ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Artikel  (1.481)
  • Copernicus  (1.481)
  • National Academy of Sciences
  • 2010-2014  (1.481)
  • 1980-1984
  • 1945-1949
  • 1925-1929
  • 2012  (1.481)
  • 1926
  • Atmospheric Chemistry and Physics  (740)
  • 19026
  • Geologie und Paläontologie  (1.481)
Sammlung
  • Artikel  (1.481)
Verlag/Herausgeber
  • Copernicus  (1.481)
  • National Academy of Sciences
Erscheinungszeitraum
  • 2010-2014  (1.481)
  • 1980-1984
  • 1945-1949
  • 1925-1929
Jahr
Thema
  • Geologie und Paläontologie  (1.481)
  • 1
    Publikationsdatum: 2012-03-13
    Beschreibung: Extension of an assessment model of ship traffic exhaust emissions for particulate matter and carbon monoxide Atmospheric Chemistry and Physics, 12, 2641-2659, 2012 Author(s): J.-P. Jalkanen, L. Johansson, J. Kukkonen, A. Brink, J. Kalli, and T. Stipa A method is presented for the evaluation of the exhaust emissions of marine traffic, based on the messages provided by the Automatic Identification System (AIS), which enable the positioning of ship emissions with a high spatial resolution (typically a few tens of metres). The model also takes into account the detailed technical data of each individual vessel. The previously developed model was applicable for evaluating the emissions of NO x , SO x and CO 2 . This paper addresses a substantial extension of the modelling system, to allow also for the mass-based emissions of particulate matter (PM) and carbon monoxide (CO). The presented Ship Traffic Emissions Assessment Model (STEAM2) allows for the influences of accurate travel routes and ship speed, engine load, fuel sulphur content, multiengine setups, abatement methods and waves. We address in particular the modeling of the influence on the emissions of both engine load and the sulphur content of the fuel. The presented methodology can be used to evaluate the total PM emissions, and those of organic carbon, elemental carbon, ash and hydrated sulphate. We have evaluated the performance of the extended model against available experimental data on engine power, fuel consumption and the composition-resolved emissions of PM. We have also compared the annually averaged emission values with those of the corresponding EMEP inventory, As example results, the geographical distributions of the emissions of PM and CO are presented for the marine regions of the Baltic Sea surrounding the Danish Straits.
    Print ISSN: 1680-7316
    Digitale ISSN: 1680-7324
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2012-03-15
    Beschreibung: Analysis of ΔO 2 /ΔCO 2 ratios for the pollution events observed at Hateruma Island, Japan Atmospheric Chemistry and Physics, 12, 2713-2723, 2012 Author(s): C. Minejima, M. Kubo, Y. Tohjima, H. Yamagishi, Y. Koyama, S. Maksyutov, K. Kita, and H. Mukai Pollution events extracted from the in situ observations of atmospheric CO 2 and O 2 mixing ratios at Hateruma Island (HAT, 24° N, 124° E) during the period from October 2006 and December 2008 are examined. The air mass origins for the pollution events are categorized by using back trajectory analysis, and the oxidative ratios (OR = −O 2 :CO 2 molar exchange ratio) for selected pollution events are calculated. We find that there is a significant difference in the average oxidative ratios between events from China (OR = 1.14 ± 0.12, n = 25) and Japan/Korea (OR = 1.37 ± 0.15, n = 16). These values are in a good agreement with the national average oxidative ratios for the emissions from fossil fuel burning and cement production (FFBC) in China (OR FFBC = 1.11 ± 0.03) and Korea/Japan (OR FFBC = 1.36 ± 0.02). Compared with the observation, simulations of the atmospheric O 2 and CO 2 mixing ratios using Lagrangian particle dispersion models do a good job in reconstructing the average oxidative ratio of the pollution events originating in China but tend to underestimate for events originating in Japan/Korea. A sensitivity test suggests that the simulated atmospheric oxidative ratios at HAT are especially sensitive to changes in Chinese fuel mix.
    Print ISSN: 1680-7316
    Digitale ISSN: 1680-7324
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2012-03-15
    Beschreibung: Carbonaceous aerosols in China: top-down constraints on primary sources and estimation of secondary contribution Atmospheric Chemistry and Physics, 12, 2725-2746, 2012 Author(s): T.-M. Fu, J. J. Cao, X. Y. Zhang, S. C. Lee, Q. Zhang, Y. M. Han, W. J. Qu, Z. Han, R. Zhang, Y. X. Wang, D. Chen, and D. K. Henze We simulated elemental carbon (EC) and organic carbon (OC) aerosols in China and compared model results to surface measurements at Chinese rural and background sites, with the goal of deriving "top-down" emission estimates of EC and OC, as well as better quantifying the secondary sources of OC. We included in the model state-of-the-science Chinese "bottom-up" emission inventories for EC (1.92 TgC yr −1 ) and OC (3.95 TgC yr −1 ), as well as updated secondary OC formation pathways. The average simulated annual mean EC concentration at rural and background sites was 1.1 μgC m −3 , 56% lower than the observed 2.5 μgC m −3 . The average simulated annual mean OC concentration at rural and background sites was 3.4 μgC m −3 , 76% lower than the observed 14 μgC m −3 . Multiple regression to fit surface monthly mean EC observations at rural and background sites yielded the best estimate of Chinese EC source of 3.05 ± 0.78 TgC yr −1 . Based on the top-down EC emission estimate and observed seasonal primary OC/EC ratios, we estimated Chinese OC emissions to be 6.67 ± 1.30 TgC yr −1 . Using these top-down estimates, the simulated average annual mean EC concentration at rural and background sites was significantly improved to 1.9 μgC m −3 . However, the model still significantly underestimated observed OC in all seasons (simulated average annual mean OC at rural and background sites was 5.4 μgC m −3 ), with little skill in capturing the spatiotemporal variability. Secondary formation accounts for 21% of Chinese annual mean surface OC in the model, with isoprene being the most important precursor. In summer, as high as 62% of the observed surface OC may be due to secondary formation in eastern China. Our analysis points to four shortcomings in the current bottom-up inventories of Chinese carbonaceous aerosols: (1) the anthropogenic source is underestimated on a national scale, particularly for OC; (2) the spatiotemporal distributions of emissions are misrepresented; (3) there is a missing source in western China, likely associated with the use of biofuels or other low-quality fuels for heating; and (4) sources in fall are not well represented, either because the seasonal shifting of emissions and/or secondary formation are poorly captured or because specific fall emission events are missing. In addition, secondary production of OC in China is severely underestimated. More regional measurements with better spatiotemporal coverage are needed to resolve these shortcomings.
    Print ISSN: 1680-7316
    Digitale ISSN: 1680-7324
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2012-02-08
    Beschreibung: Bromine and iodine chemistry in a global chemistry-climate model: description and evaluation of very short-lived oceanic sources Atmospheric Chemistry and Physics, 12, 1423-1447, 2012 Author(s): C. Ordóñez, J.-F. Lamarque, S. Tilmes, D. E. Kinnison, E. L. Atlas, D. R. Blake, G. Sousa Santos, G. Brasseur, and A. Saiz-Lopez The global chemistry-climate model CAM-Chem has been extended to incorporate an expanded bromine and iodine chemistry scheme that includes natural oceanic sources of very short-lived (VSL) halocarbons, gas-phase photochemistry and heterogeneous reactions on aerosols. Ocean emissions of five VSL bromocarbons (CHBr 3 , CH 2 Br 2 , CH 2 BrCl, CHBrCl 2 , CHBr 2 Cl) and three VSL iodocarbons (CH 2 ICl, CH 2 IBr, CH 2 I 2 ) have been parameterised by a biogenic chlorophyll- a (chl- a ) dependent source in the tropical oceans (20° N–20° S). Constant oceanic fluxes with 2.5 coast-to-ocean emission ratios are separately imposed on four different latitudinal bands in the extratropics (20°–50° and above 50° in both hemispheres). Top-down emission estimates of bromocarbons have been derived using available measurements in the troposphere and lower stratosphere, while iodocarbons have been constrained with observations in the marine boundary layer (MBL). Emissions of CH 3 I are based on a previous inventory and the longer lived CH 3 Br is set to a surface mixing ratio boundary condition. The global oceanic emissions estimated for the most abundant VSL bromocarbons – 533 Gg yr −1 for CHBr 3 and 67.3 Gg yr −1 for CH 2 Br 2 – are within the range of previous estimates. Overall the latitudinal and vertical distributions of modelled bromocarbons are in good agreement with observations. Nevertheless, we identify some issues such as the reduced number of aircraft observations to validate models in the Southern Hemisphere, the overestimation of CH 2 Br 2 in the upper troposphere – lower stratosphere and the underestimation of CH 3 I in the same region. Despite the difficulties involved in the global modelling of the shortest lived iodocarbons (CH 2 ICl, CH 2 IBr, CH 2 I 2 ), modelled results are in good agreement with published observations in the MBL. Finally, sensitivity simulations show that knowledge of the diurnal emission cycle for these species, in particular for CH 2 I 2 , is key to assess their global source strength.
    Print ISSN: 1680-7316
    Digitale ISSN: 1680-7324
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2012-02-11
    Beschreibung: Mean winds, temperatures and the 16- and 5-day planetary waves in the mesosphere and lower thermosphere over Bear Lake Observatory (42° N, 111° W) Atmospheric Chemistry and Physics, 12, 1571-1585, 2012 Author(s): K. A. Day, M. J. Taylor, and N. J. Mitchell Atmospheric temperatures and winds in the mesosphere and lower thermosphere have been measured simultaneously using the Aura satellite and a meteor radar at Bear Lake Observatory (42° N, 111° W), respectively. The data presented in this study is from the interval March 2008 to July 2011. The mean winds observed in the summer-time over Bear Lake Observatory show the meridional winds to be equatorward at meteor heights during April−August and to reach monthly-mean velocities of −12 m s −1 . The mean winds are closely related to temperatures in this region of the atmosphere and in the summer the coldest mesospheric temperatures occur about the same time as the strongest equatorward meridional winds. The zonal winds are eastward through most of the year and in the summer strong eastward zonal wind shears of up to ~4.5 m s −1 km −1 are present. However, westward winds are observed at the upper heights in winter and sometimes during the equinoxes. Considerable inter-annual variability is observed in the mean winds and temperatures. Comparisons of the observed winds with URAP and HWM-07 reveal some large differences. Our radar zonal wind observations are generally more eastward than predicted by the URAP model zonal winds. Considering the radar meridional winds, in comparison to HWM-07 our observations reveal equatorward flow at all meteor heights in the summer whereas HWM-07 suggests that only weakly equatorward, or even poleward flows occur at the lower heights. However, the zonal winds observed by the radar and modelled by HWM-07 are generally similar in structure and strength. Signatures of the 16- and 5-day planetary waves are clearly evident in both the radar-wind data and Aura-temperature data. Short-lived wave events can reach large amplitudes of up to ~15 m s −1 and 8 K and 20 m s −1 and 10 K for the 16- and 5-day waves, respectively. A clear seasonal and short-term variability are observed in the 16- and 5-day planetary wave amplitudes. The 16-day wave reaches largest amplitude in winter and is also present in summer, but with smaller amplitudes. The 5-day wave reaches largest amplitude in winter and in late summer. An inter-annual variability in the amplitude of the planetary waves is evident in the four years of observations. Some 41 episodes of large-amplitude wave occurrence are identified. Temperature and wind amplitudes for these episodes, A T and A W , that passed the Student T-test were found to be related by, A T = 0.34 A W and A T = 0.62 A W for the 16- and 5-day wave, respectively.
    Print ISSN: 1680-7316
    Digitale ISSN: 1680-7324
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2012-02-14
    Beschreibung: Revised identification of tropical oceanic cumulus congestus as viewed by CloudSat Atmospheric Chemistry and Physics, 12, 1587-1595, 2012 Author(s): S. P. F. Casey, E. J. Fetzer, and B. H. Kahn Congestus cloud convective features are examined in one year of tropical oceanic cloud observations from the CloudSat/CALIPSO instruments. Two types of convective clouds (cumulus and deep convective, based on classification profiles from radar), and associated differences in radar reflectivity and radar/lidar cloud-top height are considered. Congestus convective features are defined as contiguous convective clouds with heights between 3 and 9 km. Three criteria were used in previous studies to identify congestus: (1) CloudSat and CALIPSO cloud-top heights less than 1 km apart; (2) CloudSat 0 dBZ echo-top height less than 1 km from CloudSat cloud-top height, and (3) CloudSat 10 dBZ echo-top height less than 2 km from CloudSat cloud-top height. A majority of congestus convective features satisfy the second and third requirements. However, over 40% of convective features identified had no associated CALIPSO cloud-top height, predominantly due to the extinguishment of the lidar beam above the CloudSat-reported convective cloud. For the remaining cells, approximately 56% of these satisfy all three requirements; when considering the lidar beam-extinction issue, only 31% of congestus convective features are identified using these criteria. This implies that while previous methods used to identify congestus clouds may be accurate in finding vigorous convection (such as transient congestus rising toward the tropopause), these criteria may miss almost 70% of the total observed congestus convective features, suggesting a more general approach should be used to describe congestus and its surrounding environment.
    Print ISSN: 1680-7316
    Digitale ISSN: 1680-7324
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2012-02-15
    Beschreibung: The isotopic composition of precipitation from a winter storm – a case study with the limited-area model COSMO iso Atmospheric Chemistry and Physics, 12, 1629-1648, 2012 Author(s): S. Pfahl, H. Wernli, and K. Yoshimura Stable water isotopes are valuable tracers of the atmospheric water cycle, and potentially provide useful information also on weather-related processes. In order to further explore this potential, the water isotopes H 2 18 O and HDO are incorporated into the limited-area model COSMO. In a first case study, the new COSMO iso model is used for simulating a winter storm event in January 1986 over the eastern United States associated with intense frontal precipitation. The modelled isotope ratios in precipitation and water vapour are compared to spatially distributed δ 18 O observations. COSMO iso very accurately reproduces the statistical distribution of δ 18 O in precipitation, and also the synoptic-scale spatial pattern and temporal evolution agree well with the measurements. Perpendicular to the front that triggers most of the rainfall during the event, the model simulates a gradient in the isotopic composition of the precipitation, with high δ 18 O values in the warm air and lower values in the cold sector behind the front. This spatial pattern is created through an interplay of large scale air mass advection, removal of heavy isotopes by precipitation at the front and microphysical interactions between rain drops and water vapour beneath the cloud base. This investigation illustrates the usefulness of high resolution, event-based model simulations for understanding the complex processes that cause synoptic-scale variability of the isotopic composition of atmospheric waters. In future research, this will be particularly beneficial in combination with laser spectrometric isotope observations with high temporal resolution.
    Print ISSN: 1680-7316
    Digitale ISSN: 1680-7324
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2012-12-20
    Beschreibung: Sensitivity studies of dust ice nuclei effect on cirrus clouds with the Community Atmosphere Model CAM5 Atmospheric Chemistry and Physics, 12, 12061-12079, 2012 Author(s): X. Liu, X. Shi, K. Zhang, E. J. Jensen, A. Gettelman, D. Barahona, A. Nenes, and P. Lawson In this study the effect of dust aerosol on upper tropospheric cirrus clouds through heterogeneous ice nucleation is investigated in the Community Atmospheric Model version 5 (CAM5) with two ice nucleation parameterizations. Both parameterizations consider homogeneous and heterogeneous nucleation and the competition between the two mechanisms in cirrus clouds, but differ significantly in the number concentration of heterogeneous ice nuclei (IN) from dust. Heterogeneous nucleation on dust aerosol reduces the occurrence frequency of homogeneous nucleation and thus the ice crystal number concentration in the Northern Hemisphere (NH) cirrus clouds compared to simulations with pure homogeneous nucleation. Global and annual mean shortwave and longwave cloud forcing are reduced by up to 2.0 ± 0.1 W m −2 (1σ uncertainty) and 2.4 ± 0.1 W m −2 , respectively due to the presence of dust IN, with the net cloud forcing change of −0.40 ± 0.20 W m −2 . Comparison of model simulations with in situ aircraft data obtained in NH mid-latitudes suggests that homogeneous ice nucleation may play an important role in the ice nucleation at these regions with temperatures of 205–230 K. However, simulations overestimate observed ice crystal number concentrations in the tropical tropopause regions with temperatures of 190–205 K, and overestimate the frequency of occurrence of high ice crystal number concentration (〉 200 L −1 ) and underestimate the frequency of low ice crystal number concentration ( 〈 30 L −1 ) at NH mid-latitudes. These results highlight the importance of quantifying the number concentrations and properties of heterogeneous IN (including dust aerosol) in the upper troposphere from the global perspective.
    Print ISSN: 1680-7316
    Digitale ISSN: 1680-7324
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Publikationsdatum: 2012-12-20
    Beschreibung: Climate versus emission drivers of methane lifetime against loss by tropospheric OH from 1860–2100 Atmospheric Chemistry and Physics, 12, 12021-12036, 2012 Author(s): J. G. John, A. M. Fiore, V. Naik, L. W. Horowitz, and J. P. Dunne With a more-than-doubling in the atmospheric abundance of the potent greenhouse gas methane (CH 4 ) since preindustrial times, and indications of renewed growth following a leveling off in recent years, questions arise as to future trends and resulting climate and public health impacts from continued growth without mitigation. Changes in atmospheric methane lifetime are determined by factors which regulate the abundance of OH, the primary methane removal mechanism, including changes in CH 4 itself. We investigate the role of emissions of short-lived species and climate in determining the evolution of methane lifetime against loss by tropospheric OH, (τ CH4_OH ), in a suite of historical (1860–2005) and future Representative Concentration Pathway (RCP) simulations (2006–2100), conducted with the Geophysical Fluid Dynamics Laboratory (GFDL) fully coupled chemistry-climate model (CM3). From preindustrial to present, CM3 simulates an overall 5% increase in τ CH4_OH due to a doubling of the methane burden which offsets coincident increases in nitrogen oxide (NO x emissions. Over the last two decades, however, the τ CH4_OH declines steadily, coinciding with the most rapid climate warming and observed slow-down in CH 4 growth rates, reflecting a possible negative feedback through the CH 4 sink. Sensitivity simulations with CM3 suggest that the aerosol indirect effect (aerosol-cloud interactions) plays a significant role in cooling the CM3 climate. The projected decline in aerosols under all RCPs contributes to climate warming over the 21st century, which influences the future evolution of OH concentration and τ CH4_OH . Projected changes in τ CH4_OH from 2006 to 2100 range from −13% to +4%. The only projected increase occurs in the most extreme warming case (RCP8.5) due to the near-doubling of the CH 4 abundance, reflecting a positive feedback on the climate system. The largest decrease occurs in the RCP4.5 scenario due to changes in short-lived climate forcing agents which reinforce climate warming and enhance OH. This decrease is more-than-halved in a sensitivity simulation in which only well-mixed greenhouse gas radiative forcing changes along the RCP4.5 scenario (5% vs. 13%).
    Print ISSN: 1680-7316
    Digitale ISSN: 1680-7324
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Publikationsdatum: 2012-12-20
    Beschreibung: Cloud condensation nuclei production associated with atmospheric nucleation: a synthesis based on existing literature and new results Atmospheric Chemistry and Physics, 12, 12037-12059, 2012 Author(s): V.-M. Kerminen, M. Paramonov, T. Anttila, I. Riipinen, C. Fountoukis, H. Korhonen, E. Asmi, L. Laakso, H. Lihavainen, E. Swietlicki, B. Svenningsson, A. Asmi, S. N. Pandis, M. Kulmala, and T. Petäjä This paper synthesizes the available scientific information connecting atmospheric nucleation with subsequent cloud condensation nuclei (CCN) formation. We review both observations and model studies related to this topic, and discuss the potential climatic implications. We conclude that CCN production associated with atmospheric nucleation is both frequent and widespread phenomenon in many types of continental boundary layers, and probably also over a large fraction of the free troposphere. The contribution of nucleation to the global CCN budget spans a relatively large uncertainty range, which, together with our poor understanding of aerosol-cloud interactions, results in major uncertainties in the radiative forcing by atmospheric aerosols. In order to better quantify the role of atmospheric nucleation in CCN formation and Earth System behavior, more information is needed on (i) the factors controlling atmospheric CCN production and (ii) the properties of both primary and secondary CCN and their interconnections. In future investigations, more emphasis should be put on combining field measurements with regional and large-scale model studies.
    Print ISSN: 1680-7316
    Digitale ISSN: 1680-7324
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 11
    facet.materialart.
    Unbekannt
    Copernicus
    Publikationsdatum: 2012-11-09
    Beschreibung: Amino acids in Arctic aerosols Atmospheric Chemistry and Physics, 12, 10453-10463, 2012 Author(s): E. Scalabrin, R. Zangrando, E. Barbaro, N. M. Kehrwald, J. Gabrieli, C. Barbante, and A. Gambaro Amino acids are significant components of atmospheric aerosols, affecting organic nitrogen input to marine ecosystems, atmospheric radiation balance, and the global water cycle. The wide range of amino acid reactivities suggest that amino acids may serve as markers of atmospheric transport and deposition of particles. Despite this potential, few measurements have been conducted in remote areas to assess amino acid concentrations and potential sources. Polar regions offer a unique opportunity to investigate atmospheric processes and to conduct source apportionment studies of such compounds. In order to better understand the importance of amino acid compounds in the global atmosphere, we determined free amino acids (FAAs) in seventeen size-segregated aerosol samples collected in a polar station in the Svalbard Islands from 19 April until 14 September 2010. We used an HPLC coupled with a tandem mass spectrometer (ESI-MS/MS) to analyze 20 amino acids and quantify compounds at fmol m −3 levels. Mean total FAA concentration was 1070 fmol m −3 where serine and glycine were the most abundant compounds in almost all samples and accounted for 45–60% of the total amino acid relative abundance. The other eighteen compounds had average concentrations between 0.3 and 98 fmol m −3 . The higher amino acid concentrations were present in the ultrafine aerosol fraction ( 〈 0.49 μm) and accounted for the majority of the total amino acid content. Local marine sources dominate the boreal summer amino acid concentrations, with the exception of the regional input from Icelandic volcanic emissions.
    Print ISSN: 1680-7316
    Digitale ISSN: 1680-7324
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 12
    Publikationsdatum: 2012-11-09
    Beschreibung: A multi-model study of impacts of climate change on surface ozone in Europe Atmospheric Chemistry and Physics, 12, 10423-10440, 2012 Author(s): J. Langner, M. Engardt, A. Baklanov, J. H. Christensen, M. Gauss, C. Geels, G. B. Hedegaard, R. Nuterman, D. Simpson, J. Soares, M. Sofiev, P. Wind, and A. Zakey The impact of climate change on surface ozone over Europe was studied using four offline regional chemistry transport models (CTMs) and one online regional integrated climate-chemistry model (CCM), driven by the same global projection of future climate under the SRES A1B scenario. Anthropogenic emissions of ozone precursors from RCP4.5 for year 2000 were used for simulations of both present and future periods in order to isolate the impact of climate change and to assess the robustness of the results across the different models. The sensitivity of the simulated surface ozone to changes in climate between the periods 2000–2009 and 2040–2049 differs by a factor of two between the models, but the general pattern of change with an increase in southern Europe is similar across different models. Emissions of isoprene differ substantially between different CTMs ranging from 1.6 to 8.0 Tg yr −1 for the current climate, partly due to differences in horizontal resolution of meteorological input data. Also the simulated change in total isoprene emissions varies substantially across models explaining part of the different climate response on surface ozone. Ensemble mean changes in summer mean ozone and mean of daily maximum ozone are close to 1 ppb(v) in parts of the land area in southern Europe. Corresponding changes of 95-percentiles of hourly ozone are close to 2 ppb(v) in the same region. In northern Europe ensemble mean for mean and daily maximum show negative changes while there are no negative changes for the higher percentiles indicating that climate impacts on O 3 could be especially important in connection with extreme summer events.
    Print ISSN: 1680-7316
    Digitale ISSN: 1680-7324
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 13
    Publikationsdatum: 2012-11-09
    Beschreibung: Tropospheric column ozone: matching individual profiles from Aura OMI and TES with a chemistry-transport model Atmospheric Chemistry and Physics, 12, 10441-10452, 2012 Author(s): Q. Tang and M. J. Prather Of all satellite measurements of ozone, only two instruments have coincident, spatially overlapping measurements to allow direct comparison of tropospheric column ozone (TCO): the Ozone Monitoring Instrument (OMI) and the Tropospheric Emission Spectrometer (TES) on the NASA Aura spacecraft. For two years (2005–2006), we collect all observations between 60° S and 60° N from nadir (~65 000 from OMI and TES) and cross-track swaths (~30 000 000 from OMI) and compare with a chemistry-transport model (CTM) simulating each observation with corresponding spatial and temporal coincidence. High-frequency TCO variations are indicative of stratospheric intrusions of ozone-rich air, and the individual, level 2 data provide access to these short-lived phenomena. Although we can identify some seasonal and large-scale biases in the model, the CTM as a transfer standard identifies weaknesses in the observations and further helps quantify the measurement noise of individual profiles. The relatively noise-free CTM bridges these two satellite measurements and improves their cross-validation to better precision than a simple direct comparison. Previous validation studies of TES TCO versus ozonesondes found a bias of about +4 Dobson Units (DU) for large regions. The three-way comparison and the CTM transfer method that use a far greater number of coincidences, indicate that monthly zonal mean OMI-TES TCO biases fall within 5–10%, and thus quantifies the zonal mean OMI TCO bias at a few DU. For small regions (i.e., 5 × 5°), however, the monthly mean OMI-TES differences can exceed ±10 DU at many places (e.g., tropics for the direct OMI-TES comparison) due to different tropospheric sensitivities of the two instruments at these locations. Partly removing the influence of different sensitivities by applying the CTM as the transfer standard, the OMI-TES differences generally decrease, especially over the tropics. In addition, the CTM-TES comparison split into day versus night observations shows no apparent bias in TES at very low levels, ±1 DU. These OMI-TES-CTM comparisons highlight the importance of the a priori ozone profiles that went into each satellite retrieval, including a false agreement due to CTM-a priori similarity, and the importance of including the vertical information (i.e., averaging kernel) in the retrieval products. This study also highlights the advantages of overlapping measurements in terms of cross-validation and the application of a model as the transfer standard.
