain Rhyolite; (3) a late- to post-mineralization rhyolite porphyry dyke; (4) a mafic enclave within the productive Bartlett stock. Melt inclusions, mineral inclusions and fluid inclusions in quartz phenocrysts were investigated by means of laser ablation inductively coupled plasma mass spectrometry, electron microprobe and microthermometry. Based on melt inclusion data both the Chalk Mountain Rhyolite and the rhyolite porphyry were ~10 times more fractionated than average granite and show geochemical characteristics of topaz rhyolites. They were saturated in magnetite, Mn-rich ilmenite, fluorite, aeschynite, monazite, pyrrhotite and thorite, and crystallized predominantly at 710–730°C, 1·2–2·6 kbar and log f O 2 FMQ + 2·2 (where FMQ is fayalite–magnetite–quartz). The silicate melt of the Chalk Mountain Rhyolite contained 3·5 ± 0·4 wt % F, 0·09 ± 0·03 wt % Cl, ≥ 3·0 wt % H 2 O, 15–90 µg g –1 Cs, 500–1500 µg g –1 Rb and 5–7 µg g –1 Mo, whereas that of the rhyolite porphyry contained 1·1 ± 0·3 wt % F and 4·9 ± 1·2 wt % H 2 O, but otherwise had a virtually identical major and trace element composition. The fluid exsolving from the latter melt had a bulk salinity of 10 ± 2 wt % NaCl equiv and contained of the order of 100 µg g –1 Mo. After emplacement of the Chalk Mountain Rhyolite magma at subvolcanic levels, extremely fractionated silicate melts coexisting with hypersaline brines (salt melts) and low-density vapor percolated at near-solidus conditions through the rock. These silicate melts contained 6·6 ± 0·4 wt % F, ≥ 7·5 ± 0·6 wt % H 2 O, 0·51 ± 0·05 wt % Cl, and up to 0·5 wt % Cs and 100 µg g –1 Mo, whereas the hypersaline brines contained 1–2 wt % Cs and 0·3–0·6 wt % Mo. However, owing to their negligible masses these liquids are unlikely to have played a major role in the mineralization process. The majority of Mo in the Climax deposit appears to have been derived from melts containing 5–7 µg g –1 Mo and bulk fluids containing ~100 µg g –1 Mo. These concentrations are similar to those found in similarly fractionated melts and fluids in barren and sub-economically mineralized intrusions. However, whereas in the latter intrusions fractionated melts occurred in a rather dispersed state, they seem to have been present as large, coherent masses in the apical parts of Climax-type porphyry Mo-forming magma systems. Efficient segregation of fractionated melts and fluids into the top of mineralizing magma chambers appears to have been promoted by high fluorine concentrations in the silicate melt, which was partly a primary feature, and partly an indirect consequence of other characteristics of within-plate magmatism.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2015-09-23
    Description: The Skaergaard intrusion, Greenland, is the type locality for Skaergaard-type mineralizations. Mineralization levels are perfectly concordant with igneous layering, up to 5 m thick, internally fractionated, and contain crystallized sulphide droplets and precious metal alloys, sulphides, arsenides and telluride. Immiscible Cu-rich sulphide droplets, formed in a mush zone below the roof, scavenged precious metals. They were subsequently dissolved and transported to the floor in late-formed, immiscible, Fe-rich mush melts. Mineralized stratigraphic intervals of floor gabbro formed in ‘proto-macrolayers‘, owing to local sulphide saturation in melt concentrated between floating plagioclase and sinking clinopyroxene. The floor mineralization is divided into four stratigraphic sections. Formation of the Lower Platinum Group Element Mineralization (LPGEM) involved: (1) crystallization of the bulk liquid liquidus paragenesis and in situ fractionation; (2) sulphide saturation and formation of sulphide droplets in melt in the upper part of ‘proto-macrolayers‘. After further in situ fractionation, the following steps occurred: (3) the onset of silicate–silicate immiscibility and the consequent loss of buoyant and immiscible Si-rich melt; (4) dissolution of unprotected droplets of sulphide melt present in the Fe-rich mush melt; (5) compaction-driven upwards loss of residual mush melt enriched in, for example, Au. The LPGEM preserves upward increasing bulk Pd/Pt (~6–13) owing to a continued supply of PGE and Au, with high Pd/Pt. The further development of the LPGEM ceased as the supply of precious metals to the floor waned. The Upper PGE Mineralization (UPGEM) subsequently formed from precious metals recycled in the floor. The UPGEM is characterized by increasing Au substitution in PGE phases, and a decrease in total PGE and Pd/Pt owing to upward fractionation in migrating mush melts and exhaustion of Pd and Pt. An upper Au-rich mineralization level (UAuM) was caused by late remobilization of Au and deposition on grain boundaries in fully crystallized gabbro. Cu concentrations (~150 ppm) are not correlated with PGE and Au. Repeated Cu mineralization levels (CuM), attaining 〉1000 ppm, occur above the Au levels, caused by local mush layer sulphide saturation. PGE, Au and Cu distributions in the floor mineralization reflect sub-liquidus, but supra-solidus, processes and reactions in mushes at the roof, wall and floor. Constraints provided by a new model for the mineralization provide the basis for re-evaluation of the solidification processes in the Skaergaard intrusion. We have identified the importance of extensive in situ fractionation and intrusion-wide elemental redistributions in immiscible Fe- and Si-rich silicate melts. Our model characterizes the floor cumulates as bulk liquid orthocumulates containing an upwards-increasing proportion crystallized from Fe-rich, immiscible mush melt. The roof-rocks are complementary to the floor, with downwards increasing proportions crystallized from the conjugate Si-rich melt. Petrographic observations and the relative timing of crystallization support the hypothesis that crystallization was restricted to marginal mush zones. Bulk melt remaining in the magma chamber evolved not, as generally assumed, as a result of loss of crystals grown from the bulk melt, but as the consequence of mixing with recycled and evolved melt expelled from the mush by compaction. Redistribution of Fe in immiscible melts may be common to mafic intrusions and puts into question the validity of petrogenetic modelling of bulk liquids in mafic intrusions based only on consideration of floor cumulates.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2015-09-23
    Description: We have determined experimentally the hydrous phase relations and trace element partitioning behaviour of ocean floor basalt protoliths at pressures and temperatures (3 GPa, 750–1000°C) relevant to melting in subduction zones. To avoid potential complexities associated with trace element doping of starting materials we have used natural, pristine mid-ocean ridge basalt (MORB from Kolbeinsey Ridge) and altered oceanic crust (AOC from Deep Sea Drilling Project leg 46, ~20°N Atlantic). Approximately 15 wt % water was added to starting materials to simulate fluid fluxing from dehydrating serpentinite underlying the oceanic crust. The vapour-saturated solidus is sensitive to basalt K 2 O content, decreasing from 825 ± 25°C in MORB (~0·04 wt % K 2 O) to 750°C in AOC (~0·25 wt % K 2 O). Textural evidence indicates that near-solidus fluids are sub-critical in nature. The residual solid assemblage in both MORB and AOC experiments is dominated by garnet and clinopyroxene, with accessory kyanite, epidote, Fe–Ti oxide and rutile (plus quartz–coesite, phengite and apatite below the solidus). Trace element analyses of quenched silica-rich melts show a strong temperature dependence of key trace elements. In contrast to the trace element-doped starting materials of previous studies, we do not observe residual allanite. Instead, abundant residual epidote provides the host for thorium and light rare earth elements (LREE), preventing LREE from being released (LREE 〈3 ppm at 750–900°C). Elevated Ba/Th ratios, characteristic of many arc basalts, are found to be generated within a narrow temperature field above the breakdown temperature of phengite, but below exhaustion of epidote. Melts with Ba/Th 〉1500 and La/Sm PUM (where PUM indicates primitive upper mantle) ~1, most closely matching the geochemical signal of arc lavas worldwide, were generated from AOC at 800–850°C.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2015-09-23
    Description: We constrain the physical nature of the magma reservoir and the mechanisms of rhyolite generation at Yellowstone caldera via detailed characterization of zircon and sanidine crystals hosted in three rhyolites erupted during the ( c . 170–70 ka) Central Plateau Member eruptive episode—the most recent post-caldera magmatism at Yellowstone. We present 238 U– 230 Th crystallization ages and trace-element compositions of the interiors and surfaces (i.e. unpolished rims) of single zircon crystals from each rhyolite. We compare these zircon data with 238 U– 230 Th crystallization ages of bulk sanidine separates coupled with chemical and isotopic data from single sanidine crystals. Zircon age and trace-element data demonstrate that the magma reservoir that sourced the Central Plateau Member rhyolites was long-lived (150–250 kyr) and genetically related to the preceding episode of magmatism, which occurred c . 256 ka. The interiors of most zircons in each rhyolite were inherited from unerupted material related to older stages of Central Plateau Member magmatism or the preceding late Upper Basin Member magmatism (i.e. are antecrysts). Conversely, most zircon surfaces crystallized near the time of eruption from their host liquids (i.e. are autocrystic). The repeated recycling of zircon interiors from older stages of magmatism demonstrates that sequentially erupted Central Plateau Member rhyolites are genetically related. Sanidine separates from each rhyolite yield 238 U– 230 Th crystallization ages at or near the eruption age of their host magmas, coeval with the coexisting zircon surfaces, but are younger than the coexisting zircon interiors. Chemical and isotopic data from single sanidine crystals demonstrate that the sanidines in each rhyolite are in equilibrium with their host melts, which considered along with their near-eruption crystallization ages suggests that nearly all Central Plateau Member sanidines are autocrystic. The paucity of antecrystic sanidine crystals relative to antecrystic zircons requires a model in which eruptible rhyolites are generated by extracting melt and zircons from a long-lived mush of immobile crystal-rich magma. In this process the larger sanidine crystals remain trapped in the locked crystal network. The extracted melts (plus antecrystic zircon) amalgamate into a liquid-dominated (i.e. eruptible) magma body that is maintained as a physically distinct entity relative to the bulk of the long-lived crystal mush. Zircon surfaces and sanidines in each rhyolite crystallize after melt extraction and amalgamation, and their ages constrain the residence time of eruptible magmas at Yellowstone. Residence times of the large-volume rhyolites (~40–70 km 3 ) are ≤1 kyr (conservatively 〈6 kyr), which suggests that large volumes of rhyolite can be generated rapidly by extracting melt from a crystal mush. Because the lifespan of the crystal mush that sourced the Central Plateau Member rhyolites is two orders of magnitude longer than the residence time of eruptible magma bodies within the reservoir, it is apparent that the Yellowstone magma reservoir spends most of its time in a largely crystalline (i.e. uneruptible) state, similar to the present-day magma reservoir, and that eruptible magma bodies are ephemeral features.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2015-09-23
    Description: We report and interpret new geochemical and Pb–Sr–Nd isotopic data from 325 samples of shield, late-shield, postshield, and rejuvenated stage lavas from Kauai and Niihau, the two most northwesterly islands in the Hawaiian island chain. Kauai is unique in the Hawaiian chain in that it exhibits a near-continuous geochemical transition from shield to postshield to rejuvenated stage volcanism between 4·4 and 3·6 Ma and has been continuously active over ~6 Myr. From c . 5·7 to 4·3 Ma, the shield stage of both islands produced tholeiitic basalts typical of other Hawaiian shield volcanoes. The Niihau basalts are more evolved and have high Gd/Yb compared with Kauai, indicating a higher residual garnet content in the source. Both Kauai and Niihau shield basalts have Kea-like trace element ratios, but isotopic ratios are transitional between Kea- and Loa-like compositions. The geochemical similarity of the two shields indicates that mantle sources in different regions of the plume source were similar, and that the 〈2 Ma Loa and Kea trends of the southeastern Hawaiian volcanoes are not observed. More Loa-like compositions are evident in shield lavas from eastern Kauai, where the enhanced Loa composition may reflect melting of low-melting temperature plume components as the island migrates off the hotter, more Kea-like, center of the Hawaiian plume. Postshield lavas and intrusive rocks on both islands are rare: Kauai includes alkalic basalts, hawaiites and mugearites that are isotopically homogeneous and include a significant depleted mantle component compared with the shield basalts, whereas the Niihau late-shield and postshield rocks consist of highly contrasting transitional tholeiites or basanites with variable but shield-like isotopic compositions. The Niihau postshield rocks represent variable, but lower degrees of melting of the shield mantle source. Large volumes of rejuvenated stage lavas cover both islands and also form submarine cone fields, but lava compositions are different. On Kauai, rejuvenated lavas range from melilitite to alkalic basalt with trace element, Nd isotope, and Pb isotope ratios that vary as a function of Th and SiO 2 content. Low-degree (high-Th) melts are dominated by a mixed Kea–Loihi component and high-degree (low-Th) melts include more of a depleted rejuvenated component (DRC) typified by rejuvenated stage lavas and xenoliths from nearby Kaula Island. With the exception of a single basanite, the Niihau rejuvenated stage lavas are uniformly alkalic basalt, with Sr and Ba excesses combined with depleted Th and Nb abundances relative to the light rare earth elements. Rejuvenated stage alkalic basalts from both islands are dominated by contributions from the DRC, which have high Sr/Ce and 87 Sr/ 86 Sr but low 206 Pb/ 204 Pb. The Sr-rich, possibly carbonate-bearing, DRC component may be distributed patchily in the rejuvenated stage mantle source such that, where present, the degree of partial melting was enhanced compared with the degree of partial melting of the Sr-poor, mixed Kea–Loihi component. Given the lack of a hiatus between postshield and rejuvenated stages on Kauai, the rejuvenated mantle source is already able to melt at the tail end of shield stage activity and no secondary melting mechanism is required to explain the rejuvenated stage.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2015-09-25
    Description: Recent Low-Frequency Array (LOFAR) observations at 115–175 MHz of a field at medium Galactic latitudes (centred at the bright quasar 3C196) have shown striking filamentary structures in polarization that extend over more than 4° across the sky. In addition, the Planck satellite has released full sky maps of the dust emission in polarization at 353 GHz. The LOFAR data resolve Faraday structures along the line of sight, whereas the Planck dust polarization maps probe the orientation of the sky projected magnetic field component. Hence, no apparent correlation between the two is expected. Here we report a surprising, yet clear, correlation between the filamentary structures, detected with LOFAR, and the magnetic field orientation, probed by the Planck satellite. This finding points to a common, yet unclear, physical origin of the two measurements in this specific area in the sky. A number of follow-up multifrequency studies are proposed to shed light on this unexpected finding.
