ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (3,866)
  • American Institute of Physics (AIP)  (3,866)
  • American Geophysical Union
  • Physics of Fluids  (3,288)
  • APL Materials  (578)
  • 1811
  • 198986
Collection
  • Articles  (3,866)
Publisher
Years
  • 1
    Publication Date: 2016-07-13
    Description: In semiconductors almost all heat is conducted by phonons (lattice vibrations), which is limited by their quasi-particle lifetimes. Phonon-phonon interactions represent scattering mechanisms that produce thermal resistance. In thermoelectric materials, this resistance due to anharmonicity should be maximised for optimal performance. We use a first-principles lattice-dynamics approach to explore the changes in lattice dynamics across an isostructural series where the average atomic mass is conserved: ZnS to CuGaS 2 to Cu 2 ZnGeS 4 . Our results demonstrate an enhancement of phonon interactions in the multernary materials and confirm that lattice thermal conductivity can be controlled independently of the average mass and local coordination environments.
    Electronic ISSN: 2166-532X
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-07-13
    Description: In the present experimental work, the behavior of laminar liquid jet in its own vapor as well as supercritical fluid environment is conducted. Also the study of liquid jet injection into nitrogen (N 2 ) environment is carried out at supercritical conditions. It is expected that the injected liquid jet would undergo thermodynamic transition to the chamber condition and this would alter the behavior of the injected jet. Moreover at such conditions there is a strong dependence between thermodynamic and fluid dynamic processes. Thus the thermodynamic transition has its effect on the initial instability as well as the breakup nature of the injected liquid jet. In the present study, the interfacial disturbance wavelength, breakup characteristics, and mixing behavior are analysed for the fluoroketone liquid jet that is injected into N 2 environment as well as into its own vapor at subcritical to supercritical conditions. It is observed that at subcritical chamber conditions, the injected liquid jet exhibits classical liquid jet characteristics with Rayleigh breakup at lower Weber number and Taylor breakup at higher Weber number for both N 2 and its own environment. At supercritical chamber conditions with its own environment, the injected liquid jet undergoes sudden thermodynamic transition to chamber conditions and single phase mixing characteristics is observed. However, the supercritical chamber conditions with N 2 as ambient fluid does not have significant effect on the thermodynamic transition of the injected liquid jet.
    Print ISSN: 1070-6631
    Electronic ISSN: 1089-7666
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-07-14
    Description: Normally we think of the glassy state as a single phase and therefore crystallization from chemically identical amorphous precursors should be identical. Here we show that the local structure of an amorphous precursor is distinct depending on the initial deposition conditions, resulting in significant differences in the final state material. Using grazing incidence total x-ray scattering, we have determined the local structure in amorphous thin films of vanadium oxide grown under different conditions using pulsed laser deposition (PLD). Here we show that the subsequent crystallization of films deposited using different initial PLD conditions result in the formation of different polymorphs of VO 2 . This suggests the possibility of controlling the formation of metastable polymorphs by tuning the initial amorphous structure to different formation pathways.
    Electronic ISSN: 2166-532X
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-07-16
    Description: We demonstrated epitaxial growth of GaN (0001) films on nearly lattice-matched Hf (0001) substrates by using a low-temperature (LT) epitaxial growth technique. High-temperature growth of GaN films results in the formation of polycrystalline films due to significant reaction at GaN/Hf heterointerfaces, while LT-growth allowed us to suppress the interfacial reactions and to obtain epitaxial GaN films on Hf substrates with a GaN 11 2 ̄ 0 / / Hf 11 2 ̄ 0 in-plane orientation. LT-grown GaN films can act as buffer layers for GaN growth at high temperatures. The interfacial layer thickness at the LT-GaN/Hf heterointerface was as small as 1 nm, and the sharpness of the contact remained unchanged even after annealing up to approximately 700 °C, which likely accounts for the dramatic improvement in GaN crystalline quality on Hf substrates.
    Electronic ISSN: 2166-532X
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-07-21
    Description: The acoustic signature of an acoustically compact tandem airfoil setup in uniform high-Reynolds number flow is investigated. The upstream airfoil is considered rigid and is actuated at its leading edge with small-amplitude harmonic pitching motion. The downstream airfoil is taken passive and elastic, with its motion forced by the vortex-street excitation of the upstream airfoil. The non-linear near-field description is obtained via potential thin-airfoil theory. It is then applied as a source term into the Powell-Howe acoustic analogy to yield the far-field dipole radiation of the system. To assess the effect of downstream-airfoil elasticity, results are compared with counterpart calculations for a non-elastic setup, where the downstream airfoil is rigid and stationary. Depending on the separation distance between airfoils, airfoil-motion and airfoil-wake dynamics shift between in-phase (synchronized) and counter-phase behaviors. Consequently, downstream airfoil elasticity may act to amplify or suppress sound through the direct contribution of elastic-airfoil motion to the total signal. Resonance-type motion of the elastic airfoil is found when the upstream airfoil is actuated at the least stable eigenfrequency of the downstream structure. This, again, results in system sound amplification or suppression, depending on the separation distance between airfoils. With increasing actuation frequency, the acoustic signal becomes dominated by the direct contribution of the upstream airfoil motion, whereas the relative contribution of the elastic airfoil to the total signature turns negligible.
    Print ISSN: 1070-6631
    Electronic ISSN: 1089-7666
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-07-22
    Description: The hybrid perovskite CH 3 NH 3 PbI 3 (MAPI) exhibits long minority-carrier lifetimes and diffusion lengths. We show that slow recombination originates from a spin-split indirect-gap. Large internal electric fields act on spin-orbit-coupled band extrema, shifting band-edges to inequivalent wavevectors, making the fundamental gap indirect. From a description of photoluminescence within the quasiparticle self-consistent GW approximation for MAPI, CdTe, and GaAs, we predict carrier lifetime as a function of light intensity and temperature. At operating conditions we find radiative recombination in MAPI is reduced by a factor of more than 350 compared to direct gap behavior. The indirect gap is retained with dynamic disorder.
    Electronic ISSN: 2166-532X
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-07-22
    Description: III-nitride semiconductors hold tremendous promise for realizing high efficiency photoelectrodes. However, previously reported InGaN photoelectrodes generally exhibit very low photocurrent densities, due to the presence of extensive defects, dislocations, and indium phase separation. Here, we show that In 0.5 Ga 0.5 N nanowires with nearly homogeneous indium distribution can be achieved by plasma-assisted molecular beam epitaxy. Under AM1.5G one sun illumination, the InGaN nanowire photoanode exhibits a photocurrent density of 7.3 mA/cm 2 at 1.2 V ( vs . NHE) in 1M HBr. The incident-photon-to-current efficiency is above 10% at 650 nm, which is significantly higher than previously reported values of metal oxide photoelectrodes.
    Electronic ISSN: 2166-532X
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-07-22
    Description: We study the two-dimensional electron gas at the interface of NdTiO 3 and SrTiO 3 to reveal its nanoscale transport properties. At electron densities approaching 10 15 cm −2 , our terahertz spectroscopy data show conductivity levels that are up to six times larger than those extracted from DC electrical measurements. Moreover, the largest conductivity enhancements are observed in samples intentionally grown with larger defect densities. This is a signature of electron transport over the characteristic length-scales typically probed by electrical measurements being significantly affected by scattering by structural defects introduced during growth, and, a trait of a much larger electron mobility at the nanoscale.
    Electronic ISSN: 2166-532X
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-07-22
    Description: Bubble size distributions in cloud cavitation are important in cavitating flows. In this study, a numerical model was developed to study the evolution of the internal structure of cloud cavitation. The model includes (1) an evolution equation of bubble number density, which considers the bubble breakup effect and (2) the multiphase Reynolds-averaged Navier–Stokes equations with a modified cavitation model for background cavitating flows. The proposed model was validated with a flow over a projectile. Results show that the numerical model can predict the evolution of the internal structure of cloud cavitation. Comparisons of the proposed model and Singhal model were discussed. The effects of re-entrant jet and bubble number density on cavitating flows were also investigated.
    Print ISSN: 1070-6631
    Electronic ISSN: 1089-7666
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2016-07-22
    Description: This paper presents two key contributions; the first concerns the development of analytical expressions for the axial and transverse acoustic radiation forces exerted on a 2D rigid elliptical cylinder placed in the field of plane progressive, quasi-standing, or standing waves with arbitrary incidence. The second emphasis is on the acoustic radiation torque per length. The rigid elliptical cylinder case is important to be considered as a first-order approximation of the behavior of a cylindrical fluid column trapped in air because of the significant acoustic impedance mismatch at the particle boundary. Based on the rigorous partial-wave series expansion method in cylindrical coordinates, non-dimensional acoustic radiation force and torque functions are derived and defined in terms of the scattering coefficients of the elliptic cylinder. A coupled system of linear equations is obtained after applying the Neumann boundary condition for an immovable surface in a non-viscous fluid and solved numerically by matrix inversion after performing a single numerical integration procedure. Computational results for the non-dimensional force components and torque, showing the transition from the progressive to the (equi-amplitude) standing wave behavior, are performed with particular emphasis on the aspect ratio a / b , where a and b are the semi-axes of the ellipse, the dimensionless size parameter, as well as the angle of incidence ranging from end-on to broadside incidence. The results show that the elliptical geometry has a direct influence on the radiation force and torque, so that the standard theory for circular cylinders (at normal incidence) leads to significant miscalculations when the cylinder cross section becomes non-circular. Moreover, the elliptical cylinder experiences, in addition to the acoustic radiation force, a radiation torque that vanishes for the circular cylinder case. The application of the formalism presented here may be extended to other 2D surfaces of arbitrary shape, such as Chebyshev cylindrical particles with a small deformation, stadiums (with oval shape), or other non-circular geometries.
    Print ISSN: 1070-6631
    Electronic ISSN: 1089-7666
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2016-07-23
    Description: Alloying in the system Cu 2 ZnSnSe 4 –CuInSe 2 –ZnSe (CZTISe) is investigated experimentally and theoretically. The goal is to distinguish single-phase and multi-phase regions within the Cu 2 ZnSnSe 4 -2CuInSe 2 -4ZnSe pseudo-ternary phase diagram. CZTISe thin films are prepared by co-evaporation of the chemical elements and are investigated in real-time during growth using in situ angle dispersive X-ray diffraction. The focus is mainly on thin films along the Cu 2 ZnSnSe 4 –2CuInSe 2 isopleth with small ZnSe addition as well as on films along the Cu 2 ZnSnSe 4 -4ZnSe isopleth with small CuInSe 2 addition. For both cases, ab initio calculations with density-functional theory are performed to estimate the stability of the alloy with respect to the formation of secondary phases. Both in experiment and calculation, we find a surprisingly large single-phase region in the Cu 2 ZnSnSe 4 corner of the pseudo-ternary phase diagram slightly off the Cu 2 ZnSnSe 4 -4ZnSe isopleth. This may help avoiding secondary phase formation under Zn-rich conditions and open up new possibilities for the application of CZTISe thin films in solar cells.
    Electronic ISSN: 2166-532X
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2016-07-26
    Description: We report the in-plane thermoelectric properties of suspended (Bi 1− x Sb x ) 2 Te 3 nanoplates with x ranging from 0.07 to 0.95 and thicknesses ranging from 9 to 42 nm. The results presented here reveal a trend of increasing p -type behavior with increasing antimony concentration, and a maximum Seebeck coefficient and thermoelectric figure of merit at x ∼ 0.5. We additionally tuned extrinsic doping of the surface using a tetrafluoro-tetracyanoquinodimethane (F 4 -TCNQ) coating. The lattice thermal conductivity is found to be below that for undoped ultrathin Bi 2 Te 3 nanoplates of comparable thickness and in the range of 0.2–0.7 W m −1 K −1 at room temperature.
    Electronic ISSN: 2166-532X
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2016-08-02
    Description: In recent years, the interest in hybrid organic–inorganic perovskites has increased at a rapid pace due to their tremendous success in the field of thin film solar cells. This area closely ties together fundamental solid state research and device application, as it is necessary to understand the basic material properties to optimize the performances and open up new areas of application. In this regard, the energy levels and their respective alignment with adjacent charge transport layers play a crucial role. Currently, we are lacking a detailed understanding about the electronic structure and are struggling to understand what influences the alignment, how it varies, or how it can be intentionally modified. This research update aims at giving an overview over recent results regarding measurements of the electronic structure of hybrid perovskites using photoelectron spectroscopy to summarize the present status.
    Electronic ISSN: 2166-532X
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    facet.materialart.
    Unknown
    American Institute of Physics (AIP)
    Publication Date: 2016-08-02
    Description: A new variational method is proposed to calculate the evolution of liquid film and liquid droplet moving on a solid substrate. A simple time evolution equation is obtained for the contact angle of a liquid film that starts to move on a horizontal substrate. The equation indicates the dynamical transition at the receding side and the ridge formation at the advancing side. The same method is applied for the evolution of a droplet that starts to move on an inclined solid surface, and again the characteristic shape change of the droplet is obtained by solving a simple ordinary differential system. We will show that this method has a potential application to a wide class of problems of droplets moving on a substrate.