    Print ISSN: 1680-7316
    Digitale ISSN: 1680-7324
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 14
    Publikationsdatum: 2012-11-13
    Beschreibung: Spectral absorption of biomass burning aerosol determined from retrieved single scattering albedo during ARCTAS Atmospheric Chemistry and Physics, 12, 10505-10518, 2012 Author(s): C. A. Corr, S. R. Hall, K. Ullmann, B. E. Anderson, A. J. Beyersdorf, K. L. Thornhill, M. J. Cubison, J. L. Jimenez, A. Wisthaler, and J. E. Dibb Actinic flux, as well as aerosol chemical and optical properties, were measured aboard the NASA DC-8 aircraft during the ARCTAS (Arctic Research of the Composition of the Troposphere from Aircraft and Satellites) mission in Spring and Summer 2008. These measurements were used in a radiative transfer code to retrieve spectral (350–550 nm) aerosol single scattering albedo (SSA) for biomass burning plumes encountered on 17 April and 29 June. Retrieved SSA values were subsequently used to calculate the absorption Angstrom exponent (AAE) over the 350–500 nm range. Both plumes exhibited enhanced spectral absorption with AAE values that exceeded 1 (6.78 ± 0.38 for 17 April and 3.34 ± 0.11 for 29 June). This enhanced absorption was primarily due to organic aerosol (OA) which contributed significantly to total absorption at all wavelengths for both 17 April (57.7%) and 29 June (56.2%). OA contributions to absorption were greater at UV wavelengths than at visible wavelengths for both cases. Differences in AAE values between the two cases were attributed to differences in plume age and thus to differences in the ratio of OA and black carbon (BC) concentrations. However, notable differences between AAE values calculated for the OA (AAE OA ) for 17 April (11.15 ± 0.59) and 29 June (4.94 ± 0.19) suggested differences in the plume AAE values might also be due to differences in organic aerosol composition. The 17 April OA was much more oxidized than the 29 June OA as denoted by a higher oxidation state value for 17 April (+0.16 vs. −0.32). Differences in the AAE OA , as well as the overall AAE, were thus also possibly due to oxidation of biomass burning primary organic aerosol in the 17 April plume that resulted in the formation of OA with a greater spectral-dependence of absorption.
    Print ISSN: 1680-7316
    Digitale ISSN: 1680-7324
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 15
    Publikationsdatum: 2012-11-13
    Beschreibung: A Tropospheric Emission Spectrometer HDO/H 2 O retrieval simulator for climate models Atmospheric Chemistry and Physics, 12, 10485-10504, 2012 Author(s): R. D. Field, C. Risi, G. A. Schmidt, J. Worden, A. Voulgarakis, A. N. LeGrande, A. H. Sobel, and R. J. Healy Retrievals of the isotopic composition of water vapor from the Aura Tropospheric Emission Spectrometer (TES) have unique value in constraining moist processes in climate models. Accurate comparison between simulated and retrieved values requires that model profiles that would be poorly retrieved are excluded, and that an instrument operator be applied to the remaining profiles. Typically, this is done by sampling model output at satellite measurement points and using the quality flags and averaging kernels from individual retrievals at specific places and times. This approach is not reliable when the model meteorological conditions influencing retrieval sensitivity are different from those observed by the instrument at short time scales, which will be the case for free-running climate simulations. In this study, we describe an alternative, "categorical" approach to applying the instrument operator, implemented within the NASA GISS ModelE general circulation model. Retrieval quality and averaging kernel structure are predicted empirically from model conditions, rather than obtained from collocated satellite observations. This approach can be used for arbitrary model configurations, and requires no agreement between satellite-retrieved and model meteorology at short time scales. To test this approach, nudged simulations were conducted using both the retrieval-based and categorical operators. Cloud cover, surface temperature and free-tropospheric moisture content were the most important predictors of retrieval quality and averaging kernel structure. There was good agreement between the δD fields after applying the retrieval-based and more detailed categorical operators, with increases of up to 30‰ over the ocean and decreases of up to 40‰ over land relative to the raw model fields. The categorical operator performed better over the ocean than over land, and requires further refinement for use outside of the tropics. After applying the TES operator, ModelE had δD biases of −8‰ over ocean and −34‰ over land compared to TES δD, which were less than the biases using raw model δD fields.
    Print ISSN: 1680-7316
    Digitale ISSN: 1680-7324
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 16
    Publikationsdatum: 2012-11-15
    Beschreibung: Corrigendum to "Discrimination of biomass burning smoke and clouds in MAIAC algorithm" published in Atmos. Chem. Phys., 12, 9679–9686, 2012 Atmospheric Chemistry and Physics, 12, 10631-10631, 2012 Author(s): A. Lyapustin, S. Korkin, Y. Wang, B. Quayle, and I. Laszlo No abstract available.
    Print ISSN: 1680-7316
    Digitale ISSN: 1680-7324
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 17
    Publikationsdatum: 2012-12-11
    Beschreibung: Experimental and modeled UV erythemal irradiance under overcast conditions: the role of cloud optical depth Atmospheric Chemistry and Physics, 12, 11723-11732, 2012 Author(s): M. Antón, L. Alados-Arboledas, J. L. Guerrero-Rascado, M. J. Costa, J. C Chiu, and F. J. Olmo This paper evaluates the relationship between the cloud modification factor (CMF) in the ultraviolet erythemal range and the cloud optical depth (COD) retrieved from the Aerosol Robotic Network (AERONET) "cloud mode" algorithm under overcast cloudy conditions (confirmed with sky images) at Granada, Spain, mainly for non-precipitating, overcast and relatively homogenous water clouds. Empirical CMF showed a clear exponential dependence on experimental COD values, decreasing approximately from 0.7 for COD = 10 to 0.25 for COD = 50. In addition, these COD measurements were used as input in the LibRadtran radiative transfer code allowing the simulation of CMF values for the selected overcast cases. The modeled CMF exhibited a dependence on COD similar to the empirical CMF, but modeled values present a strong underestimation with respect to the empirical factors (mean bias of 22%). To explain this high bias, an exhaustive comparison between modeled and experimental UV erythemal irradiance (UVER) data was performed. The comparison revealed that the radiative transfer simulations were 8% higher than the observations for clear-sky conditions. The rest of the bias (~14%) may be attributed to the substantial underestimation of modeled UVER with respect to experimental UVER under overcast conditions, although the correlation between both dataset was high ( R 2 ~ 0.93). A sensitive test showed that the main reason responsible for that underestimation is the experimental AERONET COD used as input in the simulations, which has been retrieved from zenith radiances in the visible range. In this sense, effective COD in the erythemal interval were derived from an iteration procedure based on searching the best match between modeled and experimental UVER values for each selected overcast case. These effective COD values were smaller than AERONET COD data in about 80% of the overcast cases with a mean relative difference of 22%.
    Print ISSN: 1680-7316
    Digitale ISSN: 1680-7324
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 18
    Publikationsdatum: 2012-12-11
    Beschreibung: Vertical profiles of aerosol optical properties over central Illinois and comparison with surface and satellite measurements Atmospheric Chemistry and Physics, 12, 11695-11721, 2012 Author(s): P. J. Sheridan, E. Andrews, J. A. Ogren, J. L. Tackett, and D. M. Winker Between June 2006 and September 2009, an instrumented light aircraft measured over 400 vertical profiles of aerosol and trace gas properties over eastern and central Illinois. The primary objectives of this program were to (1) measure the in situ aerosol properties and determine their vertical and temporal variability and (2) relate these aircraft measurements to concurrent surface and satellite measurements. The primary profile location was within 15 km of the NOAA/ESRL surface aerosol monitoring station near Bondville, Illinois. Identical instruments at the surface and on the aircraft ensured that the data from both platforms would be directly comparable and permitted a determination of how representative surface aerosol properties were of the lower column. Aircraft profiles were also conducted occasionally at two other nearby locations to increase the frequency of A-Train satellite underflights for the purpose of comparing in situ and satellite-retrieved aerosol data. Measurements of aerosol properties conducted at low relative humidity over the Bondville site compare well with the analogous surface aerosol data and do not indicate any major sampling issues or that the aerosol is radically different at the surface compared with the lowest flyby altitude of ~ 240 m above ground level. Statistical analyses of the in situ vertical profile data indicate that aerosol light scattering and absorption (related to aerosol amount) decreases substantially with increasing altitude. Parameters related to the nature of the aerosol (e.g., single-scattering albedo, Ångström exponent, etc.), however, are relatively constant throughout the mixed layer, and do not vary as much as the aerosol amount throughout the profile. While individual profiles often showed more variability, the median in situ single-scattering albedo was 0.93–0.95 for all sampled altitudes. Several parameters (e.g., submicrometer scattering fraction, hemispheric backscattering fraction, and scattering Ångström exponent) suggest that the fraction of smaller particles in the aerosol is larger near the surface than at high altitudes. The observed dependence of scattering on size, wavelength, angular integration range, and relative humidity, together with the spectral dependence of absorption, show that the aerosol at higher altitudes is larger, less hygroscopic, and more strongly absorbing at shorter wavelengths, suggesting an increased contribution from dust or organic aerosols. The aerosol profiles show significant differences among seasons. The largest amounts of aerosol (as determined by median light extinction profile measurements) throughout most of the sampled column were observed during summer, with the lowest amounts in the winter and intermediate values in the spring and fall. The highest three profile levels (3.1, 3.7, 4.6 km), however, showed larger median extinction values in the spring, which could reflect long-range transport of dust or smoke aerosols. The aerosols in the mixed layer were darkest (i.e., lowest single-scattering albedo) in the fall, in agreement with surface measurements at Bondville and other continental sites in the US. In situ profiles of aerosol radiative forcing efficiency showed little seasonal or vertical variability. Underflights of the CALIPSO satellite show reasonable agreement in a majority of retrieved profiles between aircraft-measured extinction at 532 nm (adjusted to ambient relative humidity) and CALIPSO-retrieved extinction, and suggest that routine aircraft profiling programs can be used to better understand and validate satellite retrieval algorithms. CALIPSO tended to overestimate the aerosol extinction at this location in some boundary layer flight segments when scattered or broken clouds were present, which could be related to problems with CALIPSO cloud screening methods. The in situ aircraft-collected aerosol data suggest extinction thresholds for the likelihood of aerosol layers being detected by the CALIOP lidar. In this study, aerosol layers with light extinction (532 nm) values 〉 50 Mm −1 were detected by CALIPSO ~ 95% of the time, while aerosol layers with extinction values lower than 10 Mm −1 had a detection efficiency of 〈 2%. For all collocated comparison cases, a 50% probability of detection falls at an in situ extinction level of 20–25 Mm −1 . These statistical data offer guidance as to the likelihood of CALIPSO's ability to retrieve aerosol extinction at various locations around the globe.
    Print ISSN: 1680-7316
    Digitale ISSN: 1680-7324
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 19
    Publikationsdatum: 2012-12-12
    Beschreibung: Rate coefficients for the reaction of O( 1 D) with the atmospherically long-lived greenhouse gases NF 3 , SF 5 CF 3 , CHF 3 , C 2 F 6 , c-C 4 F 8 , n -C 5 F 12 , and n -C 6 F 14 Atmospheric Chemistry and Physics, 12, 11753-11764, 2012 Author(s): M. Baasandorj, B. D. Hall, and J. B. Burkholder The contribution of atmospherically persistent (long-lived) greenhouse gases to the radiative forcing of Earth has increased over the past several decades. The impact of highly fluorinated, saturated compounds, in particular perfluorinated compounds, on climate change is a concern because of their long atmospheric lifetimes, which are primarily determined by stratospheric loss processes, as well as their strong absorption in the infrared "window" region. A potentially key stratospheric loss process for these compounds is their gas-phase reaction with electronically excited oxygen atoms, O( 1 D). Therefore, accurate reaction rate coefficient data is desired for input to climate change models. In this work, rate coefficients, k , were measured for the reaction of O( 1 D) with several key long-lived greenhouse gases, namely NF 3 , SF 5 CF 3 , CHF 3 (HFC-23), C 2 F 6 , c-C 4 F 8 , n -C 5 F 12 , and n -C 6 F 14 . Room temperature rate coefficients for the total reaction, k Tot , corresponding to loss of O( 1 D), and reactive channel, k R , corresponding to the loss of the reactant compound, were measured for NF 3 and SF 5 CF 3 using competitive reaction and relative rate methods, respectively. k R was measured for the CHF 3 reaction and improved upper-limits were determined for the perfluorinated compounds included in this study. For NF 3 , k Tot was determined to be (2.55 ± 0.38) × 10 −11 cm 3 molecule −1 s −1 and k R , which was measured using CF 3 Cl, N 2 O, CF 2 ClCF 2 Cl (CFC-114), and CF 3 CFCl 2 (CFC-114a) as reference compounds, was determined to be (2.21 ± 0.33) × 10 −11 cm 3 molecule −1 s −1 . For SF 5 CF 3 , k Tot = (3.24 ± 0.50) × 10 −13 cm 3 molecule −1 s −1 and k R 〈 5.8 × 10 ×14 cm 3 molecule −1 s −1 were measured, where k R is a factor of three lower than the current recommendation of k Tot for use in atmospheric modeling. For CHF 3 k R was determined to be (2.35 ± 0.35) × 10 −12 cm 3 molecule −1 s −1 , which corresponds to a reactive channel yield of 0.26 ± 0.04, and resolves a large discrepancy among previously reported values. The quoted uncertainties are 2σ and include estimated systematic errors. Upper-limits for k R for the C 2 F 6 , c-C 4 F 8 , n -C 5 F 12 , and n -C 6 F 14 reactions were determined to be 3.0, 3.5, 5.0, and 16 (in units of 10 −14 cm 3 molecule −1 s −1 ), respectively. The results from this work are compared with results from previous studies. As part of this work, infrared absorption band strengths for NF 3 and SF 5 CF 3 were measured and found to be in good agreement with recently reported values.
    Print ISSN: 1680-7316
    Digitale ISSN: 1680-7324
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 20
    Publikationsdatum: 2012-12-12
    Beschreibung: On the diurnal cycle of urban aerosols, black carbon and the occurrence of new particle formation events in springtime São Paulo, Brazil Atmospheric Chemistry and Physics, 12, 11733-11751, 2012 Author(s): J. Backman, L. V. Rizzo, J. Hakala, T. Nieminen, H. E. Manninen, F. Morais, P. P. Aalto, E. Siivola, S. Carbone, R. Hillamo, P. Artaxo, A. Virkkula, T. Petäjä, and M. Kulmala Large conurbations are a significant source of the anthropogenic pollution and demographic differences between cities that result in a different pollution burden. The metropolitan area of São Paulo (MASP, population 20 million) accounts for one fifth of the Brazilian vehicular fleet. A feature of MASP is the amount of ethanol used by the vehicular fleet, known to exacerbate air quality. The study describes the diurnal behaviour of the submicron aerosol and relies on total particle number concentration, particle number size distribution, light scattering and light absorption measurements. Modelled planetary boundary layer (PBL) depth and air mass movement data were used to aid the interpretation. During morning rush-hour, stagnant air and a shallow PBL height favour the accumulation of aerosol pollution. During clear-sky conditions, there was a wind shift towards the edge of the city indicating a heat island effect with implications on particulate pollution levels at the site. The median total particle number concentration for the submicron aerosol typically varied in the range 1.6 × 10 4 –3.2 × 10 4 cm −3 frequently exceeding 4 × 10 4 cm −3 during the day. During weekdays, nucleation-mode particles are responsible for most of the particles by numbers. The highest concentrations of total particle number concentrations and black carbon (BC) were observed on Fridays. Median diurnal values for light absorption and light scattering (at 637 nm wavelength) varied in the range 12–33 Mm −1 and 21–64 Mm −1 , respectively. The former one is equal to 1.8–5.0 μg m −3 of BC. The growth of the PBL, from the morning rush-hour until noon, is consistent with the diurnal cycle of BC mass concentrations. Weekday hourly median single-scattering albedo (ω 0 ) varied in the range 0.59–0.76. Overall, this suggests a top of atmosphere (TOA) warming effect. However, considering the low surface reflectance of urban areas, for the given range of ω 0 , the TOA radiative forcing can be either positive or negative for the sources within the MASP. On the average, weekend ω 0 values were 0.074 higher than during weekdays. During 11% of the days, new particle formation (NPF) events occurred. The analysed events growth rates ranged between 9 and 25 nm h −1 . Sulphuric acid proxy concentrations calculated for the site were less than 5% of the concentration needed to explain the observed growth. Thus, other vapours are likely contributors to the observed growth.
    Print ISSN: 1680-7316
    Digitale ISSN: 1680-7324
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 21
    Publikationsdatum: 2012-12-18
    Beschreibung: Selected topics on the interaction between cirrus clouds and embedded contrails Atmospheric Chemistry and Physics, 12, 11943-11949, 2012 Author(s): K. Gierens Persistent contrails and natural cirrus clouds often coexist in the upper troposphere and contrails can be embedded within cirrus clouds. The present paper deals with some questions regarding the interaction of cirrus clouds and embedded contrails. I have selected only questions that can be answered by analytical means. I find that (1) the emission index for water vapour is only slightly changed when an aircraft crosses a cirrus cloud, (2) that contrail formation is not affected by an ambient cirrus, (3) that cirrus ice crystals entrained into the trailing wing tip vortex do not efficiently retard the sublimation of contrail ice crystals, and (4) that cirrus can start to dissolve an embedded contrail after a couple of hours by aggregation.
    Print ISSN: 1680-7316
    Digitale ISSN: 1680-7324
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 22
    Publikationsdatum: 2012-09-26
    Beschreibung: Glassy aerosols with a range of compositions nucleate ice heterogeneously at cirrus temperatures Atmospheric Chemistry and Physics, 12, 8611-8632, 2012 Author(s): T. W. Wilson, B. J. Murray, R. Wagner, O. Möhler, H. Saathoff, M. Schnaiter, J. Skrotzki, H. C. Price, T. L. Malkin, S. Dobbie, and S. M. R. K. Al-Jumur Atmospheric secondary organic aerosol (SOA) is likely to exist in a semi-solid or glassy state, particularly at low temperatures and humidities. Previously, it has been shown that glassy aqueous citric acid aerosol is able to nucleate ice heterogeneously under conditions relevant to cirrus in the tropical tropopause layer (TTL). In this study we test if glassy aerosol distributions with a range of chemical compositions heterogeneously nucleate ice under cirrus conditions. Three single component aqueous solution aerosols (raffinose, 4-hydroxy-3-methoxy-DL-mandelic acid (HMMA) and levoglucosan) and one multi component aqueous solution aerosol (raffinose mixed with five dicarboxylic acids and ammonium sulphate) were studied in both the liquid and glassy states at a large cloud simulation chamber. The investigated organic compounds have similar functionality to oxidised organic material found in atmospheric aerosol and have estimated temperature/humidity induced glass transition thresholds that fall within the range predicted for atmospheric SOA. A small fraction of aerosol particles of all compositions were found to nucleate ice heterogeneously in the deposition mode at temperatures relevant to the TTL (
    Print ISSN: 1680-7316
    Digitale ISSN: 1680-7324
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 23
    Publikationsdatum: 2012-09-29
    Beschreibung: Calibration of column-averaged CH 4 over European TCCON FTS sites with airborne in-situ measurements Atmospheric Chemistry and Physics, 12, 8763-8775, 2012 Author(s): M. C. Geibel, J. Messerschmidt, C. Gerbig, T. Blumenstock, H. Chen, F. Hase, O. Kolle, J. V. Lavrič, J. Notholt, M. Palm, M. Rettinger, M. Schmidt, R. Sussmann, T. Warneke, and D. G. Feist In September/October 2009, six European ground-based Fourier Transform Spectrometers (FTS) of the Total Carbon Column Observation Network (TCCON) were calibrated for the first time using aircraft measurements. The campaign was part of the Infrastructure for Measurement of the European Carbon Cycle (IMECC) project. During this campaign, altitude profiles of several trace gases and meteorological parameters were taken close to the FTS sites (typically within 1–2 km distance for flight altitudes below 5000 m). Profiles of CO 2 , CH 4 , CO and H 2 O were measured continuously. N 2 O, H 2 , and SF 6 were later derived from flask measurements. The aircraft data had a vertical coverage ranging from approximately 300 to 13 000 m, corresponding to ~80% of the total atmospheric column seen by the FTS. This study summarizes the calibration results for CH 4 . The resulting calibration factor of 0.978 ± 0.002 (±1 σ) from the IMECC campaign agreed very well with the results that Wunch et al. (2010) had derived for TCCON instruments in North America, Australia, New Zealand, and Japan using similar methods. By combining our results with the data of Wunch et al. (2010), the uncertainty of the calibration factor could be reduced by a factor of three (compared to using only IMECC or only Wunch et al. (2010) data). A careful analysis of the calibration method used by Wunch et al. (2010) revealed that the incomplete vertical coverage of the aircraft profiles can lead to a bias in the calibration factor. This bias can be compensated with a new iterative approach that we developed. Using this improved method, we derived a significantly lower calibration factor of 0.974 ± 0.002 (±1 σ). This corresponds to a correction of all TCCON CH 4 measurements by roughly −7 ppb.
    Print ISSN: 1680-7316
    Digitale ISSN: 1680-7324
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 24
    Publikationsdatum: 2012-09-29
    Beschreibung: Impact of natural and anthropogenic aerosols on stratocumulus and precipitation in the Southeast Pacific: a regional modelling study using WRF-Chem Atmospheric Chemistry and Physics, 12, 8777-8796, 2012 Author(s): Q. Yang, W. I. Gustafson Jr., J. D. Fast, H. Wang, R. C. Easter, M. Wang, S. J. Ghan, L. K. Berg, L. R. Leung, and H. Morrison Cloud-system resolving simulations with the chemistry version of the Weather Research and Forecasting (WRF-Chem) model are used to quantify the relative impacts of regional anthropogenic and oceanic emissions on changes in aerosol properties, cloud macro- and microphysics, and cloud radiative forcing over the Southeast Pacific (SEP) during the VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx) (15 October–16 November 2008). Two distinct regions are identified. The near-coast polluted region is characterized by low surface precipitation rates, the strong suppression of non-sea-salt particle activation due to sea-salt particles, a predominant albedo effect in aerosol indirect effects, and limited impact of aerosols associated with anthropogenic emissions on clouds. Opposite sensitivities to natural marine and anthropogenic aerosol perturbations are seen in cloud properties (e.g., cloud optical depth and cloud-top and cloud-base heights), precipitation, and the top-of-atmosphere and surface shortwave fluxes over this region. The relatively clean remote region is characterized by large contributions of aerosols from non-regional sources (lateral boundaries) and much stronger drizzle at the surface. Under a scenario of five-fold increase in regional anthropogenic emissions, this relatively clean region shows large cloud responses, for example, a 13% increase in cloud-top height and a 9% increase in albedo in response to a moderate increase (25% of the reference case) in cloud condensation nuclei (CCN) concentration. The reduction of precipitation due to this increase in anthropogenic aerosols more than doubles the aerosol lifetime in the clean marine boundary layer. Therefore, the aerosol impacts on precipitation are amplified by the positive feedback of precipitation on aerosol, which ultimately alters the cloud micro- and macro-physical properties, leading to strong aerosol-cloud-precipitation interactions. The high sensitivity is also related to an increase in cloud-top entrainment rate (by 16% at night) due to the increased anthropogenic aerosols. The simulated aerosol-cloud-precipitation interactions due to the increased anthropogenic aerosols have a stronger diurnal cycle over the clean region compared to the near-coast region with stronger interactions at night. During the day, solar heating results in more frequent decoupling of the cloud and sub-cloud layers, thinner clouds, reduced precipitation, and reduced sensitivity to the increase in anthropogenic emissions. This study shows the importance of natural aerosols in accurately quantifying anthropogenic forcing within a regional modeling framework. The results of this study also imply that the energy balance perturbations from increased anthropogenic emissions are larger in the more susceptible clean environment than in already polluted environment and are larger than possible from the first indirect effect alone.