    Print ISSN: 1745-3925
    Electronic ISSN: 1745-3933
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2015-09-25
    Description: Protoplanetary discs are now routinely observed and exoplanets, after the numerous indirect discoveries, are starting to be directly imaged. To better understand the planet formation process, the next step is the detection of forming planets or of signposts of young planets still in their disc, such as gaps. A spectacular example is the Atacama Large Millimeter/submillimeter Array (ALMA) science verification image of HL Tau showing numerous gaps and rings in its disc. To study the observability of planet gaps, we ran 3D hydrodynamical simulations of a gas and dust disc containing a 5 M J gap-opening planet and characterized the spatial distribution of migrating, growing and fragmenting dust grains. We then computed the corresponding synthetic images for ALMA. For a value of the dust fragmentation threshold of 15 m s –1 for the collisional velocity, we identify for the first time a self-induced dust pile-up in simulations taking fragmentation into account. This feature, in addition to the easily detected planet gap, causes a second apparent gap that could be mistaken for the signature of a second planet. It is therefore essential to be cautious in the interpretation of gap detections.
    Print ISSN: 1745-3925
    Electronic ISSN: 1745-3933
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2015-09-25
    Description: Recent observations have discovered a number of extremely gas-rich very faint dwarf galaxies possibly embedded in low-mass dark matter haloes. We investigate star formation histories of these gas-rich dwarf (‘almost dark’) galaxies both for isolated and interacting/merging cases. We find that although star formation rates (SFRs) are very low (〈10 –5 M  yr –1 ) in the simulated dwarfs in isolation for the total halo masses ( M h ) of 10 8 -10 9 M , they can be dramatically increased to be ~10 –4 M  yr –1 when they interact or merge with other dwarfs. These interacting faint dwarfs with central compact H ii regions can be identified as isolated emission line dots (‘ELdots’) owing to their very low surface brightness envelopes of old stars. The remnant of these interacting and merging dwarfs can finally develop central compact stellar systems with very low metallicities ( Z /Z  〈 0.1), which can be identified as extremely metal-deficient (‘XMD’) dwarfs. These results imply that although there would exist many faint dwarfs that can be hardly detected in the current optical observations, they can be detected as isolated ELdots or XMD dwarfs, when they interact with other galaxies and their host environments. We predict that nucleated ultrafaint dwarfs formed from the darkest dwarf merging can be identified as low-mass globular clusters owing to the very low surface brightness stellar envelopes.
    Print ISSN: 1745-3925
    Electronic ISSN: 1745-3933
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2015-09-28
    Description: The BRITE ( BRIght Target Explorer ) constellation of nanosatellites performs seismology of bright stars via high-precision photometry. In this context, we initiated a high-resolution, high signal-to-noise, high-sensitivity, spectropolarimetric survey of all stars brighter than V = 4. The goal of this survey is to detect new bright magnetic stars and provide prime targets for both detailed magnetic studies and asteroseismology with BRITE . Circularly polarized spectra were acquired with Narval at TBL (Bernard Lyot Telescope, France) and HARPSpol at ESO (European Southern Observatory) in La Silla (Chile). We discovered two new magnetic B stars: the B3V star i Car and the B8V component of the binary star Atlas. Each star was observed twice to confirm the magnetic detections and check for variability. These bright magnetic B stars are prime targets for asteroseismology and for flux-demanding techniques, such as interferometry.
    Print ISSN: 1745-3925
    Electronic ISSN: 1745-3933
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2015-11-23
    Description: Accreting neutron stars exhibit Type I X-ray bursts from both frequent hydrogen/helium flashes as well as rare carbon flashes. The latter (superbursts) ignite in the ashes of the former. Hydrogen/helium bursts, however, are thought to produce insufficient carbon to power superbursts. Stable burning could create the required carbon, but this was predicted to only occur at much larger accretion rates than where superbursts are observed. We present models of a new steady-state regime of stable hydrogen and helium burning that produces pure carbon ashes. Hot CNO burning of hydrogen heats the neutron star envelope and causes helium to burn before the conditions of a helium flash are reached. This takes place when the mass accretion rate is around 10 per cent of the Eddington limit: close to the rate where most superbursts occur. We find that increased heating at the base of the envelope sustains steady-state burning by steepening the temperature profile, which increases the amount of helium that burns before a runaway can ensue.
    Print ISSN: 1745-3925
    Electronic ISSN: 1745-3933
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2015-11-23
    Description: We present new late-time near-infrared imaging of the site of the nearby core-collapse supernova SN 2012aw, confirming the disappearance of the point source identified by Fraser et al. and Van Dyk et al. as a candidate progenitor in both J and Ks filters. We remeasure the progenitor photometry, and find that both the J and Ks magnitudes of the source are consistent with those quoted in the literature. We also recover a marginal detection of the progenitor in H -band, for which we measure H = 19.67 ± 0.40 mag. Comparing the luminosity of the progenitor to stellar evolutionary models, SN 2012aw appears to have resulted from the explosion of a 12.5 ± 1.5 M red supergiant.
    Print ISSN: 1745-3925
    Electronic ISSN: 1745-3933
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2015-11-26
    Description: We derive the carbon monoxide (CO) luminosity function (LF) for different rotational transitions [i.e. (1–0), (3–2), (5–4)] starting from the Herschel LF by Gruppioni et al. and using appropriate L CO – L IR conversions for different galaxy classes. Our predicted LFs fit the data so far available at z 0 and 2. We compare our results with those obtained by semi-analytical models (SAMs): while we find a good agreement over the whole range of luminosities at z 0, at z 1 and z 2, the tension between our LFs and SAMs in the faint and bright ends increases. We finally discuss the contribution of luminous active galactic nucleus ( L X 〉 10 44 erg s – 1 ) to the bright end of the CO LF concluding that they are too rare to reproduce the actual CO LF at z 2.
    Print ISSN: 1745-3925
    Electronic ISSN: 1745-3933
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2015-11-23
    Description: The formation of the Milky Way stellar halo is thought to be the result of merging and accretion of building blocks such as dwarf galaxies and massive globular clusters. Recently, Deason et al. suggested that the Milky Way outer halo formed mostly from big building blocks, such as dwarf spheroidal galaxies, based on the similar number ratio of blue straggler (BS) stars to blue horizontal branch (BHB) stars. Here we demonstrate, however, that this result is seriously biased by not taking into detailed consideration on the formation mechanism of BHB stars from helium-enhanced second-generation population. In particular, the high BS-to-BHB ratio observed in the outer halo fields is most likely due to a small number of BHB stars provided by globular clusters (GCs) rather than to a large number of BS stars. This is supported by our dynamical evolution model of GCs which shows preferential removal of first-generation stars in GCs. Moreover, there are a sufficient number of outer halo GCs which show very high BS-to-BHB ratio. Therefore, the BS-to-BHB number ratio is not a good indicator to use in arguing that more massive dwarf galaxies are the main building blocks of the Milky Way outer halo. Several lines of evidence still suggest that GCs can contribute a significant fraction of the outer halo stars.
    Print ISSN: 1745-3925
    Electronic ISSN: 1745-3933
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2015-11-25
    Description: Nuclear star clusters (NCs) are found to exist in the centres of many galaxies and appear to follow scaling relations similar to those of supermassive black holes. Previous analytical work has suggested that such relations are a consequence of feedback-regulated growth. We explore this idea using high-resolution hydrodynamical simulations, focusing on the validity of the simplifying assumptions made in analytical models. In particular, we investigate feedback emanating from multiple stellar sources rather than from a single source, as is usually assumed, and show that collisions between shells of gas swept up by feedback leads to momentum cancellation and the formation of high-density clumps and filaments. This high-density material is resistant both to expulsion from the galaxy potential and to disruption by feedback; if it falls back on to the NC, we expect the gas to be available for further star formation or for feeding a central black hole. We also note that our results may have implications for the evolution of globular clusters and stellar clusters in high-redshift dark matter haloes.
    Print ISSN: 1745-3925
    Electronic ISSN: 1745-3933
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2015-08-27
    Description: We explain the axisymmetric gaps seen in recent long-baseline observations of the HL Tau protoplanetary disc with the Atacama Large Millimetre/Submillimetre Array (ALMA) as being due to the different response of gas and dust to embedded planets in protoplanetary discs. We perform global, three-dimensional dusty smoothed particle hydrodynamics calculations of multiple planets embedded in dust/gas discs which successfully reproduce most of the structures seen in the ALMA image. We find a best match to the observations using three embedded planets with masses of 0.2, 0.27 and 0.55 M J in the three main gaps observed by ALMA, though there remain uncertainties in the exact planet masses from the disc model.
    Print ISSN: 1745-3925
    Electronic ISSN: 1745-3933
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2015-08-27
    Description: Using deep Herschel and ALMA observations, we investigate the star formation rate (SFR) distributions of X-ray-selected active galactic nucleus (AGN) host galaxies at 0.5 〈  z  〈 1.5 and 1.5 〈  z  〈 4, comparing them to that of normal, star-forming (i.e. ‘main-sequence’, or MS) galaxies. We find that 34–55 per cent of AGNs in our sample have SFRs at least a factor of 2 below that of the average MS galaxy, compared to 15 per cent of all MS galaxies, suggesting significantly different SFR distributions. Indeed, when both are modelled as lognormal distributions, the mass and redshift-normalized SFR distributions of X-ray AGNs are roughly twice as broad, and peak 0.4 dex lower, than that of MS galaxies. However, like MS galaxies, the normalized SFR distribution of AGNs in our sample appears not to evolve with redshift. Despite X-ray AGNs and MS galaxies having different SFR distributions, the linear-mean SFR of AGNs derived from our distributions is remarkably consistent with that of MS galaxies, and thus with previous results derived from stacked Herschel data. This apparent contradiction is due to the linear-mean SFR being biased by bright outliers, and thus does not necessarily represent a true characterization of the typical SFR of X-ray AGNs.
    Print ISSN: 1745-3925
    Electronic ISSN: 1745-3933
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2015-08-29
    Description: We investigate the density–shear instability in Hall-magnetohydrodynamics (Hall-MHD) via numerical simulation of the full non-linear problem in the context of magnetar activity. We confirm the development of the instability of a plane-parallel magnetic field with an appropriate intensity and electron density profile, in accordance with analytic theory. We find that the instability also appears for a monotonically decreasing electron number density and magnetic field, a plane-parallel analogue of an azimuthal or meridional magnetic field in the crust of a magnetar. The growth rate of the instability depends on the Hall properties of the field (magnetic field intensity, electron number density and the corresponding scaleheights), while being insensitive to weak resistivity. Since the Hall effect is the driving process for the evolution of the crustal magnetic field of magnetars, we argue that this instability is critical for systems containing strong meridional or azimuthal fields. We find that this process mediates the formation of localized structures with much stronger magnetic field than the average, which can lead to magnetar activity and accelerate the dissipation of the field and consequently the production of Ohmic heating. Assuming a 5  x  10 14  G magnetic field at the base of crust, we anticipate that magnetic field as strong as 10 15  G will easily develop in regions of typical size of a few hundred metres, containing magnetic energy of 10 43  erg, sufficient to power magnetar bursts. These active regions are more likely to appear in the magnetic equator where the tangential magnetic field is stronger.
    Print ISSN: 1745-3925
    Electronic ISSN: 1745-3933
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2015-05-31
    Description: Long expected transition states between the rotation powered and accretion powered non-thermal emission in the millisecond pulsar binary systems have been recently observed in the case of three objects PSR J1023+0038, PSR J1824–2452, and PSR J1227–4859. Surprisingly, the transition is related to the significant change in the -ray flux being a factor of a few higher with the presence of an accretion disc. The origin of this enhanced emission seems to be related to the penetration of the inner pulsar magnetosphere by the accretion disc. We propose that the radiation processes, characteristic for the rotation powered pulsar, can co-exist with the presence of an accretion disc in the inner pulsar magnetosphere. In our scenario additional -ray emission is produced by secondary leptons, originated close to the acceleration gap, which Compton up-scatter thermal radiation from the accretion disc to GeV energies. The accretion disc penetrates deep into the pulsar magnetosphere allowing the matter to fall on to the neutron star surface producing pulsed X-ray emission. We show that the sum of the rotation powered pulsar -ray emission, produced by the primary electrons in the curvature process, and the -ray emission, produced by secondary leptons, can explain the observed high-energy radiation from the redback binary pulsar PSR J1227–4853 in the state with evidences of the accretion disc.
