ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (1,070)
  • Data
  • 2015-2019  (1,070)
  • 1945-1949
  • 2018  (1,070)
  • ISPRS International Journal of Geo-Information  (571)
  • 180697
  • Architecture, Civil Engineering, Surveying  (1,070)
  • 1
    Publication Date: 2018
    Description: In this paper, we present a case study of community heritage resources investigation and management, which was a collaborative project conducted by researchers and participants from rural communities. Geotagged photos were obtained using smart phones, and 360-degree panoramas were acquired using a robotic camera system. These images were then uploaded to a web-based GIS (WebGIS) developed using Arches-Heritage Inventory Package (HIP), an open-source geospatial software system for cultural heritage inventory and management. By providing various tools for resources annotation, data exploration, mapping, geovisualization, and spatial analysis, the WebGIS not only serves as a platform for heritage resources database management, but also empowers the community residents to acquire, share, interpret, and analyze the data. The results show that this type of collaborative working model between researcher and community can promote public awareness of the importance of heritage conservation and achieve the research goal more effectively and efficiently.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018
    Description: In recent years, the rapid development of cloud computing and web technologies has led to a significant advancement to chain geospatial information services (GI services) in order to solve complex geospatial problems. However, the construction of a problem-solving workflow requires considerable expertise for end-users. Currently, few studies design a knowledge base to capture and share geospatial problem-solving knowledge. This paper abstracts a geospatial problem as a task that can be further decomposed into multiple subtasks. The task distinguishes three distinct granularities: Geooperator, Atomic Task, and Composite Task. A task model is presented to define the outline of problem solution at a conceptual level that closely reflects the processes for problem-solving. A task-oriented knowledge base that leverages an ontology-based approach is built to capture and share task knowledge. This knowledge base provides the potential for reusing task knowledge when faced with a similar problem. Conclusively, the details of implementation are described through using a meteorological early-warning analysis as an example.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018
    Description: The time-series analysis of multi-temporal satellite data is widely used for vegetation regrowth after a wildfire event. Comparisons between pre- and post-fire conditions are the main method used to monitor ecosystem recovery. In the present study, we estimated wildfire disturbance by comparing actual post-fire time series of Moderate Resolution Imaging Spectroradiometer (MODIS) enhanced vegetation index (EVI) and simulated MODIS EVI based on an artificial neural network assuming no wildfire occurrence. Then, we calculated the similarity of these responses for all sampling sites by applying a dynamic time warping technique. Finally, we applied multidimensional scaling to the warping distances and an optimal fuzzy clustering to identify unique patterns in vegetation recovery. According to the results, artificial neural networks performed adequately, while dynamic time warping and the proposed multidimensional scaling along with the optimal fuzzy clustering provided consistent results regarding vegetation response. For the first two years after the wildfire, medium-high- to high-severity burnt sites were dominated by oaks at elevations greater than 200 m, and presented a clustered (predominant) response of revegetation compared to other sites.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018
    Description: Urban land use and transportation are closely associated. Previous studies have investigated the spatial interrelationship between street centralities and land use intensities using land cover data, thus neglecting the social functions of urban land. Taking the city of Shenzhen, China, as a case study, we used reclassified points of interest (POI) data to represent commercial, public service, and residential land, and then investigated the varying interrelationships between the street centralities and different types of urban land use intensities. We calculated three global centralities (“closeness”, “betweenness”, and “straightness”) as well as local centralities (1-km, 2-km, 3-km, and 5-km searching radiuses), which were transformed into raster frameworks using kernel density estimation (KDE) for correlation analysis. Global closeness and straightness are high in the urban core area, and roads with high global betweenness outline the skeleton of the street network. The spatial patterns of the local centralities are distinguished from the global centralities, reflecting local location advantages. High intensities of commercial and public service land are concentrated in the urban core, while residential land is relatively scattered. The bivariate correlation analysis implies that commercial and public service land are more dependent on centralities than residential land. Closeness and straightness have stronger abilities in measuring the location advantages than betweenness. The centralities and intensities are more positively correlated on a larger scale (census block). These findings of the spatial patterns and interrelationships of the centralities and intensities have major implications for urban land use and transportation planning.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018
    Description: There are multiple location-based services (LBSs) and mobile GIS available for a wide range of applications. Usually such applications are developed to solve a restricted task within a restricted environment. The focus on a particular task is strong, and therefore, such applications can usually not be used in multiple environments. To overcome this issue, this paper presents a concept of a generic professional mobile GIS with a focus on interoperability. Firstly, common issues of mobile applications are presented, and their impact on the development of mobile GIS is analyzed. Subsequently, a new approach for a generic mobile GIS for professional users is presented. Based on multiple OGC standards, the approach leads to a system that can be used in various applications where the quality of surveyed data and analysis capabilities are improved. To prove the strength of the approach with GeoTechMobile, a prototype is presented and evaluated in a case study.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018
    Description: Web applications in spatial data infrastructures (SDIs) should provide robust and user-friendly user interfaces for geoinformation (GI) discovery, analysis, and usage. Poor usability, e.g., caused by unsuitable information presentation or inappropriate (non) availability of functions, can result in inefficient or faulty usage and can increase the acceptance of the application and provided geoinformation. Until now, a number of usability problems in GI web applications were identified; however, methods to summarize these problems, to provide (software-independent) solutions for them, and to find pairs of problems and related solutions hardly exist. We propose an adapted usability pattern concept for web applications in SDIs to map and categorize usability problems and best practice solutions and we enable a GI context-specific creation and discovery of these problems and solutions. The concept includes developed pattern types, relationships, and rules on how to use the relationships for the different pattern types.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018
    Description: New planning tools are required to depict the complete building stock in a city and investigate detailed measures on reaching local and global targets to improve energy efficiency and reduce greenhouse gas emissions. To pursue this objective, ISO (the International Organization for Standardization) 13790:2008 monthly heating and cooling energy calculation method is implemented using geometric information from 3D city models (e.g., CityGML format) in an open source software architecture. A model is developed and applied in several urban districts with different number of 3D buildings in various cities. The model is validated with the simulation software TRNSYS. We also perform a sensitivity analysis to quantify the impact of climate change and other physical and behavioral factors on modelling results. The proposed approach can help to perform city or district-wide analysis of the building energy needs and prepare different renovation plans to support decision-making, which finally will enhance the livability of a city and the quality of life of the citizens.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018
    Description: Cartographic generalization is one of the important processes of transforming the content of both analogue and digital maps. The process of reducing details on the map has to be conducted in a planned way in each case when the map scale is to be reduced. As far as digital maps are concerned, numerous algorithms are used for the generalization of vector line elements. They are used if the scale of the map (on screen or printed) is changed, or in the process of smoothing vector lines (e.g., contours). The most popular method of reducing the number of vertices of a vector line is the Douglas-Peucker algorithm. An important feature of most algorithms is the fact that they do not take into account the cartographic properties of the transformed map element. Having analysed the existing methods of generalization, the authors developed a proprietary algorithm that is based on the analysis of the curvature of the vector line and fulfils the condition of objective generalization for elements of digital maps that may be used to transform open and closed vector lines. The paper discusses the operation of this algorithm, along with the graphic presentation of the generalization results for vector lines and the analysis of their accuracy. Treating the set of verification radii of a vector line as a statistical series, the authors propose applying statistical indices of position of these series, connected with the shape of the vector line, as the threshold parameters of generalization. The developed algorithm allows for linking the generalization parameters directly to the scale of the topographic map that was obtained after generalization. The results of the operation of the algorithm were compared to the results of the reduction of vertices with use of the Douglas-Peucker algorithm. The results demonstrated that the proposed algorithm not only reduced the number of vertices, but that it also smoothed the shape of physiographic lines, if applied to them. The authors demonstrated that the errors of smoothing and position of vertices did not exceed the acceptable values for the relevant scales of topographic maps. The developed algorithm allows for adjusting the surface of the generalized areas to their initial value more precisely. The advantage of the developed algorithm consists in the possibility to apply statistical indices that take the shape of lines into account to define the generalization parameters.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018
    Description: Progress in surveillance technology has led to the development of Closed-Circuit Television (CCTV) systems in cities around the world. Cameras are considered instrumental in crime reduction, yet existing research does not unambiguously answer the question whether installing them affects the number of crimes committed. The quasi-experimental method usually applied to evaluate CCTV systems’ effectiveness faces difficulties with data quantity and quality. Data quantity has a bearing on the number of crimes that can be conclusively inferred using the experimental procedure. Data quality affects the level of crime data aggregation. The lack of the exact location of a crime incident in the form of a street address or geographic coordinates hinders the selection procedure of experimental and control areas. In this paper we propose an innovative method of dealing with data limitations in a quasi-experimental study on the effectiveness of CCTV systems in Poland. As police data on crime incidents are geocoded onto a neighborhood or a street, we designed a method to overcome this drawback by applying similarity measures to time series and landscape metrics. The method makes it possible to determine experimental (test) and control areas which are necessary to conduct the study.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018
    Description: Providing all children equal access to essential services, such as primary education, has been set as a priority in the Sustainable Development Goals (SDG)’ agenda during the last two decades. Yet the Global Education Monitoring report in 2016 reveals that wide disparities between the rich and the poor persist in access to education of high quality. This study uses the Human Opportunity Index (HOI) to examine the equality of opportunity in access to basic education of high quality. By using enrollment and admission data from a case study in a large school district in the US in 2015/2016, this research evaluates the capacity of the HOI, in order to reveal disparities in access to school opportunities and examines how much of this inequality is explained by families’ pre-determined circumstances. The way of analyzing equality is by disaggregating applications’ data into circumstance groups, according to gender, geography, race/ethnicity, and other criteria. To capture the contribution of each circumstance to inequality of opportunity, the Shapley decomposition method is used. Findings show that the HOI is capable of systematically monitoring and examining existing admission policies and identifying inequality problems. Furthermore, the analysis of the contribution of each circumstance group can reveal admission criteria that have the potential to harm the educational opportunities for children. This assessment should provide valuable insights into the capability of the indicators to reveal where policy intervention is necessary and supply points of view on how policy can be improved.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2018
    Description: A method capable of automatically reconstructing 3D building models with semantic information from the unstructured 3D point cloud of indoor scenes is presented in this paper. This method has three main steps: 3D segmentation using a new hybrid algorithm, room layout reconstruction, and wall-surface object reconstruction by using an enriched approach. Unlike existing methods, this method aims to detect, cluster, and model complex structures without having prior scanner or trajectory information. In addition, this method enables the accurate detection of wall-surface “defacements”, such as windows, doors, and virtual openings. In addition to the detection of wall-surface apertures, the detection of closed objects, such as doors, is also possible. Hence, for the first time, the whole 3D modelling process of the indoor scene from a backpack laser scanner (BLS) dataset was achieved and is recorded for the first time. This novel method was validated using both synthetic data and real data acquired by a developed BLS system for indoor scenes. Evaluating our approach on synthetic datasets achieved a precision of around 94% and a recall of around 97%, while for BLS datasets our approach achieved a precision of around 95% and a recall of around 89%. The results reveal this novel method to be robust and accurate for 3D indoor modelling.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2018
    Description: Users more easily become lost in complex indoor environments than in outdoor environments. Users with diverse backgrounds encounter different self-location, route memorization, and route following problems during wayfinding. This study intends to explore gender and age effects on the use of indoor maps for wayfinding in real environments. We used eye-tracking and retrospective verbal protocol methods to conduct a wayfinding experiment in a newly opened building. Statistical data were collected and three findings were obtained. Finding 1: Males had no significant differences with females in indoor self-location, route reading, and route following. However, males paid less visual attention to the landmark and legend than females during route reading. Finding 2: Age-related differences were significant in indoor wayfinding. Younger adults generally outperformed elderly adults in wayfinding in real indoor environments. Finding 3: Gender and age interactive effects were significant in self-location and route memorization. The mean differences of visual attention on the self-location map reading and route memorization between males and females increased with age.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2018
    Description: This paper presents a methodological approach for the assessment of the indicator 11.3.1: “Ratio of Land Consumption Rate to Population Growth Rate” proposed by the United Nations (UN), discussing the definitions and assumptions that support the indicator quantification, and analysing the results provided by different formulations applied to mainland Portugal, at the municipality level. Due to specific limitations related to the actual formula proposed by the UN (LCRPGR) for the computation of the indicator, an alternative formulation derived from Land Use Efficiency (LUE) was explored. Considering that the land to which the indicator refers may be described by specific classes represented in Land Cover Land Use (LCLU) maps, in the estimation of the land consumption rate we tested two LCLU datasets: Corine Land Cover and COS—the Portuguese LCLU reference map. For the estimation of the population growth rate, prior allocation of inhabitants to the areas where people are most likely to reside was deemed necessary, using a dasymetric mapping technique based on LCLU information. The results obtained for 2007–2011 and 2011–2015 showed, in most municipalities, an increase in the urban area and a decrease in urban population, leading to negative values both in LCRPGR and LUE in most of the territory. Clearly, LUE performed better than LCRPGR in what urban development monitoring and urban area dynamics trends are concerned. Furthermore, LUE was much easier to interpret.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2018
