ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (10,202)
  • Springer  (10,202)
  • American Chemical Society
  • American Geophysical Union (AGU)
  • Annual Reviews
  • 2010-2014  (7,005)
  • 1980-1984  (3,197)
  • 1935-1939
  • Plant and Soil  (1,484)
  • Hydrobiologia  (1,328)
  • 2089
  • 2276
Collection
  • Articles  (10,202)
Publisher
  • Springer  (10,202)
  • American Chemical Society
  • American Geophysical Union (AGU)
  • Annual Reviews
Years
Year
  • 1
    Publication Date: 2013-09-08
    Description: Aims Afforestation causes important alterations in SOM content and composition that affect the soil functions and C balance. The aim of this study was to identify the mechanisms that determine the changes in SOM composition following afforestation of grasslands. Methods The study included 4 chronosequences and 5 paired plots comprising pastures and land afforested with Pinus radiata . The SOM was characterized by 13 C CP-MAS NMR spectroscopy and differential scanning calorimetry. Results During the first 10–20 year after afforestation, the changes in SOM content varied from slight gains to large losses (〉40 %). The analyses revealed that even SOM compounds considered resistant to decomposition were degraded during this time. The SOM gains, observed 20 year after stand establishment, were favoured by the higher recalcitrance of pine litter and possibly by soil acidification. The concentrations of most SOM compounds, particularly the stable compounds, were higher at the end of the rotation. The low degree of protection, along with the favourable climatic conditions, may also explain the rapid decomposition of SOM, including resistant compounds, in these soils. DSC analysis complemented the information about SOM composition provided by other techniques. Conclusions The accumulation of stable SOM compounds at the end of the rotation suggests a longer soil C turnover in these afforested soils, which may alleviate the gradual loss of SOC in intensively managed forest soils.
    Print ISSN: 0032-079X
    Electronic ISSN: 1573-5036
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-09-08
    Description: Background and aims Plant nutrient uptake from coarse soil (2–4 mm diameter) has been demonstrated for only a limited number of nutrients, and the nutritional contribution of coarse soil when present with fine soil (material 〈2 mm diameter) in realistic ratios is unknown. We conducted a seedling pot trial to investigate the functional relevance of this soil fraction to plant nutrition. Methods Fine soil was mixed with either coarse soil, or the equivalent volume of inert glass chips, in ratios identical to those occurring naturally in soil sampled from two depths at each of two sites. Seedlings of Nothofagus solandri var. cliffortioides and Weinmannia racemosa were planted in the soil mixtures and harvested after 9 months. Results The content of nitrogen, phosphorous, potassium, magnesium and other elements in the above ground seedling tissue was significantly increased by the presence of coarse soil. The coarse soil fraction also contributed proportionally much more to plant nutrient uptake than fine soil on a mass per mass basis. Conclusions Coarse soil is excluded from conventional soil analysis, so is possible that soil nutrient capital is systematically underestimated. This has implications for land management and studies of plant dynamics in relation to nutrient supply.
    Print ISSN: 0032-079X
    Electronic ISSN: 1573-5036
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-09-12
    Description: Background and aims Lateral tree-scale variability in plantations should be taken into account when scaling up from point samples, but appropriate methods for sampling and calculation have not been defined. Our aim was to define and evaluate such methods. Methods We evaluated several existing and new methods, using data for throughfall, root biomass and soil respiration in mature oil palm plantations with equilateral triangular spacing. Results Three ways of accounting for spatial variation within the repeating tree unit (a hexagon) were deduced. For visible patch patterns, patches can be delineated and sampled separately. For radial patterns, measurements can be made in radial transects or a triangular portion of the tree unit. For any type of pattern, including unknown patterns, a triangular sampling grid is appropriate. In the case studies examined, throughfall was 79 % of rainfall, with 95 % confidence limits being 62 and 96 % of rainfall. Root biomass and soil respiration, measured on a 35-point grid, varied by an order of magnitude. In zones with steep gradients in parameters, sampling density has a large influence on calculated mean values. Conclusions The methods defined here provide a basis for representative sampling and calculation procedures in studies requiring scaling up from point sampling, but more efficient methods are needed.
    Print ISSN: 0032-079X
    Electronic ISSN: 1573-5036
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-09-19
    Description: Clonal plants benefit from the ability to translocate resources among interconnected ramets through clonal integration to colonise ubiquitous heterogeneous habitats, which may contribute to the invasiveness of exotic clonal plants. To test this hypothesis, a greenhouse experiment was conducted to investigate the effects of clonal integration on a non-native clonal plant, Myriophyllum aquaticum , subjected to spatial and temporal heterogeneity of water supply. The daughter ramets were grown with stolon connections either severed from or connected to the mother plant and subjected to different amounts or frequencies of water supply. Clonal integration significantly improved growth and photosynthetic performance of daughter ramets that were exposed to spatial and temporal heterogeneity of water supply. Biomass allocation to roots of offspring ramets changed with water supply to enhance the capacity for water uptake. The decrease of the maximum quantum yield of photosystem II ( F v / F m ) as a function of reduced water supply was greatly alleviated by stolon connection. Moreover, clonal integration facilitated stabilisation of foliar N concentration and C/N ratio to support healthy growth of the ramets. These results suggest that clonal integration may facilitate invasion of M. aquaticum when subjected to heterogeneity in resource supply under ever-changing environments.
    Print ISSN: 0018-8158
    Electronic ISSN: 1573-5117
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-09-19
    Description: Streams receiving agricultural runoff are typically enriched with nutrients, which variously impact stream communities. We examined the effects of phosphate and nitrate enrichment on leaf litter breakdown, microbial biomass and the nutrition of an invertebrate shredder to determine how nutrients are transferred through the stream detrital food web. Using artificial streams, individuals of Anisocentropus kirramus (Trichoptera: Calamoceratidae) were fed leaves of Apodytes brachystylus (Icacinaceae) under different nutrient regimes. We measured the amount of leaf material consumed or decomposed and the microbial biomass colonising the leaves. The dry mass, and protein, lipid and carbohydrate composition of A. kirramus larvae were determined after 28-day feeding on the leaves. Supplements of phosphorus, but not nitrogen, enhanced leaf breakdown, microbial growth and growth of larvae. Microbial biomass and dry mass of larvae increased with nutrient enrichment and they were significantly correlated. Thus, the phosphorus supplement was transmitted through the detrital food web via the microbial pathway, resulting in higher nutritional quality of leaves and enhanced physiological condition of the shredder. Understanding such subtle relationships is important in determining the impacts of anthropogenic contaminants on freshwater ecosystems.
    Print ISSN: 0018-8158
    Electronic ISSN: 1573-5117
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-09-19
    Description: Assessing ammonium (NH 4 + ) availability in aquatic systems requires accurate concentration and turnover rate data. Water column NH 4 + regeneration, potential NH 4 + uptake, and nitrogen (N) fixation rates were measured in Missisquoi Bay, Lake Champlain, to help constrain internal N dynamics affecting phytoplankton community structure and cyanobacteria (Cy) blooms. Cyanobacteria dominated phytoplankton biomass during occasional summer bloom periods, but low or undetectable N 2 fixation rates and low heterocyte abundances suggested that N fixing cyanobacteria did not rely on atmospheric N 2 . Light/dark incubations revealed that photosynthetic and dark NH 4 + uptake generally were balanced, highlighting the importance of bacterial uptake. Our results suggest that phytoplankton were not controlled by nutrients from the “bottom-up”; rather, water column N dynamics responded to phytoplankton patterns. Basin-scale water column NH 4 + regeneration rates were about 700,000 mol N day −1 (9.8 t N day −1 ), which is almost twice the estimated N load from tributaries, and suggests a primary role for water column N regeneration in supporting primary production. Comparisons of basin-scale NH 4 + regeneration and demand imply that primary production is not sustained fully by combined water column regeneration and tributary N inputs; thus, future research should constrain additional sources and sinks affecting N balance in this and other aquatic systems.
    Print ISSN: 0018-8158
    Electronic ISSN: 1573-5117
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-09-19
    Description: The reconstructed Lake Karla, Greece, has been undergoing its water-filling period since November 2009. In this paper, we aimed at investigating whether the unicellular eukaryotes, including the toxic/parasitic ones, that have been found during mass fish kills in the lake (March–April 2010), persist during the first warm period of the lake (May, August, November 2010). Given that microscopic characterization of some of these eukaryotes is not adequate for their identification, we analysed the 18S rRNA gene diversity of plankton samples. All the found phylotypes belonged to the phyla of Mesomycetazoa, Chlorophyta, Fungi, Alveolata, Cercozoa, Cryptophyta and Stramenopiles. Some members of these groups seem to persist in Lake Karla as they have been found in early spring as well. These microscopic eukaryotes are either ichthyotoxic/parasitic (e.g. Pfiesteria sp./ Pseudopfiesteria shumwayae , some Fungi, Mesomycetazoa, Lagenidium sp., Cercozoa) or indicative of hyper-eutrophic conditions (e.g. Oocystis sp., Scenedesmus spp.) and were rather abundant during the first spring–autumn period of the lake’s refilling process. These complex microscopic communities are expected to shape highly dynamic and variable food webs with the risk of repeated fish kills.
    Print ISSN: 0018-8158
    Electronic ISSN: 1573-5117
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-09-19
    Description: Subfossil chironomid and sediment geochemistry data from Lugu Lake, a large high-elevation lake in southwest China, were used to assess the influences of climate warming and direct human impacts on the lake through time. A 95-year-long sediment record was recovered from the lake. Principal components analysis (PCA) and redundancy analysis of fossil chironomid data were performed to determine the controlling factors on the chironomid community. The four prominent environmental controls were summer air temperature, organic matter C:N ratio (C org :N), dry mass accumulation rate (DMAR), and total nitrogen. C org :N proved to be the most important controlling factor through time. However, C org :N and summer air temperature were highly co-linear, possibly due to temperature directly impacting lake productivity (and thus C:N ratios) through increased stratification and a longer growing season. PCA Axis 1 scores were a strong predictor of summer temperatures even after DMAR was factored out to account for direct human influences. The strong temperature–chironomid relationship over the last 50 years could be due to the lake becoming more responsive to climate warming after cultural eutrophication of the 1950s, as lakes with higher nutrient loads are shown to be more responsive to the effects of climate warming.
    Print ISSN: 0018-8158
    Electronic ISSN: 1573-5117
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-09-19
    Description: The impacts of climate change on Microcystis blooms in San Francisco Estuary are uncertain because factors associated with the abundance and distribution of Microcystis blooms since their inception in 1999 are poorly understood. Discrete and continuous data collected between 2004 and 2008 were used to assess what factors controlled bloom initiation and persistence, if there was an impact of the bloom on mesozooplankton abundance and toxicity or dissolved organic carbon concentration, and how these might vary with climate change. Microcystis abundance was greater in dry years than wet years and both total microcystins concentration and the microcystins content of mesozooplankton tissue increased with abundance. The bloom began in the upstream portions of the estuary and spread farther west during dry years. Bloom initiation required water temperature above 19°C and surface irradiance in the visible range above 100 W m −2 . The bloom persisted during a wide range of water quality conditions but was closely correlated with low turbidity. The intensity of Microcystis blooms will likely increase with climate change due to increased water temperature and low streamflow during droughts. Elevated water temperature earlier in the spring could also extend the duration of Microcystis blooms by up to 3 months.
    Print ISSN: 0018-8158
    Electronic ISSN: 1573-5117
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    Springer
    Publication Date: 2013-09-21
    Description: Background Plants must acquire at least 14 mineral nutrients from the soil to complete their life cycles. Insufficient availability or extreme high levels of the nutrients significantly affect plant growth and development. Plants have evolved a series of mechanisms to adapt to unsuitable growth conditions where nutrient levels are too low or too high. microRNAs (miRNAs), a class of small RNAs, are known to mediate post-transcriptional regulation by transcript cleavage or translational inhibition. Besides regulating plant growth and development, miRNAs are well documented to regulate plant adaptation to adverse environmental conditions including nutrient stresses. Scope In this review, we focus on recent progress in our understanding of how miRNAs are involved in plant response to stresses resulting from deficiency in nutrients, such as nitrogen, phosphorus, sulfur, copper and iron, as well as toxicities from heavy metal ions. Conclusions Accumulated evidence indicates that miRNAs play critical roles in sensing the abundance of nutrients, controlling nutrient uptake and phloem-mediated long-distance transport, and nutrient homeostasis. miRNAs act as systemic signals to coordinate these physiological activities helping plants respond to and survive nutrient stresses and toxicities. Knowledge about how miRNAs are involved in plant responses to nutrient stresses promise to provide novel strategies to develop crops with improved nutrient use efficiency which could be grown in soils with either excessive or insufficient availability of nutrients.
    Print ISSN: 0032-079X
    Electronic ISSN: 1573-5036
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2013-09-22
    Description: Background and aims (i) compare the concentrations of total polyphenols (TP) and condensed tannins (CT), and CT profiles in different organs of mature trees and seedlings of eight true mangrove species in Hong Kong; (ii) examine the antioxidant activities of CT and (iii) relate the non-enzymatic antioxidative defence system with the vertical zonation pattern of mangrove species. Methods Mature trees and seedlings of eight species were collected from a Hong Kong mangrove swamp to determine TP and CT concentrations and the antioxidant activities of CT. Results According to TP concentrations, the true mangrove species could be broadly classified into three groups, (i) Lumnitzera racemosa and Aegiceras corniculatum 〉 (ii) Heritiera littoralis , Excoecaria agallocha , Bruguiera gymnorrhiza and Kandelia obovata 〉 (iii) Acanthus ilicifolius and Avicennia marina . The last two are pioneer species in the most foreshore location. They also had significantly lower antioxidant activities, CT concentrations and different CT profiles than the other six species in mid- and low-tides. Conclusions Classification of the eight true mangrove species into three groups based on polyphenols was similar to their vertical zonation from land to sea. The relationships between these antioxidants and zonation should be further verified by transplantation studies.
    Print ISSN: 0032-079X
    Electronic ISSN: 1573-5036
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2013-09-22
    Description: Background and aims Soil phosphorus (P) indices that have been originally developed and applied to agricultural soils for predicting P uptake by plants were examined in a pot experiment to determine the most suitable index for P availability in bauxite-processing residue sand (BRS). Methods Pot trials with ryegrass were established using BRS that had been amended with various organic (greenwaste compost, biochar and biosolids) and inorganic (zeolite) materials and different levels of di-ammonium phosphate fertiliser. Soil P availability indices tested included anion-exchange membrane (AEM-P), 0.01 M calcium chloride (CaCl 2 -P), Colwell-P, and Mehlich 3-P. Results AEM-P was found to most closely reflect the available P status in BRS across all treatments, and had the strongest associations with plant P uptake compared to Colwell-P, Mehlich 3-P and CaCl 2 -P. AEM-P was more closely correlated with P uptake by ryegrass than other P indices, while Colwell-P was closely related to leaf dry matter. Interestingly, a strong inverse relationship between plant indices and pH in BRS growth media was observed, and an adequate level of plant P uptake was found only in 15 year-old rehabilitated BRS with pH 〈 8.0. Conclusions AEM-P was found to be the most suitable index for evaluating P availability in highly alkaline BRS and pH was an important parameter affecting uptake of P by ryegrass. Importantly, time is required (〉 5 years) before improved uptake of P by plants can be observed in rehabilitated residue sand embankments.