    Print ISSN: 1745-3925
    Electronic ISSN: 1745-3933
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2015-06-13
    Description: A new thermodynamic model is presented for calculating phase relations in peridotite, from 0·001 to 60 kbar and from 800°C to liquidus temperatures, in the system NCFMASOCr. This model system is large enough to simulate phase relations and melting of natural peridotite and basaltic liquids. Calculations in the program thermocalc illustrate mantle phase relationships and melting conditions, specifically for the peridotite composition KLB-1. The garnet–spinel transition zone intersects the solidus at 21·4–21·7 kbar, where both Fe 3+ and Cr increase spinel stability, expanding the width of the transition. Orthopyroxene is lost at the solidus at 42 kbar in KLB-1, although this pressure is very sensitive to bulk composition. Calculated oxidation states are in excellent agreement with measured log f O 2 for xenolith suites with mantle Fe 2 O 3 contents in the range 0·1–0·3 wt %. It appears that mantle oxidation state is not just a simple function of P and T , but depends on phase assemblage, and may vary in a complex way within a single assemblage. The liquid model performs well, such that calculated solidus, melt productivity and liquid compositions compare favourably with those of experimental studies, permitting its use in interpolating between, and extrapolating from, experimental P–T conditions. Experimentally challenging but geologically useful regimes can be explored, such as subsolidus samples and very low melt fractions, with application to both mantle xenoliths and the origin of basalt.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2015-06-13
    Description: The anorthositic members of the Mealy Mountains Intrusive Suite (MMIS; Labrador, Canada) are host to 0·5–5 m diameter pegmatitic, pod-like segregations, originally described as graphic granite pods. U–Pb zircon geochronology confirms that the pods are coeval with the 1650–1630 Ma emplacement age range for the MMIS, yielding ages of 1654 ± 8 to 1628 ± 3·5 Ma. Petrographic and geochemical analysis of five pods from anorthositic rocks of the MMIS reveals that the pods have a diverse compositional range from monzodiorite to granite, varying from Fe-rich and Si-poor, to Fe-poor and Si-rich compositions. Fe-rich, Si-poor pods in the MMIS and other massifs (e.g. Laramie Anorthosite Complex) tend to be hosted by olivine-bearing anorthosites, whereas Si-rich, Fe-poor pods are hosted by pyroxene-bearing anorthosites. Each pod shows a range of graphic, myrmekitic and symplectitic textures, along with distinctive mineral assemblages (e.g. apatite and zircon) and highly enriched trace-element compositions. Evolved mineral assemblages, high concentrations of Fe, Ti and P (and in some cases SiO 2 ), and 10–1000 x chondrite enrichment in light rare earth elements, U, Th and Rb indicate that many of the pods are highly fractionated. The array of textural intergrowths provides clues about the final stages of crystallization in the pods and, by extension, the anorthosites. Macroscopic quartz–K-feldspar graphic intergrowths indicate high-viscosity, fluid-bearing and significantly undercooled magmatic conditions, whereas microscopic myrmekitic (plagioclase–quartz) and symplectitic (plagioclase–orthopyroxene) intergrowths on primary grain boundaries indicate replacement of phases in the presence of reactive fluids. In assessing the nature of these pegmatitic pods based on field, petrographic and geochemical evidence, we conclude that they represent the fluid-bearing, late-stage crystallization products of a residual liquid in the massif anorthosite system. The Fe and Si compositional variations observed in these late-stage pods can be linked to a fundamental olivine–pyroxene dichotomy observed in most Proterozoic anorthosite massifs, suggesting that pulses of magma experience variable contamination (in amount and/or composition) leading to varying differentiation paths. A range of lithologies (monzonites, monzonorites, ferrodiorites and jotunites) observed in similar pod-like structures, as well as dykes and plutons, has been observed in other Proterozoic anorthosite massifs and all have, at one time or another, been interpreted as the residual liquids of anorthosite crystallization. Our observation of in situ pods with similar compositions to all of the aforementioned lithologies, and displaying textures indicative of late-stage crystallization, supports the notion that all of these associated lithologies can be interpreted as comagmatic with, but variably contaminated and isolated residual liquids of, anorthosite crystallization. However, using isotopic evidence we cannot support the notion that the far larger granitic plutons associated with Proterozoic anorthosites are also residual liquids of anorthositic magma fractionation.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2015-06-13
    Description: We report the results of experiments on two natural marine sediments with different carbonate contents (calcareous clay: CO 2 = 6·1 wt %; marl: CO 2 = 16·2 wt %) at subduction-zone conditions (3 GPa, 750–1200°C). Water (7–15 wt %) was added to the starting materials to simulate the effects of external water addition from within the subducting slab. The onset of melting is at 760°C in water-rich experiments; melt becomes abundant by 800°C. In contrast, the onset of melting in published, water-poor experiments occurs at variable temperatures with the production of significant melt fractions being restricted to more than 900°C (phengite-out). The different solidus temperatures ( T solidus ) can be ascribed to variable fluid X H2O [H 2 O/(CO 2 + H 2 O)], which, in turn, depends on bulk K 2 O, H 2 O and CO 2 . Partial melts in equilibrium with residual garnet, carbonate, quartz/coesite, epidote, rutile, kyanite, phengite, and clinopyroxene are granitic in composition, with substantial dissolved volatiles. Supersolidus runs always contain both silicate melt and solute-rich fluid, indicating that experimental conditions lie below the second critical endpoint in the granite–H 2 O–CO 2 system. Carbonatite melt coexists with silicate melt and solute-rich fluid above 1100°C in the marl. The persistence of carbonate to high temperature, in equilibrium with CO 2 -rich hydrous melts, provides a mechanism to both supply CO 2 to arc magmas and recycle carbon into the deep Earth. The trace element compositions of the experimental glasses constrain the potential contribution of calcareous sediment to arc magmas. The presence of residual epidote and carbonate confers different trace element characteristics when compared with the trace element signal of Ca-poor marine sediments (e.g. pelagic clays). Notably, epidote retains Th and light rare earth elements, such that some melts derived from calcareous sediments have elevated Ba/Th and U/Th, and low La/Sm PUM , thereby resembling fluids conventionally ascribed to altered oceanic crust. Our results emphasize the importance of residual mineralogy, rather than source lithology, in controlling the trace element characteristics of slab-derived fluids.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2015-06-13
    Description: Three crystal-poor obsidian samples (one dacite, 67 wt % SiO 2 ; two rhyolites, 73 and 75 wt % SiO 2 ), which erupted effusively from monogenetic vents, contain sparse (〈2%) plagioclase phenocrysts that span a remarkably wide and continuous range in composition (≤30 mol % An). Many, but not all, of the plagioclase crystals display diffusion-limited growth textures (e.g. swallow-tails, skeletal, vermiform). Hypotheses to explain the paradox of a wide compositional range despite a low abundance of plagioclase include (1) incorporation of xenocrysts and/or magma mingling, (2) slow crystallization of plagioclase driven by slow cooling in a magma chamber, (3) slow crystallization of plagioclase followed by a resorption (e.g. heating) event, and (4) crystallization driven by rapid degassing (i.e. loss of melt H 2 O) ± rapid cooling during ascent. To test these hypotheses, a series of phase equilibrium experiments were conducted under pure-H 2 O fluid-saturated conditions in a cold-seal pressure vessel between 30 and 300 MPa and 750 and 950°C. The results show that the plagioclase population in each obsidian sample could have grown from their respective melts, with the exception of a single calcic core (An 60–63 ) in one sample. The results additionally rule out slow cooling in a magma chamber, because this would lead to equilibrium abundances of plagioclase (≤20%), which are far higher than what is observed in the samples (〈2%). Nor can resorption (i.e. heating) explain the low abundance of plagioclase, because this would eliminate the more sodic plagioclase crystals and hence the wide compositional range of plagioclase that is observed. The most viable hypothesis is that the sparse plagioclase phenocrysts grew relatively rapidly during magma ascent to the surface; this is consistent with the results of isothermal (850°C) continuous decompression experiments (2·9, 1·0, 0·8, and 0·1 MPa h –1 ), under pure-H 2 O fluid-saturated conditions, which were performed on one of the rhyolites (MLV-36; 73 wt % SiO 2 ) and quenched at P H2O = 89, 58 and 40 MPa. The four decompression rates correspond to degassing rates of 1·6, 0·56, 0·45 and 0·06 wt % H 2 O per day. Decompressions ≥1·0 MPa( P H2O ) h –1 , initiated above the liquidus, quenched to 100% glass at all final P H2O . Decompressions at 0·8 MPa( P H2O ) h –1 , also initiated above the liquidus, led to plagioclase crystals nearly five times larger than those grown in runs decompressed at the same rate, but initiated just below the plagioclase-in curve. It is the kinetic hindrance to nucleation that permits crystal growth to be concentrated on relatively few crystals, leading to larger crystals. Plagioclase growth rates from these experiments show that the largest phenocrysts (~1 mm) in the MLV-36 obsidian could have grown in 〈42 h. A cooling rate of ~1·2°C h –1 closely matches both the increase in melt viscosity with time and the effective undercooling with time that occurs during the 0·8 MPa( P H2O ) h –1 decompression over the first 50 h. The combined results point to crystallization of sparse plagioclase driven by relatively rapid rates of degassing ± cooling during ascent to the surface of melts that were initially above their liquidus. The obsidian samples must have been efficiently segregated as nearly 100% liquids from their respective source regions at H 2 O-fluid undersaturated conditions to attain a degree of superheating upon ascent before reaching fluid saturation.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2015-06-13
    Description: The Jurassic Vestfjella dyke swarm at the volcanic rifted margin of western Dronning Maud Land represents magmatism related to the incipient Africa–Antarctica rift zone; that is, rift-assemblage magmatism of the Karoo continental flood basalt (CFB) province. Geochemical and Nd–Sr isotopic data for basaltic and picritic dyke samples indicate diverse low-Ti and high-Ti tholeiitic compositions with Nd (180 Ma) ranging from +8 to –17. Combined with previously reported data on a subcategory of ferropicritic dykes, our new data facilitate grouping of the Vestfjella dyke swarm into seven geochemically distinct types. The majority of the dykes exhibit geochemical affinity to continental lithosphere and can be correlated with two previously identified chemical types (CT) of the wall-rock CFB lavas and are accordingly referred to as the CT1 and CT3 dykes. The less abundant Low-Nb and High-Nb dykes, a relatively enriched subtype of CT3 (CT3-E) dykes, and dykes belonging to the depleted and enriched ferropicrite suites represent magma types found only as intrusions. The chemically mid-ocean ridge basalt (MORB)-like Low-Nb and the depleted ferropicrite suite dykes represent, respectively, relatively high- and low-degree partial melting of the same overall depleted mantle (DM)-affinity source in the sublithospheric mantle. In contrast, we ascribe the chemically ocean island basalt (OIB)-like High-Nb dykes and the enriched ferropicrite suite dykes to melting of enriched components in the sublithospheric mantle. Geochemical modelling suggests that the low-Ti affinity CT1 and CT3, and high-Ti affinity CT3-E magma types of Vestfjella dyke may predominantly result from mixing of DM-sourced Low-Nb type magmas with 〈10 wt % of crust- and lithospheric mantle-derived melts. U/Pb zircon dating confirms synchronous emplacement of CT1 dykes and Karoo main-stage CFBs at 182·2 ± 0·9 and 182·2 ± 0·8 Ma, whereas two 40 Ar/ 39 Ar plagioclase plateau ages of 189·2 ± 2·3 Ma (CT1) and 185·5 ± 1·8 Ma (depleted ferropicrite suite), and a mini-plateau age of 186·9 ± 2·8 Ma (CT3-E) for the Vestfjella dykes raise the question of whether the onset of rift-zone magmatism could predate the province-wide c. 179–183 Ma main stage of Karoo magmatism. Notably variable Ca/K spectra suggest that younger 40 Ar/ 39 Ar plagioclase plateau ages of 173, 170, 164, and 154 Ma are related to crystallization of secondary minerals during the late-stage tectono-magmatic development of the Antarctic rifted margin. The occurrence of rare MORB- and OIB-like magma types in Vestfjella and along the African and Antarctic rifted margins suggests melting of geochemically variable depleted and enriched sublithospheric mantle beneath the Africa–Antarctica rift zone. Our models for the Vestfjella dyke swarm indicate that the voluminous lithosphere-affinity low-Ti and high-Ti rift-assemblage tholeiites could have been derived from MORB-like parental magmas by contamination, which implies sublithospheric depleted mantle as the principal source of the CFB magmas of the Africa–Antarctica rift zone.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2015-06-13