    Description: Debris flows in a burned area, post-fire debris flows, are considered as one of the most dangerous geo-hazards due to their high velocity, long run-out distance, and huge destruction to infrastructures. The rainfall threshold to trigger such hazards is often reduced compared with normal debris flow because ashes generated by mountain fires reduce the permeability of the top soil layer, thus increasing surface runoff. At the same time, burnt material and residual debris have very poor geo-mechanical characteristics, e.g., their internal friction angle and cohesion are typically low, and thus an intense rainfall can easily trigger some debris flows. Studying post-fire debris flow enables us to get a deeper understanding of disaster management. In this paper, the debris flow that occurred in Montecito, California, USA, and was affected by the Thomas Fire was used as a case study. Five major watersheds were extracted based on the digital elevation model (DEM). Remote sensing images were used to analyze the wildfire process, the extent of the burned areas, and the burn severity. The hypsometric integral (HI) and short-duration rainfall records of the watersheds around Montecito when the post-fire debris flows occurred were analyzed. Steep terrain, loose and abundant deposits, and sufficient water supply are the important conditions affecting the formation of debris flows. Taking watersheds as the research objects, HI was used to describe the geomorphic and topographic features, open-access rainfall data was used to represent the water supply, and burn severity represented the abundance of material sources. An occurrence probability model of post-fire debris flow based on HI, short-duration heavy rainfall, and burn severity was developed by using a logistic regression model in post-fire areas. By using this model, the occurrence probability of the post-fire debris flow in different watersheds around Montecito was analyzed based on the precipitation with time. Especially, the change characteristics of occurrence probability of debris flows over time based on the model bring a new perspective to observe the obvious change of the danger of post-fire debris flows and it is very useful for early warning of post-fire debris flows.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2018
    Description: Land surface temperature (LST) can significantly alter seasonal vegetation phenology which in turn affects the global and regional energy balance. These are the most important parameters of surface–atmosphere interactions and climate change. Methods for retrieving LSTs from satellite remote-sensing data are beneficial for modeling hydrological, ecological, agricultural and meteorological processes on the Earth’s surface. This paper assesses the geospatial patterns of LST using correlations of the seasonally integrated normalized difference vegetation index (SINDVI) in the southeastern region of Bangladesh from 2001 to 2016. Moderate Resolution Imaging Spectroradiometer (MODIS) time series datasets for LST and SINDVI were used for estimations in the study. From 2001 to 2016, the MODIS-based land surface temperature in the southeastern region of Bangladesh was found to have gently increased by 0.2 °C (R2 = 0.030), while the seasonally integrated normalized difference vegetation index also increased by 0.43 (R2 = 0.268). The interannual average LSTs mostly increased across the study areas, except in some coastal plain and tidal floodplain areas of the study. However, the SINDVI increased in the floodplain and coastal plain regions, except for in hilly areas. Physiographically, the study area is a combination of low lying alluvial floodplains, river basin wetlands, tidal floodplains, tertiary hills, terraced lands and coastal plains in nature. The hilly areas are mostly covered by dense forests, with the exception of agricultural areas. The impacts of increased LSTs were inversely correlated for the hilly areas and areas with forest coverage; LSTs were conversely correlated for the floodplain region, and tree cover outside of the forest and agricultural crops. This study will be very helpful for the protection and restoration of the natural environment.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2018
    Description: Story maps are used as an interactive tool for communication and information dissemination. A web-based application using story mapping technology is presented to explore the Methana peninsula. This volcanic area is characterized by specific volcanic geoforms, unique flora and rich history. The story map combines maps, narrative texts and multimedia content. The spatial data produce thematic maps created by a Geographic Information System on geological data, historical monuments, biodiversity and hiking paths. The purpose is to highlight the distinguishing characteristics of the Methana peninsula, to enable users to interact with maps, texts and images and to inform professional and non-professional users about the particular aspects of volcanic areas.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2018
    Description: Detecting events using social media data is important for timely emergency response and urban monitoring. Current studies primarily use semantic-based methods, in which “bursts” of certain semantic signals are detected to identify emerging events. Nevertheless, our consideration is that a social event will not only affect semantic signals but also cause irregular human mobility patterns. By introducing depictive features, such irregular patterns can be used for event detection. Consequently, in this paper, we develop a novel, comprehensive workflow for event detection by mining the geographical patterns of VGI. This workflow first uses data geographical topic modeling to detect the hashtag communities with VGI semantic data. Both global and local indicators are then constructed by introducing spatial autocorrelation measurements. We then adopt an outlier test and generate indicator maps to spatiotemporally identify the potential social events. This workflow was implemented using a real-world dataset (104,000 geo-tagged photos) and the evaluation was conducted both qualitatively and quantitatively. A set of experiments showed that the discovered semantic communities were internally consistent and externally differentiable, and the plausibility of the detected events was demonstrated by referring to the available ground truth. This study examined the feasibility of detecting events by investigating the geographical patterns of social media data and can be applied to urban knowledge retrieval.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2018
    Description: Camera pose tracking is a fundamental task in Augmented Reality (AR) applications. In this paper, we present CATCHA, a method to achieve camera pose tracking in cultural heritage interiors with rigorous conservatory policies. Our solution is real-time model-based camera tracking according to textured point cloud, regardless of its registration technique. We achieve this solution using orthographic model rendering that allows us to achieve real-time performance, regardless of point cloud density. Our developed algorithm is used to create a novel tool to help both cultural heritage restorers and individual visitors visually compare the actual state of a culture heritage location with its previously scanned state from the same point of view in real time. The provided application can directly achieve a frame rate of over 15 Hz on VGA frames on a mobile device and over 40 Hz using remote processing. The performance of our approach is evaluated using a model of the King’s Chinese Cabinet (Museum of King Jan III’s Palace at Wilanów, Warsaw, Poland) that was scanned in 2009 using the structured light technique and renovated and scanned again in 2015. Additional tests are performed on a model of the Al Fresco Cabinet in the same museum, scanned using a time-of-flight laser scanner.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2018
    Description: Mainstream machine learning approaches to predictive analytics consistently prove their ability to perform well using a variety of datasets, although the task of identifying an optimally-performing machine learning approach for any given dataset becomes much less intuitive. Methods such as ensemble and transformation modeling have been developed to improve upon individual base learners and datasets with large degrees of variance. Despite the increased generalizability and flexibility of ensemble approaches, the cost often involves sacrificing inference for predictive ability. This paper introduces an alternative approach to ensemble modeling, combining the predictive ability of an ensemble framework with localized model construction through the incorporation of cluster analysis as a pre-processing technique. The workflow not only outperforms independent base learners and comparative ensemble methods, but also preserves local inferential capability by manipulating cluster parameters and maintaining interpretable relative importance values and non-transformed coefficients for the overall consideration of variable importance. This paper demonstrates the ensemble technique on a dataset to estimate rates of health insurance coverage across the state of Missouri, where the cluster pre-processing assists in understanding both local and global variable importance and interactions when predicting high concentration areas of low health insurance coverage based on demographic, socioeconomic, and geospatial variables.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2018
    Description: To understand and solve various natural environmental problems, geoscience research activities are becoming increasingly dependent on the integration of knowledge, data, and algorithms from scientists at different institutes and with multiple perspectives. However, the facilitation of these integrations remains a challenge because such scientific activities require gathering numerous geoscience researchers to provide data, knowledge, algorithms, and tools from different institutes and geographically distributed locations. The pivotal issue that needs to be addressed is the identification of a method to effectively combine geoscience algorithms in a distributed environment to promote cooperation. To address this issue, in this paper, a scheme for building a distributed geoscience algorithm integration based on the Open Geospatial Consortium web service (OWS) specifications is proposed. The architecture of the geoscience algorithm integration, algorithm service management mechanism, XML description method for algorithm integration, and integrated model execution strategy are designed and implemented. The experiment implements the integration of geoscience algorithms in a distributed cloud environment and evaluates the feasibility and efficiency of the integrated geoscience model. The proposed method provides a theoretical basis and practical guidance for promoting the integration of distributed geoscience algorithms; this approach can help to aggregate the distributed geoscience capabilities to address natural challenges.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2018
    Description: The reconstruction of a broken contour line is a prerequisite for the automated processing of contour lines. When the situation with broken contour lines is severe or the terrain is more complex, incorrect and missing connections are most likely to occur using traditional methods. In this paper, a reconstruction method for broken contour lines based on similar and completely closed contours is proposed. First, node densification is conducted on broken contour lines to improve the identification accuracy of the reference line. Second, the discrete Fréchet distance is used to select a reference line and perform reconstruction. Finally, the actual data of Yunnan Province are utilized for verification. The results show that the method proposed in this paper can achieve better reconstruction of broken contour lines, especially for severe broken contour situations or complex terrains; the reconstruction accuracy is significantly improved over that of the traditional method, indicating good feasibility.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2018
    Description: Immersive virtual reality (iVR) devices are rapidly becoming an important part of our lives and forming a new way for people to interact with computers and each other. The impact and consequences of this innovative technology have not yet been satisfactory explored. This empirical study investigated the cognitive and social aspects of collaboration in a shared, immersive virtual reality. A unique application for implementing a collaborative immersive virtual environment (CIVE) was developed by our interdisciplinary team as a software solution for educational purposes, with two scenarios for learning about hypsography, i.e., explanations of contour line principles. Both scenarios allow switching between a usual 2D contour map and a 3D model of the corresponding terrain to increase the intelligibility and clarity of the educational content. Gamification principles were also applied to both scenarios to augment user engagement during the completion of tasks. A qualitative research approach was adopted to obtain a deep insight into the lived experience of users in a CIVE. It was thus possible to form a deep understanding of very new subject matter. Twelve pairs of participants were observed during their CIVE experience and then interviewed either in a semistructured interview or a focus group. Data from these three research techniques were analyzed using interpretative phenomenological analysis, which is research method for studying individual experience. Four superordinate themes—with detailed descriptions of experiences shared by numerous participants—emerged as results from the analysis; we called these (1) Appreciation for having a collaborator, (2) The Surprising “Fun with Maps”, (3) Communication as a challenge, and (4) Cognition in two realities. The findings of the study indicate the importance of the social dimension during education in a virtual environment and the effectiveness of dynamic and interactive 3D visualization.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2018
    Description: Hyperspectral imagery provides detailed spectral information that can be used for tree species discrimination. The aim of this study is to assess spectral–spatial complexity reduction techniques for tree species classification using an airborne prism experiment (APEX) hyperspectral image. The methodology comprised the following main steps: (1) preprocessing (removing noisy bands) and masking out non-forested areas; (2) applying dimensionality reduction techniques, namely, independent component analysis (ICA), principal component analysis (PCA), and minimum noise fraction transformation (MNF), and stacking the selected dimensionality-reduced (DR) components to create new data cubes; (3) super-pixel segmentation on the original image and on each of the dimensionality-reduced data cubes; (4) tree species classification using a random forest (RF) classifier; and (5) accuracy assessment. The results revealed that tree species classification using the APEX hyperspectral imagery and DR data cubes yielded good results (with an overall accuracy of 80% for the APEX imagery and an overall accuracy of more than 90% for the DR data cubes). Among the classification results of the DR data cubes, the ICA-transformed components performed best, followed by the MNF-transformed components and the PCA-transformed components. The best class performance (according to producer’s and user’s accuracy) belonged to Picea abies and Salix alba. The other classes (Populus x (hybrid), Alnus incana, Fraxinus excelsior, and Quercus robur) performed differently depending on the different DR data cubes used as the input to the RF classifier.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2018
    Description: Air pollution dispersion modelling via spatial analyses (Land Use Regression—LUR) is an alternative approach to the standard air pollution dispersion modelling techniques in air quality assessment. Its advantages are mainly a much simpler mathematical apparatus, quicker and simpler calculations and a possibility to incorporate more factors affecting pollutant’s concentration than standard dispersion models. The goal of the study was to model the PM10 particles dispersion via spatial analyses in the Czech–Polish border area of the Upper Silesian industrial agglomeration and compare the results with the results of the standard Gaussian dispersion model SYMOS’97. The results show that standard Gaussian model with the same data as the LUR model gives better results (determination coefficient 71% for Gaussian model to 48% for LUR model). When factors of the land cover were included in the LUR model, the LUR model results improved significantly (65% determination coefficient) to a level comparable with the Gaussian model. A hybrid approach of combining the Gaussian model with the LUR gives superior quality of results (86% determination coefficient).