    Print ISSN: 1070-6631
    Electronic ISSN: 1089-7666
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2016-08-02
    Description: The pressure-driven Stokes flow through a plane channel with arbitrary wall separation having a continuous pattern of sinusoidally varying slippage of arbitrary wavelength and amplitude on one/both walls is modelled semi-analytically. The patterning direction is transverse to the flow. In the special situations of thin and thick channels, respectively, the predictions of the model are found to be consistent with lubrication theory and results from the literature pertaining to free shear flow. For the same pattern-averaged slip length, the hydraulic permeability relative to a channel with no-slip walls increases as the pattern wave-number, amplitude, and channel size are decreased. Unlike discontinuous wall patterns of stick-slip zones studied elsewhere in the literature, the effective slip length of a sinusoidally patterned wall in a confined flow continues to scale with both channel size and the pattern-averaged slip length even in the limit of thin channel size to pattern wavelength ratio. As a consequence, for sufficiently small channel sizes, the permeability of a channel with sinusoidal wall slip patterns will always exceed that of an otherwise similar channel with discontinuous patterns on corresponding walls. For a channel with one no-slip wall and one patterned wall, the permeability relative to that of an unpatterned reference channel of same pattern-averaged slip length exhibits non-monotonic behaviour with channel size, with a minimum appearing at intermediate channel sizes. Approximate closed-form estimates for finding the location and size of this minimum are provided in the limit of large and small pattern wavelengths. For example, if the pattern wavelength is much larger than the channel thickness, exact results from lubrication theory indicate that a worst case permeability penalty relative to the reference channel of ∼23% arises when the average slip of the patterned wall is ∼2.7 times the channel size. The results from the current study should be applicable to microfluidic flows through channels with hydrophobized/super-hydrophobic surfaces.
    Print ISSN: 1070-6631
    Electronic ISSN: 1089-7666
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2016-08-02
    Description: The rotation and an axial gradient of temperature drive the meridional circulation of a fluid filling a sealed cylindrical container. This numerical study explains why the flow remains stable up to the Grashof number Gr around 10 11 ; Gr characterizes the circulation strength. The shear-layer instability, occurring in a rotating pipe for small values of the Prandtl number Pr [M. A. Herrada and V. N. Shtern, “Stability of centrifugal convection in a rotating pipe,” Phys. Fluids 27 , 064106 (2015)], is suppressed here even for the cylinder length-to-radius ratio being ten. The cold end disk enhances the fluid circulation near the sidewall and diminishes it near the axis. The inflection point in the radial profile of axial velocity shifts to the sidewall vicinity where the stable centrifugal stratification and the no-slip condition prevent the disturbance growth. The cases Pr = 0, 0.015 (mercury), 0.7 (air), and 5.8 (water) are particularly analyzed. At Pr 〉 0, the stable density stratification develops and helps to suppress the disturbances. The obtained results are of fundamental interest and might be important for the development of efficient heat exchangers.
    Print ISSN: 1070-6631
    Electronic ISSN: 1089-7666
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    facet.materialart.
    Unknown
    American Institute of Physics (AIP)
    Publication Date: 2016-08-02
    Description: This paper investigates the effects of surface roughness on nanoflows using molecular dynamics simulations. A fractal model is employed to model wall roughness, and simulations are performed for liquid argon confined by two solid walls. It is shown that the surface roughness reduces the velocity in the proximity of the walls with the reduction being accentuated when increasing the roughness depth and wettability of the solid wall. It also makes the flow three-dimensional and anisotropic. In flows over idealized smooth surfaces, the liquid forms parallel, well-spaced layers, with a significant gap between the first layer and the solid wall. Rough walls distort the orderly distribution of fluid layers resulting in an incoherent formation of irregularly shaped fluid structures around and within the wall cavities.
    Print ISSN: 1070-6631
    Electronic ISSN: 1089-7666
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2016-08-02
    Description: The second-order non-Navier-Fourier constitutive laws, expressed in a compact algebraic mathematical form, were validated for the force-driven Poiseuille gas flow by the deterministic atomic-level microscopic molecular dynamics (MD). Emphasis is placed on how completely different methods (a second-order continuum macroscopic theory based on the kinetic Boltzmann equation, the probabilistic mesoscopic direct simulation Monte Carlo, and, in particular, the deterministic microscopic MD) describe the non-classical physics, and whether the second-order non-Navier-Fourier constitutive laws derived from the continuum theory can be validated using MD solutions for the viscous stress and heat flux calculated directly from the molecular data using the statistical method. Peculiar behaviors (non-uniform tangent pressure profile and exotic instantaneous heat conduction from cold to hot [R. S. Myong, “A full analytical solution for the force-driven compressible Poiseuille gas flow based on a nonlinear coupled constitutive relation,” Phys. Fluids 23 (1), 012002 (2011)]) were re-examined using atomic-level MD results. It was shown that all three results were in strong qualitative agreement with each other, implying that the second-order non-Navier-Fourier laws are indeed physically legitimate in the transition regime. Furthermore, it was shown that the non-Navier-Fourier constitutive laws are essential for describing non-zero normal stress and tangential heat flux, while the classical and non-classical laws remain similar for shear stress and normal heat flux.
    Print ISSN: 1070-6631
    Electronic ISSN: 1089-7666
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2016-08-02
    Description: An exact solution is found for laminar fluid flow along the grooves of a family of surfaces whose shape is given by the Lambert W-function. This simple solution allows for the slip length in the direction parallel to the grooves to be calculated exactly. With this analytical model, we establish the regime of validity for a previously untested perturbation theory intended for calculating the surface mobility tensor of arbitrary periodic surfaces, finding that it compares well to the exact expression for nearly all choices of parameters of the conformal map. To test this perturbation theory further, the mobility tensor is evaluated for a simple sinusoidal surface for flow both parallel and perpendicular to the grooves, finding that the perturbation theory is less accurate in the latter of these two cases.
    Print ISSN: 1070-6631
    Electronic ISSN: 1089-7666
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2016-08-03
    Description: This paper investigates the bubbling behaviors induced by gas-liquid mixture permeating through porous medium (PM), which was observed in developing immersion lithography system and was found having great differences with traditional bubbling behaviors injected with only gas phase through the PM. An experimental setup was built up to investigate the bubbling characteristics affected by the mixed liquid phase. Both the flow regimes of gas-liquid mixture in micro-channel (upstream of the PM) and the bubbling flow regimes in water tank (downstream of the PM) were recorded synchronously by high-speed camera. The transitions between the flow regimes are governed by gas and liquid Weber numbers. Based on the image analysis, the characteristic parameters of bubbling region, including the diameter of bubbling area on PM surface, gas-phase volume flux, and dispersion angle of bubbles in suspending liquid, were studied under different proportions of gas and liquid flow rate. Corresponding empirical correlations were developed to describe and predict these parameters. Then, the pertinent bubble characteristics in different bubbling flow regimes were systematically investigated. Specifically, the bubble size distribution and the Sauter mean diameter affected by increasing liquid flow rate were studied, and the corresponding analysis was given based on the hydrodynamics of bubble-bubble and bubble-liquid interactions. According to dimensionless analysis, the general prediction equation of Sauter mean diameter under different operating conditions was proposed and confirmed by experimental data. The study of this paper is helpful to improve the collection performance of immersion lithography and aims to reveal the differences between the bubbling behaviors on PM caused by only gas flow and gas-liquid mixture flow, respectively, for the researches of fluid flow.
    Print ISSN: 1070-6631
    Electronic ISSN: 1089-7666
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2016-08-03
    Description: We discuss the behavior of partially wetting liquids on a rotating cylinder using a model that takes into account the effects of gravity, viscosity, rotation, surface tension, and wettability. Such a system can be considered as a prototype for many other systems where the interplay of spatial heterogeneity and a lateral driving force in the proximity of a first- or second-order phase transition results in intricate behavior. So does a partially wetting drop on a rotating cylinder undergo a depinning transition as the rotation speed is increased, whereas for ideally wetting liquids, the behavior only changes quantitatively. We analyze the bifurcations that occur when the rotation speed is increased for several values of the equilibrium contact angle of the partially wetting liquids. This allows us to discuss how the entire bifurcation structure and the flow behavior it encodes change with changing wettability. We employ various numerical continuation techniques that allow us to track stable/unstable steady and time-periodic film and drop thickness profiles. We support our findings by time-dependent numerical simulations and asymptotic analyses of steady and time-periodic profiles for large rotation numbers.
    Print ISSN: 1070-6631
    Electronic ISSN: 1089-7666
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    facet.materialart.
    Unknown
    American Institute of Physics (AIP)
    Publication Date: 2016-08-04
    Description: A steady pseudo-plane ideal flow (PIF) model is derived from the 3D Euler equations under Boussinesq approximation. The model is solved analytically to yield high-degree polynomial exact solutions. Unlike quadratic flows, the cubic and quartic solutions display reduced geometry in the form of straightline jet, circular vortex, and multipolar strain field. The high-order circular-vortex solutions are vertically aligned and even the non-aligned multipolar strain-field solutions display vertical concentricity. Such geometry reduction is explained by an analytical theorem stating that only straightline jet and circular vortex have functional solutions to the PIF model.
    Print ISSN: 1070-6631
    Electronic ISSN: 1089-7666
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2016-08-04
    Description: New transport equations for chemical reaction rate and its mean value in turbulent flows have been derived and analyzed. Local perturbations of the reaction zone by turbulent eddies are shown to play a pivotal role even for weakly turbulent flows. The mean-reaction-rate transport equation is shown to involve two unclosed dominant terms and a joint closure relation for the sum of these two terms is developed. Obtained analytical results and, in particular, the closure relation are supported by processing two widely recognized sets of data obtained from earlier direct numerical simulations of statistically planar 1D premixed flames associated with both weak large-scale and intense small-scale turbulence.
    Print ISSN: 1070-6631
    Electronic ISSN: 1089-7666
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2016-08-05
    Description: In this work, the interfacial instability and transition of a two-fluid flow from a stratified state to large amplitude waves or slugs is considered. By combining an asymptotic approximation of the linear Orr-Sommerfeld analysis with nonlinear resonant wave interaction theory, a novel nonlinear slug-transition criterion is derived. This criterion corresponds to a bounding condition on the upper fluid’s velocity in order to limit the amount of energy (provided by the linear instability) which is transferred to long waves through resonant wave interactions. It is proposed that such a condition can predict the formation of large-amplitude long waves and/or slugs. Quantitative comparisons of the onset of slugging are made between the prediction by the nonlinear transition criterion and the experimental measurements carried out in a horizontal square channel. Good agreement is observed. An additional heuristic model is developed which generalizes the transition criterion to flow through horizontal pipes. Comparisons are made for flows through different pipe diameters and over a wide range of fluid properties. Good agreement between the present theoretical predictions and the experimental measurements is also observed.
    Print ISSN: 1070-6631
    Electronic ISSN: 1089-7666
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2016-08-05
    Print ISSN: 1070-6631
    Electronic ISSN: 1089-7666
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    facet.materialart.
    Unknown
    American Institute of Physics (AIP)
    Publication Date: 2016-07-12
    Description: Cavities behind a surface irregularity appear in vortices drifting downstream of it. Cavitation can occur there substantially earlier than over smooth surfaces of the same bodies. Cavitation inception and desinence behind surface irregularities have been intensively studied in the course of water tunnel experiments several decades ago, but no corresponding quantitative theoretical (numerical) analysis was reported. This numerical study is aimed at elaboration of a general approach to the prediction of cavitation desinence numbers for various irregularities over various surfaces and on determination of the major factors influencing these numbers in both computations and experiments. The developed multi-level computational method employs diverse models for flow zones of diverse scale. The viscous-inviscid interaction approach is used for the flow around irregularities submerged (or partially submerged) in the turbulent boundary layer. Combinations of the semi-empirical and asymptotic analyses are used for vortices and cavities in their cores. The computational method is validated with various known experimental data.
    Print ISSN: 1070-6631
    Electronic ISSN: 1089-7666
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2016-07-12
    Description: Experiments are conducted in a linear stratified fluid with a momentum source modeled via a nozzle jet moving horizontally. The generation mechanism of the quasi-two-dimensional dipolar vortex streets is investigated and their evolution characteristics are analyzed. Observation shows that the formation of a dipolar vortex street requires a nonzero motion of the nozzle in addition to conditions of the Reynolds and Froude number ( Re , Fr ). The ( Re , Fr ) condition that the dipolar vortex streets can be generated is determined via experimental measurements. The explanation for the absence of such a vortex street can be the low energy of the jet and the strong body-effect disturbance of the solid nozzle. The dependence of the vortex street dimensionless formation time τ and the Strouhal number St on the Froude number Fr or the Reynolds number Re is analyzed. This analysis shows that τ and St appear to be independent of Re and approximately have power-law relations with Fr via data fitting. The exponents of Fr in the two power-law functions are −0.27 for τ and −0.21 for St , while the constant coefficients are 65 and 0.21.