    Description: Monazite laser ablation–split-stream inductively coupled plasma–mass spectrometry (LASS) was used to date monazite in situ in Barrovian-type micaschists of the Moravian zone in the Thaya window, Bohemian Massif. Petrography and garnet zoning combined with pseudosection modelling show that rocks from staurolite–chlorite, staurolite, kyanite and kyanite–sillimanite zones record burial in the S 1 fabric under a moderate geothermal gradient from 4–4·5 kbar and ~530–540°C to 5 kbar and 570°C, 6–7 kbar and 600–640°C, 7·5–8 kbar and 630–650°C, and 8 kbar and 650°C, respectively. In the kyanite and kyanite–sillimanite zones, garnet rim chemistry and local syntectonic replacement of garnet by sillimanite–biotite aggregates point to re-equilibration at 5·5–6 kbar and 630–650°C in the S 2 fabric. Heterogeneously developed retrograde shear zones (S 3 ) are marked by widespread chloritization, but minor chlorite is present in the studied samples. Monazite abundance and size increase with metamorphic grade from 5 µm in the staurolite–chlorite zone to 〉100 µm in the kyanite and kyanite–sillimanite zones. Irrespective of the monazite-forming reaction, this is interpreted as the onset of limited prograde monazite growth at staurolite grade, and continued prograde monazite growth after the kyanite-in reaction, compatible with conditions of about 5·5 kbar and 570°C and 7·5 kbar and 630°C from pseudosection modelling. Monazite is zoned, showing embayments and sharp boundaries between zones, with low Y in the staurolite zone, high-Y cores and low-Y rims in the kyanite zone, and high-Y cores, a low-Y mantle and a high-Y rim in the sillimanite zone. The 207 Pb-corrected 238 U/ 206 Pb ages from three samples range from 344 ± 7 to 330 ± 7 Ma, irrespective of metamorphic grade. The dates from monazite inclusions are interpreted as the ages of the staurolite- and kyanite-in reactions along the prograde path at 340 and 337 ± 7 Ma, respectively. The monazite in the matrix (and some inclusions) is interpreted as dating the prograde crystallization at (340–337) ± 7 Ma within the S 1 fabric, and then being affected by recrystallization at or down to 332 ± 7 Ma in the S 2 and S 3 fabrics. The two groups of data, for 340–337 and 332 Ma, are significantly different when only their in-run uncertainties (±1–3 Myr) are compared and indicate a 9 ± 3 Myr period of monazite (re)crystallization. A systematic increase in heavy rare earth element (HREE) content with decreasing monazite age from 344 to 335 Ma is correlated with growth on the prograde P–T path; the drop in HREE of monazite at 335–328 Ma is assigned to recrystallization. The presence of chlorite even in the least retrogressed samples witnesses limited external fluid availability on the retrograde P–T path. Migration of this fluid was probably responsible for heterogeneous fluid-assisted recrystallization and resetting of original prograde monazite, even where included in garnet, staurolite or kyanite. It is suggested that the rocks passed the chlorite-in reaction on the retrograde path at 332 ± 7 Ma. The timing of burial in the Thaya window, a deformed part of the underthrust Brunia microcontinent, was coeval with exhumation of granulites and migmatites of the Moldanubian orogenic root at c. 340 Ma.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2015-06-13
    Description: The Fanshan intrusion in the North China Craton (NCC) is concentrically zoned with syenite in the core (Unit 1), surrounded by ultramafic rocks (clinopyroxenite and biotite clinopyroxenite; Unit 2), and an outer rim of garnet-rich clinopyroxenite and orthoclase clinopyroxenite and syenite (Unit 3). The intrusive rocks are composed of variable amounts of Ca-rich augite, biotite, orthoclase, melanite, garnet, magnetite and apatite, with minor primary calcite. Monomineralic apatite rocks, nelsonite and glimmerite exclusively occur in Unit 2. Geochemically, the Fanshan rocks are highly enriched in light rare earth elements (LREE) and large ion lithophile elements (LILE), moderately depleted in high field strength elements (HFSE), and have a limited range of Sr–Nd–O isotopic compositions. The similar mineralogy, mineral compositions, and trace element characteristics of the three units suggest that all the rocks are co-magmatic. The parental magma is ultrapotassic and is akin to kamafugite. Very low-degree partial melting of metasomatized lithospheric mantle best explains the geochemistry and petrogenesis of the parental magmas of the Fanshan intrusion. We propose that the mantle source may have been metasomatized by a hydrous carbonate-bearing melt, which has imprinted the enriched Sr–Nd isotopic signature and incompatible element enrichment with conspicuous negative Nb–Ta–Zr–Hf–Ti anomalies and LREE enrichments. The mantle source enrichment may be correlated with oceanic sediment recycling during southward subduction of the Paleo-Asian oceanic plate during the Carboniferous and Permian. We propose that crystal settling and mechanical sorting combined with repeated primitive magma replenishment and mixing with previously fractionated magma is the predominant process responsible for the formation of the apatite ores.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2016-07-22
    Description: In the context of the ASAI (Astrochemical Surveys At IRAM) project, we carried out an unbiased spectral survey in the millimetre window towards the well known low-mass Class I source SVS13-A. The high sensitivity reached (3–12 mK) allowed us to detect at least six HDO broad (full width at half-maximum ~4–5 km s –1 ) emission lines with upper level energies up to E u = 837 K. A non-local thermodynamic equilibrium Large Velocity Gradient (LVG) analysis implies the presence of very hot (150–260 K) and dense (≥3  x  10 7  cm –3 ) gas inside a small radius (~25 au) around the star, supporting, for the first time, the occurrence of a hot corino around a Class I protostar. The temperature is higher than expected for water molecules are sublimated from the icy dust mantles (~100 K). Although we cannot exclude we are observing the effects of shocks and/or winds at such small scales, this could imply that the observed HDO emission is tracing the water abundance jump expected at temperatures ~220–250 K, when the activation barrier of the gas phase reactions leading to the formation of water can be overcome. We derive X ( HDO ) ~ 3  x  10 –6 , and a H 2 O deuteration ≥1.5  x  10 –2 , suggesting that water deuteration does not decrease as the protostar evolves from the Class 0 to the Class I stage.
    Print ISSN: 1745-3925
    Electronic ISSN: 1745-3933
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2016-07-22
    Description: Evidence for the presence of quasi-periodic oscillations (QPOs) in the optical polarization of the blazar PKS 2155–304, during a period of enhanced gamma-ray brightness, is presented. The periodogram of the polarized flux revealed the existence of a prominent peak at T ~ 13 min, detected at 〉99.7 per cent significance, and T ~ 30 min, which was nominally significant at 〉99 per cent. This is the first evidence of QPOs in the polarization of an active galactic nucleus, potentially opening up a new avenue of studying this phenomenon.
    Print ISSN: 1745-3925
    Electronic ISSN: 1745-3933
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2016-08-01
    Description: Experimental studies of mantle petrology find that small concentrations of water and carbon dioxide have a large effect on the solidus temperature and distribution of melting in the upper mantle. However, it has remained unclear what effect small fractions of deep, volatile-rich melts have on melt transport and reactive melting in the shallow asthenosphere. Here we present theory and computations indicating that low-degree, reactive, volatile-rich melts cause channelization of magmatic flow at depths approximately corresponding to the anhydrous solidus temperature. These results are obtained with a novel method to simulate the thermochemical evolution of the upper mantle in the presence of volatiles. The method uses a thermodynamically consistent framework for reactive, disequilibrium, multi-component melting. It is coupled with a system of equations representing conservation of mass, momentum, and energy for a partially molten grain aggregate. Application of this method in two-phase, three-component upwelling-column models demonstrates that it reproduces leading-order features of hydrated and carbonated peridotite melting; in particular, it captures the production of low-degree, volatile-rich melt at depths far below the volatile-free solidus. The models predict that segregation of volatile-rich, deep melts promotes a reactive channelling instability that creates fast and chemically isolated pathways of melt extraction. Reactive channelling occurs where volatile-rich melts flux the base of the silicate melting region, enhancing dissolution of fusible components from the ambient mantle. We find this effect to be similarly expressed for models of both hydrated and carbonated mantle melting. These findings indicate that despite their small concentrations, water and carbon dioxide have an important control on the extent and style of magma genesis, as well as on the dynamics of melt transport.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2016-08-04
    Description: The spectrum and morphology of the diffuse Galactic -ray emission carries valuable information on cosmic ray (CR) propagation. Recent results obtained by analyzing Fermi -LAT data accumulated over 7 yr of observation show a substantial variation of the CR spectrum as a function of the distance from the Galactic Centre. The spatial distribution of the CR density in the outer Galaxy appears to be weakly dependent upon the galactocentric distance, as found in previous studies as well, while the density in the central region of the Galaxy was found to exceed the value measured in the outer Galaxy. At the same time, Fermi -LAT data suggest a gradual spectral softening while moving outwards from the centre of the Galaxy to its outskirts. These findings represent a challenge for standard calculations of CR propagation based on assuming a uniform diffusion coefficient within the Galactic volume. Here, we present a model of non-linear CR propagation in which transport is due to particle scattering and advection off self-generated turbulence. We find that for a realistic distribution of CR sources following the spatial distribution of supernova remnants and the space dependence of the magnetic field on galactocentric distance, both the spatial profile of CR density and the spectral softening can easily be accounted for.
    Print ISSN: 1745-3925
    Electronic ISSN: 1745-3933
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2016-08-04
    Description: The correlation between the frequency and the absolute value of the frequency derivative of the kilohertz quasi-periodic oscillations (QPOs) observed for the first time from 4U 1636-53 is a simple consequence and indicator of the existence of a non-Keplerian rotation rate in the accretion disc boundary layer. This Letter interprets the observed correlation, showing that the observations provide strong evidence in support of the fundamental assumption of disc accretion models around slow rotators, that the boundary layer matches the Keplerian disc to the neutron star magnetosphere.
    Print ISSN: 1745-3925
    Electronic ISSN: 1745-3933
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2016-07-17
    Description: During their formation phase, stars gain most of their mass in violent episodic accretion events, such as observed in FU Orionis (FUor) and EXor stars. V346 Normae is a well-studied FUor that underwent a strong outburst beginning around 1980. Here, we report on photometric and spectroscopic observations, which show that the visual/near-infrared brightness has decreased dramatically between the 1990s and 2010 ( R 10.9 mag, J 7.8 mag and K 5.8 mag). The spectral properties of this fading event cannot be explained by variable extinction alone, but indicate a drop in accretion rate by two to three orders of magnitude. This is the first time that a member of the FUor class has been observed to switch to a very low accretion phase. Remarkably, in the last few years (2011–2015) V346 Nor has brightened again at all near-infrared wavelengths, indicating the onset of a new outburst event. The observed behaviour might be consistent with the clustered luminosity bursts that have been predicted by recent gravitational instability and fragmentation models for the early stages of protostellar evolution. Given V346 Nor's unique characteristics (concerning outburst duration, repetition frequency and spectroscopic diagnostics), our results also highlight the need to revisit the FUor/EXor classification scheme.
    Print ISSN: 1745-3925
    Electronic ISSN: 1745-3933
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2016-07-24
    Description: Approximately 0.2 ± 0.2 of white dwarfs (WDs) show signs of pollution by metals, which is likely due to the accretion of tidally disrupted planetary material. Models invoking planet–planet interactions after WD formation generally cannot explain pollution at cooling times of several Gyr. We consider a scenario in which a planet is perturbed by Lidov–Kozai oscillations induced by a binary companion and exacerbated by stellar mass-loss, explaining pollution at long cooling times. Our computed accretion rates are consistent with observations assuming planetary masses between ~0.01 and 1 M Mars , although non-gravitational effects may already be important for masses 0.3 M Mars . The fraction of polluted WDs in our simulations, ~0.05, is consistent with observations of WDs with intermediate cooling times between ~0.1 and 1 Gyr. For cooling times 0.1 Gyr and 1 Gyr, our scenario cannot explain the high observed pollution fractions of up to 0.7. Nevertheless, our results motivate searches for companions around polluted WDs.