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2018
    Description: This article aims to develop a Web-GIS based landslide early warning system (EWS) for the Chittagong Metropolitan Area (CMA), Bangladesh, where, in recent years, rainfall-induced landslides have caused great losses of lives and property. A method for combining static landslide susceptibility maps and rainfall thresholds is proposed by introducing a purposely-build hazard matrix. To begin with, eleven factor maps: soil permeability; surface geology; landcover; altitude; slope; aspect; distance to stream; fault line; hill cut; road cut; and drainage network along with a detailed landslide inventory map were produced. These maps were used, and four methods were applied: artificial neural network (ANN); multiple regressions; principal component analysis; and support vector machine to produce landslide susceptibility maps. After model validation, the ANN map was found best fitting and was classified into never warning, low, medium, and high susceptibility zones. Rainfall threshold analysis (1960–2017) revealed consecutive 5-day periods of rainfall of 71–282 mm could initiate landslides in CMA. Later, the threshold was classified into three rainfall rates: low rainfall (70–160 mm), medium rainfall (161–250 mm), and high rainfall (〉250 mm). Each landslide was associated with a hazard class (no warning vs. warning state) based on the assumption that the higher the susceptibility, the lower the rainfall. Finally, the EWS was developed using various libraries and frameworks that is connected with a reliable online-based weather application programming interface. The system is publicly available, dynamic, and replicable to similar contexts and is able to disseminate alerts five days in advance via email notifications. The proposed EWS is novel and the first of its kind in Bangladesh, and can be applied to mitigate landslide disaster risks.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2018
    Description: Identifying the influential nodes in complex networks is a fundamental and practical topic at the moment. In this paper, a new centrality measure for complex networks is proposed based on two contrasting models that have their common origin in the well-known PageRank centrality. On the one hand, the essence of the model proposed is taken from the Adapted PageRank Algorithm (APA) centrality, whose main characteristic is that constitutes a measure to establish a ranking of nodes considering the importance of some dataset associated to the network. On the other hand, a technique known as two-layers PageRank approach is applied to this model. This technique focuses on the idea that the PageRank centrality can be understood as a two-layer network, the topological and teleportation layers, respectively. The main point of the proposed centrality is that it combines the APA centrality with the idea of two-layers; however, the difference now is that the teleportation layer is replaced by a layer that collects the data present in the network. This combination gives rise to a new algorithm for ranking the nodes according to their importance. Subsequently, the coherence of the new measure is demonstrated by calculating the correlation and the quantitative differences of both centralities (APA and the new centrality). A detailed study of the differences of both centralities, taking different types of networks, is performed. A real urban network with data randomly generated is evaluated as well as the well-known Zachary’s karate club network. Some numerical results are carried out by varying the values of the α parameter—known as dumping factor in PageRank model—that varies the importance given to the two layers (topology and data) within the computation of the new centrality. The proposed algorithm takes the best characteristics of the models on which it is based: on the one hand, it is a measure of centrality, in complex networks with data, whose calculation is stable numerically and, on the other hand, it is able to separate the topological properties of the network and the influence of the data.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2018
    Description: Predicting the exact urban places where crime is most likely to occur is one of the greatest interests for Police Departments. Therefore, the goal of the research presented in this paper is to identify specific urban areas where a crime could happen in Manhattan, NY for every hour of a day. The outputs from this research are the following: (i) predicted land uses that generates the top three most committed crimes in Manhattan, by using machine learning (random forest and logistic regression), (ii) identifying the exact hours when most of the assaults are committed, together with hot spots during these hours, by applying time series and hot spot analysis, (iii) built hourly prediction models for assaults based on the land use, by deploying logistic regression. Assault, as a physical attack on someone, according to criminal law, is identified as the third most committed crime in Manhattan. Land use (residential, commercial, recreational, mixed use etc.) is assigned to every area or lot in Manhattan, determining the actual use or activities within each particular lot. While plotting assaults on the map for every hour, this investigation has identified that the hot spots where assaults occur were ‘moving’ and not confined to specific lots within Manhattan. This raises a number of questions: Why are hot spots of assaults not static in an urban environment? What makes them ‘move’—is it a particular urban pattern? Is the ‘movement’ of hot spots related to human activities during the day and night? Answering these questions helps to build the initial frame for assault prediction within every hour of a day. Knowing a specific land use vulnerability to assault during each exact hour can assist the police departments to allocate forces during those hours in risky areas. For the analysis, the study is using two datasets: a crime dataset with geographical locations of crime, date and time, and a geographic dataset about land uses with land use codes for every lot, each obtained from open databases. The study joins two datasets based on the spatial location and classifies data into 24 classes, based on the time range when the assault occurred. Machine learning methods reveal the effect of land uses on larceny, harassment and assault, the three most committed crimes in Manhattan. Finally, logistic regression provides hourly prediction models and unveils the type of land use where assaults could occur during each hour for both day and night.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2018
    Description: Studying the impact of social events is important for the sustainable development of society. Given the growing popularity of social media applications, social sensing networks with users acting as smart social sensors provide a unique channel for understanding social events. Current research on social events through geo-tagged social media is mainly focused on the extraction of information about when, where, and what happened, i.e., event detection. There is a trend towards the machine learning of more complex events from even larger input data. This research work will undoubtedly lead to a better understanding of big geo-data. In this study, however, we start from known or detected events, raising further questions on how they happened, how they affect people’s lives, and for how long. By combining machine learning, natural language processing, and visualization methods in a generic analytical framework, we attempt to interpret the impact of known social events from the dimensions of time, space, and semantics based on geo-tagged social media data. The whole analysis process consists of four parts: (1) preprocessing; (2) extraction of event-related information; (3) analysis of event impact; and (4) visualization. We conducted a case study on the “2014 Shanghai Stampede” event on the basis of Chinese Sina Weibo data. The results are visualized in various ways, thus ensuring the feasibility and effectiveness of our proposed framework. Both the methods and the case study can serve as decision references for situational awareness and city management.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2018
    Description: Global efforts to end the tuberculosis (TB) epidemic by 2030 (SDG3.3) through improved TB case detection and treatment have not been effective to significantly reduce the global burden of the TB epidemic. This study presents an analytical framework to evaluate the use of TB case notification rates (CNR) to monitor and to evaluate TB under-detection and under-diagnoses in Bangladesh. Local indicators of spatial autocorrelation (LISA) were calculated to assess the presence and scale of spatial clusters of TB CNR across 489 upazilas in Bangladesh. Simultaneous autoregressive models were fit to the data to identify associations between TB CNR and poverty, TB testing rates and retreatment rates. CNRs were found to be significantly spatially clustered, negatively correlated to poverty rates and positively associated to TB testing and retreatment rates. Comparing the observed pattern of CNR with model-standardized rates made it possible to identify areas where TB under-detection is likely to occur. These results suggest that TB CNR is an unreliable proxy for TB incidence. Spatial variations in TB case notifications and subnational variations in TB case detection should be considered when monitoring national TB trends. These results provide useful information to target and prioritize context specific interventions.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2018
    Description: Heavy burdens are placed on runways daily; thus, it is necessary to monitor these surfaces regularly. The appearance of distortions can cause difficulties for aircraft when they land or take off, which occurs mainly for lighter planes. This can be seen in reduced grip, uneven use of tires, problems with measurement systems, and unbalanced drive, which can result in damage to or even destruction of the plane or its parts. For that purpose, the model of continuous monitoring of distortions on and under the surface of the runway was created. This model is based on geodetic and geophysical methods. The method for monitoring distortions was developed into a decision-making model in the shape of a geo-information base. The results provide an image of the state of the runway including damage on and under the surface, which are the most common causes of runway distortions. The data are automatically recorded in the newly established information system, which supports the decision making regarding renovations and runway maintenance. The measurement on the runway takes 30 min, which does not lead to a long closure of the airport and, thus, reduces traffic jams and additional costs.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2018
    Description: Information on the distribution and dynamics of dwellings and their inhabitants is essential to support decision-making in various fields such as energy provision, land use planning, risk assessment and disaster management. However, as various different of approaches to estimate the current distribution of population and dwellings exists, further evidence on past dynamics is needed for a better understanding of urban processes. This article therefore addresses the question of whether and how accurately historical distributions of dwellings and inhabitants can be reconstructed with commonly available geodata from national mapping and cadastral agencies. For this purpose, an approach for the automatic derivation of such information is presented. The data basis is constituted by a current digital landscape model and a 3D building model combined with historical land use information automatically extracted from historical topographic maps. For this purpose, methods of image processing, machine learning, change detection and dasymetric mapping are applied. The results for a study area in Germany show that it is possible to automatically derive decadal historical patterns of population and dwellings from 1950 to 2011 at the level of a 100 m grid with slight underestimations and acceptable standard deviations. By a differentiated analysis we were able to quantify the errors for different urban structure types.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2018
    Description: The increasing availability of volunteered geographic information (VGI) enables novel studies in many scientific domains. However, inconsistent VGI can negatively affect these studies. This paper describes a workflow that checks the consistency of Volunteered Phenological Observations (VPOs) while considering the synchrony of observations (i.e., the temporal dispersion of a phenological event). The geographic coordinates, day of the year (DOY) of the observed event, and the accumulation of daily temperature until that DOY were used to: (1) spatially group VPOs by connecting observations that are near to each other, (2) define consistency constraints, (3) check the consistency of VPOs by evaluating the defined constraints, and (4) optimize the constraints by analysing the effect of inconsistent VPOs on the synchrony models derived from the observations. This workflow was tested using VPOs collected in the Netherlands during the period 2003–2015. We found that the average percentage of inconsistent observations was low to moderate (ranging from 1% for wood anemone and pedunculate oak to 15% for cow parsley species). This indicates that volunteers provide reliable phenological information. We also found a significant correlation between the standard deviation of DOY of the observed events and the accumulation of daily temperature (with correlation coefficients ranging from 0.78 for lesser celandine, and 0.60 for pedunculate oak). This confirmed that colder days in late winter and early spring lead to synchronous flowering and leafing onsets. Our results highlighted the potential of synchrony information and geographical context for checking the consistency of phenological VGI. Other domains using VGI can adapt this geocomputational workflow to check the consistency of their data, and hence the robustness of their analyses.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2018
    Description: The global population is growing at an incomprehensible rate and with it come complex environmental consequences that often result in social injustices. The United Nations has established a set of Sustainable Development Goals (SDGs) in an attempt to ameliorate inequality and promise safety for the masses. To reach these goals, a set of indicators have been identified and their associated data for each country are publicly available to measure how close each country is to each goal. Multifaceted social and environmental processes that are difficult to understand are causing threats to these goals. Maps help reduce complexity. Now, arguably anyone with access to the Internet and time can make a map. However, not all maps are effective accurate communication vessels. Well-designed maps tell a story that truthfully represents the data available. Here we present a synthesis of the cartographic workflow pointing out specific considerations necessary when mapping SDG indicators. Along the way we illustrate the cartographic workflow as it relates to visualizing SDG indicators. Common mapping pitfalls are described and a range of suggestions to avoid them are also offered. Map makers have a unique opportunity to use these data to illuminate and communicate injustices that are documented therein to inspire creative localized solutions to eradicate inequality.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2018
    Description: The 3D documentation of heritage complexes or quarters often requires more than one scale due to its extended area. While the documentation of individual buildings requires a technique with finer resolution, that of the complex itself may not need the same degree of detail. This has led to the use of a multi-scale approach in such situations, which in itself implies the integration of multi-sensor techniques. The challenges and constraints of the multi-sensor approach are further added when working in urban areas, as some sensors may be suitable only for certain conditions. This paper describes the integration of heterogeneous sensors as a logical solution in addressing this problem. The royal palace complex of Kasepuhan Cirebon, Indonesia, was taken as a case study. The site dates to the 13th Century and has survived to this day as a cultural heritage site, preserving within itself a prime example of vernacular Cirebonese architecture. This type of architecture is influenced by the tropical climate, with distinct features designed to adapt to the hot and humid year-long weather. In terms of 3D documentation, this presents specific challenges that need to be addressed both during the acquisition and processing stages. Terrestrial laser scanners, DSLR cameras, as well as UAVs were utilized to record the site. The implemented workflow, some geometrical analysis of the results, as well as some derivative products will be discussed in this paper. Results have shown that although the proposed multi-scale and multi-sensor workflow has been successfully employed, it needs to be adapted and the related challenges addressed in a particular manner.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2018
    Description: This paper focuses on the spatial autocorrelation parameter ρ of the simultaneous autoregressive model, and furnishes its sampling distribution for nonzero values, for two regular square (rook and queen) tessellations as well as a hexagonal case with rook connectivity, using Monte Carlo simulation experiments with a large sample size. The regular square lattice directly relates to increasingly used, remotely sensed images, whereas the regular hexagonal configuration is frequently used in sampling and aggregation situations. Results suggest an asymptotic normal distribution for estimated ρ. More specifically, this paper posits functions between ρ and its variance for three adjacency structures, which makes hypothesis testing implementable and furnishes an easily-computed version of the asymptotic variance for ρ at zero for each configuration. In addition, it also presents three examples, where the first employed a simulated dataset for a zero spatial autocorrelation case, and the other two used two empirical datasets—of these, one is a census block dataset for Wuhan (with a Moran coefficient of 0.53, allowing a null hypothesis of, e.g., ρ=0.7) to illustrate a moderate spatial autocorrelation case, and the other is a remotely sensed image of the Yellow Mountain region, China (with a Moran coefficient of 0.91, allowing a null hypothesis of, e.g., ρ=0.95) to illustrate a high spatial autocorrelation case.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2018