    Print ISSN: 1070-6631
    Electronic ISSN: 1089-7666
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2016-07-15
    Description: A theoretical effective gas permeability model was developed for rarefied gas flow in porous media, which holds over the entire slip regime with the permeability derived as a function of the Knudsen number. This general slip regime model (GSR model) is derived from the pore-scale Navier-Stokes equations subject to the first-order wall slip boundary condition using the volume-averaging method. The local closure problem for the volume-averaged equations is studied analytically and numerically using a periodic sphere array geometry. The GSR model includes a rational fraction function of the Knudsen number which leads to a limit effective permeability as the Knudsen number increases. The mechanism for this behavior is the viscous fluid inner friction caused by converging-diverging flow channels in porous media. A linearization of the GSR model leads to the Klinkenberg equation for slightly rarefied gas flows. Finite element simulations show that the Klinkenberg model overestimates the effective permeability by as much as 33% when a flow approaches the transition regime. The GSR model reduces to the unified permeability model [F. Civan, “Effective correlation of apparent gas permeability in tight porous media,” Transp. Porous Media 82 , 375 (2010)] for the flow in the slip regime and clarifies the physical significance of the empirical parameter b in the unified model.
    Print ISSN: 1070-6631
    Electronic ISSN: 1089-7666
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2016-07-19
    Description: Strong exchange bias (EB) in perpendicular direction has been demonstrated in vertically aligned nanocomposite (VAN) (La 0.7 Sr 0.3 MnO 3 ) 1−x : (LaFeO 3 ) x (LSMO:LFO, x = 0.33, 0.5, 0.67) thin films deposited by pulsed laser deposition. Under a moderate magnetic field cooling, an EB field as high as ∼800 Oe is achieved in the VAN film with x = 0.33, suggesting a great potential for its applications in high density memory devices. Such enhanced EB effects in perpendicular direction can be attributed to the high quality epitaxial co-growth of vertically aligned ferromagnetic LSMO and antiferromagnetic LFO phases, and the vertical interface coupling associated with a disordered spin-glass state. The VAN design paves a powerful way for integrating perpendicular EB effect within thin films and provides a new dimension for advanced spintronic devices.
    Electronic ISSN: 2166-532X
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2016-07-19
    Description: An attempt was made to tailor the magnetostructural transitions over a wide temperature range under the principle of isostructural alloying. A series of wide Curie-temperature windows (CTWs) with a maximal width of 377 K between 69 and 446 K were established in the Mn 1− y Co y NiGe 1− x Si x system. Throughout the CTWs, the magnetic-field-induced metamagnetic behavior and giant magnetocaloric effects are obtained. The (Mn,Co)Ni(Ge,Si) system shows great potential as multifunctional phase-transition materials that work in a wide range covering liquid-nitrogen and above water-boiling temperatures. Moreover, general understanding of isostructural alloying and CTWs constructed in (Mn,Co)Ni(Ge,Si) as well as (Mn,Fe)Ni(Ge,Si) is provided.
    Electronic ISSN: 2166-532X
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2016-07-22
    Description: Pinch-off of axisymmetric vortex pairs generated by flow between concentric cylinders with radial separation Δ R was studied numerically and compared with planar vortex dipole behavior. The axisymmetric case approaches planar vortex dipole behavior in the limit of vanishing Δ R . The flow was simulated at a jet Reynolds number of 1000 (based on Δ R and the jet velocity), jet pulse length-to-gap ratio ( L Δ R ) in the range 10–20, and gap-to-outer radius ratio ( Δ R R o ) in the range 0.01-0.1. Contrary to investigations of strictly planar flows, vortex pinch-off was observed for all gap sizes investigated. This difference was attributed to the less constrained geometry considered, suggesting that even very small amounts of vortex line curvature and/or vortex stretching may disrupt the absence of pinch-off observed in strictly planar vortex dipoles.
    Print ISSN: 1070-6631
    Electronic ISSN: 1089-7666
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2016-07-23
    Description: We study the late time flow structure of Richtmyer-Meshkov instability. Recent numerical work [F. J. Cherne et al. “On shock driven jetting of liquid from non-sinusoidal surfaces into a vacuum,” J. Appl. Phys. 118 , 185901 (2015)] has suggested a self-similar collapse of the development of this instability at late times, independent of the initial surface profile. Using the form of collapse suggested, we derive an analytic expression for the mass-velocity relation in the spikes, and a global theory for the late time flow structure. We compare these results with fluid dynamical simulation.
    Print ISSN: 1070-6631
    Electronic ISSN: 1089-7666
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2016-07-28
    Description: We report on a new polar interface state between two band insulators: LaInO 3 and BaSnO 3 , where the sheet conductance enhancement in the interface reaches more than the factor of 10 4 depending on the La doping concentration in BaSnO 3 layer, by monitoring the conductance change before and after the polar interface formation as a function of La doping in BaSnO 3 . By eliminating the possibilities of oxygen vacancy involvement and cation diffusion, we show that the conductance enhancement is due to electronic reconstruction in the interface. Furthermore, we have found that the interfaces between BaSnO 3 and the larger bandgap non-polar perovskites BaHfO 3 and SrZrO 3 did not show such a conductance enhancement. We discuss a model for the interface state where the Fermi level plays a critical role and the conductance enhancement is due to the existence of polarization in the polar perovskite, LaInO 3 .
    Electronic ISSN: 2166-532X
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2016-07-27
    Description: Computer simulations are performed to study translational motion and deformation of a liquid column or jet, in a plane perpendicular to its axis, due to a transverse electric field. A front tracking/finite difference scheme is used in conjunction with the Taylor-Melcher leaky dielectric theory to solve the governing equations. The column is confined within a rectangular channel, wall-bounded in the vertical direction and periodic in the horizontal direction. It is shown that perfect dielectric columns move toward electrode wall of shorter initial distance, but the leaky dielectric columns may move toward or away from it, depending on the relative importance of the ratios (drop fluid to suspending fluid) of their electric permittivity and conductivity. Furthermore, the degree of interface deformation might increase or decrease with the initial separation distance from the shorter electrode wall due to the same factor. Scaling arguments are used to discern the correlation between the translational velocity and the initial separation distance from the electrodes.
    Print ISSN: 1070-6631
    Electronic ISSN: 1089-7666
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2016-07-29
    Print ISSN: 1070-6631
    Electronic ISSN: 1089-7666
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2016-07-29
    Print ISSN: 1070-6631
    Electronic ISSN: 1089-7666
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2016-08-02
    Description: With molecular beam epitaxy we have grown Cr y (Bi x Sb 1-x ) 2-y Te 3 thin films with homogeneous distribution of Cr dopants and Curie temperature up to 77 K. The films with Cr concentration y ≥ 0.39 are found to be topologically trivial, highly insulating ferromagnets, whose conductivity can be tuned over two orders of magnitude by gate voltage. The ferromagnetic insulators with electrically tunable conductivity can be used to realize the quantum anomalous Hall effect at higher temperature in topological insulator heterostructures and to develop field effect devices for spintronic applications.
    Electronic ISSN: 2166-532X
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2016-08-03
    Description: A series of three-dimensional numerical simulations on thermal-solutal capillary-buoyancy flow in an annular pool were carried out. The pool was filled with silicon-germanium melt with an initial silicon mass fraction of 1.99%. The Prandtl number and the Lewis number of the working fluid are 6.37 × 10 −3 and 2197.8, respectively. Both the radial temperature gradient and the solute concentration gradient were applied to the annular pool. The capillary ratio was assumed to be −1, which means that the solutal and thermal capillary effects were equal and opposite. Results show that the thermal-solutal capillary-buoyancy flow always occurs at this special case with the capillary ratio of −1, and even in a shallow annular pool with an aspect ratio of 0.05. With the increase of the thermal Marangoni number, four kinds of flow patterns appear orderly, including concentric rolls, petal-like, spoke, and rosebud-like patterns. These flow patterns are strongly influenced by the local interaction between the solutal and thermal capillary effects and the vertical solute concentration gradient near the outer cylinder. A small vortex driven by the dominant solutal capillary effect emerges near the inner cylinder, which is different from the flow pattern in a pure fluid. In addition, the critical thermal Marangoni number of the initial three-dimensional flow decreases with the increase of the aspect ratio of the annular pool.
    Print ISSN: 1070-6631
    Electronic ISSN: 1089-7666
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    facet.materialart.
    Unknown
    American Institute of Physics (AIP)
    Publication Date: 2016-08-03
    Description: In this paper we apply the short-wavelength perturbation method to derive instability criteria for the three-dimensional nonlinear Pollard geophysical waves. We show that these waves are linearly unstable when the wave steepness exceeds a certain threshold.
    Print ISSN: 1070-6631
    Electronic ISSN: 1089-7666
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2016-08-03
    Print ISSN: 1070-6631
    Electronic ISSN: 1089-7666
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2016-08-03
    Description: Recent advances in numerical methods coupled with the substantial enhancements in computing power and the advent of high performance computing have presented first principle, high fidelity simulation as a viable tool in the prediction and analysis of spray atomization processes. The credibility and potential impact of such simulations, however, has been hampered by the relative absence of detailed validation against experimental evidence. The numerical stability and accuracy challenges arising from the need to simulate the high liquid-gas density ratio across the sharp interfaces encountered in these flows are key reasons for this. In this work we challenge this status quo by presenting a numerical model able to deal with these challenges, employing it in simulations of liquid jet in crossflow atomization and performing extensive validation of its results against a carefully executed experiment with detailed measurements in the atomization region. We then proceed to the detailed analysis of the flow physics. The computational model employs the coupled level set and volume of fluid approach to directly capture the spatiotemporal evolution of the liquid-gas interface and the sharp-interface ghost fluid method to stably handle high liquid-air density ratio. Adaptive mesh refinement and Lagrangian droplet models are shown to be viable options for computational cost reduction. Moreover, high performance computing is leveraged to manage the computational cost. The experiment selected for validation eliminates the impact of inlet liquid and gas turbulence and focuses on the impact of the crossflow aerodynamic forces on the atomization physics. Validation is demonstrated by comparing column surface wavelengths, deformation, breakup locations, column trajectories and droplet sizes, velocities, and mass rates for a range of intermediate Weber numbers. Analysis of the physics is performed in terms of the instability and breakup characteristics and the features of downstream flow recirculation, and vortex shedding. Formation of “Λ” shape windward column waves is observed and explained by the combined upward and lateral surface motion. The existence of Rayleigh-Taylor instability as the primary mechanism for the windward column waves is verified for this case by comparing wavelengths from the simulations to those predicted by linear stability analyses. Physical arguments are employed to postulate that the type of instability manifested may be related to conditions such as the gas Weber number and the inlet turbulence level. The decreased column wavelength with increasing Weber number is found to cause enhanced surface stripping and early depletion of liquid core at higher Weber number. A peculiar “three-streak-two-membrane” liquid structure is identified at the lowest Weber number and explained as the consequence of the symmetric recirculation zones behind the jet column. It is found that the vortical flow downstream of the liquid column resembles a von Karman vortex street and that the coupling between the gas flow and droplet transport is weak for the conditions explored.
    Print ISSN: 1070-6631
    Electronic ISSN: 1089-7666
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2016-08-03
    Description: Linear stability of the stratified gas-liquid and liquid-liquid plane-parallel flows in the inclined channels is studied with respect to all wavenumber perturbations. The main objective is to predict the parameter regions in which the stable stratified configuration in inclined channels exists. Up to three distinct base states with different holdups exist in the inclined flows, so that the stability analysis has to be carried out for each branch separately. Special attention is paid to the multiple solution regions to reveal the feasibility of the non-unique stable stratified configurations in inclined channels. The stability boundaries of each branch of the steady state solutions are presented on the flow pattern map and are accompanied by the critical wavenumbers and the spatial profiles of the most unstable perturbations. Instabilities of different nature are visualized by the streamlines of the neutrally stable perturbed flows, consisting of the critical perturbation superimposed on the base flow. The present analysis confirms the existence of two stable stratified flow configurations in a region of low flow rates in the countercurrent liquid-liquid flows. These configurations become unstable with respect to the shear mode of instability. It was revealed that in slightly upward inclined flows the lower and middle solutions for the holdup are stable in the part of the triple solution region, while the upper solution is always unstable. In the case of downward flows, in the triple solution region, none of the solutions are stable with respect to the short-wave perturbations. These flows are stable only in the single solution region at low flow rates of the heavy phase, and the long-wave perturbations are the most unstable ones.
