ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (7,210)
  • Copernicus  (7,210)
  • American Association for the Advancement of Science
  • 2010-2014  (7,210)
  • 1980-1984
  • 1965-1969
  • 1925-1929
  • Atmospheric Chemistry and Physics Discussions  (3,214)
  • 19030
Collection
  • Articles  (7,210)
Publisher
  • Copernicus  (7,210)
  • American Association for the Advancement of Science
Years
Year
Topic
  • 1
    Publication Date: 2013-09-11
    Description: The sensitivity of global climate to the episodicity of fire aerosol emissions Atmospheric Chemistry and Physics Discussions, 13, 23691-23717, 2013 Author(s): S. K. Clark, D. S. Ward, and N. M. Mahowald One of the major ways in which forest and grass fires have an impact on global climate is through the release of aerosols. Most studies focusing on calculating the radiative forcing and other climate impacts of fire aerosols use monthly mean emissions derived from the Global Fire Emissions Database that captures only the seasonal cycle of fire aerosol emissions. Here we present the results of a sensitivity study that investigates the climate response to the episodicity of the fires, based on the standard approach which releases emissions every day, and contrasts that to the response when fires are represented as intense pulses of emissions that occur only over 1–2 days on a monthly, yearly, or five-yearly basis. Overall we find that in the modified cases with increased levels of episodicity, the all sky direct effect radiative forcing increases, the clear sky direct effect radiative forcing remains relatively constant, and the magnitude of the indirect effect radiative forcing decreases by about 1 W m −2 (from −1.6 to −0.6 W m −2 ). In the long term, we find that an increase in aerosol emission episodicity leads to an asymmetric change in indirect radiative forcing in the Northern Hemisphere compared to the Southern Hemisphere contributes to a slight shift in the annual average position of the intertropical convergence zone (ITCZ). This shift is found to have a mixed effect on the overall performance of the model at predicting precipitation rates in the tropics. Given these results we conclude that future studies that look to assess the present day global climate impacts of fire aerosols should consider the need to accurately represent fire episodicity.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-09-12
    Description: A new data set of soil mineralogy for dust-cycle modeling Atmospheric Chemistry and Physics Discussions, 13, 23943-23993, 2013 Author(s): E. Journet, Y. Balkanski, and S. P. Harrison The mineralogy of airborne dust affects the impact of dust particles on direct and indirect radiative forcing, on atmospheric chemistry and on biogeochemical cycling. It is determined partly by the mineralogy of the dust-source regions and partly by size-dependent fractionation during erosion and transport. Here we present a data set that characterizes the clay and silt sized fractions of global soil units in terms of the abundance of 12 minerals that are important for dust-climate interactions: quartz, feldspars, illite, smectite, kaolinite, chlorite, vermiculite, mica, calcite, gypsum, hematite and goethite. The basic mineralogical information is derived from the literature, and is then expanded following explicit rules, in order to characterize as many soil units as possible. We present three alternative realisations of the mineralogical maps that account for the uncertainties in the mineralogical data. We examine the implications of the new database for calculations of the single scattering albedo of airborne dust and thus for dust radiative forcing.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-09-13
    Description: Growth of sulphuric acid nanoparticles under wet and dry conditions Atmospheric Chemistry and Physics Discussions, 13, 24087-24125, 2013 Author(s): L. Škrabalová, D. Brus, T. Anttila, V. Ždímal, and H. Lihavainen New particle formation, which greatly influences the number concentrations and size distributions of an atmospheric aerosol, is often followed by a rapid growth of freshly formed particles. The initial growth of a newly formed aerosol is the crucial process determining the fraction of nucleated particles growing into cloud condensation nuclei sizes, which have a significant influence on climate. In this study, we report the laboratory observations of the growth of nanoparticles produced by nucleation of H 2 SO 4 and water in a laminar flow tube at temperatures of 283, 293 and 303 K, under dry (a relative humidity of 1%) and wet conditions (relative humidity of 30%) and residence times of 30, 45, 60 and 90 s. The initial H 2 SO 4 concentration spans the range from 2 × 10 8 to 1.4 × 10 10 molecule cm −3 and the calculated wall losses of H 2 SO 4 were assumed to be diffusion limited. The detected particle number concentrations, measured by the Ultrafine Condensation Particle Counter (UCPC) and Differential Mobility Particle Sizer (DMPS), were found to depend strongly on the residence time. Hygroscopic particle growth, presented by growth factors, was found to be in good agreement with the previously reported studies. The experimental growth rates ranged from 20 nm h −1 to 890 nm h −1 at RH 1% and from 7 nm h −1 to 980 nm h −1 at RH 30% and were found to increase significantly with the increasing concentration of H 2 SO 4 . Increases in the nucleation temperature had a slight enhancing effect on the growth rates under dry conditions. The influence of relative humidity on growth was not consistent – at lower H 2 SO 4 concentrations, the growth rates were higher under dry conditions while at H 2 SO 4 concentrations greater than 1×10 9 molecule cm −3 the growth rates were higher under wet conditions. The growth rates show only a weak dependence on the residence time. The experimental observations were compared with predictions made using a numerical model, which investigates the growth of particles with three different extents of neutralization by the ammonia NH 3 : (1) pure H 2 SO 4 – H 2 O particles (2) particles formed by ammonium bisulphate, (NH 4 )HSO 4 (3) particles formed by ammonium sulphate, (NH 4 ) 2 SO 4 . The highest growth rates were found for ammonium sulphate particles. Since the model accounting for the initial H 2 SO 4 concentration predicted the experimental growth rates correctly, our results suggest that the commonly presumed diffusional wall losses of H 2 SO 4 are not so significant. We therefore assume that there are not only losses of H 2 SO 4 on the wall but also a flux of H 2 SO 4 molecules from the wall into the flow tube, the effect being more profound under dry conditions and at higher temperatures of the tube wall. Based on a comparison with the atmospheric observations, our results indicate that sulphuric acid alone can not explain the growth rates of particles formed in the atmosphere.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-09-26
    Description: Impacts of different plant functional types on ambient ozone predictions in the Seoul Metropolitan Areas (SMA), Korea Atmospheric Chemistry and Physics Discussions, 13, 24925-24973, 2013 Author(s): H.-K. Kim, J.-H. Woo, R. S. Park, C. H. Song, J.-H. Kim, S.-J. Ban, and J.-H. Park Plant functional type (PFT) distributions affect the results of biogenic emission modeling as well as O 3 and PM simulations using chemistry-transport models (CTMs). This paper analyzes the variations of both surface biogenic VOC emissions and O 3 concentrations due to changes in the PFT distributions in the Seoul Metropolitan Areas, Korea. Also, this paper attempts to provide important implications for biogenic emissions modeling studies for CTM simulations. MM5-MEGAN-SMOKE-CMAQ model simulations were implemented over the Seoul Metropolitan Areas in Korea to predict surface O 3 concentrations for the period of 1 May to 31 June 2008. Starting from MEGAN biogenic emissions analysis with three different sources of PFT input data, US EPA CMAQ O 3 simulation results were evaluated by surface O 3 monitoring datasets and further considered on the basis of geospatial and statistical analyses. The three PFT datasets considered were "(1)KORPFT", developed with a region specific vegetation database; (2) CDP, adopted from US NCAR; and (3) MODIS, reclassified from the NASA Terra and Aqua combined land cover products. Comparisons of MEGAN biogenic emission results with the three different PFT data showed that broadleaf trees (BT) are the most significant contributor, followed by needleleaf trees (NT), shrub (SB), and herbaceous plants (HB) to the total biogenic volatile organic compounds (BVOCs). In addition, isoprene from BT and terpene from NT were recognized as significant primary and secondary BVOC species in terms of BVOC emissions distributions and O 3 -forming potentials in the study domain. Multiple regression analyses with the different PFT data (δO 3 vs. δPFTs) suggest that KORPFT can provide reasonable information to the framework of MEGAN biogenic emissions modeling and CTM O 3 predictions. Analyses of the CMAQ performance statistics suggest that deviations of BT areas can significantly affect CMAQ isoprene and O 3 predictions. From further evaluations of the isoprene and O 3 prediction results, we explored the PFT area-loss artifact that occurs due to geographical disparity between the PFT and leaf area index distributions, and can cause increased bias in CMAQ O 3 . Thus, the PFT-loss artifact must be a source of limitation in the MEGAN biogenic emission modeling and the CTM O 3 simulation results. Time changes of CMAQ O 3 distributions with the different PFT scenarios suggest that hourly and local impacts from the different PFT distributions on occasional inter-deviations of O 3 are quite noticeable, reaching up to 10 ppb. Exponentially diverging hourly BVOC emissions and O 3 concentrations with increasing ambient temperature suggest that the use of representative PFT distributions becomes more critical for O 3 air quality modeling (or forecasting) in support of air quality decision-making and human health studies.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-09-26
    Description: Incidence of rough and irregular atmospheric ice particles from Small Ice Detector 3 measurements Atmospheric Chemistry and Physics Discussions, 13, 24975-25012, 2013 Author(s): Z. Ulanowski, P. H. Kaye, E. Hirst, R. S. Greenaway, R. J. Cotton, E. Hesse, and C. T. Collier The knowledge of properties of ice crystals such as size, shape, concavity and roughness is critical in the context of radiative properties of ice and mixed phase clouds. Limitations of current cloud probes to measure these properties can be circumvented by acquiring two-dimensional light scattering patterns instead of particle images. Such patterns were obtained in situ for the first time using the Small Ice Detector 3 (SID-3) probe during several flights in a variety of mid-latitude mixed phase and cirrus clouds. The patterns are analyzed using several measures of pattern texture, selected to reveal the magnitude of particle roughness or complexity. The retrieved roughness is compared to values obtained from a range of well-characterized test particles in the laboratory. It is found that typical in situ roughness corresponds to that found in the rougher subset of the test particles, and sometimes even extends beyond the most extreme values found in the laboratory. In this study we do not differentiate between small-scale, fine surface roughness and large-scale crystal complexity. Instead, we argue that both can have similar manifestations in terms of light scattering properties and also similar causes. Overall, the in situ data is consistent with ice particles with highly irregular or rough surfaces being dominant. Similar magnitudes of roughness were found in growth and sublimation zones of cirrus. The roughness was found to be negatively correlated with the halo ratio, but not with other thermodynamic or microphysical properties found in situ. Slightly higher roughness was observed in cirrus forming in clean oceanic airmasses than in a continental, polluted one. Overall, the roughness and complexity is expected to lead to increased shortwave cloud reflectivity, in comparison with cirrus composed of more regular, smooth ice crystal shapes. These findings put into question suggestions that climate could be modified through aerosol seeding to reduce cirrus cover and optical depth, as the seeding may result in decreased shortwave reflectivity.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-10-01
    Description: Factors controlling pollutant plume length downwind of major roadways in nocturnal surface inversions Atmospheric Chemistry and Physics Discussions, 13, 25253-25290, 2013 Author(s): W. Choi, A. M. Winer, and S. E. Paulson A curve fit method using a Gaussian dispersion model solution was successfully applied to obtain both dispersion coefficients and a particle number emission factor (PNEF) directly from ultrafine particle (UFP) concentration profiles observed downwind of major roadways in California's South Coast Air Basin (SoCAB). The Briggs' formulation for the vertical dispersion parameter σ z was adopted in this study due to its better performance in describing the observed profiles compared to other formulations examined. The two dispersion coefficients in Briggs' formulation, α and β, ranged from 0.02 to 0.07 and from −0.5 × 10 −3 to 2.8 × 10 −3 , respectively, for the four freeway transects studied and are significantly different for freeways passing over vs. under the street on which measurements of the freeway plume were made. These ranges are wider than literature values for α and β under stable conditions. The dispersion coefficients derived from observations showed strong correlations with both surface meteorology (wind speed/direction, temperature, and air stability) and differences in concentrations between the background and plume peak. The relationships were applied to predict freeway plume transport using a multivariate regression, and produced excellent agreement with observed UFP concentration profiles. The mean PNEF for a mixed vehicle fleet on the four freeways was estimated as 1.2 × 10 14 particles mi −1 vehicle −1 , which is about 15% of the value estimated in 2001 for the I-405 freeway, implying significant reductions in UFP emissions over the past decade in the SoCAB.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-10-01
    Description: Summer Sea Ice Albedo in the Arctic in CMIP5 models Atmospheric Chemistry and Physics Discussions, 13, 25219-25251, 2013 Author(s): T. Koenigk, A. Devasthale, and K.-G. Karlsson Spatial and temporal variations of summer sea ice albedo over the Arctic are analyzed using an ensemble of historical CMIP5 model simulations. The results are compared to the CLARA-SAL product that is based on long-term satellite observations. The summer sea ice albedo varies substantially among CMIP5 models and many models show large biases compared to the CLARA-SAL product. Single summer months show an extreme spread of ice albedo among models; July-values vary between 0.3 and 0.7 for individual models. The CMIP5 ensemble mean, however, agrees relatively well in the Central Arctic but shows too high ice albedo near the ice edges and coasts. In most models, the ice albedo is spatially too uniformly distributed. The summer to summer variations seem to be underestimated in many global models and almost no model is able to fully reproduce the temporal evolution of ice albedo throughout the summer. While the satellite observations indicate the lowest ice albedos during August, the models show minimum values in July and substantially higher values in August. Instead, the June values are often lower in the models than in the satellite observations. This is probably due to too high surface temperatures in June, leading to an early start of the melt season and too cold temperatures in August causing an earlier refreezing in the models. The summer sea ice albedo in the CMIP5 models is strongly governed by surface temperature and snow conditions, particularly during the period of melt onset in early summer and refreezing in late summer. The summer surface net solar radiation of the ice covered Arctic areas is highly related to the ice albedo in the CMIP5 models. However, the impact of the ice albedo on the sea ice conditions in the CMIP5 models is not clearly visible. This indicates the importance of other Arctic and large scale processes for the sea ice conditions.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-09-29
    Description: Intercontinental transport and deposition patterns of atmospheric mercury from anthropogenic emissions Atmospheric Chemistry and Physics Discussions, 13, 25185-25218, 2013 Author(s): L. Chen, H.-H. Wang, J.-F. Liu, W. Zhang, D. Hu, C. Chen, and X.-J. Wang Global policies that regulate anthropogenic mercury emissions to the environment require quantitative and comprehensive source–receptor relationships for mercury emissions, transport and deposition among major continental regions. In this study, we use the GEOS-Chem model to establish source–receptor relationships among eleven major continental regions worldwide. Source–receptor relationships for surface mercury concentrations (SMC) show that some regions (e.g. East Asia, the Indian subcontinent and Europe) should be responsible for their local surface Hg(II) and Hg(P) concentrations because of near-field transport and deposition contributions from their local anthropogenic emissions (up to 64% and 71% for Hg(II) and Hg(P), respectively, over East Asia). We define region of primary influence (RPI) and region of secondary influence (RSI) to establish intercontinental influence patterns. Results indicate that East Asia is SMC RPI for almost all other regions, while Europe, Russia and the Indian subcontinent also make some contributions to SMC over some receptor regions because they are dominant RSI source regions. Source–receptor relationships for mercury deposition show that approximately 16% and 17% of dry and wet deposition, respectively, over North America originate from East Asia, indicating that trans-pacific transport of East Asian emissions is the major foreign source of mercury deposition in North America. Europe, Southeast Asia and the Indian subcontinent are also important mercury deposition sources for some receptor regions because they are dominant RSI. We also quantify seasonal variation on mercury deposition contributions over other regions from East Asia. Results show that mercury deposition (including dry and wet) contributions from East Asia over the Northern Hemisphere receptor regions (e.g. North America, Europe, Russia, Middle East and Middle Asia) vary seasonally, with the maximum values in summer and minimum values in winter. The opposite seasonal pattern occurs on mercury dry deposition contributions over Southeast Asia and the Indian subcontinent.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-10-03
    Description: Balloon-borne match measurements of mid-latitude cirrus clouds Atmospheric Chemistry and Physics Discussions, 13, 25417-25479, 2013 Author(s): A. Cirisan, B. P. Luo, I. Engel, F. G. Wienhold, U. K. Krieger, U. Weers, G. Romanens, G. Levrat, P. Jeannet, D. Ruffieux, R. Philipona, B. Calpini, P. Spichtinger, and T. Peter Observations of persistent high supersaturations with respect to ice inside cirrus clouds are challenging our understanding of cloud microphysics and of climate feedback processes in the upper troposphere. Single measurements of a cloudy air mass provide only a snapshot from which the persistence of ice supersaturation cannot be judged. We introduce here the "cirrus match technique" to obtain information of the evolution of clouds and their saturation ratio. The aim of these coordinated balloon soundings is to analyze the same air mass twice. To this end the standard radiosonde equipment is complemented by a frost point hygrometer "SnowWhite" and a particle backscatter detector "COBALD" (Compact Optical Backscatter Aerosol Detector). Extensive trajectory calculations based on regional weather model COSMO forecasts are performed for flight planning and COSMO analyses are used as basis for comprehensive microphysical box modeling (with grid scale 2 km and 7 km, respectively). Here we present the results of matching a cirrus cloud to within 2–15 km, realized on 8 June 2010 over Payerne, Switzerland, and a location 120 km downstream close to Zurich. A thick cirrus was detected over both measurement sites. We show that in order to quantitatively reproduce the measured particle backscatter ratios, the small-scale temperature fluctuations not resolved by COSMO must be superimposed on the trajectories. The stochastic nature of the fluctuations is captured by ensemble calculations. Possibilities for further improvements in the agreement with the measured backscatter data are investigated by assuming a very slow mass accommodation of water on ice, the presence of heterogeneous ice nuclei, or a wide span of (spheroidal) particle shapes. However, the resulting improvements from microphysical refinements are moderate and comparable in magnitude with changes caused by assuming different regimes of temperature fluctuations for clear sky or cloudy sky conditions, highlighting the importance of a proper treatment of subscale fluctuations. The model yields good agreement with the measured backscatter over both sites and reproduces the measured saturation ratios with respect to ice over Payerne. Conversely, the 30% in-cloud supersaturation measured in a massive, 4-km thick cloud layer over Zurich cannot be reproduced, irrespective of the choice of meteorological or microphysical model parameters. The measured supersaturation can only be explained by either resorting to an unknown physical process, which prevents the ice particles from consuming the excess humidity, or – much more likely – by a measurement error, such as a contamination of the sensor housing of the SnowWhite hygrometer by a precipitation drop from a mixed phase cloud just below the cirrus layer or from some very slight rain in the boundary layer. This uncertainty calls for in-flight checks or calibrations of hygrometers under the extreme humidity conditions in the upper troposphere.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-10-03
    Description: An explicit study of aerosol mass conversion and its parameterization in warm rain formation of cumulus clouds Atmospheric Chemistry and Physics Discussions, 13, 25481-25536, 2013 Author(s): J. Sun, J. Fen, and R. K. Ungar The life time of atmospheric aerosols is highly affected by in-cloud scavenging processes. Aerosol mass conversion from aerosols embedded in cloud droplets into aerosols embedded in raindrops is a pivotal pathway for wet removal of aerosols in clouds. The aerosol mass conversion rate in the bulk microphysics parameterizations is always assumed to be linearly related to the precipitation production rate, which includes the cloud water autoconversion rate and the cloud water accretion rate. The ratio of the aerosol mass concentration conversion rate to the cloud aerosol mass concentration has typically been considered to be the same as the ratio of the precipitation production rate to the cloud droplet mass concentration. However, the mass of an aerosol embedded in a cloud droplet is not linearly proportional to the mass of the cloud droplet. A simple linear relationship cannot be drawn between the precipitation production rate and the aerosol mass concentration conversion rate. In this paper, we studied the evolution of aerosol mass concentration conversion rates in a warm rain formation process with a 1.5-dimensional non-hydrostatic convective cloud and aerosol interaction model in the bin microphysics. We found that the ratio of the aerosol mass conversion rate to the cloud aerosol mass concentration can be statistically expressed by the ratio of the precipitation production rate to the cloud droplet mass concentration with an exponential function. We further gave some regression equations to determine aerosol conversions in the warm rain formation under different threshold radii of raindrops and different aerosol size distributions.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2013-09-10
    Description: Global and regional impacts of HONO on the chemical composition of clouds and aerosols Atmospheric Chemistry and Physics Discussions, 13, 23599-23638, 2013 Author(s): Y. F. Elshorban, P. J. Crutzen, B. Steil, A. Pozzer, H. Tost, and J. Lelieveld Nitrous acid (HONO) photolysis can significantly increase HO x (OH+HO 2 ) radical formation, enhancing organic and inorganic oxidation products in polluted regions, especially during winter. It has been reported that chemistry-transport models underestimate sulphate concentrations, mostly during winter. Here we show that HONO can significantly enhance aerosol sulphate (S(VI)), mainly due to the increased formation of H 2 SO 4 . Even though in-cloud aqueous phase oxidation of dissolved SO 2 (S(IV)) is the main source of S(VI), it appears that HONO related enhancement of H 2 O 2 does not significantly affect sulphate because of the predominantly S(IV) limited conditions, except over eastern Asia. Nitrate is also increased via enhanced gaseous HNO 3 formation and N 2 O 5 hydrolysis on aerosol particles. Ammonium nitrate is enhanced in ammonia-rich regions but not under ammonia-limited conditions. Furthermore, particle number concentrations are also higher, accompanied by the transfer from hydrophobic to hydrophilic aerosol modes. This implies a significant impact on the particle lifetime and cloud nucleating properties. The HONO induced enhancements of all species studied are relatively strong in winter though negligible in summer. Simulating realistic HONO levels is found to improve the model-measurement agreement of sulphate aerosols, most apparent over the US. Our results underscore the importance of HONO for the atmospheric oxidizing capacity and the central role of cloud chemical processing in aerosol formation.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2013-09-11
