ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-08-09
    Description: World Health Organization reports that methicillin-resistant Staphylococcus aureus (MRSA) is the origin of higher proportion of hospital acquired infections. In order to combat the effect of MRSA infection, an ideal drug should stimulate the allosteric exposure of active site, prompting penicillin binding proteins (PBP2a) to bind with that particular compound. Ceftaroline shows high binding affinity towards PBP2a and also confers resistance against degrading enzymes. Recently, two amino acid alterations in the allosteric site of PBP2a, asparagine (N) to lysine (K) at position 146 and glutamic acid (E) to lysine at position 150 are reported to confer resistance against ceftaroline resulting in the rise of ceftaroline-resistant MRSA strains. The present study focuses on the identification of potential ligands that can effectively bind with allosteric site of PBP2a, that leads to the access of active site and entry of a β-lactam antibiotic for effective inhibition. The results obtained from our study will be useful for designing effective compounds with potential therapeutic effects against ceftaroline resistant MRSA strains. This article is protected by copyright. All rights reserved
    Electronic ISSN: 0091-7419
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-08-09
    Description: The human protein kinase X gene (PRKX) and cAMP-dependent protein kinase (PKA) are both c-AMP-dependent serine/threonine protein kinases within the protein kinase AGC subgroup. Of all the protein kinases in this group, PRKX is the least studied. PRKX has been isolated from patients with chondrodysplasia punctate and is involved in numerous processes, including sexual differentiation and fertilization, normal kidney development, and autosomal dominant polycystic kidney disease (ADPKD), blood maturation, neural development and angiogenesis in vitro. Although the role of PRKX in development and disease has been reported recently, the underlying mechanism of PRKX activity is largely unknown. In addition, based on the expression pattern of PRKX and the extensive role of PKA in disease and development, PRKX might have additional crucial functions that have not been addressed in the literature. In this review, we summarize the characteristics and developmental functions of PRKX that have been reported by recent studies. In particular, we elucidate the structural and functional differences between PRKX and PKA, as well as the possible roles of PRKX in development and related diseases. Finally, we propose future studies that could lead to important discoveries of more PRKX functions and the underlying mechanisms involved. This article is protected by copyright. All rights reserved
    Electronic ISSN: 0091-7419
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-08-09
    Description: Several key transcription factors regulate cell growth, survival, and differentiation during neural crest and melanoblast development in the embryo, and these same pathways may be reactivated in tumors arising from the progenitors of these cells. The transcription factors PAX3 and FOXD3 have essential roles in melanoblasts and melanoma. In this study, we define a regulatory pathway where FOXD3 promotes the expression of PAX3. Both factors are expressed in melanoma cells and there is a positive correlation between the transcript levels of PAX3 and FOXD3. The PAX3 gene contains two FOX binding motifs within highly conserved enhancer regulatory elements that are essential for neural crest development. FOXD3 binds to both of these motifs in vitro but only one of these sites is preferentially utilized in melanoma cells. Overexpression of FOXD3 upregulates PAX3 levels while inhibition of FOXD3 function does not alter PAX3 protein levels, supporting that FOXD3 is sufficient but not necessary to drive PAX3 expression in melanoma cells. Here, we identify a molecular pathway where FOXD3 upregulates PAX3 expression and therefore contributes to melanoma progression. This article is protected by copyright. All rights reserved
    Electronic ISSN: 0091-7419
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-08-09
    Description: Metabolic networks are significantly altered in neoplastic cells. This altered metabolic program leads to increased glycolysis and lipogenesis and decreased dependence on oxidative phosphorylation and oxygen consumption. Despite their limited mitochondrial respiration, cancer cells, nonetheless, derive sufficient energy from alternative carbon sources and metabolic pathways to maintain cell proliferation. They do so, in part, by utilizing fatty acids, amino acids, ketone bodies and acetate, in addition to glucose. The alternative pathways used in the metabolism of these carbon sources provide opportunities for therapeutic manipulation. Acetate, in particular, has garnered increased attention in the context of cancer as both an epigenetic regulator of posttranslational protein modification, and as a carbon source for cancer cell biomass accumulation. However, to date, the data have not provided a clear understanding of the precise roles that protein acetylation and acetate oxidation play in carcinogenesis, cancer progression or treatment. This review highlights some of the major issues, discrepancies and opportunities associated with the manipulation of acetate metabolism and acetylation-based signaling in cancer development and treatment. This article is protected by copyright. All rights reserved