    Print ISSN: 1070-6631
    Electronic ISSN: 1089-7666
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2016-08-05
    Description: The electronic structure of Heusler alloys having mixed magnetic phases, comprising of vicinal anti-ferromagnetic and ferromagnetic orders, is of great significance. We present the results of an electronic structure study on Ni x Cu 1− x MnSb Heusler alloys, using Mn-2p core-level photoemission spectroscopy. Room temperature data in the paramagnetic phase reveal a non-monotonic variation of both electron correlation strength and conduction-band hybridization such that the former enhances while the latter weakens for compositions showing a mixed phase relative to compositions at the phase boundaries to the ordered phases. The results suggest a possible electronic driving force for settling mixed-magnetic phases.
    Electronic ISSN: 2166-532X
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2016-08-05
    Description: In this study, we report the effects of a uniform stationary magnetic field on the flow of ferrofluid (FF) inside a boundary driven cavity. A coupled set of conservation equations for the flow field, the Maxwell’s magnetostatic equations, and the constitutive magnetization equation are solved numerically. The non-dimensional groups primarily influencing the phenomenon are first systematically identified through the normalization of the complete set of equations. We find the magnetization relaxation effects, under the stationary uniform field, to be flow restrictive in nature. The misalignment between the local magnetic field and the magnetization suppresses the vorticity field in the cavity, shifts the primary central vortex, and reduces the average shear stress at the boundaries. As a consequence, it becomes apparent that at a given Reynolds number, the application of uniform magnetic field can reduce the shear drag at the boundaries of the cavity, of course at an expense of reduced flow rate in their vicinity. Our study uniquely reveals that the relaxation time effects are dominant in the regions of ferrofluid flow where the change in the magnitude of the vorticity takes place over a length scale which is much smaller than the characteristic length scale of the flow geometry. Depending on the magnitudes of influencing parameters, the solution exhibits anomalous characteristics, such as creeping and saturating behavior.
    Print ISSN: 1070-6631
    Electronic ISSN: 1089-7666
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2016-08-06
    Description: We have grown Mg-doped GaN films with low residual hydrogen concentration using a low-temperature pulsed sputtering deposition (PSD) process. The growth system is inherently hydrogen-free, allowing us to obtain high-purity Mg-doped GaN films with residual hydrogen concentrations below 5 × 10 16 cm −3 , which is the detection limit of secondary ion mass spectroscopy. In the Mg profile, no memory effect or serious dopant diffusion was detected. The as-deposited Mg-doped GaN films showed clear p-type conductivity at room temperature (RT) without thermal activation. The GaN film doped with a low concentration of Mg (7.9 × 10 17 cm −3 ) deposited by PSD showed hole mobilities of 34 and 62 cm 2 V −1 s −1 at RT and 175 K, respectively, which are as high as those of films grown by a state-of-the-art metal-organic chemical vapor deposition apparatus. These results indicate that PSD is a powerful tool for the fabrication of GaN-based vertical power devices.
    Electronic ISSN: 2166-532X
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2016-08-06
    Description: It is well known that the roughness of the wall has an effect on microscale gas flows. This effect can be shown for large Knudsen numbers by using a numerical solution of the Boltzmann equation. However, when the wall is rough at a nanometric scale, it is necessary to use a very small mesh size which is much too expansive. An alternative approach is to incorporate the roughness effect in the scattering kernel of the boundary condition, such as the Maxwell-like kernel introduced by the authors in a previous paper. Here, we explain how this boundary condition can be implemented in a discrete velocity approximation of the Boltzmann equation. Moreover, the influence of the roughness is shown by computing the structure scattering pattern of mono-energetic beams of the incident gas molecules. The effect of the angle of incidence of these molecules, of their mass, and of the morphology of the wall is investigated and discussed in a simplified two-dimensional configuration. The effect of the azimuthal angle of the incident beams is shown for a three-dimensional configuration. Finally, the case of non-elastic scattering is considered. All these results suggest that our approach is a promising way to incorporate enough physics of gas-surface interaction, at a reasonable computing cost, to improve kinetic simulations of micro- and nano-flows.
    Print ISSN: 1070-6631
    Electronic ISSN: 1089-7666
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    facet.materialart.
    Unknown
    American Institute of Physics (AIP)
    Publication Date: 2016-07-07
    Description: Using a conservative level set method we investigate the deformation behavior of isolated spherical fluid drops in a fluid channel subjected to simple shear flows, accounting the following three non-dimensional parameters: (1) degree of confinement ( W c = 2 a / h , where a is the drop radius and h is the channel thickness); (2) viscosity ratio between the two fluids ( λ = μ d / μ m , where μ d is the drop viscosity and μ m is the matrix viscosity); and (3) capillary number ( Ca ). For a given W c , a drop steadily deforms to attain a stable geometry (Taylor number and inclination of its long axis to the shear direction) when Ca 〈 0.3. For Ca 〉 0.3, the deformation behavior turns to be unsteady, leading to oscillatory variations of both its shape and orientation with progressive shear. This kind of unsteady deformation also occurs in a condition of high viscosity ratios ( λ 〉 2). Here we present a detailed parametric analysis of the drop geometry with increasing shear as a function of W c , Ca , and λ . Under a threshold condition, deforming drops become unstable, resulting in their breakup into smaller droplets. We recognize three principal modes of breakup: Mode I (mid-point pinching), Mode II (edge breakup), and Mode III (homogeneous breakup). Each of these modes is shown to be most effective in the specific field defined by Ca and λ . Our study also demonstrates the role of channel confinement ( W c ) in controlling the transition of Mode I to III. Finally, we discuss implications of the three modes in determining characteristic drop size distributions in multiphase flows.
    Print ISSN: 1070-6631
    Electronic ISSN: 1089-7666
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    facet.materialart.
    Unknown
    American Institute of Physics (AIP)
    Publication Date: 2016-07-07
    Description: A novel hydrodynamic model for the threshold of cohesionless sediment particle motion under a steady unidirectional streamflow is presented. The hydrodynamic forces (drag and lift) acting on a solitary sediment particle resting over a closely packed bed formed by the identical sediment particles are the primary motivating forces. The drag force comprises of the form drag and form induced drag. The lift force includes the Saffman lift, Magnus lift, centrifugal lift, and turbulent lift. The points of action of the force system are appropriately obtained, for the first time, from the basics of micro-mechanics. The sediment threshold is envisioned as the rolling mode, which is the plausible mode to initiate a particle motion on the bed. The moment balance of the force system on the solitary particle about the pivoting point of rolling yields the governing equation. The conditions of sediment threshold under the hydraulically smooth, transitional, and rough flow regimes are examined. The effects of velocity fluctuations are addressed by applying the statistical theory of turbulence. This study shows that for a hindrance coefficient of 0.3, the threshold curve (threshold Shields parameter versus shear Reynolds number) has an excellent agreement with the experimental data of uniform sediments. However, most of the experimental data are bounded by the upper and lower limiting threshold curves, corresponding to the hindrance coefficients of 0.2 and 0.4, respectively. The threshold curve of this study is compared with those of previous researchers. The present model also agrees satisfactorily with the experimental data of nonuniform sediments.
    Print ISSN: 1070-6631
    Electronic ISSN: 1089-7666
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2016-07-07
    Description: We study the motion of a solid particle immersed in a Newtonian fluid and confined between two parallel elastic membranes possessing shear and bending rigidity. The hydrodynamic mobility depends on the frequency of the particle motion due to the elastic energy stored in the membrane. Unlike the single-membrane case, a coupling between shearing and bending exists. The commonly used approximation of superposing two single-membrane contributions is found to give reasonable results only for motions in the parallel direction, but not in the perpendicular direction. We also compute analytically the membrane deformation resulting from the motion of the particle, showing that the presence of the second membrane reduces deformation. Using the fluctuation-dissipation theorem we compute the Brownian motion of the particle, finding a long-lasting subdiffusive regime at intermediate time scales. We finally assess the accuracy of the employed point-particle approximation via boundary-integral simulations for a truly extended particle. They are found to be in excellent agreement with the analytical predictions.
    Print ISSN: 1070-6631
    Electronic ISSN: 1089-7666
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2016-07-07
    Description: This article reports an unbiased analysis for the water based rod shaped alumina nanoparticles by considering both the homogeneous and non-homogeneous nanofluid models over the coupled nanofluid-surface interface. The mechanics of the surface are found for both the homogeneous and non-homogeneous models, which were ignored in previous studies. The viscosity and thermal conductivity data are implemented from the international nanofluid property benchmark exercise. All the simulations are being done by using the experimentally verified results. By considering the homogeneous and non-homogeneous models, the precise movement of the alumina nanoparticles over the surface has been observed by solving the corresponding system of differential equations. For the non-homogeneous model, a uniform temperature and nanofluid volume fraction are assumed at the surface, and the flux of the alumina nanoparticle is taken as zero. The assumption of zero nanoparticle flux at the surface makes the non-homogeneous model physically more realistic. The differences of all profiles for both the homogeneous and nonhomogeneous models are insignificant, and this is due to small deviations in the values of the Brownian motion and thermophoresis parameters.
    Print ISSN: 1070-6631
    Electronic ISSN: 1089-7666
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2016-07-08
    Description: We review the spin-Seebeck and magnon-electron drag effects in the context of solid-state energy conversion. These phenomena are driven by advective magnon-electron interactions. Heat flow through magnetic materials generates magnetization dynamics, which can strongly affect free electrons within or adjacent to the magnetic material, thereby producing magnetization-dependent (e.g., remnant) electric fields. The relative strength of spin-dependent interactions means that magnon-driven effects can generate significantly larger thermoelectric power factors as compared to classical thermoelectric phenomena. This is a surprising situation in which spin-based effects are larger than purely charge-based effects, potentially enabling new approaches to thermal energy conversion.
    Electronic ISSN: 2166-532X
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2016-07-08
    Description: Electronic structures and thermoelectric transport properties of α-NaFeO 2 -type d 0 -electron layered complex nitrides AMN 2 (A = Sr or Na; M = Zr, Hf, Nb, Ta) were evaluated using density-functional theory and Boltzmann theory calculations. Despite the layered crystal structure, all materials had three-dimensional electronic structures. Sr(Zr, Hf)N 2 exhibited isotropic electronic transport properties because of the contribution of the Sr 4 d orbitals to the conduction band minimums (CBMs) in addition to that of the Zr 4 d (Hf 5 d ) orbitals. Na(Nb,Ta)N 2 showed weak anisotropic electronic transport properties due to the main contribution of the Nb 4 d (Ta 5 d ) and N 2 p orbitals to the CBMs and no contribution of the Na orbitals.
    Electronic ISSN: 2166-532X
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    facet.materialart.
    Unknown
    American Institute of Physics (AIP)
    Publication Date: 2016-07-08
    Description: The flow in an annulus driven by the axial movement of one of the cylinders has been studied. The stationary cylinder has been fitted with axisymmetric ribs resulting in the appearance of the centrifugal-force-driven instability which leads to the formation of axial vortices. The critical stability conditions have been determined for a wide range of geometries of practical interest; these conditions include the critical Reynolds number as well as the best vortex packing. It has been shown that a sufficiently large increase of the ribs’ wavelength leads to a flow stabilization as the flow becomes nearly rectilinear, thus reducing the strength of the centrifugal force field. It has also been demonstrated that a sufficiently large decrease of the ribs’ wavelength similarly results in the flow stabilization as the stream lifts up above the ribs’ peaks and becomes more rectilinear. Reduction of the annulus’ radius leads to qualitatively different flow responses depending on the position of the moving cylinder. The critical Reynolds number is reduced and the range of the ribs’ wave numbers capable of inducing the instability is increased when the outer cylinder drives the flow. The trend is reversed when the inner cylinder drives the flow. Conditions when the ribbed cylinder is unable to induce any instability and, thus, behaves as a hydraulically smooth cylinder have been identified.
    Print ISSN: 1070-6631
    Electronic ISSN: 1089-7666
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2016-07-08
    Description: Transformation from annular to droplet flow is investigated for co-current, upward gas-liquid flow through a cylindrical tube using grid based volume of fluid framework. Three transitional routes, namely, orificing, rolling, and undercutting are observed for flow transformation at different range of relative velocities between the fluids. Physics behind these three exclusive phenomena is described using circulation patterns of gaseous phase in the vicinity of a liquid film which subsequently sheds drop leading towards transition. Orifice amplitude is found to grow exponentially towards the core whereas it propagates in axial direction in a parabolic path. Efforts have been made to fit the sinusoidal profile of wave structure with the numerical interface contour at early stages of orificing. Domination of gas inertia over liquid flow has been studied in detail at the later stages to understand the asymmetric shape of orifice, leading towards lamella formation and droplet generation. Away from comparative velocities, circulations in the dominant phase dislodge the drop by forming either a ligament (rolling) or a bag (undercut) like protrusion in liquid. Study of velocity patterns in the plane of droplet dislodge reveals the underlying physics behind the disintegration and its dynamics at the later stages. Using numerical phase distributions, rejoining of dislodged droplet with liquid film as post-rolling consequences has been also proposed. A flow pattern map showing the transitional boundaries based on the physical mechanism is constructed for air-water combination.