    Print ISSN: 0032-079X
    Electronic ISSN: 1573-5036
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2013-09-22
    Description: Background & aims Herbivore-driven changes to soil properties can influence the decomposition rate of organic material and therefore soil carbon cycling within grassland ecosystems. We investigated how aboveground foraging mammalian and invertebrate herbivores affect mineral soil decomposition rates and associated soil properties in two subalpine vegetation types (short-grass and tall-grass) with different grazing histories. Methods Using exclosures with differing mesh sizes, we progressively excluded large, medium and small mammals and invertebrates from the two vegetation types in the Swiss National Park (SNP). Mineral soil decomposition rates were assessed using the cotton cloth (standard substrate) method between May and September 2010. Results Decomposition displayed strong spatio-temporal variability, best explained by soil temperature. Exclusion of large mammals increased decomposition rates, but further exclusion reduced decomposition rates again in the lightly grazed (tall-grass) vegetation. No difference among treatments was found in the heavily grazed (short-grass) vegetation. Heavily grazed areas had higher decomposition rates than the lightly grazed areas because of higher soil temperatures. Microbial biomass carbon and soil C:N ratio were also linked to spatio-temporal decomposition patterns, but not to grazing history. Conclusions Despite altering some of the environmental controls of decomposition, cellulose decomposition rates in the SNP’s subalpine grasslands appear to be mostly resistant to short-term herbivore exclusion.
    Print ISSN: 0032-079X
    Electronic ISSN: 1573-5036
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2013-09-27
    Description: Background Our recent publication (Warren et al., Plant Soil 366:683–693, 2013 ) described how pulses of deuterium oxide (D 2 O) or H 2 O combined with neutron radiography can be used to indicate root water uptake and hydraulic redistribution in maize. This technique depends on the large inherent differences in neutron cross-section between D and H atoms resulting in strong image contrast. Scope and Conclusions However, as illustrated by Carminati and Zarebanadkouki ( 2013 ) there can be a change in total water content without a change in contrast simply by a change in the relative proportions of D 2 O and H 2 O. We agree with their premise and detailed calculations (Zarebanadkouki at al. 2012 , 2013 ), and present further evidence that mixing of D 2 O and H 2 O did not confound evidence of hydraulic redistribution in our study.
    Print ISSN: 0032-079X
    Electronic ISSN: 1573-5036
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2013-09-27
    Description: Background and aims The growth of green plants depends not only on photosynthesis, but also on the successful remobilization and translocation of seed phosphorus (P) reserves to the vegetative parts of the developing seedling during early growth. Remobilization and photosynthesis are therefore two parallel and co-coinciding processes involved in better seedling establishment and early growth. Methods A study was conducted to evaluate the priority of developing maize seedlings to translocate the remobilized seed P reserves and external P uptake to seedling root and shoot sinks during 4 weeks of early growth. Two fluxes of P in growing seedlings, one from seed remobilized P reserves and one from external P uptake, were distinguished by labelling external nutrient solution P with 32 P. Results The seedling phytomass was equally distributed between seedling roots and shoots for 530 cumulated degree days after sowing. Seedlings partitioned up to 71 % of P from seed reserves and up to 68 % of P acquired from the nutrient solution, to the shoots, depending on the seed P content and P concentration in the nutrient solution. It appears that accumulation of P slows down in seedling roots corresponds to the translocative functions of root P towards shoots for start of photosynthesis. Conclusions Our results suggest that the major part of seed P reserves and external P uptake were used in early development of the seedling and the preferred sink was seedling shoots.
    Print ISSN: 0032-079X
    Electronic ISSN: 1573-5036
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2013-09-27
    Description: Background and aims Nickel (Ni) has become a major heavy metal contaminant. The form of nitrogen nutrition remarkably affects IRT1 expression in roots. IRT1 has an activity of transporting Ni 2+ into root cells. Therefore, nitrogen-form may affect Ni accumulation and toxicity in plants. The assumption was investigated in this study. Methods The Arabidopsis plants were treated in Ni-contained growth solutions with either nitrate (NO 3 − ) or ammonium (NH 4 + ) as the sole N source. After 7-day treatments, Ni concentration, IRT1 expression, Ni-induced toxic symptoms and oxidative stress in plants were analyzed. Results The NO 3 − -fed plants contained a higher Ni concentration, had a greater IRT1 expression in roots, and developed more severe toxic symptoms in the youngest fully expanded leaves, compared with the NH 4 + -fed plants. The Ni-induced growth inhibition was also more significant in NO 3 − -fed plants. Interestingly, Ni exposure resulted in greater hydrogen peroxide (H 2 O 2 ) and superoxide radical (O 2 . − ) accumulations, more severe lipid peroxidation and more cell death in NO 3 − -fed plants, whereas the opposite was true for NH 4 + -fed plants. Furthermore, the Ni-enhanced peroxidase (POD) and superoxide dismutase (SOD) activities were greater in NO 3 − -fed plants Conclusion NO 3 − nutrition promotes Ni uptake, and enhances Ni-induced growth inhibition and oxidative stress in plants compared with NH 4 + nutrition.
    Print ISSN: 0032-079X
    Electronic ISSN: 1573-5036
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2013-09-27
    Description: Background and aims Brassica napus has high boron (B) demand, but significant genotype differences exist with respect to B deficiency. The aim of this research was to elucidate the relationship between the different sensitivities of Brassica napus cultivars to low B stress and the characteristics of B uptake and transport to characterise the regulation of B efficiency in Brassica napus . Methods B-efficient and B-inefficient Brassica napus cultivars were used to compare the uptake and transport of B using the stable isotope 10 B tracer and grafting experiments, as well as expression of B transporters by RT-PCR. Results B-efficient cultivars have significant advantages with regard to B limitation. The B-efficient cultivar HZ showed less severe B deficiency symptoms and higher dry biomass than the B-inefficient cultivars LW and LB. Both the amount of total B and the 10 B concentration and accumulation in the shoots and roots of B-efficient HZ were higher than those of B-inefficient cultivars. In B-inefficient LW, the amount of total B and the 10 B that was transported into shoots was less than in the other three cultivars and the content and accumulation of total B and 10 B in the roots of B-inefficient LB were the lowest among all of the cultivars. When the roots of B-efficient HZ were used as stocks, the grafted plants showed B-efficient characteristics, such as mild B deficiency symptoms, and higher dry biomass and B accumulation, regardless of whether they originated from B-efficient or B-inefficient cultivars. In contrast, the grafted plants with B-inefficient LW used as stocks were B-inefficient. The expressions of BnBOR1;1c , BnBOR1;2a and BnNIP5;1 were up-regulated in roots under low B stress compared with the normal B condition. However, there was no obvious difference in the expressions of the three genes or of four other BnBOR1s between B-efficient and B-inefficient cultivars in low or normal B environments. Conclusions These results indicate that the B efficiency of Brassica napus is controlled primarily by roots, which allow more uptake and accumulation of B in B-efficient cultivars than B-inefficient cultivars in a low B environment. However the molecular mechanism regulating B efficiency in Brassica napus remains to be determined.
    Print ISSN: 0032-079X
    Electronic ISSN: 1573-5036
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2013-09-27
    Description: Aims Application of carbon (C) and nitrogen (N) isotopes is an essential tool to study C and N flows in plant-soil-microorganisms systems. When targeting single plants in a community the tracers need to be added via e.g., leaf-labeling or stem-feeding approaches. In this study we: (i) investigated if bicarbonate can be used to introduce 14 C (or 13 C) into white clover and ryegrass, and (ii) compared the patterns of 14 C and 15 N allocation in white clover and ryegrass to evaluate the homogeneity of tracer distribution after two alternative labeling approaches. Methods Perennial ryegrass and white clover were pulse labeled with 15 N urea via leaf-labeling and 14 C either via a 14 CO 2 atm or with 14 C bicarbonate through leaf-labeling. Plants were sampled 4 days after labeling and prepared for bulk isotope analysis and for 14 C imaging to identify plant parts with high and low 14 C activity. Subsequently, plant parts with high and low 14 C activity were separated and analyzed for 15 N enrichment. Results Bicarbonate applied by leaf-labeling efficiently introduced 14 C into both white clover and ryegrass, although the 14 C activity in particular for white clover was found predominantly in the labeled leaf. Using 14 C imaging for identification of areas with high (hotspots) and low 14 C activity showed that 14 C was incorporated very heterogeneously both when using bicarbonate and CO 2 as expected when using pulse labeling. Subsequent analysis of 15 N enrichment in plant parts with high and low 14 C activity showed that 15 N also had a heterogeneous distribution (up to two orders of magnitude). Conclusion Bicarbonate can efficiently be used to introduce 14 C or 13 C into plant via the leaf-labeling method. Both 14 C and 15 N showed heterogeneous distribution in the plant, although the distribution of 15 N was more even than that of 14 C.
    Print ISSN: 0032-079X
    Electronic ISSN: 1573-5036
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2013-09-27
    Description: Background and aim In numerous areas, rice cultivated under flooded conditions is exposed simultaneously to iron excess and arsenic contamination. The impact of these combined stresses on yield-related parameters and As distribution and speciation in various plant parts remains poorly documented. Methods Rice (cv I Kong Pao) was exposed to iron excess (125 mg L −1 Fe 2 SO 4 ), arsenic (50 and 100 μM Na 2 HAsO 4 .7H 2 O) or a combination of those stressing agents in hydroponic culture until harvest. Plant growth, yield-related parameters, non protein thiols concentration and mineral nutrition were studied in roots and shoots. Arsenic speciation was determined by high-performance liquid chromatography-hydride generation-atomic fluorescence spectrometry. Key Results Iron excess increased As retention by the roots in relation to the development of the root iron plaque but decreased As accumulation in the shoot. Arsenic concentration was lower in the grains than in the shoots. Iron stress reduced As accumulation in the husk but not in the dehusked grains. Iron excess decreased the proportion of extractable As(III) and As(V) in the grain while it increased the proportion of extractable As(III) in the shoot. Combined stresses (Fe+As) affected plant nutrition and significantly reduced the plant yield by limiting the number of grains per plant and the grain filling. Conclusions Fe excess had an antagonist impact on shoot As concentration but an additive negative impact on several yield-related parameters. Iron stress influences both As distribution and As speciation in rice.
    Print ISSN: 0032-079X
    Electronic ISSN: 1573-5036
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2013-09-27
    Description: Background and aims Intermittently frozen ground in winter is expected to disappear over large areas in the temperate zone due to ongoing climate warming. The lack of soil frost influences plant soil interactions and needs to be studied in more detail. Methods Winter soil frost was avoided by belowground heating wires in a field experiment over two subsequent winters in a temperate grassland. Soil respiration, soil nitrogen availability and plant performance (aboveground biomass, root length at two depth levels, greenness, nutrient content) were compared between “no-frost” and reference plots which underwent repeated freeze-thaw cycles in both winters. Results Soil respiration increased in the “no-frost” treatment during the warming phase (+291 %). N-availability in the upper 10 cm of the soil profile was not affected, possibly due to increased plant N accumulation during winter (+163 %), increased plant N concentration (+18 %) and increased biomass production (+31.5 %) in the growing season. Translocation of roots into deeper soil layers without changes in total root length in response to the “no-frost” treatment, however, may be a sign of nutrient leaching. Conclusions The cumulative effect on carbon cycling due to warmer soils therefore depends on the balance between increased winter carbon loss due to higher soil biotic activity and enhanced plant productivity with higher nutrient accumulation in the growing season.
    Print ISSN: 0032-079X
    Electronic ISSN: 1573-5036
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2013-09-27
    Description: Aims The aims of this work were to investigate the aluminum (Al) and phosphate (P) interactions in the regulation of root system architecture of Arabidopsis thaliana seedlings and the contribution of auxin signaling in primary and lateral root growth in response to Al toxicity. Methods Detailed analyses of root system architecture and cell division were performed in Arabidopsis WT seedlings and in low phosphorus insensitive mutants lpi1 - 3 and lpr1 - 1 lpr2 - 1 in response to Al. Expression studies of P-deficiency regulated phosphate transporter AtPT2 were also conducted. The role of auxin as a mediator of root morphogenetic changes by Al was evaluated by using the auxin-signaling mutants tir1 , tir1 afb2 afb3 , and arf7 arf19 . Results Al inhibited primary root growth by affecting cell cycle progression and causing differentiation of cells in the root meristem. These effects were reduced in low phosphorus insensitive lpi1 - 3 and low phosphate resistant lpr1 - 1 lpr2 - 1 Arabidopsis mutants. Al also activated the expression of the low phosphate-induced P transporter AtPT2 in roots. Lateral root formation by Al decreased in tir1 afb2 afb3 while arf7 arf19 mutants were highly resistant to Al in both primary root inhibition and lateral root induction. Conclusions Our results suggest that lateral root formation in response to Al toxicity and P deficiency may involve common signaling mechanisms, while a pathway involving ARF7 and ARF19 is important for primary root growth inhibition by Al.
    Print ISSN: 0032-079X
    Electronic ISSN: 1573-5036
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2013-09-27
    Description: Aims Litter decomposition and subsequent nutrient release play a major role in forest carbon and nutrient cycling. To elucidate how soluble or bulk nutrient ratios affect the decomposition process of beech ( Fagus sylvatica L.) litter, we conducted a microcosm experiment over an 8 week period. Specifically, we investigated leaf-litter from four Austrian forested sites, which varied in elemental composition (C:N:P ratio). Our aim was to gain a mechanistic understanding of early decomposition processes and to determine microbial community changes. Methods We measured initial litter chemistry, microbial activity in terms of respiration (CO 2 ), litter mass loss, microbial biomass C and N (C mic and N mic ), non purgeable organic carbon (NPOC), total dissolved nitrogen (TDN), NH 4 + , NO 3 - and microbial community composition (phospholipid fatty acids – PLFAs). Results At the beginning of the experiment microbial biomass increased and pools of inorganic nitrogen (N) decreased, followed by an increase in fungal PLFAs. Sites higher in NPOC:TDN (C:N of non purgeable organic C and total dissolved N), K and Mn showed higher respiration. Conclusions The C:N ratio of the dissolved pool, rather than the quantity of N, was the major driver of decomposition rates. We saw dynamic changes in the microbial community from the beginning through the termination of the experiment.
    Print ISSN: 0032-079X
    Electronic ISSN: 1573-5036
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2013-09-27
    Description: Background and aims Grazing may influence nutrient cycling in several ways. In productive mountain grasslands of central Argentina cattle grazing maintain a mosaic of different vegetation patches: lawns, grazed intensively and dominated by high quality palatable plants, and open and closed tussock grasslands dominated by less palatable species. We investigated if differences in the resources deposited on soil (litter and faeces) were associated with litter decomposition rates and soil nitrogen (N) availability across these vegetation patches. Methods We compared the three vegetation patches in terms of litter and faeces quality and decomposability, annual litterfall and faeces deposition rate. We determined decomposition rates of litter and faces in situ and decomposability of the same substrates in a common garden using “litter bags”. We determined soil N availability (with resin bags) in the vegetation patches. Also, we performed a common plant substrates decomposition experiment to assess the effect of soil environment on decomposition process. This technique provides important insights about the soil environmental controls of decomposition (i.e. the sum of soil physicochemical and biological properties, and microclimate), excluding the substrate quality. Results The litter quality and faeces deposition rate were higher in grazing lawns, but the total amounts of carbon (C) and nitrogen (N) deposited on soil were higher in tussock grasslands, due to higher litterfall in these patches. The in situ decomposition rates of litter and faeces, and of the two common plant substrates were not clearly related to either grazing pressure, litterfall or litter quality (C, N, P, lignin, cellulose or hemicellulose content). In situ litter decomposition rate and soil ammonium availability were correlated with the decomposition rates of both common plant substrates. This may suggest that difference in local soil environment among patch types is a stronger driver of decomposition rate than quality or quantity of the resource that enter the soil. Conclusions Our results show that, although high grazing pressure improves litter quality and increases faeces input, the reduction in biomass caused by herbivores greatly reduces C and N input for the litter decomposition pathway. We did not find an accelerated decomposition rate in grazing lawns as proposed by general models. Our results point to soil environment as a potential important control that could mask the effect of litter quality on field decomposition rates at local scale.