    Electronic ISSN: 0091-7419
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-08-15
    Description: Adipogenesis comprises a complex network of signaling pathways and transcriptional cascades; the GSK3β-C/EBPβ- srebf1a axis is a critical signaling pathway at early stages leading to the expression of PPARγ2, the master regulator of adipose differentiation. Previous work has demonstrated that retinoic acid inhibits adipogenesis affecting different signaling pathways. Here, we evaluated the anti-adipogenic effect of retinoic acid on the adipogenic transcriptional cascade, and the expression of adipogenic genes cebpb , srebf1a , srebf1c , pparg2 , and cebpa . Our results demonstrate that retinoic acid blocks adipose differentiation during commitment, returning cells to an apparent non-committed state, since they have to be newly induced to adipose conversion after the retinoid is removed from the culture medium. Retinoic acid down regulates the expression of the adipogenic genes, srebf1a, srebf1c , pparg2 , and cebpa . Retinoic acid did not down regulate the expression of cebpb , but it inhibited C/EBPβ phosphorylation at Thr188, a critical step for the progression of the adipogenic program. We also found that RA inhibition of adipogenesis did not increase the expression of dlk1 , the gene encoding for Pref1, a well-known anti-adipogenic transcription factor. This article is protected by copyright. All rights reserved
    Electronic ISSN: 0091-7419
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-07-30
    Description: ABSTRACT Platelets are important in hemostasis, but also detect particles and pathogens in the circulation. Phagocytic and endocytic activities of platelets are widely recognized, however, receptors and mechanisms involved remain poorly understood. We previously demonstrated that platelets internalize and store phospholipid microvesicles enriched in human tissue factor (TF + MVs) and that platelet-associated TF enhances thrombus formation at sites of vascular damage. Here we investigate the mechanisms implied in the interactions of TF + MVs with platelets and the effects of specific inhibitory strategies. Aggregometry and electron microscopy were used to assess platelet activation and TF + MVs uptake. Cytoskeletal assembly and activation of phosphoinositide 3-kinase (PI3K) and RhoA were analyzed by western blot and ELISA. Exposure of platelets to TF + MVs caused reversible platelet aggregation, actin polymerization and association of contractile proteins to the cytoskeleton being maximal at 1 min. The same kinetics were observed for activation of PI3K and translocation of RhoA to the cytoskeleton. Inhibitory strategies to block glycoprotein IIb-IIIa (GPIIb-IIIa), scavenger receptor CD36, serotonin transporter (SERT) and PI3K, fully prevented platelet aggregation by TF + MVs. Ultrastructural techniques revealed that uptake of TF + MVs was efficiently prevented by anti-CD36 and SERT inhibitor, but only moderately interfered by GPIIb-IIIa blockade. We conclude that internalization of TF + MVs by platelets occurs independently of receptors related to their main hemostatic function (GPIIb-IIIa), involves the scavenger receptor CD36, SERT and engages PI3-Kinase activation and cytoskeletal assembly. CD36 and SERT appear as potential therapeutic targets to interfere with the association of TF + MVs with platelets and possibly downregulate their prothrombotic phenotype. This article is protected by copyright. All rights reserved
    Electronic ISSN: 0091-7419
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-08-05
    Description: Human pancreatic and prostate cancers metastasize along nerve axons during perineural invasion. The extracellular matrix laminin class of proteins is an abundant component of both myelinated and non-myelinated nerves. Analysis of human pancreatic and prostate tissue revealed both perineural and endoneural invasion with Schwann cells surrounded or disrupted by tumor, respectively. Tumor and nerve cell co-culture conditions were used to determine if myelinating or non-myelinating Schwann cell (S16 and S16Y, respectively) phenotype was equally likely to promote integrin-dependent cancer cell invasion and migration on laminin. Conditioned medium from S16 cells increased tumor cell (DU145, PC3, and CFPAC1) invasion into laminin approximately 1.3 to 2.0 fold compared to fetal bovine serum (FBS) treated cells. Integrin function (e.g., ITGA6p formation) increased up to 1.5 fold in prostate (DU145, PC3, RWPE-1) and pancreatic (CFPAC1) cells, and invasion was dependent on ITGA6p formation and ITGB1 as determined by function-blocking antibodies. In contrast, conditioned medium isolated from S16Y cells (non-myelinating phenotype) decreased constitutive levels of ITGA6p in the tumor cells by 50% compared to untreated cells and decreased ITGA6p formation 3.0 fold compared to S16 treated cells. Flow cytometry and western blot analysis revealed loss of ITGA6p formation as reversible and independent of overall loss of ITGA6 expression. These results suggest that the myelinating phenotype of Schwann cells within the tumor microenvironment increased integrin-dependent tumor invasion on laminin. This article is protected by copyright. All rights reserved