    Print ISSN: 1070-6631
    Electronic ISSN: 1089-7666
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2016-06-21
    Description: A rigorous and systematic computational and theoretical study, the first of its kind, for the laminar natural convective flow above rectangular horizontal surfaces of various aspect ratios ϕ (from 1 to ∞) is presented. Two-dimensional computational fluid dynamic (CFD) simulations (for ϕ → ∞) and three-dimensional CFD simulations (for 1 ≤ ϕ 〈 ∞) are performed to establish and elucidate the role of finiteness of the horizontal planform on the thermo-fluid-dynamics of natural convection. Great care is taken here to ensure grid independence and domain independence of the presented solutions. The results of the CFD simulations are compared with experimental data and similarity theory to understand how the existing simplified results fit, in the appropriate limiting cases, with the complex three-dimensional solutions revealed here. The present computational study establishes the region of a high-aspect-ratio planform over which the results of the similarity theory are approximately valid, the extent of this region depending on the Grashof number. There is, however, a region near the edge of the plate and another region near the centre of the plate (where a plume forms) in which the similarity theory results do not apply. The sizes of these non-compliance zones decrease as the Grashof number is increased. The present study also shows that the similarity velocity profile is not strictly obtained at any location over the plate because of the entrainment effect of the central plume. The 3-D CFD simulations of the present paper are coordinated to clearly reveal the separate and combined effects of three important aspects of finiteness: the presence of leading edges, the presence of planform centre, and the presence of physical corners in the planform. It is realised that the finiteness due to the presence of physical corners in the planform arises only for a finite value of ϕ in the case of 3-D CFD simulations (and not in 2-D CFD simulations or similarity theory). The presence of physical corners is related here to several significant aspects of the solution—the conversion of in-plane velocity to out-of-plane velocity near the diagonals, the star-like non-uniform distribution of surface heat flux on heated planforms, the three-dimensionality of the temperature field, and the complex spatial structure of the velocity iso-surfaces. A generic theoretical correlation for the Nusselt number is deduced for the averaged surface heat flux for various rectangular surfaces (1 ≤ ϕ 〈 ∞) over a wide range of Grashof number. Innovative use of numerical visualization images is made to generate a comprehensive, quantitative understanding of the physical processes involved.
    Print ISSN: 1070-6631
    Electronic ISSN: 1089-7666
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2016-06-21
    Description: The dielectrophoresis of a surfactant-laden viscous drop in the presence of non-uniform DC electric field is investigated analytically and numerically. Considering the presence of bulk-insoluble surfactants at the drop interface, we first perform asymptotic solution for both low and high surface Péclet numbers, where the surface Péclet number signifies the strength of surface convection of surfactants as compared to the diffusion at the drop interface. Neglecting fluid inertia and interfacial charge convection effects, we obtain explicit expression for dielectrophoretic drop velocity for low and high Péclet numbers by assuming small deviation of drop shape from sphericity and small deviation of surfactant concentration from the equilibrium uniform distribution. We then depict a numerical solution, assuming spherical drop, for arbitrary values of Péclet number. Our analyses demonstrate that the asymptotic solution shows excellent agreement with the numerical solution in the limiting conditions of low and high Péclet numbers. The present analysis shows that the flow-induced redistribution of the surfactants at the drop interface generates Marangoni stress, owing to the influence of the surfactant distribution on the local interfacial tension, at the drop interface and significantly alters the drop velocity at steady state. For a perfectly conducting/dielectric drop suspended in perfectly dielectric medium, Marangoni stress always retards the dielectrophoretic velocity of the drop as compared with a surfactant-free drop. For a leaky dielectric drop suspended in another leaky dielectric medium, in the low Péclet number limit, depending on the electrical conductivity and permittivity of both the liquids, the Marangoni stress may aid or retard the dielectrophoretic velocity of the drop. The Marangoni stress also has the ability to move the drop in the opposite direction as compared with a surfactant-free drop. This non-intuitive reverse motion of the drop is observed for drops with less viscosity and for particular values of electrical conductivity and permittivity ratios. In the high Péclet number limit, the surfactants completely immobilize the fluid velocity at the drop interface. As a result, the drop behaves like a solid sphere. Further, it is also demonstrated that the flow-induced non-uniform distribution of surfactants always increases the deformation of the drop as compared with a uniformly coated drop which is due to the decreased (or increased) interfacial tension near the poles of the drop for prolate (or oblate) type deformation.
    Print ISSN: 1070-6631
    Electronic ISSN: 1089-7666
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    facet.materialart.
    Unknown
    American Institute of Physics (AIP)
    Publication Date: 2016-06-22
    Description: Materials’ design for high-performance thermoelectric oxides is discussed. Since chemical stability at high temperature in air is a considerable advantage in oxides, we evaluate thermoelectric power factor in the high temperature limit. We show that highly disordered materials can be good thermoelectric materials at high temperatures, and the effects of strong correlation can further enhance the figure of merit by adding thermopower arising from the spin and orbital degrees of freedom. We also discuss the Kelvin formula as a promising expression for strongly correlated materials and show that the calculation based on the Kelvin formula can be directly compared with the cross-layer thermopower of layered materials.
    Electronic ISSN: 2166-532X
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2016-06-22
    Description: Although shear banding is a ubiquitous phenomenon observed in soft materials, the mechanisms that give rise to shear-band formation are not always the same. In this work, we develop a new two-fluid model for semi-dilute entangled polymer solutions using the generalized bracket approach of nonequilibrium thermodynamics. The model is based on the hypothesis that the direct coupling between polymer stress and concentration is the driving mechanism of steady shear-band formation. To obtain smooth banded profiles in the two-fluid framework, a new stress-diffusive term is added to the time evolution equation for the conformation tensor. The advantage of the new model is that the differential velocity is treated as a state variable. This allows a straightforward implementation of the additional boundary conditions arising from the derivative diffusive terms with respect to this new state variable. To capture the overshoot of the shear stress during the start of a simple shear flow, we utilize a nonlinear Giesekus relaxation. Moreover, we include an additional relaxation term that resembles the term used in the Rouse linear entangled polymer model to account for convective constraint release and chain stretch to generate the upturn of the flow curve at large shear rates. Numerical calculations performed for cylindrical Couette flow confirm the independency of the solution from the deformation history and initial conditions. Furthermore, we find that stress-induced migration is the responsible diffusive term for steady-state shear banding. Because of its simplicity, the new model is an ideal candidate for the use in the simulation of more complex flows.
    Print ISSN: 1070-6631
    Electronic ISSN: 1089-7666
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2016-06-22
    Description: A typical experiment to measure monolayer surface rheological properties consists of two parallel, slightly immersed, moving solid barriers that compress and expand a shallow liquid layer that contains the surfactant monolayer in its free surface. The area between the barriers controls the surfactant concentration, which is frequently assumed as spatially constant. In order to minimize the fluid dynamics and other non-equilibrium effects, the barriers motion is very slow. Nevertheless, the surfactant concentration dynamics exhibit some unexpected features such as irreversibility, suggesting that the motion is not slow enough. We present a long wave theory that takes into account the fluid dynamics in the bulk phase coupled to the free surface elevation. In addition, apparent irreversibility is also discussed that may result from artifacts associated with the menisci dynamics when surface tension is measured using a Wilhelmy plate. Instead, additional, purely chemical, non-equilibrium effects are ignored. Results from this theory are discussed for varying values of the parameters, which permit establishing specific predictions on experiments. On the other hand, these results compare fairly well with the available experimental observations, at least qualitatively. The overall conclusion is that the fluid dynamics should not be ignored in the analysis of these experimental devices.
    Print ISSN: 1070-6631
    Electronic ISSN: 1089-7666
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2016-06-22
    Description: We study the resonances of a forced turbulent wake past a flat-based bluff body using symmetric and antisymmetric actuation modes. The natural, unforced wake flow exhibits broadband dynamics superimposed on oscillatory motions linked to the reminiscent laminar Bénard-von Kármán instability in the turbulent flow. Harmonic and subharmonic resonances can be controlled by the phase relationship of periodic forcing and are linked to the symmetry properties of vortex shedding. Symmetric forcing leads to a strong subharmonic amplification of vortex shedding in the wake, but no harmonic excitation. The robustness of the subharmonic resonance is confirmed at different Reynolds numbers. Antisymmetric actuation, however, promotes a harmonic resonance with very similar wake and drag features.
    Print ISSN: 1070-6631
    Electronic ISSN: 1089-7666
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2016-06-22
    Description: The spatial and orientational behaviour of fibres within a suspension influences the rheological and mechanical properties of that suspension. An Eulerian-Lagrangian framework to simulate the behaviour of fibres in turbulent flows is presented. The framework is intended for use in simulations of non-spherical particles with high Reynolds numbers, beyond the Stokesian regime, and is a computationally efficient alternative to existing Stokesian models for fibre suspensions in turbulent flow. It is based on modifying available empirical drag correlations for the translation of non-spherical particles to be orientation dependent, accounting for the departure in shape from a sphere. The orientational dynamics of a particle is based on the framework of quaternions, while its rotational dynamics is obtained from the solution of the Euler equation of rotation subject to external torques on the particle. The fluid velocity and turbulence quantities are obtained using a very high-resolution large eddy simulation with dynamic calibration of the sub-grid scale energy containing fluid motions. The simulation matrix consists of four different fibre Stokes numbers ( St = 1, 5, 25, and 125) and five different fibre aspect ratios (λ = 1.001, 3, 10, 30, and 50), with results considered at four distances from a channel wall (in the viscous sub-layer, buffer, and fully turbulent regions), which are taken as a measure of the flow velocity gradient, all at a constant fibre to fluid density ratio ( ρ p / ρ = 760) and shear Reynolds number Re τ = 150. The simulated fibre orientation, concentration, and streakiness confirm previous experimentally observed characteristics of fibre behaviour in turbulence, and that of direct numerical simulations of fibres in Stokesian, or creeping flow, regimes. The fibres exhibit translational motion similar to spheres, where they tend to accumulate in the near-wall (viscous sub-layer and buffer) region and preferentially concentrate in regions of low-speed streaks. The current results further demonstrate that the fibres’ translational dynamics, in terms of preferential concentration, is strongly dependent on their inertia and less so on their aspect ratio. However, the contrary is the case for the fibre alignment distribution as this is strongly dependent on the fibre aspect ratio and velocity gradient, and only moderately dependent on particle inertia. The fibre alignment with the flow direction is found to be mostly anisotropic where the velocity gradient is large (i.e., viscous sub-layer and buffer regions), but is virtually non-existent and isotropic where the turbulence is near-isotropic (i.e., channel centre). The present investigation highlights that the level of fibre alignment with the flow direction reduces as a fibre’s inertia decreases, and as the shape of the fibre approaches that of a sphere. Short fibres, and especially near-spherical λ = 1.001 particles, are found to exhibit isotropic orientation with respect to all directions, whilst sufficiently long fibres align themselves parallel to the flow direction, and orthogonal to the other two co-ordinate directions, and the vorticity and flow velocity gradient directions.
    Print ISSN: 1070-6631
    Electronic ISSN: 1089-7666
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2016-06-22
    Description: In this study, we attempt to bring out a generalized formulation for electro-osmotic flows over inhomogeneously charged surfaces in presence of non-electrostatic ion-ion interactions. To this end, we start with modified electro-chemical potential of the individual species and subsequently use it to derive modified Nernst-Planck equation accounting for the ionic fluxes generated because of the presence of non-electrostatic potential. We establish what we refer to as the Poisson-Helmholtz-Nernst-Planck equations, coupled with the Navier-Stokes equations, to describe the complete transport process. Our analysis shows that the presence of non-electrostatic interactions between the ions results in an excess body force on the fluid, and modifies the osmotic pressure as well, which has hitherto remained unexplored. We further apply our analysis to a simple geometry, in an effort to work out the Smoluchowski slip velocity for thin electrical double layer limits. To this end, we employ singular perturbation and develop a general framework for the asymptotic analysis. Our calculations reveal that the final expression for slip velocity remains the same as that without accounting for non-electrostatic interactions. However, the presence of non-electrostatic interactions along with ion specificity can significantly change the quantitative behavior of Smoluchowski slip velocity. We subsequently demonstrate that the presence of non-electrostatic interactions may significantly alter the effective interfacial potential, also termed as the “Zeta potential.” Our analysis can potentially act as a guide towards the prediction and possibly quantitative determination of the implications associated with the existence of non-electrostatic potential, in an electrokinetic transport process.
    Print ISSN: 1070-6631
    Electronic ISSN: 1089-7666
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2016-06-23
    Description: In this study, a series of copper sulfides Cu x S with x spanning from 1.8 to 1.96 was prepared and their crystal structures, elemental valence states, and thermoelectric properties were systematically studied. The valence state of Cu in Cu x S is unchanged as the ratio of Cu/S varies, while the thermoelectric properties are very sensitive to the deficiency of Cu. In addition, the type of sulfur arrangement in the crystal structure also plays an important role on the electrical transports. Finally, the optimum Cu/S atomic ratios in the binary Cu x S system were identified for high power factor and thermoelectric figure of merit.