    Description: Sensor networks generate substantial amounts of frequently updated, highly dynamic data that are transmitted as packets in a data stream. The high frequency and continuous unbound nature of data streams leads to challenges when deriving knowledge from the underlying observations. This paper presents (1) a state of the art review into visual analytics of geospatial, spatio-temporal streaming data, and (2) proposes a framework based on the identified gaps from the review. The framework consists of (1) the data model that characterizes the sensor observation data, (2) the user model, which addresses the user queries and manages domain knowledge, (3) the design model, which handles the patterns that can be uncovered from the data and corresponding visualizations, and (4) the visualization model, which handles the rendering of the data. The conclusion from the visualization model is that streaming sensor observations require tools that can handle multivariate, multiscale, and time series displays. The design model reveals that the most useful patterns are those that show relationships, anomalies, and aggregations of the data. The user model highlights the need for handling missing data, dealing with high frequency changes, as well as the ability to review retrospective changes.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2018-07-28
    Description: IJGI, Vol. 7, Pages 300: A Comparative Study of Three Non-Geostatistical Methods for Optimising Digital Elevation Model Interpolation ISPRS International Journal of Geo-Information doi: 10.3390/ijgi7080300 Authors: Serajis Salekin Jack H. Burgess Justin Morgenroth Euan G. Mason Dean F. Meason It is common to generate digital elevation models (DEMs) from aerial laser scanning (ALS) data. However, cost and lack of knowledge may preclude its use. In contrast, global navigation satellite systems (GNSS) are seldom used to collect and generate DEMs. These receivers have the potential to be considered as data sources for DEM interpolation, as they can be inexpensive, easy to use, and mobile. The data interpolation method and spatial resolution from this method needs to be optimised to create accurate DEMs. Moreover, the density of GNSS data is likely to affect DEM accuracy. This study investigates three different deterministic approaches, in combination with spatial resolution and data thinning, to determine their combined effects on DEM accuracy. Digital elevation models were interpolated, with resolutions ranging from 0.5 m to 10 m using natural neighbour (NaN), topo to raster (ANUDEM), and inverse distance weighted (IDW) methods. The GNSS data were thinned by 25% (0.389 points m−2), 50% (0.259 points m−2), and 75% (0.129 points m−2) and resulting DEMs were contrast against a DEM interpolated from unthinned data (0.519 points m−2). Digital elevation model accuracy was measured by root mean square error (RMSE) and mean absolute error (MAE). It was found that the highest resolution, 0.5 m, produced the lowest errors in resulting DEMs (RMSE = 0.428 m, MAE = 0.274 m). The ANUDEM method yielded the greatest DEM accuracy from a quantitative perspective (RMSE = 0.305 m and MAE = 0.197 m); however, NaN produced a more visually appealing surface. In all the assessments, IDW showed the lowest accuracy. Thinning the input data by 25% and even 50% had relatively little impact on DEM quality; however, accuracy decreased markedly at 75% thinning (0.129 points m−2). This study showed that, in a time where ALS is commonly used to generate DEMs, GNSS-surveyed data can be used to create accurate DEMs. This study confirmed the need for optimization to choose the appropriate interpolation method and spatial resolution in order to produce a reliable DEM.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2018-08-03
    Description: IJGI, Vol. 7, Pages 311: Processing BIM and GIS Models in Practice: Experiences and Recommendations from a GeoBIM Project in The Netherlands ISPRS International Journal of Geo-Information doi: 10.3390/ijgi7080311 Authors: Ken Arroyo Ohori Abdoulaye Diakité Thomas Krijnen Hugo Ledoux Jantien Stoter It is widely acknowledged that the integration of BIM and GIS data is a crucial step forward for future 3D city modelling, but most of the research conducted so far has covered only the high-level and semantic aspects of GIS-BIM integration. This paper presents the results of the GeoBIM project, which tackled three integration problems focussing instead on aspects involving geometry processing: (i) the automated processing of complex architectural IFC models; (ii) the integration of existing GIS subsoil data in BIM; and (iii) the georeferencing of BIM models for their use in GIS software. All the problems have been studied using real world models and existing datasets made and used by practitioners in The Netherlands. For each problem, this paper exposes in detail the issues faced, proposed solutions, and recommendations for a more successful integration.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2018-06-15
    Description: IJGI, Vol. 7, Pages 218: A Spatiotemporal Multi-View-Based Learning Method for Short-Term Traffic Forecasting ISPRS International Journal of Geo-Information doi: 10.3390/ijgi7060218 Authors: Shifen Cheng Feng Lu Peng Peng Sheng Wu Short-term traffic forecasting plays an important part in intelligent transportation systems. Spatiotemporal k-nearest neighbor models (ST-KNNs) have been widely adopted for short-term traffic forecasting in which spatiotemporal matrices are constructed to describe traffic conditions. The performance of the models is closely related to the spatial dependencies, the temporal dependencies, and the interaction of spatiotemporal dependencies. However, these models use distance functions and correlation coefficients to identify spatial neighbors and measure the temporal interaction by only considering the temporal closeness of traffic, which result in existing ST-KNNs that cannot fully reflect the essential features of road traffic. This study proposes an improved spatiotemporal k-nearest neighbor model for short-term traffic forecasting by utilizing a multi-view learning algorithm named MVL-STKNN that fully considers the spatiotemporal dependencies of traffic data. First, the spatial neighbors for each road segment are automatically determined using cross-correlation under different temporal dependencies. Three spatiotemporal views are built on the constructed spatiotemporal closeness, periodic, and trend matrices to represent spatially heterogeneous traffic states. Second, a spatiotemporal weighting matrix is introduced into the ST-KNN model to recognize similar traffic patterns in the three spatiotemporal views. Finally, the results of traffic pattern recognition under these three spatiotemporal views are aggregated by using a neural network algorithm to describe the interaction of spatiotemporal dependencies. Extensive experiments were conducted using real vehicular-speed datasets collected on city roads and expressways. In comparison with baseline methods, the results show that the MVL-STKNN model greatly improves short-term traffic forecasting by lowering the mean absolute percentage error between 28.24% and 46.86% for the city road dataset and, between 53.80% and 90.29%, for the expressway dataset. The results suggest that multi-view learning merits further attention for traffic-related data mining under such a dynamic and data-intensive environment, which owes to its comprehensive consideration of spatial correlation and heterogeneity as well as temporal fluctuation and regularity in road traffic.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2018-06-15
    Description: IJGI, Vol. 7, Pages 217: Deep Belief Networks Based Toponym Recognition for Chinese Text ISPRS International Journal of Geo-Information doi: 10.3390/ijgi7060217 Authors: Shu Wang Xueying Zhang Peng Ye Mi Du In Geographical Information Systems, geo-coding is used for the task of mapping from implicitly geo-referenced data to explicitly geo-referenced coordinates. At present, an enormous amount of implicitly geo-referenced information is hidden in unstructured text, e.g., Wikipedia, social data and news. Toponym recognition is the foundation of mining this useful geo-referenced information by identifying words as toponyms in text. In this paper, we propose an adapted toponym recognition approach based on deep belief network (DBN) by exploring two key issues: word representation and model interpretation. A Skip-Gram model is used in the word representation process to represent words with contextual information that are ignored by current word representation models. We then determine the core hyper-parameters of the DBN model by illustrating the relationship between the performance and the hyper-parameters, e.g., vector dimensionality, DBN structures and probability thresholds. The experiments evaluate the performance of the Skip-Gram model implemented by the Word2Vec open-source tool, determine stable hyper-parameters and compare our approach with a conditional random field (CRF) based approach. The experimental results show that the DBN model outperforms the CRF model with smaller corpus. When the corpus size is large enough, their statistical metrics become approaching. However, their recognition results express differences and complementarity on different kinds of toponyms. More importantly, combining their results can directly improve the performance of toponym recognition relative to their individual performances. It seems that the scale of the corpus has an obvious effect on the performance of toponym recognition. Generally, there is no adequate tagged corpus on specific toponym recognition tasks, especially in the era of Big Data. In conclusion, we believe that the DBN-based approach is a promising and powerful method to extract geo-referenced information from text in the future.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2018-06-17
    Description: IJGI, Vol. 7, Pages 222: A Citizen Science Approach for Collecting Toponyms ISPRS International Journal of Geo-Information doi: 10.3390/ijgi7060222 Authors: Aji Putra Perdana Frank O. Ostermann The emerging trends and technologies of surveying and mapping potentially enable local experts to contribute and share their local geographical knowledge of place names (toponyms). We can see the increasing numbers of toponyms in digital platforms, such as OpenStreetMap, Facebook Place Editor, Swarm Foursquare, and Google Local Guide. On the other hand, government agencies keep working to produce concise and complete gazetteers. Crowdsourced geographic information and citizen science approaches offer a new paradigm of toponym collection. This paper addresses issues in the advancing toponym practice. First, we systematically examined the current state of toponym collection and handling practice by multiple stakeholders, and we identified a recurring set of problems. Secondly, we developed a citizen science approach, based on a crowdsourcing level of participation, to collect toponyms. Thirdly, we examined the implementation in the context of an Indonesian case study. The results show that public participation in toponym collection is an approach with the potential to solve problems in toponym handling, such as limited human resources, accessibility, and completeness of toponym information. The lessons learnt include the knowledge that the success of this approach depends on the willingness of the government to advance their workflow, the degree of collaboration between stakeholders, and the presence of a communicative approach in introducing and sharing toponym guidelines with the community.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2018-06-21
    Description: IJGI, Vol. 7, Pages 232: A RSSI/PDR-Based Probabilistic Position Selection Algorithm with NLOS Identification for Indoor Localisation ISPRS International Journal of Geo-Information doi: 10.3390/ijgi7060232 Authors: Ke Han Huashuai Xing Zhongliang Deng Yichen Du In recent years, location-based services have been receiving increasing attention because of their great development prospects. Researchers from all over the world have proposed many solutions for indoor positioning over the past several years. However, owing to the dynamic and complex nature of indoor environments, accurately and efficiently localising targets in indoor environments remains a challenging problem. In this paper, we propose a novel indoor positioning algorithm based on the received signal strength indication and pedestrian dead reckoning. In order to enhance the accuracy and reliability of our proposed probabilistic position selection algorithm in mixed line-of-sight (LOS) and non-line-of-sight (NLOS) environments, a low-complexity identification approach is proposed to identify the change in the channel situation between NLOS and LOS. Numerical experiment results indicate that our proposed algorithm has a higher accuracy and is less impacted by NLOS errors than other conventional methods in mixed LOS and NLOS indoor environments.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2018-06-21
    Description: IJGI, Vol. 7, Pages 229: Automated Orthorectification of VHR Satellite Images by SIFT-Based RPC Refinement ISPRS International Journal of Geo-Information doi: 10.3390/ijgi7060229 Authors: Hakan Kartal Ugur Alganci Elif Sertel Raw remotely sensed images contain geometric distortions and cannot be used directly for map-based applications, accurate locational information extraction or geospatial data integration. A geometric correction process must be conducted to minimize the errors related to distortions and achieve the desired location accuracy before further analysis. A considerable number of images might be needed when working over large areas or in temporal domains in which manual geometric correction requires more labor and time. To overcome these problems, new algorithms have been developed to make the geometric correction process autonomous. The Scale Invariant Feature Transform (SIFT) algorithm is an image matching algorithm used in remote sensing applications that has received attention in recent years. In this study, the effects of the incidence angle, surface topography and land cover (LC) characteristics on SIFT-based automated orthorectification were investigated at three different study sites with different topographic conditions and LC characteristics using Pleiades very high resolution (VHR) images acquired at different incidence angles. The results showed that the location accuracy of the orthorectified images increased with lower incidence angle images. More importantly, the topographic characteristics had no observable impacts on the location accuracy of SIFT-based automated orthorectification, and the results showed that Ground Control Points (GCPs) are mainly concentrated in the “Forest” and “Semi Natural Area” LC classes. A multi-thread code was designed to reduce the automated processing time, and the results showed that the process performed 7 to 16 times faster using an automated approach. Analyses performed on various spectral modes of multispectral data showed that the arithmetic data derived from pan-sharpened multispectral images can be used in automated SIFT-based RPC orthorectification.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2018-06-23
    Description: IJGI, Vol. 7, Pages 244: Shaking Maps Based on Cumulative Absolute Velocity and Arias Intensity: The Cases of the Two Strongest Earthquakes of the 2016–2017 Central Italy Seismic Sequence ISPRS International Journal of Geo-Information doi: 10.3390/ijgi7070244 Authors: Antonio Costanzo By referring to the two strongest earthquakes of the 2016–2017 Central Italy seismic sequence, this paper presents a procedure to make shaking maps through empirical relationships between macroseismic intensity and ground-motion parameters. Hundreds of waveforms were processed to obtain instrumental ground-motion features which could be correlated with the potential damage intensities. To take into account peak value, frequency, duration, and energy content, which all contribute to damage, cumulative absolute velocity and Arias intensity were used to quantify the features of the ground motion. Once these parameters had been calculated at the recording sites, they were interpolated through geostatistical techniques on the whole struck area. Finally, empirical relationships were used for mapping intensities, i.e., potential effects on the built environment. The results referred to both earthquake scenarios that were analyzed and were also used for assessing the influence of the spatial coverage of the instrumental network. In fact, after the first events, the Italian seismic network was subjected to the addition and thickening of sensors in the epicentral area, especially. The results obtained by models only dependent on ground-motion parameters or even on the epicentral distance were compared with the official ShakeMaps and the observed intensities for assessing their reliability. Finally, some suggestions are proposed to improve the procedure that could be used for rapidly assessing ground shaking and mapping damage potential producing useful information for non-expert audience.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2018-06-23