    Description: Injection heights of springtime biomass burning plumes over the Peninsular Southeast Asia and their impacts on pollutant long-range transport Atmospheric Chemistry and Physics Discussions, 13, 23781-23816, 2013 Author(s): Y. Jian and T.-M. Fu We analyzed observations from the Multi-angle Imaging SpectroRadiometer (MISR) to determine the injection heights of biomass burning smoke plumes over the Peninsular Southeast Asia (PSEA) in spring, with the goal of evaluating the impacts on pollutant long-range transport. We retrieved the heights of twenty-two thousand MISR smoke pixels from 607 smoke plumes over the PSEA during February to April of the years 2001–2010. Forty-five percent of the analyzed smoke pixels were above the local mean boundary layer (1 km) at MISR overpass time (10:30 a.m. local time). We used the GEOS-Chem model to simulate the transport of PSEA biomass burning pollutants in March 2001. We found that the direct injection of 40% of the PSEA biomass burning emissions had little impact on the long-range transport of CO to downwind regions, compared to a control simulation where all biomass burning emissions were released in the boundary layer. This was because CO at the surface over the PSEA was efficiently lifted into the free troposphere by deep convection associated with synoptic-scale weather systems. For pollutants with lifetimes shorter than the synoptic timescale, such as black carbon aerosol (BC), their long-range transport was much more sensitive to the initial plume injection height. The direct injection of NO x from PSEA biomass burning into the free troposphere drove increased formation and transport of PAN, which in turn led to significant increases of ozone over downwind southern China and northwestern Pacific. The Pacific subtropical high transported PSEA biomass burning pollutants to the marine boundary layer over the tropical northwestern Pacific. We compared our model results to aircraft measurements over the northwestern Pacific during the TRACE-P campaign (March 2001). The direct injection of 40% of the PSEA biomass burning pollutants in the free troposphere in the model led to a more pronounced BC peak at 3 km over the northwestern Pacific, which was in better agreement with the aircraft observations compared to the control simulation. Our analyses highlighted the point that the injection heights of smoke plumes pose large uncertainty to the interpretation of BC measurements downwind of biomass burning regions.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2013-09-11
    Description: Influence of surface morphology on the immersion mode ice nucleation efficiency of hematite particles Atmospheric Chemistry and Physics Discussions, 13, 23757-23780, 2013 Author(s): N. Hiranuma, N. Hoffmann, A. Kiselev, A. Dreyer, K. Zhang, G. Kulkarni, T. Koop, and O. Möhler In this paper, the effect of the morphological modification of aerosol particles with respect to heterogeneous ice nucleation is comprehensively investigated for laboratory-generated hematite particles as a model substrate for atmospheric dust particles. The surface area-scaled ice nucleation efficiencies of monodisperse cubic hematite particles and milled hematite particles were measured with a series of expansion cooling experiments using the Aerosol Interaction and Dynamics in the Atmosphere (AIDA) cloud simulation chamber. Complementary off-line characterization of physico-chemical properties of both hematite subsets were also carried out with scanning electron microscopy (SEM), energy dispersive X-ray (EDX) spectroscopy, dynamic light scattering (DLS), and an electro-kinetic particle charge detector to further constrain droplet-freezing measurements of hematite particles. Additionally, an empirical parameterization derived from our laboratory measurements was implemented in the single-column version of the Community Atmospheric Model version 5 (CAM5) to investigate the model sensitivity in simulated ice crystal number concentration on different ice nucleation efficiencies. From an experimental perspective, our results show that the immersion mode ice nucleation efficiency of milled hematite particles is almost an order of magnitude higher at −35.2 °C 〈 T 〈 −33.5 °C than that of the cubic hematite particles, indicating a substantial effect of morphological irregularities on immersion mode freezing. Our modeling results similarly show that the increased droplet-freezing rates of milled hematite particles lead to about one order magnitude higher ice crystal number in the upper troposphere than cubic hematite particles. Overall, our results suggest that the surface irregularities and associated active sites lead to greater ice activation through droplet-freezing.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2013-09-11
    Description: Study of the unknown HONO daytime source at an European suburban site during the MEGAPOLI summer and winter field campaigns Atmospheric Chemistry and Physics Discussions, 13, 23639-23690, 2013 Author(s): V. Michoud, A. Colomb, A. Borbon, K. Miet, M. Beekmann, M. Camredon, B. Aumont, S. Perrier, P. Zapf, G. Siour, W. Ait-Helal, C. Afif, A. Kukui, M. Furger, J. C. Dupont, M. Haeffelin, and J. F. Doussin Nitrous acid measurements were carried out during the MEGAPOLI summer and winter field campaigns at SIRTA observatory in Paris surroundings. Highly variable HONO levels were observed during the campaigns, ranging from 10 ppt to 500 ppt in summer and from 10 ppt to 1.7 ppb in winter. Significant HONO mixing ratios have also been measured during daytime hours, comprised between some tenth of ppt and 200 ppt for the summer campaign and between few ppt and 1 ppb for the winter campaign. Ancillary measurements, such as NO x , O 3 , photolysis frequencies, meteorological parameters (pressure, temperature, relative humidity, wind speed and wind direction), black carbon concentration, total aerosol surface area, boundary layer height and soil moisture, were conducted during both campaigns. In addition, for the summer period, OH radical measurements were made with a CIMS (Chemical Ionisation Mass Spectrometer). This large dataset has been used to investigate the HONO budget in a suburban environment. To do so, calculations of HONO concentrations using PhotoStationary State (PSS) approach have been performed, for daytime hours. The comparison of these calculations with measured HONO concentrations revealed an underestimation of the calculations making evident a missing source term for both campaigns. This unknown HONO source exhibits a bell shaped like average diurnal profile with a maximum around noon of approximately 0.7 ppb h −1 and 0.25 ppb h −1 , during summer and winter respectively. This source is the main HONO source during daytime hours for both campaigns. In both cases, this source shows a slight positive correlation with J (NO 2 ) and the product between J (NO 2 ) and soil moisture. This original approach had, thus, indicated that this missing source is photolytic and might be heterogeneous occurring on ground surface and involving water content available at the ground.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2013-09-12
    Description: Relationship between Amazon biomass burning aerosols and rainfall over La Plata Basin Atmospheric Chemistry and Physics Discussions, 13, 23995-24021, 2013 Author(s): G. Camponogara, M. A. F. Silva Dias, and G. G. Carrió High aerosol loads are discharged into the atmosphere by biomass burning in Amazon and Central Brazil during the dry season. These particles can interact with clouds as cloud condensation nuclei (CCN) changing cloud microphysics and radiative properties and, thereby, affecting the radiative budget of the region. Furthermore, the biomass burning aerosols can be transported by the low level jet (LLJ) to La Plata Basin where many mesoscale convective systems (MCS) are observed during spring and summer. This work proposes to investigate whether the aerosols from biomass burning may affect the MCS in terms of rainfall over La Plata Basin during spring. Since the aerosol effect is very difficult to isolate because convective clouds are very sensitive to small environment disturbances, detailed analyses using different techniques are used. The binplot, 2D histograms and combined empirical orthogonal function (EOF) methods are used to separate certain environment conditions with the possible effects of aerosol loading. Reanalysis 2, TRMM-3B42 and AERONET data are used from 1999 up to 2012 during September-December. The results show that there are two patterns associated to rainfall-aerosol interaction in La Plata Basin: one in which the dynamic conditions are more important than aerosols to generate rain; and a second one where the aerosol particles have a role in rain formation, acting mainly to suppress rainfall over La Plata Basin.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2013-09-12
    Description: Size-resolved aerosol composition and link to hygroscopicity at a forested site in Colorado Atmospheric Chemistry and Physics Discussions, 13, 23817-23843, 2013 Author(s): E. J. T. Levin, A. J. Prenni, B. Palm, D. Day, P. Campuzano-Jost, P. M. Winkler, S. M. Kreidenweis, P. J. DeMott, J. Jimenez, and J. N. Smith Aerosol hygroscopicity describes the ability of a particle to take up water and form a cloud droplet. Modeling studies have shown sensitivity of precipitation-producing cloud systems to the availability of aerosol particles capable of serving as cloud condensation nuclei (CCN), and hygroscopicity is a key parameter controlling the number of available CCN. Continental aerosol is typically assumed to have a representative hygroscopicity parameter, κ, of 0.3; however, in remote locations this value can be lower due to relatively large mass fractions of organic components. To further our understanding of aerosol properties in remote areas, we measured size-resolved aerosol chemical composition and hygroscopicity in a forested, mountainous site in Colorado during the six-week BEACHON-RoMBAS campaign. This campaign followed a year-long measurement period at this site, and results from the intensive campaign shed light on the previously reported seasonal cycle in aerosol hygroscopicity. New particle formation events were observed routinely at this site and nucleation mode composition measurements indicated that the newly formed particles were predominantly organic. These events likely contribute to the dominance of organic species at smaller sizes, where aerosol organic mass fractions of non-refractory components were between 70–90%. Corresponding aerosol hygroscopicity was observed to range from κ = 0.15–0.22, with hygroscopicity increasing with particle size. Aerosol chemical composition measured by an Aerosol Mass Spectrometer and calculated from hygroscopicity measurements agreed very well during the intensive study with an assumed value of κ org = 0.13 resulting in the best agreement.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2013-09-13
    Description: Atmospheric parameters in a subtropical cloud regime transition derived by AIRS+MODIS – observed statistical variability compared to ERA-Interim Atmospheric Chemistry and Physics Discussions, 13, 24051-24085, 2013 Author(s): M. M. Schreier, B. H. Kahn, K. Sušelj, J. Karlsson, S. C. Ou, Q. Yue, and S. L. Nasiri Cloud occurrence, microphysical and optical properties and atmospheric profiles within a subtropical cloud regime transition in the northeastern Pacific Ocean are obtained from a synergistic combination of the Atmospheric Infrared Sounder (AIRS) and the MODerate resolution Imaging Spectroradiometer (MODIS). The observed cloud parameters and atmospheric thermodynamic profile retrievals are binned by cloud type and analyzed based on their probability density functions (PDFs). Comparison of the PDFs to data from the European Center for Medium Range Weather Forecasting Re-analysis (ERA-Interim) shows a strong difference in the occurrence of the different cloud types compared to clear sky. An increasing non-Gaussian behavior is observed in cloud optical thickness (τ c ), effective radius ( r e ) and cloud top temperature ( T c ) distributions from Stratocumulus to Trade Cumulus, while decreasing values of lower tropospheric stability are seen. However, variations in the mean, width and shape of the distributions are found. The AIRS potential temperature (θ) and water vapor ( q ) profiles in the presence of varying marine boundary layer (MBL) cloud types show overall similarities to the ERA-Interim in the mean profiles, but differences arise in the higher moments at some altitudes. The differences between the PDFs from AIRS+MODIS and ERA-Interim make it possible to pinpoint systematic errors in both systems and helps to understand joint PDFs of cloud properties and coincident thermodynamic profiles from satellite observations.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2013-09-17
    Description: Establishing the contribution of lawn mowing to atmospheric aerosol levels in American suburbs Atmospheric Chemistry and Physics Discussions, 13, 24435-24480, 2013 Author(s): R. M. Harvey, J. Zahardis, and G. A. Petrucci Green leaf volatiles (GLVs) are a class of wound-induced volatile organic compounds emitted by several plant species. Turfgrasses emit a complex profile of GLVs upon mowing, as evidenced by the "freshly cut grass" smell, some of which are readily oxidized in the atmosphere to contribute to secondary organic aerosol (SOA). The contribution of lawn mowing-induced SOA production may be especially impactful at the urban/suburban interface, where urban hubs provide a source of anthropogenic oxidants and SOA while suburban neighborhoods have the potential to emit large quantities of reactive, mow-induced GLVs. This interface provides a unique opportunity to study aerosol formation in a multi-component system and at a regionally relevant scale. Freshly cut grass was collected from a study site in Essex Junction, Vermont and was placed inside a 775 L Teflon experimental chamber. Thermal desorption gas chromatography mass spectrometry (TD-GC/MS) was used to characterize the emitted GLV profile. Ozone was introduced to the experimental chamber and TD-GC/MS was used to monitor the consumption of these GLVs and the subsequent evolution of gas phase products while a scanning mobility particle sizer was used to continuously measure aerosol size distributions and mass loadings as a result of grass clipping ozonolysis. Freshly cut grass found to emit a complex mixture of GLVs, dominated by cis -3-hexenyl acetate and cis -3-hexenol, which were released at an initial rate of 1.8 (±0.5) μg and 0.07 (±0.03) μg per square meter of lawn mowed with each mowing. Chamber studies using pure standards of cis -3-hexenyl acetate (CHA) and cis -3-hexenol (HXL) were found to have aerosol yields of 1.2 (±1.1)% and 3.3 (±3.1)%, respectively. Using these aerosol yields and the emission rate of these CHA and HXL by grass, SOA evolution by ozonolysis of grass clippings was predicted. However, the measured SOA mass produced from the ozonolysis of grass clippings exceeded the predicted amount, by upwards of ~ 150%. The ozonolysis of a mixture of CHA and HXL representative of environmental mixing ratios also failed to accurately model the SOA mass produced by grass clippings. Aerial photographs and geospatial analysis were used to determine the turfgrass coverage in a suburban neighborhood, which was then used along with measured SOA production as a function of grass mowed to determine that lawn mowing has the potential to contribute 47 μg m −2 SOA to the atmosphere per mowing event by ozonolysis, which cannot be modeled solely by the ozonolysis of CHA, HXL or a representative mixture of the two.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2013-09-17
    Description: Global distributions and trends of atmospheric ammonia (NH 3 ) from IASI satellite observations Atmospheric Chemistry and Physics Discussions, 13, 24301-24342, 2013 Author(s): M. Van Damme, L. Clarisse, C. L. Heald, D. Hurtmans, Y. Ngadi, C. Clerbaux, A. J. Dolman, J. W. Erisman, and P. F. Coheur Ammonia (NH 3 ) emissions in the atmosphere have strongly increased in the past decades, largely because of the intensive livestock production and use of fertilizers. As a short-lived species, NH 3 is highly variable in the atmosphere and its concentration is generally small, except in and close to local source areas. While ground-based measurements are possible, they are challenging and sparse. Advanced infrared sounders in orbit have recently demonstrated their capability to measure NH 3 , offering a new tool to refine global and regional budgets. In this paper we describe an improved retrieval scheme of NH 3 total columns from the measurements of the Infrared Atmospheric Sounding Interferometer (IASI). It exploits the hyperspectral character of this instrument by using an extended spectral range (800–1200 cm −1 ) where NH 3 is optically active. This scheme consists of the calculation of a dimensionless spectral index from the IASI level1C radiances, which is subsequently converted to a total NH 3 column using look-up-tables built from forward radiative transfer model simulations. We show how to retrieve the NH 3 total columns from IASI quasi-globally and twice daily, above both land and sea, without large computational resources and with an improved detection limit. The retrieval also provides error characterization on the retrieved columns. Five years of IASI measurements (1 November 2007 to 31 October 2012) have been processed to acquire the first global and multiple-year dataset of NH 3 total columns, which are evaluated and compared to similar products from other retrieval methods. Spatial distributions from the five years dataset are provided and analyzed at global and regional scales. We show in particular the ability of this method to identify smaller emission sources than those reported previously, as well as transport patterns above sea. The five year time series is further examined in terms of seasonality and inter-annual variability (in particular as a function of fire activity) separately for the Northern and Southern Hemispheres.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2013-09-18
    Description: Aircraft measurements of polar organic tracer compounds in tropospheric particles (PM 10 ) over Central China Atmospheric Chemistry and Physics Discussions, 13, 24481-24516, 2013 Author(s): P. Q. Fu, K. Kawamura, Y. F. Cheng, S. Hatakeyama, A. Takami, H. Li, and W. Wang Atmospheric aerosol samples were collected by aircraft at low to middle altitudes (0.8–3.5 km a.g.l.) over Central East to West China during summer 2003 and spring 2004. The samples were analyzed for polar organic compounds using a technique of solvent extraction/BSTFA derivatization/gas chromatography-mass spectrometry. Biogenic secondary organic aerosol (SOA) tracers from the oxidation of isoprene were found to be more abundant in summer (3.3–138 ng m −3 , mean 39 ng m −3 ) than in spring (3.2–42 ng m −3 , 15 ng m −3 ), while α/β-pinene and β-caryophyllene SOA tracers showed similar abundance between these two seasons. A strong positive correlation ( R 2 =0.83) between levoglucosan and β-caryophyllinic acid was found in the spring samples versus a weak correlation ( R 2 =0.17) in the summer samples, implying substantial contributions from biomass burning to the β-caryophyllinic acid production in spring. Two organic nitrogen species (oxamic acid and carbamide) were detected in the aircraft aerosol samples and their concentrations were comparable to those of biogenic SOA tracers. Most of the POA and SOA tracers were less abundant at higher altitudes, suggesting they are of ground surface origin, either being directly emitted from anthropogenic/natural sources on the ground surface, or rapidly formed through photooxidation of their precursors emitted from the ground surface and then diluted during uplifting into the troposphere. This study demonstrates that primary biological aerosols, biogenic SOA, and organic nitrogen species are important components of organic aerosols in the troposphere over Central China.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2013-09-24
    Description: Black carbon emissions from in-use ships: a California regional assessment Atmospheric Chemistry and Physics Discussions, 13, 24675-24712, 2013 Author(s): G. M. Buffaloe, D. A. Lack, E. J. Williams, D. Coffman, K. L. Hayden, B. M. Lerner, S-M. Li, I. Nuaaman, P. Massoli, T. B. Onasch, P. K. Quinn, and C. D. Cappa Black carbon (BC) mass emission factors (EF BC ; g-BC (kg-fuel) −1 ) from a variety of ocean going vessels have been determined from measurements of BC and carbon dioxide (CO 2 ) concentrations in ship plumes intercepted by the R/V Atlantis during the 2010 California Nexus (CalNex) campaign. The ships encountered were all operating within 24 nautical miles of the California coast and were utilizing relatively low sulphur fuels. Black carbon concentrations within the plumes, from which EF BC values are determined, were measured using four independent instruments: a photoacoustic spectrometer and a particle soot absorption photometer, which measure light absorption, and a single particle soot photometer and soot particle aerosol mass spectrometer, which measure the mass concentration of refractory BC directly. The measured EF BC have been divided into vessel type categories and engine type categories, from which averages have been determined. The geometric average EF BC , determined from over 71 vessels and 135 plumes encountered, was 0.31 g-BC (kg-fuel) −1 . The most frequent engine type encountered was the slow speed diesel (SSD), and the most frequent SSD vessel type was the cargo ship sub-category. Average and median EF BC values from the SSD category are compared with previous observations from the Texas Air Quality Study (TexAQS) in 2006, during which the ships encountered were predominately operating on high sulphur fuels. There is a statistically significant difference between the EF BC values from CalNex and TexAQS for SSD vessels and for the cargo and tanker ship types within this engine category. The CalNex EF BC values are lower than those from TexAQS, suggesting that operation on lower sulphur fuels is associated with smaller EF BC values.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2013-09-24
    Description: A case study into the measurement of ship emissions from plume intercepts of the NOAA Ship Miller Freeman Atmospheric Chemistry and Physics Discussions, 13, 24635-24674, 2013 Author(s): C. D. Cappa, E. J. Williams, D. A. Lack, G. M. Buffaloe, D. Coffman, K. L. Hayden, S. C. Herndon, B. M. Lerner, S-M. Li, P. Massoli, R. McLaren, I. Nuaaman, T. B. Onasch, and P. K. Quinn Emissions factors (EFs) for gas and sub-micron particle-phase species were measured in intercepted plumes as a function of vessel speed from an underway research vessel, the NOAA Ship Miller Freeman , operating a medium-speed diesel engine on low-sulfur marine gas oil. For many of the particle-phase species, EFs were determined using multiple measurement methodologies, allowing for an assessment of how well EFs from different techniques agree. The total sub-micron PM (PM 1 ) was dominated by particulate black carbon (BC) and particulate organic matter (POM), with an average POM / BC ratio of 1.3. Consideration of the POM / BC ratios observed here with literature studies suggests that laboratory and in-stack measurement methods may over-estimate primary POM EFs relative to those observed in emitted plumes. Comparison of four different methods for black carbon measurement indicates that careful attention must be paid to instrument limitations and biases when assessing EF BC . Particulate sulfate (SO 4 2− ) EFs were extremely small and the particles emitted by Miller Freeman were inefficient as cloud condensation nuclei (CCN), even at high super saturations, consistent with the use of very low sulfur fuel and the overall small emitted particle sizes. All measurement methodologies consistently demonstrate that the measured EFs (fuel mass basis) for PM 1 mass, BC and POM decreased as the ship slowed. Particle number EFs were approximately constant across the speed change, with a shift towards smaller particles being emitted at slower speeds. Emissions factors for gas-phase CO and formaldehyde (HCHO) both increased as the vessel slowed, while EFs for NO x decreased and SO 2 EFs were approximately constant.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2013-09-25
    Description: Heterogeneous reaction of N 2 O 5 with illite and Arizona Test Dust particles Atmospheric Chemistry and Physics Discussions, 13, 24855-24884, 2013 Author(s): M. J. Tang, G. Schuster, and J. N. Crowley The heterogeneous reaction of N 2 O 5 with airborne illite and Arizona Test Dust particles was investigated at room temperature and at different relative humidities using an atmospheric pressure aerosol flow tube. N 2 O 5 at concentrations in the range 8 to 24×10 12 molecule cm −3 was monitored using thermal-dissociation cavity ring-down spectroscopy at 662 nm. At zero relative humidity a large uptake coefficient of N 2 O 5 to illite was obtained, γ(N 2 O 5 ) = 0.09, which decreased to 0.04 as relative humidity was increased to 67%. In contrast, the uptake coefficient derived for ATD is much lower (~ 0.006) and, within experimental uncertainty, independent of relative humidity (0–67%). Potential explanations are given for the significant differences between the uptake behaviour for ATD and illite and the results are compared with uptake coefficients for N 2 O 5 on other mineral surfaces.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2013-09-25
    Description: A case study of sea breeze blocking regulated by sea surface temperature along the English south coast Atmospheric Chemistry and Physics Discussions, 13, 24785-24807, 2013 Author(s): J. K. Sweeney, J. M. Chagnon, and S. L. Gray The sensitivity of sea breeze structure to sea surface temperature (SST) and coastal orography is investigated in convection-permitting Met Office Unified Model simulations of a case study along the south coast of England. Changes in SST of 1 K are shown to significantly modify the structure of the sea breeze. On the day of the case study the sea breeze was partially blocked by coastal orography, particularly within Lyme Bay. The extent to which the flow is blocked depends strongly on the static stability of the marine boundary layer. In experiments with colder SST, the marine boundary layer is more stable, and the degree of blocking is more pronounced. The implications of prescribing fixed SST from climatology in numerical weather prediction model forecasts of the sea breeze are discussed.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2013-09-25
    Description: Using a WRF simulation to examine regions where convection impacts the Asian summer monsoon anticyclone Atmospheric Chemistry and Physics Discussions, 13, 24809-24853, 2013 Author(s): N. K. Heath and H. E. Fuelberg The Asian summer monsoon is a prominent feature of the global circulation that is associated with an upper-level anticyclone (ULAC) that stands out vividly in satellite observations of trace gases. The ULAC also is an important region of troposphere-to-stratosphere transport. We ran the Weather Research and Forecasting (WRF) model at convective-permitting scales (4 km grid spacing) between 10–20 August 2012 to understand the role of convection in transporting boundary layer air into the upper-level anticyclone. Such high-resolution modeling of the Asian ULAC previously has not been documented in the literature. Comparison of our WRF simulation with reanalysis and satellite observations showed that WRF simulated the atmosphere sufficiently well to be used to study convective transport into the ULAC. A back-trajectory analysis based on hourly WRF output showed that 〉 90% of convectively influenced parcels reaching the ULAC came from the Tibetan Plateau (TP) and the southern slope (SS) of the Himalayas. A distinct diurnal cycle is seen in the convective trajectories, with their greatest impact occurring between 1600–2300 local solar time. This finding highlights the role of "everyday" diurnal convection in transporting boundary layer air into the ULAC. WRF output at 15 min intervals was produced for 16 August to examine the convection in greater detail. This high-temporal output revealed that the weakest convection in the study area occurred over the TP. However, because the TP is at 3000–5000 m a.m.s.l., its convection does not have to be as strong to reach the ULAC as in lower altitude regions. In addition, because the TP's elevated heat source is a major cause of the ULAC, we propose that convection over the TP and the neighboring SS is ideally situated geographically to impact the ULAC. The vertical mass flux of water vapor into the ULAC also was calculated. Results show that the TP and SS regions dominate other Asian regions in transporting moisture vertically into the ULAC. Because convection reaching the ULAC is more widespread over the TP than nearby, we propose that the abundant convection partially explains the TP's dominant water vapor fluxes. In addition, greater outgoing longwave radiation reaches the upper levels of the TP due to its elevated terrain. This creates a warmer ambient upper level environment, allowing parcels with greater saturation mixing ratios to enter the ULAC. Lakes in the Tibetan Plateau are shown to provide favorable conditions for deep convection during the night.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2013-09-27