    Print ISSN: 0032-079X
    Electronic ISSN: 1573-5036
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2013-09-27
    Description: Background and aims Cd uptake has been shown to increase during conditions of Fe deficiency. This study tested the hypothesis that Fe-deficiency-responsive genes, particularly OsNRAMP1, play a role in the increased Cd uptake that occurs when rice is grown in aerobic soil conditions. Methods Plants were grown in aerobic or flooded soil conditions. Uptake of Cd was compared to levels of expression of candidate metal transporters and to metal ion availability in soil. Results Plants grown with intermittent soil flooding experienced a predominantly aerobic root environment and had the highest plant Cd uptake. Stronger upregulation of OsNRAMP1 was detected in plants grown in unflooded soil than in flooded soil. However, these transcriptional responses were not linked to an increase in Cd uptake. Overexpression of OsNRAMP1 was not found to increase the uptake of Cd in rice in soil or solution culture. In contrast, there were large differences in availability of Cd, Fe and Mn between flooded and aerobic soils, which were linked to changes in Cd uptake. Conclusions Aerobic soil conditions favour Cd uptake through increased Cd availability and decreased competition between Cd and Fe rather than through the increased expression of the Fe transporters themselves.
    Print ISSN: 0032-079X
    Electronic ISSN: 1573-5036
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2013-09-27
    Description: Background and aims Intensive land use has led to degradation and abandonment of Portuguese oak woodlands, and subsequent shrub encroachment may have altered the spatial heterogeneity of soil C and N pools. The aim of this study was to evaluate the effects of shrub invasion on soil C and N dynamics in an oak woodland in Southern Portugal. Methods Soil was sampled beneath and outside scattered Quercus suber L. canopies, considering non-encroached areas and areas encroached by shrubs ( Cistus ladanifer L. or Cistus salviifolius L.). Results The spatial heterogeneity of soil C and N contents was mainly associated with tree presence. Outside tree canopies, the labile C pools were larger (mainly beneath C . ladanifer ) and C cycling was faster in encroached areas than in non-encroached areas. Net and gross N mineralization and urease and protease activities were also higher in encroached than in non-encroached areas; however, the metabolic quotient and the Cmicrobial/Corganic ratio were not significantly affected. Beneath the tree canopy, significant effects of encroachment included a small increase in soil labile C and the enzymatic activity beneath C . ladanifer . Conclusions The results indicate the potential capacity of shrub encroachment to accumulate soil organic C in the long term. The rate of soil C and N turnover promoted by shrub encroachment may depend on the Cistus species present.
    Print ISSN: 0032-079X
    Electronic ISSN: 1573-5036
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2013-09-27
    Description: Aims Decreased expression of TaNAM genes by RNAi results in delayed senescence and decreased grain protein, iron, and zinc concentrations. Here, we determined whether NAM expression level alters onset of senescence under stress conditions, whether delayed senescence in the TaNAM -RNAi line resulted in improved tolerance to post-anthesis abiotic stress, and determined the effects of post-anthesis abiotic stress on N and mineral remobilization and partitioning to grain. Methods Greenhouse-grown WT and TaNAM -RNAi wheat were characterized in two studies:three levels of N fertility or water limitation during grain fill. Studies were conducted under both optimal and heat stress temperatures. Senescence onset was determined by monitoring flag leaf chlorophyll. Results Under optimal tempertures, TaNAM -RNAi plants had a yield advantage at lower N. TaNAM -RNAi plants had delayed senescence relative to the WT and lower grain protein and mineral concentrations, N remobilization efficiency, and partitioning of N and most minerals to grain. Conclusions Nutritional quality of TaNAM -RNAi grain was consistently lower than WT. Delayed senescence of TaNAM -RNAi plants provided a yield advantage under optimal temperatures but not under water or heat stress. Discovery of specific NAM protein targets may allow separation of the delayed senescence and nutrient partitioning traits, which could be used for improvement of wheat.
    Print ISSN: 0032-079X
    Electronic ISSN: 1573-5036
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2013-09-27
    Description: Aims Nitrification inhibitors (NI) formulated on granulated ammonium sulphate nitrate (ASN) are an option to minimize nitrate leaching into ground waters and emissions of the greenhouse gas N 2 O. This paper focuses (a) on the development of an analytic enabling to extract and quantify the NI 3,4-dimethylpyrazolephosphate (DMPP), marketed since 1999. The efficiency of DMPP has been studied in laboratory and field soils. Here the DMPP analytic and the behaviour of a nitrifying bacterial consortium enriched from a field soil and exposed to zero, field applied and a 10 fold higher DMPP concentration than the recommended one for field application are in the focus. Methods For extracting DMPP quantitatively from soils a method connected to a HPLC analytic has been developed by us and was standardized in laboratory experiment with a silt clay field soil (allochtone Vega). The method is detailed described here. Its reliability has been tested in a 3 years field trial under varying cropping systems and climatic conditions asides the influence of DMPP on CO 2 −, CH 4 − and N 2 O- emissions, measured by the closed chamber method. Parallel a nitrifying bacterial consortium of the silty clay field soil was enriched and subjected to 0, the recommended DMPP concentration for field applications and a 10 times higher one. In incubation experiments the conversion of ammonium to nitrite and nitrate in presence and absence of DMPP was spectrophotometer determined and pH-shifts with a scaled litmus paper. In sacrificed flasks at the end of incubation morphological changes of the bacteria involved were studied by transmission electron microscope (TEM). Results The ammonium, nitrite and nitrate determinations and the TEM pictures show that in presence of the field applied DMPP concentration the nitrifying activity returned around 30 days later than in the control and the cells were slightly enlarged. In presence of a 10 times higher DMPP concentration a recovery was prevented. DMPP prolongs, compared with dicyandiamide (DCD), the period of nitrifiers’ inhibition and reduced N 2 O− and CO 2 − the emissions (Weiske et al., Biol Fertil Soils 34:109–117, 2001a , Nutr Cycl Agroecosys 60:57–64, b ). Conclusions With the method developed by us the stability of DMPP in agricultural soils can be satisfyingly and reproducible studied down to a detection limit of 0.01 μg DMPP g −1 dry soil. The morphological changes in the nitrifying consortium due to DMPP concentrations are in agreement with the recovery rate found by nitrite and nitrate formation.
    Print ISSN: 0032-079X
    Electronic ISSN: 1573-5036
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2013-10-01
    Description: Background and aims Adequate zinc (Zn) in maize ( Zea mays L.) is required for obtaining Zn-enriched grain and optimum yield. This study investigated the impact of varying Zn fertilizer placements on Zn accumulation in maize plant. Methods Two pot experiments with same design were conducted to investigate the effect of soil Zn heterogeneity by mixing ZnSO 4 ·7H 2 O (10 mg Zn kg −1 soil on an average) in 10–15, 0–15, 25–30, 0–30, 30–60 and 0–60 cm soil layers on maize root growth and shoot Zn content at flowering stage in experiment-1, and assessing effects on grain Zn accumulation at mature stage in experiment-2. Results In experiment-1, Zn placements created a large variation in soil DTPA-Zn concentration (0.3–29.0 mg kg −1 ), which induced a systemic and positive response of root growth within soil layers of 0–30 cm; and shoot Zn content was increased by 102 %–305 % depending on Zn placements. Supply capacity of Zn in soil, defined as sum of product of soil DTPA-Zn concentration and root surface area at different soil layers, was most related to shoot Zn content ( r  = 0.82, P  〈 0.001) via direct and indirect effects according to path analysis. In experiment-2, Zn placements increased grain Zn concentration by up to 51 %, but significantly reduced the grain Zn harvest index from 50 % by control to about 30 % in average. Conclusion Matching the distribution of soil applied Zn with root by Zn placement was helpful to maximize shoot Zn content and grain Zn concentration in maize.
    Print ISSN: 0032-079X
    Electronic ISSN: 1573-5036
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2013-10-02
    Description: Background and Aims Wetting-drying cycles are important environmental processes known to enhance aggregation. However, very little attention has been given to drying as a process that transports mucilage to inter-particle contacts where it is deposited and serves as binding glue. The objective of this study was to formulate and test conceptual and mathematical models that describe the role of drying in soil aggregation through transportation and deposition of binding agents. Methods We used an ESEM to visualize aggregate formation of pair of glass beads. To test our model, we subjected three different sizes of sand to multiple wetting-drying cycles of PGA solution as a mimic of root exudates to form artificial aggregates. Water stable aggregate was determined using wet sieving apparatus. Results A model to predict aggregate stability in presence of organic matter was developed, where aggregate stability depends on soil texture as well as the strength, density and mass fraction of organic matter, which was confirmed experimentally. The ESEM images emphasize the role of wetting-drying cycles on soil aggregate formation. Conclusions Our experimental results confirmed the mathematical model predictions as well as the ESEM images on the role of drying in soil aggregation as an agent for transport and deposition of binding agents.
    Print ISSN: 0032-079X
    Electronic ISSN: 1573-5036
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2013-10-02
    Description: Background and aims Many plant growth-promoting endophytes (PGPE) possessing 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity can reduce the level of stress ethylene and assist their host plants cope with various biotic and abiotic stresses. However, information about the endophytic bacteria colonizing in the coastal halophytes is still very scarce. This study aims at isolating efficient ACC deaminase-producing plant growth-promoting (PGP) bacterial strains from the inner tissues of a traditional Chinese folk medicine Limonium sinense (Girard) Kuntze, a halophyte which has high economic and medicinal values grown in the coastal saline soils. Their PGP activity and effects on host seed germination and seedling growth under salinity stress were also evaluated. Methods A total of 126 isolates were obtained from the surface sterilized roots, stems and leaves of L. sinense (Girard) Kuntze. They were initially selected for their ability to produce ACC deaminase as well as other PGP properties such as production of indole-3-acetic acid (IAA), N 2 -fixation, and phosphate-solubilizing activities and subsequently identified by the 16S rRNA gene sequencing. For selected strains, seed germination, seedling growth, and flavonoids production in axenically growth L. sinense (Girard) Kuntze seedlings at different NaCl concentrations (0–500 mM) were quantified. Results Thirteen isolates possessing ACC deaminase activity were obtained. The 16S rRNA gene sequencing analysis showed them to belong to eight genera: Bacillus , Pseudomonas , Klebsiella , Serratia , Arthrobacter , Streptomyces , Isoptericola , and Microbacterium . Inoculation with four of the selected ACC deaminase-producing strains not only stimulated the growth of the host plant but also influenced the flavonoids accumulation. All four strains could colonize and can be re-isolated from the host plant interior tissues. Conclusions These results demonstrate that ACC deaminase-producing habitat-adapted symbiotic bacteria isolated from halophyte could enhance plant growth under saline stress conditions and the PGPE strains could be appropriate as bioinoculants to enhance soil fertility and protect the plants against salt stress.
    Print ISSN: 0032-079X
    Electronic ISSN: 1573-5036
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2013-10-04
    Description: Aims The objective of this study was to investigate the effects of future warming and drought on (1) the biochemical composition of above-ground biomass of forage plants ( Festuca arundinacea and Dactylis glomerata ), (2) the potential mineralization of this material in soil, and (3) its priming effect on native soil organic matter. Methods We sampled above-ground plant material from spring regrowth and summer regrowth of a climate change experiment. While in spring, the plants were well watered, the summer regrowth was exposed to drought and elevated temperature (+3 °C) by infrared heating of the canopy during 3 weeks. We assessed the elemental and isotopic composition, lignin and non-cellulosic carbohydrate content and composition of plant material grown under all three conditions. Its mineralization potential in soil and priming effects were evaluated during laboratory incubation. Results Warming had no significant effect on elemental and stable isotope composition of both plant materials. In contrast, it resulted in reduction of lignin content for both plant species and decrease of the lignin-to-N ratio for F. arundinacea and increased non-cellulosic carbohydrate content for D. glomerata . Summer regrowth was characterised by increase of δ 13 C values, which is consistent with variations in stomatal conductance due to water shortage. Moreover, summer drought induced an increase in N content leading to decrease of the C/N ratio and increase of lignin-to-N ratio of summer regrowth compared to spring regrowth. Differences in decomposition were small, while priming effects were more strongly altered by the different exposure to enviromental. Conclusion Our results provide direct experimental evidence that extreme climatic events (high temperature and precipitation deficit) have an influence on soil carbon storage particularly through their effect on priming of native soil organic matter induced by altered plant litter. These effects seem to be governed by alterations of stoichiometry and to a smaller extent by alterations of plant chemical composition.
    Print ISSN: 0032-079X
    Electronic ISSN: 1573-5036
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2013-09-11
    Description: Background and aim Saccharothrix algeriensis NRRL B-24137, isolated from a Saharan soil, has been described as a potential biocontrol agent against Botrytis cinerea and other phytopathogens. However, the plant protection mechanisms involved still need to be described. The aim of this study was to determine this protection phenomenon as well as parts of the mechanisms involved, using Arabidopsis thaliana seedlings and B. cinerea . Methods The bacterial colonization process was evaluated on A. thaliana seedlings using fluorescence in situ hybridization. Protection of A. thaliana seedlings inoculated with NRRL B-24137 against B. cinerea was then evaluated. Parts of the mechanisms involved in the systemic protection against B. cinerea were evaluated using known mutants of genes involved in jasmonate (JA)/ethylene (ET)/salicylic acid (SA) signaling. Other Arabidopsis mutants, AtrhbohD-3 , AtrhbohF-3 , and ups1-1 were also screened to determine other parts of the mechanisms involved. Results The results showed that the strain NRRL B-24137 colonized, epi- and endophytically, the roots of Arabidopsis seedlings but the strain was not a systemic colonizer during the time of the experiment. The strain NRRL B-24137 also reduced B. cinerea symptoms and the protection was linked to known mechanisms of induced systemic resistance (ISR; JA/ET signaling), as well as to functionality of AtrbohF oxidase and of UPS1. Crosstalk between ET/JA and SA signaling could also be involved. Conclusions The isolate NRRL B-24137, after colonizing the root systems of A. thaliana , induces an ISR against B. cinerea , which is JA/ET dependent, but could also require SA crosstalk and protection could also require NAPDH oxidases and UPS1 functionalities.
    Print ISSN: 0032-079X
    Electronic ISSN: 1573-5036
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2013-09-13
    Print ISSN: 0032-079X
    Electronic ISSN: 1573-5036
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2013-09-14
    Description: Background and aims The effect of forest cover distribution and plant litter input on soil organic carbon were analyzed to better understand the dynamics of carbon cycling across ecosystems on the “Natural Oriented Reserve Bosco delle Pianelle”. Fluorescence spectroscopy represents a very useful tool to characterize soil organic matter properties, since it allows to directly monitor the molecular status of a fluorophore depending on its chemical environment, as well as on its structure, substituents of the aromatic moieties, and molecular weight. Here, fluorescence analysis was performed on humic acids isolated from four litters (HALs) and their underlying soils (HAs) at three depths. Methods All samples were collected from a protected forest area, Southern Italy, under different plant covering: Quercus ilex L. (Q), mixed Carpinus betulus L. and Carpinus orientalis Mill. (CC), Pinus halepensis L. (P), and mixed Quercus trojana Webb. and Quercus ilex L. (QQ). Results Data obtained showed a fast decomposition process for P and QQ litters, with HAs in the underlying soils characterized by the presence of simple, highly fluorescent structural components also in the deepest layers. On the contrary, a slow decomposition process was observed for Q and CC litters, whose underlying soil HAs were characterized by an increasing aromatic polycondensation and humification degree from the surface to the deepest layers, as supported by low values of fluorescence intensity and high wavelength maxima. Conclusions Results obtained indicate that P and QQ species promote C accumulation and stock in the underlying soils, thanks to a greater decomposition of their litter, and fluorescence spectroscopy is a very simple and suitable method to evaluate the influence of three species distribution on soil organic carbon pools.