    Print ISSN: 1745-3925
    Electronic ISSN: 1745-3933
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2016-08-01
    Description: A study of whole-rock major and trace element and Sr–Nd–Pb–Hf isotope compositions, combined with zircon U–Pb ages and Hf–O isotopes, for postcollisional intermediate volcanic rocks from the Dabie orogen, China provides constraints on the origin of andesitic magmas and insights into slab–mantle interaction in continental subduction channels. The volcanic rocks exhibit variable contents of SiO 2 (50·28–63·86 wt %), MgO (1·18–4·65 wt %), (Fe 2 O 3 ) T (3·60–8·53 wt %), Al 2 O 3 (12·92–18·95 wt %), Na 2 O (2·08–6·30 wt %) and K 2 O (0·73–5·25 wt %). They are mainly trachyandesites, with lesser amounts of basaltic trachyandesite, andesite, dacite and trachyte, characterized by subduction-like trace element distribution patterns showing enrichment of large ion lithophile elements and light rare earth elements but depletion of high field strength elements. The volcanic rocks have relatively enriched Sr–Nd–Pb–Hf isotope compositions, with high initial 87 Sr/ 86 Sr ratios of 0·7075–0·7110, highly negative Nd ( t ) values of –23·1 to –15·0, Hf ( t ) values of –29·8 to –18·3 and elevated 207 Pb/ 204 Pb and 208 Pb/ 204 Pb ratios at given 206 Pb/ 204 Pb ratios. Zircon Hf–O isotope analyses yield negative Hf ( t ) values of –31·0 to –17·8 and 18 O values of 4·4–6·8 for syn-magmatic domains. Zircon U–Pb dating yields consistent Early Cretaceous ages of 124 ± 3 to 130 ± 2 Ma for magma emplacement. Residual zircon cores yield Triassic, Neoproterozoic and Paleoproterozoic U–Pb ages, consistent with the ages of tectonothermal events involving ultrahigh-pressure metamorphism and protolith formation in the Dabie orogen. The zircon cores also yield a few low to negative 18 O values. An integrated interpretation of these geochemical characteristics is that the andesitic magmas were derived by partial melting of metasomatized zones in the orogenic lithospheric mantle. The metasomatites were generated by reaction of subcontinental lithospheric mantle wedge peridotite with felsic melts that originated from deeply subducted continental crust during continental collision in the Triassic. Melt–peridotite reaction in a subduction channel is therefore a key to the origin of the mantle sources of andesitic magmas in collisional orogens.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2016-08-01
    Description: The late Proterozoic Ntaka Ultramafic Complex is a body of dominantly pyroxenitic cumulate rocks containing cyclic alternations of olivine–orthopyroxene cumulates. Chemical zoning in the pyroxenes has been imaged at 25–40 µm resolution using desktop microbeam X-ray fluorescence mapping followed up with laser ablation–inductively coupled plasma mass spectrometry analysis for minor and trace elements on selected samples. Poikilitic and granular harzburgites are finely intermingled, in some cases on a centimetre scale in the same thin section. Poikilitic varieties display spectacular textures, ranging from isolated equant orthopyroxene oikocrysts within olivine-rich heteradcumulate harzburgites to rocks composed entirely of interlocking centimetre-sized anhedral orthopyroxene oikocrysts containing sharply bounded idiomorphic Cr-enriched cores. The poikilitic harzburgites are interlayered with cumulate pyroxenites in which orthopyroxene grains show a variety of zoning patterns: Cr-rich cores similar to those in the oikocrysts; sharply bounded oscillatory zoned cores; and reverse zoning with Cr-poor cores and Cr-enriched rims. A further variation is the presence of a mingled harzburgite lithology in which dunite or poikilitic harzburgite is invaded on a centimetre scale by diffuse vein networks or patches of coarse orthopyroxenite. This range of textures and lithologies attests to a more complex set of processes than implied by the standard cumulus theory model in which oikocrysts are considered to have crystallized from intercumulus liquid within a permeable crystal mush. A range of hypotheses is proposed, including infiltration metasomatism of original olivine cumulates by migrating orthopyroxene-saturated pore fluid; however, the textural relationships, whole-rock chemistry and Cr zoning within the grains can best be explained by a model in which the orthopyroxene oikocrysts form in part or whole as mechanically accumulated cumulus grains. The complexity of zoning patterns is attributed to stirring of entrained olivine and orthopyroxene crystals within a heterogeneous flowing crystal mush, where the transporting magma has a wide range of silica contents owing to poorly stirred incorporation of siliceous country-rock material. The Cr-rich orthopyroxenite component grew from Si-enriched chromite-saturated magma. Mingled lithologies developed after accumulation as a result of percolation and infiltration metasomatism by Si-enriched liquid derived by melting of xenoliths within the crystal pile. The model may be more generally applicable: dunite–harzburgite cycles, common in many layered intrusions, may reflect variable degrees of contamination rather than cycles of fractional crystallization and replenishment.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2016-08-01
    Description: New thermodynamic data for skiagite garnet (Fe 3 Fe 2 3+ Si 3 O 12 ) are derived from experimental phase-equilibrium data that extend to 10 GPa and are applied to oxybarometry of mantle peridotites using a revised six-component garnet mixing model. Skiagite is more stable by 12 kJ mol –1 than in a previous calibration of the equilibrium 2 skiagite = 4 fayalite + ferrosilite + O 2 , and this leads to calculated oxygen fugacities that are higher (more oxidized) by around 1–1·5 logfO2 units. A new calculation method and computer program incorporates four independent oxybarometers (including 2 pyrope + 2 andradite + 2 ferrosilite = 2 grossular + 4 fayalite + 3 enstatite + O 2 ) for use on natural peridotite samples to yield optimum logfO2 estimates by the method of least squares. These estimates should be more robust than those based on any single barometer and allow assessment of possible disequilibrium in assemblages. A new set of independent oxybarometers for spinel-bearing peridotites is also presented here, including a new reaction 2 magnetite + 3 enstatite = 3 fayalite + 3 forsterite + O 2 . These recalibrations combined with internally consistent PT determinations for published analyses of mantle peridotites with analysed Fe 2 O 3 data for garnets, from both cratonic (Kaapvaal, Siberia and Slave) and circumcratonic (Baikal Rift) regions, provide revised estimates of oxidation state in the lithospheric mantle. Estimates of logfO2 for spinel assemblages are more reduced than those based on earlier calibrations, whereas garnet-bearing assemblages are more oxidized. Importantly, this lessens considerably the difference between garnet and spinel oxybarometry that was observed with previous published calibrations.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2016-08-01
    Description: The Kidnappers [~1200 km 3 dense rock equivalent (DRE)] and Rocky Hill (~200 km 3 DRE) caldera-forming events in the Taupo Volcanic Zone, New Zealand, were erupted in close succession from the Mangakino volcanic centre. They have identical radiometric ages at ~1 Ma, yet erosion along the contact between the two deposits suggests that some years to decades separated the two eruptions. Field constraints and the similarities of crystal textures and compositions and glass chemistries of both eruption deposits demonstrate that they came from one overall magmatic system with a common crystal mush source. However, second-order variations in these parameters confirm that the Kidnappers and Rocky Hill deposits represent distinct events and are not the products of a single zoned magma chamber. The systematically zoned Kidnappers fall deposits provide evidence for the tapping of three discrete magma bodies, whereas the succeeding Kidnappers ignimbrite is compositionally more diverse. The transition from fall to flow deposition marks a change in the style of caldera collapse and the simultaneous evacuation of discrete but compositionally diverse melts, each of which underwent a distinct evolution and was held at slightly different P–T conditions prior to eruption. Contrasting plagioclase and orthopyroxene zonation patterns are present in pumices originating from three discrete magma bodies. Less evolved mafic melts interacted with the system, which mobilized portions of the final erupted melt through heating and volatile or chemical exchange in the mush. The two largest Kidnappers melt-dominant bodies were re-tapped in modified form, or re-established from their common mush source, prior to the Rocky Hill event. Rocky Hill pumices contain common, fluid-affected antecrystic crystal clots derived from chamber wall material. Amphibole compositions from each eruption reflect melt evolution processes and, in particular, the contemporaneous crystallization of biotite and breakdown of orthopyroxene. Plagioclase and orthopyroxene from Rocky Hill pumices share common zonation patterns with those from the two largest magma bodies in the Kidnappers. The rapid production of new melt-dominant bodies and the triggering of the Rocky Hill eruption reflect the ability of the magmatic system to rejuvenate on a geologically short timescale. The Mangakino centre did not follow a typical cycle of decreased activity after the supervolcanic Kidnappers event, instead producing a second caldera-forming eruption, within years to decades from the same system.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2016-08-01
    Description: Ambrym, a basaltic volcano in the Vanuatu Arc, has displayed variable eruptive behaviour throughout the past century, with major eruptions occurring both on the volcano flanks and at multiple vents within its caldera. These have been interspersed with periods of relative quiescence marked by extensive passive degassing at active, intra-caldera lava lakes, which experience occasional Strombolian explosions. Volcanic rocks from all vents and eruptive styles display similar isotope and incompatible trace element compositions, suggesting that all are derived from the same primary melt by fractional crystallization. Major eruptions are commonly responsible for effusion of the least evolved lavas examined (SiO 2 ~ 50 wt %; MgO ~ 5 wt %). Although all are geochemically similar, petrological differences discriminate between lavas erupted during flank and intra-caldera eruptions. Phyric basalts with homogeneous mineral compositions are common to flank eruptions, whereas crystal-rich basalts with variable mineral compositions, many not in equilibrium with their host liquid, are a feature of intra-caldera lavas. Lava lake samples are slightly more evolved than those from effusive eruptions (SiO 2 ~ 51–52 wt %; MgO ~ 4 wt %), as a result of additional crystallization during periods of relative quiescence. The diverse petrology of the intra-caldera lavas can be explained by mixing of replenishment magmas similar to those erupted from the volcano flanks with residual magma from lava lake activity. Flank eruptions exploit dykes that bypass the shallow reservoir involved with lava lake activity, limiting their interaction with this component.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2016-08-01
    Description: The generation and evolution of basaltic magmas at Usu volcano, located at the junction between the NE Japan arc and the Kuril arc, have been investigated. The mafic products, which form the somma edifice of the volcano, consist of basalt (49·6–51·3 wt % SiO 2 ) and basaltic andesite (52·0–54·9 wt % SiO 2 ) lavas. The basaltic lavas show relatively tight compositional trends, and 87 Sr/ 86 Sr ratios tend to decrease with increasing whole-rock SiO 2 content. The water content of the basaltic magmas was determined to be ~4·8 wt % based on plagioclase–melt thermodynamic equilibrium. Using this information and an olivine maximum fractionation model, the water content of the primary Usu magma was estimated to be 3·9 wt %. Multi-component thermodynamic calculations suggest that the primary magma was generated by ~23% melting of the source mantle with ~0·94 wt % H 2 O at ~1300°C and ~1·4 GPa. The 0·94 wt % water content of the source mantle is significantly higher than that beneath volcanoes in the main NE Japan arc (generally 〈0·7 wt % H 2 O); this implies that the wedge mantle at the arc–arc junction is intensively hydrated. The temperature of the wedge mantle of ~1300°C at ~1·4 GPa is also significantly higher than that of the mantle in the main NE Japan arc. Unlike the basaltic lavas, the whole-rock compositions of the basaltic andesite lavas are scattered in Harker variation diagrams. This observation suggests that the compositional diversity was produced by at least two independent processes. To elucidate the processes responsible for this compositional diversity, principal component analysis was applied to the major element compositions of the samples. This suggests that 47% of the diversity of the whole-rock compositions can be explained by mixing with partial melts of lower crustal materials, 25% is explained by redistribution of plagioclase phenocrysts, and 16% is explained by fractionation of accessory minerals.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2016-08-06
    Description: We present high resolution observations of fine structures at pore boundaries. The inner part of granules towards umbra show dark striations which evolve into a filamentary structure with dark core and ‘Y’ shape at the head of the filaments. These filaments migrate into the umbra similar to penumbral filaments. These filaments show higher temperature, lower magnetic field strength and more inclined field compared to the background umbra. The optical depth stratification of physical quantities suggests their similarity with penumbral filaments. However, line-of-sight velocity pattern is different from penumbral filaments where they show downflows in the deeper layers of the atmosphere while the higher layers show upflows. These observations show filamentation in a simple magnetic configuration.
    Print ISSN: 1745-3925
    Electronic ISSN: 1745-3933
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2016-07-07
    Description: A large number of supernova remnants (SNRs) in our Galaxy and galaxies nearby have been resolved in various radio bands. This radio emission is thought to be produced via synchrotron emission from electrons accelerated by the shock that the supernova ejecta drives into the external medium. Here we consider the sample of radio SNRs in the Magellanic Clouds. Given the size and radio flux of an SNR, we seek to constrain the fraction of shocked fluid energy in non-thermal electrons ( e ) and magnetic field ( B ), and find e B ~ 10 –3 . These estimates do not depend on the largely uncertain values of the external density and the age of the SNR. We develop a Monte Carlo scheme that reproduces the observed distribution of radio fluxes and sizes of the population of radio SNRs in the Magellanic Clouds. This simple model provides a framework that could potentially be applied to other galaxies with complete radio SNRs samples.
    Print ISSN: 1745-3925
    Electronic ISSN: 1745-3933
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2016-07-08
    Description: We present a line survey of the ultraluminous infrared galaxy Arp 220, taken with the newly installed SEPIA (Swedish-European Southern Observatory PI receiver for APEX) Band 5 instrument on APEX (Atacama Pathfinder Experiment). We illustrate the capacity of SEPIA to detect the 183.3 GHz H 2 O 3 1,3 –2 2,0 line against the atmospheric H 2 O absorption feature. We confirm the previous detection of the HCN(2–1) line, and detect new transitions of standard dense gas tracers such as HNC(2–1), HCO + (2–1), CS(4–3), C 34 S(4–3) and HC 3 N(20–19). We also detect HCN(2–1) v 2 = 1 and the 193.5 GHz methanol (4–3) group for the first time. The absence of time variations in the megamaser water line compared to previous observations seems to rule out an AGN nuclear origin for the line. It could, on the contrary, favour a thermal origin instead, but also possibly be a sign that the megamaser emission is associated with star-forming cores washed out in the beam. We finally discuss how the new transitions of HCN, HNC and HCO + refine our knowledge of the interstellar medium physical conditions in Arp 220.
    Print ISSN: 1745-3925
    Electronic ISSN: 1745-3933
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2016-07-08
    Description: We present and test a method that dramatically reduces variance arising from the sparse sampling of wavemodes in cosmological simulations. The method uses two simulations which are fixed (the initial Fourier mode amplitudes are fixed to the ensemble average power spectrum) and paired (with initial modes exactly out of phase). We measure the power spectrum, monopole and quadrupole redshift-space correlation functions, halo mass function and reduced bispectrum at z  = 1. By these measures, predictions from a fixed pair can be as precise on non-linear scales as an average over 50 traditional simulations. The fixing procedure introduces a non-Gaussian correction to the initial conditions; we give an analytic argument showing why the simulations are still able to predict the mean properties of the Gaussian ensemble. We anticipate that the method will drive down the computational time requirements for accurate large-scale explorations of galaxy bias and clustering statistics, and facilitating the use of numerical simulations in cosmological data interpretation.
    Print ISSN: 1745-3925
    Electronic ISSN: 1745-3933
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2016-06-24
    Description: Using a specialized technique sensitive to the presence of expanding ionized gas, we have detected a set of three concentric expanding shells in an H ii region in the nearby spiral galaxy M33. After mapping the kinematics in Hα with Fabry–Perot spectroscopy, we used slit spectra to measure the intensities of the [S ii ] doublet at 671.9, 673.1 nm and the [N ii ] doublet at 645.8, 658.3 nm to corroborate the kinematics and apply diagnostic tests using line ratios. These showed that the expanding shells are shock dominated as would be the case if they had originated with supernova explosions. Estimating their kinetic energies, we find fairly low values, indicating a fairly advanced stage of evolution. We obtain density, mass and parent star mass estimates, which, along with the kinetic energies, are inconsistent with the simplest models of shock–interstellar medium interaction. We propose that the presence and properties of an inhomogeneous medium offer a scenario which can account for these observations, and discuss the implications. Comparing our results with data from the literature supports the combined presence of an H ii region and supernova remnant material at the observed position.