    Description: An assessment of the performance of the Monitor for AeRosols and GAses in ambient air (MARGA): a semi-continuous method for soluble compounds Atmospheric Chemistry and Physics Discussions, 13, 25067-25124, 2013 Author(s): I. C. Rumsey, K. A. Cowen, J. T. Walker, T. J. Kelly, E. A. Hanft, K. Mishoe, C. Rogers, R. Proost, G. M. Beachley, G. Lear, T. Frelink, and R. P. Otjes Ambient air monitoring as part of the US Environmental Protection Agency's (US EPA's) Clean Air Status and Trends Network (CASTNet) currently uses filter packs to measure weekly integrated concentrations. The US EPA is interested in supplementing CASTNet with semi-continuous monitoring systems at select sites to characterize atmospheric chemistry and deposition of nitrogen and sulfur compounds at higher time resolution than the filter pack. The Monitor for AeRosols and GAses in ambient air (MARGA) measures water-soluble gases and aerosols at hourly temporal resolution. The performance of the MARGA was assessed under the US EPA Environmental Technology Verification (ETV) program. The assessment was conducted in Research Triangle Park, North Carolina from 8 September–8 October 2010 and focused on gaseous SO 2 , HNO 3 and NH 3 and aerosol SO 4 − , NO 3 − and NH 4 + . Precision of the MARGA was evaluated by calculating the median absolute relative percent difference (MARPD) between paired hourly results from duplicate MARGA units (MUs), with a performance goal of
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2013-10-02
    Description: Sensitivity of simulated climate to latitudinal distribution of solar insolation reduction in SRM geoengineering methods Atmospheric Chemistry and Physics Discussions, 13, 25387-25415, 2013 Author(s): A. Modak and G. Bala Solar radiation management (SRM) geoengineering has been proposed as a potential option to counteract climate change. We perform a set of idealized geoengineering simulations to understand the global hydrological implications of varying the latitudinal distribution of solar insolation reduction in SRM methods. We find that for a fixed total mass of sulfate aerosols (12.6 Mt of SO 4 ), relative to a uniform distribution which mitigates changes in global mean temperature, global mean radiative forcing is larger when aerosol concentration is maximum at the poles leading to a warmer global mean climate and consequently an intensified hydrological cycle. Opposite changes are simulated when aerosol concentration is maximized in the tropics. We obtain a range of 1 K in global mean temperature and 3% in precipitation changes by varying the distribution pattern: this range is about 50% of the climate change from a doubling of CO 2 . Hence, our study demonstrates that a range of global mean climate states, determined by the global mean radiative forcing, are possible for a fixed total amount of aerosols but with differing latitudinal distribution, highlighting the need for a careful evaluation of SRM proposals.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2013-10-02
    Description: Source apportionment of PM 10 in a North-Western Europe regional urban background site (Lens, France) using Positive Matrix Factorization and including primary biogenic emissions Atmospheric Chemistry and Physics Discussions, 13, 25325-25385, 2013 Author(s): A. Waked, O. Favez, L. Y. Alleman, C. Piot, J.-E. Petit, T. Delaunay, E. Verlinden, B. Golly, J.-L. Besombes, J.-L. Jaffrezo, and E. Leoz-Garziandia In this work, the source of ambient particulate matter (PM 10 ) collected over a one year period at an urban background site in Lens (France) were determined and investigated using a~Positive Matrix Factorization receptor model (US EPA PMF v3.0). In addition, a Potential Source Contribution Function (PSCF) was performed by means of the Hysplit v4.9 model to assess prevailing geographical origins of the identified sources. A selective iteration process was followed for the qualification of the more robust and meaningful PMF solution. Components measured and used in the PMF include inorganic and organic species: soluble ionic species, trace elements, elemental carbon (EC), sugars alcohols, sugar anhydride, and organic carbon (OC). The mean PM 10 concentration measured from March 2011 to March 2012 was about 21 μg m −3 with typically OM, nitrate and sulfate contributing to most of the mass and accounting respectively for 5.8, 4.5 and 2.3 μg m −3 on a yearly basis. Accordingly, PMF outputs showed that the main emission sources were (in a decreasing order of contribution): secondary inorganic aerosols (28% of the total PM 10 mass), aged marine emissions (19%), with probably predominant contribution of shipping activities, biomass burning (13%), mineral dust (13%), primary biogenic emissions (9%), fresh sea salts (8%), primary traffic emissions (6%) and heavy oil combustion (4%). Significant temporal variations were observed for most of the identified sources. In particular, biomass burning emissions were negligible in summer but responsible for about 25% of total PM 10 and 50% of total OC at wintertime. Conversely, primary biogenic emissions were found to be negligible in winter but to represent about 20% of total PM 10 and 40% of total OC in summer. The latter result calls for more investigations of primary biogenic aerosols using source apportionment studies, which quite usually disregards this type of sources. This study furthermore underlines the major influence of secondary processes during daily threshold exceedances. Finally, apparent discrepancies that could be generally observed between filter-based studies (such as the present one) and Aerosol Mass Spectrometer-based PMF analyses (organic fractions) are also discussed here.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2013-10-02
    Description: Wind extraction potential from 4D-Var assimilation of O 3 , N 2 O, and H 2 O using a global shallow water model Atmospheric Chemistry and Physics Discussions, 13, 25291-25323, 2013 Author(s): D. R. Allen, K. W. Hoppel, and D. D. Kuhl The wind extraction due to assimilation of trace gas (tracer) data is examined using a 4D-Var data assimilation system based on the shallow water equations coupled to the tracer continuity equation. The procedure is outlined as follows. First, a Nature Run is created, simulating middle stratospheric winter conditions. Second, ozone (O 3 ), nitrous oxide (N 2 O), and water vapor (H 2 O) (treated in this study as passive tracers) are initialized using Microwave Limb Sounder (MLS) mixing ratios at 850 K potential temperature and advected by the Nature Run winds. Third, the initial dynamical conditions are perturbed by using a 6 h offset. Fourth, observations based on the simulated tracer data are then assimilated with a 4D-Var system in which the tracer and winds are coupled via the adjoint of the tracer continuity equation. Finally, the wind extraction potential (WEP) is calculated as the reduction of the Root Mean Square (RMS) vector wind error due to tracer assimilation relative to the total possible reduction from the initial perturbed conditions. For a single 6 h assimilation cycle of "perfect" tracer (unbiased and no imposed random errors), WEP values are 70% for O 3 , 49% for N 2 O and 16% for H 2 O. O 3 and N 2 O provide more wind information than H 2 O due to stronger background gradients relative to the tracer precisions. 10 day multi-cycle simulations with "perfect" tracer result in WEP of 98% for O 3 , 97% for N 2 O, and 90% for H 2 O. There is therefore sufficient information in these fields to nearly completely specify the dynamics, even without assimilation of dynamical information. For assimilation of tracer observations with realistic random noise (based on MLS precision at 10 hPa), the WEP after 10 days decreases to 57% for O 3 , 42% for N 2 O, and 28% for H 2 O. The root-mean-square (RMS) wind errors level out at ~ 1–2 m s −1 for these runs, suggesting a limit to which realistic tracers could constrain the winds, given complete global coverage. With higher observation noise levels, the WEP values decrease further, with negative WEP occurring in cases of very large errors for H 2 O, indicating that assimilation of very noisy observations may worsen the wind fields.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2013-06-08
    Description: The simulations of sulfuric acid concentration and new particle formation in an urban atmosphere in China Atmospheric Chemistry and Physics Discussions, 13, 14977-15005, 2013 Author(s): Z. B. Wang, M. Hu, D. Mogensen, D. L. Yue, J. Zheng, R. Y. Zhang, Y. Liu, B. Yuan, X. Li, M. Shao, L. Zhou, Z. J. Wu, A. Wiedensohler, and M. Boy Simulations of sulfuric acid concentration and new particle formation are performed by using the zero-dimensional version of the model MALTE (Model to predict new Aerosol formation in the Lower TropospherE) and measurements from the Campaign of Air Quality Research in Beijing and Surrounding areas (CAREBeijing) in 2008. Chemical reactions from the Master Chemical Mechanism Version 3.2 (MCM v3.2) are used in the model. High correlation (slope = 0.72, R = 0.74) between the modelled and observed sulfuric acid concentrations is found during daytime (06:00–18:00). The aerosol dynamics are simulated by the University of Helsinki Multicomponent Aerosol (UHMA) model including several nucleation mechanisms. The results indicate that the model is able to predict the on- and offset of new particle formation in an urban atmosphere in China. In addition, the number concentrations of newly formed particles in kinetic-type nucleation including homogenous homomolecular ( J=K [H 2 SO 4 ] 2 ) and homogenous heteromolecular nucleation involving organic vapours ( J=K het [H 2 SO 4 ][Org]) are in satisfactory agreement with the observations. However, the specific organic compounds possibly participate in the nucleation process should be investigated in further studies.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2013-06-11
    Description: Reductions in aircraft particulate emissions due to the use of Fischer–Tropsch fuels Atmospheric Chemistry and Physics Discussions, 13, 15105-15139, 2013 Author(s): A. J. Beyersdorf, M. T. Timko, L. D. Ziemba, D. Bulzan, E. Corporan, S. C. Herndon, R. Howard, R. Miake-Lye, K. L. Thornhill, E. Winstead, C. Wey, Z. Yu, and B. E. Anderson The use of alternative fuels for aviation is likely to increase due to concerns over fuel security, price stability and the sustainability of fuel sources. Concurrent reductions in particulate emissions from these alternative fuels are expected because of changes in fuel composition including reduced sulfur and aromatic content. The NASA Alternative Aviation Fuel Experiment (AAFEX) was conducted in January–February 2009 to investigate the effects of synthetic fuels on gas-phase and particulate emissions. Standard petroleum JP-8 fuel, pure synthetic fuels produced from natural gas and coal feedstocks using the Fischer–Tropsch (FT) process, and 50% blends of both fuels were tested in the CFM-56 engines on a DC-8 aircraft. To examine plume chemistry and particle evolution with time, samples were drawn from inlet probes positioned 1, 30, and 145 m downstream of the aircraft engines. No significant alteration to engine performance was measured when burning the alternative fuels. However, leaks in the aircraft fuel system were detected when operated with the pure FT fuels as a result of the absence of aromatic compounds in the fuel. Dramatic reductions in soot emissions were measured for both the pure FT fuels (reductions of 84% averaged over all powers) and blended fuels (64%) relative to the JP-8 baseline with the largest reductions at idle conditions. The alternative fuels also produced smaller soot (e.g. at 85% power, volume mean diameters were reduced from 78 nm for JP-8 to 51 nm for the FT fuel), which may reduce their ability to act as cloud condensation nuclei (CCN). The reductions in particulate emissions are expected for all alternative fuels with similar reductions in fuel sulfur and aromatic content regardless of the feedstock. As the plume cools downwind of the engine, nucleation-mode aerosols form. For the pure FT fuels, reductions (94% averaged over all powers) in downwind particle number emissions were similar to those measured at the exhaust plane (84%). However, the blended fuels had less of a reduction (reductions of 30–44%) than initially measured (64%). The likely explanation is that the reduced soot emissions in the blended fuel exhaust plume results in promotion of new particle formation microphysics, rather than coating on pre-existing soot particles, which is dominant in the JP-8 exhaust plume. Downwind particle volume emissions were reduced for both the pure (79 and 86% reductions) and blended FT fuels (36 and 46%) due to the large reductions in soot emissions. In addition, the alternative fuels had reduced particulate sulfate production (near-zero for FT fuels) due to decreased fuel sulfur content. To study the formation of volatile aerosols (defined as any aerosol formed as the plume ages) in more detail, tests were performed at varying ambient temperatures (−4 to 20 °C). At idle, particle number and volume emissions were reduced linearly with increasing ambient temperature, with best fit slopes corresponding to −1.2 × 10 6 # (kg fuel) −1 °C −1 for particle number emissions and −9.7 mm 3 (kg fuel) −1 °C −1 for particle volume emissions. The temperature dependence of aerosol formation can have large effects on local air quality surrounding airports in cold regions. Aircraft produced aerosols in these regions will be much larger than levels expected based solely on measurements made directly at the engine exit plane. The majority (90% at idle) of the volatile aerosol mass formed as nucleation-mode aerosols with a smaller fraction as a soot coating. Conversion efficiencies of up to 3.8% were measured for the partitioning of gas-phase precursors (unburned hydrocarbons and SO 2 ) to form volatile aerosols. Highest conversion efficiencies were measured at 45% power.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2013-06-12
    Description: Undisturbed and disturbed above canopy ponderosa pine emissions: PTR-TOF-MS measurements and MEGAN 2.1 model results Atmospheric Chemistry and Physics Discussions, 13, 15333-15375, 2013 Author(s): L. Kaser, T. Karl, A. Guenther, M. Graus, R. Schnitzhofer, A. Turnipseed, L. Fischer, P. Harley, M. Madronich, D. Gochis, F. N. Keutsch, and A. Hansel We present the first eddy covariance flux measurements of volatile organic compounds (VOCs) using a proton-transfer-reaction time-of-flight mass-spectrometer (PTR-TOF-MS) above a ponderosa pine forest in Colorado, USA. The high mass resolution of the PTR-TOF-MS enabled the identification of chemical sum formulas. During a 30 day measurement period in August and September 2010, 649 different ion mass peaks were detected in the ambient air mass spectrum (including primary ions and mass calibration compounds). Eddy covariance with the vertical wind speed was calculated for all ion mass peaks. On a typical day, 17 ion mass peaks including protonated parent compounds, their fragments and isotopes as well as VOC-H + -water clusters showed a significant flux with daytime average emissions above a reliable flux threshold of 0.1 mg compound m −2 h −1 . These ion mass peaks could be assigned to seven compound classes. The main flux contributions during daytime (10:00–18:00 LT) are attributed to the sum of 2-methyl-3-buten-2-ol (MBO) and isoprene (50%), methanol (12%), the sum of acetic acid and glycolaldehyde (10%) and the sum of monoterpenes (10%). The total MBO + isoprene flux was composed of 10% isoprene and 90% MBO. There was good agreement between the light and temperature dependency of the sum of MBO and isoprene observed for this work and those of earlier studies. The above canopy flux measurements of the sum of MBO and isoprene and the sum of monoterpenes were compared to emissions calculated using the Model of Emissions of Gases and Aerosols from Nature (MEGAN 2.1). The best agreement between MEGAN 2.1 and measurements was reached using emission factors determined from site specific leaf cuvette measurements. While the modelled and measured MBO + isoprene fluxes agree well the emissions of the sum of monoterpenes is underestimated by MEGAN 2.1. This is expected as some factors impacting monoterpene emissions, such as physical damage of needles and branches due to storms, are not included in MEGAN 2.1. After a severe hailstorm event, 22 ion mass peaks (attributed to six compound classes plus some unknown compounds) showed an elevated flux for the two following days. The sum of monoterpene emissions was 4–23 times higher compared to emissions prior to the hailstorm while MBO emissions remained unchanged. If one heavy storm occurs at this site every month we calculate that the monthly monoterpene emissions (in mg compound m −2 ) would be underestimated by 40% if this disturbance source is not considered.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2013-06-12
    Description: Aerosol variability and atmospheric transport in the Himalayan region from CALIOP 2007–2010 observations Atmospheric Chemistry and Physics Discussions, 13, 15271-15299, 2013 Author(s): S. Bucci, C. Cagnazzo, F. Cairo, L. Di Liberto, and F. Fierli Himalayan Plateau is surrounded by regions with high natural and anthropogenic aerosol emissions that have a strong impact on regional climate. This is particularly critical for the Himalayan glaciers whose equilibrium is also largely influenced by radiative direct and indirect effects induced by aerosol burden. This work focuses on the spatial and vertical distribution of different aerosol types, their seasonal variability and sources. The analysis of the 2007–2010 yr of CALIPSO vertically resolved satellite data allows the identification of spatial patterns of desert dust and carbonaceous particles in different atmospheric layers. Clusters of Lagrangian back-trajectories highlight the transport pathways from source regions during the dusty spring season. The analysis shows a prevalence of dust; at low heights they are distributed mainly north (with a main contribution from the Gobi and Taklamakan deserts) and west of the Tibetan Plateau (originating from the deserts of South-West Asia and advected by the westerlies). Above the Himalayas the dust amount is minor but still not negligible (detectable in around 20% of the measurements), and transport from more distant deserts (Sahara and Arabian Peninsula) is important. Smoke aerosol, produced mainly in North India and East China, is subject to shorter range transport and is indeed observed closer to the sources while there is a limited amount reaching the top of the plateau. Data analysis reveals a clear seasonal variability in the frequencies of occurrence for the main aerosol types; dust is regulated principally by the monsoon dynamics, with maxima of occurrence in spring. The study also highlights relevant interannual differences, showing a larger presence of aerosol in the region during 2007 and 2008 yr.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2013-06-13
    Description: Quantifying aerosol mixing state with entropy and diversity measures Atmospheric Chemistry and Physics Discussions, 13, 15615-15662, 2013 Author(s): N. Riemer and M. West This paper presents the first quantitative metric for aerosol population mixing state, defined as the distribution of per-particle chemical species composition. This new metric, the mixing state index χ, is an affine ratio of the average per-particle species diversity D α and the bulk population species diversity D γ , both of which are based on information-theoretic entropy measures. The mixing state index χ enables the first rigorous definition of the spectrum of mixing states from so-called external mixture to internal mixture, which is significant for aerosol climate impacts, including aerosol optical properties and cloud condensation nuclei activity. We illustrate the usefulness of this new mixing state framework with model results from the stochastic particle-resolved model PartMC-MOSAIC. These results demonstrate how the mixing state metrics evolve with time for several archetypal cases, each of which isolates a specific process such as coagulation, emission, or condensation. Further, we present an analysis of the mixing state evolution for a complex urban plume case, for which these processes occur simultaneously. We additionally derive theoretical properties of the mixing state index and present a family of generalized mixing state indexes that vary in the importance assigned to low-mass-fraction species.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2013-06-06
    Description: Long-term observations of positive cluster ion concentration, sources and sinks at the high altitude site of the Puy de Dôme Atmospheric Chemistry and Physics Discussions, 13, 14927-14975, 2013 Author(s): C. Rose, J. Boulon, M. Hervo, H. Holmgren, E. Asmi, M. Ramonet, P. Laj, and K. Sellegri Cluster particles (0.8–1.9 nm) are key entities involved in nucleation and new particle formation processes in the atmosphere. Cluster ions were characterized in clear sky conditions at the Puy de Dôme station (1465 m a.s.l). The studied dataset spread over five years (February 2007–February 2012), which provided a unique chance to catch seasonal variations of cluster ion properties at high altitude. Statistical values of the cluster ion concentration and diameter are reported for both positive and negative polarities. Cluster ions were found to be ubiquitous at the Puy de Dôme and displayed an annual variation with lower concentrations in spring. Positive cluster ions were less numerous than negative ones but were larger in diameters. Negative cluster ion properties seemed insensitive to the occurrence of a new particle formation (NPF) event while positive cluster ions appeared to be significantly more numerous and larger on event days. The parameters of the balance equation for the positive cluster concentration are reported, separately for the different seasons and for the NPF event days and non-event days. The steady state assumption suggests that the ionization rate is balanced with two sinks which are the ion recombination and the attachment on aerosol particles, referred as "aerosol ion sink". The aerosol ion sink was found to be higher during the warm season and dominated the loss of ions. The positive ionization rates derived from the balance equation were well correlated with the ionization rates obtained from radon measurement, and they were on average higher in summer and fall compared to winter and spring. Neither the aerosol ion sink nor the ionization rate were found to be significantly different on event days compared to non-event days, and thus they were not able to explain the different positive cluster concentrations between event and non-event days. Hence, the excess of positive small ions on event days may derive from an additional source of ions coupled with the fact that the steady state was not verified on event days.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2013-06-06
    Description: Review and uncertainty assessment of size-resolved scavenging coefficient formulations for snow scavenging of atmospheric aerosols Atmospheric Chemistry and Physics Discussions, 13, 14823-14869, 2013 Author(s): L. Zhang, X. Wang, M. D. Moran, and J. Feng Theoretical parameterizations for the size-resolved scavenging coefficient for atmospheric aerosol particles scavenged by snow (Λ snow ) need assumptions regarding (i) snow particle–aerosol particle collection efficiency E , (ii) snow particle size distribution N ( D p ), (iii) snow particle terminal velocity V D , and (iv) snow particle cross-sectional area A . Existing formulas for these parameters are reviewed in the present study and uncertainties in Λ snow caused by various combinations of these parameters are assessed. Different formulations of E can cause uncertainties in Λ snow of more than one order of magnitude for all aerosol sizes for typical snowfall intensities. E is the largest source of uncertainty among all the input parameters, similar to rain scavenging of atmospheric aerosols (Λ rain ) as was found in a previous study by Wang et al. (2010). However, other parameters can also cause significant uncertainties in Λ snow , and the uncertainties from these parameters are much larger than for Λ rain . Specifically, different N ( D p ) formulations can cause one-order-of-magnitude uncertainties in Λ snow for all aerosol sizes, as is also the case for a combination of uncertainties from both V D and A . In comparison, uncertainties in Λ rain from N ( D p ) are smaller than a factor of 5 and those from V D are smaller than a factor of 2. Λ snow estimated from one empirical formula generated from field measurements falls in the upper range of, or is slightly higher than, theoretically estimated values. The predicted aerosol concentrations obtained using different Λ snow formulas can differ by a factor of two for just a one-centimeter snowfall (liquid water equivalent of approximately 1 mm). It is likely that, for typical rain and snow event the removal of atmospheric aerosol particles by snow is more effective than removal by rain for equivalent precipitation amounts, although a firm conclusion requires much more evidence.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2013-06-06
    Description: Atmospheric waves as scaling, turbulent phenomena Atmospheric Chemistry and Physics Discussions, 13, 14797-14822, 2013 Author(s): J. Pinel and S. Lovejoy It is paradoxical that while atmospheric dynamics are highly nonlinear and turbulent that atmospheric waves are commonly modelled by linear or weakly nonlinear theories. We postulate that the laws governing atmospheric waves are on the contrary high Reynold's number ( Re ), emergent laws so that – in common with the emergent high Re turbulent laws – they are also constrained by scaling symmetries. We propose an effective turbulence – wave propagator which corresponds to a fractional and anisotropic extension of the classical wave equation propagator with dispersion relations similar to those of inertial gravity waves (and Kelvin waves) yet with an anomalous (fractional) order H wav /2. Using geostationary IR radiances, we estimate the parameters finding that H wav /2 ≈ 0.17 ± 0.04 (the classical value = 2).