    Print ISSN: 0032-079X
    Electronic ISSN: 1573-5036
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2013-09-19
    Description: In pike E. lucius L., evidence on maternal effect on reproductive output is mixed. We studied whether older and larger pike females produce eggs and larvae of higher quality (weight, starvation resistance) in three forest lakes in southern Finland. Later, the study lakes were subjected to intensive experimental pike fishing, which we assumed would increase resource availability and lead to higher maternal investment (larger egg size). Length of female pike was positively correlated with the dry weight of eggs and larvae but this relation was dependent on female age. In old females, the effect of female length on egg weight was lower or even negative. Survival analysis showed a positive effect of female length on larval survival time indicating that larvae from larger females are less vulnerable to starvation during the early stage of life. After the intensive pike fishing, the positive effect of female length on egg weight was stronger in all age classes probably due to the released resources. Based on the high quality and amount of reproductive products in large (but not very old) females, they are important for the reproduction of pike populations. This should be considered in fisheries management.
    Print ISSN: 0018-8158
    Electronic ISSN: 1573-5117
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2013-09-19
    Description: Freshwater predatory insects can exert strong effects on prey, although how multiple similar predators may coexist is not well understood. Larval predaceous diving beetles are often numerically and taxonomically abundant predators in lentic systems, but the proximate mechanisms that explain their high abundance remain unknown. Field surveys were conducted twice in June in ponds in Alberta, Canada to assess the associations between larvae of two genera ( Graphoderus , Rhantus ), their spatial locations, and correlations with potential prey. Both larvae were common and positively correlated within wetlands although neither varied with pond depth nor distance from edge. Laboratory trials indicated that Graphoderus consumed more prey (corixids) at the surface, whereas Rhantus killed benthic prey (chironomids) and corixids at an equal rate; damselflies were the least consumed prey. Predation also varied with depth, with both larvae feeding at higher rates in the shallowest environments compared to Graphoderus at an intermediate depth. Predator–prey correlations from ponds were mostly congruent with predation trials; Graphoderus was positively correlated with corixids, Rhantus was positively correlated with corixids and chironomids; beetles were uncorrelated with damselflies. Reliance on different prey in different microhabitats may be an important mechanism for the maintenance of high abundance of dytiscid larvae.
    Print ISSN: 0018-8158
    Electronic ISSN: 1573-5117
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2013-09-25
    Description: Aims The objective of our study was to confirm if hydraulic lift (HL) promotes nutrient uptake in field-grown plants in the same way as demonstrated previously in pot-grown plants. Methods We conducted a field experiment in an agroforestry system, over an entire growing season that included a dry period and a wet period. We used a shallow-root crop plant, mung bean ( Vigna radiata L.), intercropped with walnut ( Juglans regia L.) and jujube ( Zizyphus jujube Mill.), as an indicator for the presence of HL and its effects on nutrient uptake. To monitor HL, we artificially applied deuterium isotope to the deep roots of trees. Results We demonstrated the presence of a natural nitrogen, phosphorus, and potassium gradient along the soil depth, and the occurrence of HL, evidenced by deuterium signature in the shallow soil layers and V. radiata stem, only during the dry season. J. regia and Z. jujube both had deep root systems, but the former species exhibited stronger HL to the shallow soil than the latter. Meanwhile, the upper soil layers of J. regia had significantly higher moisture content, and the intercropped V. radiata had higher nutrient content. Conclusion HL can facilitate water uptake by V. radiata from the upper soil layers in the field condition during the dry season, which relates to nutrient acquisition by the crop.
    Print ISSN: 0032-079X
    Electronic ISSN: 1573-5036
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2013-10-04
    Description: Aims and background Despite increasing knowledge of the role of allelochemicals in the productivity decline of replanted Chinese fir plantations, relatively little is known about the levels and sources of allelochemicals in relation to autoinhibition. Methods Allelopathic potential of litter, root exudates, and soils in successive rotations of Chinese fir plantations were detected. An allelochemical cyclic dipeptide (6-hydroxy-1,3-dimethyl-8-nonadecyl-[1,4]-diazocane-2,5-dione) from litter, root exudates, and soils in successive rotations was quantified. Results Extracts of leaf litter, fine root, and root exudates significantly inhibited the growth of Chinese fir germinants, and inhibition increased with successive rotations. Similar results were observed in the rhizosphere soil, basal soil, and bulk soil. The largest observed inhibition occurred in the rhizosphere soil. Furthermore, cyclic dipeptide was found in litter, root exudates, and soils, and the concentrations increased with successive rotations. The rhizosphere soil had the highest cyclic dipeptide level, followed by basal soil, while bulk soil contained the lowest concentration. There was a significant positive relationship between the inhibition of radicle growth of Chinese fir germinants and the concentration of cyclic dipeptide. Annual release of cyclic dipeptide through root exudation was 2.08–9.78 mol ha −1 annum, but the annual release of cyclic dipeptide through leaf litter decomposition was lowered to 0.32–1.41 mol ha −1 annum. Conclusions Cyclic dipeptide which caused autoinhibition of Chinese fir may be released into the soil through litter decomposition and root exudation. Root exudates provided more contributions to soil cyclic dipeptide levels than litter in Chinese fir plantations.
    Print ISSN: 0032-079X
    Electronic ISSN: 1573-5036
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2013-10-04
    Description: Background and aims In the Central Negev hills (Israel) many ancient terraced wadis exist, which captured run-off and caused gradual soil aggradation, which enabled agricultural practices. In these terraces, dark colored soil horizons were observed, containing charcoal, as can be found in Terra Preta soils, suggesting higher fertility compared to natural soils. The aim of our investigation was to investigate these anthropogenic soils and to study the effects of charcoal and ash addition on soil properties and crop growth. Methods We investigated 12 soil profiles, focusing on possible differences between light and dark colored soil horizons. We also investigated the effects of amendment of charcoal and ash on the growth of wheat ( Triticum Aestivum L. ) in a 40-day pot experiment involving two water regimes. Results Results show that charcoal content in light and dark horizons were both low (〈0.2 %), but significantly lower bulk densities were found in dark colored horizons. In the crop experiment, charcoal addition resulted in decreased crop growth, while, in the water deficit regime, ash addition resulted in increased crop growth. Conclusions Considering the observed charcoal and the results from the crop experiment, we hypothesize that, in ancient run-off capturing agricultural systems, ash was purposefully added as fertilizer.
    Print ISSN: 0032-079X
    Electronic ISSN: 1573-5036
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2013-10-05
    Description: In Chile, mediterranean climate conditions only occur in the Central Zone (ChMZ). Despite its small area, this mediterranean climate region (med-region) has been recognised as a hotspot for biodiversity. However, in contrast to the rivers of other med-regions, the rivers in the ChMZ have been studied infrequently, and knowledge of their freshwater biodiversity is scarce and fragmented. We gathered information on the freshwater biodiversity of ChMZ, and present a review of the current knowledge of the principal floral and faunal groups. Existing knowledge indicates that the ChMZ has high levels of endemism, with many primitive species being of Gondwanan origin. Although detailed information is available on most floral groups, most faunal groups remain poorly known. In addition, numerous rivers in the ChMZ remain completely unexplored. Taxonomic specialists are scarce, and the information available on freshwater biodiversity has resulted from studies with objectives that did not directly address biodiversity issues. Research funding in this med-region has a strong applied character and is not focused on the knowledge of natural systems and their biodiversity. Species conservation policies are urgently required in this highly diverse med-region, which is also the most severely impacted and most populated region of the country.
    Print ISSN: 0018-8158
    Electronic ISSN: 1573-5117
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2013-10-05
    Description: Freshwater species worldwide are experiencing dramatic declines partly attributable to ongoing climate change. It is expected that the future effects of climate change could be particularly severe in mediterranean climate (med-) regions, which host many endemic species already under great stress from the high level of human development. In this article, we review the climate and climate-induced changes in streams of med-regions and the responses of stream biota, focusing on both observed and anticipated ecological responses. We also discuss current knowledge gaps and conservation challenges. Expected climate alterations have already been observed in the last decades, and include: increased annual average air temperatures; decreased annual average precipitation; hydrologic alterations; and an increase in frequency, intensity and duration of extreme events, such as floods, droughts and fires. Recent observations, which are concordant with forecasts built, show stream biota of med-regions when facing climate changes tend to be displaced towards higher elevations and upper latitudes, communities tend to change their composition and homogenize, while some life-history traits seem to provide biota with resilience and resistance to adapt to the new conditions (as being short-lived, small, and resistant to low streamflow and desiccation). Nevertheless, such responses may be insufficient to cope with current and future environmental changes. Accurate forecasts of biotic changes and possible adaptations are difficult to obtain in med-regions mainly because of the difficulty of distinguishing disturbances due to natural variability from the effects of climate change, particularly regarding hydrology. Long-term studies are needed to disentangle such variability and improve knowledge regarding the ecological responses and the detection of early warning signals to climate change. Investments should focus on taxa beyond fish and macroinvertebrates, and in covering the less studied regions of Chile and South Africa. Scientists, policy makers and water managers must be involved in the climate change dialogue because the freshwater conservation concerns are huge.
    Print ISSN: 0018-8158
    Electronic ISSN: 1573-5117
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2013-10-05
    Description: Streams and rivers in mediterranean-climate regions (med-rivers) are subjected to sequential, yet contrasting hydrologic disturbances of drying and flooding. Although seasonally predictable, these disturbances can vary in intensity and duration within and among mediterranean-climate regions (med-regions). Consequently, med-rivers differ in the permanence of their aquatic habitats. To persist, species have acquired matched resistance and resilience adaptations. They gain resistance either by enduring the stress or avoiding it. Community recovery (or resilience) is achieved with cessation of hydrologic stress that permits maximization of re-colonization and reproduction. Endurance strategies are usually disturbance-specific, but avoidance enables organisms to cope with both drying and flooding, and is the prevalent resistance strategy. Correspondingly, community persistence depends to a large extent on the integrity of refuges, an aspect that has so far been little explored. Existing information suggests that seasonal community succession becomes more pronounced with increasing aridity and declining water permanence. The invertebrate community in semi-arid med-rivers can therefore undergo succession through three to four identifiable assemblages, whereas in perennial streams the difference between wet and dry period assemblages is smaller. Community turnover is influenced by the intensity of the hydrologic disturbances and varies between wet and drought years.
    Print ISSN: 0018-8158
    Electronic ISSN: 1573-5117
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2013-10-05
    Description: Southwestern Australia is recognised as a global biodiversity hotspot, characterised by high diversity and endemism of vascular terrestrial plants. However, the significance of its freshwater biodiversity is not well understood. This review provides an updated account of species richness in rivers in the Mediterranean region (med-region) of southwestern Australia. Taxonomic knowledge of many aquatic invertebrate groups in this region has improved significantly in the last two decades as a result of ecological surveys and government funding for taxonomic research. Of the 662 species of plants and animals surveyed, 43% were found to be endemic to the region, yet when taxonomic groups were considered separately, levels of endemism were varied. To date, few aquatic species from the med-region are listed as threatened; however, many more species would be expected to be included if assessed against appropriate criteria. Conservation efforts are focussed on climate change mitigation and managing the impacts of broad scale land clearing for agriculture. Reserve design and location of important nature reserves on the extreme south coast, limits the ability for species’ movement to cooler, wetter regions. This will necessitate supporting restoration which leads to increased resilience in freshwater ecosystems to withstand the combined effects of climate change and land use.
    Print ISSN: 0018-8158
    Electronic ISSN: 1573-5117
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2013-10-05
    Description: Rivers in mediterranean regions are subject to hydrological extremes. They range from highly stable, perennial ground- or snow-fed systems to highly ephemeral, unpredictable ones in semi-arid environments. Spatial and temporal complexity inherent in these systems presents challenges for ecological status assessment and defining reference conditions, particularly as many areas have been extensively transformed through anthropogenic activities. Temporal variability driven by sequential and predictable, seasonal events of flooding and drying accentuates the need to take season and/or hydrological period into account. Intermittent streams, which are common in mediterranean regions (med-regions) and which have aquatic communities distinct from perennial streams, are often not incorporated in bioassessment and present distinct challenges. Med-regions are also known for their high biodiversity and rates of endemism, as well as large numbers of introduced species. Med-regions are expected to be among the most affected by global climate change and, in these systems, climate change is an additional driver influencing ecosystems that are already stressed. From this review it is evident that an understanding of responses of indices, metrics, and models to climate change in comparison to existing stresses, and the development of thermally specific bioassessment tools are needed for this region.
    Print ISSN: 0018-8158
    Electronic ISSN: 1573-5117
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2013-10-05
    Description: Refuges protect plant and animal populations from disturbance. Knowledge of refuges from disturbance in mediterranean climate rivers (med-rivers) has increased the last decade. We review disturbance processes and their relationship to refuges in streams in mediterranean climate regions (med-regions). Med-river fauna show high endemicity and their populations are often exposed to disturbance; hence the critical importance of refuges during (both seasonal and supraseasonal) disturbances. Disturbance pressures are increasing in med-regions, in particular from climatic change, salinisation, sedimentation, water extraction, hydropower generation, supraseasonal drought, and wildfire. Med-rivers show annual cycles of constrained precipitation and predictable seasonal drying, causing the biota to depend on seasonal refuges, in particular, those that are spatially predictable. This creates a spatial and temporal mosaic of inundation that determines habitat extent and refuge function. Refuges of sufficient size and duration to maintain populations, such as perennially flowing reaches, sustain biodiversity and may harbour relict populations, particularly during increasing aridification, where little other suitable habitat remains in landscapes. Therefore, disturbances that threaten perennial flows potentially cascade disproportionately to reduce regional scale biodiversity in med-regions. Conservation approaches for med-river systems need to conserve both refuges and refuge connectivity, reduce the impact of anthropogenic disturbances and sustain predictable, seasonal flow patterns.
    Print ISSN: 0018-8158
    Electronic ISSN: 1573-5117
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2013-10-05
    Description: River and stream biofilms in mediterranean fluvial ecosystems face both extreme seasonality as well as arrhythmic fluctuations. The hydrological extremes (droughts and floods) impose direct changes in water availability but also in the quantity and quality of organic matter and nutrients that sustain the microbial growth. This review analyzes how these ecological pulses might determine unique properties of biofilms developing in mediterranean streams. The paper brings together data from heterotrophic and autotrophic community structure, and extracellular enzyme activities in biofilms in mediterranean streams. Mediterranean stream biofilms show higher use of peptides during the favorable period for epilithic algae development (spring), and preferential use of cellulose and hemicellulose in autumn as a response to allochthonous input. The drying process causes the reduction in bacterial production and chlorophyll biomass, but the rapid recovery of both autotrophs and heterotrophs with rewetting indicates their adaptability to fluctuations. Bacteria surviving the drought are mainly associated with sediment and leaf litter which serve as “humid refuges”. Some algae and cyanobacteria show resistant strategies to cope with the drought stress. The resistance to these fluctuations is strongly linked to the streambed characteristics (e.g., sediment grain size, organic matter accumulation, nutrient content).
    Print ISSN: 0018-8158
    Electronic ISSN: 1573-5117
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    facet.materialart.
    Unknown
    Springer
    Publication Date: 2013-10-05
    Description: Mediterranean climate ecosystems are among the most fire-prone in the world; however, little is known about the effects of fire on mediterranean streams (med-streams). Fire impacts on med-streams are associated with increased runoff and erosion from severely burned landscapes during storms, particularly the first intense rains. Increased inputs of water, solutes, nutrients, sediment, organic matter, and ash to streams after fires are usually observed for months to up to 4 years. Return to pre-fire conditions is associated with vegetation recovery. Benthic algae, invertebrates, and fish are reduced to low levels by scouring floods after wildfire. If riparian zones are burned, benthic algae increase, and invertebrate communities become dominated by r -strategist species. Fishes are eradicated from reaches affected by intense wildfire and often do not re-colonize quickly because of downstream barriers. In general, med-stream communities appear to be more resilient to fire compared to streams in other ecosystems because of the rapid recovery of mediterranean upland and riparian vegetation and geomorphological conditions (1–4 years in med-streams vs 5–10 years in non-med streams). However, drought or mass sediment movements after fire can prolong fire effects. Studies of the long-term effects of fire and the consequences of fire management practices are still needed.
    Print ISSN: 0018-8158
    Electronic ISSN: 1573-5117
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    facet.materialart.