    Electronic ISSN: 2166-532X
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2016-06-21
    Description: Disorder in the potential-energy landscape presents a major obstacle to the more rapid development of semiconductor quantum device technologies. We report a large-magnitude source of disorder, beyond commonly considered unintentional background doping or fixed charge in oxide layers: nanoscale strain fields induced by residual stresses in nanopatterned metal gates. Quantitative analysis of synchrotron coherent hard x-ray nanobeam diffraction patterns reveals gate-induced curvature and strains up to 0.03% in a buried Si quantum well within a Si/SiGe heterostructure. Electrode stress presents both challenges to the design of devices and opportunities associated with the lateral manipulation of electronic energy levels.
    Electronic ISSN: 2166-532X
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2016-06-22
    Description: Thermoelectric modules based on half-Heusler compounds offer a cheap and clean way to create eco-friendly electrical energy from waste heat. Here we study the impact of the period composition on the electrical and thermal properties in non-symmetric superlattices, where the ratio of components varies according to (TiNiSn) n :(HfNiSn) 6−n , and 0 ⩽ n ⩽ 6 unit cells. The thermal conductivity ( κ ) showed a strong dependence on the material content achieving a minimum value for n = 3, whereas the highest value of the figure of merit ZT was achieved for n = 4. The measured κ can be well modeled using non-symmetric strain relaxation applied to the model of the series of thermal resistances.
    Electronic ISSN: 2166-532X
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2016-06-22
    Description: Supercooled large droplet (SLD), which can cause abnormal icing, is a well-known issue in aerospace engineering. Although efforts have been exerted to understand large droplet impact dynamics and the supercooled feature in the film/substrate interface, respectively, the thermodynamic effect during the SLD impact process has not received sufficient attention. This work conducts experimental studies to determine the effects of drop size on the thermodynamics for supercooled large droplet impingement. Through phenomenological reproduction, the rapid-freezing characteristics are observed in diameters of 400, 800, and 1300 μ m. The experimental analysis provides information on the maximum spreading rate and the shrinkage rate of the drop, the supercooled diffusive rate, and the freezing time. A physical explanation of this unsteady heat transfer process is proposed theoretically, which indicates that the drop size is a critical factor influencing the supercooled heat exchange and effective heat transfer duration between the film/substrate interface. On the basis of the present experimental data and theoretical analysis, an impinging heating model is developed and applied to typical SLD cases. The model behaves as anticipated, which underlines the wide applicability to SLD icing problems in related fields.
    Print ISSN: 1070-6631
    Electronic ISSN: 1089-7666
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2016-06-24
    Description: Here we demonstrate a method to tune a ferroelectric imprint, which is stable in time, based on the coupling between the non-switchable polarization of ZnO and switchable polarization of PbZr x Ti (1−x) O 3 . SrRuO 3 /PbZr x Ti (1−x) O 3 /ZnO/SrRuO 3 heterostructures were grown with different ZnO thicknesses. It is shown that the coercive voltages and ferroelectric imprint vary linearly with the thickness of ZnO. It is also demonstrated that the ferroelectric imprint remains stable with electric field cycling and electric field stress assisted aging.
    Electronic ISSN: 2166-532X
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    facet.materialart.
    Unknown
    American Institute of Physics (AIP)
    Publication Date: 2016-06-24
    Description: The main ideas in the theory of thermoelectrics are discussed. We discuss power generation, thermoelectric cooling, transport theory, the Seebeck coefficient, and phonon drag.
    Electronic ISSN: 2166-532X
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2016-06-24
    Description: In this review, we focus on the celebrated interface between two band insulators, LaAlO 3 and SrTiO 3 , that was found to be conducting, superconducting, and to display a strong spin-orbit coupling. We discuss the formation of the 2-dimensional electron liquid at this interface, the particular electronic structure linked to the carrier confinement, the transport properties, and the signatures of magnetism. We then highlight distinctive characteristics of the superconducting regime, such as the electric field effect control of the carrier density, the unique tunability observed in this system, and the role of the electronic subband structure. Finally we compare the behavior of T c versus 2D doping with the dome-like behavior of the 3D bulk superconductivity observed in doped SrTiO 3 . This comparison reveals surprising differences when the T c behavior is analyzed in terms of the 3D carrier density for the interface and the bulk.
    Electronic ISSN: 2166-532X
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2016-06-24
    Description: Precession has been proposed as an alternative power source for planetary dynamos. Previous hydrodynamic simulations suggested that precession can generate very complex flows in planetary liquid cores [Y. Lin, P. Marti, and J. Noir, “Shear-driven parametric instability in a precessing sphere,” Phys. Fluids 27 , 046601 (2015)]. In the present study, we numerically investigate the magnetohydrodynamics of a precessing sphere. We demonstrate precession driven dynamos in different flow regimes, from laminar to turbulent flows. In particular, we highlight the magnetic field generation by large scale cyclonic vortices, which has not been explored previously. In this regime, dynamos can be sustained at relatively low Ekman numbers and magnetic Prandtl numbers, which paves the way for planetary applications.
    Print ISSN: 1070-6631
    Electronic ISSN: 1089-7666
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2016-06-24
    Description: A mathematical model for the dip coating process has been developed for cylindrical geometries with non-Newtonian fluids. This investigation explores the effects of the substrate radius and hydrodynamic behavior of the non-Newtonian viscous fluid on the resulting thin film on the substrate. The coating fluid studied, Dymax 1186-MT, is a resin for fiber optics and used as a matrix to suspend 1 vol. % titanium dioxide particles. The coating substrate is a 100 μ m diameter fiber optic diffuser. Ellis viscosity model is applied as a non-Newtonian viscous model for coating thickness prediction, including the influence of viscosity in low shear rates that occurs near the surface of the withdrawal film. In addition, the results of the Newtonian and power law models are compared with the Ellis model outcomes. The rheological properties and surface tension of fluids were analyzed and applied in the models and a good agreement between experimental and analytical solutions was obtained for Ellis model.
    Print ISSN: 1070-6631
    Electronic ISSN: 1089-7666
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2016-06-24
    Description: Direct numerical simulations (DNS) are used to systematically study the development and establishment of turbulence when the flow is initialized with concentrated regions of intense kinetic energy. This resembles both active and passive grids which have been extensively used to generate and study turbulence in laboratories at different Reynolds numbers and with different characteristics, such as the degree of isotropy and homogeneity. A large DNS database was generated covering a wide range of initial conditions with a focus on perturbations with some directional preference, a condition found in active jet grids and passive grids passed through a contraction as well as a new type of active grid inspired by the experimental use of lasers to photo-excite the molecules that comprise the fluid. The DNS database is used to assert under what conditions the flow becomes turbulent and if so, the time required for this to occur. We identify a natural time scale of the problem which indicates the onset of turbulence and a single Reynolds number based exclusively on initial conditions which controls the evolution of the flow. It is found that a minimum Reynolds number is needed for the flow to evolve towards fully developed turbulence. An extensive analysis of single and two point statistics, velocity as well as spectral dynamics and anisotropy measures is presented to characterize the evolution of the flow towards realistic turbulence.
    Print ISSN: 1070-6631
    Electronic ISSN: 1089-7666
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2016-06-23
    Description: This study is concerned with the investigation of two-vortex systems (2VS) of various strengths that are released near the ground and evolve in the presence of a turbulent crosswind. We analyze the physics of the vortices interactions with the turbulent wind and with the ground during the rebound phase, and that lead to the fully developed turbulent flow and interactions. The transport and decay of the vortices are also analyzed. The turbulent wind itself is obtained by direct numerical simulation using a half channel flow. The flow is then supplemented with the 2VS, using vortices with a circulation distribution that is representative of vortices after roll-up of a near wake. The vortex strengths, Γ 0 , are such that Re Γ = Γ 0 / ν = 2.0 × 10 4 for the baseline; there is then a case with twice weaker vortices, and a case with twice stronger vortices. The simulations are run in wall-resolved Large Eddy Simulation (LES) mode. The baseline is in line with the wall-resolved LES study of a similar case [A. Stephan et al. , “Aircraft wake-vortex decay in ground proximity—Physical mechanisms and artificial enhancement,” J. Aircr. 50 (4), 1250–1260 (2013)]. They highlighted the significant effect that the near-wall streaks of the wind have on the development of instabilities in the secondary vortices, and the ensuing turbulence. Our analysis complements theirs by also showing the significant effect that the wind turbulent structures, away from the ground and that are stretched by the primary vortices, also have on the destabilization of the secondary vortices. Comparisons are also made with the most recent study [F. N. Holzäpfel et al. , “Wind impact on single vortices and counter-rotating vortex pairs in ground proximity,” in 7th AIAA Atmospheric and Space Environments Conference, AIAA Aviation (American Institute of Aeronautics and Astronautics, 2015)], where Re Γ = 2.0 × 10 4 for all cases and where it is the wind intensity that is varied. Diagnostics on the vortex trajectories and circulation decay are provided, for the mean and for the envelopes of behaviour. The results are discussed and compared with the recent literature. In particular, for the case with relatively twice stronger wind relative to the vortices, the upwind vortex quickly looses its coherence when it comes closest to the ground and does not rebound; the physics of that are explained by a long wave instability excited by the turbulent wind. Finally, a case where the baseline wake is released at a lower altitude is also studied, to support an analysis on what is the proper length scale to use, and initial time, when comparing results of wakes released at different altitudes: indeed, when normalized using those quantities, the trajectory and decay curves of this case are seen to collapse very well with those of the baseline.
    Print ISSN: 1070-6631
    Electronic ISSN: 1089-7666
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2016-05-06
    Description: Phototaxis is a directed swimming response dependent upon the light intensity sensed by microorganisms. Positive (negative) phototaxis denotes the motion directed towards (away from) the source of light. In this paper, we simulate numerically penetrative phototactic bioconvection in a non-scattering suspension of phototactic algae in the non-linear regime. The suspension is confined by a stress-free top boundary, and rigid bottom and lateral boundaries. The algae receive light from the source directly above it and thus they swim vertically upward by neglecting the effects of scattering. We use the phototaxis model proposed by Vincent and Hill [“Bioconvection in a suspension of phototactic algae,” J. Fluid Mech. 327 , 343 (1996)] to investigate the onset of bioconvection in two dimensions using the stream function-vorticity formulation. The critical conditions from the onset of bioconvection are used to study the effects of different governing parameters on the structure and stability of the obtained solutions. The resulting bioconvective patterns differ qualitatively from those found by Ghorai and Hill [“Penetrative phototactic bioconvection,” Phys. Fluids 17 , 074101 (2005)] at some particular swimming velocity of microorganisms due to rigid lateral walls. A significant stabilizing effect on suspension has been also observed due to lateral rigid walls for some governing parameters.
    Print ISSN: 1070-6631
    Electronic ISSN: 1089-7666
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2016-05-06
    Description: This paper presents two sets of analytical exact solutions for collisionless gas flows from a planar exit, impinging at an inclined flat plate. These analytical results are obtained by using gaskinetic theories. The first set of solutions are for a diffuse reflective plate surface, and the other set of solutions are for a specular reflective plate surface. A virtual nozzle exit is adopted to aid analyzing the specular reflective plate scenario. New formulas for plate surface properties, including velocity slips, pressure, shear stress, and heat flux distributions, are provided. For both problems, the flowfield exact solutions are investigated as well. Numerical simulations with the direct simulation Monte Carlo method are performed to validate these new analytical results, and good agreement is obtained for flows with high Knudsen numbers. The results consider effects from many factors, such as the plate inclination angle, geometry ratios, and exit gas and plate properties (such as exit gas bulk density, gas speed ratio, and exit gas and plate temperatures). Compared with past work, these new solutions are more comprehensive and practical. The results also illustrate that if the plate is quite close to the nozzle exit, it is improper to adopt the traditional treatments of a point source and a simple cosine function.
    Print ISSN: 1070-6631
    Electronic ISSN: 1089-7666
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2016-05-05
    Description: In this work, we study the flow of a conducting fluid inside a two-dimensional square domain. The problem is solved by using a variational multiscale finite element approach. The study focuses on a high magnetic interaction parameter range and high Reynolds number. Under the imposition of a high magnetic field, the flow gets regularized, but fast transient phenomena take place, which could lead to numerical errors. An expression to compute the maximum time step that guarantees convergence in explicit schemes is proposed and validated through numerical tests.
    Print ISSN: 1070-6631
    Electronic ISSN: 1089-7666
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2016-05-10
    Description: As a part of the preliminary studies for the future space experiment (Zona-K) in the Russian module of the International Space Station, some bifurcation routes to chaos of thermocapillary convection in two-dimensional liquid layers filled with 10 cSt silicone oil have been numerically studied in this paper. As the laterally applied temperature difference is raised, variations in the spatial structure and temporal evolution of the thermocapillary convection and a complex sequence of transitions are observed. The results show that the finite extent of the liquid layer significantly influences the tempo-spatial evolution of the thermocapillary convection. Moreover, the bifurcation route of the thermocapillary convection changes very sensitively by the aspect ratio of the liquid layer. With the increasing Reynolds number (applied temperature difference), the steady thermocapillary convection experiences two consecutive transitions from periodic oscillatory state to quasi-periodic oscillatory state with frequency-locking before emergence of chaotic convection in a liquid layer of aspect ratio 14.25, and the thermocapillary convection undergoes period-doubling cascades leading to chaotic convection in a liquid layer of aspect ratio 13.0.