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2013-06-06
    Description: Optimizing Saharan dust CALIPSO retrievals Atmospheric Chemistry and Physics Discussions, 13, 14749-14795, 2013 Author(s): V. Amiridis, U. Wandinger, E. Marinou, E. Giannakaki, A. Tsekeri, S. Basart, S. Kazadzis, A. Gkikas, M. Taylor, J. Baldasano, and A. Ansmann We demonstrate improvements in CALIPSO dust extinction retrievals over North Africa and Europe when corrections are applied regarding the Saharan dust lidar ratio assumption, the separation of dust portion in detected dust mixtures, and the averaging scheme introduced in the Level 3 CALIPSO product. First, a universal, spatially constant lidar ratio of 58 sr instead of 40 sr is applied to individual Level 2 dust-related backscatter products. The resulting aerosol optical depths show an improvement compared with synchronous and co-located AERONET measurements. An absolute bias of the order of −0.03 has been found, improving on the statistically significant biases of the order of −0.10 reported in the literature for the original CALIPSO product. When compared with the MODIS co-located AOD product, the CALIPSO negative bias is even less for the lidar ratio of 58 sr. After introducing the new lidar ratio for the domain studied, we examine potential improvements to the climatological CALIPSO Level 3 extinction product: (1) by introducing a new methodology for the calculation of pure dust extinction from dust mixtures and (2) by applying an averaging scheme that includes zero extinction values for the non-dust aerosol types detected. The scheme is applied at a horizontal spatial resolution of 1° × 1° for ease of comparison with the instantaneous and co-located dust extinction profiles simulated by the BSC-DREAM8b dust model. Comparisons show that the extinction profiles retrieved with the proposed methodology reproduce the well-known model biases per sub-region examined. The very good agreement of the proposed CALIPSO extinction product with respect to AERONET, MODIS and the BSC-DREAM8b dust model, makes this dataset an ideal candidate for the provision of an accurate and robust multi-year dust climatology over North Africa and Europe.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2013-06-06
    Description: Climatology of pure Tropospheric profiles and column contents of ozone and carbon monoxide using MOZAIC in the mid-northern latitudes (24° N to 50° N) from 1994 to 2009 Atmospheric Chemistry and Physics Discussions, 13, 14695-14747, 2013 Author(s): R. M. Zbinden, V. Thouret, P. Ricaud, F. Carminati, J.-P. Cammas, and P. Nédélec The objective of this paper is to deliver the most accurate ozone (O 3 ) and carbon monoxide (CO) climatology for the pure troposphere only, i.e. exclusively from the ground to the dynamical tropopause on an individual profile basis. The results (profiles and columns) are derived solely from the M easurements of OZ one and water vapour by in-service AI rbus air C raft programme (MOZAIC) over fifteen years (1994–2009). The study, focused on the northern mid-latitudes [24° N–50° N] and [120° W–140° E], includes more than 40 000 profiles over 11 sites to give a quasi-global zonal picture. Considering all the sites, the pure tropospheric column peak-to-peak seasonal cycle ranges are 23.7–43.2 DU for O 3 and 1.7–6.9 × 10 18 mol cm −2 for CO. The maxima of the seasonal cycles are not in phase, occurring in February–April for CO and May–July for O 3 . The phase shift is related to the photochemistry and OH removal efficiencies. The purely tropospheric seasonal profiles are characterized by a typical autumn-winter/spring-summer O 3 dichotomy, (except in Los Angeles, Eastmed – a cluster of Cairo and Tel Aviv – and the regions impacted by the summer monsoon) and a summer-autumn/winter-spring CO dichotomy. We revisit the boundary-layer, mid-tropospheric (MT) and upper-tropospheric (UT) partial columns, using a new monthly-varying MT ceiling. Interestingly, the seasonal cycle maximum of the UT partial columns is shifted from summer to spring for O 3 and to very early spring for CO. Conversely, the MT maximum is shifted from spring to summer and is associated with a summer (winter) MT thickening (thinning). Lastly, the pure tropospheric seasonal cycles derived from our analysis are consistent with the cycles derived from spaceborne measurements, the correlation coefficients being r = 0.6–0.9 for O 3 , and r 〉 0.9 for CO. The cycles observed from space are nevertheless greater than MOZAIC for O 3 (by 9–18 DU) and smaller for CO (up to 1 × 10 18 mol cm −2 ). The larger winter O 3 difference between the two data sets suggests probable stratospheric contamination in satellite data due to the tropopause position. The study underlines the importance of rigorously discriminating between the stratospheric and tropospheric reservoirs and avoiding use of a monthly-averaged tropopause position without this strict discrimination, in order to assess the pure O 3 and CO tropospheric trends.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2013-06-06
    Description: A climatology of formation conditions for aerodynamic contrails Atmospheric Chemistry and Physics Discussions, 13, 14667-14693, 2013 Author(s): K. Gierens and F. Dilger Aerodynamic contrails are defined in this paper as line shaped ice clouds caused by aerodynamically triggered cooling over the wings of an aircraft in cruise which become visible immediately at the trailing edge of the wing or close to it. Effects at low altitudes like condensation to liquid droplets and their potential heterogeneous freezing are excluded from our definition. We study atmospheric conditions that allow formation of aerodynamic contrails. These conditions are stated and then applied to atmospheric data, first to a special case where an aerodynamic contrail was actually observed and then to a full year of global reanalysis data. We show where, when (seasonal variation), and how frequently (probability) aerodynamic contrails can form, and how this relates to actual patterns of air traffic. We study the formation of persistent aerodynamic contrails as well. Finally we check whether aerodynamic and exhaust contrails can coexist in the atmosphere. We show that visible aerodynamic contrails are possible only in an altitude range between roughly 540 and 250 hPa, and that the ambient temperature is the most important parameter, not the relative humidity. Finally we give an argument for our believe that currently aerodynamic contrails have a much smaller climate effect than exhaust contrails, which may however change in future with more air traffic in the tropics.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2013-06-06
    Description: Expansion of global drylands under a warming climate Atmospheric Chemistry and Physics Discussions, 13, 14637-14665, 2013 Author(s): S. Feng and Q. Fu Global drylands encompassing hyper-arid, arid, semiarid, and dry subhumid areas cover about 41% of the earth's terrestrial surface and are home to more than a third of the world's population. By analyzing observations for 1948–2008 and climate model simulations for 1948–2100, we show that global drylands have expanded in last sixty years and will continue to expand in the 21st century. By the end of this century, the world's drylands under a high greenhouse gas emission scenario are projected to be 5.8 × 10 6 km 2 (or 10%) larger than in the 1961–1990 climatology. The major expansion of arid regions will occur over southwest North America, the northern fringe of Africa, southern Africa, and Australia, while major expansions of semiarid regions will occur over the north side of the Mediterranean, southern Africa, and North and South America. The global dryland expansions will increase the population affected by water scarcity and land degradations.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2013-06-06
    Description: The role of horizontal model resolution in assessing the transport of CO in a middle latitude cyclone using WRF-Chem Atmospheric Chemistry and Physics Discussions, 13, 14871-14925, 2013 Author(s): C. A. Klich and H. E. Fuelberg We use the Weather Research and Forecasting with Chemistry (WRF-Chem) online chemical transport model to simulate a middle latitude cyclone in East Asia at three different horizontal resolutions (45, 15, and 5 km grid spacing). The cyclone contains a typical warm conveyor belt (WCB) with an embedded squall line that passes through an area having large surface concentrations (〉400 ppbv) of carbon monoxide (CO). Model output from WRF-Chem is used to compare differences between the large-scale CO vertical transport by the WCB (the 45 km simulation) with the smaller-scale transport due to its convection (the 5 km simulation). Forward trajectories are calculated from WRF-Chem output using HYSPLIT. At 45 km grid spacing, the WCB exhibits gradual ascent, lofting surface CO to 6–7 km. Upon reaching the warm front, the WCB and associated CO ascend more rapidly and later turn eastward over the Pacific Ocean. Convective transport at 5 km resolution with explicitly resolved convection occurs much more rapidly, with surface CO lofted to altitudes greater than 10 km in 1 h or less. We also compute CO vertical mass fluxes to compare differences in transport due to the different grid spacings. Upward CO flux exceeds 110 000 t h −1 in the domain with explicit convection when the squall line is at peak intensity, while fluxes from the two coarser resolutions are an order of magnitude smaller. Specific areas of interest within the 5 km domain are defined to compare the magnitude of convective transport to that within the entire 5 km region. Although convection encompasses only a small portion of the 5 km domain, it is responsible for ~40% of the upward CO transport. We also examine the vertical transport due to a short wave trough and its associated area of convection, not related to the cyclone, that lofts CO to the upper troposphere. Results indicate that fine-scale resolution with explicitly resolved convection is important when assessing the vertical transport of surface emissions in areas of deep convection.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2013-06-11
    Description: A Lagrangian view of ozone production tendency in North American outflow in summers 2009 and 2010 Atmospheric Chemistry and Physics Discussions, 13, 15141-15190, 2013 Author(s): B. Zhang, R. C. Owen, J. A. Perlinger, A. Kumar, S. Wu, M. Val Martin, L. Kramer, D. Helmig, and R. E. Honrath The Pico Mountain Observatory, located at 2225 m a.s.l. in the Azores Islands, was established in 2001 to observe long-range transport from North America to the central North Atlantic. In previous research conducted at the Observatory, ozone enhancement (〉55 ppbv) in North American outflows was observed, and efficient ozone production in these outflows was postulated. This study is focused on determining the causes for high d [O 3 ]/ d [CO] values (~1 ppbv ppbv −1 ) observed in summers of 2009 and 2010. The folded retroplume technique, developed by Owen and Honrath (2009), was applied to combine upwind FLEXPART transport pathways with GEOS-Chem chemical fields. This folded result provides a semi-Lagrangian view of polluted North American outflow in terms of physical properties and chemical processes, including production/loss rate of ozone and NO x produced by lightning and thermal decomposition of PAN. Two transport events from North America were identified for detailed analysis. High d [O 3 ]/ d [CO] was observed in both events, but due to differing transport mechanisms, ozone production tendency differed between the two. A layer of net ozone production was found at 2 km a.s.l. over the Azores in the first event plume, apparently driven by PAN decomposition during subsidence of air mass in the Azores-Bermuda High. In the second event, net ozone loss occurred during transport in the lower free troposphere, yet observed d [O 3 ]/ d [CO] was high. We estimate that in both events, CO loss through oxidation contributed significantly to d [O 3 ]/ d [CO] enhancement. Thus, CO is not appropriately used as a passive tracer of pollution in these events. In general, use of d [O 3 ]/ d [CO] as an indicator of net ozone production/loss may be invalid for any situation in which oxidants are elevated. Based on our analysis, use of d [O 3 ]/ d [CO] to diagnose ozone enhancement without verifying the assumption of negligible CO loss is not advisable.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2013-06-12
    Description: Free troposphere ozone and carbon monoxide over the North Atlantic for 2001–2011 Atmospheric Chemistry and Physics Discussions, 13, 15377-15407, 2013 Author(s): A. Kumar, S. Wu, M. F. Weise, R. Honrath, R. C. Owen, D. Helmig, L. Kramer, M. Val Martin, and Q. Li In-situ measurements of carbon monoxide (CO) and ozone (O 3 ) at the Pico Mountain Observatory (PMO) located in the Azores, Portugal are analyzed together with results from atmospheric chemical transport modeling (GEOS-Chem) and satellite remote sensing (AIRS for CO and TES for O 3 ) to examine the evolution of free-troposphere CO and O 3 over the North Atlantic for 2001–2011. GEOS-Chem captured the seasonal cycles for CO and O 3 well but significantly underestimated the mixing ratios of CO, particularly in spring. Statistically significant (using a significance level of 0.05) decreasing trends were found for both CO and O 3 based on harmonic regression analysis of the measurement data. The best estimates of the trend for CO and O 3 measurements are −0.31 ± 0.30 (2-σ) ppbv yr −1 and −0.21 ± 0.11 (2-σ) ppbv yr −1 , respectively. Similar decreasing trends for both species were obtained with GEOS-Chem simulation results. The major factor contributing to the reported decrease in CO and O 3 mixing ratios at PMO over the past decade is the decline in anthropogenic CO and O 3 -precursor emissions in regions such as North America and Europe. The increase in Asian emissions does not seem to outweigh the impact of these declines resulting in overall decreasing trends for both CO and O 3 . For O 3 , however, increase in atmospheric water vapor content associated with climate change also appears to be a contributing factor causing enhanced destruction of the O 3 during transport from source regions. These hypotheses are supported by results from the GEOS-Chem tagged CO and tagged O 3 simulations.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2013-06-12
    Description: Mesoscale modeling of smoke transport over the Southeast Asian Maritime Continent: coupling of smoke direct radiative feedbacks below and above the low-level clouds Atmospheric Chemistry and Physics Discussions, 13, 15443-15492, 2013 Author(s): C. Ge, J. Wang, and J. S. Reid The online-coupled Weather Research and Forecasting model with Chemistry (WRF-Chem) is used to simulate the direct and semi-direct radiative impacts of smoke particles over the Southeast Asian Marine Continents (MC, 10° S–10° N, 90° E–150° E) during October 2006 when a significant El Nino event caused the highest biomass burning activity since 1997. With the use of OC (Organic Carbon)/BC (Black Carbon) ratio of 10 in the smoke emission inventory, the baseline simulation shows that the low-level clouds amplifying effect on smoke absorption led to a warming effect at the top-of-atmosphere (TOA) with a domain/monthly average forcing value of ~20 W m −2 over the islands of Borneo and Sumatra. The smoke-induced monthly average daytime heating (0.3 K) that is largely confined above the low-level clouds results in the local convergence over the smoke source region. This heating-induced convergence coupled with daytime planetary boundary layer turbulent mixing, transports more smoke particles above the planetary boundary layer height (PBLH), hence rendering a positive feedback. This positive feedback contrasts with the decrease of cloud fraction resulted from the combined effects of smoke heating within the cloud layer and the more stability in the boundary layer; the latter can be considered as a negative feedback in which decrease of cloud fraction weakens the heating by smoke particles above the clouds. During nighttime, the elevated smoke layer (above clouds in daytime) is decoupled from boundary layer, and the reduction of PBLH due to the residual surface cooling from the daytime lead to the accumulation of smoke particles near the surface. Because of smoke radiative extinction, on monthly basis, the amount of the solar input at the surface is reduced as large as 60 W m −2 , which lead to the decrease of sensible heat, latent heat, 2 m air temperature, and PBLH by a maximum of 20 W m −2 , 20 W m −2 , 1 K, 120 m, respectively. The decrease of boundary layer mixing and the generation of convergence above the PBL also results in a reduction of precipitable water 1–2 km above the PBLH and more precipitable water near the surface and in upper part of the middle troposphere with changes around 0.1 mm. Overall, there is less of a change of column water vapor over the land, and an increase of water vapor amount over the Karimata Strait. The cloud changes over continents are mostly occurred over the islands of Sumatra and Borneo during the daytime, where the low-level cloud fraction decreases more than 10%. However, the change of local wind (include sea breeze) induced by the smoke radiative feedback leads to more convergence over Karimata Strait and south coastal area of Kalimantan during both daytime and night time; consequently, cloud fraction is increased there up to 20%. The sensitivities with different OC/BC ratio show the importance of the smoke single scattering albedo for the smoke semi-direct effects. A case study on 31 October 2006 further demonstrated a much larger (more than twice of the monthly average) feedback induced by smoke aerosols. The decreased sea breeze during big events can lead to prominent increase (40%) of low-level cloud over coastal water. Lastly, the direct and semi-direct radiative impact of smoke particles over the Southeast Asian Marine Continents is summarized as a conceptual model.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2013-06-12
    Description: Global carbon monoxide products from combined AIRS, TES and MLS measurements on A-train satellites Atmospheric Chemistry and Physics Discussions, 13, 15409-15441, 2013 Author(s): J. X. Warner, R. Yang, Z. Wei, F. Carminati, A. Tangborn, Z. Sun, W. Lahoz, J.-L. Attié, L. El Amraoui, and B. Duncan This study tests a novel methodology to add value to satellite datasets. This methodology, data fusion, is similar to data assimilation, except that the background model-based field is replaced by a satellite dataset, in this case AIRS (Atmospheric Infrared Sounder) carbon monoxide (CO) measurements. The observational information comes from CO measurements with lower spatial coverage than AIRS, namely, from TES (Tropospheric Emission Spectrometer) and MLS (Microwave Limb Sounder). We show that combining these datasets with data fusion uses the higher spectral resolution of TES to extend AIRS CO observational sensitivity to the lower troposphere, a region especially important for air quality studies. We also show that combined CO measurements from AIRS and MLS provide enhanced information in the UTLS (upper troposphere/lower stratosphere) region compared to each product individually. The combined AIRS/TES and AIRS/MLS CO products are validated against DACOM (differential absorption mid-IR diode laser spectrometer) in situ CO measurements from the INTEX-B (Intercontinental Chemical Transport Experiment: MILAGRO and Pacific phases) field campaign and in situ data from HIPPO (HIAPER Pole-to-Pole Observations) flights. The data fusion results show improved sensitivities in the lower and upper troposphere (20–30% and above 20%, respectively) as compared with AIRS-only retrievals, and improved coverage compared with TES and MLS CO data.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2013-06-13
    Description: An inverse modeling method to assess the source term of the Fukushima nuclear power plant accident using gamma dose rate observations Atmospheric Chemistry and Physics Discussions, 13, 15567-15614, 2013 Author(s): O. Saunier, A. Mathieu, D. Didier, M. Tombette, D. Quélo, V. Winiarek, and M. Bocquet The Chernobyl nuclear accident and more recently the Fukushima accident highlighted that the largest source of error on consequences assessment is the source term including the time evolution of the release rate and its distribution between radioisotopes. Inverse modeling methods, which combine environmental measurements and atmospheric dispersion models, have proven efficient in assessing source term due to an accidental situation (Gudiksen, 1989; Krysta and Bocquet, 2007; Stohl et al., 2012a; Winiarek et al., 2012). Most existing approaches are designed to use air sampling measurements (Winiarek et al., 2012) and some of them also use deposition measurements (Stohl et al., 2012a; Winiarek et al., 2013) but none of them uses dose rate measurements. However, it is the most widespread measurement system, and in the event of a nuclear accident, these data constitute the main source of measurements of the plume and radioactive fallout during releases. This paper proposes a method to use dose rate measurements as part of an inverse modeling approach to assess source terms. The method is proven efficient and reliable when applied to the accident at the Fukushima Daiichi nuclear power plant (FD-NPP). The emissions for the eight main isotopes 133 Xe, 134 Cs, 136 Cs, 137 Cs, 137m Ba, 131 I, 132 I and 132 Te have been assessed. Accordingly, 103 PBq of 131 I, 35.5 PBq of 132 I, 15.5 PBq of 137 Cs and 12 100 PBq of noble gases were released. The events at FD-NPP (such as venting, explosions, etc.) known to have caused atmospheric releases are well identified in the retrieved source term. The estimated source term is validated by comparing simulations of atmospheric dispersion and deposition with environmental observations. The result is that the model-measurement agreement for all of the monitoring locations is correct for 80% of simulated dose rates that are within a factor of 2 of the observed values. Changes in dose rates over time have been overall properly reconstructed, especially in the most contaminated areas to the northwest and south of the FD-NPP. A comparison with observed atmospheric activity concentration and surface deposition shows that the emissions of caesiums and 131 I are realistic but that 132 I and 132 Te are probably underestimated and noble gases are likely overestimated. Finally, an important outcome of this study is that the method proved to be perfectly suited to emergency management and could contribute to improve emergency response in the event of a nuclear accident.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2013-06-11