    Print ISSN: 1680-7316
    Digitale ISSN: 1680-7324
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 25
    Publikationsdatum: 2012-10-02
    Beschreibung: Some effects of ice crystals on the FSSP measurements in mixed phase clouds Atmospheric Chemistry and Physics, 12, 8963-8977, 2012 Author(s): G. Febvre, J.-F. Gayet, V. Shcherbakov, C. Gourbeyre, and O. Jourdan In this paper, we show that in mixed phase clouds, the presence of ice crystals may induce wrong FSSP 100 measurements interpretation especially in terms of particle size and subsequent bulk parameters. The presence of ice crystals is generally revealed by a bimodal feature of the particle size distribution (PSD). The combined measurements of the FSSP-100 and the Polar Nephelometer give a coherent description of the effect of the ice crystals on the FSSP-100 response. The FSSP-100 particle size distributions are characterized by a bimodal shape with a second mode peaked between 25 and 35 μm related to ice crystals. This feature is observed with the FSSP-100 at airspeed up to 200 m s −1 and with the FSSP-300 series. In order to assess the size calibration for clouds of ice crystals the response of the FSSP-100 probe has been numerically simulated using a light scattering model of randomly oriented hexagonal ice particles and assuming both smooth and rough crystal surfaces. The results suggest that the second mode, measured between 25 μm and 35 μm, does not necessarily represent true size responses but corresponds to bigger aspherical ice particles. According to simulation results, the sizing understatement would be neglected in the rough case but would be significant with the smooth case. Qualitatively, the Polar Nephelometer phase function suggests that the rough case is the more suitable to describe real crystals. Quantitatively, however, it is difficult to conclude. A review is made to explore different hypotheses explaining the occurrence of the second mode. However, previous cloud in situ measurements suggest that the FSSP-100 secondary mode, peaked in the range 25–35 μm, is likely to be due to the shattering of large ice crystals on the probe inlet. This finding is supported by the rather good relationship between the concentration of particles larger than 20 μm (hypothesized to be ice shattered-fragments measured by the FSSP) and the concentration of (natural) ice particles (CPI data). In mixed cloud, a simple estimation of the number of ice crystals impacting the FSSP inlet shows that the ice crystal shattering effect is the main factor in observed ice production.
    Print ISSN: 1680-7316
    Digitale ISSN: 1680-7324
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 26
    Publikationsdatum: 2012-10-03
    Beschreibung: Estimation of mercury emissions from forest fires, lakes, regional and local sources using measurements in Milwaukee and an inverse method Atmospheric Chemistry and Physics, 12, 8993-9011, 2012 Author(s): B. de Foy, C. Wiedinmyer, and J. J. Schauer Gaseous elemental mercury is a global pollutant that can lead to serious health concerns via deposition to the biosphere and bio-accumulation in the food chain. Hourly measurements between June 2004 and May 2005 in an urban site (Milwaukee, WI) show elevated levels of mercury in the atmosphere with numerous short-lived peaks as well as longer-lived episodes. The measurements are analyzed with an inverse model to obtain information about mercury emissions. The model is based on high resolution meteorological simulations (WRF), hourly back-trajectories (WRF-FLEXPART) and a chemical transport model (CAMx). The hybrid formulation combining back-trajectories and Eulerian simulations is used to identify potential source regions as well as the impacts of forest fires and lake surface emissions. Uncertainty bounds are estimated using a bootstrap method on the inversions. Comparison with the US Environmental Protection Agency's National Emission Inventory (NEI) and Toxic Release Inventory (TRI) shows that emissions from coal-fired power plants are properly characterized, but emissions from local urban sources, waste incineration and metal processing could be significantly under-estimated. Emissions from the lake surface and from forest fires were found to have significant impacts on mercury levels in Milwaukee, and to be underestimated by a factor of two or more.
    Print ISSN: 1680-7316
    Digitale ISSN: 1680-7324
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 27
    Publikationsdatum: 2012-09-22
    Beschreibung: Model evaluation of marine primary organic aerosol emission schemes Atmospheric Chemistry and Physics, 12, 8553-8566, 2012 Author(s): B. Gantt, M. S. Johnson, N. Meskhidze, J. Sciare, J. Ovadnevaite, D. Ceburnis, and C. D. O'Dowd In this study, several marine primary organic aerosol (POA) emission schemes have been evaluated using the GEOS-Chem chemical transport model in order to provide guidance for their implementation in air quality and climate models. These emission schemes, based on varying dependencies of chlorophyll a concentration ([chl a ]) and 10 m wind speed ( U 10 ), have large differences in their magnitude, spatial distribution, and seasonality. Model comparison with weekly and monthly mean values of the organic aerosol mass concentration at two coastal sites shows that the source function exclusively related to [chl a ] does a better job replicating surface observations. Sensitivity simulations in which the negative U 10 and positive [chl a ] dependence of the organic mass fraction of sea spray aerosol are enhanced show improved prediction of the seasonality of the marine POA concentrations. A top-down estimate of submicron marine POA emissions based on the parameterization that compares best to the observed weekly and monthly mean values of marine organic aerosol surface concentrations has a global average emission rate of 6.3 Tg yr −1 . Evaluation of existing marine POA source functions against a case study during which marine POA contributed the major fraction of submicron aerosol mass shows that none of the existing parameterizations are able to reproduce the hourly-averaged observations. Our calculations suggest that in order to capture episodic events and short-term variability in submicron marine POA concentration over the ocean, new source functions need to be developed that are grounded in the physical processes unique to the organic fraction of sea spray aerosol.
    Print ISSN: 1680-7316
    Digitale ISSN: 1680-7324
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 28
    Publikationsdatum: 2012-09-22
    Beschreibung: Factor analysis of combined organic and inorganic aerosol mass spectra from high resolution aerosol mass spectrometer measurements Atmospheric Chemistry and Physics, 12, 8537-8551, 2012 Author(s): Y. L. Sun, Q. Zhang, J. J. Schwab, T. Yang, N. L. Ng, and K. L. Demerjian Positive matrix factorization (PMF) was applied to the merged high resolution mass spectra of organic and inorganic aerosols from aerosol mass spectrometer (AMS) measurements to investigate the sources and evolution processes of submicron aerosols in New York City in summer 2009. This new approach is able to study the distribution of organic and inorganic species in different types of aerosols, the acidity of organic aerosol (OA) factors, and the fragment ion patterns related to photochemical processing. In this study, PMF analysis of the unified AMS spectral matrix resolved 8 factors. The hydrocarbon-like OA (HOA) and cooking OA (COA) factors contain negligible amounts of inorganic species. The two factors that are primarily ammonium sulfate (SO 4 -OA) and ammonium nitrate (NO 3 -OA), respectively, are overall neutralized. Among all OA factors the organic fraction of SO 4 -OA shows the highest degree of oxidation (O/C = 0.69). Two semi-volatile oxygenated OA (OOA) factors, i.e., a less oxidized (LO-OOA) and a more oxidized (MO-OOA), were also identified. MO-OOA represents local photochemical products with a diurnal profile exhibiting a pronounced noon peak, consistent with those of formaldehyde (HCHO) and O x (= O 3 + NO 2 ). The NO + /NO 2 + ion ratio in MO-OOA is much higher than that in NO 3 -OA and in pure ammonium nitrate, indicating the formation of organic nitrates. The nitrogen-enriched OA (NOA) factor contains ~25% of acidic inorganic salts, suggesting the formation of secondary OA via acid-base reactions of amines. The size distributions of OA factors derived from the size-resolved mass spectra show distinct diurnal evolving behaviors but overall a progressing evolution from smaller to larger particle mode as the oxidation degree of OA increases. Our results demonstrate that PMF analysis of the unified aerosol mass spectral matrix which contains both inorganic and organic aerosol signals may enable the deconvolution of more OA factors and gain more insights into the sources, processes, and chemical characteristics of OA in the atmosphere.
    Print ISSN: 1680-7316
    Digitale ISSN: 1680-7324
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 29
    Publikationsdatum: 2012-09-22
    Beschreibung: Technical Note: Synthesis of isoprene atmospheric oxidation products: isomeric epoxydiols and the rearrangement products cis - and trans -3-methyl-3,4-dihydroxytetrahydrofuran Atmospheric Chemistry and Physics, 12, 8529-8535, 2012 Author(s): Z. Zhang, Y.-H. Lin, H. Zhang, J. D. Surratt, L. M. Ball, and A. Gold Isoprene epoxydiol (IEPOX) isomers are key gas-phase intermediates of isoprene atmospheric oxidation. Secondary organic aerosols derived from such intermediates have important impacts on air quality and health. We report here convergent and unambiguous pathways developed for the synthesis of isomeric IEPOX species and the rearrangement products cis - and trans -3-methyl-3,4-dihydroxytetrahydrofuran in good yield. The availability of such compounds is necessary to expedite research on isoprene atmospheric oxidation mechanisms and subsequent aerosol formation as well as the toxicological properties of the aerosols.
    Print ISSN: 1680-7316
    Digitale ISSN: 1680-7324
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 30
    Publikationsdatum: 2012-09-22
    Beschreibung: Modelling of organic aerosols over Europe (2002–2007) using a volatility basis set (VBS) framework: application of different assumptions regarding the formation of secondary organic aerosol Atmospheric Chemistry and Physics, 12, 8499-8527, 2012 Author(s): R. Bergström, H. A. C. Denier van der Gon, A. S. H. Prévôt, K. E. Yttri, and D. Simpson A new organic aerosol module has been implemented into the EMEP chemical transport model. Four different volatility basis set (VBS) schemes have been tested in long-term simulations for Europe, covering the six years 2002–2007. Different assumptions regarding partitioning of primary organic aerosol and aging of primary semi-volatile and intermediate volatility organic carbon (S/IVOC) species and secondary organic aerosol (SOA) have been explored. Model results are compared to filter measurements, aerosol mass spectrometry (AMS) data and source apportionment studies, as well as to other model studies. The present study indicates that many different sources contribute significantly to organic aerosol in Europe. Biogenic and anthropogenic SOA, residential wood combustion and vegetation fire emissions may all contribute more than 10% each over substantial parts of Europe. This study shows smaller contributions from biogenic SOA to organic aerosol in Europe than earlier work, but relatively greater anthropogenic SOA. Simple VBS based organic aerosol models can give reasonably good results for summer conditions but more observational studies are needed to constrain the VBS parameterisations and to help improve emission inventories. The volatility distribution of primary emissions is one important issue for further work. Emissions of volatile organic compounds from biogenic sources are also highly uncertain and need further validation. We can not reproduce winter levels of organic aerosol in Europe, and there are many indications that the present emission inventories substantially underestimate emissions from residential wood combustion in large parts of Europe.
    Print ISSN: 1680-7316
    Digitale ISSN: 1680-7324
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 31
    Publikationsdatum: 2012-09-22
    Beschreibung: Systematic variations of cloud top temperature and precipitation rate with aerosols over the global tropics Atmospheric Chemistry and Physics, 12, 8491-8498, 2012 Author(s): Feng Niu and Zhanqing Li Aerosols may modify cloud properties and precipitation via a variety of mechanisms with varying and contradicting consequences. Using a large ensemble of satellite data acquired by the Moderate Resolution Imaging Spectroradiometer onboard the Earth Observing System's Aqua platform, the CloudSat cloud profiling radar and the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite over the tropical oceans, we identified two distinct correlations of clouds and precipitation with aerosol loading. Cloud-top temperatures are significantly negatively correlated with increasing aerosol index (AI) over oceans and aerosol optical depth (AOT) over land for deep mixed-phase clouds with liquid droplets near the warm bases and ice crystals near the cold tops; no significant changes were found for uniformly liquid clouds. Precipitation rates are positively correlated with the AI for mixed-phase clouds, but negatively correlated for liquid clouds. These distinct correlations might be a manifestation of two potential mechanisms: the invigoration effect (which enhances convection and precipitation) and the microphysical effect (which suppresses precipitation). We note that the highly limited information garnered from satellite products cannot unequivocally support the causal relationships between cloud-top temperature/precipitation rate and aerosol loading. But if aerosols are indeed the causes for the observed relationships, they may change the overall distribution of precipitation, leading to a more extreme and unfavorable rainfall pattern of suppressing light rains and fostering heavy rains.
    Print ISSN: 1680-7316
    Digitale ISSN: 1680-7324
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 32
    Publikationsdatum: 2012-10-12
    Beschreibung: How relevant is the deposition of mercury onto snowpacks? – Part 1: A statistical study on~the~impact of environmental factors Atmospheric Chemistry and Physics, 12, 9221-9249, 2012 Author(s): D. A. Durnford, A. P. Dastoor, A. O. Steen, T. Berg, A. Ryzhkov, D. Figueras-Nieto, L. R. Hole, K. A. Pfaffhuber, and H. Hung A portion of the highly toxic methylmercury that bioaccumulates in aquatic life is created from mercury entering bodies of water with snowpack meltwater. To determine the importance of meltwater as a source of aquatic mercury, it is necessary to understand the environmental processes that govern the behavior of snowpack-related mercury. In this study we investigate relationships among 5 types of snowpack-related mercury observations and 20 model environmental variables. The observation types are the 24-h fractional loss of mercury from surface snow, and the concentrations of mercury in surface snow, seasonal snowpacks, the snowpack meltwater's ionic pulse, and long-term snowpack-related records. The model environmental variables include those related to atmospheric mercury, insolation, wind, atmospheric stability, snowpack physical characteristics, atmospheric pressure, and solid precipitation. Bivariate and multiple linear regressions were performed twice for each mercury observation type: once with all observations, and once excluding observations from locations where the snowpack's burden of oxidizing and stabilizing halogens is known or presumed to affect snowpack mercury. Since no observations from long-term snowpack-related records were considered affected by halogens, this group of observations was included with the sets of uninfluenced observations and was not discussed with the complete, original sets of observations. When all observations are included, only 37% of their variability can be explained, on average, with significance confidence levels averaging 81%; a separate regression model predicts each mercury observation type. Without the influence of halogens, the regression models are able to explain an average of 79% of the observations' variability with significance confidence levels averaging 97%. The snowpack-related mercury observations are most strongly controlled by the dry and wet depositions of oxidized mercury, and by precipitation. Mercury deposited through wet processes is more strongly retained by snowpacks than mercury deposited through dry processes. Revolatilization of mercury deposited through wet processes may be inhibited through burial by fresh snowfalls and/or by its more central location, compared to that of mercury deposited through dry deposition, within snowpack snow grains. The two depositions of oxidized mercury together explain 84% of the variability in observed concentrations of mercury in surface snow, 52% of the variability of observed concentrations of mercury in seasonal snowpacks and their meltwater's ionic pulse, and only 20% of the variability of observed concentrations of mercury in long-term snowpack-related records; other environmental controls seemingly gain in relevance as time passes. The concentration of mercury in long-term records is apparently primarily affected by latitude; both the primary sources of anthropogenic mercury and the strong upper-level zonal winds are located in the midlatitudes.
    Print ISSN: 1680-7316
    Digitale ISSN: 1680-7324
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 33
    Publikationsdatum: 2012-09-27
    Beschreibung: Simulating ultrafine particle formation in Europe using a regional CTM: contribution of primary emissions versus secondary formation to aerosol number concentrations Atmospheric Chemistry and Physics, 12, 8663-8677, 2012 Author(s): C. Fountoukis, I. Riipinen, H. A. C. Denier van der Gon, P. E. Charalampidis, C. Pilinis, A. Wiedensohler, C. O'Dowd, J. P. Putaud, M. Moerman, and S. N. Pandis A three-dimensional regional chemical transport model (CTM) with detailed aerosol microphysics, PMCAMx-UF, was applied to the European domain to simulate the contribution of direct emissions and secondary formation to total particle number concentrations during May 2008. PMCAMx-UF uses the Dynamic Model for Aerosol Nucleation and the Two-Moment Aerosol Sectional (TOMAS) algorithm to track both aerosol number and mass concentration using a sectional approach. The model predicts nucleation events that occur over scales of hundreds up to thousands of kilometers especially over the Balkans and Southeast Europe. The model predictions were compared against measurements from 7 sites across Europe. The model reproduces more than 70% of the hourly concentrations of particles larger than 10 nm ( N 10 ) within a factor of 2. About half of these particles are predicted to originate from nucleation in the lower troposphere. Regional nucleation is predicted to increase the total particle number concentration by approximately a factor of 3. For particles larger than 100 nm the effect varies from an increase of 20% in the eastern Mediterranean to a decrease of 20% in southern Spain and Portugal resulting in a small average increase of around 1% over the whole domain. Nucleation has a significant effect in the predicted N 50 levels (up to a factor of 2 increase) mainly in areas where there are condensable vapors to grow the particles to larger sizes. A semi-empirical ternary sulfuric acid-ammonia-water parameterization performs better than the activation or the kinetic parameterizations in reproducing the observations. Reducing emissions of ammonia and sulfur dioxide affects certain parts of the number size distribution.
    Print ISSN: 1680-7316
    Digitale ISSN: 1680-7324
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 34
    Publikationsdatum: 2012-09-27
    Beschreibung: Influence of a Carrington-like event on the atmospheric chemistry, temperature and dynamics Atmospheric Chemistry and Physics, 12, 8679-8686, 2012 Author(s): M. Calisto, P. T. Verronen, E. Rozanov, and T. Peter We have modeled the atmospheric impact of a major solar energetic particle event similar in intensity to what is thought of the Carrington Event of 1–2 September 1859. Ionization rates for the August 1972 solar proton event, which had an energy spectrum comparable to the Carrington Event, were scaled up in proportion to the fluence estimated for both events. We have assumed such an event to take place in the year 2020 in order to investigate the impact on the modern, near future atmosphere. Effects on atmospheric chemistry, temperature and dynamics were investigated using the 3-D Chemistry Climate Model SOCOL v2.0. We find significant responses of NO x , HO x , ozone, temperature and zonal wind. Ozone and NO x have in common an unusually strong and long-lived response to this solar proton event. The model suggests a 3-fold increase of NO x generated in the upper stratosphere lasting until the end of November, and an up to 10-fold increase in upper mesospheric HO x . Due to the NO x and HO x enhancements, ozone reduces by up to 60–80% in the mesosphere during the days after the event, and by up to 20–40% in the middle stratosphere lasting for several months after the event. Total ozone is reduced by up to 20 DU in the Northern Hemisphere and up to 10 DU in the Southern Hemisphere. Free tropospheric and surface air temperatures show a significant cooling of more than 3 K and zonal winds change significantly by 3–5 m s −1 in the UTLS region. In conclusion, a solar proton event, if it took place in the near future with an intensity similar to that ascribed to of the Carrington Event of 1859, must be expected to have a major impact on atmospheric composition throughout the middle atmosphere, resulting in significant and persistent decrease in total ozone.
    Print ISSN: 1680-7316
    Digitale ISSN: 1680-7324
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 35
    Publikationsdatum: 2012-09-29
    Beschreibung: Analysis of stratospheric NO 2 trends above Jungfraujoch using ground-based UV-visible, FTIR, and satellite nadir observations Atmospheric Chemistry and Physics, 12, 8851-8864, 2012 Author(s): F. Hendrick, E. Mahieu, G. E. Bodeker, K. F. Boersma, M. P. Chipperfield, M. De Mazière, I. De Smedt, P. Demoulin, C. Fayt, C. Hermans, K. Kreher, B. Lejeune, G. Pinardi, C. Servais, R. Stübi, R. van der A, J.-P. Vernier, and M. Van Roozendael The trend in stratospheric NO 2 column at the NDACC (Network for the Detection of Atmospheric Composition Change) station of Jungfraujoch (46.5° N, 8.0° E) is assessed using ground-based FTIR and zenith-scattered visible sunlight SAOZ measurements over the period 1990 to 2009 as well as a composite satellite nadir data set constructed from ERS-2/GOME, ENVISAT/SCIAMACHY, and METOP-A/GOME-2 observations over the 1996–2009 period. To calculate the trends, a linear least squares regression model including explanatory variables for a linear trend, the mean annual cycle, the quasi-biennial oscillation (QBO), solar activity, and stratospheric aerosol loading is used. For the 1990–2009 period, statistically indistinguishable trends of −3.7 ± 1.1% decade −1 and −3.6 ± 0.9% decade −1 are derived for the SAOZ and FTIR NO 2 column time series, respectively. SAOZ, FTIR, and satellite nadir data sets show a similar decrease over the 1996–2009 period, with trends of −2.4 ± 1.1% decade −1 , −4.3 ± 1.4% decade −1 , and −3.6 ± 2.2% decade −1 , respectively. The fact that these declines are opposite in sign to the globally observed +2.5% decade −1 trend in N 2 O, suggests that factors other than N 2 O are driving the evolution of stratospheric NO 2 at northern mid-latitudes. Possible causes of the decrease in stratospheric NO 2 columns have been investigated. The most likely cause is a change in the NO 2 /NO partitioning in favor of NO, due to a possible stratospheric cooling and a decrease in stratospheric chlorine content, the latter being further confirmed by the negative trend in the ClONO 2 column derived from FTIR observations at Jungfraujoch. Decreasing ClO concentrations slows the NO + ClO → NO 2 + Cl reaction and a stratospheric cooling slows the NO + O 3 → NO 2 + O 2 reaction, leaving more NO x in the form of NO. The slightly positive trends in ozone estimated from ground- and satellite-based data sets are also consistent with the decrease of NO 2 through the NO 2 + O 3 → NO 3 + O 2 reaction. Finally, we cannot rule out the possibility that a strengthening of the Dobson-Brewer circulation, which reduces the time available for N 2 O photolysis in the stratosphere, could also contribute to the observed decline in stratospheric NO 2 above Jungfraujoch.
    Print ISSN: 1680-7316
    Digitale ISSN: 1680-7324
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 36
    Publikationsdatum: 2012-09-29
    Beschreibung: Model investigation of NO 3 secondary organic aerosol (SOA) source and heterogeneous organic aerosol (OA) sink in the western United States Atmospheric Chemistry and Physics, 12, 8797-8811, 2012 Author(s): J. L. Fry and K. Sackinger The relative importance of NO 3 -initiated source and heterogeneous sink of organic aerosol in the western United States is investigated using the WRF/Chem regional weather and chemistry model. The model is run for the four individual months, representing the four seasons, of January, May, August, and October, to produce hourly spatial maps of surface concentrations of NO 3 , organic aerosol (OA), and reactive organic gases (ROG, a sum of alkene species tracked in the lumped chemical mechanism employed). These "baseline" simulations are used in conjunction with literature data on secondary organic aerosol (SOA) mass yields, average organic aerosol composition, and reactive uptake coefficients for NO 3 on organic surfaces to predict SOA source and OA heterogeneous loss rates due to reactions initiated by NO 3 . We find both source and sink rates maximized downwind of urban centers, therefore with a varying location that depends on wind direction. Both source and sink terms are maximum in summer, and SOA source dominates over OA loss by approximately three orders of magnitude, with large day-to-day variability. The NO 3 source of SOA (peak production rates of 0.4–3.0 μg kg −1 h −1 ) is found to be significantly larger than the heterogeneous sink of OA via NO 3 surface reactions (peak loss rates of 0.5–8 × 10 −4 μg kg −1 h −1 ).
    Print ISSN: 1680-7316
    Digitale ISSN: 1680-7324
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 37
    Publikationsdatum: 2012-10-03
    Beschreibung: Comparing Lagrangian and Eulerian models for CO 2 transport – a step towards Bayesian inverse modeling using WRF/STILT-VPRM Atmospheric Chemistry and Physics, 12, 8979-8991, 2012 Author(s): D. Pillai, C. Gerbig, R. Kretschmer, V. Beck, U. Karstens, B. Neininger, and M. Heimann We present simulations of atmospheric CO 2 concentrations provided by two modeling systems, run at high spatial resolution: the Eulerian-based Weather Research Forecasting (WRF) model and the Lagrangian-based Stochastic Time-Inverted Lagrangian Transport (STILT) model, both of which are coupled to a diagnostic biospheric model, the Vegetation Photosynthesis and Respiration Model (VPRM). The consistency of the simulations is assessed with special attention paid to the details of horizontal as well as vertical transport and mixing of CO 2 concentrations in the atmosphere. The dependence of model mismatch (Eulerian vs. Lagrangian) on models' spatial resolution is further investigated. A case study using airborne measurements during which two models showed large deviations from each other is analyzed in detail as an extreme case. Using aircraft observations and pulse release simulations, we identified differences in the representation of details in the interaction between turbulent mixing and advection through wind shear as the main cause of discrepancies between WRF and STILT transport at a spatial resolution such as 2 and 6 km. Based on observations and inter-model comparisons of atmospheric CO 2 concentrations, we show that a refinement of the parameterization of turbulent velocity variance and Lagrangian time-scale in STILT is needed to achieve a better match between the Eulerian and the Lagrangian transport at such a high spatial resolution (e.g. 2 and 6 km). Nevertheless, the inter-model differences in simulated CO 2 time series for a tall tower observatory at Ochsenkopf in Germany are about a factor of two smaller than the model-data mismatch and about a factor of three smaller than the mismatch between the current global model simulations and the data.