    Print ISSN: 1745-3925
    Electronic ISSN: 1745-3933
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2016-06-24
    Description: We study the origin of the stellar α-element-to-iron abundance ratio, [α/Fe] * , of present-day central galaxies, using cosmological, hydrodynamical simulations from the Evolution and Assembly of GaLaxies and their Environments (EAGLE) project. For galaxies with stellar masses of M * 〉 10 10.5 M , [α/Fe] * increases with increasing galaxy stellar mass and age. These trends are in good agreement with observations of early-type galaxies, and are consistent with a ‘downsizing’ galaxy formation scenario: more massive galaxies have formed the bulk of their stars earlier and more rapidly, hence from an interstellar medium that was mostly α-enriched by massive stars. In the absence of feedback from active galactic nuclei (AGNs), however, [α/Fe] * in M * 〉 10 10.5 M galaxies is roughly constant with stellar mass and decreases with mean stellar age, extending the trends found for lower mass galaxies in both simulations with and without AGN. We conclude that AGN feedback can account for the α-enhancement of massive galaxies, as it suppresses their star formation, quenching more massive galaxies at earlier times, thereby preventing the iron from longer lived intermediate-mass stars (supernova Type Ia) from being incorporated into younger stars.
    Print ISSN: 1745-3925
    Electronic ISSN: 1745-3933
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2016-06-24
    Description: We report broad-band spectral properties of the high-mass X-ray binary pulsar SMC X-2 by using three simultaneous Nuclear Spectroscopy Telescope Array and Swift /XRT observations during its 2015 outburst. The pulsar was significantly bright, reaching a luminosity up to as high as ~5.5 x 10 38 erg s –1 in 1–70 keV range. Spin period of the pulsar was estimated to be 2.37 s. Pulse profiles were found to be strongly luminosity dependent. The 1–70 keV energy spectrum of the pulsar was well described with three different continuum models such as (i) negative and positive power law with exponential cutoff, (ii) Fermi -Dirac cutoff power law and (iii) cutoff power-law models. Apart from the presence of an iron line at ~6.4 keV, a model independent absorption like feature at ~27 keV was detected in the pulsar spectrum. This feature was identified as a cyclotron absorption line and detected for the first time in this pulsar. Corresponding magnetic field of the neutron star was estimated to be ~2.3 x 10 12  G. The cyclotron line energy showed a marginal negative dependence on the luminosity. The cyclotron line parameters were found to be variable with pulse phase and interpreted as due to the effect of emission geometry or complicated structure of the pulsar magnetic field.
    Print ISSN: 1745-3925
    Electronic ISSN: 1745-3933
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2016-06-24
    Description: We analyse structural decompositions of 500 late-type galaxies (Hubble T -type ≥6) from the Spitzer Survey of Stellar Structure in Galaxies ( S 4 G ; Salo et al.), spanning stellar mass range of about 10 7 to a few times 10 10 M . Their decomposition parameters are compared with those of the early-type dwarfs in the Virgo cluster from Janz et al. They have morphological similarities, including the fact that the fraction of simple one-component galaxies in both samples increases towards lower galaxy masses. We find that in the late-type two-component galaxies both the inner and outer structures are by a factor of 2 larger than in the early-type dwarfs, for the same stellar mass of the component. While dividing the late-type galaxies to low- and high-density environmental bins, it is noticeable that both the inner and outer components of late types in the high local density galaxies are smaller, and lie closer in size to those of the early-type dwarfs. This suggests that, although structural differences between the late- and early-type dwarfs are observed, environmental processes can plausibly transform their sizes sufficiently, thus linking them evolutionarily.
    Print ISSN: 1745-3925
    Electronic ISSN: 1745-3933
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2016-06-24
    Description: We calculate the microlensing event rate and typical time-scales for the free-floating planet (FFP) population that is predicted by the core accretion theory of planet formation. The event rate is found to be ~1.8  x  10 –3 of that for the stellar population. While the stellar microlensing event time-scale peaks at around 20 d, the median time-scale for FFP events (~0.1 d) is much shorter. Our values for the event rate and the median time-scale are significantly smaller than those required to explain the Sumi et al. result, by factors of ~13 and ~16, respectively. The inclusion of planets at wide separations does not change the results significantly. This discrepancy may be too significant for standard versions of both the core accretion theory and the gravitational instability model to explain satisfactorily. Therefore, either a modification to the planet formation theory is required or other explanations to the excess of short-time-scale microlensing events are needed. Our predictions can be tested by ongoing microlensing experiment such as Korean Microlensing Telescope Network, and by future satellite missions such as WFIRST and Euclid .
    Print ISSN: 1745-3925
    Electronic ISSN: 1745-3933
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2016-06-24
    Description: The recent discovery of three Earth-sized, potentially habitable planets around a nearby cool star, TRAPPIST-1, has provided three key targets for the upcoming James Webb Space Telescope (JWST) . Depending on their atmospheric characteristics and precise orbit configurations, it is possible that any of the three planets may be in the liquid water habitable zone, meaning that they may be capable of supporting life. We find that present-day Earth levels of ozone, if present, would be detectable if JWST observes 60 transits for innermost planet 1b and 30 transits for 1c and 1d.
    Print ISSN: 1745-3925
    Electronic ISSN: 1745-3933
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2016-05-11
    Description: Numerous models have been developed to simulate the reaction of magmas to changes of thermodynamic variables, such as pressure, temperature, oxygen fugacity, and water activity. However, the extensive experimental database still lacks information on the distinct effect of small amounts of H 2 O on olivine + plagioclase + clinopyroxene cotectic crystallization in tholeiitic basalt. We present an experimental study addressing the effects of pressure (at 100, 200, 400, and 700 MPa) and small amounts of H 2 O on phase relations and liquid lines of descent in three tholeiitic basalts representing different evolutionary stages of the Shatsky Rise oceanic plateau magmatic system (compositions AH6, AH3, and AH5 with 8·6, 8·0, and 6·4 wt % MgO, respectively). Two experimental approaches (dry and low H 2 O) are designed to maintain contrasting H 2 O activities during crystallization using (1) graphite–platinum double capsules to perform nearly anhydrous experiments (〈0·15 wt % H 2 O in the melt) and (2) Fe pre-saturated Au 20 Pd 80 capsules to obtain low melt H 2 O contents ranging from 0·4 to 1·1 wt % H 2 O. Under dry conditions, at lower pressures (≤400 MPa), the crystallization in the MgO-rich AH6 and intermediate AH3 basalts follows the typical sequence of tholeiitic differentiation with olivine crystallization at the liquidus followed by olivine + plagioclase and olivine + plagioclase + clinopyroxene. Both basalts are close to multiple saturation at pressures between 400 and 700 MPa. At high pressure (700 MPa) the crystallization sequence is reversed, starting with clinopyroxene at the liquidus. Under low-H 2 O conditions, AH6 and AH3 are very close to multiple saturation, even at the low pressures of 100 and 200 MPa, and the reversed crystallization sequence (clinopyroxene, plagioclase + clinopyroxene, olivine + plagioclase + clinopyroxene) is observed already at 400 MPa. In contrast to the two more MgO-rich basalts, in the most evolved AH5 basalt, clinopyroxene is the liquidus phase at all investigated pressures and under both dry and low-H 2 O conditions, followed by crystallization of plagioclase + clinopyroxene and olivine + plagioclase + clinopyroxene. The most striking observation in our experiments is that the stability of clinopyroxene increases not only with pressure increase but also in the presence of small amounts of H 2 O (when compared with dry counterparts at similar pressures). Small amounts of H 2 O increase the proportion of clinopyroxene in the olivine + plagioclase + clinopyroxene phase assemblage. Our experiments clearly show that the effect of adding 0·4 wt % H 2 O to cotectic melt compositions (e.g. CaO/Al 2 O 3 ratio at a given MgO) is similar to that caused by an increase of pressure from 100 to ~ 300 MPa. This implies that small amounts of H 2 O can lead to significant overestimation of cotectic crystallization pressures (by up to 300 MPa) and that H 2 O contents need to be taken into account in geobarometric models. Our new experiments emphasize the role of low melt H 2 O contents in stabilizing clinopyroxene and provide some new insights into the problem of the ‘pyroxene paradox’. The apparent mantle pressures obtained for some mid-ocean ridge basalts using ‘dry’ geobarometric approaches can actually represent depths within the lower crust, if small amounts of H 2 O are present. The application of our experimental data to natural Shatsky Rise basalts implies that the magmas record partial crystallization processes occurring mainly at low pressure (100 MPa), corresponding to depths of ~3 km beneath the former spreading center, although the more primitive lavas show evidence of differentiation in a deeper reservoir at ~14 km depth (400 MPa).
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2016-05-11
    Description: Mantle-derived xenoliths hosted by melilitite lavas from In Teria (Ahaggar, SE Algeria) include garnet and spinel peridotites, pyroxenite and phlogopite megacrysts. The spinel and garnet peridotites record an early deformation event, which formed porphyroclastic microstructures and olivine crystal preferred orientations, followed by static infiltration of hydrous alkaline melts. This metasomatic stage (stage 1) is characterized by the crystallization of phlogopite in the garnet and spinel peridotites, amphibole in the spinel peridotites and clinopyroxene in the garnet peridotite, which record chemical equilibration with an alkaline silicate melt. These early events were largely overprinted by carbonatitic metasomatism (stage 2), which is observed only in the spinel peridotites. Spinel peridotite major and trace element compositions, as well as the compositions of newly formed minerals, are characteristic of interaction with carbonate melt, associated with strong enrichment in incompatible trace elements in clinopyroxene. This second stage was followed by crystallization of pyroxenites (stage 3) in vein conduits, probably segregated from alkaline melts. We propose a scenario in which the different metasomatic imprints record successive stages of interaction between lithospheric mantle and sublithospheric melts throughout the Cenozoic. In Sr–Nd isotope space, the host melilitites and several xenoliths are clustered and plot close to the HIMU mantle end-member. However, some peridotite xenoliths are shifted towards more radiogenic 87 Sr/ 86 Sr values. In 207 Pb/ 204 Pb– 206 Pb/ 204 Pb and 208 Pb/ 204 Pb– 06 Pb/ 204 Pb space the In Teria samples define a relatively large domain characterized by high 206 Pb/ 204 Pb and 208 Pb/ 204 Pb, consistent with a contribution of an HIMU component, considered to represent a sublithospheric signature. The highest 87 Sr/ 86 Sr values are comparable with those ascribed to the EM1 mantle end-member, representing the signature of the lower continental lithosphere, and are probably inherited from the pre-metasomatic lithospheric mantle beneath In Teria. Numerical modelling of porous percolation of melt of sublithospheric origin through an EM1-like lithospheric mantle protolith reproduces the In Teria peridotite compositions, using moderately sub-chondritic Sr/Nd values for the peridotite (e.g. In Teria garnet peridotite) and moderately super-chondritic Sr/Nd values in the melt (approximately ocean island basalt values). A few spinel peridotites require a component characterized by a 143 Nd/ 144 Nd signature higher than both the EM1 end-member and the local Ahaggar basalts; the 208 Pb/ 204 Pb compositions of several samples point to a component with a depleted mid-ocean ridge basalt (MORB) mantle (DMM) signature. Thus the lithospheric mantle beneath In Teria probably did not have a uniform EM1 signature before the onset of metasomatism; it included a DMM peridotite component as well as some peridotites with elevated 143 Nd/ 144 Nd values recording long-term LREE depletion.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2016-05-11
    Description: Modelled primary magma compositions of Palaeogene basalts from the North Atlantic Igneous Province (NAIP) require melting at mantle potential temperatures ( T P ) in the range 1480–1550°C. Modern lavas from Icelandic rift zones require T P ~ 1500°C and those from the rift flanks T P ~ 1450°C. Secular cooling of the NAIP thermal anomaly was therefore of the order of ~50°C over the past 61 Myr. There were systematic variations in T P of 50–100°C from the centre of the thermal anomaly to its margins at any one time, although limits on the stratigraphical distribution of T P determinations do not rule out thermal pulsing on a timescale of millions of years. Variation in extent of melting at similar T P was controlled by local variability in lithospheric thickness. In the west of the NAIP, lithosphere thickness varied from ~90 km at Disko Island to ~65 km at Baffin Island, with similar thickness variations being evident for magmatism in the Faroe Islands, Faroe–Shetland Basin and the British Palaeogene Igneous Province (BPIP). Mean pressure of melting was greater than or equal to the final pressure of melting; the two values converge for melting columns with a melting interval of 〈1·5 GPa, regardless of T P . The majority of the BPIP magmas were generated in the garnet–spinel transition in the upper mantle. Calculated and observed rare earth element distributions in NAIP lavas are entirely consistent with the melting regimes derived from major element melting models. This allows a calibration of rare earth element fractionation and melting conditions that can be applied to other flood basalt provinces.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2016-05-06
    Description: The Advanced Laser Interferometer Gravitational-Wave Observatory (ALIGO) observatory recently reported the first direct detection of gravitational waves (GW) which triggered ALIGO on 2015 September 14. We report on observations taken with the Swift satellite two days after the trigger. No new X-ray, optical, UV or hard X-ray sources were detected in our observations, which were focused on nearby galaxies in the GW error region and covered 4.7 deg 2 (~2 per cent of the probability in the rapidly available GW error region; 0.3 per cent of the probability from the final GW error region, which was produced several months after the trigger). We describe the rapid Swift response and automated analysis of the X-ray telescope and UV/Optical telescope data, and note the importance to electromagnetic follow-up of early notification of the progenitor details inferred from GW analysis.