    Print ISSN: 1070-6631
    Electronic ISSN: 1089-7666
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2016-05-11
    Description: The objective of this investigation is to study the influence of superheat temperature and applied uniform electric field across the liquid-vapor interface during film boiling using a coupled level set and volume of fluid algorithm. The hydrodynamics of bubble growth, detachment, and its morphological variation with electrohydrodynamic forces are studied considering the medium to be incompressible, viscous, and perfectly dielectric at near critical pressure. The transition in interfacial instability behavior occurs with increase in superheat, the bubble release being periodic both in space and time. Discrete bubble growth occurs at a smaller superheat whereas vapor columns form at the higher superheat values. Destabilization of interfacial motion due to applied electric field results in decrease in bubble separation distance and increase in bubble release rate culminating in enhanced heat transfer rate. A comparison of maximum bubble height owing to application of different intensities of electric field is performed at a smaller superheat. The change in dynamics of bubble growth due to increasing superheat at a high intensity of electric field is studied. The effect of increasing intensity of electric field on the heat transfer rate at different superheats is determined. The boiling characteristic is found to be influenced significantly only above a minimum critical intensity of the electric field.
    Print ISSN: 1070-6631
    Electronic ISSN: 1089-7666
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    facet.materialart.
    Unknown
    American Institute of Physics (AIP)
    Publication Date: 2016-05-11
    Description: In the present study, we conduct unsteady three-dimensional simulations of flows around a helically twisted elliptic (HTE) cylinder at the Reynolds numbers of 100 and 3900, based on the free-stream velocity and square root of the product of the lengths of its major and minor axes. A parametric study is conducted for Re = 100 by varying the aspect ratio ( AR ) of the elliptic cross section and the helical spanwise wavelength ( λ ). Depending on the values of AR and λ , the flow in the wake contains the characteristic wavelengths of λ , 2 λ , 6 λ , or even longer than 60 λ , showing a wide diversity of flows in the wake due to the shape change. The drag on the optimal (i.e., having lowest drag) HTE cylinder ( AR = 1.3 and λ = 3.5 d ) is lower by 18% than that of the circular cylinder, and its lift fluctuations are zero owing to complete suppression of vortex shedding in the wake. This optimal HTE configuration reduces the drag by 23% for Re = 3900 where the wake is turbulent, showing that the HTE cylinder reduces the mean drag and lift fluctuations for both laminar and turbulent flows.
    Print ISSN: 1070-6631
    Electronic ISSN: 1089-7666
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2016-05-11
    Description: The tunnel noise in a Mach 5.9 Ludwieg tube is determined by two methods, a newly developed cone-probe-DNS method and a reliable hot-wire-Pitot-probe method. The new method combines pressure and heat flux measurements using a cone probe and direct numerical simulation (DNS). The modal analysis is based on transfer functions obtained by the DNS to link the measured quantities to the tunnel noise. The measurements are performed for several unit-Reynolds numbers in the range of 5 ⋅ 10 6 ≤ Re/m ≤ 16 ⋅ 10 6 and probe positions to identify the sensitivities of tunnel noise. The DNS solutions show similar response mechanisms of the cone probe to incident acoustic and entropy waves which leads to high condition numbers of the transfer matrix such that a unique relationship between response and source mechanism can be only determined by neglecting the contribution of the non-acoustic modes to the pressure and heat flux fluctuations. The results of the cone-probe-DNS method are compared to a modal analysis based on the hot-wire-Pitot-probe method which provides reliable results in the frequency range less than 50 kHz. In this low frequency range the findings of the two different mode analyses agree well. At higher frequencies, the newly developed cone-probe-DNS method is still valid. The tunnel noise is dominated by the acoustic mode, since the entropy mode is lower by one order of magnitude and the vorticity mode can be neglected. The acoustic mode is approximately 0.5% at 30 kHz and the cone-probe-DNS data illustrate the acoustic mode to decrease and to asymptotically approach 0.2%.
    Print ISSN: 1070-6631
    Electronic ISSN: 1089-7666
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2016-05-11
    Description: The propagation of high-frequency sound waves in binary gas mixtures flowing through microchannels is investigated by using the linearized Boltzmann equation based on a Bhatnagar-Gross-Krook (BGK)-type approach and diffuse reflection boundary conditions. The results presented refer to mixtures whose constituents have comparable molecular mass (like Ne-Ar) as well as to disparate-mass gas mixtures (composed of very heavy plus very light molecules, like He-Xe). The sound wave propagation model considered in the present paper allows to analyze the precise nature of the forced-sound modes excited in different gas mixtures.
    Print ISSN: 1070-6631
    Electronic ISSN: 1089-7666
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2016-05-04
    Description: In this work, a transition scenario is demonstrated, in which most of the stages are followed analytically. The transition is initiated by the linear transient growth mechanism in plane Poiseuille flow subjected to an infinitesimally small secondary disturbance. A novel analytical approximation of the linear transient growth mechanism enables us to perform a secondary linear stability analysis of the modified base-flow. Two possible routes to transition are highlighted here, both correspond to a small secondary disturbance superimposed on a linear transient growth. The first scenario is initiated by four decaying odd normal modes which form a counter-rotating vortex pair; the second is initiated by five even decaying modes which form a pair of counter-rotating pairs. The approximation of the linear transient growth stage by a combination of minimal number of modes allows us to follow the transition stages analytically by employing the multiple time scale method. In particular, the secondary instability stage is followed analytically using linear tools, and is verified by obtaining transition in a direct numerical simulation initiated by conditions dictated by the transient growth analytical expressions. Very good agreement is observed, verifying the theoretical model. The similarities between the two transition routes are discussed and the results are compared with similar results obtained for plane Couette flow.
    Print ISSN: 1070-6631
    Electronic ISSN: 1089-7666
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2016-05-07
    Description: A one-dimensional electrified viscoelastic model is built to study the nonlinear behavior of a slightly viscoelastic, perfectly conducting liquid jet under a radial electric field. The equations are solved numerically using an implicit finite difference scheme together with a boundary element method. The electrified viscoelastic jet is found to evolve into a beads-on-string structure in the presence of the radial electric field. Although the radial electric field greatly enhances the linear instability of the jet, its influence on the decay of the filament thickness is limited during the nonlinear evolution of the jet. On the other hand, the radial electric field induces axial non-uniformity of the first normal stress difference within the filament. The first normal stress difference in the center region of the filament may be greatly decreased by the radial electric field. The regions with/without satellite droplets are illuminated on the χ (the electrical Bond number)- k (the dimensionless wave number) plane. Satellite droplets may be formed for larger wave numbers at larger radial electric fields.
    Print ISSN: 1070-6631
    Electronic ISSN: 1089-7666
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2016-05-11
    Description: The spectra of turbulent heat flux H( k ) in Rayleigh-Bénard convection with and without uniform rotation are presented. The spectrum H( k ) scales with wave number k as ∼ k −2 . The scaling exponent is almost independent of the Taylor number Ta and Prandtl number Pr for higher values of the reduced Rayleigh number r (〉10 3 ). The exponent, however, depends on Ta and Pr for smaller values of r (
    Print ISSN: 1070-6631
    Electronic ISSN: 1089-7666
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2016-05-11
    Description: We report on the rebound of high velocity continuous water droplet streams from the surface of an immiscible oil pool. The droplets have diameters and velocities of less than 90 μ m and 15 m/s, respectively, and were created at frequencies up to 60 kHz. The impact and rebound of continuous droplet streams at this scale and velocity have been largely unexplored. This regime bridges the gap between single drop and jet impacts. The impinging droplets create a divot at the surface of the oil pool that had a common characteristic shape across a wide-range of droplet and oil properties. After impact, the reflected droplets maintain the same uniformity and periodicity of the incoming droplets but have significantly lower velocity and kinetic energy. This was solely attributed to the generation of a flow induced in the viscous oil pool by the impacting droplets. Unlike normally directed impact of millimeter-scale droplets with a solid surface, our results show that an air film does not appear to be maintained beneath the droplets during impact. This suggests direct contact between the droplets and the surface of the oil pool. A ballistic failure limit, correlated with the Weber number, was identified where the rebound was suppressed and the droplets were driven through the oil surface. A secondary failure mode was identified for aperiodic incoming streams. Startup effects and early time dynamics of the rebounding droplet stream were also investigated.
    Print ISSN: 1070-6631
    Electronic ISSN: 1089-7666
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2016-05-27
    Description: The method of pulsed liquid superheating in a tension wave that forms when a compression pulse is reflected from the liquid free surface has been used to investigate the kinetics of spontaneous cavitation in liquid nitrogen. The limiting tensile stress p n of nitrogen corresponding to nucleation rates J = 10 20 − 10 22 s −1 m −3 and the slope of the temperature dependence of the nucleation rate G T = d ln J / dT have been determined by experiment. The results of experiments are compared with classical nucleation theory (CNT) and a modified classical nucleation theory (MCNT), which takes into account the size dependence of the properties of a critical bubble. It has been noted that experimental data are in better agreement with the results of MCNT than with those of CNT.
    Print ISSN: 1070-6631
    Electronic ISSN: 1089-7666
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2016-05-27
    Description: Long thin circular cylinders commonly serve as towed sonar tracking devices, where the radius-of-curvature along the longitudinal axis is quite low [ρ r = O (10 −4 )]. Because no understanding presently exists about the direct impact of longitudinal curvature on the turbulent statistics, the long cylinder is simply viewed as a chain of straight segments at various (increasing then decreasing) small inclinations to the freestream direction. Realistically, even our statistical evidence along straight thin cylinders at low incidence angles is inadequate to build solid evidence towards forming reliable empirical models. In the present study, we address these shortcomings by executing Large-Eddy Simulations (LESs) of straight and longitudinally curved thin cylinders at low to moderate turbulent radius-based Reynolds numbers (500 ≤ Re a ≤ 3500) and small angles-of-incidence (α = 0° → 9°). Coupled with the previous experimental measurements and numerical results, the new expanded database (311 ≤ Re a ≤ 56 500) delivered sufficient means to propose power-law expressions for the longitudinal evolution of the skin friction, normal drag, and turbulent boundary layer (TBL) length scales. Surprisingly, the LES computations of the curved cylinders at analogous geometric and kinematic conditions as the straight cylinder showed similar character in terms of the longitudinal skin friction. Beyond incidence 1°-3° (upper end corresponds to the highest simulated Re a ), the skin friction was directly proportional to the yaw angle and monotonically shifted downward with higher Re a . Conversely, the flow structure, normal drag, TBL length scales, Reynolds stresses, and the separation state of the transverse shear layers towards regular vortex shedding for the curved cylinder were highly dissimilar than the straight one at equivalent incidence angles.
    Print ISSN: 1070-6631
    Electronic ISSN: 1089-7666
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2016-05-28
    Description: The experimental search for new thermoelectric materials remains largely confined to a limited set of successful chemical and structural families, such as chalcogenides, skutterudites, and Zintl phases. In principle, computational tools such as density functional theory (DFT) offer the possibility of rationally guiding experimental synthesis efforts toward very different chemistries. However, in practice, predicting thermoelectric properties from first principles remains a challenging endeavor [J. Carrete et al. , Phys. Rev. X 4 , 011019 (2014)], and experimental researchers generally do not directly use computation to drive their own synthesis efforts. To bridge this practical gap between experimental needs and computational tools, we report an open machine learning-based recommendation engine ( http://thermoelectrics.citrination.com ) for materials researchers that suggests promising new thermoelectric compositions based on pre-screening about 25 000 known materials and also evaluates the feasibility of user-designed compounds. We show this engine can identify interesting chemistries very different from known thermoelectrics. Specifically, we describe the experimental characterization of one example set of compounds derived from our engine, RE 12 Co 5 Bi ( RE = Gd, Er), which exhibits surprising thermoelectric performance given its unprecedentedly high loading with metallic d and f block elements and warrants further investigation as a new thermoelectric material platform. We show that our engine predicts this family of materials to have low thermal and high electrical conductivities, but modest Seebeck coefficient, all of which are confirmed experimentally. We note that the engine also predicts materials that may simultaneously optimize all three properties entering into zT ; we selected RE 12 Co 5 Bi for this study due to its interesting chemical composition and known facile synthesis.
    Electronic ISSN: 2166-532X
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    facet.materialart.