    Description: IJGI, Vol. 7, Pages 242: Seamless Upscaling of the Field-Measured Grassland Aboveground Biomass Based on Gaussian Process Regression and Gap-Filled Landsat 8 OLI Reflectance ISPRS International Journal of Geo-Information doi: 10.3390/ijgi7070242 Authors: Gaofei Yin Ainong Li Chaoyang Wu Jiyan Wang Qiaoyun Xie Zhengjian Zhang Xi Nan Huaan Jin Jinhu Bian Guangbin Lei The spatially explicit aboveground biomass (AGB) generated through upscaling field measurements is critical for carbon cycle simulation and optimized management of grasslands. However, the spatial gaps that exist in the optical remote sensing data, underutilization of the multispectral data cube and unavailability of uncertainty information hinder the generation of seamless and accurate AGB maps. This study proposes a novel framework to address the above challenges. The proposed framework filled the spatial gaps in the remote sensing data via the consistent adjustment of the climatology to actual observations (CACAO) method. Gaussian process regression (GPR) was used to fully exploit the multispectral data cube and generated the pixelwise uncertainty concurrent with the AGB estimation. A case study in a 100 km × 100 km area located in the Zoige Plateau, China was used to evaluate this framework. The results show that the CACAO method can fill almost all of the gaps, accounting for 93.1% of the study area, with satisfactory accuracy. The generated AGB map from the GPR was characterized by a relatively high accuracy (R2 = 0.64, RMSE = 48.13 g/m2) compared to vegetation index-derived ones, and was accompanied by a corresponding uncertainty map that provides a new source of information on the credibility of each pixel. This study demonstrates the potential of the joint use of gap-filling and machine-learning methods to generate spatially explicit AGB.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2018-06-28
    Description: IJGI, Vol. 7, Pages 251: Optical Satellite Image Geo-Positioning with Weak Convergence Geometry ISPRS International Journal of Geo-Information doi: 10.3390/ijgi7070251 Authors: Yang Wu Yongsheng Zhang Donghong Wang Delin Mo High-resolution optical satellites are widely used in environmental monitoring. With the aim to observe the largest possible coverage, the overlapping areas and intersection angles of respective optical satellite images are usually small. However, the conventional bundle adjustment method leads to erroneous results or even failure under conditions of weak geometric convergence. By transforming the traditional stereo adjustment to a planar adjustment and combining it with linear programming (LP) theory, a new method that can solve the bias compensation parameters of all satellite images is proposed in this paper. With the support of freely available open source digital elevation models (DEMs) and sparse ground control points (GCPs), the method can not only ensure the consistent inner precision of all images, but also the absolute geolocation accuracy of the ground points. Tests of the two data sets covering different landscapes validated the effectiveness and feasibility of the method. The results showed that the geo-positioning performance of the method was better in regions of smaller topographic relief or for satellite images with a larger imaging altitude angle. The best accuracy of image geolocation with weak convergence geometry was as high as to 3.693 m in the horizontal direction and 6.510 m in the vertical direction, which is a level of accuracy equal to that of images with good intersection conditions.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2018-07-26
    Description: IJGI, Vol. 7, Pages 299: Drift-Aware Monocular Localization Based on a Pre-Constructed Dense 3D Map in Indoor Environments ISPRS International Journal of Geo-Information doi: 10.3390/ijgi7080299 Authors: Guanyuan Feng Lin Ma Xuezhi Tan Danyang Qin Recently, monocular localization has attracted increased attention due to its application to indoor navigation and augmented reality. In this paper, a drift-aware monocular localization system that performs global and local localization is presented based on a pre-constructed dense three-dimensional (3D) map. In global localization, a pixel-distance weighted least squares algorithm is investigated for calculating the absolute scale for the epipolar constraint. To reduce the accumulative errors that are caused by the relative position estimation, a map interaction-based drift detection method is introduced in local localization, and the drift distance is computed by the proposed line model-based maximum likelihood estimation sample consensus (MLESAC) algorithm. The line model contains a fitted line segment and some visual feature points, which are used to seek inliers of the estimated feature points for drift detection. Taking advantage of the drift detection method, the monocular localization system switches between the global and local localization modes, which effectively keeps the position errors within an expected range. The performance of the proposed monocular localization system is evaluated on typical indoor scenes, and experimental results show that compared with the existing localization methods, the accuracy improvement rates of the absolute position estimation and the relative position estimation are at least 30.09% and 65.59%, respectively.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2018-07-26
    Description: IJGI, Vol. 7, Pages 297: The Negative Effects of Alcohol Establishment Size and Proximity on the Frequency of Violent and Disorder Crime across Block Groups of Victoria, British Columbia ISPRS International Journal of Geo-Information doi: 10.3390/ijgi7080297 Authors: Jessica L. Fitterer Trisalyn A. Nelson Timothy Stockwell Multiple studies have associated the density of alcohol establishments with crime. What is not well understood is the influence of establishment patron capacity on the magnitude of crime in an area, or how the spacing of liquor primary establishments impacts crime levels. Using a Poisson spatial lag model, we estimated how patron capacity of on-premises licenses and the total number of off-premises licenses were associated with the frequency of violent and disorder crime occurring on Friday and Saturday nights in Victoria, British Columbia. To identify how the distance between bars and pubs was associated with the frequency of crime within 200 m of each establishment, we applied bivariate curve fitting and change detection techniques. Our model explained 76% percent of the variance in crime frequencies. Bars and pubs within block groups, and in neighboring block groups, had a significant positive association (p < 0.05) with the frequency of crime compared to other on-premises licenses (e.g., restaurants, theatres, clubs, hotels), and off-premises liquor stores. For every additional 1111 bar or pub patron seats the crime frequency per block group is expected to double over a 17 month period (factor of 1.0009 per patron seat). Crime frequency significantly dropped (p < 0.05) around (200 m) bars and pubs that are spaced greater than 300 m apart. Our results provide the first evidenced-based information for evaluating the size and spacing of on-premises licenses in Canada.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2018-07-26
    Description: IJGI, Vol. 7, Pages 298: Grid-Based Crime Prediction Using Geographical Features ISPRS International Journal of Geo-Information doi: 10.3390/ijgi7080298 Authors: Ying-Lung Lin Meng-Feng Yen Liang-Chih Yu Machine learning is useful for grid-based crime prediction. Many previous studies have examined factors including time, space, and type of crime, but the geographic characteristics of the grid are rarely discussed, leaving prediction models unable to predict crime displacement. This study incorporates the concept of a criminal environment in grid-based crime prediction modeling, and establishes a range of spatial-temporal features based on 84 types of geographic information by applying the Google Places API to theft data for Taoyuan City, Taiwan. The best model was found to be Deep Neural Networks, which outperforms the popular Random Decision Forest, Support Vector Machine, and K-Near Neighbor algorithms. After tuning, compared to our design’s baseline 11-month moving average, the F1 score improves about 7% on 100-by-100 grids. Experiments demonstrate the importance of the geographic feature design for improving performance and explanatory ability. In addition, testing for crime displacement also shows that our model design outperforms the baseline.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2018-08-01
    Description: IJGI, Vol. 7, Pages 306: Satellite-Derived Bathymetry for Improving Canadian Hydrographic Service Charts ISPRS International Journal of Geo-Information doi: 10.3390/ijgi7080306 Authors: René Chénier Marc-André Faucher Ryan Ahola Approximately 1000 Canadian Hydrographic Service (CHS) charts cover Canada’s oceans and navigable waters. Many charts use information collected with techniques that predate the more advanced technologies available to Hydrographic Offices (HOs) today. Furthermore, gaps in survey data, particularly in the Canadian Arctic where only 6% of waters are surveyed to modern standards, are also problematic. Through a Canadian Space Agency (CSA) Government Related Initiatives Program (GRIP) project, CHS is exploring remote sensing techniques to assist with the improvement of Canadian navigational charts. Projects exploring optical/Synthetic Aperture Radar (SAR) shoreline extraction and change detection, as well as optical Satellite-Derived Bathymetry (SDB), are currently underway. This paper focuses on SDB extracted from high-resolution optical imagery, highlighting current results as well as the challenges and opportunities CHS will encounter when implementing SDB within its operational chart production process. SDB is of particular interest to CHS due to its ability to supplement depths derived from traditional hydrographic surveys. This is of great importance in shallow and/or remote Canadian waters where achieving wide-area depth coverage through traditional surveys is costly, time-consuming and a safety risk to survey operators. With an accuracy of around 1 m, SDB could be used by CHS to fill gaps in survey data and to provide valuable information in dynamic areas.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2018-08-01
    Description: IJGI, Vol. 7, Pages 305: Prioritizing Abandoned Mine Lands Rehabilitation: Combining Landscape Connectivity and Pattern Indices with Scenario Analysis Using Land-Use Modeling ISPRS International Journal of Geo-Information doi: 10.3390/ijgi7080305 Authors: Liping Zhang Shiwen Zhang Yajie Huang An Xing Zhiqing Zhuo Zhongxiang Sun Zhen Li Meng Cao Yuanfang Huang Connectivity modeling approaches for abandoned mine lands (AML) patches are limited in post-mining landscape restoration, especially where great land use changes might be expected due to large-scale land reclamation. This study presents a novel approach combining AML patch sizes with a proximity index to characterize patch-scaled connectivity for determining the spatial positions of patches with huge sizes and high connectivity. Then this study propose a scenario-based method coupled with landscape-scale metrics for quantifying landscape-scaled connectivity, which aims at exploring the optimal reclamation scheme with the highest connectivity. Using the Mentougou District in Beijing, China, as a case study, this paper confirmed which patches should be reclaimed first to meet the predetermined reclamation numbers; then this paper tested three different reclamation scenarios (i.e., cultivated land-oriented, forest-oriented, and construction land-oriented scenarios) to describe the impact of the different development strategies on landscape connectivity. The research found that the forest-oriented scenario increased connectivity quantitatively, showing an increase in the integral index of connectivity (IIC) and other landscape-scale metrics. Therefore, this paper suggests that future land-use policies should emphasize converting AML into more forest to blend in with the surrounding land-use categories. The findings presented here can contribute to better understanding the quantitative analysis of the connectivity of AML patches at both the patch scale and the landscape scale, thus providing scientific support for AML management in mine-site rehabilitation.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2018-07-25
    Description: IJGI, Vol. 7, Pages 293: Shp2graph: Tools to Convert a Spatial Network into an Igraph Graph in R ISPRS International Journal of Geo-Information doi: 10.3390/ijgi7080293 Authors: Binbin Lu Huabo Sun Paul Harris Miaozhong Xu Martin Charlton In this study, we introduce the R package shp2graph, which provides tools to convert a spatial network into an ‘igraph’ graph of the igraphR package. This conversion greatly empowers a spatial network study, as the vast array of graph analytical tools provided in igraph are then readily available to the network analysis, together with the inherent advantages of being within the R statistical computing environment and its vast array of statistical functions. Through three urban road network case studies, the calculation of road network distances with shp2graph and with igraph is demonstrated through four key stages: (i) confirming the connectivity of a spatial network; (ii) integrating points/locations with a network; (iii) converting a network into a graph; and (iv) calculating network distances (and travel times). Throughout, the required R commands are given to provide a useful tutorial on the use of shp2graph.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2018-07-25
    Description: IJGI, Vol. 7, Pages 292: Optimized Location-Allocation of Earthquake Relief Centers Using PSO and ACO, Complemented by GIS, Clustering, and TOPSIS ISPRS International Journal of Geo-Information doi: 10.3390/ijgi7080292 Authors: Bahram Saeidian Mohammad Saadi Mesgari Biswajeet Pradhan Mostafa Ghodousi After an earthquake, it is required to establish temporary relief centers in order to help the victims. Selection of proper sites for these centers has a significant effect on the processes of urban disaster management. In this paper, the location and allocation of relief centers in district 1 of Tehran are carried out using Geospatial Information System (GIS), the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) decision model, a simple clustering method and the two meta-heuristic algorithms of Particle Swarm Optimization (PSO) and Ant Colony Optimization (ACO). First, using TOPSIS, the proposed clustering method and GIS analysis tools, sites satisfying initial conditions with adequate distribution in the area are chosen. Then, the selection of proper centers and the allocation of parcels to them are modelled as a location/allocation problem, which is solved using the meta-heuristic optimization algorithms. Also, in this research, PSO and ACO are compared using different criteria. The implementation results show the general adequacy of TOPSIS, the clustering method, and the optimization algorithms. This is an appropriate approach to solve such complex site selection and allocation problems. In view of the assessment results, the PSO finds better answers, converges faster, and shows higher consistency than the ACO.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2018-08-02
    Description: IJGI, Vol. 7, Pages 308: Identifying Modes of Driving Railway Trains from GPS Trajectory Data: An Ensemble Classifier-Based Approach ISPRS International Journal of Geo-Information doi: 10.3390/ijgi7080308 Authors: Han Zheng Zanyang Cui Xingchen Zhang Recognizing Modes of Driving Railway Trains (MDRT) can help to solve railway freight transportation problems in driver behavior research, auto-driving system design and capacity utilization optimization. Previous studies have focused on analyses and applications of MDRT, but there is currently no approach to automatically and effectively identify MDRT in the context of big data. In this study, we propose an integrated approach including data preprocessing, feature extraction, classifiers modeling, training and parameter tuning, and model evaluation to infer MDRT using GPS data. The highlights of this study are as follows: First, we propose methods for extracting Driving Segmented Standard Deviation Features (DSSDF) combined with classical features for the purpose of improving identification performances. Second, we find the most suitable classifier for identifying MDRT based on a comparison of performances of K-Nearest Neighbor, Support Vector Machines, AdaBoost, Random Forest, Gradient Boosting Decision Tree, and XGBoost. From the real-data experiment, we conclude that: (i) The ensemble classifier XGBoost produces the best performance with an accuracy of 92.70%; (ii) The group of DSSDF plays an important role in identifying MDRT with an accuracy improvement of 11.2% (using XGBoost). The proposed approach has been applied in capacity utilization optimization and new driver training for the Baoshen Railway.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2018-08-08
    Description: IJGI, Vol. 7, Pages 318: A Methodology for Planar Representation of Frescoed Oval Domes: Formulation and Testing on Pisa Cathedral ISPRS International Journal of Geo-Information doi: 10.3390/ijgi7080318 Authors: Andrea Piemonte Gabriella Caroti Isabel Martínez-Espejo Zaragoza Filippo Fantini Luca Cipriani This paper presents an original methodology for planar development of a frescoed dome with an oval plan. Input data include a rigorous geometric survey, performed with a laser scanner, and a photogrammetry campaign, which associates a high-quality photographic texture to the 3D model. Therefore, the main topics include the development of geometry and, contextually, of the associated textures. In order to overcome the inability to directly develop the surface, an orthographic azimuthal projection is used. Starting from a prerequisite study of building methodology, the dome is divided into sectors and bands, each linked with the maximum acceptable deformations and the actual geometric discontinuities detectable by the analysis of Gaussian curvature. Upon definition of the development model, a custom automation script has been devised for geometry projection. This effectively generates a (u,v) map, associated to the model, which is used for model texturing and provides the planar development of the fresco.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2018-08-09