    Description: Forcing of stratospheric chemistry and dynamics during the Dalton Minimum Atmospheric Chemistry and Physics Discussions, 13, 15061-15104, 2013 Author(s): J. G. Anet, S. Muthers, E. Rozanov, C. C. Raible, T. Peter, A. Stenke, A. I. Shapiro, J. Beer, F. Steinhilber, S. Brönnimann, F. Arfeuille, Y. Brugnara, and W. Schmutz The response of atmospheric chemistry and climate to volcanic eruptions and a decrease in solar activity during the Dalton Minimum is investigated with the fully coupled atmosphere-ocean-chemistry general circulation model SOCOL-MPIOM covering the time period 1780 to 1840 AD. We carried out several sensitivity ensemble experiments to separate the effects of (i) reduced solar ultra-violet (UV) irradiance, (ii) reduced solar visible and near infrared irradiance, (iii) enhanced galactic cosmic ray intensity as well as less intensive solar energetic proton events and auroral electron precipitation, and (iv) volcanic aerosols. The introduced changes of UV irradiance and volcanic aerosols significantly influence stratospheric climate in the early 19th century, whereas changes in the visible part of the spectrum and energetic particles have smaller effects. A reduction of UV irradiance by 15% causes global ozone decrease below the stratopause reaching 8% in the midlatitudes at 5 hPa and a significant stratospheric cooling of up to 2 °C in the midstratosphere and to 6 °C in the lower mesosphere. Changes in energetic particle precipitation lead only to minor changes in the yearly averaged temperature fields in the stratosphere. Volcanic aerosols heat the tropical lower stratosphere allowing more water vapor to enter the tropical stratosphere, which, via HO x reactions, decreases upper stratospheric and mesospheric ozone by roughly 4%. Conversely, heterogeneous chemistry on aerosols reduces stratospheric NO x leading to a 12% ozone increase in the tropics, whereas a decrease in ozone of up to 5% is found over Antarctica in boreal winter. The linear superposition of the different contributions is not equivalent to the response obtained in a simulation when all forcing factors are applied during the DM – this effect is especially well visible for NO x /NO y . Thus, this study highlights the non-linear behavior of the coupled chemistry-climate system. Finally, we conclude that especially UV and volcanic eruptions dominate the changes in the ozone, temperature and dynamics while the NO x field is dominated by the EPP. Visible radiation changes have only very minor effects on both stratospheric dynamics and chemistry.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2013-06-11
    Description: Estimation of aerosol water and chemical composition from AERONET at Cabauw, the Netherlands Atmospheric Chemistry and Physics Discussions, 13, 15191-15232, 2013 Author(s): A. J. van Beelen, G. J. H. Roelofs, O. P. Hasekamp, J. S. Henzing, and T. Röckmann Remote sensing of aerosols provides important information on the atmospheric aerosol abundance. However, due to the hygroscopic nature of aerosol particles observed aerosol optical properties are influenced by atmospheric humidity, and the measurements do not unambiguously characterize the aerosol dry mass and composition which complicates the comparison with aerosol models. In this study we derive aerosol water and chemical composition by a modeling approach that combines individual measurements of remotely sensed aerosol properties (e.g. optical thickness, single scattering albedo, refractive index and size distribution) from an AERONET (Aerosol Robotic Network) sun-photometer with radiosonde measurements of relative humidity. The model simulates water uptake by aerosols based on the chemical composition and size distribution. A minimization method is used to calculate aerosol composition and concentration, which are then compared to in situ measurements from the Intensive Measurement Campaign At the Cabauw Tower (IMPACT, May 2008, the Netherlands). Computed concentrations show reasonable agreement with surface observations and follow the day-to-day variability in observations. Total dry mass (33 ± 12 μg m −3 ) and black carbon concentrations (0.7 ± 0.3 μg m −3 ) are generally accurately computed. The uncertainty in the AERONET (real) refractive index (0.025–0.05) introduces larger uncertainty in the modeled aerosol composition (e.g. sulfates, ammonium nitrate or organic matter) and leads to an uncertainty of 0.1–0.25 in aerosol water volume fraction. Water volume fraction is highly variable depending on composition, up to 〉0.5 at 70–80% and
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2013-04-03
    Description: Evaluation of various methods to measure particulate bound mercury and associated artifacts Atmospheric Chemistry and Physics Discussions, 13, 8585-8614, 2013 Author(s): S. Wang, T. M. Holsen, J. Huang, and Y.-J. Han This study was performed to determine how sampling artifacts associated with various sampling methods including open faced filter (OFF) pack, micro orifice uniform deposit impactor (MOUDI), and Tekran speciation system (TekSpec) impact particulate bound mercury (PBM) measurements. PBM measured by the MOUDI for 48 h was statistically lower than that measured with the TekSpec every 2 h, indicating that negative artifacts were significant for long sampling durations. Negative artifacts were also identified in lab experiments as the Hg 0 and HgCl 2 concentrations associated with particulate matter on the filter significantly decreased when the filter was exposed to zero air. Positive artifacts were also investigated. The OFF sampling for 48 h, which is likely to be associated with both positive and negative artifacts, measured a significantly lower PBM concentration than the TekSpec while the OFF and MOUDI (48 h sampling – minimal positive artifacts) showed similar results, suggesting that positive artifacts were minor under the rural condition encountered (low atmospheric gaseous oxidized mercury and typical oxidants concentrations). The Hg speciation associated with particles varied with atmospheric temperature, with the contribution of less volatile species including HgO and HgS increasing and more volatile Hg 0 and HgCl 2 decreasing as atmospheric temperature increased. There was significant correlation for PBM larger than 2.5 μm between TekSpec frit and MOUDI in this study, indicating that TekSpec frit is a good alternative sampler for measuring the concentration of coarse PBM.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2013-04-03
    Description: Aerosol and precipitation chemistry in the southwestern United States: spatiotemporal trends and interrelationships Atmospheric Chemistry and Physics Discussions, 13, 8615-8662, 2013 Author(s): A. Sorooshian, T. Shingler, A. Harpold, C. W. Feagles, T. Meixner, and P. D. Brooks This study characterizes the spatial and temporal patterns of aerosol and precipitation composition at six sites across the United States Southwest between 1995 and 2010. Precipitation accumulation occurs mostly during the wintertime (December–February) and during the monsoon season (July–September). Rain and snow pH levels are usually between 5–6, with crustal-derived species playing a major role in acid neutralization. These species (Ca 2+ , Mg 2+ , K + ,Na + ) exhibit their highest concentrations between March and June in both PM 2.5 and precipitation due mostly to dust. Crustal-derived species concentrations in precipitation exhibit positive relationships with SO 4 2− , NO 3 − , and Cl − , suggesting that acidic gases likely react with and partition to either crustal particles or hydrometeors enriched with crustal constituents. Concentrations of particulate SO 4 2− show a statistically significant correlation with rain SO 4 2− unlike snow SO 4 2− , which may be related to some combination of the vertical distribution of SO 4 2− (and precursors) and the varying degree to which SO 4 2− -enriched particles act as cloud condensation nuclei versus ice nuclei in the region. The coarse : fine aerosol mass ratio was correlated with crustal species concentrations in snow unlike rain, suggestive of a preferential role of coarse particles (mainly dust) as ice nuclei in the region. Precipitation NO 3 − : SO 4 2− ratios exhibit the following features with potential explanations discussed: (i) they are higher in precipitation as compared to PM 2.5 ; (ii) they exhibit the opposite annual cycle compared to particulate NO 3 − : SO 4 2− ratios; and (iii) they are higher in snow relative to rain during the wintertime. Long-term trend analysis for the monsoon season shows that the NO 3 − : SO 4 2− ratio in rain decreased at the majority of sites due mostly to air pollution regulations of SO 4 2− precursors.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2013-04-05
    Description: Effects of relative humidity on aerosol light scattering: results from different European sites Atmospheric Chemistry and Physics Discussions, 13, 8939-8984, 2013 Author(s): P. Zieger, R. Fierz-Schmidhauser, E. Weingartner, and U. Baltensperger The effect of aerosol water uptake on the aerosol particle light scattering coefficient (σ sp ) is described in this study by comparing measurements from five European sites: the Jungfraujoch, located in the Swiss Alps at 3580 m a.s.l., Ny-Ålesund, located on Spitsbergen in the Arctic, Mace Head, a coastal site in Ireland, Cabauw, a rural site in the Netherlands and Melpitz, a regional background site in Eastern Germany. These sites were selected according to the aerosol type usually encountered at that location. The scattering enhancement factor f (RH,λ) is the key parameter to describe the effect of water uptake on the particle light scattering. It is defined as the σ sp (RH) at a certain relative humidity (RH) and wavelength λ divided by its dry value. f (RH) largely varied at the five sites starting from very low values of f (RH = 85%,λ = 550 nm) around 1.28 for mineral dust to 3.41 for Arctic aerosol. Hysteresis behavior was observed at all sites except at the Jungfraujoch due to the absence of sea salt. Closure studies and Mie simulations showed that both size and chemical composition determine the magnitude of f (RH). Both parameters are also needed to successfully predict f (RH). Finally, the measurement results were compared to the widely used aerosol model OPAC (Hess et al., 1998). Significant discrepancies were seen especially at intermediate RH ranges, which were mainly attributed to inappropriate implemented hygroscopic growth within OPAC. Replacement of the hygroscopic growth with recent literature values showed a clear improvement of the OPAC model.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2013-04-06
    Description: Spectro-microscopic measurements of carbonaceous aerosol aging in Central California Atmospheric Chemistry and Physics Discussions, 13, 9179-9216, 2013 Author(s): R. C. Moffet, T. C. Rödel, S. T. Kelly, X. Y. Yu, G. T. Carroll, J. Fast, R. A. Zaveri, A. Laskin, and M. K. Gilles Carbonaceous aerosols are responsible for large uncertainties in climate models, degraded visibility, and adverse health effects. The Carbonaceous Aerosols and Radiative Effects Study (CARES) was designed to study carbonaceous aerosols in the natural environment of Central Valley, California, and learn more about their atmospheric formation and aging. This paper presents results from spectro-microscopic measurements of carbonaceous particles collected during CARES at the time of pollution accumulation event (27–29 June 2010), when in situ measurements indicated an increase in the organic carbon content of aerosols as the Sacramento urban plume aged. Computer controlled scanning electron microscopy coupled with an energy dispersive X-ray detector (CCSEM/EDX) and scanning transmission X-ray microscopy coupled with near edge X-ray absorption spectroscopy (STXM/NEXAFS) were used to probe the chemical composition and morphology of individual particles. It was found that the mass of organic carbon on individual particles increased through condensation of secondary organic aerosol. STXM/NEXAFS indicated that the number fraction of homogenous organic particles lacking inorganic inclusions (greater than ~50 nm diameter) increased with plume age as did the organic mass per particle. Comparison of the CARES spectro-microscopic data set with a similar dataset obtained in Mexico City during the MILAGRO campaign showed that individual particles in Mexico City contained twice as much carbon as those sampled during CARES. The number fraction of soot particles at the Mexico City urban site (30%) was larger than at the CARES urban site (10%) and the most aged samples from CARES contained less carbon-carbon double bonds. Differences between carbonaceous particles in Mexico City and California result from different sources, photochemical conditions, gas phase reactants, and secondary organic aerosol precursors. The detailed results provided by these spectro-microscopic measurements will allow for a comprehensive evaluation of aerosol process models used in climate research.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2013-04-03
    Description: Laboratory studies of immersion and deposition mode ice nucleation of ozone aged mineral dust particles Atmospheric Chemistry and Physics Discussions, 13, 8701-8767, 2013 Author(s): Z. A. Kanji, A. Welti, C. Chou, O. Stetzer, and U. Lohmann Ice nucleation in the atmosphere is central to the understanding the microphysical properties of mixed-phase and cirrus clouds. Ambient conditions such as temperature ( T ) and relative humidity (RH), as well as aerosol properties such as chemical composition and mixing state play an important role in predicting ice formation in the troposphere. Previous field studies have reported the absence of sulphate and organic compounds on mineral dust ice crystal residuals sampled at mountain top stations or aircraft based measurements despite the long range transport mineral dust is subjected to. We present laboratory studies of ice nucleation for immersion and deposition mode on ozone aged mineral dust particles for 233 〈 T 〈 263 K that will represent ageing but not internal mixing with in(organic) compounds. Heterogeneous ice nucleation of untreated kaolinite (Ka) and Arizona Test Dust (ATD) particles is compared to corresponding aged particles that are subjected to ozone exposures of 0.4–4.3 ppmv in a stainless steel aerosol tank. The portable ice nucleation counter (PINC) and immersion chamber combined with the Zurich ice nucleation chamber (IMCA – ZINC) are used to conduct deposition and immersion mode measurements respectively. Ice active fractions as well as ice active surface site densities ( n s ) are reported and observed to increase as a function of temperature. We present first results that demonstrate enhancement of the ice nucleation ability of aged mineral dust particles in both the deposition and immersion mode due to ageing. Additionally, these are also the first results to show a suppression of heterogeneous ice nucleation without the condensation of a coating of (in)organic material. In immersion mode, low exposure Ka particles showed enhanced ice activity requiring a median freezing temperature of 1.5 K warmer than that of untreated Ka whereas high exposure ATD particles showed suppressed ice nucleation requiring a median freezing temperature of 3 K colder than that of untreated ATD. In deposition mode, low exposure Ka had ice active fractions of an order of magnitude higher than untreated Ka, where as high exposure ATD had ice active fractions up to a factor of 4 lower than untreated ATD. Based on our results, we present parameterizations in terms of n s ( T ) that can represent ice nucleation of atmospherically aged and non-aged particles for both immersion and deposition mode. We find excellent agreement (to within less than a factor of 2) with field measurements when parameterizations derived from our results are used to predict ice nuclei concentrations in the troposphere.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2013-04-03
    Description: Retrieval of the Eyjafjallajökull volcanic aerosol optical and microphysical properties from POLDER/PARASOL measurements Atmospheric Chemistry and Physics Discussions, 13, 8663-8699, 2013 Total and polarized radiances provided by the Polarization and Directionality of Earth Reflectances (POLDER) satellite sensor are used to retrieve the microphysical and optical properties of the volcanic plume observed during the Eyjafjallajökull volcano eruption in 2010, over cloud-free and cloudy ocean scenes. We selected two plume conditions, fresh aerosols near the sources (three cases) and a downwind volcanic plume observed over the North Sea 30 h after its injection into the atmosphere (aged aerosols). In the near-source conditions, the aerosol properties depend on the distance to the plume. Within the plume, aerosols are mainly non-spherical and in the coarse mode with an effective radius equal to 1.50 (± 0.15) μm and an Ångström Exponent (AE) close to 0.0. Far from the plume, in addition to the coarse mode, there are smaller particles retrieved in the accumulation mode suggesting a mixture of sulfate aerosols and volcanic dust, resulting in an AE around 0.8. The properties of the aerosols also depend on whether the plume is fresh or aged. For the downwind (aged) plume, if non-spherical coarse particles as well as some fine mode particles are still retrieved, the AE is smaller, around ~ 0.4. In addition, the real refractive index (RR) values are larger for the downwind plume (1.42 〈 RR 〈 1.58) than for the near-source plume (1.38 〈 RR 〈 1.48). The mean Single Scattering Albedo (SSA) retrieved at 0.865 μm was estimated at 0.97 over some parts of the downwind and near-source plumes; despite the low accuracy of our retrievals, the derived SSA values suggest that the ash particles are rather absorbing. To consider the particle shape, a combination of spheroid models is used. Although the employed model enabled accurate modeling of the POLDER signal in case of non-spherical ash, our approach failed to model the signal over the optically thickest parts of the near-source plume. The most probable reason for this is speculated to be the presence of ice crystals within the plume. For the Aerosol Above Clouds (AAC) scenes, polarized measurements allowed the retrieval of the Optical Thickness (OT) and the AE of optically thin volcanic ash. We found that all the cloud parameters retrieved by passive sensors were biased due to the presence of the elevated volcanic plumes. Finally, thermal infrared measurements were used to identify the type of multi-layer scene (i.e. cirrus clouds or volcanic dust above liquid clouds) and the retrieval method also provided the OT of thin cirrus layers above the clouds near Iceland.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2013-04-06
    Description: Present and future nitrogen deposition to national parks in the United States: critical load exceedances Atmospheric Chemistry and Physics Discussions, 13, 9151-9178, 2013 Author(s): R. A. Ellis, D. J. Jacob, M. Payer, L. Zhang, C. D. Holmes, B. A. Schichtel, T. Blett, E. Porter, L. H. Pardo, and J. A. Lynch National parks in the United States are protected areas wherein the natural habitat is to be conserved for future generations. Deposition of anthropogenic nitrogen (N) transported from areas of human activity (fuel combustion, agriculture) may affect these natural habitats if it exceeds an ecosystem-dependent critical load (CL). We quantify and interpret the deposition to Class I US national parks for present-day and future (2050) conditions using the GEOS-Chem global chemical transport model with 1/2° × 2/3° horizontal resolution over North America. We estimate CL values in the range 2.5–5 kg N ha −1 yr −1 for the different parks with the goal of protecting the most sensitive ecosystem receptors. For present-day conditions, we find 24 out of 45 parks to be in CL exceedance and 14 more to be marginally so. Many of these are in remote areas of the West. Most (40–85%) of the deposition originates from NO x emissions (fuel combustion). We then project future changes in N deposition using the Representative Concentration Pathway (RCP) emission scenarios for 2050. These feature 52–73% declines in US NO x emissions relative to present but 19–50% increases in US ammonia (NH 3 ) emissions. Nitrogen deposition at US national parks then becomes dominated by domestic NH 3 emissions. While deposition decreases in the East relative to present, there is little progress in the West and increases in some regions. We find that 17–25 US national parks will have CL exceedances in 2050 based on the RCP scenarios. Even in total absence of anthropogenic NO x emissions, 14–18 parks would still have a CL exceedance. Returning all parks to N deposition below CL by 2050 will require at least a 55% decrease in anthropogenic NH 3 emissions relative to RCP-projected 2050 levels.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2013-04-06
    Description: Redox activity of naphthalene secondary organic aerosol Atmospheric Chemistry and Physics Discussions, 13, 9107-9149, 2013 Author(s): R. D. McWhinney, S. Zhou, and J. P. D. Abbatt Chamber secondary organic aerosol (SOA) from low-NO x photooxidation of naphthalene by hydroxyl radical was examined with respect to its redox cycling behaviour using the dithiothreitol (DTT) assay. Naphthalene SOA was highly redox active, consuming DTT at an average rate of 118 ± 14 pmol per minute per μg of SOA material. Measured particle-phase masses of the major previously identified redox active products, 1,2- and 1,4-naphthoquinone, accounted for only 21 ± 3% of the observed redox cycling activity. The redox-active 5-hydroxy-1,4-naphthoquinone was identified as a new minor product of naphthalene oxidation, and including this species in redox activity predictions increased the predicted DTT reactivity to 30 ± 5% of observations. Similar attempts to predict redox behaviour of oxidised two-stroke engine exhaust particles by measuring 1,2-naphthoquinone, 1,4-naphthoquinone and 9,10-phenanthrenequinone predicted DTT decay rates only 4.9 ± 2.5% of those observed. Together, these results suggest that there are substantial unidentified redox-active SOA constituents beyond the small quinones that may be important toxic components of these particles. A gas-to-SOA particle partitioning coefficient was calculated to be (7.0 ± 2.5) × 10 −4 m 3 μg −1 for 1,4-naphthoquinone at 25 °C. This value suggests that under typical warm conditions, 1,4-naphthoquinone is unlikely to contribute strongly to redox behaviour of ambient particles, although further work is needed to determine the potential impact under conditions such as low temperatures where partitioning to the particle is more favourable. As well, higher order oxidation products that likely account for a substantial fraction of the redox cycling capability of the naphthalene SOA are likely to partition much more strongly to the particle phase.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2013-09-07
    Description: Factors that influence surface PM 2.5 values inferred from satellite observations: perspective gained for the Baltimore-Washington Area during DISCOVER-AQ Atmospheric Chemistry and Physics Discussions, 13, 23421-23459, 2013 Author(s): S. Crumeyrolle, G. Chen, L. Ziemba, A. Beyersdorf, L. Thornhill, E. Winstead, R. Moore, M. A. Shook, and B. Anderson During the NASA DISCOVER-AQ campaign over the Washington D.C., - Baltimore, MD, metropolitan region in July 2011, the NASA P-3B aircraft performed extensive profiling of aerosol optical, chemical, and microphysical properties. These in-situ profiles were coincident with ground based remote sensing (AERONET) and in-situ (PM 2.5 ) measurements. Here, we use this data set to study the correlation between the PM 2.5 observations at the surface and the column integrated measurements. Aerosol optical depth (AOD) calculated with the extinction (532 nm) measured during the in-situ profiles was found to be strongly correlated with the volume of aerosols present in the boundary layer (BL). Despite the strong correlation, some variability remains, and we find that the presence of aerosol layers above the BL (in the buffer layer – BuL) introduces a significant uncertainties in PM 2.5 estimates based on column-integrated measurements. This motivates the use of active remote sensing techniques to dramatically improve air quality retrievals. Since more than a quarter of the AOD values observed during DISCOVER-AQ are dominated by aerosol water uptake, the f (RH) amb (obtained from two nephelometers at different relative humidities – RHs) is used to study the impact of the aerosol hygroscopicity. The results indicate that PM 2.5 can be predicted within a factor of 1.6 even when the vertical variability of the f (RH) amb is assumed to be negligible.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    facet.materialart.