    Print ISSN: 1680-7316
    Digitale ISSN: 1680-7324
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 38
    Publikationsdatum: 2012-10-05
    Beschreibung: Radiative impacts of cloud heterogeneity and overlap in an atmospheric General Circulation Model Atmospheric Chemistry and Physics, 12, 9097-9111, 2012 Author(s): L. Oreopoulos, D. Lee, Y. C. Sud, and M. J. Suarez The radiative impacts of horizontal heterogeneity of layer cloud condensate, and vertical overlap of both condensate and cloud fraction are examined with the aid of a new radiation package operating in the GEOS-5 Atmospheric General Circulation Model. The impacts are examined in terms of diagnostic top-of-the atmosphere shortwave (SW) and longwave (LW) cloud radiative effect (CRE) calculations for a range of assumptions and overlap parameter specifications. The investigation is conducted for two distinct cloud schemes, one that comes with the standard GEOS-5 distribution, and another used experimentally for its enhanced cloud microphysical capabilities. Both schemes are coupled to a cloud generator allowing arbitrary cloud overlap specification. Results show that cloud overlap radiative impacts are significantly stronger in the operational cloud scheme where a change of cloud fraction overlap from maximum-random to generalized results in global changes of SW and LW CRE of ~4 Wm −2 , and zonal changes of up to ~10 Wm −2 . This is an outcome of fewer occurrences (compared to the other scheme) of large layer cloud fractions and fewer multi-layer situations where large numbers of atmospheric layers are simultaneously cloudy, both conditions that make overlap details more important. The impact of the specifics of condensate distribution overlap on CRE is much weaker. Once generalized overlap is adopted, both cloud schemes are only modestly sensitive to the exact values of the overlap parameters. When one of the CRE components is overestimated and the other underestimated, both cannot be driven simoultaneously towards observed values by adjustments to cloud condensate heterogeneity and overlap specifications alone.
    Print ISSN: 1680-7316
    Digitale ISSN: 1680-7324
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 39
    Publikationsdatum: 2012-10-05
    Beschreibung: Interpretation of FRESCO cloud retrievals in case of absorbing aerosol events Atmospheric Chemistry and Physics, 12, 9057-9077, 2012 Author(s): P. Wang, O. N. E. Tuinder, L. G. Tilstra, M. de Graaf, and P. Stammes Cloud and aerosol information is needed in trace gas retrievals from satellite measurements. The Fast REtrieval Scheme for Clouds from the Oxygen A band (FRESCO) cloud algorithm employs reflectance spectra of the O 2 A band around 760 nm to derive cloud pressure and effective cloud fraction. In general, clouds contribute more to the O 2 A band reflectance than aerosols. Therefore, the FRESCO algorithm does not correct for aerosol effects in the retrievals and attributes the retrieved cloud information entirely to the presence of clouds, and not to aerosols. For events with high aerosol loading, aerosols may have a dominant effect, especially for almost cloud free scenes. We have analysed FRESCO cloud data and Absorbing Aerosol Index (AAI) data from the Global Ozone Monitoring Experiment (GOME-2) instrument on the Metop-A satellite for events with typical absorbing aerosol types, such as volcanic ash, desert dust and smoke. We find that the FRESCO effective cloud fractions are correlated with the AAI data for these absorbing aerosol events and that the FRESCO cloud pressure contains information on aerosol layer pressure. For cloud free scenes, the derived FRESCO cloud pressure is close to the aerosol layer pressure, especially for optically thick aerosol layers. For cloudy scenes, if the strongly absorbing aerosols are located above the clouds, then the retrieved FRESCO cloud pressure may represent the height of the aerosol layer rather than the height of the clouds. Combining FRESCO and AAI data, an estimate for the aerosol layer pressure can be given.
    Print ISSN: 1680-7316
    Digitale ISSN: 1680-7324
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 40
    Publikationsdatum: 2012-10-06
    Beschreibung: On the formation of sulphuric acid – amine clusters in varying atmospheric conditions and its influence on atmospheric new particle formation Atmospheric Chemistry and Physics, 12, 9113-9133, 2012 Author(s): P. Paasonen, T. Olenius, O. Kupiainen, T. Kurtén, T. Petäjä, W. Birmili, A. Hamed, M. Hu, L. G. Huey, C. Plass-Duelmer, J. N. Smith, A. Wiedensohler, V. Loukonen, M. J. McGrath, I. K. Ortega, A. Laaksonen, H. Vehkamäki, V.-M. Kerminen, and M. Kulmala Sulphuric acid is a key component in atmospheric new particle formation. However, sulphuric acid alone does not form stable enough clusters to initiate particle formation in atmospheric conditions. Strong bases, such as amines, have been suggested to stabilize sulphuric acid clusters and thus participate in particle formation. We modelled the formation rate of clusters with two sulphuric acid and two amine molecules ( J A2B2 ) at varying atmospherically relevant conditions with respect to concentrations of sulphuric acid ([H 2 SO 4 ]), dimethylamine ([DMA]) and trimethylamine ([TMA]), temperature and relative humidity (RH). We also tested how the model results change if we assume that the clusters with two sulphuric acid and two amine molecules would act as seeds for heterogeneous nucleation of organic vapours (other than amines) with higher atmospheric concentrations than sulphuric acid. The modelled formation rates J A2B2 were functions of sulphuric acid concentration with close to quadratic dependence, which is in good agreement with atmospheric observations of the connection between the particle formation rate and sulphuric acid concentration. The coefficients K A2B2 connecting the cluster formation rate and sulphuric acid concentrations as J A2B2 = K A2B2 [H 2 SO 4 ] 2 turned out to depend also on amine concentrations, temperature and relative humidity. We compared the modelled coefficients K A2B2 with the corresponding coefficients calculated from the atmospheric observations ( K obs ) from environments with varying temperatures and levels of anthropogenic influence. By taking into account the modelled behaviour of J A2B2 as a function of [H 2 SO 4 ], temperature and RH, the atmospheric particle formation rate was reproduced more closely than with the traditional semi-empirical formulae based on sulphuric acid concentration only. The formation rates of clusters with two sulphuric acid and two amine molecules with different amine compositions (DMA or TMA or one of both) had different responses to varying meteorological conditions and concentrations of vapours participating in particle formation. The observed inverse proportionality of the coefficient K obs with RH and temperature agreed best with the modelled coefficient K A2B2 related to formation of a cluster with two H 2 SO 4 and one or two TMA molecules, assuming that these clusters can grow in collisions with abundant organic vapour molecules. In case this assumption is valid, our results suggest that the formation rate of clusters with at least two of both sulphuric acid and amine molecules might be the rate-limiting step for atmospheric particle formation. More generally, our analysis elucidates the sensitivity of the atmospheric particle formation rate to meteorological variables and concentrations of vapours participating in particle formation (also other than H 2 SO 4 ).
    Print ISSN: 1680-7316
    Digitale ISSN: 1680-7324
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 41
    Publikationsdatum: 2012-08-02
    Beschreibung: Effects of business-as-usual anthropogenic emissions on air quality Atmospheric Chemistry and Physics, 12, 6915-6937, 2012 Author(s): A. Pozzer, P. Zimmermann, U.M. Doering, J. van Aardenne, H. Tost, F. Dentener, G. Janssens-Maenhout, and J. Lelieveld The atmospheric chemistry general circulation model EMAC has been used to estimate the impact of anthropogenic emission changes on global and regional air quality in recent and future years (2005, 2010, 2025 and 2050). The emission scenario assumes that population and economic growth largely determine energy and food consumption and consequent pollution sources with the current technologies ("business as usual"). This scenario is chosen to show the effects of not implementing legislation to prevent additional climate change and growing air pollution, other than what is in place for the base year 2005, representing a pessimistic (but plausible) future. By comparing with recent observations, it is shown that the model reproduces the main features of regional air pollution distributions though with some imprecisions inherent to the coarse horizontal resolution (~100 km) and simplified bottom-up emission input. To identify possible future hot spots of poor air quality, a multi pollutant index (MPI), suited for global model output, has been applied. It appears that East and South Asia and the Middle East represent such hotspots due to very high pollutant concentrations, while a general increase of MPIs is observed in all populated regions in the Northern Hemisphere. In East Asia a range of pollutant gases and fine particulate matter (PM 2.5 ) is projected to reach very high levels from 2005 onward, while in South Asia air pollution, including ozone, will grow rapidly towards the middle of the century. Around the Persian Gulf, where natural PM 2.5 concentrations are already high (desert dust), ozone levels are expected to increase strongly. The population weighted MPI (PW-MPI), which combines demographic and pollutant concentration projections, shows that a rapidly increasing number of people worldwide will experience reduced air quality during the first half of the 21st century. Following this business as usual scenario, it is projected that air quality for the global average citizen in 2050 would be almost comparable to that for the average citizen in East Asia in the year 2005, which underscores the need to pursue emission reductions.
    Print ISSN: 1680-7316
    Digitale ISSN: 1680-7324
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 42
    Publikationsdatum: 2012-08-02
    Beschreibung: The formaldehyde budget as seen by a global-scale multi-constraint and multi-species inversion system Atmospheric Chemistry and Physics, 12, 6699-6721, 2012 Author(s): A. Fortems-Cheiney, F. Chevallier, I. Pison, P. Bousquet, M. Saunois, S. Szopa, C. Cressot, T. P. Kurosu, K. Chance, and A. Fried For the first time, carbon monoxide (CO) and formaldehyde (HCHO) satellite retrievals are used together with methane (CH 4 ) and methyl choloroform (CH 3 CCl 3 or MCF) surface measurements in an advanced inversion system. The CO and HCHO are respectively from the MOPITT and OMI instruments. The multi-species and multi-satellite dataset inversion is done for the 2005–2010 period. The robustness of our results is evaluated by comparing our posterior-modeled concentrations with several sets of independent measurements of atmospheric mixing ratios. The inversion leads to significant changes from the prior to the posterior, in terms of magnitude and seasonality of the CO and CH 4 surface fluxes and of the HCHO production by non-methane volatile organic compounds (NMVOC). The latter is significantly decreased, indicating an overestimation of the biogenic NMVOC emissions, such as isoprene, in the GEIA inventory. CO and CH 4 surface emissions are increased by the inversion, from 1037 to 1394 TgCO and from 489 to 529 TgCH 4 on average for the 2005–2010 period. CH 4 emissions present significant interannual variability and a joint CO-CH 4 fluxes analysis reveals that tropical biomass burning probably played a role in the recent increase of atmospheric methane.
    Print ISSN: 1680-7316
    Digitale ISSN: 1680-7324
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 43
    Publikationsdatum: 2012-08-02
    Beschreibung: Combined effects of surface conditions, boundary layer dynamics and chemistry on diurnal SOA evolution Atmospheric Chemistry and Physics, 12, 6827-6843, 2012 Author(s): R. H. H. Janssen, J. Vilà-Guerau de Arellano, L. N. Ganzeveld, P. Kabat, J. L. Jimenez, D. K. Farmer, C. C. van Heerwaarden, and I. Mammarella We study the combined effects of land surface conditions, atmospheric boundary layer dynamics and chemistry on the diurnal evolution of biogenic secondary organic aerosol in the atmospheric boundary layer, using a model that contains the essentials of all these components. First, we evaluate the model for a case study in Hyytiälä, Finland, and find that it is able to satisfactorily reproduce the observed dynamics and gas-phase chemistry. We show that the exchange of organic aerosol between the free troposphere and the boundary layer (entrainment) must be taken into account in order to explain the observed diurnal cycle in organic aerosol (OA) concentration. An examination of the budgets of organic aerosol and terpene concentrations show that the former is dominated by entrainment, while the latter is mainly driven by emission and chemical transformation. We systematically investigate the role of the land surface, which governs both the surface energy balance partitioning and terpene emissions, and the large-scale atmospheric process of vertical subsidence. Entrainment is especially important for the dilution of organic aerosol concentrations under conditions of dry soils and low terpene emissions. Subsidence suppresses boundary layer growth while enhancing entrainment. Therefore, it influences the relationship between organic aerosol and terpene concentrations. Our findings indicate that the diurnal evolution of secondary organic aerosols (SOA) in the boundary layer is the result of coupled effects of the land surface, dynamics of the atmospheric boundary layer, chemistry, and free troposphere conditions. This has potentially some consequences for the design of both field campaigns and large-scale modeling studies.
    Print ISSN: 1680-7316
    Digitale ISSN: 1680-7324
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 44
    Publikationsdatum: 2012-08-03
    Beschreibung: Can a global model reproduce observed trends in summertime surface ozone levels? Atmospheric Chemistry and Physics, 12, 6983-6998, 2012 Author(s): S. Koumoutsaris and I. Bey Quantifying trends in surface ozone concentrations is critical for assessing pollution control strategies. Here we use observations and results from a global chemical transport model to examine the trends (1991–2005) in daily maximum 8-h average concentrations in summertime surface ozone at rural sites in Europe and the United States (US). We find a decrease in observed ozone concentrations at the high end of the probability distribution at many of the sites in both regions. The model attributes these trends to a decrease in local anthropogenic ozone precursors, although simulated decreasing trends are overestimated in comparison with observed ones. The low end of observed distribution show small upward trends over Europe and the western US and downward trends in Eastern US. The model cannot reproduce these observed trends, especially over Europe and the western US. In particular, simulated changes between the low and high end of the distributions in these two regions are not significant. Sensitivity simulations indicate that emissions from far away source regions do not affect significantly summer ozone trends at both ends of the distribution in both Europe and US. Possible reasons for discrepancies between observed and simulated trends are discussed.
    Print ISSN: 1680-7316
    Digitale ISSN: 1680-7324
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 45
    Publikationsdatum: 2012-07-03
    Beschreibung: Aerosol hygroscopicity at a regional background site (Ispra) in Northern Italy Atmospheric Chemistry and Physics, 12, 5703-5717, 2012 Author(s): M. Adam, J. P. Putaud, S. Martins dos Santos, A. Dell'Acqua, and C. Gruening This study focuses on the aerosol hygroscopic properties as determined from ground-based measurements and Mie theory. Usually, aerosol ground-based measurements are taken in dry conditions in order to have a consistency within networks. The dependence of the various aerosol optical characteristics (e.g. aerosol absorption, scattering, backscattering or extinction coefficients) on relative humidity has therefore to be established in order to determine their values in the atmosphere, where relative humidity can reach high values. We calculated mean monthly diurnal values of the aerosol hygroscopic growth factor at 90% relative humidity GF(90) based on measurements performed at the atmospheric research station in Ispra (Italy) with a Hygroscopicity Tandem Differential Mobility Analyzer over eight months in 2008 and 2009. Particle hygroscopicity increases with particle dry diameter ranging from 35 to 165 nm for all seasons. We observed a clear seasonal variation in GF(90) for particles larger than 75 nm, and a diurnal cycle in spring and winter for all sizes. For 165 nm particles, GF(90) averages 1.32 ± 0.06. The effect of the particle hygroscopic growth on the aerosol optical properties (scattering, extinction, absorption and backscatter coefficients, asymmetry parameter and backscatter faction) was computed using the Mie theory, based on data obtained from a series of instruments running at our station. We found median enhancement factors (defined as ratios between the values of optical variables at 90% and 0% relative humidity) equal to 1.1, 2.1, 1.7, and 1.8, for the aerosol absorption, scattering, backscattering, and extinction coefficients, respectively. All except the absorption enhancement factors show a strong correlation with the hygroscopic growth factor. The enhancement factors observed at our site are among the lowest observed across the world for the aerosol scattering coefficient, and among the highest for the aerosol backscatter fraction.
    Print ISSN: 1680-7316
    Digitale ISSN: 1680-7324
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 46
    Publikationsdatum: 2012-07-03
    Beschreibung: Effect of bacterial ice nuclei on the frequency and intensity of lightning activity inferred by the BRAMS model Atmospheric Chemistry and Physics, 12, 5677-5689, 2012 Author(s): F. L. T. Gonçalves, J. A. Martins, R. I. Albrecht, C. A. Morales, M. A. Silva Dias, and C. E. Morris Many studies from the last decades have shown that airborne microorganisms can be intrinsically linked to atmospheric processes. Certain bacteria may constitute the most active ice nuclei found in the atmosphere and might have some influence on the formation of ice crystals in clouds. This study deals with the ice nucleation activity of Pseudomonas syringae inside of thunderstorms through numerical simulations using BRAMS ( Brazilian Regional Atmospheric Model System ). The numerical simulations were developed in order to investigate the effect on the total amount of rainwater as a function of ice nuclei (IN) P. syringae concentrations with different scenarios (classified as S2 to S4 scenarios) corresponding to a maximum of 10 2 to 10 4 IN bacteria per liter of cloud water plus the BRAMS default (classified as S5 scenario). Additionally, two other scenarios were included without any IN (S1) and the sum of RAMS default and S4 scenario (classified as S6). The chosen radiosonde data is for 3 March 2003, typical summertime in São Paulo City which presents a strong convective cell. The objective of the simulations was to analyze the effect of the IN concentrations on the BRAMS modeled cloud properties and precipitation. The simulated electrification of the cloud permitted analysis of the total flashes estimated from precipitable and non-precipitable ice mass fluxes in two different lightning frequencies. Among all scenarios, only S4 and S6 presented a tendency to decrease the total cloud water, and all bacteria scenarios presented a tendency to decrease the total amount of rain (−8%), corroborating other reports in the literature. All bacteria scenarios also present higher precipitable ice concentrations compared to S5 scenario, the RAMS default. The main results present the total flash number per simulation as well. From the results, the total flash numbers, from both lightning frequencies, in S4 and S6 scenarios, are from 3.1 to 3.7 higher than the BRAMS default. Even the lower bacterial concentrations (scenarios S2 and S3) produced 3 time higher number of flashes, compared to S5 scenario. This result is a function of the hydrometeors in each simulation. In conclusion, IN bacteria could affect directly the thunderstorm structure and lightning formation with many other microphysical implications.
    Print ISSN: 1680-7316
    Digitale ISSN: 1680-7324
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 47
    Publikationsdatum: 2012-07-03
    Beschreibung: Understanding and forecasting polar stratospheric variability with statistical models Atmospheric Chemistry and Physics, 12, 5691-5701, 2012 Author(s): C. Blume and K. Matthes The variability of the north-polar stratospheric vortex is a prominent aspect of the middle atmosphere. This work investigates a wide class of statistical models with respect to their ability to model geopotential and temperature anomalies, representing variability in the polar stratosphere. Four partly nonstationary, nonlinear models are assessed: linear discriminant analysis (LDA); a cluster method based on finite elements (FEM-VARX); a neural network, namely the multi-layer perceptron (MLP); and support vector regression (SVR). These methods model time series by incorporating all significant external factors simultaneously, including ENSO, QBO, the solar cycle, volcanoes, to then quantify their statistical importance. We show that variability in reanalysis data from 1980 to 2005 is successfully modeled. The period from 2005 to 2011 can be hindcasted to a certain extent, where MLP performs significantly better than the remaining models. However, variability remains that cannot be statistically hindcasted within the current framework, such as the unexpected major warming in January 2009. Finally, the statistical model with the best generalization performance is used to predict a winter 2011/12 with warm and weak vortex conditions. A vortex breakdown is predicted for late January, early February 2012.
    Print ISSN: 1680-7316
    Digitale ISSN: 1680-7324
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 48
    Publikationsdatum: 2012-08-21
    Beschreibung: Summer ammonia measurements in a densely populated Mediterranean city Atmospheric Chemistry and Physics, 12, 7557-7575, 2012 Author(s): M. Pandolfi, F. Amato, C. Reche, A. Alastuey, R. P. Otjes, M. J. Blom, and X. Querol Real-time measurements of ambient concentrations of gas-phase ammonia (NH 3 ) were performed in Barcelona (NE Spain) in summer between May and September 2011. Two measurement sites were selected: one in an urban background traffic-influenced area (UB) and the other in the historical city centre (CC). Levels of NH 3 were higher at CC (5.6 ± 2.1 μg m −3 or 7.5 ± 2.8 ppbv) compared with UB (2.2 ± 1.0 μg m −3 or 2.9 ± 1.3 ppbv). This difference is attributed to the contribution from non-traffic sources such as waste containers, sewage systems, humans and open markets more dense in the densely populated historical city centre. Under high temperatures in summer these sources had the potential to increase the ambient levels of NH 3 well above the urban-background-traffic-influenced UB measurement station. Measurements were used to assess major local emissions, sinks and diurnal evolution of NH 3 . The measured levels of NH 3 , especially high in the old city, may contribute to the high mean annual concentrations of secondary sulfate and nitrate measured in Barcelona compared with other cities in Spain affected by high traffic intensity. Ancillary measurements, including PM 10 , PM 2.5 , PM 1 levels (Particulate Matter with aerodynamic diameter smaller than 10 μm, 2.5 μm, and 1 μm), gases and black carbon concentrations and meteorological data, were performed during the measurement campaign. The analysis of specific periods (3 special cases) during the campaign revealed that road traffic was a significant source of NH 3 . However, its effect was more evident at UB compared with CC where it was masked given the high levels of NH 3 from non-traffic sources measured in the old city. The relationship between SO 4 2− daily concentrations and gas-fraction ammonia (NH 3 /(NH 3 + NH 4 + )) revealed that the gas-to-particle phase partitioning (volatilization or ammonium salts formation) also played an important role in the evolution of NH 3 concentration in summer in Barcelona.
    Print ISSN: 1680-7316
    Digitale ISSN: 1680-7324
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 49
    Publikationsdatum: 2012-10-16
    Beschreibung: On the interpretation of an unusual in-situ measured ice crystal scattering phase function Atmospheric Chemistry and Physics, 12, 9355-9364, 2012 Author(s): A. J. Baran, J.-F. Gayet, and V. Shcherbakov In-situ Polar Nephelometer (PN) measurements of unusual ice crystal scattering phase functions, obtained near the cloud-top of a mid-latitude anvil cloud, at a temperature of about −58 °C, were recently reported by Gayet et al. (2012). The ice crystal habits that produced the phase functions consisted of aggregates of ice crystals and aggregates of quasi-spherical ice particles. The diameters of the individual quasi-spherical ice particles were estimated to be between about 15 μm and 20 μm. The measured-averaged scattering phase functions were featureless, at scattering angles less than about 100°, but an ice bow-like feature was noted between the scattering angles of about 120° to 160°. The estimated asymmetry parameter was 0.78 ± 0.04. In this paper, the averaged scattering phase function is interpreted in terms of a weighted habit mixture model. The model that provides the best overall fit to the measured scattering phase function comprises of highly distorted ten-element hexagonal ice aggregates and quasi-spherical ice particles. The smaller quasi-spherical ice crystals are represented by Chebyshev ice particles of order 3, and were assumed to have equivalent spherical diameters of 24 μm. The asymmetry parameter of the best overall model was found to be 0.79. It is argued that the Chebyshev-like ice particles are responsible for the ice bow-like feature and mostly dominate the scattered intensity measured by the PN. The results from this paper have important implications for climate modelling (energy balance of anvils), cloud physics and the remote sensing of cirrus properties.
    Print ISSN: 1680-7316
    Digitale ISSN: 1680-7324
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 50
    Publikationsdatum: 2012-10-16
    Beschreibung: On dithiothreitol (DTT) as a measure of oxidative potential for ambient particles: evidence for the importance of soluble \newline transition metals Atmospheric Chemistry and Physics, 12, 9321-9333, 2012 Author(s): J. G. Charrier and C. Anastasio The rate of consumption of dithiothreitol (DTT) is increasingly used to measure the oxidative potential of particulate matter (PM), which has been linked to the adverse health effects of PM. While several quinones are known to be very reactive in the DTT assay, it is unclear what other chemical species might contribute to the loss of DTT in PM extracts. To address this question, we quantify the rate of DTT loss from individual redox-active species that are common in ambient particulate matter. While most past research has indicated that the DTT assay is not sensitive to metals, our results show that seven out of the ten transition metals tested do oxidize DTT, as do three out of the five quinones tested. While metals are less efficient at oxidizing DTT compared to the most reactive quinones, concentrations of soluble transition metals in fine particulate matter are generally much higher than those of quinones. The net result is that metals appear to dominate the DTT response for typical ambient PM 2.5 samples. Based on particulate concentrations of quinones and soluble metals from the literature, and our measured DTT responses for these species, we estimate that for typical PM 2.5 samples approximately 80% of DTT loss is from transition metals (especially copper and manganese), while quinones account for approximately 20%. We find a similar result for DTT loss measured in a small set of PM 2.5 samples from the San Joaquin Valley of California. Because of the important contribution from metals, we also tested how the DTT assay is affected by EDTA, a chelator that is sometimes used in the assay. EDTA significantly suppresses the response from both metals and quinones; we therefore recommend that EDTA should not be included in the DTT assay.