    Unknown
    Springer
    Publication Date: 2013-10-05
    Description: Although the California mediterranean climate region is widely considered a biodiversity hotspot for terrestrial plants and vertebrates, freshwater biodiversity in this region is generally not well known. Using information from museum specimen databases, published literature, biological assessment surveys, and specialist’s knowledge, we review freshwater biodiversity for several groups of stream organisms in the med-climate region of California, which includes 2,220 species in 292 families. The groups with the highest diversity of lotic species are aquatic insects and diatoms, which comprise 39 and 36 % of species in our lists, respectively. Sequential floods and drying periods limit the overall biodiversity of many stream organisms in California mediterranean rivers, and continued climate and land-use change may cause disproportionate biodiversity declines in the region. However, only 4 % of lotic species have been evaluated in the IUCN Red List of Threatened Species, and many assessments are outdated. Future development of online databases for botanical and zoological collections will significantly enhance biodiversity and distribution knowledge. This information will enable us to more accurately and efficiently assess the effects of global change on biodiversity of freshwater organisms, to evaluate conservation status of individual taxa, and to set conservation priorities for stream ecosystems.
    Print ISSN: 0018-8158
    Electronic ISSN: 1573-5117
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2013-06-06
    Description: Introduction In a recent paper, Warren et al. ( 2013 ) illustrated the potential of neutron radiography to visualize water dynamics in soil and plants. Methods After injection of deuterated water (D 2 O) in soil, the authors could monitor the changes of D 2 O concentration in roots. Results Based on the radiographs, the authors concluded that D 2 O was transported from roots growing in a wet soil region to roots in a dry region, proving hydraulic redistribution between roots. However, this interpretation depends on the correct estimation of D 2 O concentration in soil. Conclusions The experiments of Warren et al. ( 2013 ) could also be explained by diffusion of D 2 O from soil to roots, without hydraulic redistribution within the root system.
    Print ISSN: 0032-079X
    Electronic ISSN: 1573-5036
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2013-06-06
    Description: Aims The mechanisms of belowground competition are not well understood. Addressing literature reports on competition-induced changes in tree fine root morphology, we conducted a growth experiment with tree saplings to investigate competition effects on important root morphological and functional traits in a root order-focused analysis. Methods European beech and European ash saplings were grown for 34 months in containers under greenhouse conditions in monoculture (2 conspecific plants), in mixture (1 beech and 1 ash) or as single plants. The root system was fractionated according to root orders and eight morphological and functional properties were determined. Results Root order was the most influential factor affecting the fine root traits (except for root diameter and δ 13 C); a significant species identity effect was found for root diameter, tissue density, N concentration and δ 13 C. Ash fine roots were thicker, but had lower tissue densities, contained more N and had systematically higher δ 13 C values than beech roots. The competition treatments had no significant effect on morphological root traits but altered δ 13 C in the 2nd root order. Conclusion Neither intra- nor interspecific root competition affected fine root morphology significantly suggesting that competition-induced root modification may not be a universal phenomenon in temperate trees.
    Print ISSN: 0032-079X
    Electronic ISSN: 1573-5036
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2013-06-08
    Description: Background and aims Distinct metal distribution patterns within leaves of metal hyperaccumulating plants are repeatedly observed however, the presumable role of key structural biochemical molecules in determining and regulating their allocation remains largely unknown. We aimed to characterise in a spatially resolved manner the distribution of the main biochemical components in leaves of field-collected Cd/Zn-hyperaccumulating Noccaea praecox in order to relate them to metal distribution patterns at tissue level. Methods The biomolecular composition of the leaves was spatially analysed using synchrotron radiation Fourier Transform Infrared (FTIR) and the distribution of Zn with synchrotron radiation Low-Energy X-Ray Fluorescence (LEXRF) microspectroscopy was determined on the same tissues of interest (epidermis, sub-epidermis, mesophyll). Results In epidermal cells high proportion of free-carboxyl, nitro and phosphate groups standing for pectin, nitroaromatics, phytic and other organic acids were found. Adjacent mesophyll cells had higher proportions of proteins, carbohydrates and cellulosic compounds. Conclusions Pectin compounds were indicated as important components of Zn enriched epidermal cell walls. In addition, intense lignification of epidermal cell walls might limit leakage of the trapped metals back to the metabolically active and thus more sensitive mesophyll. Distribution of metal-binding compounds in particular cell types/tissues may therefore predispose metal distribution patterns and tolerance in leaves.
    Print ISSN: 0032-079X
    Electronic ISSN: 1573-5036
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2013-06-10
    Description: Aims Tree species affect herb layer species through their effects on soil quality and light regime but their relative importance and interactions are insufficiently known. Methods Pot experiment with soil taken from stands planted with tree species with contrasting effects on soil acidification, two light regimes and six forest perennials. Results The survival or growth of Mercurialis perennis, Lamium galeobdolon , Anemone nemorosa and Primula elatior was lower in the acid Alnus soils than in the less acid Fraxinus soils. By contrast, the acid tolerant Convallaria majalis and Dryopteris dilatata were barely affected by tree species. Light conditions had less impact than soil chemistry and did not compensate for unfavourable soil conditions. Ca and P concentrations increased in plants grown in Fraxinus soils. The Mg and Al shoot/root ratios of respectively one and two of the acid tolerant species was elevated in the most acid soil. Conclusions Tree species effects on forest perennials are mainly explained by increased Al concentrations under acidifying species. Changed plant concentrations and allocation are likely associated to Al antagonism. We found no light compensation for the soil effect on the studied species. However, light alters the plant nutrient concentrations and allocation which may suggest an indirect effect.
    Print ISSN: 0032-079X
    Electronic ISSN: 1573-5036
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2013-06-08
    Description: Aims The aim of this study was to determine whether goat grazing in the understory of a pine forest at Doñana Natural Park could accelerate the decomposition of the pine needles accumulated on the soil surface and, if so, through which mechanisms. Specifically, the roles of trampling (mechanical fragmentation) and nutrient enrichment through defecation (fertilization) were evaluated in terms of their effect on pine needle decomposition rates. Methods An experiment was conducted featuring the following 4 treatments: 1) intact needles (control), 2) trampled needles, 3) intact needles fertilized with liquid manure, and 4) trampled needles fertilized with liquid manure. Litter decomposition was determined as a function of mass loss over time, using the litter-bag method. Bags were recovered 4, 8, 16, 24 and 36 months after burial in soil, dried and weighed. Needle length, leaf mass per area and C and N concentration were also measured in the buried litter-bags. Results Four months after burial, mass loss was greater in the trampled (23–27 %) than non-trampled (14–16 %) treatments. However, from 8 months onwards, decomposition rates in the fertilized treatments were significantly higher than those in the non-fertilized treatments (between 5 % and 15 % less mass loss). Meanwhile, fertilized treatments presented higher N content (2.1 %) than the non-fertilized ones (1.2 %), with a significantly lower C:N ratio also found in the in the fertilized treatment. Conclusions Trampling and fertilization during grazing accelerates litter decomposition and thus promotes the incorporation of N into the system. Acceleration of decomposition reduces the accumulation of pine needles on the soil surface, reducing the risk of fire.
    Print ISSN: 0032-079X
    Electronic ISSN: 1573-5036
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2013-06-10
    Print ISSN: 0032-079X
    Electronic ISSN: 1573-5036
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2013-04-10
    Description: The occurrence of picocyanobacteria, the smallest cell-size fraction of cyanobacteria, in low-pH waters, is still poorly studied. In this study, we tested the hypothesis that picocyanobacteria found occasionally in low-pH environments are adapted to such water conditions. We isolated picocyanobacteria by means of the cytometric method from two humic lakes with pH ≤5. We obtained two strains belonging to two cosmopolitan phylogenetic clades of picocyanobacteria: Cyanobium gracile cluster and Subalpine cluster I. Experiments on filtered lake water from low-pH (≤5) and slightly alkaline (pH 8.2) lakes, and with an acidified cyanobacterium medium (pH 4.5) were conducted to test the growth of the isolated picocyanobacteria in various pH conditions. The experimental results of this study showed that some picocyanobacteria strains were acid tolerant, achieving higher growth rates and reaching higher maximum numbers in humic, naturally acidic waters rather than in alkaline waters. We show that despite a close phylogenetic relationship, strains of picocyanobacteria exhibit significant physiological and ecological diversity and that at least some picocyanobacteria have the evolutionary potential to cope with low pH. Characterization of the genetic basis of acid tolerance in picocyanobacteria is important to understand how these microorganisms function in aquatic ecosystems and how their communities may respond to a changing environment.
    Print ISSN: 0018-8158
    Electronic ISSN: 1573-5117
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2013-04-10
    Description: This paper summarises key issues from papers included in a special issue about the impacts of climate change on Australian wetlands. The papers covered: the assessment of wetlands under climate change, adaptation and engineering responses to climate change, and restoring wetlands under a changing climate. The key issues from these papers were used to indicate areas where the Ramsar Convention could develop guidance as part of its’ Handbooks for the Wise Use of Wetlands. These included: (i) assessing changes in the distribution of species and whether these constitute a change in the ecological character of the wetland; (ii) assessing the usefulness of models of wetland response to climate change; (iii) assessing the value in allocating water to protected sites where restoration would be contingent on reallocation of larger volumes of water; (iv) assessing the efficacy of engineering responses with the potential to deliver more water-efficient environmental outcomes for wetlands and (v) determining if the description of the ecological character of a Ramsar site at the time of listing is a suitable reference for management purposes. With these issues in mind it is recommended that further attention is directed towards determining and responding to the ecological consequences of climate change.
    Print ISSN: 0018-8158
    Electronic ISSN: 1573-5117
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2013-04-10
    Description: A review of stratigraphic, radiocarbon, pollen, and aerial photographic data on the Swan Coastal Plain, south-western Australia, allows interpretation of long-term changes in climate and its effects on wetlands during the Holocene, whereas monitoring wetland hydrology and vegetation provides a measure of shorter-term changes. The information provides models for basin wetland response to changing climate. Drying climates shift wetlands to drier conditions, turning lakes into seasonally inundated or waterlogged basins, or resulting in an overall loss of wetlands, and favours more saline conditions, and development of carbonate deposits. Wetter conditions results in more frequent inundation, shifting damplands to sumplands or lakes, and resulting in fresher water conditions, and development of peat and/or organic matter enriched deposits. Examples of wetland basin responses to climate change across the Swan Coastal Plain show differential responses depending on setting, spatial distribution, hydrology, hydrochemistry and geochemistry, different temporal frameworks, and biological resilience.
    Print ISSN: 0018-8158
    Electronic ISSN: 1573-5117
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2013-04-10
    Description: In Neotropical mangroves the crabs Ucides cordatus and Goniopsis cruentata have been considered the most significant propagule consumers, but their relative importance has not been investigated. The aim of this study was to compare the magnitude of predation by these crabs on three mangrove species propagules: Avicennia schaueriana , Laguncularia racemosa and Rhizophora mangle . We found that G. cruentata is a more important predator than U. cordatus in both natural and restored areas. We also tested the hypothesis that Ucides and Goniopsis have antagonistic effects on propagules predation using a cage experiment where the presence/absence of these species was manipulated in a 2 × 2 factorial design. The effects of Goniopsis were stronger in the absence of Ucides due to negative interactions between these predator species. Moreover, we found that Goniopsis preference for A. schaueriana and L. racemosa can favor the dominance of R. mangle in Neotropical mangroves. This study suggests that propagule predation by Goniopsis should be controlled in mangrove restoration programs at abandoned shrimp farms and destroyed areas, if dominance by R. mangle is undesirable relative to mixed species communities.
    Print ISSN: 0018-8158
    Electronic ISSN: 1573-5117
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2013-04-10
    Description: We investigated the emergence of Daphnia pulicaria from resting eggs in Río Seco, an alpine lake in which the zooplankton growing period is short. In situ studies were carried out using sediment emergence traps and plankton sampling, and the sediment egg bank was analyzed. A laboratory experiment was performed to explore the role of photoperiod and temperature as hatching cues for D. pulicaria . We hypothesized that the time window for emergence would be short and that hatching cues would be linked to the variable ice-break period. In the field, D.   pulicaria showed a highly synchronized emergence in both years. The hatching period was restricted to 3 weeks during and immediately after the thaw. In the laboratory experiment, no hatchings were observed in the dark treatment and neither photoperiod nor temperature affected hatching rates. Therefore, the presence of light, which corresponds with the period of ice-break, was essential for triggering dormancy termination of D. pulicaria . Our results show that the period when the ice-break occurs is a key event for Daphnia population development. The longer ice-free periods predicted by climate change in the alpine lakes could therefore have important effects on the crustacean population dynamics of these systems.
    Print ISSN: 0018-8158
    Electronic ISSN: 1573-5117
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2013-04-10
    Description: The objective of this research was to determine if the highly invasive round goby ( Neogobius melanostomus ) experiences lower predation risk during early stages of invasion. We compared round goby predation rates between a recently invaded area (occupied for ≈1 year) and a longer established area (≈7 years) of the Trent River, Ontario, Canada. Tethering trials were conducted in three habitat types, and comparable habitats in the two areas were similar in water temperature, velocity and depth. Predation rates of tethered round gobies were on average 27% lower in the recently invaded area. Reduced predation in the recently invaded area may be due to the short duration of round goby occupancy and/or differences in predator communities between the two study areas. Data before the round goby invasion suggest that predator communities were similar between the two range areas, but differences in predator abundance cannot be ruled out as a potential mechanism. Other possible mechanisms include a numerical or learned response by predators over time to a novel prey item. Reduced predation rate during the initial stages of invasion may contribute to the fitness of individuals that migrate into areas not previously occupied, and thus facilitate successful range expansion.
    Print ISSN: 0018-8158
    Electronic ISSN: 1573-5117
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2013-04-10
    Description: Wetland managers are faced with an array of challenges when restoring ecosystems at risk from changing climate and human impacts, especially as many of these processes have been operating over decadal–millennial timescales. Variations in the level and salinity of the large crater lakes of western Victoria, as revealed over millennia by the physical, chemical and biological evidence archived in sediments, attest to extended periods of positive rainfall balance and others of rainfall deficit. The recent declines in the depth of these lakes have been attributed to a 15% decline in effective rainfall since AD 1859. Whilst some sites reveal state shifts following past droughts, the response of most wetlands to millennial-scale climatic variations is muted. Regional wetland condition has changed comprehensively, however, since European settlement, on account of extensive catchment modifications. These modifications appear to have reduced the resilience of wetlands limiting their capacity to recover from the recent ‘big dry’. These sedimentary archives reveal most modern wetlands to be outside their historical range of variability. This approach provides a longer-term context when assessing wetland condition and better establishes the restoration challenge posed by the impact of climate change and variability and human impacts.
    Print ISSN: 0018-8158
    Electronic ISSN: 1573-5117
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2013-04-10
    Description: Globally, rain-fed wetlands provide critical habitat for a wide range of amphibian species, however, information on the use of rain-fed wetlands by Australian frog species is extremely limited. This study examined the distribution of frog breeding in rain-fed wetlands following the first significant rain event after a period of severe drought (2002–2009) in order to predict how frog communities may be affected in the future by changed climate. Tadpole communities along with vegetation and water quality variables were described in 35 rain-fed wetlands across the South West Slopes and Riverina bioregions of inland south-eastern Australia. In addition, weekly tadpole surveys were conducted in a subset of these wetlands to describe temporal patterns of occupancy. Despite the protracted dry period prior to this study 50% of the rain-fed wetlands surveyed contained tadpoles. However, frog communities were species poor with only five species recorded. The majority of wetlands were dominated be a single species, Limnodynastes tasmaniensis which is also common within permanent waterbodies such as farm dams and irrigation infrastructure in both bioregions. Tadpoles of two burrowing species L. interioris and Neobatrachus sudelli were restricted to a small number of wetlands mostly in the South West Slopes. The composition of tadpole communities changed over time, and Crinia parinsignifera was the only species that continued to breed over winter. The dominance of generalist species within rain-fed wetlands indicates that characteristics such as dispersal capability, flexibility in breeding times and the ability to utilise created habitats may be more important than burrowing ability and longevity when predicting vulnerability to climate change.