    Unknown
    Copernicus
    Publication Date: 2013-09-07
    Description: On clocks and clouds Atmospheric Chemistry and Physics Discussions, 13, 23461-23490, 2013 Author(s): M. K. Witte, P. Y. Chuang, and G. Feingold Cumulus clouds exhibit a life cycle that consists of: (a) the growth phase (increasing size, most notably in the vertical direction); (b) the mature phase (growth ceases; any precipitation that develops is strongest during this period); and (c) the dissipation phase (cloud dissipates because of precipitation and/or entrainment; no more dynamical support). Although radar can track clouds over time and give some sense of the age of a cloud, most aircraft in situ measurements lack temporal context. We use large eddy simulations of trade wind cumulus cloud fields from cases during the Barbados Oceanographic and Meteorological Experiment (BOMEX) and Rain In Cumulus over the Ocean (RICO) campaigns to demonstrate a potential cumulus cloud "clock". We find that the volume-averaged total water mixing ratio r t is a useful cloud clock for the 12 clouds studied. A cloud's initial r t is set by the subcloud mixed-layer mean r t and decreases monotonically from the initial value due primarily to entrainment. The clock is insensitive to aerosol loading, environmental sounding and extrinsic cloud properties such as lifetime and volume. In some cases (more commonly for larger clouds), multiple pulses of buoyancy occur, which complicate the cumulus clock by replenishing r t . The clock is most effectively used to classify clouds by life phase.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2013-09-11
    Description: Assessment of the effect of air pollution controls on trends in shortwave radiation over the United States from 1995 through 2010 from multiple observation networks Atmospheric Chemistry and Physics Discussions, 13, 23719-23755, 2013 Author(s): C.-M. Gan, J. Pleim, R. Mathur, C. Hogrefe, C. N. Long, J. Xing, S. Roselle, and C. Wei Long term datasets of all-sky and clear-sky downwelling shortwave (SW) radiation, cloud cover fraction and aerosol optical depth (AOD) are analyzed together with surface concentration from several networks (e.g. SURFRAD, CASTNET, IMPROVE and ARM) in the United States (US). Seven states with varying climatology are selected to better understand the effects of aerosols and clouds on SW radiation. This analysis aims to assess the effects of reductions in anthropogenic aerosol burden resulting from substantial reductions in emissions of sulfur dioxide (SO 2 ) and nitrogen oxides (NO x ) over the past 16 yr across the US on trends in SW radiation. The SO 2 and NO x emission data show decreasing trends from 1995 to 2010 which indirectly validates the effects of the Clean Air Act (CAA) in the US. Meanwhile, the total column AOD and surface total PM 2.5 observations also show decreasing trends in the eastern US but slightly increasing trends in the western US. Moreover, measured surface concentrations of several other pollutants (i.e. SO 2 , SO 4 and NO x ) have the same behavior as the AOD and total PM 2.5 . First, all-sky downwelling SW radiation is assessed together with the cloud cover. Results of this analysis show strong increasing trends in all-sky downwelling SW radiation with decreasing trends in cloud cover. However, since observations of both all-sky direct and diffuse SW radiation are increasing, there may be other factors contributing to the radiation trends in addition to the decreasing trends in overall cloud cover. To investigate the role of direct radiative effects of aerosols, clear-sky downwelling radiation is analyzed so that cloud effects are eliminated. However, similar increasing trends in clear-sky direct and diffuse SW radiation are observed. While significantly decreasing trends in AOD and surface concentration along with increasing SW radiation (both all-sky and clear-sky) in the eastern US during 1995–2010 imply the occurrence of direct aerosol mediated "brightening", the increasing trends of both all-sky and clear sky diffuse SW radiation contradicts this conclusion since diffuse radiation would be expected to decrease as aerosols direct effects decrease. After investigating several confounding factors, the increasing trend in diffuse SW may be due to more high-level cirrus from increasing air traffic over the US. In contrast to the eastern US, radiation observations in the western US do not show any indication of "brightening" which is consistent with the observations (e.g. AOD, PM 2.5 and surface concentration) that show the aerosol loading increasing slightly. This outcome is not unexpected because the CAA controls were mainly aimed at reducing air pollutants emission in the eastern US and air pollutant level in the western US are much lower.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2013-09-12
    Description: Modeled global effects of airborne desert dust on air quality and premature mortality Atmospheric Chemistry and Physics Discussions, 13, 24023-24050, 2013 Author(s): D. Giannadaki, A. Pozzer, and J. Lelieveld Fine particulate matter is one of the most important factors contributing to air pollution. Epidemiological studies have related increased levels of atmospheric particulate matter to premature human mortality caused by cardiopulmonary disease and lung cancer. However, a limited number of investigations have focused on the contribution of airborne desert dust particles. Here we assess the effects of dust particles with an aerodynamic diameter smaller than 2.5 μm (DU 2.5 ) on human mortality for the year 2005. We used the EMAC atmospheric chemistry general circulation model at high resolution to simulate global atmospheric dust concentrations. We applied a health impact function to estimate premature mortality for the global population of 30 yr and older, using parameters from epidemiological studies. We estimate a global cardiopulmonary mortality of about 402 thousand and about 10 thousand by lung cancer in 2005. The associated years of life lost are about 3.47 million and 96 thousand per year due to cardiopulmonary disease and lung cancer, respectively. We estimate the global fraction of the cardiopulmonary and lung cancer deaths caused by atmospheric desert dust to be about 1.7%, though in the 20 countries most affected by dust this is much higher, about 15–50%. These countries are primarily found in the so-called "dust belt" from North Africa across the Middle East and South Asia to East Asia.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2013-09-12
    Description: Aerosols optical and physical characteristics and direct radiative forcing during a "Shamal" dust storm, a case study Atmospheric Chemistry and Physics Discussions, 13, 23895-23941, 2013 Author(s): T. M. Saeed, H. Al-Dashti, and C. Spyrou Dust aerosols are analyzed for their optical and physical properties during an episode of dust storm that hit Kuwait on 26 March 2003 when "Iraqi Freedom" military operation was in full swing. The intensity of the dust storm was such that it left a thick suspension of dust throughout the following day, 27 March, resulting in a considerable cooling effect at the surface on both days. Ground-based measurements of aerosol optical thickness reached 3.617 and 4.17 on 26–27 March respectively while Ångstrom coefficient, α 870/440 , dropped to −0.0234 and −0.0318. Particulate matter concentration of diameter 10 μm or less, PM 10 , peaked at 4800 μg m −3 during dust storm hours of 26 March. Moderate resolution imaging spectrometer (MODIS) retrieved optical and physical characteristics that exhibited extreme values as well. The synoptic of the dust storm is presented and source regions are identified using total ozone mapping spectrometer (TOMS) aerosol index retrieved images. The vertical profile of the dust layer was simulated using SKIRON atmospheric model. Instantaneous net direct radiative forcing is calculated at top of atmosphere (TOA) and surface level. The thick dust layer of 26 March resulted in cooling the TOA by −60 Wm −2 and surface level by −175 Wm −2 for a surface albedo of 0.35. Slightly higher values were obtained for 27 March due to the increase in aerosol optical thickness. The large reduction in the radiative flux at the surface level had caused a drop in surface temperature by approximately 6 °C below its average value. Radiative heating/cooling rates in the shortwave and longwave bands were also examined. Shortwave heating rate reached a maximum value of 2 °K day −1 between 3 and 5 km, dropped to 1.5 °K day −1 at 6 km and diminished at 8 km. Longwave radiation initially heated the lower atmosphere by a maximum value of 0.2 °K day −1 at surface level, declined sharply at increasing altitude and diminished at 4 km. Above 4 km longwave radiation started to cool the atmosphere slightly reaching a maximum rate of −0.1 °K day −1 at 6 km.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2013-09-12
    Description: A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling Atmospheric Chemistry and Physics Discussions, 13, 23845-23893, 2013 Author(s): G. A. Grell and S. R. Freitas A convective parameterization is described and evaluated that may be used in high resolution non-hydrostatic mesoscale models as well as in modeling systems with unstructured varying grid resolutions and for convection aware simulations. This scheme is based on a stochastic approach originally implemented by Grell and Devenyi (2002). Two approaches are tested on resolutions ranging from 20 to 5 km. One approach is based on spreading subsidence to neighboring grid points, the other one on a recently introduced method by Arakawa et al. (2011). Results from model intercomparisons, as well as verification with observations indicate that both the spreading of the subsidence and Arakawa's approach work well for the highest resolution runs. Because of its simplicity and its capability for an automatic smooth transition as the resolution is increased, Arakawa's approach may be preferred. Additionally, interactions with aerosols have been implemented through a CCN dependent autoconversion of cloud water to rain as well as an aerosol dependent evaporation of cloud drops. Initial tests with this newly implemented aerosol approach show plausible results with a decrease in predicted precipitation in some areas, caused by the changed autoconversion mechanism. This change also causes a significant increase of cloud water and ice detrainment near the cloud tops. Some areas also experience an increase of precipitation, most likely caused by strengthened downdrafts.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2013-09-14
    Description: Climatology of new particle formation events in the subtropical North Atlantic free troposphere at Izaña GAW observatory Atmospheric Chemistry and Physics Discussions, 13, 24127-24169, 2013 Author(s): M. I. García, S. Rodríguez, Y. González, and R. D. García A climatology of new particle formation (NPF) events in the subtropical North Atlantic free troposphere is presented. A four year data set (June 2008–June 2012), which includes number size distributions (10–600 nm), reactive gases (SO 2 , NO x , and O 3 ), several components of solar radiation and meteorological parameters, measured at Izaña Global Atmospheric Watch observatory (2400 m above sea level; Tenerife, Canary Islands) was analysed. On average, NPF occurred during 30% of the days,the mean values of the formation and growth rates during the study period were 0.49 cm −3 s −1 and 0.42 nm h −1 , correspondingly. There is a clearly marked NPF season (May to August), when these events account for 50 to 60% of the days/month. Monthly mean values of the formation and growth rates exhibit higher values during this season (0.50–0.95 cm −3 s −1 and 0.48–0.58 nm h −1 , respectively) than during other periods. The two steps (formation and growth) of the NPF process mostly occur under the prevailing northern winds typical of this region. Sulphur dioxide and UV radiation show higher levels during NPF events than in other type of episodes. The presence of Saharan dust in the free troposphere is associated with a decrease in the formation rates of new particles. In the analysis of the year-to-year variability, mean sulphur dioxide concentration (within the range 60–300 ppt) was the parameter that exhibited the highest correlation with the frequency of NPF episodes. The availability of this trace gas (i.e. their oxidation products) seems also to have a influence on the duration of the events, number of formed nucleation particles, formation rates and growth rates. We identified a set of NPF events in which two nucleation modes (that may evolve at different rates) occur simultaneously and for which further investigations are necessary.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2013-09-14
    Description: Numerical analysis of the chemical kinetic mechanisms of ozone depletion and halogen release in the polar troposphere Atmospheric Chemistry and Physics Discussions, 13, 24171-24222, 2013 Author(s): L. Cao, H. Sihler, U. Platt, and E. Gutheil In recent years, the role of halogen species (e.g. Br, Cl) in the troposphere of polar regions is investigated after the discovery of their importance for boundary layer ozone destruction in the polar spring. Halogen species take part in an auto-catalytic chemical cycle including key self reactions. In this study, several chemical reaction schemes are investigated, and the importance of specific reactions and their rate constants is identified by a sensitivity analysis. A category of heterogeneous reactions related to HOBr activate halogen ions from sea salt aerosols, fresh sea ice or snow pack, driving the "bromine explosion". In the Arctic, a small amount of NO x may exist, which comes from nitrate contained in the snow, and this NO x may have a strong impact on ozone depletion. The heterogeneous reaction rates are parameterized by considering the aerodynamic resistance, a reactive surface ratio, β, i.e. ratio of reactive surface area to total ground surface area, and the boundary layer height, L mix . It is found that for β = 1, the ozone depletion process starts after five days and lasts for 40 h for L mix = 200 m. Ozone depletion duration becomes independent of the height of the boundary layer for about β≥20, and it approaches a value of two days for β=100. The role of nitrogen and chlorine containing species on the ozone depletion rate is studied. The calculation of the time integrated bromine and chlorine atom concentrations suggests a value in the order of 10 3 for the [Br] / [Cl] ratio, which reveals that atomic chlorine radicals have minor direct influence on the ozone depletion. The NO x concentrations are influenced by different chemical cycles over different time periods. During ozone depletion, the reaction cycle involving the BrONO 2 hydrolysis is dominant. A critical value of 0.002 of the uptake coefficient of the BrONO 2 hydrolysis reaction at the aerosol and saline surfaces is identified, beyond which the existence of NO x species accelerate the ozone depletion event – for lower values, deceleration occurs.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2013-09-17
    Description: Modeling the influence of precursor volatility and molecular structure on secondary organic aerosol formation using evaporated fuel experiments Atmospheric Chemistry and Physics Discussions, 13, 24405-24434, 2013 Author(s): S. H. Jathar, N. M. Donahue, P. J. Adams, and A. L. Robinson We use SOA production data from an ensemble of evaporated fuels to test various SOA formation models. Except for gasoline, traditional SOA models focusing exclusively on volatile species in the fuels under-predict the observed SOA formation. These models can be improved dramatically by accounting for lower volatility species, but at the cost of a large set of free parameters. In contrast, a SOA model based only on the volatility of the precursor, starting with the volatility distribution of the evaporated fuels and optimized for the volatility reduction of first-generation products, reasonably reproduces the observed SOA formation with relatively few free parameters. The exceptions are exotic fuels such as Fischer-Tropsch fuels that expose the central assumption of the volatility based model that most emissions consist of complex mixtures displaying reasonably average behavior. However, for the vast majority of fuels, the volatility based model performs well.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2013-09-17
    Description: Secondary organic aerosol production from diesel vehicle exhaust: impact of aftertreatment, fuel chemistry and driving cycle Atmospheric Chemistry and Physics Discussions, 13, 24223-24262, 2013 Author(s): T. D. Gordon, A. A. Presto, N. T. Nguyen, W. H. Robertson, K. Na, K. N. Sahay, M. Zhang, C. Maddox, P. Rieger, S. Chattopadhyay, H. Maldonado, M. M. Maricq, and A. L. Robinson Environmental chamber ("smog chamber") experiments were conducted to investigate secondary organic aerosol (SOA) production from dilute emissions from two medium-duty diesel vehicles (MDDVs) and three heavy-duty diesel vehicles (HDDVs) under urban-like conditions. Some of the vehicles were equipped with emission control aftertreatment devices including diesel particulate filters (DPF), selective catalytic reduction (SCR) and diesel oxidation catalysts (DOC). Experiments were also performed with different fuels (100% biodiesel and low-, medium- or high-aromatic ultralow sulfur diesel) and driving cycles (Unified Cycle, Urban Dynamometer Driving Schedule, and creep+idle). During normal operation, vehicles with a catalyzed DPF emitted very little primary particulate matter (PM). Furthermore, photo-oxidation of dilute emissions from these vehicles produced essentially no SOA (below detection limit). However, significant primary PM emissions and SOA production were measured during active DPF regeneration experiments. Nevertheless, under reasonable assumptions about DPF regeneration frequency, the contribution of regeneration emissions to the total vehicle emissions is negligible, reducing PM trapping efficiency by less than 2%. Therefore, catalyzed DPFs appear to be very effective in reducing both primary and secondary fine particulate matter from diesel vehicles. For both MDDVs and HDDVs without aftertreatment substantial SOA formed in the smog chamber – with the emissions from some vehicles generating twice as much SOA as primary organic aerosol after three hours of oxidation at typical urban VOC : NO x ratios (3:1). Comprehensive organic gas speciation was performed on these emissions, but less than half of the measured SOA could be explained by traditional (speciated) SOA precursors. The remainder presumably originates from the large fraction (~30%) of the non-methane organic gas emissions that could not be speciated using traditional one-dimensional gas-chromatography. The unspeciated organics – likely comprising less volatile species, such as intermediate volatility organic compounds – appear to be important SOA precursors; we estimate that the effective SOA yield (defined as the ratio of SOA mass to reacted precursor mass) was 9 ± 6% if both speciated SOA precursors and unspeciated organics are included in the analysis. SOA production from creep+idle operation was 3–4 times larger than SOA production from the same vehicle operated over the Urban Dynamometer Driving Schedule (UDDS). Fuel properties had little or no effect on primary PM emissions or SOA formation.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2013-09-17
    Description: Primary to secondary organic aerosol: evolution of organic emissions from mobile combustion sources Atmospheric Chemistry and Physics Discussions, 13, 24263-24300, 2013 Author(s): A. A. Presto, T. D. Gordon, and A. L. Robinson A series of smog chamber experiments were conducted to investigate the transformation of primary organic aerosol (POA) and formation of secondary organic aerosol (SOA) during the photo-oxidation of dilute gasoline and diesel motor vehicle exhaust. In half of the experiments POA was present in the chamber at the onset of photo-oxidation. In these experiments positive matrix factorization (PMF) was used to determine separate POA and SOA factors from aerosol mass spectrometer data. A two-factor solution, with one POA factor and one SOA factor, was sufficient to describe the organic aerosol in all but one experiment. In the other half of the experiments, POA was not present at the onset of photo-oxidation; these experiments are considered "pure SOA" experiments. The POA mass spectrum was similar to the mass spectra of the hydrocarbon-like organic aerosol factor determined from ambient datasets with one exception, a diesel vehicle equipped with a diesel oxidation catalyst. The SOA in all experiments had a constant composition over the course of photo-oxidation, and did not appear to age with continued oxidation. The SOA mass spectra for the various gasoline and diesel vehicles were similar to each other, but markedly different than ambient oxidized organic aerosol factors. Van Krevelen analysis of the POA and SOA factors for gasoline and diesel experiments reveal slopes of −0.68 and −0.43, respectively. This suggests that the oxidation chemistry in these experiments is a combination of carboxylic acid and alcohol/peroxide formation, consistent with ambient oxidation chemistry. These experiments also provide insight to the mixing behavior of the POA and SOA. Analysis of the time series of the POA factor concentration and a basis-set model both indicate that for all but one of the vehicles tested here, the POA and SOA seem to mix and form a single organic aerosol phase.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2013-09-17
    Description: CARIBIC DOAS observations of nitrous acid and formaldehyde in a large convective cloud Atmospheric Chemistry and Physics Discussions, 13, 24343-24403, 2013 Author(s): K.-P. Heue, H. Riede, D. Walter, C. A. M. Brenninkmeijer, T. Wagner, U. Frieß, U. Platt, A. Zahn, G. Stratmann, and H. Ziereis The CARIBIC (Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container) flying laboratory measures once per month the chemical composition at cruise altitude (10...12 km) during 4 consecutive Lufthansa flights. Here we present a case study of enhanced nitrogen oxides (NO x ), nitrous acid (HONO), and formaldehyde (HCHO) in a thunderstorm cloud over the Caribbean islands of Guadeloupe in August 2011. Nitrous acid is an important reservoir gas for OH radicals, and only few observations of HONO at cruise altitude exist. CARIBIC is designed as a long period atmospheric observation system, the actual system has been flying almost monthly since 8 yr now. During this period only very few similar events (one since 2008) were observed. Due to multiple scattering the light path inside clouds is enhanced, thereby lowering the detection limit of the DOAS instrument. Under background conditions the detection limits are 46 ppt for HONO, 387 ppt for \chem{HCHO}, and 100 ppt for NO 2 and are roughly three times lower inside the cloud. Based on radiative transfer simulations we estimate the path length to 90{\ldots}100 km and the cloud top height to ≈15 km. The inferred mixing ratios of HONO, HCHO and NO 2 are 37 ppt, 400 ppt and 170 ppt, respectively. Bromine monoxide (BrO) remained below the detection limit of 1 ppt. Because the uplifted air masses originated from the remote marine boundary layer and lightning was observed in the area by the World Wide Lightning Location Network several hours prior to the measurement, the NO (≈1.5 ppb) enhancement was in all likelihood caused by lightning. The main source for the observed HCHO is probably updraught from the boundary layer, because the chemical formation of formaldehyde due to methane oxidation is too weak. Besides HCHO also CH 3 OOH and isoprene are considered as precursors. The chemical box model CAABA is used to estimate the \chem{NO} and HCHO source strengths, which are necessary to explain our measurements. For NO a source strength of 8.25 × 10 9 molec cm −2 s −1 km −1 is found, which corresponds to the lightning activity as observed by the World Wide Lightning Location network and a lightning emission of 4.2 × 10 25 NO molec/flash. The HCHO updraught is of the order of 121 × 10 9 molec cm −2 s −1 km −1 . Also isoprene and CH 3 OOH as possible HCHO sources were studied and similar source strengths were found.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2013-09-18
    Description: Oligomer formation within secondary organic aerosol: equilibrium and dynamic considerations Atmospheric Chemistry and Physics Discussions, 13, 24605-24634, 2013 Author(s): E. R. Trump and N. M. Donahue We present a model based on the volatility basis set to consider the potential influence of oligomer content on volatility-driven SOA yields. The implications for aerosol evaporation studies, including dilution, chamber thermo-equilibration, and thermodenuder studies are also considered. A simplified description of oligomer formation reproduces essentially all of the broad classes of equilibrium and dynamical observations related to SOA formation and evaporation: significant oligomer content may be consistent with mass yields that increase with organic aerosol mass concentration; reversible oligomerization can explain the hysteresis between the rate of SOA formation and its evaporation rate upon dilution; and the model is consistent with both chamber thermo-equilibration studies and thermodenuder studies of SOA evaporation.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2013-09-18
    Description: Factors controlling variability in the oxidative capacity of the troposphere since the Last Glacial Maximum Atmospheric Chemistry and Physics Discussions, 13, 24517-24603, 2013 Author(s): L. T. Murray, L. J. Mickley, J. O. Kaplan, E. D. Sofen, M. Pfeiffer, and B. Alexander The oxidative capacity of past atmospheres is highly uncertain. We present here a new climate-biosphere-chemistry modeling framework to determine oxidant levels in the present and past troposphere. We use the GEOS-Chem chemical transport model driven by meteorological fields from the NASA Goddard Institute of Space Studies (GISS) ModelE, with land cover and fire emissions from dynamic global vegetation models. We present time-slice simulations for the present day, late preindustrial (AD 1770), and the Last Glacial Maximum (LGM; 19–23 ka), and we test the sensitivity of model results to uncertainty in lightning and fire emissions. We find that most preindustrial and paleo climate simulations yield reduced oxidant levels relative to the present day. Contrary to prior studies, tropospheric mean OH in our ensemble shows little change at the LGM relative to the preindustrial (0.5 ± 12%), despite large reductions in methane concentrations. We find a simple linear relationship between tropospheric mean ozone photolysis rates, water vapor, and total emissions of NO x and reactive carbon that explains 72% of the variability in global mean OH in 11 different simulations across the last glacial-interglacial time interval and the Industrial Era. Key parameters controlling the tropospheric oxidative capacity over glacial-interglacial periods include overhead stratospheric ozone, tropospheric water vapor, and lightning NO x emissions. Variability in global mean OH since the LGM is insensitive to fire emissions. Our simulations are broadly consistent with ice-core records of Δ 17 O in sulfate and nitrate at the LGM, and CO, HCHO, and H 2 O 2 in the preindustrial. Our results imply that the glacial-interglacial changes in atmospheric methane observed in ice cores are predominantly driven by changes in its sources as opposed to its sink with OH.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2013-09-25
    Description: Characterizing the impact of urban emissions on regional aerosol particles; airborne measurements during the MEGAPOLI experiment Atmospheric Chemistry and Physics Discussions, 13, 24885-24924, 2013 Author(s): E. J. Freney, K. Sellegri, F. Canonaco, A. Colomb, A. Borbon, V. Michoud, J.-F. Doussin, S. Crumeyrolle, N. Amarouch, J.-M. Pichon, A. S. H. Prévôt, M. Beekmann, and A. Schwarzenböeck The MEGAPOLI experiment took place in July 2009. The aim of this campaign was to study the aging and reactions of aerosol and gas-phase emissions in the city of Paris. Three ground-based measurement sites and several mobile platforms including instrument equipped vehicles and the ATR-42 aircraft were involved. We present here the variations in particle- and gas-phase species over the city of Paris using a combination of high-time resolution measurements aboard the ATR-42 aircraft. Particle chemical composition was measured using a compact time-of-flight aerosol mass spectrometer (C-ToF-AMS) giving detailed information of the non-refractory submicron aerosol species. The mass concentration of BC, measured by a particle absorption soot photometer (PSAP), was used as a marker to identify the urban pollution plume boundaries. Aerosol mass concentrations and composition were affected by air-mass history, with air masses that spent longest time over land having highest fractions of organic aerosol and higher total mass concentrations. The Paris plume is mainly composed of organic aerosol (OA), black carbon and nitrate aerosol, as well as high concentrations of anthropogenic gas-phase species such as toluene, benzene, and NO x . Using BC and CO as tracers for air-mass dilution, we observe the ratio of ΔOA / ΔBC and ΔOA / ΔCO increase with increasing photochemical age (−log(NO x / NO y ). Plotting the equivalent ratios for the Positive Matrix Factorization (PMF) resolved species (LV-OOA, SV-OOA, and HOA) illustrate that the increase in OA is a result of secondary organic aerosol (SOA). Within Paris the changes in the ΔOA / ΔCO are similar to those observed during other studies in Mexico city, Mexico and in New England, USA. Using the measured VOCs species together with recent organic aerosol formation yields we predicted ~ 50% of the measured organics. These airborne measurements during the MEGAPOLI experiment show that urban emissions contribute to the formation of OA, and have an impact on aerosol composition on a regional scale. They provide a quantitative measure of this impact in terms of urban plume composition and evolution relative to background aerosol composition.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2013-09-25
    Description: Role of ozone in SOA formation from alkane photooxidation Atmospheric Chemistry and Physics Discussions, 13, 24713-24754, 2013 Author(s): X. Zhang, R. H. Schwantes, M. M. Coggon, C. L. Loza, K. A. Schilling, R. C. Flagan, and J. H. Seinfeld Long-chain alkanes, which can be categorized as intermediate volatile organic compounds (IVOCs), are an important source of secondary organic aerosol (SOA). Mechanisms for the gas-phase OH-initiated oxidation of long-chain alkanes have been well documented; particle-phase chemistry, however, has received less attention. The δ-hydroxycarbonyl, which is generated from the isomerization of alkoxy radicals, can undergo heterogeneous cyclization to form substituted dihydrofuran. Due to the presence of C=C bonds, the substituted dihydrofuran is predicted to be highly reactive with OH, and even more so with O 3 and NO 3 , thus opening a reaction pathway that is not usually accessible to alkanes. This work focuses on the role of substituted dihydrofuran formation and its subsequent reaction with OH, and more importantly ozone, in SOA formation from the photooxidation of long-chain alkanes. Experiments were carried out in the Caltech Environmental Chamber using dodecane as a representative alkane to investigate the difference in aerosol composition generated from "OH-oxidation dominating" vs. "ozonolysis dominating" environments. A detailed mechanism incorporating the specific gas-phase photochemistry, together with the heterogeneous formation of substituted dihydrofuran and its subsequent gas-phase OH/O 3 oxidation, is presented to evaluate the importance of this reaction channel in the dodecane SOA formation. We conclude that: (1) the formation of δ-hydroxycarbonyl and its subsequent heterogeneous conversion to substituted dihydrofuran is significant in the presence of NO x ; (2) the ozonolysis of substituted dihydrofuran dominates over the OH-initiated oxidation under conditions prevalent in urban and rural air; and (3) a spectrum of highly-oxygenated products with carboxylic acid, ester, and ether functional groups are produced from the substituted dihydrofuran chemistry, thereby affecting the average oxidation state of the SOA.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2013-09-25
    Description: A joint data assimilation system (Tan-Tracker) to simultaneously estimate surface CO 2 fluxes and 3-D atmospheric CO 2 concentrations from observations Atmospheric Chemistry and Physics Discussions, 13, 24755-24784, 2013 Author(s): X. Tian, Z. Xie, Y. Liu, Z. Cai, Y. Fu, H. Zhang, and L. Feng To quantitatively estimate CO 2 surface fluxes (CFs) from atmospheric observations, a joint data assimilation system ("Tan-Tracker") is developed by incorporating a joint data assimilation framework into the GEOS-Chem atmospheric transport model. In Tan-Tracker, we choose an identity operator as the CF dynamical model to describe the CFs' evolution, which constitutes an augmented dynamical model together with the GEOS-Chem atmospheric transport model. In this case, the large-scale vector made up of CFs and CO 2 concentrations is taken as the prognostic variable for the augmented dynamical model. And thus both CO 2 concentrations and CFs are jointly assimilated by using the atmospheric observations (e.g., the in-situ observations or satellite measurements). In contrast, in the traditional joint data assimilation frameworks, CFs are usually treated as the model parameters and form a state-parameter augmented vector jointly with CO 2 concentrations. The absence of a CF dynamical model will certainly result in a large waste of observed information since any useful information for CFs' improvement achieved by the current data assimilation procedure could not be used in the next assimilation cycle. Observing system simulation experiments (OSSEs) are carefully designed to evaluate the Tan-Tracker system in comparison to its simplified version (referred to as TT-S) with only CFs taken as the prognostic variables. It is found that our Tan-Tracker system is capable of outperforming TT-S with higher assimilation precision for both CO 2 concentrations and CO 2 fluxes, mainly due to the simultaneous assimilation of CO 2 concentrations and CFs in our Tan-Tracker data assimilation system.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2013-09-26
    Description: AERONET-based microphysical and optical properties of smoke-dominated aerosol near source regions and transported over oceans, and implications for satellite retrievals of aerosol optical depth Atmospheric Chemistry and Physics Discussions, 13, 25013-25065, 2013 Author(s): A. M. Sayer, N. C. Hsu, T. F. Eck, A. Smirnov, and B. N. Holben Smoke aerosols from biomass burning are an important component of the global aerosol cycle. Analysis of Aerosol Robotic Network (AERONET) retrievals of size distribution and refractive index reveals variety between biomass burning aerosols in different global source regions, in terms of aerosol particle size and single scatter albedo (SSA). Case studies of smoke transported to coastal/island AERONET sites also mostly lie within the range of variability at near-source sites. Two broad ''families'' of aerosol properties are found, corresponding to sites dominated by boreal forest burning (larger, broader fine mode, with midvisible SSA ∼0.95), and those influenced by grass, shrub, or crop burning with additional forest contributions (smaller, narrower particles with SSA ∼0.88–0.9 in the midvisible). The strongest absorption is seen in southern African savannah at Mongu (Zambia), with average SSA ∼0.85 in the midvisible. These can serve as candidate sets of aerosol microphysical/optical properties for use in satellite aerosol optical depth (AOD) retrieval algorithms. The models presently adopted by these algorithms over ocean are often insufficiently absorbing to represent these biomass burning aerosols. A corollary of this is an underestimate of AOD in smoke outflow regions, which has important consequences for applications of these satellite datasets.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2013-09-27
    Description: Henry's law constants of diacids and hydroxypolyacids: recommended values Atmospheric Chemistry and Physics Discussions, 13, 25125-25156, 2013 Author(s): S. Compernolle and J.-F. Müller In spite of the importance of diacids and functionalised diacids for organic aerosol formation through aqueous-phase processes in droplets and aerosol water, there seems to be no reliable set of experimental values for their Henry's law constants (HLC). We show that their estimation through the use of infinite dilution activity coefficients is also prone to error. Here we present HLC values for diacids and hydroxy polyacids determined from solubilities, water activities and vapour pressures of solids or solutions, by employing thermodynamic relationships. The vapour pressures are found to be the largest source of error, but the analysis of the obtained HLC points to inconsistencies among specific vapour pressure data sets. Although there is considerable uncertainty, the HLC of diacids appear to be higher than estimated by the often cited review work of Saxena and Hildemann (1996).