    Description: IJGI, Vol. 7, Pages 320: Exploring Railway Network Dynamics in China from 2008 to 2017 ISPRS International Journal of Geo-Information doi: 10.3390/ijgi7080320 Authors: Yaping Huang Shiwei Lu Xiping Yang Zhiyuan Zhao China’s high speed rail (HSR) network has been rapidly constructed and developed during the past 10 years. However, few studies have reported the spatiotemporal changes of railway network structures and how those structures have been affected by the operation of high speed rail systems in different periods. This paper analyzes the evolving network characteristics of China’s railway network during each of the four main stages of HSR development over a 10-year period. These four stages include Stage 1, when no HSR was in place prior to August 2008; Stage 2, when several HSR lines were put into operation between August 2008, and July 2011; Stage 3, when the network skeleton of most main HSR lines was put into place. This covered the period until January 2013. Finally, Stage 4 covers the deep intensification of several new HSR lines and the rapid development of intercity-HSR railway lines between January 2013, and July 2017. This paper presents a detailed analysis of the timetable-based statistical properties of China’s railway network, as well as the spatiotemporal patterns of the more than 2700 stations that have been affected by the opening of HSR lines and the corresponding policy changes. Generally, we find that the distribution of both degrees and strengths are characterized by scale-free patterns. In addition, the decreasing average path length and increasing network clustering coefficient indicate that the small world characteristic is more significant in the evolution of China’s railway network. Correlations between different network indices are explored, in order to further investigate the dynamics of China’s railway system. Overall, our study offers a new approach for assessing the growth and evolution of a real railway network based on train timetables. Our study can also be referenced by policymakers looking to adjust HSR operations and plan future HSR routes.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2018-08-20
    Description: IJGI, Vol. 7, Pages 331: Use of Unmanned Aerial Vehicles (UAVs) for Updating Farmland Cadastral Data in Areas Subject to Landslides ISPRS International Journal of Geo-Information doi: 10.3390/ijgi7080331 Authors: Edyta Puniach Agnieszka Bieda Paweł Ćwiąkała Anita Kwartnik-Pruc Piotr Parzych The purpose of this study was to verify the applicability of unmanned aerial vehicles (UAVs) to update cadastral records in areas affected by landslides. Its authors intended to compare the accuracy of coordinates determined using different UAV data processing methods for points which form the framework of a cadastral database, and to find out whether products obtained as a result of such UAV data processing are sufficient to define the extent of changes in the cadastral objects. To achieve this, an experiment was designed to take place at the site of a landslide. The entire photogrammetry mission was planned to cover an area of more than 70 ha. Given the steep grade of the site, the UAV was flown over each line at a different, individually preset altitude, such as to ensure consistent mean shooting distance (height above ground level), and thus, appropriate ground sample distance (GSD; pixel size). The results were analyzed in four variants, differing from each other in terms of the number of control points used and the method of their measurement. This allowed identification of the factors that affect surveying accuracy and the indication of the cadastral data updatable based on an UAV photogrammetric survey.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2018-08-21
    Description: IJGI, Vol. 7, Pages 332: Using the Spatial Knowledge of Map Users to Personalize City Maps: A Case Study with Tourists in Madrid, Spain ISPRS International Journal of Geo-Information doi: 10.3390/ijgi7080332 Authors: María-Teresa Manrique-Sancho Silvania Avelar Teresa Iturrioz-Aguirre Miguel-Ángel Manso-Callejo The aim of personalized maps is to help individual users to read maps and focus on the most task-relevant information. Several approaches have been suggested to develop personalized maps for cities, but few consider the spatial knowledge of its users. We propose the design of “cognitively-aware” personalized maps, which take into account the previous experience of users in the city and how the urban space is configured in their minds. Our aim is to facilitate users’ mental links between maps and city places, stimulating users to recall features of the urban space and to assimilate new spatial knowledge. To achieve this goal, we propose the personalization of maps through a map design process based on user modeling and on inferring personalization guidelines from hand-drawn sketches of urban spaces. We applied this process in an experiment with tourists in Madrid, Spain. We categorized the participants into three types of tourists—“Guided”, “Explorer”, and “Conditioned”—according to individual and contextual factors that can influence their spatial knowledge of the city. We also extracted design guidelines from tourists’ sketches and developed map prototypes. The empirical results seem to be promising for developing personalized city maps that could be produced on-the-fly in the future.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2018-08-22
    Description: IJGI, Vol. 7, Pages 333: Generating a High-Precision True Digital Orthophoto Map Based on UAV Images ISPRS International Journal of Geo-Information doi: 10.3390/ijgi7090333 Authors: Yu Liu Xinqi Zheng Gang Ai Yi Zhang Yuqiang Zuo Unmanned aerial vehicle (UAV) low-altitude remote sensing technology has recently been adopted in China. However, mapping accuracy and production processes of true digital orthophoto maps (TDOMs) generated by UAV images require further improvement. In this study, ground control points were distributed and images were collected using a multi-rotor UAV and professional camera, at a flight height of 160 m above the ground and a designed ground sample distance (GSD) of 0.016 m. A structure from motion (SfM), revised digital surface model (DSM) and multi-view image texture compensation workflow were outlined to generate a high-precision TDOM. We then used randomly distributed checkpoints on the TDOM to verify its precision. The horizontal accuracy of the generated TDOM was 0.0365 m, the vertical accuracy was 0.0323 m, and the GSD was 0.0166 m. Tilt and shadowed areas of the TDOM were eliminated so that buildings maintained vertical viewing angles. This workflow produced a TDOM accuracy within 0.05 m, and provided an effective method for identifying rural homesteads, as well as land planning and design.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2018-08-24
    Description: IJGI, Vol. 7, Pages 342: Accuracy Assessment of Point Clouds from LiDAR and Dense Image Matching Acquired Using the UAV Platform for DTM Creation ISPRS International Journal of Geo-Information doi: 10.3390/ijgi7090342 Authors: Adam Salach Krzysztof Bakuła Magdalena Pilarska Wojciech Ostrowski Konrad Górski Zdzisław Kurczyński In this paper, the results of an experiment about the vertical accuracy of generated digital terrain models were assessed. The created models were based on two techniques: LiDAR and photogrammetry. The data were acquired using an ultralight laser scanner, which was dedicated to Unmanned Aerial Vehicle (UAV) platforms that provide very dense point clouds (180 points per square meter), and an RGB digital camera that collects data at very high resolution (a ground sampling distance of 2 cm). The vertical error of the digital terrain models (DTMs) was evaluated based on the surveying data measured in the field and compared to airborne laser scanning collected with a manned plane. The data were acquired in summer during a corridor flight mission over levees and their surroundings, where various types of land cover were observed. The experiment results showed unequivocally, that the terrain models obtained using LiDAR technology were more accurate. An attempt to assess the accuracy and possibilities of penetration of the point cloud from the image-based approach, whilst referring to various types of land cover, was conducted based on Real Time Kinematic Global Navigation Satellite System (GNSS-RTK) measurements and was compared to archival airborne laser scanning data. The vertical accuracy of DTM was evaluated for uncovered and vegetation areas separately, providing information about the influence of the vegetation height on the results of the bare ground extraction and DTM generation. In uncovered and low vegetation areas (0–20 cm), the vertical accuracies of digital terrain models generated from different data sources were quite similar: for the UAV Laser Scanning (ULS) data, the RMSE was 0.11 m, and for the image-based data collected using the UAV platform, it was 0.14 m, whereas for medium vegetation (higher than 60 cm), the RMSE from these two data sources were 0.11 m and 0.36 m, respectively. A decrease in the accuracy of 0.10 m, for every 20 cm of vegetation height, was observed for photogrammetric data; and such a dependency was not noticed in the case of models created from the ULS data.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2018-08-26
    Description: IJGI, Vol. 7, Pages 348: Nesting Patterns of Loggerhead Sea Turtles (Caretta caretta): Development of a Multiple Regression Model Tested in North Carolina, USA ISPRS International Journal of Geo-Information doi: 10.3390/ijgi7090348 Authors: Joanne N. Halls Alyssa L. Randall Numerous environmental conditions may influence when a female Loggerhead sea turtle (Caretta caretta) selects a nesting site. Limited research has used Geographic Information Systems (GIS) and statistical analysis to study sea turtle spatial patterns and temporal trends. Therefore, the goals of this research were to identify areas that were most prevalent for nesting and to test social and environmental variables to create a nesting suitability predictive model. Data were analyzed at all barrier island beaches in North Carolina, USA (515 km) and several variables were statistically significant: distance to hardened structures, beach nourishment, house density, distance to inlets, and beach elevation, slope, and width. Interestingly, variables that were not significant were population density, proximity to the Gulf Stream, and beach aspect. Several statistical techniques were tested and Negative Binomial Distribution produced good regional results while Geographically Weighted Regression models successfully predicted the number of nests with an average of 75% of the variance explained. Therefore, the combination of traditional and spatial statistics provided insightful predictive modeling results that may be incorporated into management strategies and may have important implications for the designation of critical Loggerhead nesting habitats.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2018-08-29
    Description: IJGI, Vol. 7, Pages 357: Space–Time Analysis of Vehicle Theft Patterns in Shanghai, China ISPRS International Journal of Geo-Information doi: 10.3390/ijgi7090357 Authors: Yuanyuan Mao Shenzhi Dai Jiajun Ding Wei Zhu Can Wang Xinyue Ye To identify and compare the space–time patterns of vehicle thefts and the effects of associated environmental factors, this paper conducts a case study of the Pudong New Area (PNA), a major urban district in Shanghai, China’s largest city. Geographic information system (GIS)-based analysis indicated that there was a stable pattern of vehicle theft over time. Hotspots of vehicle theft across different time periods were identified. These data provide clues for how law enforcement can prioritize the deployment of limited patrol and investigative resources. Vehicle thefts, especially those of non-motor vehicles, tend to be concentrated in the central-western portion of the PNA, which experienced a dramatic rate of urbanization and has a high concentration of people and vehicles. Important factors contributing to vehicle thefts include a highly mobile and transitory population, a large population density, and high traffic volume.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2018-08-28
    Description: IJGI, Vol. 7, Pages 354: On the Risk Assessment of Terrorist Attacks Coupled with Multi-Source Factors ISPRS International Journal of Geo-Information doi: 10.3390/ijgi7090354 Authors: Xun Zhang Min Jin Jingying Fu Mengmeng Hao Chongchong Yu Xiaolan Xie Terrorism has wreaked havoc on today’s society and people. The discovery of the regularity of terrorist attacks is of great significance to the global counterterrorism strategy. In this study, we improve the traditional location recommendation algorithm coupled with multi-source factors and spatial characteristics. We used the data of terrorist attacks in Southeast Asia from 1970 to 2016, and comprehensively considered 17 influencing factors, including socioeconomic and natural resource factors. The improved recommendation algorithm is used to build a spatial risk assessment model of terrorist attacks, and the effectiveness is tested. The model trained in this study is tested with precision, recall, and F-Measure. The results show that, when the threshold is 0.4, the precision is as high as 88%, and the F-Measure is the highest. We assess the spatial risk of the terrorist attacks in Southeast Asia through experiments. It can be seen that the southernmost part of the Indochina peninsula and the Philippines are high-risk areas and that the medium-risk and high-risk areas are mainly distributed in the coastal areas. Therefore, future anti-terrorism measures should pay more attention to these areas.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2018-08-28
    Description: IJGI, Vol. 7, Pages 353: Novel Method for Virtual Restoration of Cultural Relics with Complex Geometric Structure Based on Multiscale Spatial Geometry ISPRS International Journal of Geo-Information doi: 10.3390/ijgi7090353 Authors: Miaole Hou Su Yang Yungang Hu Yuhua Wu Lili Jiang Sizhong Zhao Putong Wei Because of the age of relics and the lack of historical data, the geometric forms of missing parts can only be judged by the subjective experience of repair personnel, which leads to varying restoration effects when the geometric structure of the complex relic is reconstructed. Therefore, virtual repair effects cannot fully reflect the historical appearance of cultural relics. In order to solve this problem, this paper presents a virtual restoration method based on the multiscale spatial geometric features of cultural relics in the case of complex construction where the geometric shape of the damaged area is unknown, using the Dazu Thousand-Hand Bodhisattva statue in China as an example. In this study, the global geometric features of the three-dimensional (3D) model are analyzed in space to determine the geometric shape of the damaged parts of cultural relics. The local geometric features are represented by skeleton lines based on regression analysis, and a geometric size prediction model of the defective parts is established, which is used to calculate the geometric dimensions of the missing parts. Finally, 3D surface reconstruction technology is used to quantitate virtual restoration of the defective parts. This method not only provides a new idea for the virtual restoration of artifacts with complex geometric structure, but also may play a vital role in the protection of cultural relics.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2018-08-31
    Description: IJGI, Vol. 7, Pages 360: Share Our Cultural Heritage (SOCH): Worldwide 3D Heritage Reconstruction and Visualization via Web and Mobile GIS ISPRS International Journal of Geo-Information doi: 10.3390/ijgi7090360 Authors: Hari K. Dhonju Wen Xiao Jon P. Mills Vasilis Sarhosis Despite being of paramount importance to humanity, tangible cultural heritage is often at risk from natural and anthropogenic threats worldwide. As a result, heritage discovery and conservation remain a huge challenge for both developed and developing countries, with heritage sites often inadequately cared for, be it due to a lack of resources, nonrecognition of the value by local people or authorities, human conflict, or some other reason. This paper presents an online geo-crowdsourcing system, termed Share Our Cultural Heritage (SOCH), which can be utilized for large-scale heritage documentation and sharing. Supported by web and mobile GIS, cultural heritage data such as textual stories, locations, and images can be acquired via portable devices. These data are georeferenced and presented to the public via web-mapping. Using photogrammetric modelling, acquired images are used to reconstruct heritage structures or artefacts into 3D digital models, which are then visualized on the SOCH web interface to enable public interaction. This end-to-end system incubates an online virtual community to encourage public engagement, raise awareness, and stimulate cultural heritage ownership. It also provides valuable resources for cultural heritage exploitation, management, education, and monitoring over time.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2018-08-30
    Description: IJGI, Vol. 7, Pages 358: Spatial-Temporal Analysis of Human Dynamics on Urban Land Use Patterns Using Social Media Data by Gender ISPRS International Journal of Geo-Information doi: 10.3390/ijgi7090358 Authors: Chengcheng Lei An Zhang Qingwen Qi Huimin Su Jianghao Wang The relationship between urban human dynamics and land use types has always been an important issue in the study of urban problems in China. This paper used location data from Sina Location Microblog (commonly known as Weibo) users to study the human dynamics of the spatial-temporal characteristics of gender differences in Beijing’s Olympic Village in June 2014. We applied mathematical statistics and Local Moran’s I to analyze the spatial-temporal distribution of Sina Microblog users in 100 m × 100 m grids and land use patterns. The female users outnumbered male users, and the sex ratio ( S R varied under different land use types at different times. Female users outnumbered male users regarding residential land and public green land, but male users outnumbered female users regarding workplace, especially on weekends, as the S R on weekends ( S R was 120.5) was greater than that on weekdays ( S R was 118.8). After a Local Moran’s I analysis, we found that High–High grids are primarily distributed across education and scientific research land and residential land; these grids and their surrounding grids have more female users than male users. Low–Low grids are mainly distributed across sports centers and workplaces on weekdays; these grids and their surrounding grids have fewer female users than male users. The average number of users on Saturday was the highest value and, on weekends, the number of female and male users both increased in commercial land, but male users were more active than female users ( S R was 110).