    Print ISSN: 1745-3925
    Electronic ISSN: 1745-3933
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2016-05-07
    Description: Superluminous supernovae (SLSNe) have been suggested to be powered by strongly magnetized, rapidly rotating neutron stars which are often called magnetars. In this process, rotational energy of the magnetar is radiated via magnetic dipole radiation and heats the supernova ejecta. However, if magnetars are highly distorted in their geometric shape, rotational energy is mainly lost as gravitational wave radiation and thus such magnetars cannot power SLSNe. By simply comparing electromagnetic and gravitational wave emission time-scales, we constrain upper limits to the ellipticity of magnetars by assuming that they power the observed SLSNe. We find that their ellipticity typically needs to be less than about a few 10 –3 . This indicates that the toroidal magnetic field strengths in these magnetars are typically less than a few 10 16 G so that their distortions remain small. Because light-curve modelling of SLSNe shows that their dipole magnetic field strengths are of the order of 10 14 G, the ratio of poloidal to toroidal magnetic field strengths is found to be larger than ~0.01 in magnetars powering SLSNe.
    Print ISSN: 1745-3925
    Electronic ISSN: 1745-3933
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2016-05-27
    Description: We present Gemini Multi-Object Spectrograph (GMOS) imaging of 12 candidate intergalactic globular clusters (IGCs) in the Local Group, identified in a recent survey of the Sloan Digital Sky Survey (SDSS) footprint by di Tullio Zinn & Zinn. Our image quality is sufficiently high, at ~0.4–0.7 arcsec, that we are able to unambiguously classify all 12 targets as distant galaxies. To reinforce this conclusion we use GMOS images of globular clusters in the M31 halo, taken under very similar conditions, to show that any genuine clusters in the putative IGC sample would be straightforward to distinguish. Based on the stated sensitivity of the di Tullio Zinn & Zinn search algorithm, we conclude that there cannot be a significant number of IGCs with M V ≤ –6 lying unseen in the SDSS area if their properties mirror those of globular clusters in the outskirts of M31 – even a population of 4 would have only a 1 per cent chance of non-detection.
    Print ISSN: 1745-3925
    Electronic ISSN: 1745-3933
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2016-05-27
    Description: The R h  =  ct cosmological model has received considerable attention in recent years owing to claims that it is favoured over the standard cold dark mater (CDM) model by most observational data. A key feature of the R h  =  ct model is that the zero active mass condition  + 3 p  = 0 holds at all epochs. Most recently, Melia has claimed that this condition is a requirement of the symmetries of the Friedmann–Robertson–Walker spacetime. We demonstrate that this claim is false and results from a flaw in the logic of Melia's argument.
    Print ISSN: 1745-3925
    Electronic ISSN: 1745-3933
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2016-05-28
    Description: We investigate the prospects for the capture of the proposed Planet 9 from other stars in the Sun's birth cluster. Any capture scenario must satisfy three conditions: the encounter must be more distant than ~150 au to avoid perturbing the Kuiper belt; the other star must have a wide-orbit planet ( a 100 au); the planet must be captured on to an appropriate orbit to sculpt the orbital distribution of wide-orbit Solar system bodies. Here we use N -body simulations to show that these criteria may be simultaneously satisfied. In a few per cent of slow close encounters in a cluster, bodies are captured on to heliocentric, Planet 9-like orbits. During the ~100 Myr cluster phase, many stars are likely to host planets on highly eccentric orbits with apastron distances beyond 100 au if Neptune-sized planets are common and susceptible to planet–planet scattering. While the existence of Planet 9 remains unproven, we consider capture from one of the Sun's young brethren a plausible route to explain such an object's orbit. Capture appears to predict a large population of trans-Neptunian objects (TNOs) whose orbits are aligned with the captured planet, and we propose that different formation mechanisms will be distinguishable based on their imprint on the distribution of TNOs.
    Print ISSN: 1745-3925
    Electronic ISSN: 1745-3933
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2016-05-12
    Description: We explore the formation of massive high-redshift Population III (Pop III) galaxies through photoionization feedback. We consider dark matter haloes formed from progenitors that have undergone no star formation as a result of early reionization and photoevaporation caused by a nearby galaxy. Once such a halo reaches 10 9 M , corresponding to the Jeans mass of the photoheated intergalactic medium at z 7, pristine gas is able to collapse into the halo, potentially producing a massive Pop III starburst. We suggest that this scenario may explain the recent observation of strong He  ii 1640 Å line emission in CR 7, which is consistent with ~10 7 M of young Pop III stars. Such a large mass of Pop III stars is unlikely without the photoionization feedback scenario, because star formation is expected to inject metals into haloes above the atomic cooling threshold (~10 8 M at z 7). We use merger trees to analytically estimate the abundance of observable Pop III galaxies formed through this channel, and find a number density of 10 –7 Mpc –3 at z  = 6.6 (the redshift of CR 7). This is approximately a factor of 10 lower than the density of Ly α emitters as bright as CR 7.
    Print ISSN: 1745-3925
    Electronic ISSN: 1745-3933
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2016-07-09
    Description: In this Letter we investigate the effect of boxy/peanut (b/p) bulges on bar-induced gas inflow to the central kiloparsec, which plays a crucial role on the evolution of disc galaxies. We carry out hydrodynamic gas response simulations in realistic barred galaxy potentials, including or not the geometry of a b/p bulge, to investigate the amount of gas inflow induced in the different models. We find that b/p bulges can reduce the gas inflow rate to the central kiloparsec by more than an order of magnitude, which leads to a reduction in the amount of gas available in the central regions. We also investigate the effect of the dark matter halo concentration on these results, and find that for maximal discs, the effect of b/p bulges on gas inflow remains significant. The reduced amount of gas reaching the central regions due to the presence of b/p bulges could have significant repercussions on the formation of discy- (pseudo-) bulges, on the amount of nuclear star formation and feedback, on the fuel reservoir for AGN activity, and on the overall secular evolution of the galaxy.
    Print ISSN: 1745-3925
    Electronic ISSN: 1745-3933
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2016-07-13
    Description: We present a proof-of-concept study of a method to estimate the inclination angle of compact high velocity clouds (CHVCs), i.e. the angle between a CHVC's trajectory and the line of sight. The inclination angle is derived from the CHVC's morphology and kinematics. We calibrate the method with numerical simulations, and we apply it to a sample of CHVCs drawn from HIPASS (Putman et al.). Implications for CHVC distances are discussed.
    Print ISSN: 1745-3925
    Electronic ISSN: 1745-3933
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2016-07-17
    Description: The optical/ultraviolet (UV) variability of quasars has been discovered to be correlated with other quasar properties, such as luminosity, black hole mass and rest-frame wavelength. However, the origin of variability has been a puzzle so far. In this work, we upgrade the accretion disc model, which assumed the variability is caused by the change of global mass accretion rate, by constraining the disc size to match the viscous time-scale of accretion disc to the variability time-scale observed and by including the irradiation/X-ray reprocessing to make the emitted spectrum become steeper. We find this hybrid model can reproduce the observed bluer-when-brighter trend quite well, which is used to validate the theoretical model by several works recently. The traditional correlation between the variability amplitude and rest-frame wavelength can also be well fitted by our model. In addition, a weak positive correlation between variability amplitude and black hole mass is present, qualitatively consistent with recent observations.
    Print ISSN: 1745-3925
    Electronic ISSN: 1745-3933
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2016-07-17
    Description: The first-known tidal disruption event (TDE) with strong evidence for a relativistic jet – based on extensive multiwavelength campaigns – is Swift J1644+5734. In order to directly measure the apparent speed of the radio jet, we performed very long baseline interferometry (VLBI) observations with the European VLBI network (EVN) at 5 GHz. Our observing strategy was to identify a very nearby and compact radio source with the real-time e-EVN, and then utilize this source as a stationary astrometry reference point in the later five deep EVN observations. With respect to the in-beam source FIRST J1644+5736, we have achieved a statistical astrometric precision about 12 μas (68 per cent confidence level) per epoch. This is one of the best phase-referencing measurements available to date. No proper motion has been detected in the Swift J1644+5734 radio ejecta. We conclude that the apparent average ejection speed between 2012.2 and 2015.2 was less than 0.3 c with a confidence level of 99 per cent. This tight limit is direct observational evidence for either a very small viewing angle or a strong jet deceleration due to interactions with a dense circum-nuclear medium, in agreement with some recent theoretical studies.
    Print ISSN: 1745-3925
    Electronic ISSN: 1745-3933
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2016-07-17
    Description: Near-field cosmology – using detailed observations of the Local Group and its environs to study wide-ranging questions in galaxy formation and dark matter physics – has become a mature and rich field over the past decade. There are lingering concerns, however, that the relatively small size of the present-day Local Group (~2 Mpc diameter) imposes insurmountable sample-variance uncertainties, limiting its broader utility. We consider the region spanned by the Local Group's progenitors at earlier times and show that it reaches 3 arcmin 7 comoving Mpc in linear size (a volume of 350 Mpc 3 ) at z  = 7. This size at early cosmic epochs is large enough to be representative in terms of the matter density and counts of dark matter haloes with M vir ( z = 7) 2 x 10 9 M . The Local Group's stellar fossil record traces the cosmic evolution of galaxies with 10 3 M * ( z = 0)/M 10 9 (reaching M 1500  〉 –9 at z  ~ 7) over a region that is comparable to or larger than the Hubble Ultra-Deep Field (HUDF) for the entire history of the Universe. In the JWST era, resolved stellar populations will probe regions larger than the HUDF and any deep JWST fields, further enhancing the value of near-field cosmology.
    Print ISSN: 1745-3925
    Electronic ISSN: 1745-3933
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2016-07-21
    Description: The presence or lack of eclipses in the X-ray light curves of ultraluminous X-ray sources (ULXs) can be directly linked to the accreting system geometry. In the case where the compact object is stellar mass and radiates isotropically, we should expect eclipses by a main-sequence to sub-giant secondary star on the recurrence time-scale of hours to days. X-ray light curves are now available for large numbers of ULXs as a result of the latest XMM–Newton catalogue. We determine the amount of fractional variability that should be injected into an otherwise featureless light curve for a given set of system parameters as a result of eclipses and compare this to the available data. We find that the vast majority of sources for which the variability has been measured to be non-zero and for which available observations meet the criteria for eclipse searches, have fractional variabilities which are too low to derive from eclipses and so must be viewed such that ≤ cos – 1 ( R * / a ). This would require that the disc subtends a larger angle than that of the secondary star and is therefore consistent with a conical outflow formed from super-critical accretion rates and implies some level of geometrical beaming in ULXs.