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2014-12-17
    Description: Mesoscale modeling study of the interactions between aerosols and PBL meteorology during a haze episode in China Jing–Jin–Ji and its near surrounding region – Part 1: Aerosol distributions and meteorological features Atmospheric Chemistry and Physics Discussions, 14, 31675-31717, 2014 Author(s): H. Wang, M. Xue, X. Y. Zhang, H. L. Liu, C. H. Zhou, S. C. Tan, H. Z. Che, B. Chen, and T. Li The urbanized region of Beijing–Tianjin–Hebei – often shortened to Jing–Jin–Ji and referred to as the 3JNS region in this paper – and its near surrounding region is becoming China's most polluted area by haze, exceeding even the Yangtze and Pearl river deltas. Aside from pollutant emission, the meteorology of the planetary boundary layer (PBL) is the most important factor affecting haze pollution. Focusing on July 2008, the aerosol optical properties and PBL meteorology features closely related with haze formation were simulated in 3JNS region using an online atmospheric chemical transport model. The relationship between regional PBL meteorology, PM 2.5 , and haze is discussed. Model results accurately simulated the aerosol optical depth (AOD), single scattering albedo (SSA) and asymmetry parameter (ASY), validate by comparison with observations from the MODerate Resolution Imaging Spectroradiometer (MODIS), the China Aerosol Remote Sensing NETwork (CARSNET) and the Aerosol Robotic NETwork (AERONET). Modeled PBL wind speeds showed reasonable agreement with those from the National Centers for Environmental Prediction (NCEP) Reanalysis 2. A monthly mean AOD value as high as 1.2 was found from both model and observations, with a daily mean larger than 2.0 during haze episodes in the 3JNS Region. Modeled and observed SSA values of 0.9–0.96 and ASY values of 0.72–0.74 demonstrated the high scattering characteristic of summer aerosols in this region. PBL wind speeds from modeled and NCEP data both showed a reversing trend of PM 2.5 variation, illustrating the importance of the "PBL window shadow" on haze formation. Turbulence diffusion and PBL height showed had opposite phases to surface PM 2.5 , indicating that lower PBL height and weaker PBL turbulence diffusion are essential to haze formation. It is noted that homogeneous air pressure does not occur at the surface but at an 85–950 hPa height during the haze episode. The momentum transmitting downward of the cold air from above the PBL to the low PBL and surface lead to an increase in surface wind speeds and haze dispersal.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2014-11-07
    Description: Long term measurements of optical properties and their hygroscopic enhancement Atmospheric Chemistry and Physics Discussions, 14, 27731-27767, 2014 Author(s): M. Hervo, K. Sellegri, J. M. Pichon, J. C. Roger, and P. Laj Optical properties of aerosols were measured from the GAW Puy de Dôme station (1465 m) over a seven year period (2006–2012). The impact of hygroscopicity on aerosol optical properties was calculated over a two year period (2010–2011). The analysis of the spatial and temporal variability of the optical properties showed that while no long term trend was found, a clear seasonal and diurnal variation was observed on the extensive parameters (scattering, absorption). Scattering and absorption coefficients were highest during the warm season and daytime, in concordance with the seasonality and diurnal variation of the PBL height reaching the site. Intensive parameters (single scattering albedo, asymmetry factor, refractive index) did not show such a strong diurnal variability, but still indicated different values depending on the season. Both extensive and intensive optical parameters were sensitive to the air mass origin. A strong impact of hygroscopicity on aerosol optical properties was calculated, mainly on aerosol scattering, with a dependence on the aerosol type. At 90% humidity, the scattering factor enhancement ( f σ sca ) was more than 4.4 for oceanic aerosol that have mixed with a pollution plume. Consequently, the aerosol radiative forcing was estimated to be 2.8 times higher at RH = 90% and 1.75 times higher at ambient RH when hygroscopic growth of the aerosol was considered. The hygroscopicity enhancement factor of the scattering coefficient was parameterized as a function of humidity and air mass type.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2014-12-16
    Description: A global model simulation for 3-D radiative transfer impact on surface hydrology over Sierra Nevada and Rocky Mountains Atmospheric Chemistry and Physics Discussions, 14, 31603-31625, 2014 Author(s): W.-L. Lee, Y. Gu, K. N. Liou, L. R. Leung, and H.-H. Hsu We investigate 3-D mountain effects on solar flux distributions and their impact on surface hydrology over the Western United States, specifically the Rocky Mountains and Sierra Nevada using CCSM4 (CAM4/CLM4) global model with a 0.23° × 0.31° resolution for simulations over 6 years. In 3-D radiative transfer parameterization, we have updated surface topography data from a resolution of 1 km to 90 m to improve parameterization accuracy. In addition, we have also modified the upward-flux deviation [3-D − PP (plane-parallel)] adjustment to ensure that energy balance at the surface is conserved in global climate simulations based on 3-D radiation parameterization. We show that deviations of the net surface fluxes are not only affected by 3-D mountains, but also influenced by feedbacks of cloud and snow in association with the long-term simulations. Deviations in sensible heat and surface temperature generally follow the patterns of net surface solar flux. The monthly snow water equivalent (SWE) deviations show an increase in lower elevations due to reduced snowmelt, leading to a reduction in cumulative runoff. Over higher elevation areas, negative SWE deviations are found because of increased solar radiation available at the surface. Simulated precipitation increases for lower elevations, while decreases for higher elevations with a minimum in April. Liquid runoff significantly decreases in higher elevations after April due to reduced SWE and precipitation.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2014-12-17
    Description: Spatial and temporal variation of CO over Alberta using measurements from satellite, aircrafts, and ground stations Atmospheric Chemistry and Physics Discussions, 14, 31767-31812, 2014 Author(s): H. S. Marey, Z. Hashisho, L. Fu, and J. Gille Alberta is Canada's largest oil producer and its oil sand deposits comprise 30% of the world's oil reserves. The process of bitumen extraction and upgrading releases trace gases and aerosols to the atmosphere. In this study we present satellite-based analysis to explore, for the first time, various contributing factors that affect tropospheric carbon monoxide (CO) levels over Alberta. The multispectral product that uses both near-infrared (NIR) and the thermal-infrared (TIR) radiances for CO retrieval from the Measurements of Pollution in the Troposphere (MOPITT) are examined for the 12 year period from 2002–2013. Moderate Resolution Imaging Spectroradiometer (MODIS) thermal anomaly product from 2001 to 2013 is employed to investigate the seasonal and temporal variations of forest fires. Additionally, in situ CO measurements at industrial and urban sites are compared to satellite data. Furthermore, the available MOZAIC/IAGOS (Measurement of Ozone, Water Vapor, Carbon Monoxide, Nitrogen Oxide by Airbus In-Service Aircraft/In service Aircraft for Global Observing System) aircraft CO profiles (April 2009–December 2011) are used to validate MOPITT CO data. The climatological time curtain plot and spatial maps for CO over northern Alberta indicate the signatures of transported CO for two distinct biomass burning seasons, summer and spring. Distinct seasonal patterns of CO at the urban site s (Edmonton and Calgary cities) point to the strong influence of traffic. Meteorological parameters play an important role on the CO spatial distribution at various pressure levels. Northern Alberta shows stronger upward lifting motion which leads to larger CO total column values while the poor dispersion in central and south Alberta exacerbate s the surface CO pollution. Inter-annual variations of satellite data depict a slightly decreasing trend for both regions while the decline trend is more evident from ground observations, especially at the urban sites. MOPITT CO vertical averages and MOZAIC/IAGOS aircraft profiles were in good agreement within the standard deviation at all pressure levels. There is consistency between the time evolution of high CO episodes monitored by satellite and ground measurements and the fire frequency peak time which implies that biomass burning has affected the tropospheric CO distribution in northern Alberta. These findings have further demonstrated the potential use of MOPITT V5 multispectral (NIR+TIR) product for assessing a complicated surface process.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2014-12-17
    Description: Particulate emissions from residential wood combustion in Europe – revised estimates and an evaluation Atmospheric Chemistry and Physics Discussions, 14, 31719-31765, 2014 Author(s): H. A. C. Denier van der Gon, R. Bergström, C. Fountoukis, C. Johansson, S. N. Pandis, D. Simpson, and A. Visschedijk Currently residential wood combustion (RWC) is increasing in Europe because of rising fossil fuel prices but also due to climate change mitigation policies. However, especially in small-scale applications, RWC may cause high emissions of particulate matter (PM). Recently we have developed a new high-resolution (7 km × 7 km) anthropogenic carbonaceous aerosol emission inventory for Europe. The inventory indicated that about half of the total PM 2.5 emission in Europe is carbonaceous aerosol and identified RWC as the largest organic aerosol (OA) source in Europe. The inventory was partly based on national reported PM emissions. Use of this OA inventory as input for two Chemical Transport Models (CTMs), PMCAMx and EMEP MSC-W, revealed major underestimations of OA in winter time, especially for regions dominated by RWC. Interestingly, this was not universal but appeared to differ by country. In the present study we constructed a new bottom-up emission inventory for RWC accounting for the semi-volatile components of the emissions. The new RWC emissions are higher than those in the previous inventory by a factor of 2–3 but with substantial inter-country variation. The new emission inventory served as input for the CTMs and a substantially improved agreement between measured and predicted organic aerosol was found. The new RWC inventory improves the model calculated OA significantly. Comparisons to Scandinavian source apportionment studies also indicate substantial improvements in the modeled wood-burning component of OA. This suggests that primary organic aerosol emission inventories need to be revised to include the semi-volatile OA that is formed almost instantaneously due to cooling of the flue gas or exhaust. Since RWC is a key source of fine PM in Europe, a major revision of the emission estimates as proposed here is likely to influence source-receptor matrices and modelled source apportionment. Since usage of biofuels, such as wood, in small combustion units is a globally significant source, this insight may also dramatically change global estimates of organic aerosol emissions.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2014-12-17
    Description: Impact of planetary boundary layer turbulence on model climate and tracer transport Atmospheric Chemistry and Physics Discussions, 14, 31627-31674, 2014 Author(s): E. L. McGrath-Spangler, A. Molod, L. E. Ott, and S. Pawson Planetary boundary layer (PBL) processes are important for weather, climate, and tracer transport and concentration. One measure of the strength of these processes is the PBL depth. However, no single PBL depth definition exists and several studies have found that the estimated depth can vary substantially based on the definition used. In the Goddard Earth Observing System (GEOS-5) atmospheric general circulation model, the PBL depth is particularly important because it is used to calculate the turbulent length scale that is used in the estimation of turbulent mixing. This study analyzes the impact of using three different PBL depth definitions in this calculation. Two definitions are based on the scalar eddy diffusion coefficient and the third is based on the bulk Richardson number. Over land, the bulk Richardson number definition estimates shallower nocturnal PBLs than the other estimates while over water this definition generally produces deeper PBLs. The near surface wind velocity, temperature, and specific humidity responses to the change in turbulence are spatially and temporally heterogeneous, resulting in changes to tracer transport and concentrations. Near surface wind speed increases in the bulk Richardson number experiment cause Saharan dust increases on the order of 1 × 10 −4 kg m −2 downwind over the Atlantic Ocean. Carbon monoxide (CO) surface concentrations are modified over Africa during boreal summer, producing differences on the order of 20 ppb, due to the model's treatment of emissions from biomass burning. While differences in carbon dioxide (CO 2 ) are small in the time mean, instantaneous differences are on the order of 10 ppm and these are especially prevalent at high latitude during boreal winter. Understanding the sensitivity of trace gas and aerosol concentration estimates to PBL depth is important for studies seeking to calculate surface fluxes based on near-surface concentrations and to studies projecting future concentrations.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2014-12-10
    Description: Examining the major contributors and controlling factors of ozone production in a rural area of the Yangtze River Delta region during harvest season Atmospheric Chemistry and Physics Discussions, 14, 30913-30945, 2014 Author(s): X. Pan, Y. Kanaya, H. Tanimoto, S. Inomata, Z. Wang, S. Kudo, and I. Uno Open biomass burning (OBB) has been reported to emit substantial amounts of non-methane hydrocarbons (NMHCs), and the mixing of OBB with urban plumes could exacerbate regional ozone (O 3 ) pollution. In the present study, an observational field campaign was performed in a rural area at the edge of Yangtze River Delta region (YRDR) during harvest season when intensive open burning of wheat residues was observed. The O 3 production rate at the site was calculated using a photochemical box model (Regional Atmospheric Chemical Mechanism, Version 2) constrained by real-time ambient measurements (e.g., O 3 , volatile organic compounds (VOCs), the sum of NO 2 + NO (NO x ), J values). During the period impacted by OBB, the O 3 concentration frequently exceeded 100 ppbv. Analysis showed that the net O 3 production was pronounced, in particular when the site was characterized by a prevailing southerly wind that also brought substantial amounts of NO x emitted from urban areas. At these times, the maximum rate of O 3 production was 20 ppbv h −1 with potential production rate of 102 ppbv on a daily basis. The O 3 production at the site was typically VOC-sensitive in the morning because NO x dominated the plumes. However, in the afternoon, conditions became NO x -sensitive due to the rapid photochemical consumption of NO x in the production of O 3 . A positive matrix factorization analysis indicated that solvent usage and OBB were the primary contributors to the mass fraction of ambient NMHCs observed at the study site, and were responsible for 35 and 23% of the total O 3 production, respectively. The preferential presence of NO x in the morning inhibited net O 3 production; meanwhile O 3 built up in the afternoon due to a decrease in NO x concentrations. These results indicated that a joint effort in the regulation of solvent (aromatics) usage and OBB, as well as NO x from on-road vehicle exhaust may be effective in eliminating high-O 3 pollution risk in the rural areas of the YRDR.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2011-06-11
    Description: Sensing Hadley cell with space lidar Atmospheric Chemistry and Physics Discussions, 11, 16599-16610, 2011 Author(s): W. Sun and B. Lin This letter shows that the extent of the Hadley cell could reliably be estimated by measuring the height of the uppermost super-thin clouds in the troposphere with space-borne lidar. Through consecutive multi-year measurements of the height of the uppermost super-thin clouds, a good estimation of the expansion of the Hadley cell could be obtained.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2011-06-16
    Description: CARIBIC aircraft measurements of Eyjafjallajökull volcanic plumes in April/May 2010 Atmospheric Chemistry and Physics Discussions, 11, 16693-16744, 2011 Author(s): A. Rauthe-Schöch, A. Weigelt, M. Hermann, B. G. Martinsson, A. K. Baker, K.-P. Heue, C. A. M. Brenninkmeijer, A. Zahn, D. Scharffe, S. Eckhardt, A. Stohl, and P. F. J. van Velthoven The Civil Aircraft for the Regular Investigation of the Atmosphere Based on an Instrument Container (CARIBIC) project investigates physical and chemical processes in the Earth's atmosphere using a Lufthansa Airbus long-distance passenger aircraft. After the beginning of the explosive eruption of the Eyjafjallajökull volcano on Iceland on 14 April 2010, the first CARIBIC volcano-specific measurement flight was carried out over the Baltic Sea and Southern Sweden on 20 April. Two more flights followed: one over Ireland and the Irish Sea on 16 May and the other over the Norwegian Sea on 19 May 2010. During these three special mission flights the CARIBIC container proved its merits as a versatile and comprehensive flying laboratory. The elemental composition of particles collected over the Baltic Sea during the first flight (20 April) indicated the presence of volcanic ash. Over Northern Ireland and the Irish Sea (16 May), the DOAS system detected SO 2 and BrO co-located with volcanic ash particles that increased the aerosol optical depth. Over the Norwegian Sea (19 May), the optical particle counter detected a strong increase of particles larger than 400 nm diameter in a region where ash clouds were predicted by aerosol dispersion models. Aerosol particle samples collected over the Irish Sea and the Norwegian Sea showed large relative enhancements of the elements silicon, iron, titanium and calcium. Non-methane hydrocarbon concentrations in whole air samples collected on 16 May and 19 May 2010 showed a pattern of removal of several hydrocarbons that is typical for chlorine chemistry in the plumes. Comparisons of measured ash concentrations and simulations with the FLEXPART dispersion model demonstrate the difficulty of detailed volcanic ash dispersion modelling due to the large variability of the volcanic plume sources, extent and patchiness as well as the thin ash layers formed in the volcanic plumes.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2011-06-21
    Description: Explicit modeling of organic chemistry and secondary organic aerosol partitioning for Mexico City and its outflow plume Atmospheric Chemistry and Physics Discussions, 11, 17013-17070, 2011 Author(s): J. Lee-Taylor, S. Madronich, B. Aumont, M. Camredon, A. Hodzic, G. S. Tyndall, E. Apel, and R. A. Zaveri The evolution of organic aerosols (OA) in Mexico City and its outflow is investigated with the nearly explicit gas phase photochemistry model GECKO-A (Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere), wherein precursor hydrocarbons are oxidized to numerous intermediate species for which vapor pressures are computed and used to determine gas/particle partitioning in a chemical box model. Precursor emissions included observed C3–10 alkanes, alkenes, and light aromatics, as well as larger n -alkanes (up to C25) not directly observed but estimated by scaling to particulate emissions according to their volatility. Conditions were selected for comparison with observations made in March 2006 (MILAGRO). The model successfully reproduces the magnitude and diurnal shape for both primary (POA) and secondary (SOA) organic aerosols, with POA peaking in the early morning at 15–20 μg m −3 , and SOA peaking at 10–15 μg m −3 during mid-day. The majority (≥75 %) of the model SOA stems from the large n -alkanes, with the remainder mostly from the light aromatics. Simulated OA elemental composition reproduces observed H/C and O/C ratios reasonably well, although modeled ratios develop more slowly than observations suggest. SOA chemical composition is initially dominated by δ-hydroxy ketones and nitrates from the large alkanes, with contributions from peroxy acyl nitrates and, at later times when NO x is lower, organic hydroperoxides. The simulated plume-integrated OA mass continues to increase for several days downwind despite dilution-induced particle evaporation, since oxidation chemistry leading to SOA formation remains strong. In this model, the plume SOA burden several days downwind exceeds that leaving the city by a factor of 〉3. These results suggest significant regional radiative impacts of SOA.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2011-06-21
    Description: Nudging technique for scale bridging in air quality/climate atmospheric composition modelling Atmospheric Chemistry and Physics Discussions, 11, 17177-17199, 2011 Author(s): A. Maurizi, F. Russo, M. D'Isidoro, and F. Tampieri The interaction between air quality and climate involves dynamical scales that cover an immensely wide range. Bridging these scales in numerical simulations is fundamental in studies devoted to megacity/hot-spot impacts on climate. The nudging technique is proposed as a bridging method that can couple different models at different scales. Here, nudging is used to force low resolution chemical composition models using a high resolution run on critical areas. A one-year numerical experiment focused on the Po Valley hot spot is performed using the BOLCHEM model to asses the method. The results show that the model response is stable to perturbation induced by the nudging and that, if a high resolution run is taken as a reference, there is an increase in model skills of low resolution run when the technique is applied. This improvement depends on the species and the season. The effect spreads outside the forcing area and remains noticeable over an extension about 9 times larger.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2011-06-22
    Description: Measurements of ozone and its precursors in Beijing during summertime: impact of urban plumes on ozone pollution in downwind rural areas Atmospheric Chemistry and Physics Discussions, 11, 17337-17373, 2011 Author(s): J. Xu, J. Z. Ma, X. L. Zhang, X. B. Xu, X. F. Xu, W. L. Lin, Y. Wang, W. Meng, and Z. Q. Ma Sea-land and mount-valley circulations are the dominant mesoscale synoptic systems affecting the Beijing area during summertime. Under the influence of these two circulations, the prevailing wind is southwesterly from afternoon to midnight, and then changes to northeasterly till forenoon. In this study, surface ozone (O 3 ), carbon monoxide (CO), nitric oxide (NO), nitrogen dioxide (NO 2 ), nitrogen oxide (NO x ) and non-methane hydrocarbons (NMHCs) were measured at four sites located along the route of prevailing wind, including two upwind urban sites (Fengtai (FT) and Baolian (BL)), an upwind suburban site (Shunyi (SY)) and a downwind rural site (Shangdianzi (SDZ)) during 20 June–16 September 2007. The purpose is to improve our understanding of ozone photochemistry in urban and rural areas of Beijing and the influence of urban plumes on ozone pollution in downwind rural areas. It is found that ozone pollution was synchronism in the urban and rural areas of Beijing, coinciding with the regional-scale synoptic processes. Due to the high traffic density and local emissions, the average levels of reactive gases NO x and NMHCs at the non-rural sites were much higher than those at SDZ. The level of long-lived gas CO at SDZ was comparable to and slightly lower than it was at other sites. The daily-averaged ozone concentration at SDZ was much higher than at other sites due to weak titration. Ranking by OH loss rate coefficient ( L OH ), alkenes played a dominant role in total NMHCs reactivity at both urban and rural sites during the experiment, accounting for 48.6 % and 52.1 % of total L OH , respectively. The NMHCs data were also used to estimate the ozone potential formation (OFP) in Beijing. The leading contributors to ozone formation were aromatics at both urban and rural sites during the experiment, which accounts for 55.5 % and 49.4 % of total OFP, respectively. The ozone peak values are found to lag behind one site after another along the route of prevailing wind from SW to NE. Intersection analyses of trace gases reveal that polluted air masses arriving at SDZ were more aged with both higher O 3 and O x concentrations than those at BL. The results indicate that urban plume can transport not only O 3 but its precursors, the latter leading more photochemical O 3 production when being mixed with background atmosphere in the downwind rural area.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2011-06-22