    Print ISSN: 0018-8158
    Electronic ISSN: 1573-5117
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2013-04-10
    Description: Background and aims Cadmium (Cd) could activate activity of mitogen-activated protein kinase MPK6 in plants. In this study, we investigated the role of MPK6 in mediating Cd toxicity in plants. Methods The wild type Arabidopsis plants (WT) and the mpk6 - 2 mutants were subjected either 0 (Control) or 10 μM Cd treatment. Kinase activity of MPK6, nitric oxide (NO) level, Cd concentration, and oxidative stress were measured. Results In WT plants, Cd exposure rapidly stimulated kinase activity of MPK6. However, upon Cd exposure, mpk6 - 2 showed better growth than the WT. Although Cd-induced production of NO in roots was greater in WT than in mpk6 - 2 , there was no difference in Cd concentration between the two plants. Nevertheless, the Cd-induced hydroperoxide burst, lipid peroxidation and loss of membrane integrity, were all more severe in the WT than in mpk6 - 2 . Foliar applications of antioxidant ascorbic acid, vigorously improved the growth of both the WT and mpk6 - 2 under Cd exposure. Thereby the growth difference between these two plants was minimized. Conclusions Mutation of mpk6 enhances Cd tolerance in plants by alleviating oxidative stress, but did not affect cadmium accumulation in plants.
    Print ISSN: 0032-079X
    Electronic ISSN: 1573-5036
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2013-04-10
    Description: Background and Aims The role and linkage of endophytic bacteria to resistance of peanut seeds to biotic stress is poorly understood. The aims of the present study were to survey the experimental (axenic) and control (conventional) peanut plants for the predominant endophytic bacteria, and to characterize isolates with activity against selected A. flavus strains. Methods Young axenic plants were grown from presumably bacteria-free embryos in the lab, and then they were grown in a field. Endophytic bacterial species were identified by the analysis of DNA sequences of their 16S-ribosomal RNA gene. DNA extracted from soil was also analyzed for predominant bacteria. Results Mature seeds from the experimental and control plants contained several species of nonpathogenic endophytic bacteria. Among the eight bacterial species isolated from seeds, and DNA sequences detected in soil, Bacillus thuringiensis was dominant. All B. amyloliquefaciens isolates, the second abundant species in seeds demonstrated activity against A. flavus . This effect was not observed with any other bacterial isolates. There was no significant difference in number and relative occurrence of the two major bacterial species between the experimental and conventionally grown control seeds. Conclusion Endophytic bacterial colonization derives from local soil and not from the seed source, and the peanut plant accommodates only selected species of bacteria from diverse soil populations. Some bacterial isolates showed antibiosis against A. flavus.
    Print ISSN: 0032-079X
    Electronic ISSN: 1573-5036
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2013-04-10
    Description: Background and Aims Climate warming and increased atmospheric nitrogen (N) deposition both have the potential to increase plant productivity over the next century, yet they can also increase decomposition and respiration. Our aim was to examine the extent to which warming and N addition can, on balance, alter net ecosystem CO 2 exchange (NEE) in a grass-dominated system. Methods We measured NEE responses to warming and N addition over two growing seasons in a temperate old field using steady-state flow-through chambers, which allowed for the integrated measurement of respiration and photoassimilation effects on net CO 2 flux over diel periods. We also assessed the relationship between NEE and plant biomass responses to the warming and N treatments. Results In both years, our study system was a net source of carbon (C) during the snow-free season. N addition did not significantly affect diel NEE or dark respiration in either year, despite a doubling in aboveground plant biomass in response to N addition in the second year, and a corresponding increase in peak daily net CO 2 photoassimilation in N addition plots. The warming treatment also had no significant effect on NEE, although the flow-through chambers required warming to be temporarily halted during NEE measurements. Conclusions Overall, our results both highlight the potential divergence of plant and soil responses to N addition and demonstrate the capacity for a grass-dominated system to function as a net source of C in consecutive years.
    Print ISSN: 0032-079X
    Electronic ISSN: 1573-5036
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2013-04-10
    Description: Background and aim Intuitively, access to water from the soil at key phenological stages is important for adaptation to drought. This study aimed to assess the temporal pattern of water extraction under terminal drought stress. Methods Pearl millet genotypes with varying levels of terminal drought tolerance were grown in a lysimetric system with a soil volume and plant spacing similar to field conditions. Water extraction was monitored until maturity under differing water regimes. Results The yield did not differ among genotypes under well-watered (WW) conditions, and the water extraction profile of WW plants was similar across all genotypes. In contrast, the yield of sensitive genotypes was 30–100 % lower than that of tolerant lines under water stress (WS). The total volumes of water extracted by tolerant and sensitive genotypes were similar under WS; however, tolerant genotypes extracted less water prior to anthesis, and more water after anthesis. Grain yield was positively related to the amount of water extracted during week three after panicle emergence. Increased water extraction after anthesis benefitted the tillers more than the main culm and was correlated with higher staygreen scores. Conclusion Increased water uptake after anthesis, which results from earlier water conservation during pre-anthesis, increases yield under terminal drought in pearl millet.
    Print ISSN: 0032-079X
    Electronic ISSN: 1573-5036
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2013-04-10
    Description: Background and aims Efficient accumulation of arsenic (As) in rice ( Oryza sativa L.) poses a potential health risk to rice consumers. The aim of this study was to investigate the mechanisms of uptake, transport and distribution of inorganic arsenic (As i ) and dimethylarsinic acid (DMA) in rice plants. Methods Rice was exposed to As i (As(V)) and DMA in hydroponics. High-performance liquid chromatography inductively coupled plasma mass spectrometry (HPLC-ICP-MS) and synchrotron X-ray fluorescence (SXRF) microprobe were used to determine As concentration and the in situ As distribution. Results DMA induced abnormal florets before flowering and caused a sharp decline in the seed setting rate after flowering compared to As i . Rice grains accumulated 2-fold higher DMA than As i . The distribution of As i concentration (root 〉 leaf 〉 husk 〉 caryopsis) in As(V) treatments was different from that of the DMA concentration (caryopsis 〉 husk 〉 root ≥ leaf) in DMA treatments. SXRF showed that As i mainly accumulated in the vascular trace of caryopsis with limited distribution to the endosperm, whereas DMA was observed in both tissues. Conclusions DMA tended to accumulate in caryopsis and induced higher toxicity to the reproductive tissues resulting in markedly reduced grain yield, whereas As i mainly remained in the vegetative tissues and had no significant effect on yield. DMA is more toxic than As i to the reproductive tissues when both of them are at similar concentrations in nutrient solution.
    Print ISSN: 0032-079X
    Electronic ISSN: 1573-5036
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2013-04-10
    Description: Background and aims Variations in responses to soil N between a non-N-fixing shrub, Baccharis halimifolia L., and a N-fixing shrub, Morella cerifera (L.) Small, were tested over 12 weeks to determine whether N availability is the sole cause of persistent dominance of M. cerifera on barrier islands. Methods Plants were supplied increasing levels of soil N up to 200 mg kg −1 . Measurements included gas exchange and chlorophyll fluorescence parameters across treatments, species, and time. Tissues were analyzed for differences in biomass and nutrients. Results Baccharis halimifolia had reduced physiological responses across all treatment levels, but M. cerifera had comparatively few variations. Across all treatments B. halimifolia photosynthesis and stomatal conductance were reduced by 62 and 76 %, respectively,by week 12. Increasing foliar δ 15 N values across treatments for M. cerifera indicated a shift from utilizing fixed N to available soil N. Biomass was highest at 200 mg kg −1  N for both species. Baccharis halimifolia showed indications of stress response and resource limitation based on physiological responses, nutrient contents, and isotope effects. Conclusions Baccharis halimifolia showed signs of co-limitation of both N and P whereas M. cerifera was limited by neither, suggesting that dominance of M. cerifera is only partially explained by actinorhizal symbiosis and N availability.
    Print ISSN: 0032-079X
    Electronic ISSN: 1573-5036
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2013-04-10
    Description: Background and Aims Soil mineralization, nitrification, and dynamic changes in abundance of ammonia-oxidizing bacteria (AOB) and archaea (AOA) were studied to validate our hypothesis that soil mineralization and nitrification decreased along the chronosequence of rice cultivation. Methods Paddy soils with a 300, 700 and 2000-year cultivation history (P300, P700 and P2000) were selected to study net mineralization and nitrification processes. Dynamic abundance of AOB and AOA was estimated by quantifying their respective amoA gene copies. Results The net mineralization rate was higher for P300 than P700 and P2000. Potential nitrification ( N p ) and average nitrification rates ( V a ) were similar for P300 and P700 soils, but the simulated potential nitrification rate ( V p ) and nitrification rate (k 1 ) was 72 % and 88 % higher for P300 than P700, respectively. V a was about 70 % lower than for P2000 than P300 and P700. AOB amoA gene copies were higher for P300 than P700 and P2000, whereas AOA abundance did not show significant differences. AOB abundance showed a positive response to NH 4 supply but AOA did not. Conclusions Both N mineralization and nitrification were depressed with increased cultivation time. Archaea responded to mineralization positively rather than nitrification, which suggested that readily mineralized organic matter may play an important role in AOA.
    Print ISSN: 0032-079X
    Electronic ISSN: 1573-5036
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2013-04-10
    Description: Aims The current study aimed to assess the potential of peanut ( Arachis hypogaea L.) for bioenergy production via phytoextraction in cadmium (Cd) -contaminated soils and screen appropriate cultivars for this approach. Methods A life-cycle pot experiment was conducted to determine the biomass, seed yield, oil content and Cd accumulation of seven peanut cultivars under Cd concentration gradients of 0, 2, and 4 mg kg −1 . Results Peanut exhibits genotypic variations in Cd tolerance, seed production, oil content, and Cd accumulation. Exposure of plants to 2 and 4 mg kg −1 Cd did not inhibit shoot biomass, seed yield, and oil content for most of the cultivars tested. There are large amounts of Cd accumulated in the shoots. Although the seed Cd concentration of peanut was relatively high, the Cd concentration in seed oils was very low (0.04-0.08 mg kg −1 ). Among the cultivars, Qishan 208 showed significant Cd tolerance, high shoot biomass, high pod and seed yield, high seed oil content, considerable shoot Cd concentration, and the largest translocation factor and total Cd in shoots. Conclusions The cultivation of peanut in Cd-contaminated farmland was confirmed to be feasible for bioenergy production via phytoextraction, and Qishan 208 is a good candidate for this approach.
    Print ISSN: 0032-079X
    Electronic ISSN: 1573-5036
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2013-04-10
    Description: Background and aims Sufficient soil phosphorus (P) is important for achieving optimal crop production, but excessive soil P levels may create a risk of P losses and associated eutrophication of surface waters. The aim of this study was to determine critical soil P levels for achieving optimal crop yields and minimal P losses in common soil types and dominant cropping systems in China. Methods Four long-term experiment sites were selected in China. The critical level of soil Olsen-P for crop yield was determined using the linear-plateau model. The relationships between the soil total P, Olsen-P and CaCl 2 -P were evaluated using two-segment linear model to determine the soil P fertility rate and leaching change-point. Results The critical levels of soil Olsen-P for optimal crop yield ranged from 10.9 mg kg −1 to 21.4 mg kg −1 , above which crop yield response less to the increasing of soil Olsen-P. The P leaching change-points of Olsen-P ranged from 39.9 mg kg −1 to 90.2 mg kg −1 , above which soil CaCl 2 -P greatly increasing with increasing soil Olsen-P. Similar change-point was found between soil total P and Olsen-P. Overall, the change-point ranged from 4.6 mg kg −1 to 71.8 mg kg −1 among all the four sites. These change-points were highly affected by crop specie, soil type, pH and soil organic matter content. Conclusions The three response curves could be used to access the soil Olsen-P status for crop yield, soil P fertility rate and soil P leaching risk for a sustainable soil P management in field.
    Print ISSN: 0032-079X
    Electronic ISSN: 1573-5036
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2013-04-10
    Description: Competing demands for water have resulted in many wetlands becoming either more permanently flooded or more permanently dry. It has been stated that such changes may lead to a loss of diversity in wetland communities; yet to date, this has not been tested experimentally. In this study, we experimentally test the hypothesis that increasing the hydrologic stability of wetlands results in reduced abundance, richness and diversity of aquatic biota emerging from wetland sediments. Sediment was collected from 19 wetlands that were divided into five groups (permanently flooded and wetlands that had been dry for 2, 7, 11 and 30 years). Aquatic plant communities germinating from the sediment of wetlands that had been permanently inundated and those that had been dry for 30 years had lower species richness and number of individuals than wetlands with intermediate flooding histories. For microfaunal communities, significantly less individuals but more taxa hatched from wetlands that had been permanently flooded or dry for 2 years than the other wetland groups. These results provide evidence of reduced biotic diversity as hydrological stability is increased under the common management scenarios of making wetlands more permanently wet or dry.
    Print ISSN: 0018-8158
    Electronic ISSN: 1573-5117
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    facet.materialart.
    Unknown
    Springer
    Publication Date: 2013-04-10
    Description: Stoichiometric theory predicts that organisms should experience dietary imbalances not only when nutrients (e.g., phosphorus, P) are limiting relative to carbon (C), but also when nutrients are in excess (i.e., well above somatic demand). Nevertheless, few experiments have elucidated the response of consumers in such low C:P conditions. We assessed the growth, tissue stoichiometry, and nutrient excretion of the invasive primary consumer, zebra mussel (ZM), Dreissena polymorpha , under three dietary C:P conditions (C:P = 20, 45, 380) in the laboratory. The two low C:P conditions represent increasingly common eutrophic systems, while the high C:P treatment is representative of oligotrophic systems. Growth rates and condition were lower when ZMs were fed a low C:P (20 and 45) diet, compared to the C:P = 380 treatment, wherein ZMs grew rapidly and exhibited lower somatic C:P. Furthermore, ZMs in the C:P = 20 and C:P = 45 treatments excreted more ammonia indicative of protein catabolism. These results clearly show that hypereutrophic conditions invoke significant shifts in physiology, growth, and condition of ZMs. Together, these results are consistent with stoichiometric theory that predicts costs associated with the intake of excess dietary P.
    Print ISSN: 0018-8158
    Electronic ISSN: 1573-5117
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2013-04-10
    Description: Despite over 100 years of phytoplankton research in the Baltic Sea, little is known about how the species composition has changed during this period, characterised by severe anthropogenic eutrophication. We investigated the phytoplankton communities in the northern Baltic Sea using data from 1903 to 1911 and 1993 to 2005; to minimise effects of methodological differences we focused on occurrence frequencies. We found that the historical and modern communities differed regarding both species composition and the relative importance of taxonomical groups. The most obvious differences were the increase of dinoflagellates and decrease in the diatom to dinoflagellate ratio in all seasons. Contrary to the widely held view that cyanophytes have gained significance, our results indicate that in terms of occurrence the group has not increased in summer, and has lost ground in both spring and autumn. Several shifts in the occurrence frequency and seasonality of individual taxa transpired. Examining our results in relation to environmental conditions we found that some changes may be symptomatic of climate change related pressures. However, statistical analyses revealed that an undefined ‘period effect’ was the most important factor separating the historical and modern phytoplankton communities. We interpret this ‘period effect’ as evidence for the direct and/or indirect influence of eutrophication.