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2018-09-01
    Description: IJGI, Vol. 7, Pages 361: Automatic Seam-Line Detection in UAV Remote Sensing Image Mosaicking by Use of Graph Cuts ISPRS International Journal of Geo-Information doi: 10.3390/ijgi7090361 Authors: Ming Li Deren Li Bingxuan Guo Lin Li Teng Wu Weilong Zhang Image mosaicking is one of the key technologies in data processing in the field of computer vision and digital photogrammetry. For the existing problems of seam, pixel aliasing, and ghosting in mosaic images, this paper proposes and implements an optimal seam-line search method based on graph cuts for unmanned aerial vehicle (UAV) remote sensing image mosaicking. This paper first uses a mature and accurate image matching method to register the pre-mosaicked UAV images, and then it marks the source of each pixel in the overlapped area of adjacent images and calculates the energy value contributed by the marker by using the target energy function of graph cuts constructed in this paper. Finally, the optimal seam-line can be obtained by solving the minimum value of target energy function based on graph cuts. The experimental results show that our method can realize seamless UAV image mosaicking, and the image mosaic area transitions naturally.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2018-09-03
    Description: IJGI, Vol. 7, Pages 362: Road Extraction from VHR Remote-Sensing Imagery via Object Segmentation Constrained by Gabor Features ISPRS International Journal of Geo-Information doi: 10.3390/ijgi7090362 Authors: Li Chen Qing Zhu Xiao Xie Han Hu Haowei Zeng Automatic road extraction from remote-sensing imagery plays an important role in many applications. However, accurate and efficient extraction from very high-resolution (VHR) images remains difficult because of, for example, increased data size and superfluous details, the spatial and spectral diversity of road targets, disturbances (e.g., vehicles, shadows of trees, and buildings), the necessity of finding weak road edges while avoiding noise, and the fast-acquisition requirement of road information for crisis response. To solve these difficulties, a two-stage method combining edge information and region characteristics is presented. In the first stage, convolutions are executed by applying Gabor wavelets in the best scale to detect Gabor features with location and orientation information. The features are then merged into one response map for connection analysis. In the second stage, highly complete, connected Gabor features are used as edge constraints to facilitate stable object segmentation and limit region growing. Finally, segmented objects are evaluated by some fundamental shape features to eliminate nonroad objects. The results indicate the validity and superiority of the proposed method to efficiently extract accurate road targets from VHR remote-sensing images.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2018-09-08
    Description: IJGI, Vol. 7, Pages 370: Raising Semantics-Awareness in Geospatial Metadata Management ISPRS International Journal of Geo-Information doi: 10.3390/ijgi7090370 Authors: Cristiano Fugazza Monica Pepe Alessandro Oggioni Paolo Tagliolato Paola Carrara Geospatial metadata are often encoded in formats that either are not aimed at efficient retrieval of resources or are plainly outdated. Particularly, the quantum leap represented by the Semantic Web did not induce so far a consistent, interlinked baseline in the geospatial domain. Datasets, scientific literature related to them, and ultimately the researchers behind these products are only loosely connected; the corresponding metadata intelligible only to humans, duplicated in different systems, seldom consistently. We address these issues by relating metadata items to resources that represent keywords, institutes, researchers, toponyms, and virtually any RDF data structure made available over the Web via SPARQL endpoints. Essentially, our methodology fosters delegated metadata management as the entities referred to in metadata are independent, decentralized data structures with their own life cycle. Our example implementation of delegated metadata envisages: (i) editing via customizable web-based forms (including injection of semantic information); (ii) encoding of records in any XML metadata schema; and (iii) translation into RDF. Among the semantics-aware features that this practice enables, we present a worked-out example focusing on automatic update of metadata descriptions. Our approach, demonstrated in the context of INSPIRE metadata (the ISO 19115/19119 profile eliciting integration of European geospatial resources) is also applicable to a broad range of metadata standards, including non-geospatial ones.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2018-09-08
    Description: IJGI, Vol. 7, Pages 369: GIS-Assisted Prediction and Risk Zonation of Wildlife Attacks in the Chitwan National Park in Nepal ISPRS International Journal of Geo-Information doi: 10.3390/ijgi7090369 Authors: Aleš Ruda Jaromír Kolejka Thakur Silwal Population growth forces the human community to expand into the natural habitats of wild animals. Their efforts to use natural sources often collide with wildlife attacks. These animals do not only protect their natural environment, but in the face of losing the potential food sources, they also penetrate in human settlements. The research was situated in the Chitwan National Park (CNP) in Nepal, and the aim of this study was to investigate possible geospatial connections between attacks of all kinds of animals on humans in the CNP and its surroundings between 2003 and 2013. The patterns of attacks were significantly uneven across the months, and 89% of attacks occurred outside the park. In total, 74% attacks occurred in the buffer zone forests and croplands within 1 km from the park. There was a strong positive correlation among the number of victims for all attacking animals with a maximum of one victim per 4 km2, except elephant and wild boar. The density of bear victims was higher where the tiger and rhino victims were lower, e.g., in the Madi valley. The data collected during this period did not show any signs of spatial autocorrelation. The calculated magnitude per unit area using the kernel density, together with purpose-defined land use groups, were used to determine five risk zones of wildlife attacks. In conclusion, it was found that the riskiest areas were locations near the forest that were covered by agricultural land and inhabited by humans. Our research results can support any local spatial decision-making processes for improving the co-existence of natural protection in the park and the safety of human communities living in its vicinity.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2018-09-08
    Description: IJGI, Vol. 7, Pages 368: Critical Review of Methods to Estimate PM2.5 Concentrations within Specified Research Region ISPRS International Journal of Geo-Information doi: 10.3390/ijgi7090368 Authors: Guangyuan Zhang Xiaoping Rui Yonglei Fan Obtaining PM2.5 data for the entirety of a research region underlies the study of the relationship between PM2.5 and human spatiotemporal activity. A professional sampler with a filter membrane is used to measure accurate values of PM2.5 at single points in space. However, there are numerous PM2.5 sampling and monitoring facilities that rely on data from only representative points, and which cannot measure the data for the whole region of research interest. This provides the motivation for researching the methods of estimation of particulate matter in areas having fewer monitors at a special scale, an approach now attracting considerable academic interest. The aim of this study is to (1) reclassify and particularize the most frequently used approaches for estimating the PM2.5 concentrations covering an entire research region; (2) list improvements to and integrations of traditional methods and their applications; and (3) compare existing approaches to PM2.5 estimation on the basis of accuracy and applicability.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2018-09-09
    Description: IJGI, Vol. 7, Pages 371: An Efficient Graph-Based Spatio-Temporal Indexing Method for Task-Oriented Multi-Modal Scene Data Organization ISPRS International Journal of Geo-Information doi: 10.3390/ijgi7090371 Authors: Bin Feng Qing Zhu Mingwei Liu Yun Li Junxiao Zhang Xiao Fu Yan Zhou Maosu Li Huagui He Weijun Yang Task-oriented scene data in big data and cloud environments of a smart city that must be time-critically processed are dynamic and associated with increasing complexities and heterogeneities. Existing hybrid tree-based external indexing methods are input/output (I/O)-intensive, query schema-fixed, and difficult when representing the complex relationships of real-time multi-modal scene data; specifically, queries are limited to a certain spatio-temporal range or a small number of selected attributes. This paper proposes a new spatio-temporal indexing method for task-oriented multi-modal scene data organization. First, a hybrid spatio-temporal index architecture is proposed based on the analysis of the characteristics of scene data and the driving forces behind the scene tasks. Second, a graph-based spatio-temporal relation indexing approach, named the spatio-temporal relation graph (STR-graph), is constructed for this architecture. The global graph-based index, internal and external operation mechanisms, and optimization strategy of the STR-graph index are introduced in detail. Finally, index efficiency comparison experiments are conducted, and the results show that the STR-graph performs excellently in index generation and can efficiently address the diverse requirements of different visualization tasks for data scheduling; specifically, the STR-graph is more efficient when addressing complex and uncertain spatio-temporal relation queries.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2018-09-09
    Description: IJGI, Vol. 7, Pages 373: Sino-InSpace: A Digital Simulation Platform for Virtual Space Environments ISPRS International Journal of Geo-Information doi: 10.3390/ijgi7090373 Authors: Liang Lyu Qing Xu Chaozhen Lan Qunshan Shi Wanjie Lu Yang Zhou Yinghao Zhao The implementation of increased space exploration missions reduces the distance between human beings and outer space. Although it is impossible for everyone to enter the remote outer space, virtual environments could provide computer-based digital spaces that we can observe, participate in, and experience. In this study, Sino-InSpace, a digital simulation platform, was developed to support the construction of virtual space environments. The input data are divided into two types, the environment element and the entity object, that are then supported by the unified time-space datum. The platform adopted the pyramid model and octree index to preprocess the geographic and space environment data, which ensured the efficiency of data loading and browsing. To describe objects perfectly, they were abstracted and modeled based on four aspects including attributes, ephemeris, geometry, and behavior. Then, the platform performed the organization of a visual scenario based on logical modeling and data modeling; in addition, it ensured smooth and flexible visual scenario displays using efficient data and rendering engines. Multilevel modes (application directly, visualization development, and scientific analysis) were designed to support multilevel applications for users from different grades and fields. Each mode provided representative case studies, which also demonstrated the capabilities of the platform for data integration, visualization, process deduction, and auxiliary analysis. Finally, a user study with human participants was conducted from multiple views (usability, user acceptance, presence, and software design). The results indicate that Sino-InSpace performs well in simulation for virtual space environments, while a virtual reality setup is beneficial for promoting the experience.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2018-09-09
    Description: IJGI, Vol. 7, Pages 372: Digital Image Correlation (DIC) Analysis of the 3 December 2013 Montescaglioso Landslide (Basilicata, Southern Italy): Results from a Multi-Dataset Investigation ISPRS International Journal of Geo-Information doi: 10.3390/ijgi7090372 Authors: Paolo Caporossi Paolo Mazzanti Francesca Bozzano Image correlation remote sensing monitoring techniques are becoming key tools for providing effective qualitative and quantitative information suitable for natural hazard assessments, specifically for landslide investigation and monitoring. In recent years, these techniques have been successfully integrated and shown to be complementary and competitive with more standard remote sensing techniques, such as satellite or terrestrial Synthetic Aperture Radar interferometry. The objective of this article is to apply the proposed in-depth calibration and validation analysis, referred to as the Digital Image Correlation technique, to measure landslide displacement. The availability of a multi-dataset for the 3 December 2013 Montescaglioso landslide, characterized by different types of imagery, such as LANDSAT 8 OLI (Operational Land Imager) and TIRS (Thermal Infrared Sensor), high-resolution airborne optical orthophotos, Digital Terrain Models and COSMO-SkyMed Synthetic Aperture Radar, allows for the retrieval of the actual landslide displacement field at values ranging from a few meters (2–3 m in the north-eastern sector of the landslide) to 20–21 m (local peaks on the central body of the landslide). Furthermore, comprehensive sensitivity analyses and statistics-based processing approaches are used to identify the role of the background noise that affects the whole dataset. This noise has a directly proportional relationship to the different geometric and temporal resolutions of the processed imagery. Moreover, the accuracy of the environmental-instrumental background noise evaluation allowed the actual displacement measurements to be correctly calibrated and validated, thereby leading to a better definition of the threshold values of the maximum Digital Image Correlation sub-pixel accuracy and reliability (ranging from 1/10 to 8/10 pixel) for each processed dataset.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2018-09-15
    Description: IJGI, Vol. 7, Pages 377: Application of Industrial Risk Management Practices to Control Natural Hazards, Facilitating Risk Communication ISPRS International Journal of Geo-Information doi: 10.3390/ijgi7090377 Authors: Jongook Lee Dong Kun Lee Establishing a comprehensive management framework to manage the risk from natural hazards is challenging because of the extensive affected areas, uncertainty in predictions of natural disasters, and the involvement of various stakeholders. Applying risk management practices proven in the industrial sector can assist systematic hazard identification and quantitative risk assessment for natural hazards, thereby promoting interactive risk communication to the public. The objective of this study is to introduce methods of studying risk commonly used in the process industry, and to suggest how such methods can be applied to manage natural disasters. In particular, the application of Hazard and Operability (HAZOP), Safety Integrated Level (SIL), and Quantitative Risk Analysis (QRA) was investigated, as these methods are used to conduct key studies in industry. We present case studies of the application of HAZOP to identify climate-related natural hazards, and of SIL and QRA studies that were performed to provide quantitative risk indices for landslide risk management. The analyses presented in this study can provide a useful framework for improving the risk management of natural hazards through establishing a more systematic context and facilitating risk communication.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2018-09-24