    Print ISSN: 1680-7316
    Digitale ISSN: 1680-7324
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 51
    Publikationsdatum: 2012-10-24
    Beschreibung: Deliquescence, efflorescence, and phase miscibility of mixed particles of ammonium sulfate and isoprene-derived secondary organic material Atmospheric Chemistry and Physics, 12, 9613-9628, 2012 Author(s): M. L. Smith, A. K. Bertram, and S. T. Martin The hygroscopic phase transitions of ammonium sulfate mixed with isoprene-derived secondary organic material were investigated in aerosol experiments. The organic material was produced by isoprene photo-oxidation at 40% and 60% relative humidity. The low volatility fraction of the photo-oxidation products condensed onto ammonium sulfate particles. The particle-phase organic material had oxygen-to-carbon ratios of 0.67 to 0.74 (±0.2) for mass concentrations of 20 to 30 μg m −3 . The deliquescence, efflorescence, and phase miscibility of the mixed particles were investigated using a dual arm tandem differential mobility analyzer. The isoprene photo-oxidation products induced deviations in behavior relative to pure ammonium sulfate. Compared to an efflorescence relative humidity (ERH) of 30 to 35% for pure ammonium sulfate, efflorescence was eliminated for aqueous particles having organic volume fractions ϵ of 0.6 and greater. Compared to a deliquescence relative humidity (DRH) of 80% for pure ammonium sulfate, the DRH steadily decreased with increasing ϵ , approaching a DRH of 40% for ϵ of 0.9. Parameterizations of the DRH( ϵ ) and ERH( ϵ ) curves were as follows: DRH( ϵ )= ∑ i c i,d ϵ i valid for 0 ≤ ϵ ≤0.86 and ERH( ϵ )= ∑ i c i,e ϵ i valid for 0 ≤ ϵ ≤ 0.55 for the coefficients c 0, d = 80.67, c 0, e = 28.35, c 1, d = −11.45, c 1, e = −13.66, c 2, d = 0, c 2, e = 0, c 3, d = 57.99, c 3, e = -83.80, c 4, d = −106.80, and c 4, e = 0. The molecular description that is thermodynamically implied by these strongly sloped DRH( ϵ ) and ERH( ϵ ) curves is that the organic isoprene photo-oxidation products, the inorganic ammonium sulfate, and water form a miscible liquid phase even at low relative humidity. This phase miscibility is in contrast to the liquid-liquid separation that occurs for some other types of secondary organic material. These differences in liquid-liquid separation are consistent with a prediction recently presented in the literature that the bifurcation between liquid-liquid phase separation versus mixing depends on the oxygen-to-carbon ratio of the organic material. The conclusions are that the influence of secondary organic material on the hygroscopic properties of ammonium sulfate varies with organic composition and that the degree of oxygenation of the organic material, which is a measurable characteristic of complex organic materials, is an important variable influencing the hygroscopic properties of mixed organic-inorganic particles.
    Print ISSN: 1680-7316
    Digitale ISSN: 1680-7324
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 52
    facet.materialart.
    Unbekannt
    Copernicus
    Publikationsdatum: 2012-10-25
    Beschreibung: Characterization of wind power resource in the United States Atmospheric Chemistry and Physics, 12, 9687-9702, 2012 Author(s): U. B. Gunturu and C. A. Schlosser Wind resource in the continental and offshore United States has been reconstructed and characterized using metrics that describe, apart from abundance, its availability, persistence and intermittency. The Modern Era Retrospective-Analysis for Research and Applications (MERRA) boundary layer flux data has been used to construct wind profile at 50 m, 80 m, 100 m, 120 m turbine hub heights. The wind power density (WPD) estimates at 50 m are qualitatively similar to those in the US wind atlas developed by the National Renewable Energy Laboratory (NREL), but quantitatively a class less in some regions, but are within the limits of uncertainty. The wind speeds at 80 m were quantitatively and qualitatively close to the NREL wind map. The possible reasons for overestimation by NREL have been discussed. For long tailed distributions like those of the WPD, the mean is an overestimation and median is suggested for summary representation of the wind resource. The impact of raising the wind turbine hub height on metrics of abundance, persistence, variability and intermittency is analyzed. There is a general increase in availability and abundance of wind resource but there is an increase in intermittency in terms of level crossing rate in low resource regions.
    Print ISSN: 1680-7316
    Digitale ISSN: 1680-7324
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 53
    facet.materialart.
    Unbekannt
    Copernicus
    Publikationsdatum: 2012-10-25
    Beschreibung: Organics in environmental ices: sources, chemistry, and impacts Atmospheric Chemistry and Physics, 12, 9653-9678, 2012 Author(s): V. F. McNeill, A. M. Grannas, J. P. D. Abbatt, M. Ammann, P. Ariya, T. Bartels-Rausch, F. Domine, D. J. Donaldson, M. I. Guzman, D. Heger, T. F. Kahan, P. Klán, S. Masclin, C. Toubin, and D. Voisin The physical, chemical, and biological processes involving organics in ice in the environment impact a number of atmospheric and biogeochemical cycles. Organic material in snow or ice may be biological in origin, deposited from aerosols or atmospheric gases, or formed chemically in situ. In this manuscript, we review the current state of knowledge regarding the sources, properties, and chemistry of organic materials in environmental ices. Several outstanding questions remain to be resolved and fundamental data gathered before an accurate model of transformations and transport of organic species in the cryosphere will be possible. For example, more information is needed regarding the quantitative impacts of chemical and biological processes, ice morphology, and snow formation on the fate of organic material in cold regions. Interdisciplinary work at the interfaces of chemistry, physics and biology is needed in order to fully characterize the nature and evolution of organics in the cryosphere and predict the effects of climate change on the Earth's carbon cycle.
    Print ISSN: 1680-7316
    Digitale ISSN: 1680-7324
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 54
    Publikationsdatum: 2012-04-12
    Beschreibung: Evidence for heavy fuel oil combustion aerosols from chemical analyses at the island of Lampedusa: a possible large role of ships emissions in the Mediterranean Atmospheric Chemistry and Physics, 12, 3479-3492, 2012 Author(s): S. Becagli, D. M. Sferlazzo, G. Pace, A. di Sarra, C. Bommarito, G. Calzolai, C. Ghedini, F. Lucarelli, D. Meloni, F. Monteleone, M. Severi, R. Traversi, and R. Udisti Measurements of aerosol chemical composition made on the island of Lampedusa, south of the Sicily channel, during years 2004–2008, are used to identify the influence of heavy fuel oil (HFO) combustion emissions on aerosol particles in the Central Mediterranean. Aerosol samples influenced by HFO are characterized by elevated Ni and V soluble fraction (about 80% for aerosol from HFO combustion, versus about 40% for crustal particles), high V and Ni to Si ratios, and values of V sol 〉6 ng m −3 . Evidence of HFO combustion influence is found in 17% of the daily samples. Back trajectories analysis on the selected events show that air masses prevalently come from the Sicily channel region, where an intense ship traffic occurs. This behavior suggests that single fixed sources like refineries are not the main responsible for the elevated V and Ni events, which are probably mainly due to ships emissions. V sol , Ni sol , and non-sea salt SO 4 2− (nssSO 4 2− ) show a marked seasonal behaviour, with an evident summer maximum. Such a pattern can be explained by several processes: (i) increased photochemical activity in summer, leading to a faster production of secondary aerosols, mainly nssSO 4 2− , from the oxidation of SO 2 (ii) stronger marine boundary layer (MBL) stability in summer, leading to higher concentration of emitted compounds in the lowest atmospheric layers. A very intense event in spring 2008 was studied in detail, also using size segregated chemical measurements. These data show that elements arising from heavy oil combustion (V, Ni, Al, Fe) are distributed in the sub-micrometric fraction of the aerosol, and the metals are present as free metals, carbonates, oxides hydrates or labile complex with organic ligands, so that they are dissolved in mild condition (HNO 3 , pH1.5). Data suggest a characteristic nssSO 4 2− /V ratio in the range 200–400 for HFO combustion aerosols in summer at Lampedusa. By using the value of 200 a lower limit for the HFO contribution to total sulphates is estimated. HFO combustion emissions account, as a summer average, at least for 1.2 μg m −3 , representing about 30% of the total nssSO 4 2− , 3.9% of PM 10 , 8% of PM 2.5 , and 11% of PM 1 . Within the used dataset, sulphate from HFO combustion emissions reached the peak value of 6.1 μg m −3 on 26 June 2008, when it contributed by 47% to nssSO 4 2− , and by 15% to PM 10 .
    Print ISSN: 1680-7316
    Digitale ISSN: 1680-7324
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 55
    Publikationsdatum: 2012-04-17
    Beschreibung: Differences between downscaling with spectral and grid nudging using WRF Atmospheric Chemistry and Physics, 12, 3601-3610, 2012 Author(s): P. Liu, A. P. Tsimpidi, Y. Hu, B. Stone, A. G. Russell, and A. Nenes Dynamical downscaling has been extensively used to study regional climate forced by large-scale global climate models. During the downscaling process, however, the simulation of regional climate models (RCMs) tends to drift away from the driving fields. Developing a solution that addresses this issue, by retaining the large scale features (from the large-scale fields) and the small-scale features (from the RCMs) has led to the development of "nudging" techniques. Here, we examine the performance of two nudging techniques, grid and spectral nudging, in the downscaling of NCEP/NCAR data with the Weather Research and Forecasting (WRF) Model. The simulations are compared against the results with North America Regional Reanalysis (NARR) data set at different scales of interest using the concept of similarity. We show that with the appropriate choice of wave numbers, spectral nudging outperforms grid nudging in the capacity of balancing the performance of simulation at the large and small scales.
    Print ISSN: 1680-7316
    Digitale ISSN: 1680-7324
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 56
    facet.materialart.
    Unbekannt
    Copernicus
    Publikationsdatum: 2012-04-17
    Beschreibung: Amine substitution into sulfuric acid – ammonia clusters Atmospheric Chemistry and Physics, 12, 3591-3599, 2012 Author(s): O. Kupiainen, I. K. Ortega, T. Kurtén, and H. Vehkamäki The substitution of ammonia by dimethylamine in sulfuric acid – ammonia – dimethylamine clusters was studied using a collision and evaporation dynamics model. Quantum chemical formation free energies were computed using B3LYP/CBSB7 for geometries and frequencies and RI-CC2/aug-cc-pV(T+d)Z for electronic energies. We first demonstrate the good performance of our method by a comparison with an experimental study investigating base substitution in positively charged clusters, and then continue by simulating base exchange in neutral clusters, which cannot be measured directly. Collisions of a dimethylamine molecule with an ammonia containing positively charged cluster result in the instantaneous evaporation of an ammonia molecule, while the dimethylamine molecule remains in the cluster. According to our simulations, a similar base exchange can take place in neutral clusters, although the overall process is more complicated. Neutral sulfuric acid – ammonia clusters are significantly less stable than their positively charged counterparts, resulting in a competition between cluster evaporation and base exchange.
    Print ISSN: 1680-7316
    Digitale ISSN: 1680-7324
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 57
    Publikationsdatum: 2012-04-05
    Beschreibung: CO at 40–80 km above Kiruna observed by the ground-based microwave radiometer KIMRA and simulated by the Whole Atmosphere Community Climate Model Atmospheric Chemistry and Physics, 12, 3261-3271, 2012 Author(s): C. G. Hoffmann, D. E. Kinnison, R. R. Garcia, M. Palm, J. Notholt, U. Raffalski, and G. Hochschild This study compares CO in the Arctic stratosphere and mesosphere measured by ground-based microwave radiometry with simulations made with the Whole Atmosphere Community Climate Model driven with specified dynamical fields (SD-WACCM4) for the Arctic winters 2008/2009 and 2009/2010. CO is a tracer for polar winter middle atmosphere dynamics, hence the representation of polar dynamics in the model is examined indirectly. Measurements were taken with the KIruna Microwave RAdiometer (KIMRA). The instrument, which is located in Kiruna, Northern Sweden (67.8° N, 20.4° E), provides CO profiles between 40 and 80 km altitude. The present comparison, which is one of the first between SD-WACCM4 and measurements, is performed on the smallest space and time scales currently simulated by the model; the global model is evaluated daily at the particular model grid-point closest to Kiruna. As a guide to what can generally be expected from such a comparison, the same analysis is repeated for observations of CO from the Microwave Limb Sounder (MLS), a microwave radiometer onboard NASA's Aura satellite, which has global coverage. First, time-mean profiles of CO are compared, revealing that the profile shape of KIMRA deviates from SD-WACCM4 and MLS, especially in the upper mesosphere. SD-WACCM4 and MLS are mostly consistent throughout the range of altitude considered; however, SD-WACCM4 shows slightly lower values in the upper mesosphere. Second, the time evolution is compared for the complete time series, as well as for the slowly and rapidly evolving parts alone. Overall, the agreement among the datasets is very good and the model is almost as consistent with the measurements as the measurements are with each other. Mutual correlation coefficients of the slowly varying part of the CO time series are ≥0.9 over a wide altitude range. This demonstrates that the polar winter middle atmosphere dynamics is very well represented in SD-WACCM4 and that the relaxation to analyzed meteorological fields below 50 km constrains the behavior of the simulation sufficiently, even at higher altitudes, such that the simulation above 50 km is close to the measurements. However, above 50 km, the model-measurement correlation for the rapidly varying part of the CO time series is lower (0.3) than the measurement-measurement correlation (0.6). This is attributed to the fact that the gravity wave parametrization in WACCM is based on a generic gravity wave spectrum and cannot be expected to capture the instantaneous behavior of the actual gravity wave field present in the atmosphere.
    Print ISSN: 1680-7316
    Digitale ISSN: 1680-7324
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 58
    Publikationsdatum: 2012-04-05
    Beschreibung: Tight coupling of particle size, number and composition in atmospheric cloud droplet activation Atmospheric Chemistry and Physics, 12, 3253-3260, 2012 Author(s): D. O. Topping and G. McFiggans The substantial uncertainty in the indirect effect of aerosol particles on radiative forcing in large part arises from the influences of atmospheric aerosol particles on (i) the brightness of clouds, exerting significant shortwave cooling with no appreciable compensation in the long wave, and on (ii) their ability to precipitate, with implications for cloud cover and lifetime. Predicting the ambient conditions at which aerosol particles may become cloud droplets is largely reliant on an equilibrium relationship derived by Köhler (1936). However, the theoretical basis of the relationship restricts its application to particles solely comprising involatile compounds and water, whereas a substantial fraction of particles in the real atmosphere will contain potentially thousands of semi-volatile organic compounds in addition to containing semi-volatile inorganic components such as ammonium nitrate. We show that equilibration of atmospherically reasonable concentrations of organic compounds with a growing particle as the ambient humidity increases has potentially larger implications on cloud droplet formation than any other equilibrium compositional dependence, owing to inextricable linkage between the aerosol composition, a particles size and concentration under ambient conditions. Whilst previous attempts to account for co-condensation of gases other than water vapour have been restricted to one inorganic condensate, our method demonstrates that accounting for the co-condensation of any number of organic compounds substantially decreases the saturation ratio of water vapour required for droplet activation. This effect is far greater than any other compositional dependence; more so even than the unphysical effect of surface tension reduction in aqueous organic mixtures, ignoring differences in bulk and surface surfactant concentrations.
    Print ISSN: 1680-7316
    Digitale ISSN: 1680-7324
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 59
    Publikationsdatum: 2012-04-06
    Beschreibung: Primary and secondary sources of formaldehyde in urban atmospheres: Houston Texas region Atmospheric Chemistry and Physics, 12, 3273-3288, 2012 Author(s): D. D. Parrish, T. B. Ryerson, J. Mellqvist, J. Johansson, A. Fried, D. Richter, J. G. Walega, R. A. Washenfelder, J. A. de Gouw, J. Peischl, K. C. Aikin, S. A. McKeen, G. J. Frost, F. C. Fehsenfeld, and S. C. Herndon We evaluate the rates of secondary production and primary emission of formaldehyde (CH 2 O) from petrochemical industrial facilities and on-road vehicles in the Houston Texas region. This evaluation is based upon ambient measurements collected during field studies in 2000, 2006 and 2009. The predominant CH 2 O source (92 ± 4% of total) is secondary production formed during the atmospheric oxidation of highly reactive volatile organic compounds (HRVOCs) emitted from the petrochemical facilities. Smaller contributions are primary emissions from these facilities (4 ± 2%), and secondary production (~3%) and primary emissions (~1%) from vehicles. The primary emissions from both sectors are well quantified by current emission inventories. Since secondary production dominates, control efforts directed at primary CH 2 O emissions cannot address the large majority of CH 2 O sources in the Houston area, although there may still be a role for such efforts. Ongoing efforts to control alkene emissions from the petrochemical facilities, as well as volatile organic compound emissions from the motor vehicle fleet, will effectively reduce the CH 2 O concentrations in the Houston region. We do not address other emission sectors, such as off-road mobile sources or secondary formation from biogenic hydrocarbons. Previous analyses based on correlations between ambient concentrations of CH 2 O and various marker species have suggested much larger primary emissions of CH 2 O, but those results neglect confounding effects of dilution and loss processes, and do not demonstrate the causes of the observed correlations. Similar problems must be suspected in any source apportionment analysis of secondary species based upon correlations of ambient concentrations of pollutants.
    Print ISSN: 1680-7316
    Digitale ISSN: 1680-7324
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 60
    Publikationsdatum: 2012-04-11
    Beschreibung: Influence of aerosols and thin cirrus clouds on the GOSAT-observed CO 2 : a case study over Tsukuba Atmospheric Chemistry and Physics, 12, 3393-3404, 2012 Author(s): O. Uchino, N. Kikuchi, T. Sakai, I. Morino, Y. Yoshida, T. Nagai, A. Shimizu, T. Shibata, A. Yamazaki, A. Uchiyama, N. Kikuchi, S. Oshchepkov, A. Bril, and T. Yokota Lidar observations of vertical profiles of aerosols and thin cirrus clouds were made at Tsukuba (36.05° N, 140.12° E), Japan, to investigate the influence of aerosols and thin cirrus clouds on the column-averaged dry-air mole fraction of carbon dioxide (XCO 2 ) retrieved from observation data of the Thermal And Near-infrared Sensor for carbon Observation Fourier Transform Spectrometer, measured in the Short-Wavelength InfraRed band (TANSO-FTS SWIR), onboard the Greenhouse gases Observing SATellite (GOSAT). The lidar system measured the backscattering ratio, depolarization ratio, and/or the wavelength exponent of atmospheric particles. The lidar observations and ground-based high-resolution FTS measurements at the Tsukuba Total Carbon Column Observing Network (Tsukuba TCCON) site were recorded simultaneously during passages of GOSAT over Tsukuba. GOSAT SWIR XCO 2 data (Version 01.xx) released in August 2010 were compared with the lidar and Tsukuba TCCON data. High-altitude aerosols and thin cirrus clouds had a large impact on the GOSAT SWIR XCO 2 results. By taking into account the observed aerosol/cirrus vertical profiles and using a more adequate solar irradiance database in the GOSAT SWIR retrieval, the difference between the GOSAT SWIR XCO 2 data and the Tsukuba TCCON data was reduced. The 3-band retrieval approach where the aerosol and cirrus profiles were retrieved gave us the best results and the retrieved XCO 2 data followed the seasonal cycle of ~8 ppm observed at Tsukuba TCCON site.
    Print ISSN: 1680-7316
    Digitale ISSN: 1680-7324
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 61
    Publikationsdatum: 2012-04-11
    Beschreibung: Climatic effects of 1950–2050 changes in US anthropogenic aerosols – Part 2: Climate response Atmospheric Chemistry and Physics, 12, 3349-3362, 2012 Author(s): E. M. Leibensperger, L. J. Mickley, D. J. Jacob, W.-T. Chen, J. H. Seinfeld, A. Nenes, P. J. Adams, D. G. Streets, N. Kumar, and D. Rind We investigate the climate response to changing US anthropogenic aerosol sources over the 1950–2050 period by using the NASA GISS general circulation model (GCM) and comparing to observed US temperature trends. Time-dependent aerosol distributions are generated from the GEOS-Chem chemical transport model applied to historical emission inventories and future projections. Radiative forcing from US anthropogenic aerosols peaked in 1970–1990 and has strongly declined since due to air quality regulations. We find that the regional radiative forcing from US anthropogenic aerosols elicits a strong regional climate response, cooling the central and eastern US by 0.5–1.0 °C on average during 1970–1990, with the strongest effects on maximum daytime temperatures in summer and autumn. Aerosol cooling reflects comparable contributions from direct and indirect (cloud-mediated) radiative effects. Absorbing aerosol (mainly black carbon) has negligible warming effect. Aerosol cooling reduces surface evaporation and thus decreases precipitation along the US east coast, but also increases the southerly flow of moisture from the Gulf of Mexico resulting in increased cloud cover and precipitation in the central US. Observations over the eastern US show a lack of warming in 1960–1980 followed by very rapid warming since, which we reproduce in the GCM and attribute to trends in US anthropogenic aerosol sources. Present US aerosol concentrations are sufficiently low that future air quality improvements are projected to cause little further warming in the US (0.1 °C over 2010–2050). We find that most of the warming from aerosol source controls in the US has already been realized over the 1980–2010 period.
    Print ISSN: 1680-7316
    Digitale ISSN: 1680-7324
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 62
    Publikationsdatum: 2012-04-12
    Beschreibung: Modelling atmospheric structure, cloud and their response to CCN in the central Arctic: ASCOS case studies Atmospheric Chemistry and Physics, 12, 3419-3435, 2012 Author(s): C. E. Birch, I. M. Brooks, M. Tjernström, M. D. Shupe, T. Mauritsen, J. Sedlar, A. P. Lock, P. Earnshaw, P. O. G. Persson, S. F. Milton, and C. Leck Observations made during late summer in the central Arctic Ocean, as part of the Arctic Summer Cloud Ocean Study (ASCOS), are used to evaluate cloud and vertical temperature structure in the Met Office Unified Model (MetUM). The observation period can be split into 5 regimes; the first two regimes had a large number of frontal systems, which were associated with deep cloud. During the remainder of the campaign a layer of low-level cloud occurred, typical of central Arctic summer conditions, along with two periods of greatly reduced cloud cover. The short-range operational NWP forecasts could not accurately reproduce the observed variations in near-surface temperature. A major source of this error was found to be the temperature-dependant surface albedo parameterisation scheme. The model reproduced the low-level cloud layer, though it was too thin, too shallow, and in a boundary-layer that was too frequently well-mixed. The model was also unable to reproduce the observed periods of reduced cloud cover, which were associated with very low cloud condensation nuclei (CCN) concentrations (
    Print ISSN: 1680-7316
    Digitale ISSN: 1680-7324
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 63
    Publikationsdatum: 2012-04-13
    Beschreibung: Molecular characterization of water soluble organic nitrogen in marine rainwater by ultra-high resolution electrospray ionization mass spectrometry Atmospheric Chemistry and Physics, 12, 3557-3571, 2012 Author(s): K. E. Altieri, M. G. Hastings, A. J. Peters, and D. M. Sigman Atmospheric water soluble organic nitrogen (WSON) is a subset of the complex organic matter in aerosols and rainwater, which impacts cloud condensation processes and aerosol chemical and optical properties and may play a significant role in the biogeochemical cycle of N. However, its sources, composition, connections to inorganic N, and variability are largely unknown. Rainwater samples were collected on the island of Bermuda (32.27° N, 64.87° W), which experiences both anthropogenic and marine influenced air masses. Samples were analyzed by ultra-high resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry to chemically characterize the WSON. Elemental compositions of 2281 N containing compounds were determined over the mass range m / z + 50 to 500. The five compound classes with the largest number of elemental formulas identified, in order from the highest number of formulas to the lowest, contained carbon, hydrogen, oxygen, and nitrogen (CHON+), CHON compounds that contained sulfur (CHONS+), CHON compounds that contained phosphorus (CHONP+), CHON compounds that contained both sulfur and phosphorus (CHONSP+), and compounds that contained only carbon, hydrogen, and nitrogen (CHN+). Compared to rainwater collected in the continental USA, average O:C ratios of all N containing compound classes were lower in the marine samples whereas double bond equivalent values were higher, suggesting a reduced role of secondary formation mechanisms. Despite their prevalence in continental rainwater, no organonitrates or nitrooxy-organosulfates were detected, but there was an increased presence of organic S and organic P containing compounds in the marine rainwater. Cluster analysis showed a clear chemical distinction between samples collected during the cold season (October to March) which have anthropogenic air mass origins and samples collected during the warm season (April to September) with remote marine air mass origins. This, in conjunction with patterns identified in van Krevelen diagrams, suggests that the cold season WSON is a mixture of organic matter with both marine and anthropogenic sources while in the warm season the WSON appears to be dominated by marine sources. These findings indicate that, although the concentrations and percent contribution of WSON to total N is fairly consistent across diverse geographic regions, the chemical composition of WSON varies strongly as a function of source region and atmospheric environment.
    Print ISSN: 1680-7316
    Digitale ISSN: 1680-7324
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 64
    Publikationsdatum: 2012-04-11
    Beschreibung: Climatic effects of 1950–2050 changes in US anthropogenic aerosols – Part 1: Aerosol trends and radiative forcing Atmospheric Chemistry and Physics, 12, 3333-3348, 2012 Author(s): E. M. Leibensperger, L. J. Mickley, D. J. Jacob, W.-T. Chen, J. H. Seinfeld, A. Nenes, P. J. Adams, D. G. Streets, N. Kumar, and D. Rind We calculate decadal aerosol direct and indirect (warm cloud) radiative forcings from US anthropogenic sources over the 1950–2050 period. Past and future aerosol distributions are constructed using GEOS-Chem and historical emission inventories and future projections from the IPCC A1B scenario. Aerosol simulations are evaluated with observed spatial distributions and 1980–2010 trends of aerosol concentrations and wet deposition in the contiguous US. Direct and indirect radiative forcing is calculated using the GISS general circulation model and monthly mean aerosol distributions from GEOS-Chem. The radiative forcing from US anthropogenic aerosols is strongly localized over the eastern US. We find that its magnitude peaked in 1970–1990, with values over the eastern US (east of 100° W) of −2.0 W m −2 for direct forcing including contributions from sulfate (−2.0 W m −2 ), nitrate (−0.2 W m −2 ), organic carbon (−0.2 W m −2 ), and black carbon (+0.4 W m −2 ). The uncertainties in radiative forcing due to aerosol radiative properties are estimated to be about 50%. The aerosol indirect effect is estimated to be of comparable magnitude to the direct forcing. We find that the magnitude of the forcing declined sharply from 1990 to 2010 (by 0.8 W m −2 direct and 1.0 W m −2 indirect), mainly reflecting decreases in SO 2 emissions, and project that it will continue declining post-2010 but at a much slower rate since US SO 2 emissions have already declined by almost 60% from their peak. This suggests that much of the warming effect of reducing US anthropogenic aerosol sources has already been realized. The small positive radiative forcing from US BC emissions (+0.3 W m −2 over the eastern US in 2010; 5% of the global forcing from anthropogenic BC emissions worldwide) suggests that a US emission control strategy focused on BC would have only limited climate benefit.