    Print ISSN: 0018-8158
    Electronic ISSN: 1573-5117
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2013-04-10
    Description: In Australia’s Murray–Darling Basin, small-scale engineering works called ‘environmental works and measures’ have been implemented as a basis for river and other wetland conservation. While implementing these, governments seem to have embraced the beguiling notion that scarce water supplies can be divided further, while conserving the environment and maintaining agricultural production. The difficulties in doing this are expected to increase in the face of extreme climate variability. With this scenario as a backdrop, the $280 million (Monetary values ($) in this paper are in Australian dollars (AUD). At the time of writing AUD $1.00 = ~USD $1.02.) Living Murray and related programmes are assessed to see whether microengineering works to manage the hydrology of wetlands make for effective adaptation to water scarcity and climate change or whether it amounts to an overly narrow adaptation or maladaptation. Some measures were found to be substantially beneficial, such as the construction of fishways. However, under these programmes, only 0.6% of the Basin’s wetlands would be inundated and there are significant risks including desiccation of non-target wetlands and further reductions in water allocations for the environment. It is recommended that trade-offs between alternative strategies are assessed as the basis for minimising perverse impacts under changing climatic and hydrological conditions.
    Print ISSN: 0018-8158
    Electronic ISSN: 1573-5117
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2013-04-10
    Description: The purpose of this microcosm experiment was to determine whether the freshwater snail Bellamya aeruginosa affected phytoplankton community and water quality. Three treatments of different snail densities (low, medium, and high) and a control (no snails) were set up in twelve enclosures. Chlorophyll a (chl a ), transparency (SD), water temperature (WT), dissolved oxygen (DO), pH, nutrients, and abundance of phytoplankton were determined on days 0, 3, 7, 11, 15, 23, 31, 46, and 61. The total chl a concentration decreased and SD increased in the treatments, whereas the proportion of cyanobacteria chl a increased. Bellamya seemed to result indirectly in a decrease of DO, by reducing the algal biomass rather than by respiration. A significant decrease in nitrogen–phosphorus ratios was observed in the treatments. In the enclosed system the abundance of colonial green algae decreased over time whereas that of cyanobacteria and flagellates increased. Principal response curves showed that both phytoplankton community and water quality in the medium and high-density treatments were consistently different from in the control. These results indicate that the presence of snails resulted in a significant change of water physicochemical properties and phytoplankton community.
    Print ISSN: 0018-8158
    Electronic ISSN: 1573-5117
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2013-04-10
    Description: Brown trout is a cold-adapted freshwater species with restricted distribution to headwater streams in rivers of the South European peninsulas, where populations are highly vulnerable because Mediterranean regions are highly sensitive to the global climatic warming. Moreover, these populations are endangered due to the introgressive hybridization with cultured stocks. Individuals from six remnant populations in Western Mediterranean rivers were sequenced for the complete mitochondrial DNA control region and genotyped for 11 nuclear markers. Three different brown trout lineages were present in the studied region. Significant genetic divergence was observed among locations and a strong effect of genetic drift was suggested. An important stocking impact (close to 25%) was detected in the zone. Significant correlations between mitochondrial-based rates of hatchery introgression and water flow variation suggested a higher impact of stocked females in unstable habitats. In spite of hatchery introgression, all populations remained highly differentiated, suggesting that native genetic resources are still abundant. However, climatic predictions indicated that suitable habitats for the species in these rivers will be reduced and hence trout populations are highly endangered and vulnerable. Thus, management policies should take into account these predictions to design upstream refuge areas to protect remnant native trout in the region.
    Print ISSN: 0018-8158
    Electronic ISSN: 1573-5117
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2013-04-10
    Description: A rapid method to estimate the three-dimensional (3D) surface area (SA) of marine gorgonians and sponges from field measurements of colony height, diameter, and morphology was developed as an indicator of habitat availability for fish and invertebrates. Colony characteristics for sponges and gorgonians were compiled from field measurements, expert judgment, and taxonomic literature, and employed to generate 3D images using computer-aided design software. The images were used to test various statistical models and geometric surrogates that best estimated SA using only height and diameter measurements. A morphological classification system was devised using shapes and relative proportions of sponges and gorgonians which are commonly found in shallow waters (〈25 m depth) of the Central Western Atlantic Ocean. Regression models (linear, quadratic, or cubic) were found to be more robust than geometric surrogates, exhibiting greater accuracy at range extremes. Statistical models explained over 90% of the variation in SA and forecast errors of less than 20%. The best models for estimating SA are presented for eight sponge and nine gorgonian morphologies. Application of these methods with existing estimators for stony corals SA can be used as an indicator of structural habitat availability, which is an important ecosystem service of coral reefs.
    Print ISSN: 0018-8158
    Electronic ISSN: 1573-5117
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2013-04-10
    Description: The common and routine procedure for the quantification of chlorophyll a (chl a ) in aquatic studies has a series of steps. Here, we sought to find optimal conditions for phytoplankton cell harvesting, chl a extraction, and chl a measurement and calculation, to find an effective, cost-saving, safe, and environment-friendly procedure for determining phytoplankton chl a concentration. We replaced the traditional GF/C filters with inorganic polymer flocculants (IPFs) and clay for phytoplankton harvesting, and then various solvents (acetone, ethanol, DMF, and DMSO), IPFs (PAC, PFS, and PAFS) and clay were tested for their suitability for chl a extraction, with or without homogenization at different temperatures for different extraction durations. About 0.3–1.0 g l −1 of PAC or PFSA combined with 1.0–2.5 g l −1 clay were found to provide optimal conditions in terms of yield and cost for phytoplankton cell harvesting from water samples. Based on our results, we recommend flocculation and centrifugation instead of glass-fiber membrane filtration for harvesting phytoplankton cells from environmental water samples, 95% ethanol for chl a extraction without homogenization and heating, and spectrophotometry to determine chl a concentration.
    Print ISSN: 0018-8158
    Electronic ISSN: 1573-5117
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2013-04-10
    Description: Geomorphic research across the semi-arid and wet-dry tropics of northern Australia has highlighted the role of the regions’ estuaries as a “canary in the coalmine” for climate variations, with dramatic structural shifts over the Holocene. This behaviour highlights the region’s potential sensitivity to climate change and suggests the need for careful identification and interpretation of dynamics in the tropical and sub-tropical regions. However, analysis of change in these regions requires care, as a number of the basic tools applied to interpreting estuarine change in temperate regions are obscured, invalid or simply unavailable when applied in lower latitudes. This study provides a synthesis from a range of investigations across northern Australia and identifies characteristics to be considered when interpreting or predicting sub-millennial estuarine change in these regions.
    Print ISSN: 0018-8158
    Electronic ISSN: 1573-5117
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2013-04-10
    Description: Zooplankton are potentially powerful proxies for the assessments of biologic integrity. The paleolimnological perspective and use of fossil Cladocera also provide the means to reconstruct reference conditions and natural long-term community dynamics. Unfortunately, the use of zooplankton in lake quality assessments is currently underexploited. We studied a surface sediment dataset of 41 lakes in Finland to examine the relationship between Cladocera remains and environmental variables. Of the examined environmental variables, total phosphorus availability was found to be the most important variable in explaining the Cladocera community composition. Following the tests on species environment relations, we selected a lake trophic typology as the most suitable environmental variable for developing a new tool for limnoecological quality assessments. A test of the model on a modern and historic sample from a eutrophied lake showed that the test lake has proceeded from “mesotrophic/poor” to “eutrophic/bad” limnoecological state in agreement with previous independent evidence. The model developed here showed favorable performance that can be used to provide reliable estimates of ecological and environmental state of lakes.
    Print ISSN: 0018-8158
    Electronic ISSN: 1573-5117
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2013-04-10
    Description: Nutrient enrichment may alter population dynamics of species in different ways depending on their life strategies. The aim of this study was to test the effect of different nutrient concentrations on the population development of two bacterivorous freshwater nematodes, Bursilla monhystera and Plectus aquatilis . Microcosms with autoclaved natural sand from a pristine stream (Fuirosos, NE of Spain) were enriched with different levels of phosphate, nitrate and ammonia as inorganic nutrients and glucose as a biodegradable dissolved organic carbon source. Although leaching of carbon and nutrients from the detritus fraction in the sediment initially may have overruled differences between treatments, later samplings revealed bottom-up control, with Bursilla monhystera abundances positively correlated to bacterial abundances at high nutrient concentrations. Nevertheless, there were several indications that nematodes in turn affected microbial abundance, most likely through excretion of ammonia and through grazing. In contrast to B. monhystera , Plectus aquatilis at high nutrient concentrations showed a unimodal abundance curve, while not increasing in abundance at low nutrient concentrations. Glucose enrichment did not have any stimulatory effect on either microbial or nematode abundances, probably as a result of unfavourable C:N:P stoichiometry. P enrichment, by contrast, stimulated microbial and Bursilla abundances. Our results indicate that episodic nutrient enrichment may affect populations of bacterial-feeding nematodes in the short term. Their longer-term dynamics may, however, be more dependent on leaching of carbon and nutrients from the pools of sediment-bound detritus.
    Print ISSN: 0018-8158
    Electronic ISSN: 1573-5117
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    facet.materialart.
    Unknown
    Springer
    Publication Date: 2013-04-10
    Description: Background and aims Gaseous losses of ammonia (NH 3 ) have been observed in citrus orchards when urea is surface-applied to the soils, and this loss might significantly limit the effectiveness of the nitrogen (N) fertilizer. However, a portion of the volatilized NH 3 might be absorbed by the plants through the leaves. To quantify the contribution of the leaf absorption of 15 NH 3 , a study with sweet oranges was conducted in two field areas where trees were grown at standard (480 trees ha −1 ) and high densities (617 trees ha −1 ). Methods Plastic trays were filled with soil, covered with mown grass to simulate field management conditions, fertilized with 15 N labeled urea (12 atom % excess) and placed under each of three trees in the orchards. This experimental procedure prevented the uptake of N from the labeled urea by the roots. Two weeks after 15 N fertilization, the trays were removed from the field, and the soil was homogenized and sampled for chemical analyses. The citrus trees under which the trays were placed were destructively harvested, and the total N concentrations and 15 N/ 14 N ratios were determined. Results After urea application, the NH 3 losses peaked within three days and subsequently decreased to negligible amounts after 10 days. The total NH 3 losses accounted for 55–82 % of the applied N. Although the NH 3 absorption by the citrus leaves was proportional to the tree density in the field, only 3–7 % of the 15 NH 3 volatilized from the soil was recovered by the citrus trees, and the NH 3 absorption was also influenced by the proximity of citrus trees to the site of urea application and the leaf areas of the trees. Conclusions The citrus trees can absorb the NH 3 volatilized from urea, even though, the amount recovered by the trees is small and does not represent a significant proportion of total gaseous N losses, what demonstrates the importance of enhanced N use efficiency practices in field to reduce losses of NH 3 when urea is applied to soil surfaces.
    Print ISSN: 0032-079X
    Electronic ISSN: 1573-5036
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2013-04-10
    Description: Background Rice can accumulate arsenic (As) to relatively high concentrations due to the general flooding practices in rice cultivation, and organic matter in the soil strongly affected As bioavailability to rice plants. The influence of organic matter input on the As transformation in paddy soil and As uptake into rice plants is an area that is rarely investigated. Methods Biogas slurry (BGS), a commonly used organic fertilizer, was applied to an As contaminated paddy soil, in order to investigate the influence of organic matter on As transformation in the paddy soil and As accumulation in rice plants. Results Application of BGS significantly increased the As accumulation in rice plants, especially for methylated As species. Results showed that the concentrations of dissolved organic carbon (DOC) and dissolved Fe(II) in the soil solution were significantly increased by the BGS addition into the paddy soil, and were significantly correlated to the As concentration in the soil solution ( P  〈 0.01). The increase of soil pH and the decrease of the soil redox potential (Eh) were observed as well. These alteration of soil characteristics elevated the As release from soil particles to the soil solution under the addition of BGS. The increased concentrations of dimethylarsinic acid (DMAs(V)) and monomethylarsonic acid (MMAs(V)) in the soil solution, and the volatilized As of trimethylarsine (TMAs) from the paddy soil, suggested that As methylation and volatilization in the soil were also enhanced by BGS addition. The concentrations of methylated As species in rice husks and grains were increased by 105.8–105.9 % and 99.7–112.2 %, respectively. Conclusion These results suggested that the use of organic fertilizer, such as BGS in As-contaminated paddy soil, can significantly alter the behavior of As in soil-rice system and enhance As accumulation in rice plants and should therefore be avoided.
    Print ISSN: 0032-079X
    Electronic ISSN: 1573-5036
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2013-04-10
    Description: Background & aims Plants may have dissimilar effects on ecosystem processes because they possess different attributes. Given increasing biodiversity losses, it is important to understand which plant traits are key drivers of ecosystem functions. To address this question, we studied the response of two ecosystem functions that remove nitrogen (N) from wetland soils, the accumulation of N in plant biomass and denitrification potential (DNP), to variation in plant trait composition. Methods Our experiment manipulated plant composition in a riparian wetland. We determined relative importance of plant traits and environmental variables as predictors of each ecosystem function. Results We demonstrate that Water Use Efficiency (WUE) had a strong negative effect on biomass N. Root porosity and belowground biomass were negatively correlated with DNP. Trait ordination indicated that WUE was largely orthogonal to traits that maximized DNP. Conclusions These results indicate that plant species with different trait values are required to maintain multiple ecosystem functions, and provide a more mechanistic, trait-based link between the recent findings that higher biodiversity is necessary for multi-functionality. While we selected plant traits based on ecological theory, several of the plant traits were not good predictors of each ecosystem function suggesting the ecological theory linking traits to function is incomplete and requires strengthening.
    Print ISSN: 0032-079X
    Electronic ISSN: 1573-5036
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2013-09-07
    Description: Aims Wild soybean accession PI 468917 [ Glycine soja (Sieb. and Zucc.)] was examined for traits that could potentially be beneficial for development of drought resistant soybean cultivars. Methods Water use was examined in controlled environment chambers at three temperatures (25, 30, and 35 °C). Root morphology of plants grown in hydroponics was analyzed using digital imaging software. Results Wild soybean had lower transpiration efficiency in producing mass than the domesticated soybean cultivar Hutcheson at all temperatures. As soil dried, wild soybean decreased transpiration earlier (at a higher soil water content) than domesticated soybean, but only at 25 °C. Wild soybean had much greater root length than the modern soybean when grown at 25 or 30 °C in hydroponics, with the increase observed in the 0.25 to 0.50 mm diameter class. Wild soybean’s advantages dissipated at higher growth temperatures. Conclusions Wild soybean populations, potentially, can offer useful traits for improving drought resistance of modern soybean. Sensitive transpiration control in response to soil drying would contribute to ‘slow-wilting’ strategies known to be advantageous for drought resistance, and greater root length would enhance water acquisition from the soil profile. Use of the traits in breeding programs will require extending the temperature range for trait expression.
    Print ISSN: 0032-079X
    Electronic ISSN: 1573-5036
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2013-09-10
    Description: Aims Seed germination and seedling emergence are vulnerable to water stress in arid environments. When precipitation is low and unpredictable during the early growing season, seeds near the sand surface often suffer from hydration/dehydration during germination. We investigated the responses of seedling emergence and survival of a sand dune grass with high sand stabilization value to amount and frequency of precipitation and depth of burial in sand. Methods Effects of amount and frequency of precipitation, burial and hydration/dehydration on seedling emergence of Leymus secalinus , were examined using standard procedures. Results Seedling emergence was affected by amount and frequency of monthly precipitation and depth of burial, and it decreased as precipitation frequency decreased with same amount of precipitation. Highest emergence percentage was obtained with 100 or 150 mm precipitation at 1–4 cm depth. Hydration/dehydration treatments decreased germination and increased dormancy percentage. Young seedlings with root lengths of 0–1 mm desiccated up to 30 days revived after rehydration. Conclusions Seedling emergence of L. secalinus is adapted to 150 mm monthly precipitation with frequency of 10–30 times per month, 1–4 cm burial depth and dehydration interval of 1–2 days. Alteration of amount and/or frequency of precipitation caused by climate change could markedly affect seedling emergence and population regeneration of this species.