    Description: Ice nucleation properties of volcanic ash from Eyjafjallajökull Atmospheric Chemistry and Physics Discussions, 11, 17201-17243, 2011 Author(s): C. R. Hoyle, V. Pinti, A. Welti, B. Zobrist, C. Marcolli, B. Luo, Á. Höskuldsson, H. B. Mattsson, T. Thorsteinsson, G. Larsen, and T. Peter The ice nucleation ability of volcanic ash particles collected close to the Icelandic volcano Eyjafjallajökull during its eruptions in April and May 2010 is investigated experimentally, in the immersion and deposition modes, and applied to atmospheric conditions by comparison with airborne measurements and microphysical model calculations. The number of ash particles which are active as ice nuclei (IN) is strongly temperature dependent, with a very small minority being active in the immersion mode at temperatures of 250–263 K. Average ash particles show only a moderate effect on ice nucleation, by inducing freezing at temperatures between 236 K and 240 K (i.e. approximately 3–4 K higher than temperatures required for homogeneous ice nucleation, measured with the same instrument). By scaling the results to aircraft and lidar measurements of the conditions in the ash plume days down wind of the eruption and by applying a simple microphysical model, it was found that the IN active in the immersion mode in the range 250–263 K generally occurred in atmospheric number densities at the lower end of those required to have an impact on ice cloud formation. However, 3–4 K above the homogeneous freezing point, immersion mode IN number densities a few days down wind of the eruption were sufficiently high to have a moderate influence on ice cloud formation. The efficiency of IN in the deposition mode was found to be poor except at very cold conditions ( 〈 238 K), when they reach an efficiency similar to that of mineral dust with the onset of freezing at 10 % supersaturation with respect to ice, and with the frozen fraction nearing its maximum value at a supersaturation 20 %. In summary, these investigations suggest volcanic ash particles to have only moderate effects on atmospheric ice formation.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2011-06-22
    Description: Novel application of satellite and in-situ measurements to map surface-level NO 2 in the Great Lakes region Atmospheric Chemistry and Physics Discussions, 11, 17245-17287, 2011 Author(s): C. J. Lee, J. R. Brook, G. J. Evans, R. V. Martin, and C. Mihele Ozone Monitoring Instrument (OMI) tropospheric NO 2 vertical column density data were used in conjunction with in-situ NO 2 concentrations collected by permanently installed monitoring stations to infer 24 h surface-level NO 2 concentrations at 0.1° (~ 11 km) resolution. The region examined included rural and suburban areas, and the highly industrialised area of Windsor, Ontario, which is situated directly across the US-Canada border from Detroit, MI. Photolytic NO 2 monitors were collocated with standard NO 2 monitors to provide qualitative data regarding NO z interference during the campaign. To test the accuracy of the OMI-inferred concentrations, two-week integrative NO 2 measurements were collected using passive monitors at 18 locations, approximating a 15 km grid across the region, for 7 consecutive two-week periods. When compared with these passive results, satellite-inferred concentrations showed an 18 % positive bias. The correlation of the passive monitor and OMI-inferred concentrations ( R = 0.69, n = 115) was stronger than that for the passive monitor concentrations and OMI column densities ( R = 0.52), indicating that using a sparse network of monitoring sites to estimate concentrations improves the direct utility of the OMI observations. OMI-inferred concentrations were then calculated for four years to show an overall declining trend in surface NO 2 concentrations in the region. Additionally, by separating OMI-inferred surface concentrations by wind direction, clear patterns in emissions and affected down-wind regions, in particular around the US-Canada border, were revealed.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2011-06-24
    Description: Variable lifetimes and loss mechanisms for NO 3 and N 2 O 5 during the DOMINO campaign: contrasts between marine, urban and continental air Atmospheric Chemistry and Physics Discussions, 11, 17825-17877, 2011 Author(s): J. N. Crowley, J. Thieser, M. Tang, G. Schuster, H. Bozem, Z. Hosaynali Beygi, H. Fischer, J. Diesch, F. Drewnick, S. Borrmann, W. Song, N. Yassaa, J. Williams, D. Pöhler, U. Platt, and J. Lelieveld Nighttime mixing ratios of boundary layer N 2 O 5 were determined using cavity-ring-down spectroscopy during the DOMINO campaign. Observation of N 2 O 5 was intermittent, with mixing ratios ranging from below the detection limit (~5 ppt) to ~500 ppt. A steady-state analysis constrained by measured mixing ratios of NO 2 and O 3 was used to derive NO 3 lifetimes and compare them to calculated rates of loss via gas-phase and heterogeneous reactions of both NO 3 and N 2 O 5 . Three distinct types of air masses were encountered, which were largely marine (Atlantic), continental or urban-industrial in origin. NO 3 lifetimes were longest in the Atlantic sector (up to ~30 min) but were very short (a few seconds) in polluted, air masses from the local city and petroleum-related industrial complex of Huelva. Air from the continental sector was an intermediate case. The high reactivity to NO 3 of the urban air mass was not accounted for by gas-phase and heterogeneous reactions, rates of which were constrained by measurements of NO, volatile organic species and aerosol surface area. In general, high NO 2 mixing ratios resulted in low NO 3 lifetimes, though heterogeneous processes (e.g. reaction of N 2 O 5 on aerosol) were generally less important than direct gas-phase losses of NO 3 . The presence of SO 2 at levels above ~2 ppb in the urban air sector was always associated with very low N 2 O 5 mixing ratios indicating either very short NO 3 lifetimes in the presence of combustion-related emissions or an important role for reduced sulphur species in urban, nighttime chemistry. High production rates coupled with low lifetimes of NO 3 imply an important contribution of nighttime chemistry to removal of both NO x and VOC.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2011-06-25
    Description: General overview: European Integrated project on Aerosol Cloud Climate and Air Quality interactions (EUCAARI) – integrating aerosol research from nano to global scales Atmospheric Chemistry and Physics Discussions, 11, 17941-18160, 2011 Author(s): M. Kulmala, A. Asmi, H. K. Lappalainen, U. Baltensperger, J.-L. Brenguier, M. C. Facchini, H.-C. Hansson, Ø. Hov, C. D. O'Dowd, U. Pöschl, A. Wiedensohler, R. Boers, O. Boucher, G. de Leeuw, H. Denier van den Gon, J. Feichter, R. Krejci, P. Laj, H. Lihavainen, U. Lohmann, G. McFiggans, T. Mentel, C. Pilinis, I. Riipinen, M. Schulz, A. Stohl, E. Swietlicki, E. Vignati, M. Amann, M. Amann, C. Alves, S. Arabas, P. Artaxo, D. C. S. Beddows, R. Bergström, J. P. Beukes, M. Bilde, J. F. Burkhart, F. Canonaco, S. Clegg, H. Coe, S. Crumeyrolle, B. D'Anna, S. Decesari, S. Gilardoni, M. Fischer, A. M. Fjæraa, C. Fountoukis, C. George, L. Gomes, P. Halloran, T. Hamburger, R. M. Harrison, H. Herrmann, T. Hoffmann, C. Hoose, M. Hu, U. Hõrrak, Y. Iinuma, T. Iversen, M. Josipovic, M. Kanakidou, A. Kiendler-Scharr, A. Kirkevåg, G. Kiss, Z. Klimont, P. Kolmonen, M. Komppula, J.-E. Kristjánsson, L. Laakso, A. Laaksonen, L. Labonnote, V. A. Lanz, K. E. J. Lehtinen, R. Makkonen, G. McMeeking, J. Merikanto, A. Minikin, S. Mirme, W. T. Morgan, E. Nemitz, D. O'Donnell, T. S. Panwar, H. Pawlowska, A. Petzold, J. J. Pienaar, C. Pio, C. Plass-Duelmer, A. S. H. Prévôt, S. Pryor, C. L. Reddington, G. Roberts, D. Rosenfeld, J. Schwarz, Ø. Seland, K. Sellegri, X. J. Shen, M. Shiraiwa, H. Siebert, B. Sierau, D. Simpson, J. Y. Sun, D. Topping, P. Tunved, P. Vaattovaara, V. Vakkari, J. P. Veefkind, A. Visschedijk, H. Vuollekoski, R. Vuolo, B. Wehner, J. Wildt, S. Woodward, D. R. Worsnop, G.-J. van Zadelhoff, A. A. Zardini, K. Zhang, P. G. van Zyl, V.-M. Kerminen, K. S. Carslaw, and S. N. Pandis In this paper we describe and summarize the main achievements of the European Aerosol Cloud Climate and Air Quality Interactions project (EUCAARI). EUCAARI started on 1 January 2007 and ended on 31 December 2010 leaving a rich legacy including: (a) a comprehensive database with a year of observations of the physical, chemical and optical properties of aerosol particles over Europe, (b) the first comprehensive aerosol measurements in four developing countries, (c) a database of airborne measurements of aerosols and clouds over Europe during May 2008, (d) comprehensive modeling tools to study aerosol processes fron nano to global scale and their effects on climate and air quality. In addition a new Pan-European aerosol emissions inventory was developed and evaluated, a new cluster spectrometer was built and tested in the field and several new aerosol parameterizations and computations modules for chemical transport and global climate models were developed and evaluated. This work enabled EUCAARI to improve our understanding of aerosol radiative forcing and air quality-climate interactions. The EUCAARI results can be utilized in European and global environmental policy to assess the aerosol impacts and the corresponding abatement strategies.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2011-06-25
    Description: A global climatology of tropospheric and stratospheric ozone derived from Aura OMI and MLS measurements Atmospheric Chemistry and Physics Discussions, 11, 17879-17911, 2011 Author(s): J. R. Ziemke, S. Chandra, G. Labow, P. K. Bhartia, L. Froidevaux, and J. C. Witte A global climatology of tropospheric and stratospheric column ozone is derived by combining six years of Aura Ozone Monitoring Instrument (OMI) and Microwave Limb Sounder (MLS) ozone measurements for the period October 2004 through December 2010. The OMI/MLS tropospheric ozone climatology exhibits large temporal and spatial variability which includes ozone accumulation zones in the tropical south Atlantic year-round and in the subtropical Mediterranean/Asia region in summer months. High levels of tropospheric ozone in the Northern Hemisphere also persist in mid-latitudes over the Eastern North American and Asian continents extending eastward over the Pacific Ocean. For stratospheric ozone climatology from MLS, largest ozone abundance lies in the Northern Hemisphere in the latitude range 70° N–80° N in February–April and in the Southern Hemisphere around 40° S–50° S during months August–October. The largest stratospheric ozone abundances in the Northern Hemisphere lie over North America and Eastern Asia extending eastward across the Pacific Ocean and in the Southern Hemisphere south of Australia extending eastward across the dateline. With the advent of many newly developing 3-D chemistry and transport models it is advantageous to have such a dataset for evaluating the performance of the models in relation to dynamical and photochemical processes controlling the ozone distributions in the troposphere and stratosphere. The OMI/MLS ozone gridded climatology data, both calculated mean values and RMS uncertainties are made available to the science community via the NASA total ozone mapping spectrometer (TOMS) website http://toms.gsfc.nasa.gov .
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2011-06-30
    Description: Scattering and absorption by aerosols during EUCAARI-LONGREX: can airborne measurements and models agree? Atmospheric Chemistry and Physics Discussions, 11, 18487-18525, 2011 Author(s): E. J. Highwood, M. J. Northway, G. R. McMeeking, W. T. Morgan, D. Liu, S. Osborne, K. Bower, H. Coe, C. Ryder, and P. Williams Scattering and absorption by aerosol in anthropogenically perturbed air masses over Europe has been measured using instrumentation flown on the UK's BAe-146-301 large Atmospheric Research Aircraft (ARA) operated by the Facility for Airborne Atmospheric Measurements (FAAM) on 14 flights during the EUCAARI-LONGREX campaign in May 2008. The geographical and temporal variations of the derived shortwave optical properties of aerosol are presented. Values of single scattering albedo of dry aerosol at 550 nm varied considerably over the data set from 0.86 to near unity. Dry aerosol optical depths ranged from 0.03 to 0.24. An optical properties closure study comparing calculations from composition data and Mie scattering code with the measured properties is presented. Very good agreement (to within 30 %) can be achieved for scattering, but the modelling of absorption is shown to be sensitive to the refractive indices chosen for organic aerosols, and to a lesser extent black carbon. Agreement with the measured absorption can only be achieved if organic carbon is assumed to be only weakly absorbing. Hygroscopic growth curves derived from the wet nephelometer indicate moderate water uptake by the aerosol with a campaign mean f (RH) value (change in scattering) of 1.3 at 80 % relative humidity. This value is consistent with the major chemical components of the aerosol measured by the aerosol mass spectrometer (AMS), which are primarily mixed organics and nitrate and some sulphate. As expected the effect of humidity is to raise the single scattering albedo, and to increase the aerosol optical depth. This study represents an important new body of data regarding European aerosol amounts, composition and optical properties and additionally demonstrates the importance of airborne measurements of black carbon mass and aerosol hygroscopicity.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2011-06-11
    Description: Biological residues define the ice nucleation properties of soil dust Atmospheric Chemistry and Physics Discussions, 11, 16585-16598, 2011 Author(s): F. Conen, C. E. Morris, J. Leifeld, M. V. Yakutin, and C. Alewell Soil dust is a major driver of ice nucleation in clouds leading to precipitation. It consists largely of mineral particles with a small fraction of organic matter constituted mainly of remains of micro-organisms that participated in degrading plant debris before their own decay. Some micro-organisms have been shown to be much better ice nuclei than the most efficient soil mineral. Yet, current aerosol schemes in global climate models do not consider a difference between soil dust and mineral dust in terms of ice nucleation activity. Here, we show that particles from the clay and silt size fraction of four different soils naturally associated with 0.7 to 11.8 % organic carbon (w/w) can have up to four orders of magnitude more ice nuclei per unit mass active in the immersion freezing mode at −12 °C than montmorillonite, the most efficient pure clay mineral. Most of this activity was lost after heat treatment. Removal of biological residues reduced ice nucleation activity to, or below that of montmorillonite. Desert soils, inherently low in organic content, are a large natural source of dust in the atmosphere. In contrast, agricultural land use is concentrated on fertile soils with much larger organic matter contents than found in deserts. It is currently estimated that the contribution of agricultural soils to the global dust burden is less than 20 %. Yet, these disturbed soils can contribute ice nuclei to the atmosphere of a very different and much more potent kind than mineral dusts.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2011-06-11
    Description: ACE-FTS measurements of trace species in the characterization of biomass burning plumes Atmospheric Chemistry and Physics Discussions, 11, 16611-16637, 2011 Author(s): K. A. Tereszchuk, G. González Abad, C. Clerbaux, D. Hurtmans, P.-F. Coheur, and P. F. Bernath To further our understanding of the effects of biomass burning emission on atmospheric composition, we report measurements of trace species from biomass burning plumes made by the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) instrument on the SCISAT-1 satellite. An extensive set of 15 molecules, C 2 H 2 , C 2 H 6 , CH 3 OH, CH 4 , CO, H 2 CO, HCN, HCOOH, HNO 3 , NO, NO 2 , N 2 O 5 , O 3 , OCS and SF 6 are used in our analysis. Even though most biomass burning smoke is typically confined to the boundary layer, much of these emissions are injected directly into the free troposphere via fire-related convective processes and transported away from the emission region. Further knowledge of the aging of biomass burning emission in the free troposphere is needed. Tracer-tracer correlations are made between known pyrogenic species in these plumes in an effort to classify them and follow their chemical evolution. Criteria such as age and type of biomass material burned are considered. Emission factors are derived and compared to airborne measurements of biomass burning from numerous ecosystems to validate the ACE-FTS data.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2011-06-15
    Description: Emission controls versus meteorological conditions in determining aerosol concentrations in Beijing during the 2008 Olympic Games Atmospheric Chemistry and Physics Discussions, 11, 16655-16691, 2011 Author(s): Y. Gao, X. Liu, C. Zhao, M. Zhang, and Y. Wang A series of emission control measures were undertaken in Beijing and the adjacent provinces in China during the 2008 Beijing Olympic Games on 8–24 August 2008. This provides a unique opportunity for investigating the effectiveness of emission controls on air pollution in Beijing. We conducted a series of numerical experiments over East Asia for the period of July to September 2008 using a coupled meteorology-chemistry model (WRF-Chem). Model can generally reproduce the observed variation of aerosol concentrations. Consistent with observations, modeled concentrations of aerosol species (sulfate, nitrate, ammonium, black carbon, organic carbon, total particulate matter) in Beijing were decreased by 30–50 % during the Olympic period compared to the other periods in July and August in 2008 and the same period in 2007. Model results indicate that emission controls were effective in reducing the aerosol concentrations by comparing simulations with and without emission controls. However, our analysis suggests that meteorological conditions (e.g., wind direction and precipitation) are at least as important as emission controls in producing the low aerosol concentrations appearing during the Olympic period. Transport from the regions surrounding Beijing determines the temporal variation of aerosol concentrations in Beijing. Based on the budget analysis, we suggest that to improve the air quality over Beijing, emission control strategy should focus on the regional scale instead of the local scale.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2011-06-22
    Description: Validity of satellite measurements used for the monitoring of UV radiation risk on health Atmospheric Chemistry and Physics Discussions, 11, 17375-17421, 2011 Author(s): F. Jégou, S. Godin-Beekman, M. P. Corrêa, C. Brogniez, F. Auriol, V. H. Peuch, M. Haeffelin, A. Pazmino, P. Saiag, F. Goutail, and E. Mahé In order to test the validity of ultraviolet index (UVI) satellite products and UVI model simulations for general public information, intercomparison involving three satellite instruments (SCIAMACHY, OMI and GOME-2), the Chemistry and Transport Model, Modélisation de la Chimie Atmosphérique Grande Echelle (MOCAGE), and ground-based instruments was performed in 2008 and 2009. The intercomparison highlighted a systematic high bias of ~1 UVI in the OMI clear-sky products compared to the SCIAMACHY and TUV model clear-sky products. The OMI and GOME-2 all-sky products are close to the ground-based observations with a low 6 % positive bias, comparable to the results found during the satellite validation campaigns. This result shows that OMI and GOME-2 all-sky products are well appropriate to evaluate the UV-risk on health. The study has pointed out the difficulty to take into account either in the retrieval algorithms or in the models, the large spatial and temporal cloud modification effect on UV radiation. This factor is crucial to provide good quality UV information. OMI and GOME-2 show a realistic UV variability as a function of the cloud cover. Nevertheless these satellite products do not sufficiently take into account the radiation reflected by clouds. MOCAGE numerical forecasts show good results during periods with low cloud covers, but are actually not adequate for overcast conditions; this is why Météo-France currently uses human-expertised cloudiness (rather than direct outputs from Numerical Prediction Models) together with MOCAGE clear-sky UV indices for its operational forecasts. From now on, the UV monitoring could be done using free satellite products (OMI, GOME-2) and operational forecast for general public by using modelling, as long as cloud forecasts and the parametrisation of the impact of cloudiness on UV radiation are adequate.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2011-06-22
    Description: Aerosol concentration and size distribution measured below, in, and above cloud from the DOE G-1 during VOCALS-REx Atmospheric Chemistry and Physics Discussions, 11, 17289-17336, 2011 Author(s): L. I. Kleinman, P. H. Daum, Y.-N. Lee, E. R. Lewis, A. J. Sedlacek III, G. I. Senum, S. R. Springston, J. Wang, J. Hubbe, J. Jayne, Q. Min, S. S. Yum, and G. Allen During the VOCALS Regional Experiment, the DOE G-1 aircraft was used to sample a varying aerosol environment pertinent to properties of stratocumulus clouds over a longitude band extending 800 km west from the Chilean coast at Arica. Trace gas and aerosol measurements are presented as a function of longitude, altitude, and dew point in this study. Spatial distributions are consistent with an upper atmospheric source for O 3 and South American coastal sources for marine boundary layer (MBL) CO and aerosol, most of which is acidic sulfate in agreement with the dominant pollution source being SO 2 from Cu smelters and power plants. Pollutant layers in the free troposphere (FT) can be a result of emissions to the north in Peru or long range transport from the west. At a given altitude in the FT (up to 3 km), dew point varies by 40 °C with dry air descending from the upper atmospheric and moist air having a BL contribution. Ascent of BL air to a cold high altitude results in the condensation and precipitation removal of all but a few percent of BL water along with aerosol that served as CCN. Thus, aerosol volume decreases with dew point in the FT. Aerosol size spectra have a bimodal structure in the MBL and an intermediate diameter unimodal distribution in the FT. Comparing cloud droplet number concentration (CDNC) and pre-cloud aerosol ( D p 〉 100 nm) gives a linear relation up to a number concentration of ~150 cm −3 , followed by a less than proportional increase in CDNC at higher aerosol number concentration. A number balance between below cloud aerosol and cloud droplets indicates that ~25 % of aerosol in the PCASP size range are interstitial (not activated). One hundred and two constant altitude cloud transects were identified and used to determine properties of interstitial aerosol. One transect is examined in detail as a case study. Approximately 25 to 50 % of aerosol with D p 〉 110 nm were not activated, the difference between the two approaches possibly representing shattered cloud droplets or unknown artifact. CDNC and interstitial aerosol were anti-correlated in all cloud transects, consistent with the occurrence of dry in-cloud areas due to entrainment or circulation mixing.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2011-06-23
    Description: Interannual variability of ozone and carbon monoxide at the Whistler high elevation site: 2002–2006 Atmospheric Chemistry and Physics Discussions, 11, 17621-17664, 2011 Author(s): A. M. Macdonald, K. G. Anlauf, W. R. Leaitch, and E. Chan In spring 2002, an atmospheric measurement site was established at the peak of Whistler Mountain in British Columbia, Canada to measure trace gases, particle chemistry and physics, and meteorology. This paper uses continuous measurements from March 2002 to December 2006 to investigate the influence of trans-Pacific transport and North American forest fires on both O 3 and CO at Whistler. Annual mean mixing ratios of O 3 and CO were 41 ppbv (monthly means of 35–48 ppbv) and 145 ppbv (monthly means of 113–177 ppbv) respectively with both species exhibiting an annual cycle of late-winter to early-spring maxima and summer minima. The absence of a broad summer O 3 peak differs from previously-reported high altitude sites in the western US. The highest monthly-averaged O 3 and CO mixing ratios relative to the 5-year monthly means were seen in fall 2002 and spring 2003 with increased O 3 and CO of 10 % and 25 % respectively. These increases correspond to anomalously-high values reported at other Northern Hemisphere sites and are attributed to fires in the Russian Federation. Air mass back trajectory analysis is used to associate the mean enhancements of O 3 and CO with trans-Pacific transported or North American air masses relative to the Pacific background. Mean values of the enhancements for March to June were 6 ppbv and 16 ppbv for O 3 and CO respectively. In summers 2002–2006, higher CO and O 3 mixing ratios were always observed in North American air masses and this relative enhancement co-varied for each year with the western US and Canada total wildfire area. The greatest enhancements in O 3 and CO were seen in 2004, a record year for forest fires in Alaska and the Yukon Territory. In August 2004, average O 3 and CO mixing ratios were 13 and 44 ppbv above background values.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...