    Print ISSN: 1680-7316
    Digitale ISSN: 1680-7324
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 65
    Publikationsdatum: 2012-04-13
    Beschreibung: Observed and simulated time evolution of HCl, ClONO 2 , and HF total column abundances Atmospheric Chemistry and Physics, 12, 3527-3556, 2012 Author(s): R. Kohlhepp, R. Ruhnke, M. P. Chipperfield, M. De Mazière, J. Notholt, S. Barthlott, R. L. Batchelor, R. D. Blatherwick, Th. Blumenstock, M. T. Coffey, P. Demoulin, H. Fast, W. Feng, A. Goldman, D. W. T. Griffith, K. Hamann, J. W. Hannigan, F. Hase, N. B. Jones, A. Kagawa, I. Kaiser, Y. Kasai, O. Kirner, W. Kouker, R. Lindenmaier, E. Mahieu, R. L. Mittermeier, B. Monge-Sanz, I. Morino, I. Murata, H. Nakajima, M. Palm, C. Paton-Walsh, U. Raffalski, Th. Reddmann, M. Rettinger, C. P. Rinsland, E. Rozanov, M. Schneider, C. Senten, C. Servais, B.-M. Sinnhuber, D. Smale, K. Strong, R. Sussmann, J. R. Taylor, G. Vanhaelewyn, T. Warneke, C. Whaley, M. Wiehle, and S. W. Wood Time series of total column abundances of hydrogen chloride (HCl), chlorine nitrate (ClONO 2 ), and hydrogen fluoride (HF) were determined from ground-based Fourier transform infrared (FTIR) spectra recorded at 17 sites belonging to the Network for the Detection of Atmospheric Composition Change (NDACC) and located between 80.05° N and 77.82° S. By providing such a near-global overview on ground-based measurements of the two major stratospheric chlorine reservoir species, HCl and ClONO 2 , the present study is able to confirm the decrease of the atmospheric inorganic chlorine abundance during the last few years. This decrease is expected following the 1987 Montreal Protocol and its amendments and adjustments, where restrictions and a subsequent phase-out of the prominent anthropogenic chlorine source gases (solvents, chlorofluorocarbons) were agreed upon to enable a stabilisation and recovery of the stratospheric ozone layer. The atmospheric fluorine content is expected to be influenced by the Montreal Protocol, too, because most of the banned anthropogenic gases also represent important fluorine sources. But many of the substitutes to the banned gases also contain fluorine so that the HF total column abundance is expected to have continued to increase during the last few years. The measurements are compared with calculations from five different models: the two-dimensional Bremen model, the two chemistry-transport models KASIMA and SLIMCAT, and the two chemistry-climate models EMAC and SOCOL. Thereby, the ability of the models to reproduce the absolute total column amounts, the seasonal cycles, and the temporal evolution found in the FTIR measurements is investigated and inter-compared. This is especially interesting because the models have different architectures. The overall agreement between the measurements and models for the total column abundances and the seasonal cycles is good. Linear trends of HCl, ClONO 2 , and HF are calculated from both measurement and model time series data, with a focus on the time range 2000–2009. This period is chosen because from most of the measurement sites taking part in this study, data are available during these years. The precision of the trends is estimated with the bootstrap resampling method. The sensitivity of the trend results with respect to the fitting function, the time of year chosen and time series length is investigated, as well as a bias due to the irregular sampling of the measurements. The measurements and model results investigated here agree qualitatively on a decrease of the chlorine species by around 1% yr −1 . The models simulate an increase of HF of around 1% yr −1 . This also agrees well with most of the measurements, but some of the FTIR series in the Northern Hemisphere show a stabilisation or even a decrease in the last few years. In general, for all three gases, the measured trends vary more strongly with latitude and hemisphere than the modelled trends. Relative to the FTIR measurements, the models tend to underestimate the decreasing chlorine trends and to overestimate the fluorine increase in the Northern Hemisphere. At most sites, the models simulate a stronger decrease of ClONO 2 than of HCl. In the FTIR measurements, this difference between the trends of HCl and ClONO 2 depends strongly on latitude, especially in the Northern Hemisphere.
    Print ISSN: 1680-7316
    Digitale ISSN: 1680-7324
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 66
    Publikationsdatum: 2012-04-13
    Beschreibung: Size and time-resolved growth rate measurements of 1 to 5 nm freshly formed atmospheric nuclei Atmospheric Chemistry and Physics, 12, 3573-3589, 2012 Author(s): C. Kuang, M. Chen, J. Zhao, J. Smith, P. H. McMurry, and J. Wang This study presents measurements of size and time-resolved particle diameter growth rates for freshly nucleated particles down to 1 nm geometric diameter. Novel data analysis methods were developed, de-coupling for the first time the size and time-dependence of particle growth rates by fitting the aerosol general dynamic equation to size distributions obtained at an instant in time. Size distributions of freshly nucleated total aerosol (neutral and charged) were measured during two intensive measurement campaigns in different environments (Atlanta, GA and Boulder, CO) using a recently developed electrical mobility spectrometer with a diethylene glycol-based ultrafine condensation particle counter as the particle detector. One new particle formation (NPF) event from each campaign was analyzed in detail. At a given instant in time during the NPF event, size-resolved growth rates were obtained directly from measured size distributions and were found to increase approximately linearly with particle size from ~1 to 3 nm geometric diameter, increasing from 5.5 ± 0.8 to 7.6 ± 0.6 nm h −1 in Atlanta (13:00) and from 5.6 ± 2 to 27 ± 5 nm h −1 in Boulder (13:00). The resulting growth rate enhancement Γ, defined as the ratio of the observed growth rate to the growth rate due to the condensation of sulfuric acid only, was found to increase approximately linearly with size from ~1 to 3 nm geometric diameter. For the presented NPF events, values for Γ had lower limits that approached ~1 at 1.2 nm geometric diameter in Atlanta and ~3 at 0.8 nm geometric diameter in Boulder, and had upper limits that reached 8.3 at 4.1 nm geometric diameter in Atlanta and 25 at 2.7 nm geometric diameter in Boulder. Nucleated particle survival probability calculations comparing the effects of constant and size-dependent growth indicate that neglecting the strong dependence of growth rate on size from 1 to 3 nm observed in this study could lead to a significant overestimation of CCN survival probability.
    Print ISSN: 1680-7316
    Digitale ISSN: 1680-7324
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 67
    Publikationsdatum: 2012-04-11
    Beschreibung: Aerosols in the CALIOPE air quality modelling system: evaluation and analysis of PM levels, optical depths and chemical composition over Europe Atmospheric Chemistry and Physics, 12, 3363-3392, 2012 Author(s): S. Basart, M. T. Pay, O. Jorba, C. Pérez, P. Jiménez-Guerrero, M. Schulz, and J. M. Baldasano The CALIOPE air quality modelling system is developed and applied to Europe with high spatial resolution (12 km × 12 km). The modelled daily-to-seasonal aerosol variability over Europe in 2004 is evaluated and analysed. Aerosols are estimated from two models, CMAQv4.5 (AERO4) and BSC-DREAM8b. CMAQv4.5 calculates biogenic, anthropogenic and sea salt aerosol and BSC-DREAM8b provides the natural mineral dust contribution from North African deserts. For the evaluation, we use daily PM 10 , PM 2.5 and aerosol components data from 55 stations of the EMEP/CREATE network and total, coarse and fine aerosol optical depth (AOD) data from 35 stations of the AERONET sun photometer network. Annual correlations between modelled and observed values for PM 10 and PM 2.5 are 0.55 and 0.47, respectively. Correlations for total, coarse and fine AOD are 0.51, 0.63, and 0.53, respectively. The higher correlations of the PM 10 and the coarse mode AOD are largely due to the accurate representation of the African dust influence in the forecasting system. Overall PM and AOD levels are underestimated. The evaluation of the aerosol components highlights underestimations in the fine fraction of carbonaceous matter (EC and OC) and secondary inorganic aerosols (SIA; i.e. nitrate, sulphate and ammonium). The scores of the bulk parameters are significantly improved after applying a simple model bias correction based on the observed aerosol composition. The simulated PM 10 and AOD present maximum values over the industrialized and populated Po Valley and Benelux regions. SIA are dominant in the fine fraction representing up to 80% of the aerosol budget in latitudes north of 40° N. In southern Europe, high PM 10 and AOD are linked to the desert dust transport from the Sahara which contributes up to 40% of the aerosol budget. Maximum seasonal ground-level concentrations (PM 10 〉 30 μg m −3 ) are found between spring and early autumn. We estimate that desert dust causes daily exceedances of the PM 10 European air quality limit value (50 μg m −3 ) in large areas south of 45° N with more than 75 exceedances per year in the southernmost regions.
    Print ISSN: 1680-7316
    Digitale ISSN: 1680-7324
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 68
    Publikationsdatum: 2012-04-12
    Beschreibung: Limited-are a modelling of stratocumulus over South-Eastern Pacific Atmospheric Chemistry and Physics, 12, 3511-3526, 2012 Author(s): M. Andrejczuk, W. W. Grabowski, A. Gadian, and R. Burton This paper presents application of the Weather Research and Forecasting (WRF) model to limited-area modeling of atmospheric processes over the subtropical south-eastern Pacific, with the emphasis on the stratocumulus-topped boundary layer. The simulations cover a domain from the VAMOS (Variability of the American Monsoon Systems) Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx) field project conducted in the subtropical south-eastern Pacific in October and November 2008. We focus on a day where the UK's BAe-146 research aircraft encountered Pockets of Open Cells (POCs) at the very western edge of its flight track, rather than on the entire campaign as investigated in previous limited-area modeling studies. Model results are compared to aircraft observations with the main conclusion that the simulated stratocumulus-topped boundary layer is significantly too shallow. This appears to be a combination of an already too shallow boundary layer in the dataset used to provide initial and lateral boundary conditions, and the inability of the WRF model to increase the boundary-layer height. Several sensitivity simulations, applying different subgrid-scale parameterizations available in the model, a larger computational domain and longer simulations, as well as a different dataset providing initial and lateral boundary conditions were all tried to improve the simulation. These changes appeared to have a rather small effect on the results. The model does simulate the formation of mesoscale cloud-free regions that one might consider similar to Pockets of Open Cells observed in nature. However, formation of these regions does not seem to be related to drizzle-induced transition from open- to closed-cell circulations as simulated by LES models. Instead, the cloud-free regions appear to result from mesoscale variations of the lower-tropspheric vertical velocity. Areas of negative vertical velocity with minima (a few cm s −1 ) near the boundary layer top seem to induce direct evaporation of the cloud layer. It remains to be seen in LES studies whether the mechanism seen in the model is realistic or if it is simply an artifact of interactions between resolved and parameterized processes.
    Print ISSN: 1680-7316
    Digitale ISSN: 1680-7324
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 69
    Publikationsdatum: 2012-04-12
    Beschreibung: Airborne hyperspectral observations of surface and cloud directional reflectivity using a commercial digital camera Atmospheric Chemistry and Physics, 12, 3493-3510, 2012 Author(s): A. Ehrlich, E. Bierwirth, M. Wendisch, A. Herber, and J.-F. Gayet Spectral radiance measurements by a digital single-lens reflex camera were used to derive the directional reflectivity of clouds and different surfaces in the Arctic. The camera has been calibrated radiometrically and spectrally to provide accurate radiance measurements with high angular resolution. A comparison with spectral radiance measurements with the Spectral Modular Airborne Radiation measurement sysTem (SMART-Albedometer) showed an agreement within the uncertainties of both instruments (6% for both). The directional reflectivity in terms of the hemispherical directional reflectance factor (HDRF) was obtained for sea ice, ice-free ocean and clouds. The sea ice, with an albedo of ρ = 0.96 (at 530 nm wavelength), showed an almost isotropic HDRF, while sun glint was observed for the ocean HDRF (ρ = 0.12). For the cloud observations with ρ = 0.62, the cloudbow – a backscatter feature typically for scattering by liquid water droplets – was covered by the camera. For measurements above heterogeneous stratocumulus clouds, the required number of images to obtain a mean HDRF that clearly exhibits the cloudbow has been estimated at about 50 images (10 min flight time). A representation of the HDRF as a function of the scattering angle only reduces the image number to about 10 (2 min flight time). The measured cloud and ocean HDRF have been compared to radiative transfer simulations. The ocean HDRF simulated with the observed surface wind speed of 9 m s −1 agreed best with the measurements. For the cloud HDRF, the best agreement was obtained by a broad and weak cloudbow simulated with a cloud droplet effective radius of R eff = 4 μm. This value agrees with the particle sizes derived from in situ measurements and retrieved from the spectral radiance of the SMART-Albedometer.
    Print ISSN: 1680-7316
    Digitale ISSN: 1680-7324
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 70
    Publikationsdatum: 2012-04-12
    Beschreibung: An extended Kalman-filter for regional scale inverse emission estimation Atmospheric Chemistry and Physics, 12, 3455-3478, 2012 Author(s): D. Brunner, S. Henne, C. A. Keller, S. Reimann, M. K. Vollmer, S. O'Doherty, and M. Maione A Kalman-filter based inverse emission estimation method for long-lived trace gases is presented for use in conjunction with a Lagrangian particle dispersion model like FLEXPART. The sequential nature of the approach allows tracing slow seasonal and interannual changes rather than estimating a single period-mean emission field. Other important features include the estimation of a slowly varying concentration background at each measurement station, the possibility to constrain the solution to non-negative emissions, the quantification of uncertainties, the consideration of temporal correlations in the residuals, and the applicability to potentially large inversion problems. The method is first demonstrated for a set of synthetic observations created from a prescribed emission field with different levels of (correlated) noise, which closely mimics true observations. It is then applied to real observations of the three halocarbons HFC-125, HFC-152a and HCFC-141b at the remote research stations Jungfraujoch and Mace Head for the quantification of emissions in Western European countries from 2006 to 2010. Estimated HFC-125 emissions are mostly consistent with national totals reported to UNFCCC in the framework of the Kyoto Protocol and show a generally increasing trend over the considered period. Results for HFC-152a are much more variable with estimated emissions being both higher and lower than reported emissions in different countries. The highest emissions of the order of 700–800 Mg yr −1 are estimated for Italy, which so far does not report HFC-152a emissions. Emissions of HCFC-141b show a continuing strong decrease as expected due to its controls in developed countries under the Montreal Protocol. Emissions from France, however, were still rather large, in the range of 700–1000 Mg yr −1 in the years 2006 and 2007 but strongly declined thereafter.
    Print ISSN: 1680-7316
    Digitale ISSN: 1680-7324
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 71
    Publikationsdatum: 2012-04-12
    Beschreibung: Dry deposition fluxes and deposition velocities of seven trace metal species at five sites in central Taiwan – a summary of surrogate surface measurements and a comparison with model estimations Atmospheric Chemistry and Physics, 12, 3405-3417, 2012 Author(s): L. Zhang, G. C. Fang, C. K. Liu, Y. L. Huang, J. H. Huang, and C. S. Huang Daily air concentrations and dry deposition fluxes of seven metal species were monitored at five sites in central Taiwan for five or six days every month from September 2009 to August 2010. Annual average concentrations at the five sites were in the range of 2.8 to 3.6 ng m −3 for As, 25 to 82 ng m −3 for Mn, 1900 to 2800 ng m −3 for Fe, 69 to 109 ng m −3 for Zn, 18 to 33 ng m −3 for Cr, 60 to 110 ng m −3 for Cu, and 25 to 40 ng m −3 for Pb. Annual average dry deposition fluxes were on the order of 3, 20, 400, 50, 25, 50, and 50 μg m −2 day −1 for As, Mn, Fe, Zn, Cr, Cu, and Pb, respectively. Annual average dry deposition velocities ( V d ) for the seven metal species ranged from 0.18 to 2.22 cm s −1 at these locations. Small seasonal and geographical variations, e.g. from a few percent to a factor of 2 for different species and/or at different locations, were found in the measured concentrations, fluxes, and V d s. The measured fluxes and air concentrations had moderate to good correlations for several of the species at several of the sites (e.g. Fe, Zn, and Mn at most of the sites), but had either weak or no correlations for the other species or at the other sites (e.g. As at Sites I and III, Zn and Cr at Site IV, and Cu at most of the sites). The latter cases were believed to have large uncertainties in the flux measurements using surrogate surfaces. Sensitivity tests were conducted for particle V d s using a size-segregated particle dry deposition model, assuming various combinations of three lognormal size distributions representing fine particles (PM 2.5 ), coarse particles (PM 2.5–10 ), and super-sized particles (PM 10+ ), respectively. It was found that the measured dry deposition fluxes can be reproduced reasonably well using the size-segregated particle dry deposition model if the mass fractions of the metal species in PM 2.5 , PM 2.5–10 and PM 10+ were known. Significant correlations between the modeled and the measured daily fluxes were found for those cases that were believed to have small uncertainties in the flux measurements.
    Print ISSN: 1680-7316
    Digitale ISSN: 1680-7324
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 72
    Publikationsdatum: 2012-04-12
    Beschreibung: Tropical biomass burning smoke plume size, shape, reflectance, and age based on 2001–2009 MISR imagery of Borneo Atmospheric Chemistry and Physics, 12, 3437-3454, 2012 Author(s): C. S. Zender, A. G. Krolewski, M. G. Tosca, and J. T. Randerson Land clearing for crops, plantations and grazing results in anthropogenic burning of tropical forests and peatlands in Indonesia, where images of fire-generated aerosol plumes have been captured by the Multi-angle Imaging SpectroRadiometer (MISR) since 2001. Here we analyze the size, shape, optical properties, and age of distinct fire-generated plumes in Borneo from 2001–2009. The local MISR overpass at 10:30 a.m. misses the afternoon peak of Borneo fire emissions, and may preferentially sample longer plumes from persistent fires burning overnight. Typically the smoke flows with the prevailing southeasterly surface winds at 3–4 m s −1 , and forms ovoid plumes whose mean length, height, and cross-plume width are 41 km, 708 m, and 27% of the plume length, respectively. 50% of these plumes have length between 24 and 50 km, height between 523 and 993 m and width between 18% and 30% of plume length. Length and cross-plume width are lognormally distributed, while height follows a normal distribution. Borneo smoke plume heights are similar to previously reported plume heights, yet Borneo plumes are on average nearly three times longer than previously studied plumes. This could be due to sampling or to more persistent fires and greater fuel loads in peatlands than in other tropical forests. Plume area (median 169 km 2 , with 25th and 75th percentiles at 99 km 2 and 304 km 2 , respectively) varies exponentially with length, though for most plumes a linear relation provides a good approximation. The MISR-estimated plume optical properties involve greater uncertainties than the geometric properties, and show patterns consistent with smoke aging. Optical depth increases by 15–25% in the down-plume direction, consistent with hygroscopic growth and nucleation overwhelming the effects of particle dispersion. Both particle single-scattering albedo and top-of-atmosphere reflectance peak about halfway down-plume, at values about 3% and 10% greater than at the origin, respectively. The initially oblong plumes become brighter and more circular with time, increasingly resembling smoke clouds. Wind speed does not explain a significant fraction of the variation in plume geometry. We provide a parameterization of plume shape that can help atmospheric models estimate the effects of plumes on weather, climate, and air quality. Plume age, the age of smoke furthest down-plume, is lognormally distributed with a median of 2.8 h (25th and 75th percentiles at 1.3 h and 4.0 h), different from the median ages reported in other studies. Intercomparison of our results with previous studies shows that the shape, height, optical depth, and lifetime characteristics reported for tropical biomass burning plumes on three continents are dissimilar and distinct from the same characteristics of non-tropical wildfire plumes.
    Print ISSN: 1680-7316
    Digitale ISSN: 1680-7324
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 73
    Publikationsdatum: 2012-12-06
    Beschreibung: Evaluation of the new ESR network software for the retrieval of direct sun products from CIMEL CE318 and PREDE POM01 sun-sky radiometers Atmospheric Chemistry and Physics, 12, 11619-11630, 2012 Author(s): V. Estellés, M. Campanelli, T. J. Smyth, M. P. Utrillas, and J. A. Martínez-Lozano The European Skynet Radiometers network (EuroSkyRad or ESR) has been recently established as a research network of European PREDE sun-sky radiometers. Moreover, ESR is federated with SKYNET, an international network of PREDE sun-sky radiometers mostly present in East Asia. In contrast to SKYNET, the European network also integrates users of the CIMEL CE318 sky–sun photometer. Keeping instrumental duality in mind, a set of open source algorithms has been developed consisting of two modules for (1) the retrieval of direct sun products (aerosol optical depth, wavelength exponent and water vapor) from the sun extinction measurements; and (2) the inversion of the sky radiance to derive other aerosol optical properties such as size distribution, single scattering albedo or refractive index. In this study we evaluate the ESR direct sun products in comparison with the AERosol RObotic NETwork (AERONET) products. Specifically, we have applied the ESR algorithm to a CIMEL CE318 and PREDE POM simultaneously for a 4-yr database measured at the Burjassot site (Valencia, Spain), and compared the resultant products with the AERONET direct sun measurements obtained with the same CIMEL CE318 sky–sun photometer. The comparison shows that aerosol optical depth differences are mostly within the nominal uncertainty of 0.003 for a standard calibration instrument, and fall within the nominal AERONET uncertainty of 0.01–0.02 for a field instrument in the spectral range 340 to 1020 nm. In the cases of the Ångström exponent and the columnar water vapor, the differences are lower than 0.02 and 0.15 cm, respectively. Therefore, we present an open source code program that can be used with both CIMEL and PREDE sky radiometers and whose results are equivalent to AERONET and SKYNET retrievals.
    Print ISSN: 1680-7316
    Digitale ISSN: 1680-7324
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 74
    Publikationsdatum: 2012-08-31
    Beschreibung: Measurements of the movement of the jet streams at mid-latitudes, in the Northern and Southern Hemispheres, 1979 to 2010 Atmospheric Chemistry and Physics, 12, 7797-7808, 2012 Author(s): R. D. Hudson Previous studies have shown that the mean latitude of the sub-tropical jet streams in both hemispheres have shifted toward the poles over the last few decades. This paper presents a study of the movement of both the subtropical and Polar fronts, the location of the respective jet streams, between 1979 and 2010 at mid-latitudes, using total ozone measurements to identify the sharp horizontal boundary that occurs at the position of the fronts. Previous studies have shown that the two fronts are the boundaries of three distinct regimes in the stratosphere, corresponding to the Hadley, Ferrel, and polar meridionally overturning circulation cells in the troposphere. Over the period of study the horizontal area of the Hadley cell has increased at latitudes between 20 and 60 degrees while the area of the Polar cell has decreased. A linear regression analysis was performed to identify the major factors associated with the movement of the subtropical jet streams. These were: (1) changes in the Tropical land plus ocean temperature, (2) direct radiative forcing from greenhouse gases in the troposphere, (3) changes in the temperature of the lower tropical stratosphere, (4) the Quasi-Biennial Oscillation, and (5) volcanic eruptions. The dominant mechanism was the direct radiative forcing from greenhouse gases. Between 1979 and 2010 the poleward movement of the subtropical jet streams was 3.7 ± 0.3 degrees in the Northern Hemisphere and 6.5 ± 0.2 degrees in the Southern Hemisphere. Previous studies have shown that weather systems tend to follow the jet streams. The observed poleward movement in both hemispheres over the past thirty years represents a significant change in the position of the sub-tropical jet streams, which should lead to significant latitudinal shifts in the global weather patterns and the hydrologic cycle.