    Print ISSN: 0032-079X
    Electronic ISSN: 1573-5036
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2013-09-11
    Description: Background and aims Limited information is available on comparing the iron plaque formation capabilities and their effect on arsenic (As) uptake by different rice plant genotypes grown in As-contaminated soils. This study investigates the effect of iron plaque on As uptake in different rice genotypes grown in As-contaminated soils from the Guandu Plain of northern Taiwan. Methods Twenty-eight rice genotypes including 14 japonica and 14 indica genotypes were used in this study. Rice seedlings were grown in As-contaminated soils for 38 days. The iron plaque formed on the rice roots were extracted using dithionite–citrate–bicarbonate. The concentrations of As, Fe, and P in soil solutions, iron plaque, and plants were measured. The speciation of As in the root’s iron plaque was determined by As K-edge X-ray absorption near-edge structure spectroscopy (XANES). Results The amounts of iron plaque formation on roots were significantly different among 28 tested rice genotypes, and 75.7–92.8 % of As uptake from soils could be sequestered in iron plaque. However, there were no significant negative correlations between the amounts of Fe or As in the iron plaque and the content of As accumulated in rice plants of tested genotypes. XANES data showed that arsenate was the predominant As species in iron plaque, and there were difference in the distribution of As species among different rice genotypes. Conclusions The iron plaque can sequester most of As uptake from soils no matter what rice genotypes used in this study. However, the iron plaque alone did not control the extent of As accumulation in rice plants from As-contaminated soils among 28 tested rice genotypes. Low As uptake genotypes of rice selected from this study can be recommended to be grown in the As-contaminated soils.
    Print ISSN: 0032-079X
    Electronic ISSN: 1573-5036
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2013-09-12
    Description: Background and aims Freeze events can strongly influence many ecosystem processes. However, the effects of freeze events on litter production, litter quality, and decomposition are rarely documented. Methods In this study, litter fall was measured monthly for 2 years. Two litter decomposition experiments were also performed using freeze-damaged litter and non-damaged litter in a loblolly pine forest. Results The freeze event in November 2009 caused a pronounced pulse of needle litter fall. The freeze-damaged needle litter was shown to have higher N concentration and lower C/N ratio compared with the normal falling needle litter. This finding indicates that freeze damage significantly increased needle quality because of incomplete nutrient resorption. The decomposition of freeze-damaged needle litter was faster than that of normal falling yellow needle litter and slower than that of hand-picked green needle litter. The decomposition rate constant ( k ) was negatively correlated with the C/N ratio in the needle litter. Our results also showed that the different climatic conditions influence patterns of litter decomposition. Conclusions This study suggests that freeze events significantly alter litter quantity and quality, thus affecting litter decomposition rates in a loblolly pine forest in central China.
    Print ISSN: 0032-079X
    Electronic ISSN: 1573-5036
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2013-09-12
    Description: Background and aims Serpentine soils impose limits on plant growth and survival and thus provide an ideal model for studying plant adaptation under environmental stress. Despite the increasing amount of data on serpentine ecotypic differentiation, no study has assessed the potential role of polyploidy. We tested for links between polyploidy and the response to serpentine stress in Knautia arvensis , a diploid-tetraploid, edaphically differentiated complex. Methods Variation in growth, biomass yield and tissue Mg and Ni accumulation in response to high Mg and Ni concentrations were experimentally tested using hydroponic cultivation of seedlings from eight populations of different ploidy and edaphic origin. Results Regardless of ploidy level, serpentine populations exhibited higher tolerance to both Mg and Ni stress than their non-serpentine counterparts, suggesting an adaptive character of these traits in K. arvensis . The effect of ploidy was rather weak and confined to a slightly better response of serpentine tetraploids to Mg stress and to higher biomass yields in tetraploids from both soil types. Conclusions The similar response of diploid and tetraploid serpentine populations to edaphic stress corresponded with their previously described genetic proximity. This suggests that serpentine tolerance might have been transmitted during the local autopolyploid origin of serpentine tetraploids.
    Print ISSN: 0032-079X
    Electronic ISSN: 1573-5036
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2013-09-15
    Description: Background and Aims Seed bank persistence plays a highly relevant role for population dynamics. The impact of interacting environmental factors on seed longevity has only scarcely been investigated. We aimed to analyse the effects of varied soil substrate type and moisture on soil seed survival. Methods Seeds of three Rumex species native to different habitats were buried in pots placed in open-air basins. The factors substrate (sand, loam, mud), water table depth (WTD; high, intermediate, low), time, and their interactions were investigated. Viability was tested after 6, 12, and 18 months. Results Seeds of R. acetosella (dry habitat) were short-term persistent with highest survival in low WTD on sand. Survival in R. acetosa (moist habitat) was very strongly reduced after 6 months with highest survival under wet conditions. R. maritimus (wet habitat) had overall long-term seed survival, where ‘substrate type’ had the strongest impact. Significant interactions of ‘substrate type’ and WTD were detected. Conclusions Seed bank longevity is not a fixed species trait, but varies with environmental factors. Soil moisture, substrate type and their interactions have different effects on the studied species. Persistence-classifications ought to consider the impact of environmental factors.
    Print ISSN: 0032-079X
    Electronic ISSN: 1573-5036
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2013-09-17
    Description: Background and aims Chelant-enhanced phytoextraction has given variable and often unexplained experimental results. This work was carried out to better understand the mechanisms of Cd plant uptake in the presence of EDTA and to evaluate the contributions of Cd-EDTA complexes to the uptake. Method A 1-D mechanistic model was implemented, which described the free Cd 2+ root absorption, the dissociation and the direct absorption of the Cd-EDTA complexes. It was used to explain Cd uptake by maize in hydroponics and in soil. Results In hydroponics, the addition of EDTA caused a decrease in Cd uptake by maize, particularly when the ratio of total EDTA ([EDTA] T ) to total Cd ([Cd] T ) was greater than 1. At [Cd] T = 1 μM, when [EDTA] T /[Cd] T 〈 1, the model indicated that Cd uptake was predominantly due to the absorption of free Cd 2+ , whose pool was replenished by the dissociation of Cd-EDTA. When [EDTA] T /[Cd] T 〉 1, the low Cd uptake was mostly due to Cd-EDTA absorption. In soil spiked with 5 mg Cd kg −1 , Cd uptake was not affected by the various EDTA additions, because of the buffering capacity of the soil solid phase. Conclusions Addition of EDTA to soil increases Cd solubility but dissociation of Cd-EDTA limits the availability of the free Cd 2+ at the root surface, which finally reduces the plant uptake of the metal.
    Print ISSN: 0032-079X
    Electronic ISSN: 1573-5036
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2013-09-18
    Description: Background and aims The feather moss Pleurozium schreberi (Brid.) Mitt. is colonized by cyanobacteria, which fix substantial amounts of atmospheric nitrogen (N) in pristine and N-poor ecosystems. Cyanobacterial N 2 fixation is inhibited by N deposition. However, the threshold of N input that leads to the inhibition of N 2 fixation has not been adequately investigated. Further, the ability of N 2 fixation to recover in mosses from high N deposition areas has not been studied to date. Methods We conducted two laboratory studies in which we (1) applied a range of concentrations of N as NH 4 NO 3 to mosses from low N-deposition areas, and (2) we deprived mosses from a high N-deposition area of N to test their ability to recover N 2 fixation. Results Higher addition rates (up to 10 kg N ha −1 ) did not systematically inhibit N 2 fixation in P. schreberi . Conversely, upon weeks of N deprivation of mosses from a high N environment, N 2 fixation rates increased. Conclusions The threshold of total N deposition above which N 2 fixation in P. schreberi is inhibited is likely to be 〉 10 kg N ha −1 . Further, cyanobacteria are able to recover from high N inputs and are able to fix atmospheric N 2 after a period of N deprivation.
    Print ISSN: 0032-079X
    Electronic ISSN: 1573-5036
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2013-09-18
    Description: Background and aims Soil aggregation is a crucial aspect of ecosystem functioning in terrestrial ecosystems. Arbuscular mycorrhizal fungi (AMF) play a key role in soil aggregate formation and stabilization. Here we quantitatively analyzed the importance of experimental settings as well as biotic and abiotic factors for the effectiveness of AMF to stabilize soil macroaggregates. Methods We gathered 35 studies on AMF and soil aggregation and tested 13 predictor variables for their relevance with a boosted regression tree analysis and performed a meta-analysis, fitting individual random effects models for each variable. Results and conclusions The overall mean effect of inoculation with AMF on soil aggregation was positive and predictor variable means were all in the range of beneficial effects. Pot studies and studies with sterilized sandy soil, near neutral soil pH, a pot size smaller than 2.5 kg and a duration between 2.2 and 5 months were more likely to result in stronger effects of AMF on soil aggregation than experiments in the field, with non-sterilized or fine textured soil or an acidic pH. This is the first study to quantitatively show that the effect of AMF inoculation on soil aggregation is positive and context dependent. Our findings can help to improve the use of this important ecosystem process, e.g. for inoculum application in restoration sites.
    Print ISSN: 0032-079X
    Electronic ISSN: 1573-5036
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2013-09-19
    Description: This study investigates the dynamics of protozoan community in biofilms formed on inert artificial surfaces suspended in various freshwater environments. The results also test the hypothesis that the dynamics of protozoan and microalgal communities in biofilms are interdependent because the latter form one of the major food items of benthic protozoa. Cleaned glass slides were suspended in surface waters at four sampling locations to collect biofilm communities. The glass slides after retrieval were observed under a microscope for diatom and protozoan density and their generic composition. Members of protozoa belonging to phylum Sarcomastigophora dominated the protozoan community followed by phylum Ciliophora in all sampling locations. The variation of protozoan feeding groups showed an initial abundance of autotrophs/holophytes which gave way to heterotrophs, predators, and bacterivores towards the end of the study. The density and generic composition of protozoa varied significantly with the age of biofilm and sampling location. The density variation of protozoa followed that of diatoms in all four sampling locations and this has resulted in a significant positive correlation between diatom and protozoan densities. This suggests the dependency and/or food web connectedness of these two communities in natural biofilms.
    Print ISSN: 0018-8158
    Electronic ISSN: 1573-5117
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2013-09-19
    Description: Nutrient ratios have been related to nutrient limitation of algal growth in lakes. Retention of nutrients in lakes, by sedimentation and by denitrification, reduces the nutrient concentrations in the water column, thereby enhancing nutrient limitation. Differential retention of nitrogen and phosphorus alters their ratios in lakes and thereby contributes to determine whether nitrogen or phosphorus limits algal growth. We examined the relationships between differential nutrient retention, nutrient ratios, and nutrient limitation in Lake Brunner, a deep oligotrophic lake. The observed retention of nitrogen (20%) and phosphorus (47%) agreed with predictions by empirical equations from literature. As a result of differential retention with a much larger proportion of phosphorus retained than that of nitrogen, the nitrogen:phosphorus ratio was higher in the lake (69) than in the inflows (46). While the mean ratio in the inflows suggested no or only moderate phosphorus limitation, the lake appeared to be severely phosphorus limited. Combining empirical equations from literature that predict nitrogen and phosphorus retention suggests that the nitrogen:phosphorus ratio is enhanced by greater retention of phosphorus compared to nitrogen only in deep lakes with relatively short residence times, such as Lake Brunner. In contrast, in most lakes differential retention is expected to result in lower nitrogen:phosphorus ratios.
    Print ISSN: 0018-8158
    Electronic ISSN: 1573-5117
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2013-09-19
    Description: Using a large pan-European dataset, we compared least disturbed sites to sites impacted by human pressures across broad river types to assess which aspects of bio-ecological traits of the fish assemblage are most sensitive to alterations of the river ecosystem. To control for variation across river types and large-scale environmental gradients, we began by clustering the least disturbed sites ( n  = 716) into four homogenous fish assemblage types (FATs) differing by four fish metrics, i.e., lithophilic, rheophilic, omnivorous, and potamodromous fish. We predicted these FATs (headwater streams, medium gradient rivers, lowland rivers, and Mediterranean streams) using environmental variables, i.e., altitude, river slope, temperature, precipitation, latitude, and longitude for impacted sites in our dataset ( n  = 2,389). Using tests of sensitivity and intensity, 17 fish metrics showed a clear reaction to human pressures. However, 12 metrics responded exclusively within only one of the four FATs. Hence we observed a divergent reaction of fish metrics to human pressures in, e.g., headwater versus lowland rivers. Type-specific reactions are useful in customizing impact assessment for particular river types. It is of primary importance to understand the comparative sensitivity and efficiency of fish-based indicators of water quality for detecting human-induced degradation of river ecosystems.
    Print ISSN: 0018-8158
    Electronic ISSN: 1573-5117
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2013-09-19
    Description: To elucidate the effects of scallop mariculture on the macrobenthic community in a moderate energy system, bimonthly samples from four transects along a distance gradient in Sishili Bay, the northern Yellow Sea of China, were investigated. Differences in macrobenthic community structure along the distance gradient were evaluated using univariate and multivariate analyses. The AZTI’s Marine Biotic Index (AMBI) and multivariate-AMBI analyses indicated that the macrobenthic community suffered little disturbance from the scallop culture. Consistently, the results of two-way analysis of similarities demonstrated that macrobenthic communities showed no difference along the distance gradient, but were significantly affected by the sampling months and transects. This conclusion was also confirmed by other univariate and multivariate analyses. The concentration of total organic carbon was 17.27 ± 6.05 mg g −1 , which is below the dangerous threshold of 35 mg g −1 toxic to benthic fauna. Combined results revealed that no detectable effects on the macrobenthic community were caused by intensive and long-term scallop culture in this moderate energy system. This is likely due to the influence of local hydrodynamics and it is recommended that intensive scallop farming be located in areas with strong tidal or current flows.
    Print ISSN: 0018-8158
    Electronic ISSN: 1573-5117
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2013-09-19
    Description: Southwestern Australia has already undergone significant climatic warming and drying and water temperatures are increasing particularly in small streams where riparian vegetation has been cleared. The ability to predict how freshwater fauna may respond to these changes requires understanding of their thermal tolerances. A review of relevant literature and laboratory testing of four aquatic species from southwestern Australia were used to compare upper thermal tolerance (UTT) among key taxonomic groups. UTT for selected species determined by LT 50 tests were similar to that of species tested elsewhere. Mean UTT, based on relevant literature and LT 50 experiments, ranged from 22.3°C for Ephemeroptera to 43.4°C for Coleoptera. Mean UTT for both Coleoptera and Odonata (41.9°C) were significantly higher than those for all the other groups (22.3–31.5°C) with the exception of Planaria. The mean UTT value of 22.3°C for Ephemeroptera was significantly lower than for Decapoda (29.6°C), Trichoptera (30.1°C) and Mollusca (31.5°C). For three insect orders tested, eurytherms had significantly higher UTT values than stenotherms. The variation in UTT among taxa suggests that additional thermal shifts, caused by riparian disturbance and/or climate change, are likely to create novel assemblages due to the replacement of temperature-sensitive taxa by more tolerant taxa. This has implications for the sustainability of regionally important endemic cool water species.
    Print ISSN: 0018-8158
    Electronic ISSN: 1573-5117
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2013-09-19
    Description: The effects of stream urbanization on fishes have been well studied in general. Yet despite the wealth of knowledge available for streams in many different ecoregions, relatively little is known of the effects of urbanization on prairie stream fishes. Management of urban stormwater through impoundment has the potential to fragment streams, and habitat fragmentation on nonurban streams has been documented to relate to declines in small-bodied mobile minnow species. We asked whether urban habitat fragmentation through stormwater impoundment would relate to a similar decline in small-bodied fishes in Cottonwood Creek, a stream system partially managed by stormwater impoundment in central Oklahoma. Analyses with basic metrics of ecological tolerance, richness, community structure, and multivariate ordination found negative relationships between cyprinid richness and abundance and a metric of urban habitat fragmentation, as well as between Lepomis humilis , a small-bodied sunfish, and the metric of urban habitat fragmentation. We review potential hypotheses for these biological patterns in fragmented urban streams, including predation, lack of successful reproduction, and lack of ability to recolonize above barriers.
    Print ISSN: 0018-8158
    Electronic ISSN: 1573-5117
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...