    Unknown
    American Institute of Physics (AIP)
    Publication Date: 2016-05-28
    Electronic ISSN: 2166-532X
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2016-04-30
    Description: We report measurements of the near-wall flow field in turbulent Rayleigh-Bénard convection in air ( Pr = 0.7) using particle image velocimetry. The measurements were performed in a thin, rectangular sample at fixed Rayleigh number Ra = 1.45 × 10 10 . In particular, we focus on the evolution of the boundary layer that a single convection roll generates along its path at the lower horizontal plate. We identify three specific flow regions along this path: (i) a region of wall-normal impingement of the down flow close to one corner of the sample, (ii) a region where a shear layer with almost constant thickness evolves, and (iii) a region in which this boundary layer grows and eventually detaches from the plate surface at the opposite corner of the sample. Our measurements with a spatial resolution better than 1/500 of the total thickness of the boundary layer show that the typical velocity field as well as its statistics qualitatively varies between the three flow regions. In particular, it could be verified that the shear layer region covering about 75% of the total area of the plate is in transition to turbulence at the Rayleigh number as low as investigated in the present work.
    Print ISSN: 1070-6631
    Electronic ISSN: 1089-7666
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2016-07-12
    Description: The scalar dissipation rate statistics were measured in an isothermal flow formed by discharging a central jet in an annular stream of swirling air flow. This is a typical geometry used in swirl-stabilised burners, where the central jet is the fuel. The flow Reynolds number was 29 000, based on the area-averaged velocity of 8.46 m/s at the exit and the diameter of 50.8 mm. The scalar dissipation rate and its statistics were computed from two-dimensional imaging of the mixture fraction fields obtained with planar laser induced fluorescence of acetone. Three swirl numbers, S, of 0.3, 0.58, and 1.07 of the annular swirling stream were considered. The influence of the swirl number on scalar mixing, unconditional, and conditional scalar dissipation rate statistics were quantified. A procedure, based on a Wiener filter approach, was used to de-noise the raw mixture fraction images. The filtering errors on the scalar dissipation rate measurements were up to 15%, depending on downstream positions from the burner exit. The maximum of instantaneous scalar dissipation rate was found to be up to 35 s −1 , while the mean dissipation rate was 10 times smaller. The probability density functions of the logarithm of the scalar dissipation rate fluctuations were found to be slightly negatively skewed at low swirl numbers and almost symmetrical when the swirl number increased. The assumption of statistical independence between the scalar and its dissipation rate was valid for higher swirl numbers at locations with low scalar fluctuations and less valid for low swirl numbers. The deviations from the assumption of statistical independence were quantified. The conditional mean of the scalar dissipation rate, the standard deviation of the scalar dissipation rate fluctuations, the weighted probability of occurrence of the mean conditional scalar dissipation rate, and the conditional probability are reported.
    Print ISSN: 1070-6631
    Electronic ISSN: 1089-7666
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2016-07-13
    Description: Synthetic minerals and related systems based on Cu–S are attractive thermoelectric (TE) materials because of their environmentally benign characters and high figures of merit at around 700 K. This overview features the current examples including kesterite, binary copper sulfides, tetrahedrite, colusite, and chalcopyrite, with emphasis on their crystal structures and TE properties. This survey highlights the superior electronic properties in the p -type materials as well as the close relationship between crystal structures and thermophysical properties. We discuss the mechanisms of high power factor and low lattice thermal conductivity, approaching higher TE performances for the Cu–S based materials.
    Electronic ISSN: 2166-532X
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2016-07-14
    Description: We use both theory and experiment to study the response of thin and free films of a partially wetting liquid to a MHz vibration, propagating in the solid substrate in the form of a Rayleigh surface acoustic wave (SAW). We generalise the previous theory for the response of a thin fully wetting liquid film to a SAW by including the presence of a small but finite three phase contact angle between the liquid and the solid. The SAW in the solid invokes a convective drift of mass in the liquid and leaks sound waves. The dynamics of a film that is too thin to support the accumulation of the sound wave leakage is governed by a balance between the drift and capillary stress alone. We use theory to demonstrate that a partially wetting liquid film, supporting a weak capillary stress, will spread along the path of the SAW. A partially wetting film, supporting an appreciable capillary stress, will however undergo a concurrent dynamic wetting and dewetting at the front and the rear, respectively, such that the film will displace, rather than spread, along the path of the SAW. The result of the theory for a weak capillary stress is in agreement with the previous experimental and theoretical studies on the response of thin silicon oil films to a propagating SAW. No corresponding previous results exist for the case of an appreciable capillary stress. We thus complement the large capillary limit of our theory by undertaking an experimental procedure where we explore the response of films of water and a surfactant solutions to a MHz SAW, which is found to be in qualitative agreement with the theory at this limit.
    Print ISSN: 1070-6631
    Electronic ISSN: 1089-7666
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2016-07-14
    Description: Large eddy simulation and particle image velocimetry measurements have been performed to evaluate the characteristics of a turbulent impinging jet with large nozzle height-to-diameter ratio (H/D = 20). The Reynolds number considered is approximately 28 000 based on the jet exit velocity and nozzle diameter. Mean normalized centerline velocity in both the free jet and impingement regions and pressure distribution over the plate obtained from simulations and experiments show good agreement. The ring-like vortices generated due to the Kelvin-Helmholtz instabilities at the exit of the nozzle merge, break down and transform into large scale structures while traveling towards the impingement plate. A Strouhal number of 0.63 was found for the vortices generated at the exit of the nozzle. However, this parameter is reduced along the centerline towards the impingement zone. A characteristic frequency was also determined for the large scale structures impinging on the plate. The expansion, growth, tilt, and three-dimensionality of the impinging structures cause dislocation of the impinging flow from the centerline, which is significantly larger when compared with flows having small H/D ratios. Contrary to the behavior of impinging jets with small stand-off distance, due to the loss of coherence, the large scale structures do not result in significant secondary vortices in the wall jet region and consequently less fluctuations were observed for wall shear stress.
    Print ISSN: 1070-6631
    Electronic ISSN: 1089-7666
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2016-07-14
    Description: The dynamics of capillary breakup-based droplet generation are studied for an excitation system based on a tunable piezoelectrically actuated oscillating piston, which generates acoustic pressure waves at the dispenser nozzle. First, the non-ideal pressure boundary conditions of droplet breakup are measured using a fast response pressure probe. A structural analysis shows that the axial modes of the excitation system are the main reasons for the resonance peaks in the pressure response. Second, a correlation between the nozzle inlet pressure and the droplet timing jitter is established with the help of experiments and a droplet formation model. With decreasing wave number, the growth rate of the main excitation decreases, while noise contributions with wave numbers with higher growth rates lead to a non-deterministic structure of the droplet train. A highly coherent and monodisperse droplet stream is obtained when the excitation system is tuned to generate high acoustic pressures at the desired operation frequency and when the noise level on the jet is limited. The jet velocity, hence droplet spacing for a set frequency is then adjusted by varying the reservoir pressure, according to the trade-off between lowest wave number and acceptable timing jitter.
    Print ISSN: 1070-6631
    Electronic ISSN: 1089-7666
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2016-07-20
    Description: Flow visualization experiments and numerical simulations were performed on a narrow three-dimensional backward-facing step (BFS) flow with the main objective of characterizing the secondary bubble appearing at the top wall. The BFS has been widely studied because of its geometrical simplicity as well as its ability to reproduce most of the flow features appearing in many applications in which separation occurs. A BFS test rig with an expansion ratio of 2 and two aspect ratios (AR = 4 and AR = 8) was developed. Tests were performed at range of Reynolds numbers ranging from 50 to 1000; visualization experiments provided a qualitative description of secondary bubble and wall-jet flows. Large eddy simulations were carried out with two different codes for validation. Numerical solutions, once validated with experimental data from the literature, were used to acquire a deeper understanding of the experimental visualizations, to characterize the secondary bubble as a function of the flow variables (Reynolds and AR) and to analyze the effect of the secondary bubble on primary reattachment length. Finally, to decouple the sidewall effects due to the non-slip condition and the intrinsic flow three-dimensionality, numerical experiments with free-slip conditions over the sidewalls were computed. The main differences were as follows: When the non-slip condition is used, the secondary bubble appears at a Reynolds number of approximately 200, increases with the Reynolds number, and is limited to a small part of the span. This recirculation zone interacts with the wall-jets and causes the maximum and minimum lengths in the reattachment line of the primary recirculation. Under free slip conditions, the recirculation bubble appears at a higher Reynolds number and covers the entire channel span.
    Print ISSN: 1070-6631
    Electronic ISSN: 1089-7666
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2016-07-20
    Description: Numerical simulations were conducted to investigate drop impingement and splashing on both dry and wet surfaces at impact velocities greater than 50 m/s with the consideration of the effect of surrounding air. The Navier-Stokes equations were solved using the variable density pressure projection method on a dynamic block structured adaptive grid. The moment of fluid method was used to reconstruct interfaces separating different phases. A dynamic contact angle model was used to define the boundary condition at the moving contact line. Simulations showed that lowering the ambient gas density can suppress dry surface splashing, which is in agreement with the experiments. A recirculation zone was observed inside the drop after contact: a larger recirculation zone was formed earlier in the higher gas density case than in the lower gas density case. Increasing gas density also enhances the creation of secondary droplets from the lamella breakup. For high speed impact on a dry surface, lowering ambient gas density attenuates splashing. However, ambient air does not significantly affect splashing on a wet surface. Simulations showed that the splashed droplets are primarily from the exiting liquid film.
    Print ISSN: 1070-6631
    Electronic ISSN: 1089-7666
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2016-07-20
    Description: A series of sedimentation experiments and numerical simulations have been conducted to understand the factors that control the final angle of a static sediment layer formed by quasi-monodisperse particles settling in an inclined container. The set of experiments includes several combinations of fluid viscosity, container angle, and solids concentration. A comparison between the experiments and a set of two-dimensional numerical simulations shows that the physical mechanism responsible for the energy dissipation in the system is the collision between the particles. The results provide new insights into the mechanism that sets the morphology of the sediment layer formed by the settling of quasi-monodisperse particles onto the bottom of an inclined container. Tracking the interface between the suspension solids and the clear fluid zone reveals that the final angle adopted by the sediment layer shows strong dependencies on the initial particle concentration and the container inclination, but not the fluid viscosity. It is concluded that (1) the hindrance function plays an important role on the sediment bed angle, (2) the relation between the friction effect and the slope may be explained as a quasi-linear function of the projected velocity along the container bottom, and (3) prior to the end of settling there is a significant interparticle interaction through the fluid affecting to the final bed organization. We can express the sediment bed slope as a function of two dimensionless numbers, a version of the inertial number and the particle concentration. The present experiments confirm some previous results on the role of the interstitial fluid on low Stokes number flows of particulate matter.
    Print ISSN: 1070-6631
    Electronic ISSN: 1089-7666
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2016-07-20
    Description: Wind tunnel experiments were performed on a sinusoidally oscillating NACA 0012 blade section in reverse flow. Time-resolved particle image velocimetry and unsteady surface pressure measurements were used to characterize the evolution of reverse flow dynamic stall and its sensitivity to pitch and flow parameters. The effects of a sharp aerodynamic leading edge on the fundamental flow physics of reverse flow dynamic stall are explored in depth. Reynolds number was varied up to Re = 5 × 10 5 , reduced frequency was varied up to k = 0.511, mean pitch angle was varied up to 15 ∘ , and two pitch amplitudes of 5 ∘ and 10 ∘ were studied. It was found that reverse flow dynamic stall of the NACA 0012 airfoil is weakly sensitive to the Reynolds numbers tested due to flow separation at the sharp aerodynamic leading edge. Reduced frequency strongly affects the onset and persistence of dynamic stall vortices. The type of dynamic stall observed (i.e., number of vortex structures) increases with a decrease in reduced frequency and increase in maximum pitch angle. The characterization and parameter sensitivity of reverse flow dynamic stall given in the present work will enable the development of a physics-based analytical model of this unsteady aerodynamic phenomenon.
    Print ISSN: 1070-6631
    Electronic ISSN: 1089-7666
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    facet.materialart.
    Unknown
    American Institute of Physics (AIP)
    Publication Date: 2016-07-20
    Description: We develop a mechanistic model that describes the transport of gyrotactic cells with propulsive force and propulsive torque that are not parallel. In sufficiently weak shear this yields helical swimming trajectories, whereas in stronger shear cells can attain a stable equilibrium orientation. We obtain the stable equilibrium solution for cell orientation as a function of the shear strength and determine the feasibility region for equilibrium solutions. We compute numerically the trajectories of cells in two dimensional vertical channel flow where the shear is non-uniform. Depending on the parameter values, we show that helical swimmers may display classical gyrotactic focussing towards the centre of the channel or can display a new phenomenon of focussing away from the centre of the channel. This result can be explained by consideration of the equilibrium solution for cell orientation. In this study we consider only dilute suspensions where there is no feedback from cell swimming on the hydrodynamics, and both cell-wall and cell-cell interactions are neglected.
    Print ISSN: 1070-6631
    Electronic ISSN: 1089-7666
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...