    Print ISSN: 1680-7316
    Digitale ISSN: 1680-7324
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 75
    Publikationsdatum: 2012-08-24
    Beschreibung: On the robustness of aerosol effects on an idealized supercell storm simulated with a cloud system-resolving model Atmospheric Chemistry and Physics, 12, 7689-7705, 2012 Author(s): H. Morrison A cloud system-resolving model (the Weather Research and Forecasting model) with 1 km horizontal grid spacing is used to investigate the response of an idealized supercell storm to increased cloud droplet concentrations associated with polluted conditions. The primary focus is on exploring robustness of simulated aerosol effects in the face of complex process interactions and feedbacks between the cloud microphysics and dynamics. Simulations are run using sixteen different model configurations with various microphysical or thermodynamic processes modified or turned off. Robustness of the storm response to polluted conditions is also explored for each configuration by performing additional simulations with small perturbations to the initial conditions. Differences in the domain-mean accumulated surface precipitation and convective mass flux between polluted and pristine conditions are small for almost all model configurations, with relative differences in each quantity generally less than 15%. Configurations that produce a decrease (increase) in cold pool strength in polluted conditions also tend to simulate a decrease (increase) in surface precipitation and convective mass flux. Combined with an analysis of the dynamical and thermodynamic fields, these results indicate the importance of interactions between microphysics, cold pool evolution, and dynamics along outflow boundaries in explaining the system response. Several model configurations, including the baseline, produce an overall similar storm response (weakening) in polluted conditions despite having different microphysical or thermodynamic processes turned off. With hail initiation turned off or the hail fallspeed-size relation set to that of snow, the model produces an invigoration instead of weakening of the storm in polluted conditions. These results highlight the difficulty of foreseeing impacts of changes to model parameterizations and isolating process interactions that drive the system response to aerosols. Overall, these findings are robust, in a qualitative sense, to small perturbations in the initial conditions. However, there is sensitivity in the magnitude, and in some cases sign, of the storm response to polluted conditions with small perturbations in the temperature of the thermal used to initiate convection (less than ±0.5 K) or the vertical shear of the environmental wind (±5%). It is concluded that reducing uncertainty in simulations of aerosol effects on individual deep convective storms will likely require ensemble methods in addition to continued improvement of model parameterizations.
    Print ISSN: 1680-7316
    Digitale ISSN: 1680-7324
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 76
    Publikationsdatum: 2012-08-28
    Beschreibung: Corrigendum to "The HNO 3 forming branch of the HO 2 + NO reaction: pre-industrial-to-present trends in atmospheric species and radiative forcings" published in Atmos. Chem. Phys., 11, 8929–8943, 2011 Atmospheric Chemistry and Physics, 12, 7725-7725, 2012 Author(s): O. A. Søvde, C. R. Hoyle, G. Myhre, and I. S. A. Isaksen No abstract available.
    Print ISSN: 1680-7316
    Digitale ISSN: 1680-7324
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 77
    Publikationsdatum: 2012-08-31
    Beschreibung: Steps towards a mechanistic model of global soil nitric oxide emissions: implementation and space based-constraints Atmospheric Chemistry and Physics, 12, 7779-7795, 2012 Author(s): R. C. Hudman, N. E. Moore, A. K. Mebust, R. V. Martin, A. R. Russell, L. C. Valin, and R. C. Cohen Soils have been identified as a major source (~15%) of global nitrogen oxide (NO x ) emissions. Parameterizations of soil NO x emissions ( S NO x ) commonly used in the current generation of chemical transport models were designed to capture mean seasonal behaviour. These parameterizations do not, however, respond quantitatively to the meteorological triggers that are observed to result in pulsed S NO x . Here we present a new parameterization of S NO x implemented within a global chemical transport model (GEOS-Chem). The parameterization represents available nitrogen (N) in soils using biome specific emission factors, online wet- and dry-deposition of N, and fertilizer and manure N derived from a spatially explicit dataset, distributed using seasonality derived from data obtained by the Moderate Resolution Imaging Spectrometer. Moreover, it represents the functional form of emissions derived from point measurements and ecosystem scale experiments including pulsing following soil wetting by rain or irrigation, and emissions that are a smooth function of soil moisture as well as temperature between 0 and 30 °C. This parameterization yields global above-soil S NO x of 10.7 Tg N yr −1 , including 1.8 Tg N yr −1 from fertilizer N input (1.5% of applied N) and 0.5 Tg N yr −1 from atmospheric N deposition. Over the United States (US) Great Plains region, S NO x are predicted to comprise 15–40% of the tropospheric NO 2 column and increase column variability by a factor of 2–4 during the summer months due to chemical fertilizer application and warm temperatures. S NO x enhancements of 50–80% of the simulated NO 2 column are predicted over the African Sahel during the monsoon onset (April–June). In this region the day-to-day variability of column NO 2 is increased by a factor of 5 due to pulsed-N emissions. We evaluate the model by comparison with observations of NO 2 column density from the Ozone Monitoring Instrument (OMI). We find that the model is able to reproduce the observed interannual variability of NO 2 (induced by pulsed-N emissions) over the US Great Plains. We also show that the OMI mean (median) NO 2 observed during the overpass following first rainfall over the Sahel is 49% (23%) higher than in the five days preceding. The measured NO 2 on the day after rainfall is still 23% (5%) higher, providing a direct measure of the pulse's decay time of 1–2 days. This is consistent with the pulsing representation used in our parameterization and much shorter than 5–14 day pulse decay length used in current models.
    Print ISSN: 1680-7316
    Digitale ISSN: 1680-7324
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 78
    Publikationsdatum: 2012-09-06
    Beschreibung: Sensitivity of radiative properties of persistent contrails to the ice water path Atmospheric Chemistry and Physics, 12, 7893-7901, 2012 Author(s): R. R. De León, M. Krämer, D. S. Lee, and J. C. Thelen The dependence of the radiative properties of persistent linear contrails on the variability of their ice water path is assessed in a two-stream radiative transfer model. It is assumed that the ice water content and the effective size of ice crystals in aged contrails do not differ from those observed in natural cirrus; the parameterization of these two variables, based on a correlation with ambient temperature derived from in situ observations, allows a more realistic representation than the common assumption of fixed values for the contrail optical depth and ice crystal effective radius. The results show that the large variability in ice water content that aged contrails may share with natural cirrus, together with an assumed contrail vertical thickness between 220 and 1000 m, translate into a wider range of radiative forcings from linear contrails [1 to 66 m Wm −2 ] than that reported in previous studies, including IPCC's [3 to 30 m Wm −2 ]. Further field and modelling studies of the temporal evolution of contrail properties will thus be needed to reduce the uncertainties associated with the values assumed in large scale contrail studies.
    Print ISSN: 1680-7316
    Digitale ISSN: 1680-7324
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 79
    Publikationsdatum: 2012-09-06
    Beschreibung: Arctic climate response to forcing from light-absorbing particles in snow and sea ice in CESM Atmospheric Chemistry and Physics, 12, 7903-7920, 2012 Author(s): N. Goldenson, S. J. Doherty, C. M. Bitz, M. M. Holland, B. Light, and A. J. Conley The presence of light-absorbing aerosol particles deposited on arctic snow and sea ice influences the surface albedo, causing greater shortwave absorption, warming, and loss of snow and sea ice, lowering the albedo further. The Community Earth System Model version 1 (CESM1) now includes the radiative effects of light-absorbing particles in snow on land and sea ice and in sea ice itself. We investigate the model response to the deposition of black carbon and dust to both snow and sea ice. For these purposes we employ a slab ocean version of CESM1, using the Community Atmosphere Model version 4 (CAM4), run to equilibrium for year 2000 levels of CO 2 and fixed aerosol deposition. We construct experiments with and without aerosol deposition, with dust or black carbon deposition alone, and with varying quantities of black carbon and dust to approximate year 1850 and 2000 deposition fluxes. The year 2000 deposition fluxes of both dust and black carbon cause 1–2 °C of surface warming over large areas of the Arctic Ocean and sub-Arctic seas in autumn and winter and in patches of Northern land in every season. Atmospheric circulation changes are a key component of the surface-warming pattern. Arctic sea ice thins by on average about 30 cm. Simulations with year 1850 aerosol deposition are not substantially different from those with year 2000 deposition, given constant levels of CO 2 . The climatic impact of particulate impurities deposited over land exceeds that of particles deposited over sea ice. Even the surface warming over the sea ice and sea ice thinning depends more upon light-absorbing particles deposited over land. For CO 2 doubled relative to year 2000 levels, the climate impact of particulate impurities in snow and sea ice is substantially lower than for the year 2000 equilibrium simulation.
    Print ISSN: 1680-7316
    Digitale ISSN: 1680-7324
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 80
    Publikationsdatum: 2012-08-24
    Beschreibung: A simple framework for modelling the photochemical response to solar spectral irradiance variability in the stratosphere Atmospheric Chemistry and Physics, 12, 7707-7724, 2012 Author(s): R. Muncaster, M. S. Bourqui, S. Chabrillat, S. Viscardy, S. M. L. Melo, and P. Charbonneau The stratosphere is thought to play a central role in the atmospheric response to solar irradiance variability. Recent observations suggest that the spectral solar irradiance (SSI) variability involves significant time-dependent spectral variations, with variable degrees of correlation between wavelengths, and new reconstructions are being developed. In this paper, we propose a simplified modelling framework to characterise the effect of short term SSI variability on stratospheric ozone. We focus on the pure photochemical effect, for it is the best constrained one. The photochemical effect is characterised using an ensemble simulation approach with multiple linear regression analysis. A photochemical column model is used with interactive photolysis for this purpose. Regression models and their coefficients provide a characterisation of the stratospheric ozone response to SSI variability and will allow future inter-comparisons between different SSI reconstructions. As a first step in this study, and to allow comparison with past studies, we take the representation of SSI variability from the Lean (1997) solar minimum and maximum spectra. First, solar maximum-minimum response is analysed for all chemical families and partitioning ratios, and is compared with past studies. The ozone response peaks at 0.18 ppmv (approximately 3%) at 37 km altitude. Second, ensemble simulations are regressed following two linear models. In the simplest case, an adjusted coefficient of determination R 2 larger than 0.97 is found throughout the stratosphere using two predictors, namely the previous day's ozone perturbation and the current day's solar irradiance perturbation. A better accuracy ( R 2 larger than 0.9992) is achieved with an additional predictor, the previous day's solar irradiance perturbation. The regression models also provide simple parameterisations of the ozone perturbation due to SSI variability. Their skills as proxy models are evaluated independently against the photochemistry column model. The bias and RMS error of the best regression model are found smaller than 1% and 15% of the ozone response, respectively. Sensitivities to initial conditions and to magnitude of the SSI variability are also discussed.
    Print ISSN: 1680-7316
    Digitale ISSN: 1680-7324
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 81
    Publikationsdatum: 2012-08-29
    Beschreibung: Hydration or dehydration: competing effects of upper tropospheric cloud radiation on the TTL water vapor Atmospheric Chemistry and Physics, 12, 7727-7735, 2012 Author(s): L. Wu, H. Su, J. H. Jiang, and W. G. Read A tropical channel version of the Weather Research and Forecasting (WRF) model is used to investigate the radiative impacts of upper tropospheric clouds on water vapor in the tropical tropopause layer (TTL). The WRF simulations of cloud radiative effects and water vapor in the upper troposphere and lower stratosphere show reasonable agreement with observations, including approximate reproduction of the water vapor "tape recorder" signal. By turning on and off the upper tropospheric cloud radiative effect (UTCRE) above 200 hPa, we find that UTCRE induces a warming of 0.76 K and a moistening of 9% in the upper troposphere at 215 hPa. However, UTCRE cools and dehydrates the TTL, with a cooling of 0.82 K and a dehydration of 16% at 100 hPa. The enhanced vertical ascent due to UTCRE contributes substantially to mass transport and the dehydration in the TTL. The hydration due to the enhanced vertical transport is counteracted by the dehydration from adiabatic cooling associated with the enhanced vertical motion. UTCRE also substantially changes the horizontal winds in the TTL, resulting in shifts of the strongest dehydration away from the lowest temperature anomalies in the TTL. UTCRE increases in-situ cloud formation in the TTL. A seasonal variation is shown in the simulated UTCRE, with stronger impact in the moist phase from June to November than in the dry phase from December to May.
    Print ISSN: 1680-7316
    Digitale ISSN: 1680-7324
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 82
    Publikationsdatum: 2012-08-29
    Beschreibung: Summertime photochemistry during CAREBeijing-2007: RO x budgets and O 3 formation Atmospheric Chemistry and Physics, 12, 7737-7752, 2012 Author(s): Z. Liu, Y. Wang, D. Gu, C. Zhao, L. G. Huey, R. Stickel, J. Liao, M. Shao, T. Zhu, L. Zeng, A. Amoroso, F. Costabile, C.-C. Chang, and S.-C. Liu We analyze summertime photochemistry near the surface in Beijing, China, using a 1-D photochemical model (Regional chEmical and trAnsport Model, REAM-1D) constrained by in situ observations, focusing on the budgets of RO x (OH + HO 2 + RO 2 ) radicals and O 3 formation. While the modeling analysis focuses on near-surface photochemical budgets, the implications for the budget of O 3 in the planetary boundary layer are also discussed. In terms of daytime average, the total RO x primary production rate near the surface in Beijing is 6.6 ppbv per hour (ppbv h −1 , among the highest found in urban atmospheres. The largest primary RO x source in Beijing is photolysis of oxygenated volatile organic compounds (OVOCs), which produces HO 2 and RO 2 at 2.5 ppbv h −1 and 1.7 ppbv h −1 , respectively. Photolysis of excess HONO from an unknown heterogeneous source is the predominant primary OH source at 2.2 ppbv h −1 , much larger than that of O 1 D+H 2 O (0.4 ppbv h −1 ). The largest RO x sink is via OH + NO 2 reaction (1.6 ppbv h −1 ), followed by formation of RO 2 NO 2 (1.0 ppbv h −1 ) and RONO 2 (0.7 ppbv h −1 ). Due to the large aerosol surface area, aerosol uptake of HO 2 appears to be another important radical sink, although the estimate of its magnitude is highly variable depending on the uptake coefficient value used. The daytime average O 3 production and loss rates near the surface are 32 ppbv h −1 and 6.2 ppbv h −1 , respectively. Assuming NO 2 to be the source of excess HONO, the NO 2 to HONO transformation leads to considerable O 3 loss and reduction of its lifetime. Our observation-constrained modeling analysis suggests that oxidation of VOCs (especially aromatics) and heterogeneous reactions (e.g. HONO formation and aerosol uptake HO 2 ) play potentially critical roles in the primary radical budget and O 3 formation in Beijing. One important ramification is that O 3 production is neither NO x nor VOC limited, but in a transition regime where reduction of either NO x or VOCs could result in reduction of O 3 production. The transition regime implies more flexibility in the O 3 control strategies than a binary system of either NO x or VOC limited regime. The co-benefit of concurrent reduction of both NO x and VOCs in reducing column O 3 production integrated in the planetary boundary layer is significant. Further research on the spatial extent of the transition regime over the polluted eastern China is critically important for controlling regional O 3 pollution.
    Print ISSN: 1680-7316
    Digitale ISSN: 1680-7324
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 83
    Publikationsdatum: 2012-09-01
    Beschreibung: Chemically-resolved aerosol eddy covariance flux measurements in urban Mexico City during MILAGRO 2006 Atmospheric Chemistry and Physics, 12, 7809-7823, 2012 Author(s): R. Zalakeviciute, M. L. Alexander, E. Allwine, J. L. Jimenez, B. T. Jobson, L. T. Molina, E. Nemitz, S.N. Pressley, T. M. VanReken, I. M. Ulbrich, E. Velasco, and B. K. Lamb As part of the MILAGRO 2006 field campaign, the exchange of atmospheric aerosols with the urban landscape was measured from a tall tower erected in a heavily populated neighborhood of Mexico City. Urban submicron aerosol fluxes were measured using an eddy covariance method with a quadrupole aerosol mass spectrometer during a two week period in March, 2006. Nitrate and ammonium aerosol concentrations were elevated at this location near the city center compared to measurements at other urban sites. Significant downward fluxes of nitrate aerosol, averaging −0.2 μg m −2 s −1 , were measured during daytime. The urban surface was not a significant source of sulfate aerosols. The measurements also showed that primary organic aerosol fluxes, approximated by hydrocarbon-like organic aerosols (HOA), displayed diurnal patterns similar to CO 2 fluxes and anthropogenic urban activities. Overall, 47% of submicron organic aerosol emissions were HOA, 35% were oxygenated (OOA) and 18% were associated with biomass burning (BBOA). Organic aerosol fluxes were bi-directional, but on average HOA fluxes were 0.1 μg m −2 s −1 , OOA fluxes were −0.03 μg m −2 s −1 , and BBOA fluxes were −0.03 μg m −2 s −1 . After accounting for size differences (PM 1 vs PM 2.5 ) and using an estimate of the black carbon component, comparison of the flux measurements with the 2006 gridded emissions inventory of Mexico City, showed that the daily-averaged total PM emission rates were essentially identical for the emission inventory and the flux measurements. However, the emission inventory included dust and metal particulate contributions, which were not included in the flux measurements. As a result, it appears that the inventory underestimates overall PM emissions for this location.
    Print ISSN: 1680-7316
    Digitale ISSN: 1680-7324
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 84
    Publikationsdatum: 2012-09-01
    Beschreibung: The EMEP MSC-W chemical transport model – technical description Atmospheric Chemistry and Physics, 12, 7825-7865, 2012 Author(s): D. Simpson, A. Benedictow, H. Berge, R. Bergström, L. D. Emberson, H. Fagerli, C. R. Flechard, G. D. Hayman, M. Gauss, J. E. Jonson, M. E. Jenkin, A. Nyíri, C. Richter, V. S. Semeena, S. Tsyro, J.-P. Tuovinen, Á. Valdebenito, and P. Wind The Meteorological Synthesizing Centre-West (MSC-W) of the European Monitoring and Evaluation Programme (EMEP) has been performing model calculations in support of the Convention on Long Range Transboundary Air Pollution (CLRTAP) for more than 30 years. The EMEP MSC-W chemical transport model is still one of the key tools within European air pollution policy assessments. Traditionally, the model has covered all of Europe with a resolution of about 50 km × 50 km, and extending vertically from ground level to the tropopause (100 hPa). The model has changed extensively over the last ten years, however, with flexible processing of chemical schemes, meteorological inputs, and with nesting capability: the code is now applied on scales ranging from local (ca. 5 km grid size) to global (with 1 degree resolution). The model is used to simulate photo-oxidants and both inorganic and organic aerosols. In 2008 the EMEP model was released for the first time as public domain code, along with all required input data for model runs for one year. The second release of the EMEP MSC-W model became available in mid 2011, and a new release is targeted for summer 2012. This publication is intended to document this third release of the EMEP MSC-W model. The model formulations are given, along with details of input data-sets which are used, and a brief background on some of the choices made in the formulation is presented. The model code itself is available at www.emep.int , along with the data required to run for a full year over Europe.
    Print ISSN: 1680-7316
    Digitale ISSN: 1680-7324
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 85
    Publikationsdatum: 2012-09-01
    Beschreibung: Observing the continental-scale carbon balance: assessment of sampling complementarity and redundancy in a terrestrial assimilation system by means of quantitative network design Atmospheric Chemistry and Physics, 12, 7867-7879, 2012 Author(s): T. Kaminski, P. J. Rayner, M. Voßbeck, M. Scholze, and E. Koffi This paper investigates the relationship between the heterogeneity of the terrestrial carbon cycle and the optimal design of observing networks to constrain it. We combine the methods of quantitative network design and carbon-cycle data assimilation to a hierarchy of increasingly heterogeneous descriptions of the European terrestrial biosphere as indicated by increasing diversity of plant functional types. We employ three types of observations, flask measurements of CO 2 concentrations, continuous measurements of CO 2 and pointwise measurements of CO 2 flux. We show that flux measurements are extremely efficient for relatively homogeneous situations but not robust against increasing or unknown complexity. Here a hybrid approach is necessary, and we recommend its use in the development of integrated carbon observing systems.
    Print ISSN: 1680-7316
    Digitale ISSN: 1680-7324
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 86
    Publikationsdatum: 2012-08-29
    Beschreibung: Observations of middle atmospheric H 2 O and O 3 during the 2010 major sudden stratospheric warming by a network of microwave radiometers Atmospheric Chemistry and Physics, 12, 7753-7765, 2012 Author(s): D. Scheiben, C. Straub, K. Hocke, P. Forkman, and N. Kämpfer In this study, we present middle atmospheric water vapor (H 2 O) and ozone (O 3 ) measurements obtained by ground-based microwave radiometers at three European locations in Bern (47° N), Onsala (57° N) and Sodankylä (67° N) during Northern winter 2009/2010. In January 2010, a major sudden stratospheric warming (SSW) occurred in the Northern Hemisphere whose signatures are evident in the ground-based observations of H 2 O and O 3 . The observed anomalies in H 2 O and O 3 are mostly explained by the relative location of the polar vortex with respect to the measurement locations. The SSW started on 26 January 2010 and was most pronounced by the end of January. The zonal mean temperature in the middle stratosphere (10 hPa) increased by approximately 25 Kelvin within a few days. The stratospheric vortex weakened during the SSW and shifted towards Europe. In the mesosphere, the vortex broke down, which lead to large scale mixing of polar and midlatitudinal air. After the warming, the polar vortex in the stratosphere split into two weaker vortices and in the mesosphere, a new, pole-centered vortex formed with maximum wind speed of 70 m s −1 at approximately 40° N. The shift of the stratospheric vortex towards Europe was observed in Bern as an increase in stratospheric H 2 O and a decrease in O 3 . The breakdown of the mesospheric vortex during the SSW was observed at Onsala and Sodankylä as a sudden increase in mesospheric H 2 O. The following large-scale descent inside the newly formed mesospheric vortex was well captured by the H 2 O observations in Sodankylä. In order to combine the H 2 O observations from the three different locations, we applied the trajectory mapping technique on our H 2 O observations to derive synoptic scale maps of the H 2 O distribution. Based on our observations and the 3-D wind field, this method allows determining the approximate development of the stratospheric and mesospheric polar vortex and demonstrates the potential of a network of ground-based instruments.
    Print ISSN: 1680-7316
    Digitale ISSN: 1680-7324
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 87
    Publikationsdatum: 2012-08-29
    Beschreibung: Technical Note: Latitude-time variations of atmospheric column-average dry air mole fractions of CO 2 , CH 4 and N 2 O Atmospheric Chemistry and Physics, 12, 7767-7777, 2012 Author(s): R. Saito, P. K. Patra, N. Deutscher, D. Wunch, K. Ishijima, V. Sherlock, T. Blumenstock, S. Dohe, D. Griffith, F. Hase, P. Heikkinen, E. Kyrö, R. Macatangay, J. Mendonca, J. Messerschmidt, I. Morino, J. Notholt, M. Rettinger, K. Strong, R. Sussmann, and T. Warneke We present a comparison of an atmospheric general circulation model (AGCM)-based chemistry-transport model (ACTM) simulation with total column measurements of CO 2 , CH 4 and N 2 O from the Total Carbon Column Observing Network (TCCON). The model is able to capture observed trends, seasonal cycles and inter hemispheric gradients at most sampled locations for all three species. The model-observation agreements are best for CO 2 , because the simulation uses fossil fuel inventories and an inverse model estimate of non-fossil fuel fluxes. The ACTM captures much of the observed seasonal variability in CO 2 and N 2 O total columns (~81 % variance, R 〉0.9 between ACTM and TCCON for 19 out of 22 cases). These results suggest that the transport processes in troposphere and stratosphere are well represented in ACTM. Thus the poor correlation between simulated and observed CH 4 total columns, particularly at tropical and extra-tropical sites, have been attributed to the uncertainties in surface emissions and loss by hydroxyl radicals. While the upward-looking total column measurements of CO 2 contains surface flux signals at various spatial and temporal scales, the N 2 O measurements are strongly affected by the concentration variations in the upper troposphere and stratosphere.
    Print ISSN: 1680-7316
    Digitale ISSN: 1680-7324
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 88
    Publikationsdatum: 2012-09-04
    Beschreibung: Four-year (2006–2009) eddy covariance measurements of CO 2 flux over an urban area in Beijing Atmospheric Chemistry and Physics, 12, 7881-7892, 2012 Author(s): H. Z. Liu, J. W. Feng, L. Järvi, and T. Vesala Long-term measurements of carbon dioxide flux ( F c ) and the latent and sensible heat fluxes were performed using the eddy covariance (EC) method in Beijing, China over a 4-yr period in 2006–2009. The EC setup was installed at a height of 47 m on the Beijing 325-m meteorological tower in the northwest part of the city. Latent heat flux dominated the energy exchange between the urban surface and the atmosphere in summer, while sensible heat flux was the main component in the spring. Winter and autumn were two transition periods of the turbulent fluxes. The source area of F c was highly heterogeneous, which consisted of buildings, parks, and highways. It was of interest to study of the temporal and spatial variability of F c in this urban environment of a developing country. Both on diurnal and monthly scale, the urban surface acted as a net source for CO 2 and downward fluxes were only occasionally observed. The diurnal pattern of F c showed dependence on traffic and the typical two peak traffic patterns appeared in the diurnal cycle. Also F c was higher on weekdays than on weekends due to the higher traffic volumes on weekdays. On seasonal scale, F c was generally higher in winter than during other seasons likely due to domestic heating during colder months. Total annual average CO 2 emissions from the neighborhood of the tower were estimated to be 4.90 kg C m −2 yr −1 over the 4-yr period. Total vehicle population was the most important factor controlling the inter-annual variability of F c in this urban area.