    Electronic ISSN: 0091-7419
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-08-15
    Description: Profilin (Pfn1) regulates cytoskeletal reorganization and migration, but its role in osteoblasts is not known. BMPs (bone morphogenetic proteins) aree a multifunctional cytokine involved in osteoblastic differentiation and promote bone regeneration and repair. Although several molecules are known to modulate BMP signaling, mechanisms that determine the levels of BMP action in osteoblastic function are still incompletely understood. We therefore examine the expression of Pfn1 in osteoblasts and its role in BMP-induced differentiation in osteoblasts. In osteoblastic MC3T3-E1(MC) cells, Pfn1 mRNA is expressed constitutively and its expression levels are declined during the culture in a time dependent manner in contrast to the increase in alkaline phosphatase activity revealing that Pfn1 expression is down regulated along with differentiation. To test the effects of osteoblastic differentiation on Pfn1expression further, MC cells are treated with BMP. BMP treatment suppresses the levels of Pfn1 mRNA. This suppressive effect of BMP is time dependent and further down regulation of Pfn1 mRNA levels is observed when the BMP treatment is continued for a longer period of time. Pfn1mRNA knock down (KD) by siRNAs enhances BMP-induced increase in alkaline phosphatase (Alp) activity in MC cells. To analyze the regulatory mechanism, Alp mRNA levels are examined and Pfn1 KD enhances the BMP-induced increase in the levels of Alp mRNA expression. Furthermore, Pfn1 KD enhances BMP-induced transcriptional expression of luciferase reporter activity via BMP response element in osteoblasts. These data indicate that Pfn1 is a novel target of BMP and suppresses BMP-induced differentiation of osteoblasts at least in part via transcriptional event. This article is protected by copyright. All rights reserved
    Electronic ISSN: 0091-7419
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-08-05
    Description: One of the major features of neurodegenerative disease is the selective vulnerability of different neuronal populations that are affected in a progressive and often stereotyped manner. Despite the susceptible neuronal population varies between diseases, oxidative stress is implicated as the major pathogenic process in all of them. Natural Extract of Castanea sativa Mill . bark (ENC), recently characterized in its phenolic composition, acts as antioxidant and cardioprotective agent. Its neuroprotettive properties, however, have never been investigated. The aim of this study was to assess neuroprotection of ENC in in vitro models of oxidative-stress-mediate injury. Human neuroblastoma SH-SY5Y cells treated with glutamate (50 mM for 24h) or hydrogen peroxide (25 µM for 1h followed by 24 with medium) were used. The results showed that the addition of ENC (1-50 µg/ml) to cell medium before the neuronal damage provided neuroprotection in both experimental models used, while its addition after the injury was ineffective. In conclusion, the present results suggest that ENC could be a valuable support as dietary supplement, combining beneficial preventive neuroprotettive effects with a high antioxidant activity. This article is protected by copyright. All rights reserved
    Electronic ISSN: 0091-7419
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-08-05
    Description: PKR-like ER-resident kinase (PERK) phosphorylates eukaryotic translation initiation factor 2 alpha (eIF2α) under endoplasmic reticulum (ER) stress; this results in repression of general translation and induction of specific gene expression, such as activating transcription factor 4 (ATF4). We previously showed that, upon ER stress, transducin (beta)-like 2 (TBL2) was an ER-localized transmembrane protein and interacted with PERK and that TBL2 was involved in ATF4 expression and cell survival. Here, we show that TBL2 is able to associate with ATF4 mRNA and regulate its translation. The RNA-immunoprecipitation analysis using several TBL2 deletion mutants revealed that the WD40 domain was essential for association with ATF4 mRNA. Importantly, suppression of TBL2 by knockdown or overexpression of the TBL2 mutant with a defective WD40 domain diminished ATF4 induction at the translational level. Thus, our findings indicate that, under ER stress, TBL2 participates in ATF4 translation through its association with the mRNA. This article is protected by copyright. All rights reserved
    Electronic ISSN: 0091-7419
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...