    Print ISSN: 1745-3925
    Electronic ISSN: 1745-3933
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2013-09-16
    Description: The dihedral angle formed at junctions between two plagioclase grains and a grain of augite is only very rarely in textural equilibrium in gabbros from kilometre-scale crustal layered intrusions. The median of a population of these disequilibrium angles, cpp , varies systematically within a single layered intrusion, remaining constant over large stretches of stratigraphy with significant increases and decreases associated with the addition or reduction respectively of the number of phases on the liquidus of the bulk magma. The stepwise changes in cpp are present in the Upper Zone of the Bushveld Complex, the Megacyclic Unit I of the Sept Iles Intrusion, and the Layered Series of the Skaergaard intrusion. The plagioclase-bearing cumulates of Rum have a bimodal distribution of cpp , dependent on whether the cumulus assemblage includes clinopyroxene. The presence of the stepwise changes is independent of the order of arrival of cumulus phases and of the composition of either the cumulus phases or the inferred composition of the interstitial liquid. The only parameter that behaves in an exactly analogous manner to cpp is the rate of change in enthalpy with temperature ( H / T ) during crystallization. Both H / T and cpp increase with the addition of a liquidus phase, and decrease with the removal of a liquidus phase. The replacement of one phase by another has little effect on H / T and no discernible effect on cpp . An increase of H / T results in an increase in the fraction of the total enthalpy budget that is the latent heat of crystallization (the fractional latent heat). It also increases the mass crystallized in each incremental temperature drop (the crystal productivity). These increases of both fractional latent heat and crystal productivity are likely to cause an increase in the time taken to form three-grain junctions in the mush via thermal buffering of a thickened mushy layer. We suggest these are the underlying causes of stepwise increases in cpp . Stepwise changes in the geometry of three-grain junctions in fully solidified gabbros thus provide a clear microstructural marker for the progress of fractionation down the liquid line of descent in layered intrusions.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2013-09-16
    Description: High-resolution sampling in monogenetic fields has the potential to reveal fine-scale heterogeneity of the mantle, a feature that may be overwhelmed by larger fluxes of magma, or missed by under-sampling. The Quaternary Auckland Volcanic Field (AVF) in northern New Zealand is a basaltic field of 51 small-volume volcanic centres, and is one of the best-sampled examples of a monogenetic volcanic field. We present data for 12 centres in the volcanic field. These show the large compositional variations between volcanoes as well as through single eruptive sequences. Whole-rock compositions range from subalkaline basalt in the larger centres, through alkali basalt to nephelinite in the smallest centres. Fractional crystallization has had a limited effect in many of the centres, but high-pressure clinopyroxene crystallization may have occurred in others. Three end-members are observed in Pb isotope space, indicating that distinct mantle source components are involved in the petrogenesis of the magmas. Whole-rock multi-element patterns show that the larger centres have prominent positive Sr anomalies and lack K anomalies, whereas the smaller centres have prominent negative K anomalies and lack Sr anomalies. The melting parameters and compositions of the sources involved are modelled using trace element ratios and multi-element patterns, and three components are characterized: (1) fertile peridotite with a Pb-isotope composition similar to Pacific mid-ocean ridge basalt; (2) eclogite domains with a HIMU-like isotope composition dispersed within the fertile peridotite; (3) slightly depleted subduction-metasomatized peridotitic lithospheric mantle (containing c . 3% subduction fluids). Modelling shows that melting in the AVF begins in garnet-bearing fertile asthenosphere (with preferential melting of eclogite domains) and that melts are variably diluted by melts of the lithospheric source. The U–Th isotope compositions of the end-members in the AVF show 230 Th excess [( 230 Th/ 232 Th) ratios of 1·11–1·38], with the samples of lower ( 230 Th/ 232 Th) exhibiting higher ( 238 U/ 232 Th), which we attribute to the dilution effect of the melts from the lithospheric mantle source. Modelling reveals a correlation between melting in the asthenosphere, the degree of melting and incorporation of the metasomatized lithospheric mantle source, and the resultant size of the volcanic centre. This suggests that the scale of the eruption may essentially be controlled by asthenospheric mantle dynamics.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2013-09-16
    Description: The origin of mafic and ultramafic sills exhibiting different whole-rock compositional profiles (e.g. I-, C-, D-, M- and S-shaped profiles) remains controversial. We have addressed this issue by revisiting three ~100 m thick Siberian dolerite sills (Vavukansky, Kuz’movsky and Vilyuysky) that display remarkable internal differentiation. The Vavukansky sill has an M-shaped profile with prominent basal and top reversals showing inward increases in whole-rock MgO, Mg-number [100Mg/(Mg + Fe)] and normative An content [100An/(An + Ab)], followed by the Layered and Upper Border Series with inward decreases in these indices. The Kuz’movsky and Vilyuysky sills both show S-shaped profiles similar to the Vavukansky sill, but lack a top reversal. These whole-rock M- and S-shaped profiles are accompanied by similar profiles in mineral compositions. Plagioclase and, to a lesser extent, olivine show systematic inward increases in An content and Mg-number, respectively, across basal and top reversals. These compositional trends are followed by inward decreases in these ratios in the interiors of the Vavukansky and Kuz’movsky sills. Currently accepted models attribute whole-rock M- and S-shaped compositional profiles to crystal settling, compositional convection or compaction operating in closed systems. Our observations challenge these traditional interpretations because variations in mineral compositions observed in marginal reversals cannot result from closed-system fractionation. We suggest instead that initially the sills evolved as open systems that were slowly inflated by magmas that became gradually more primitive with time. The inflation was accompanied by in situ crystallization that preserved the preceding fractionation history of the injected magmas by forming basal and top reversals with minerals becoming more primitive inwards. This process culminated with rapid inflation of the sills to their current size owing to a major influx of primitive magma. Subsequently, magma flow through the sills ceased and they evolved as closed systems by fractional crystallization. This resulted in the Layered and Upper Border Series with minerals becoming more evolved inwards. This model can be extended to explain other compositional profiles and petrological features in mafic and ultramafic sills.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2013-09-16
    Description: Magma dynamics and time scales during the VEI 5, 2000 bp eruption of El Misti volcano, southern Peru (EM2000BP) are investigated to address cyclic explosive activity at this hazardous volcano. The 1·4 km 3 of pumice falls and flows have abundant mingled pumice of high-K, calc-alkaline rhyolite and andesite composition. Phenocryst zoning and compositions reveal mutual exchange of plagioclase between the two magmas; amphibole in the rhyolite was derived from the andesite. Amphiboles in the andesite are predominantly unrimmed crystals whereas those in the rhyolite mostly exhibit reaction rims. Phase equilibria indicate that the andesite formed at ~900–950°C and 2–3 kbar pressure and was water-saturated with 5·1–6·0 wt % H 2 O, broadly similar to El Misti magmas overall. Amphibole, plagioclase, Ti-magnetite, and two pyroxenes were the crystallizing phases. A separate rhyolite magma existed higher in the crust at a temperature of 816 ± 30°C and ~5% H 2 O in which only plagioclase and Fe–Ti oxides were stable. The lack of cognate amphibole in the rhyolite despite H 2 O saturation requires that it staged above the stability limit of amphibole (〈100 MPa). Exchange reactions in amphibole (dominantly pargasitic) and trace element partitioning in plagioclase indicate that both andesite and rhyolite magmas were broadly constant in temperature and H 2 O content. These constraints suggest that the initially separate rhyolite and deeper andesite magmas interacted by an initial andesite recharge event that resulted in mingling and crystal exchange. A period of 50–60 days is required for amphibole introduced into the rhyolite to develop reaction rims owing to decompression. These rims are dominated by plagioclase, a consequence of the Al-rich nature of the amphibole. The lack of reaction rims on amphibole in the andesite implicates a second, more-forceful and voluminous eruption-triggering recharge event during which andesite rose rapidly from source to surface in ≤5 days at ascent rates of at least 0·023 m s –1 . Further decompression-driven crystallization is recorded in plagioclase rims and microlite growth that may have contributed to a rapid increase in viscosity leading to explosive eruption. This VEI 5 plinian eruption shares characteristics with other explosive events at El Misti on a time scale of 2000–4000 years, suggesting periodic recharge-driven explosive activity.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2013-09-16
    Description: We report structural evidence of ductile strain localization in mantle pyroxenite from the spinel to plagioclase websterite transition in the Ronda Peridotite (southern Spain). Mapping shows that, in this domain, small-scale shear zones occurring at the base of the lithospheric section are systematically located within thin pyroxenite layers, suggesting that the pyroxenite was locally weaker than the host peridotite. Strain localization is associated with a sudden decrease of grain size and increasing volume fractions of plagioclase and amphibole as a result of a spinel to plagioclase phase transformation reaction during decompression. This reaction also fostered hydrogen extraction (‘dehydroxylation’) from clinopyroxene producing effective fluid saturation that catalyzed the synkinematic net-transfer reaction. This reaction produced fine-grained olivine and plagioclase, allowing the onset of grain-size sensitive creep and further strain localization in these pyroxenite bands. The strain localization in the pyroxenites is thus explained by their more fertile composition, which allowed earlier onset of the phase transition reactions. Geothermobarometry undertaken on compositionally zoned constituent minerals suggests that this positive feedback between reactions and deformation is associated with cooling from at least 1000°C to 700°C and decompression from 1·0 to 0·5 GPa.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2013-09-16
    Description: The late Miocene and younger mafic back-arc lavas in the southern Puna of the central Andean plateau have been attributed to the aftermath of crustal and mantle lithospheric delamination or foundering. In this paper, we analyze in more detail the nature of the back-arc mafic suite magmas, including the conditions of magma generation in the mantle and of magma evolution during ascent and ponding in the crust, using extensive compositional data for phenocryst minerals and olivine-hosted melt inclusions in combination with published and new whole-rock chemical and isotopic data. We estimate that the primary melts last equilibrated with an enriched mantle source at temperatures near 1375°C and pressures near 2 GPa, which is near the base of the seismically determined ~60 km thick crust. A mantle source geochemically enriched by continental material introduced through delamination and subducted erosion processes is required to explain the coincidence of the high 87 Sr/ 86 Sr ratios (〉0·705) and high Sr concentrations (〉700 ppm) of the most primitive lavas (e.g. 9–10 wt % MgO, olivine Fo 88 ). The crystallization conditions inferred from mineral–melt equilibria indicate that olivine ( T = 1320–1220°C) was followed by clinopyroxene ( T = 1230–1140°C). Clinopyroxene–melt equilibration pressures of 0·7 to near 1 GPa in the most mafic samples indicate that the magmas crystallized at mid-crustal depths of 20–35 km, within a region of inferred partial melt accumulation based on the presence of low seismic velocity zones. Olivine-hosted melt inclusions indicate relatively dry melts (maximum 0·5 wt % H 2 O) with unusual high-Al basaltic compositions, which are attributed to the high-pressure suppression of plagioclase crystallization. A first stage of crustal contamination before mid-crustal accumulation and crystallization of the mafic magmas is suggested by high O-isotope ratios in olivine phenocrysts and negative Eu anomalies in clinopyroxene from the plagioclase-free mafic lavas. Mixing models based on trace elements and radiogenic isotopes suggest assimilation of silicic melt in the lower crust, similar to contemporaneous glassy dacites with steep REE patterns and negative Eu anomalies. A second stage of crustal assimilation at shallower depths is indicated by the mismatch of incompatible elements in clinopyroxene relative to bulk-rock compositions, by strong positive correlations of radiogenic isotopes with wt % SiO 2 , and by petrographic observation of partly resorbed and reacted quartz xenocrysts. Mixing calculations require the erupted magmas to have assimilated in total some 15–25% crust.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2013-09-16
    Description: Hornblende-bearing basanites and alkali basalts from the Rhön area of Germany (part of the Central European Volcanic Province; CEVP) have high TiO 2 (3–4 wt %), moderately high Mg# (mostly 〉0·50), variable Cr (400–30 ppm) and Ni (160–20 ppm) abundances, and are enriched in incompatible trace elements and rare earth elements (REE). In primitive mantle-normalized multi-element diagrams they show a strong depletion in Ba, Rb, and K relative to trace elements of similar incompatibility. Some alkali basalts and more differentiated rocks have lower Mg# and lower abundances of Ni and Cr, and have undergone fractionation of olivine, clinopyroxene, Fe–Ti oxides and amphibole. The trace element constraints (e.g. low Nb/U and Ce/Pb and the Nd–Sr–Pb isotope compositions of some basalts) indicate that assimilation of lower crustal material has modified the composition of the primary mantle-derived magmas. Most of the basanites and alkali basalts approach the Sr–Nd–Pb isotope compositions inferred for the EAR (European Asthenospheric Reservoir) component. Variations in REE abundances and correlations between REE ratios suggest partial melting of amphibole-bearing spinel peridotite containing a significant portion of non-peridotitic material (i.e. pyroxenite). The presence of residual amphibole, indicated by depletion of K and Rb relative to Ba and Nb, requires melting close to the asthenosphere–lithosphere boundary or within the lithospheric mantle, most probably of a veined mantle source. Temperature and pressure estimates indicate a depth of melting for the most primitive lavas at ~80 km at temperatures of ~1290°C. Based on Sr–Nd isotope and trace element constraints it is proposed that asthenospheric melts similar in composition to EAR melts observed elsewhere in the CEVP froze at the asthenosphere–lithosphere thermal boundary as veins in the lithospheric mantle. These veins were remelted after only short storage times by ascending asthenospheric melts, imposing the prominent amphibole signature upon the basalts. The fairly radiogenic Pb isotope signatures are expected to originate from melting of enriched, low melting temperature components incorporated in the depleted upper (asthenospheric) mantle and therefore do not require upwelling of deep-seated mantle sources for the Rhön or many other continental alkaline lavas with similar Pb isotope signatures.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2015-05-01
    Description: We show that for the undisturbed interstellar velocity vector $\boldsymbol {V}_{\rm IS}$ and magnetic field direction $\boldsymbol {B}_{\rm IS}$ defined by IBEX ( Interstellar Boundary Explorer ) Ribbon centre, the radial direction of Voyager 2 over the last decade, and the (thermal proton) plasma velocity measured by the spacecraft since 2010.5, are almost parallel to the ( $\boldsymbol {B}_{\rm IS}$ , $\boldsymbol {V}_{\rm IS}$ )-plane, which coincides in practice with the hydrogen deflection plane. In consequence the plasma flow velocity measured by Voyager 2 in the inner heliosheath rotates more in the transverse than in the polar direction (explanation alternative to McComas & Schwadron). Note that the ( $\boldsymbol {B}_{\rm IS}$ , $\boldsymbol {V}_{\rm IS}$ ) plane is a symmetry plane of the interstellar plasma flow at large heliocentric distances.
    Print ISSN: 1745-3925
    Electronic ISSN: 1745-3933
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2015-05-13
    Description: Coronal-Line Forest Active Galactic Nuclei (CLiF AGN) are remarkable in the sense that they have a rich spectrum of dozens of coronal emission lines (e.g. [Fe vii ], [Fe x ] and [Ne v ]) in their spectra. Rose, Elvis & Tadhunter suggest that the inner obscuring torus wall is the most likely location of the coronal line region in CLiF AGN, and the unusual strength of the forbidden high-ionization lines is due to a specific AGN-torus inclination angle. Here, we test this suggestion using mid-IR colours (4.6–22 μm) from the Wide-Field Infrared Survey Explorer for the CLiF AGN. We use the Fischer et al. result that showed that as the AGN-torus inclination becomes more face on, the Spitzer 5.5–30 μm colours become bluer. We show that the [ W 2– W 4] colours for the CLiF AGN (〈[ W 2– W 4]〉 = 5.92 ± 0.12) are intermediate between Sloan Digital Sky Survey (SDSS) type 1 (〈[ W 2– W 4]〉 = 5.22 ± 0.01) and type 2 AGN (〈[ W 2– W 4]〉 = 6.35 ± 0.03). This implies that the AGN-torus inclinations for the CLiF AGN are indeed intermediate, supporting the work of Rose, Elvis & Tadhunter. The confirmed relation between CLiF AGN and their viewing angle shows that CLiF AGN may be useful for our understanding of AGN unification.
    Print ISSN: 1745-3925
    Electronic ISSN: 1745-3933
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...