    Print ISSN: 1680-7316
    Digitale ISSN: 1680-7324
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 89
    Publikationsdatum: 2012-08-17
    Beschreibung: Corrigendum to "Aerosol scattering and absorption during the EUCAARI-LONGREX flights of the Facility for Airborne Atmospheric Measurements (FAAM) BAe-146: can measurements and models agree?" published in Atmos. Chem. Phys., 12, 7251–7267, 2012 Atmospheric Chemistry and Physics, 12, 7429-7429, 2012 Author(s): E. J. Highwood, M. J. Northway, G. R. McMeeking, W. T. Morgan, D. Liu, S. Osborne, K. Bower, H. Coe, C. Ryder, and P. Williams No abstract available.
    Print ISSN: 1680-7316
    Digitale ISSN: 1680-7324
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 90
    Publikationsdatum: 2012-08-17
    Beschreibung: Evaluation of two isoprene emission models for use in a long-range air pollution model Atmospheric Chemistry and Physics, 12, 7399-7412, 2012 Author(s): A. Zare, J. H. Christensen, P. Irannejad, and J. Brandt Knowledge about isoprene emissions and concentration distribution is important for chemistry transport models (CTMs), because isoprene acts as a precursor for tropospheric ozone and subsequently affects the atmospheric concentrations of many other atmospheric compounds. Isoprene has a short lifetime, and hence it is very difficult to evaluate its emission estimates against measurements. For this reason, we coupled two isoprene emission models with the Danish Eulerian Hemispheric Model (DEHM), and evaluated the simulated background ozone concentrations based on different models for isoprene emissions. In this research, results of using the two global biogenic emission models; GEIA (Global Emissions Inventory Activity) and MEGAN (the global Model of Emissions of Gases and Aerosols from Nature) are compared and evaluated. The total annual emissions of isoprene for the year 2006 estimated by using MEGAN is 592 Tg yr −1 for an extended area of the Northern Hemisphere, which is 21% higher than that estimated by using GEIA. The overall feature of the emissions from the two models is quite similar, but differences are found mainly in Africa's savannah and in the southern part of North America. Differences in spatial distribution of emission factors are found to be a key source of these discrepancies. In spite of the short life-time of isoprene, a direct evaluation of isoprene concentrations using the two biogenic emission models in DEHM has been made against available measurements in Europe. Results show an agreement between two models simulations and the measurements in general and that the CTM is able to simulate isoprene concentrations. Additionally, investigation of ozone concentrations resulting from the two biogenic emission models show that isoprene simulated by MEGAN strongly affects the ozone production in the African savannah; the effect is up to 10% more than that obtained using GEIA. In contrast, the impact of using GEIA is higher in the Amazon region with more than 8% higher ozone concentrations compared to that of using MEGAN. Comparing the ozone concentrations obtained by DEHM using the two different isoprene models with measurements from Europe and North America, show an agreement on the hourly, mean daily and daily maximum values. However, the average of ozone daily maximum value simulated by using MEGAN is slightly closer to the measured value for the average of all measuring sites in Europe.
    Print ISSN: 1680-7316
    Digitale ISSN: 1680-7324
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 91
    Publikationsdatum: 2012-08-17
    Beschreibung: Mixing of dust and NH 3 observed globally over anthropogenic dust sources Atmospheric Chemistry and Physics, 12, 7351-7363, 2012 Author(s): P. Ginoux, L. Clarisse, C. Clerbaux, P.-F. Coheur, O. Dubovik, N. C. Hsu, and M. Van Damme The global distribution of dust column burden derived from MODIS Deep Blue aerosol products is compared to NH 3 column burden retrieved from IASI infrared spectra. We found similarities in their spatial distributions, in particular their hot spots are often collocated over croplands and to a lesser extent pastures. Globally, we found 22% of dust burden collocated with NH 3 , with only 1% difference between land-use databases. This confirms the importance of anthropogenic dust from agriculture. Regionally, the Indian subcontinent has the highest amount of dust mixed with NH 3 (26%), mostly over cropland and during the pre-monsoon season. North Africa represents 50% of total dust burden but accounts for only 4% of mixed dust, which is found over croplands and pastures in Sahel and the coastal region of the Mediterranean. In order to evaluate the radiative effect of this mixing on dust optical properties, we derive the mass extinction efficiency for various mixtures of dust and NH 3 , using AERONET sunphotometers data. We found that for dusty days the coarse mode mass extinction efficiency decreases from 0.62 to 0.48 m 2 g −1 as NH 3 burden increases from 0 to 40 mg m −2 . The fine mode extinction efficiency, ranging from 4 to 16 m 2 g −1 , does not appear to depend on NH 3 concentration or relative humidity but rather on mineralogical composition and mixing with other aerosols. Our results imply that a significant amount of dust is already mixed with ammonium salt before its long range transport. This in turn will affect dust lifetime, and its interactions with radiation and cloud properties.
    Print ISSN: 1680-7316
    Digitale ISSN: 1680-7324
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 92
    Publikationsdatum: 2012-08-17
    Beschreibung: Importance of tropospheric volcanic aerosol for indirect radiative forcing of climate Atmospheric Chemistry and Physics, 12, 7321-7339, 2012 Author(s): A. Schmidt, K. S. Carslaw, G. W. Mann, A. Rap, K. J. Pringle, D. V. Spracklen, M. Wilson, and P. M. Forster Observations and models have shown that continuously degassing volcanoes have a potentially large effect on the natural background aerosol loading and the radiative state of the atmosphere. We use a global aerosol microphysics model to quantify the impact of these volcanic emissions on the cloud albedo radiative forcing under pre-industrial (PI) and present-day (PD) conditions. We find that volcanic degassing increases global annual mean cloud droplet number concentrations by 40% under PI conditions, but by only 10% under PD conditions. Consequently, volcanic degassing causes a global annual mean cloud albedo effect of −1.06 W m −2 in the PI era but only −0.56 W m −2 in the PD era. This non-equal effect is explained partly by the lower background aerosol concentrations in the PI era, but also because more aerosol particles are produced per unit of volcanic sulphur emission in the PI atmosphere. The higher sensitivity of the PI atmosphere to volcanic emissions has an important consequence for the anthropogenic cloud radiative forcing because the large uncertainty in volcanic emissions translates into an uncertainty in the PI baseline cloud radiative state. Assuming a −50/+100% uncertainty range in the volcanic sulphur flux, we estimate the annual mean anthropogenic cloud albedo forcing to lie between −1.16 W m −2 and −0.86 W m −2 . Therefore, the volcanically induced uncertainty in the PI baseline cloud radiative state substantially adds to the already large uncertainty in the magnitude of the indirect radiative forcing of climate.
    Print ISSN: 1680-7316
    Digitale ISSN: 1680-7324
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 93
    Publikationsdatum: 2012-08-22
    Beschreibung: Modeling SOA formation from the oxidation of intermediate volatility n -alkanes Atmospheric Chemistry and Physics, 12, 7577-7589, 2012 Author(s): B. Aumont, R. Valorso, C. Mouchel-Vallon, M. Camredon, J. Lee-Taylor, and S. Madronich The chemical mechanism leading to SOA formation and ageing is expected to be a multigenerational process, i.e. a successive formation of organic compounds with higher oxidation degree and lower vapor pressure. This process is here investigated with the explicit oxidation model GECKO-A (Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere). Gas phase oxidation schemes are generated for the C 8 –C 24 series of n -alkanes. Simulations are conducted to explore the time evolution of organic compounds and the behavior of secondary organic aerosol (SOA) formation for various preexisting organic aerosol concentration ( C OA ). As expected, simulation results show that (i) SOA yield increases with the carbon chain length of the parent hydrocarbon, (ii) SOA yield decreases with decreasing C OA , (iii) SOA production rates increase with increasing C OA and (iv) the number of oxidation steps (i.e. generations) needed to describe SOA formation and evolution grows when C OA decreases. The simulated oxidative trajectories are examined in a two dimensional space defined by the mean carbon oxidation state and the volatility. Most SOA contributors are not oxidized enough to be categorized as highly oxygenated organic aerosols (OOA) but reduced enough to be categorized as hydrocarbon like organic aerosols (HOA), suggesting that OOA may underestimate SOA. Results show that the model is unable to produce highly oxygenated aerosols (OOA) with large yields. The limitations of the model are discussed.
    Print ISSN: 1680-7316
    Digitale ISSN: 1680-7324
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 94
    Publikationsdatum: 2012-08-23
    Beschreibung: Global emission estimates and radiative impact of C 4 F 10 , C 5 F 12 , C 6 F 14 , C 7 F 16 and C 8 F 18 Atmospheric Chemistry and Physics, 12, 7635-7645, 2012 Author(s): D. J. Ivy, M. Rigby, M. Baasandorj, J. B. Burkholder, and R. G. Prinn Global emission estimates based on new atmospheric observations are presented for the acylic high molecular weight perfluorocarbons (PFCs): decafluorobutane (C 4 F 10 ), dodecafluoropentane (C 5 F 12 ), tetradecafluorohexane (C 6 F 14 ), hexadecafluoroheptane (C 7 F 16 ) and octadecafluorooctane (C 8 F 18 ). Emissions are estimated using a 3-dimensional chemical transport model and an inverse method that includes a growth constraint on emissions. The observations used in the inversion are based on newly measured archived air samples that cover a 39-yr period, from 1973 to 2011, and include 36 Northern Hemispheric and 46 Southern Hemispheric samples. The derived emission estimates show that global emission rates were largest in the 1980s and 1990s for C 4 F 10 and C 5 F 12 , and in the 1990s for C 6 F 14 , C 7 F 16 and C 8 F 18 . After a subsequent decline, emissions have remained relatively stable, within 20%, for the last 5 yr. Bottom-up emission estimates are available from the Emission Database for Global Atmospheric Research version 4.2 (EDGARv4.2) for C 4 F 10 , C 5 F 12 , C 6 F 14 and C 7 F 16 , and inventories of C 4 F 10 , C 5 F 12 and C 6 F 14 are reported to the United Nations' Framework Convention on Climate Change (UNFCCC) by Annex 1 countries that have ratified the Kyoto Protocol. The atmospheric measurement-based emission estimates are 20 times larger than EDGARv4.2 for C 4 F 10 and over three orders of magnitude larger for C 5 F 12 (with 2008 EDGARv4.2 estimates for C 5 F 12 at 9.6 kg yr −1 , as compared to 67±53 t yr −1 as derived in this study). The derived emission estimates for C 6 F 14 largely agree with the bottom-up estimates from EDGARv4.2. Moreover, the C 7 F 16 emission estimates are comparable to those of EDGARv4.2 at their peak in the 1990s, albeit significant underestimation for the other time periods. There are no bottom-up emission estimates for C 8 F 18 , thus the emission rates reported here are the first for C 8 F 18 . The reported inventories for C 4 F 10 , C 5 F 12 and C 6 F 14 to UNFCCC are five to ten times lower than those estimated in this study. In addition, we present measured infrared absorption spectra for C 7 F 16 and C 8 F 18 , and estimate their radiative efficiencies and global warming potentials (GWPs). We find that C 8 F 18 's radiative efficiency is similar to trifluoromethyl sulfur pentafluoride's (SF 5 F 3 ) at 0.57 W m −2 ppb −1 , which is the highest radiative efficiency of any measured atmospheric species. Using the 100-yr time horizon GWPs, the total radiative impact of the high molecular weight perfluorocarbons emissions are also estimated; we find the high molecular weight PFCs peak contribution was in 1997 at 24 000 Gg of carbon dioxide (CO 2 ) equivalents and has decreased by a factor of three to 7300 Gg of CO 2 equivalents in 2010. This 2010 cumulative emission rate for the high molecular weight PFCs is comparable to: 0.02% of the total CO 2 emissions, 0.81% of the total hydrofluorocarbon emissions, or 1.07% of the total chlorofluorocarbon emissions projected for 2010 (Velders et al., 2009). In terms of the total PFC emission budget, including the lower molecular weight PFCs, the high molecular weight PFCs peak contribution was also in 1997 at 15.4% and was 6% of the total PFC emissions in CO 2 equivalents in 2009.
    Print ISSN: 1680-7316
    Digitale ISSN: 1680-7324
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 95
    Publikationsdatum: 2012-08-23
    Beschreibung: Hemispheric transport and influence of meteorology on global aerosol climatology Atmospheric Chemistry and Physics, 12, 7609-7624, 2012 Author(s): T. L. Zhao, S. L. Gong, P. Huang, and D. Lavoué Based on a 10-yr simulation with the global air quality modeling system GEM-AQ/EC, the northern hemispheric aerosol transport with the inter-annual and seasonal variability as well as the mean climate was investigated. The intercontinental aerosol transport is predominant in the zonal direction from west to east with the ranges of inter-annual variability between 14% and 63%, and is 0.5–2 orders of magnitude weaker in the meridional direction but with larger inter-annual variability. The aerosol transport is found to fluctuate seasonally with a factor of 5–8 between the maximum in late winter and spring and the minimum in late summer and fall. Three meteorological factors controlling the intercontinental aerosol transport and its inter-annual variations are identified from the modeling results: (1) Anomalies in the mid-latitude westerlies in the troposphere. (2) Variations of precipitation over the intercontinental transport pathways and (3) Changes of meteorological conditions within the boundary layer. Changed only by the meteorology, the aerosol column loadings in the free troposphere over the source regions of Europe, North America, South and East Asia vary inter-annually with the highest magnitudes of 30–37% in January and December and the lowest magnitudes of 16–20% in August and September, and the inter-annual aerosol variability within the boundary layer influencing the surface concentrations with the magnitudes from 6% to 20% is more region-dependent. As the strongest climatic signal, the El Niño-Southern Oscillation (ENSO) can lead the anomalies in the intercontinental aerosols in El Niño- and La Niña-years respectively with the strong and weak transport of the mid-latitude westerlies and the low latitude easterlies in the Northern Hemisphere (NH).
    Print ISSN: 1680-7316
    Digitale ISSN: 1680-7324
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 96
    Publikationsdatum: 2012-08-23
    Beschreibung: Overview of the 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES) Atmospheric Chemistry and Physics, 12, 7647-7687, 2012 Author(s): R. A. Zaveri, W. J. Shaw, D. J. Cziczo, B. Schmid, R. A. Ferrare, M. L. Alexander, M. Alexandrov, R. J. Alvarez, W. P. Arnott, D. B. Atkinson, S. Baidar, R. M. Banta, J. C. Barnard, J. Beranek, L. K. Berg, F. Brechtel, W. A. Brewer, J. F. Cahill, B. Cairns, C. D. Cappa, D. Chand, S. China, J. M. Comstock, M. K. Dubey, R. C. Easter, M. H. Erickson, J. D. Fast, C. Floerchinger, B. A. Flowers, E. Fortner, J. S. Gaffney, M. K. Gilles, K. Gorkowski, W. I. Gustafson, M. Gyawali, J. Hair, R. M. Hardesty, J. W. Harworth, S. Herndon, N. Hiranuma, C. Hostetler, J. M. Hubbe, J. T. Jayne, H. Jeong, B. T. Jobson, E. I. Kassianov, L. I. Kleinman, C. Kluzek, B. Knighton, K. R. Kolesar, C. Kuang, A. Kubátová, A. O. Langford, A. Laskin, N. Laulainen, R. D. Marchbanks, C. Mazzoleni, F. Mei, R. C. Moffet, D. Nelson, M. D. Obland, H. Oetjen, T. B. Onasch, I. Ortega, M. Ottaviani, M. Pekour, K. A. Prather, J. G. Radney, R. R. Rogers, S. P. Sandberg, A. Sedlacek, C. J. Senff, G. Senum, A. Setyan, J. E. Shilling, M. Shrivastava, C. Song, S. R. Springston, R. Subramanian, K. Suski, J. Tomlinson, R. Volkamer, H. W. Wallace, J. Wang, A. M. Weickmann, D. R. Worsnop, X.-Y. Yu, A. Zelenyuk, and Q. Zhang Substantial uncertainties still exist in the scientific understanding of the possible interactions between urban and natural (biogenic) emissions in the production and transformation of atmospheric aerosol and the resulting impact on climate change. The US Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) program's Carbonaceous Aerosol and Radiative Effects Study (CARES) carried out in June 2010 in Central Valley, California, was a comprehensive effort designed to improve this understanding. The primary objective of the field study was to investigate the evolution of secondary organic and black carbon aerosols and their climate-related properties in the Sacramento urban plume as it was routinely transported into the forested Sierra Nevada foothills area. Urban aerosols and trace gases experienced significant physical and chemical transformations as they mixed with the reactive biogenic hydrocarbons emitted from the forest. Two heavily-instrumented ground sites – one within the Sacramento urban area and another about 40 km to the northeast in the foothills area – were set up to characterize the evolution of meteorological variables, trace gases, aerosol precursors, aerosol size, composition, and climate-related properties in freshly polluted and "aged" urban air. On selected days, the DOE G-1 aircraft was deployed to make similar measurements upwind and across the evolving Sacramento plume in the morning and again in the afternoon. The NASA B-200 aircraft, carrying remote sensing instruments, was also deployed to characterize the vertical and horizontal distribution of aerosols and aerosol optical properties within and around the plume. This overview provides: (a) the scientific background and motivation for the study, (b) the operational and logistical information pertinent to the execution of the study, (c) an overview of key observations and initial findings from the aircraft and ground-based sampling platforms, and (d) a roadmap of planned data analyses and focused modeling efforts that will facilitate the integration of new knowledge into improved representations of key aerosol processes and properties in climate models.
    Print ISSN: 1680-7316
    Digitale ISSN: 1680-7324
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 97
    Publikationsdatum: 2012-08-23
    Beschreibung: Brightening of the global cloud field by nitric acid and the associated radiative forcing Atmospheric Chemistry and Physics, 12, 7625-7633, 2012 Author(s): R. Makkonen, S. Romakkaniemi, H. Kokkola, P. Stier, P. Räisänen, S. Rast, J. Feichter, M. Kulmala, and A. Laaksonen Clouds cool Earth's climate by reflecting 20% of the incoming solar energy, while also trapping part of the outgoing radiation. The effect of human activities on clouds is poorly understood, but the present-day anthropogenic cooling via changes of cloud albedo and lifetime could be of the same order as warming from anthropogenic addition in CO 2 . Soluble trace gases can increase water condensation to particles, possibly leading to activation of smaller aerosols and more numerous cloud droplets. We have studied the effect of nitric acid on the aerosol indirect effect with the global aerosol-climate model ECHAM5.5-HAM2. Including the nitric acid effect in the model increases cloud droplet number concentrations globally by 7%. The nitric acid contribution to the present-day cloud albedo effect was found to be −0.32 W m −2 and to the total indirect effect −0.46 W m −2 . The contribution to the cloud albedo effect is shown to increase to −0.37 W m −2 by the year 2100, if considering only the reductions in available cloud condensation nuclei. Overall, the effect of nitric acid can play a large part in aerosol cooling during the following decades with decreasing SO 2 emissions and increasing NO x and greenhouse gases.
    Print ISSN: 1680-7316
    Digitale ISSN: 1680-7324
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 98
    Publikationsdatum: 2012-08-22
    Beschreibung: Mixing of Asian mineral dust with anthropogenic pollutants over East Asia: a model case study of a super-duststorm in March 2010 Atmospheric Chemistry and Physics, 12, 7591-7607, 2012 Author(s): J. Li, Z. Wang, G. Zhuang, G. Luo, Y. Sun, and Q. Wang Mixing of Asian mineral dust with anthropogenic pollutants allows pollutants (e.g. sulfate and nitrate) to be transported over longer distances (e.g. to the northern Pacific, even to North America) along with dust particles. This mixing therefore affects the atmospheric and oceanic environment at local, regional and even continental scales. In this study, we used a three-dimensional regional chemical transport model (Nested Air Quality Predicting Modeling System, NAQPMS) to examine the degree of mixing between Asian mineral dust and anthropogenic pollutants in a super-duststorm event during 19–22 March 2010. Influences of the mixing processes on regional atmospheric environmental and oceanic biogeochemical cycles were also investigated. A comparison with measurements showed that the model reproduced well the trajectory of long-range dust transport, the vertical dust profile, and the chemical evolution of dust particles. We found that along-path mixing processes during the long-range transport of Asian dust led to increasingly polluted particles. As a result, ~60% of the sulfate and 70–95% of the nitrate in the downwind regions was derived from active mixing processes of minerals with pollutants sourced from the North China Plain and enhanced by transport over South China. This mixing had a significant impact on the regional-scale atmospheric composition and oceanic biogeochemical cycle. Surface HNO 3 , SO 2 and O 3 were decreased by up to 90%, 40% and 30%, respectively, due to the heterogeneous reactions on dust particles. Fe solubility rose from ~0.5% in the Gobi region to ~3–5% in the northwestern Pacific, resulting from oxidization of SO 2 on dust particles. Total Fe(II) deposition in the ocean region of East Asia reached 327 tons during the 4-day dust event, and created a calculated primary productivity of ~520 mgC m −2 d −1 in the Kuril Islands, which can support almost 100% of the observed mean marine primary productivity in spring in this region (526 mgC m −2 d −1 ).
    Print ISSN: 1680-7316
    Digitale ISSN: 1680-7324
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 99
    Publikationsdatum: 2012-07-17
    Beschreibung: Stratosphere-troposphere ozone exchange from high resolution MLS ozone analyses Atmospheric Chemistry and Physics, 12, 6129-6144, 2012 Author(s): J. Barré, V.-H. Peuch, J.-L. Attié, L. El Amraoui, W. A. Lahoz, B. Josse, M. Claeyman, and P. Nédélec We assimilate stratospheric ozone profiles from MLS (Microwave Limb Sounder) into the MOCAGE Chemistry Transport Model (CTM) to study Stratosphere-Troposphere Exchange (STE). This study uses two horizontal grid resolutions of 2° and 0.2°. The combined impacts of MLS ozone assimilation and high horizontal resolution are illustrated in two case studies where STE events occurred (23 June 2009 and 17 July 2009). At high resolution the filamentary structures of stratospheric air which characterise STE events are captured by the model. To test the impact of the assimilation and the resolution, we compare model outputs from different experiments (high resolution and low resolution; MLS assimilation run and free run) with independent data (MOZAIC aircraft ozone data; WOUDC ozone sonde network data). MLS ozone analyses show a better description of the Upper Troposphere Lower Stratosphere (UTLS) region and the stratospheric intrusions than the free model run. In particular, at high horizontal resolution the MLS ozone analyses present realistic filamentary ozone structures in the UTLS and laminae structures in the ozone profile. Despite a low aspect ratio between horizontal resolution and vertical resolution in the UTLS at high horizontal resolution, MLS ozone analyses improve the vertical structures of the ozone fields. Results from backward trajectories and ozone forecasts show that assimilation at high horizontal resolution of MLS ozone profiles between 10 hPa and 215 hPa has an impact on tropospheric ozone.
    Print ISSN: 1680-7316
    Digitale ISSN: 1680-7324
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 100
    Publikationsdatum: 2012-07-17
    Beschreibung: Organic molecular markers and signature from wood combustion particles in winter ambient aerosols: aerosol mass spectrometer (AMS) and high time-resolved GC-MS measurements in Augsburg, Germany Atmospheric Chemistry and Physics, 12, 6113-6128, 2012 Author(s): M. Elsasser, M. Crippa, J. Orasche, P. F. DeCarlo, M. Oster, M. Pitz, J. Cyrys, T. L. Gustafson, J. B. C. Pettersson, J. Schnelle-Kreis, A. S. H. Prévôt, and R. Zimmermann The impact of wood combustion on ambient aerosols was investigated in Augsburg, Germany during a winter measurement campaign of a six-week period. Special attention was paid to the high time resolution observations of wood combustion with different mass spectrometric methods. Here we present and compare the results from an Aerodyne aerosol mass spectrometer (AMS) and gas chromatographic – mass spectrometric (GC-MS) analysed PM 1 filters on an hourly basis. This includes source apportionment of the AMS derived organic matter (OM) using positive matrix factorisation (PMF) and analysis of levoglucosan as wood combustion marker, respectively. During the measurement period nitrate and OM mass are the main contributors to the defined submicron particle mass of AMS and Aethalometer with 28% and 35%, respectively. Wood combustion organic aerosol (WCOA) contributes to OM with 23% on average and 27% in the evening and night time. Conclusively, wood combustion has a strong influence on the organic matter and overall aerosol composition. Levoglucosan accounts for 14% of WCOA mass with a higher percentage in comparison to other studies. The ratio between the mass of levoglucosan and organic carbon amounts to 0.06. This study is unique in that it provides a one-hour time resolution comparison between the wood combustion results of the AMS and the GC-MS analysed filter method at a PM 1 particle size range. The comparison of the concentration variation with time of the PMF WCOA factor, levoglucosan estimated by the AMS data and the levoglucosan measured by GC-MS is highly correlated ( R 2 = 0.84), and a detailed discussion on the contributors to the wood combustion marker ion at mass-to-charge ratio 60 is given. At the end, both estimations, the WCOA factor and the levoglucosan concentration estimated by AMS data, allow to observe the variation with time of wood combustion emissions (gradient correlation with GC-MS levoglucosan of R 2 = 0.84). In the case of WCOA, it provides the estimated magnitude of wood combustion emission. Quantitative estimation of the levoglucosan concentration from the AMS data is problematic due to its overestimation in comparison to the levoglucosan measured by the GC-MS.
    Print ISSN: 1680-7316
    Digitale ISSN: 1680-7324
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...