    Description: IJGI, Vol. 7, Pages 382: Incremental Road Network Generation Based on Vehicle Trajectories ISPRS International Journal of Geo-Information doi: 10.3390/ijgi7100382 Authors: Zhongyi Ni Lijun Xie Tian Xie Binhua Shi Yao Zheng Nowadays, most vehicles are equipped with positioning devices such as GPS which can generate a tremendous amount of trajectory data and upload them to the server in real time. The trajectory data can reveal the shape and evolution of the road network and therefore has an important value for road planning, vehicle navigation, traffic analysis, and so on. In this paper, a road network generation method is proposed based on the incremental learning of vehicle trajectories. Firstly, the input vehicle trajectory data are cleaned by a preprocess module. Then, the original scattered positions are clustered and mapped to the representation points which stand for the feature points of the real roads. After that, the corresponding representation points are connected based on the original connection information of the trajectories. Finally, all representation points are connected by a Delaunay triangulation network and the real road segments are found by a shortest path searching approach between the connected representation point pairs. Experiments show that this method can build the road network from scratch and refine it with the input data continuously. Both the accuracy and timeliness of the extracted road network can continuously be improved with the growth of real-time trajectory data.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2018-09-24
    Description: IJGI, Vol. 7, Pages 383: Care, Indifference and Anxiety—Attitudes toward Location Data in Everyday Life ISPRS International Journal of Geo-Information doi: 10.3390/ijgi7100383 Authors: Michal Rzeszewski Piotr Luczys Modern mobile devices are replete with advanced sensors that expand the array of possible methods of locating users. This can be used as a tool to gather and use spatial information, but it also brings with it the specter of “geosurveillance” in which the “location” becomes a product in itself. In the realm of software developers, space/place has been reduced and discretized to a set of coordinates, devoid of human experiences and meanings. To function in such digitally augmented realities, people need to adopt specific attitudes, often marked with anxiety. We explored attitudes toward location data collection practices using qualitative questionnaire surveys (n = 280) from Poznan and Edinburgh. The prevailing attitude that we identified is neutral with a strong undertone of resignation—surrendering personal location is viewed as a form of digital currency. A smaller number of people had stronger, emotional views, either very positive or very negative, based on uncritical technological enthusiasm or fear of privacy violation. Such a wide spectrum of attitudes is not only produced by interaction with technology but can also be a result of different values associated with space and place itself. Those attitudes can bring additional bias into spatial datasets that is not related to demographics.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2018
    Description: Multi-dimensional representation of urban settings has received a great deal of attention among urban planners, policy makers, and urban scholars. This is due to the fact that cities grow vertically and new urbanism strategies encourage higher density and compact city development. Advancements in computer technology and multi-dimensional geospatial data integration, analysis and visualisation play a pivotal role in supporting urban planning and design. However, due to the complexity of the models and technical requirements of the multi-dimensional city models, planners are yet to fully exploit such technologies in their activities. This paper proposes a workflow to support non-experts in using three-dimensional city modelling tools to carry out planning control amendments and assess their implications. The paper focuses on using a parametric three-dimensional (3D) city model to enable planners to measure the physical (e.g., building height, shadow, setback) and functional (e.g., mix of land uses) impacts of new planning controls. The workflow is then implemented in an inner suburb of Metropolitan Melbourne, where urban intensification strategies require the planners to carry out radical changes in regulations. This study demonstrates the power of the proposed 3D visualisation tool for urban planners at taking two-dimensional (2D) Geographic Information System (GIS) procedural modelling to construct a 3D model.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2018
    Description: As wetlands are one of the world’s most important ecosystems, their vulnerability necessitates the constant monitoring and mapping of their changes. Satellite-based remote sensing has become an essential data source for mapping and monitoring wetlands. As wetlands are dynamic ecosystems, their classification depends on many different parameters. However, considering their complex structure; wetlands tend to be challenging land cover for classification, which sometimes requires the use of multi-sensor remote sensing techniques. The objectives of this study were: (i) to investigate the monthly dynamics of several wetland classes using multi-sensor parameters; (ii) to find correlations between the investigated parameters. Thus, we extracted the Land Surface Temperature (LST) and Normalized Difference Vegetation Index (NDVI) from Landsat 8, and extracted dual polarization backscatter values (VH-VV) from the Sentinel-1 satellite at a monthly period over a year. The results showed strong correlation between the LST and the NDVI values of 0.94, and strong correlation between the microwave (VH) and both thermal and optical parameters with a 0.81 correlation coefficient, while there was weak or no correlation between the VV and the other investigated parameters. We strongly recommend that future studies clarify the Sentinel-1 backscatter values in wetland areas, by taking multiple field measurements close to the image acquisition time.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2018
    Description: Buildings represent the most relevant features of human activity in urban regions, but their change detection using very-high-resolution (VHR) remote sensing imagery is still a major challenge. Effective representation of the building is the key point in building change detection. The linear feature can indirectly represent the structure and distribution of man-made objects. Thus, this study proposes a shape feature-based building change detection method. Specifically, a line-constrained shape (LCS) feature is developed to capture the shape characteristics of buildings. This feature improves the discriminability between buildings and other ground objects by integrating the pixel shape feature and line segments. The building candidate area (BCA) is created in accordance with the distribution of the line segments in two-phase images. The problem space is constrained in a high-likelihood region of buildings because of the BCA. Comparative experimental results demonstrate that the combination of the spectral feature and the developed LCS feature achieves the best performance in object-based building change detection in VHR imagery.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2018
    Description: Urban cycling is a sustainable transport mode that many cities are promoting. However, few cities are taking advantage of geospatial technologies to represent and analyse cycling mobility based on the behavioural patterns and difficulties faced by cyclists. This study analyses a geospatial dataset crowdsourced by urban cyclists using an experimental, mobile geo-game. Fifty-seven participants recorded bicycle trips during one week periods in three cities. By aggregating them, we extracted not only the cyclists’ preferred streets but also the frictions faced during cycling. We successfully identified 284 places potentially having frictions: 71 in Münster, Germany; 70 in Castelló, Spain; and 143 in Valletta, Malta. At such places, participants recorded bicycle segments at lower speeds indicating a deviation from an ideal cycling scenario. We describe the potential frictions inhibiting bicycle commuting with regard to the distance to bicycle paths, surrounding infrastructure, and location in the urban area.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2018
    Description: The Canadian Hydrographic Service (CHS) supports safe navigation within Canadian waters through approximately 1000 navigational charts as well as hundreds of publications. One of the greatest challenges faced by the CHS is removing gaps in bathymetric survey data, particularly in the Canadian Arctic where only 6% of navigational water is surveyed to modern standards. Therefore, the CHS has initiated a research project to explore remote sensing methods to improve Canadian navigational charts. The major components of this project explore satellite derived bathymetry (SDB), coastline change detection and coastline extraction. This paper focuses on the potential of two stereo satellite techniques for deriving SDB: (i) automatic digital elevation model (DEM) extraction using a semi-global matching method, and (ii) 3D manual delineation of depth contours using visual stereoscopic interpretation. Analysis focused on quantitative assessment which compared estimated depths from both automatic and 3D manual photogrammetric approaches against available in situ survey depths. The results indicate that the 3D manual approach provides an accuracy of 〈2 m up to a depth of 15 m. Comparable results were obtained from the automatic approach to a depth of 12 m. For almost all investigated depth ranges for both techniques, uncertainties were found to be within the required vertical accuracies for the International Hydrographic Organization category zone of confidence (CATZOC) level C classification for hydrographic surveys. This indicates that both techniques can be used to derive navigational quality bathymetric information within the investigated study site. While encouraging, neither technique was found to offer a single solution for the complete estimation of depth within the study area. As a result of these findings, the CHS envisions a hybrid approach where stereo- and reflectance-based bathymetry estimation techniques are implemented to provide the greatest understanding of depth possible from satellite imagery. Overall, stereo photogrammetry techniques will likely allow for new potential for supporting the improvement of CHS charts in areas where modern surveys have not yet been obtained.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2018
    Description: In order to overcome the insufficiency of single remote sensing data in change detection, synthetic aperture radar (SAR) and optical image data can be used together for supplementation. However, conventional image fusion methods fail to address the differences in imaging mechanisms and cannot overcome some practical limitations such as usage in change detection or temporal requirement of the optical image. This study proposes a new method to fuse SAR and optical images, which is expected to be visually helpful and minimize the differences between two imaging mechanisms. The algorithm performs the fusion by establishing relationships between SAR and multispectral (MS) images by using a random forest (RF) regression, which creates a fused SAR image containing the surface roughness characteristics of the SAR image and the spectral characteristics of the MS image. The fused SAR image is evaluated by comparing it to those obtained using conventional image fusion methods and the proposed method shows that the spectral qualities and spatial qualities are improved significantly. Furthermore, for verification, other ensemble approaches such as stochastic gradient boosting regression and adaptive boosting regression are compared and overall it is confirmed that the performance of RF regression is superior. Then, change detection between the fused SAR and MS images is performed and compared with the results of change detection between MS images and between SAR images and the result using fused SAR images is similar to the result with MS images and is improved when compared to the result between SAR images. Lastly, the proposed method is confirmed to be applicable to change detection.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2018
    Description: Landslide identification is an increasingly important research topic in remote sensing and the study of natural hazards. It is essential for hazard prevention, mitigation, and vulnerability assessments. Despite great efforts over the past few years, its accuracy and efficiency can be further improved. Thus, this study combines the two most popular approaches: susceptibility analysis and change detection thresholding, to derive a landslide identification method employing novel identification criteria. Through a quantitative evaluation of the proposed method and masked change detection thresholding method, the proposed method exhibits improved accuracy to some extent. Our susceptibility-based change detection thresholding method has the following benefits: (1) it is a semi-automatic landslide identification method that effectively integrates a pixel-based approach with an object-oriented image analysis approach to achieve more precise landslide identification; (2) integration of the change detection result with the susceptibility analysis result represents a novel approach in the landslide identification research field.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2018
    Description: The 3D Tiles specification, created by Cesium, is designed for streaming massive heterogeneous three-dimensional (3D) geospatial datasets online using WebGL technology. The program has prevailed in the WebGIS community due to its ability to visualise, interact, and style 3D objects for various scenarios, such as 3D cities, indoor environments, and point clouds. It offers a new opportunity to integrate Building Information Models (BIM) in the Industry Foundation Classes (IFC) data format with existing geospatial data in a 3D WebGIS platform with open-source implementation. As no open-source solution for converting IFC models into 3D Tiles for online visualization had yet been found, this paper explores feasible approaches and integrates a range of tools and libraries as an open-source solution for the community.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2018
    Description: Timely and accurate identification of change detection for areas depicted on nautical charts constitutes a key task for marine cartographic agencies in supporting maritime safety. Such a task is usually achieved through manual or semi-automated processes, based on best practices developed over the years requiring a substantial level of human commitment (i.e., to visually compare the chart with the new collected data or to analyze the result of intermediate products). This work describes an algorithm that aims to largely automate the change identification process as well as to reduce its subjective component. Through the selective derivation of a set of depth points from a nautical chart, a triangulated irregular network is created to apply a preliminary tilted-triangle test to all the input survey soundings. Given the complexity of a modern nautical chart, a set of feature-specific, point-in-polygon tests are then performed. As output, the algorithm provides danger-to-navigation candidates, chart discrepancies, and a subset of features that requires human evaluation. The algorithm has been successfully tested with real-world electronic navigational charts and survey datasets. In parallel to the research development, a prototype application implementing the algorithm was created and made publicly available.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2018
    Description: Vectors are a key type of geospatial data, and their discretization, which involves solving the problem of generating a discrete line, is particularly important. In this study, we propose a method for constructing a discrete line mathematical model for a triangular grid based on a “weak duality” hexagonal grid, to overcome the drawbacks of existing discrete line generation algorithms for a triangular grid. First, a weak duality relationship between triangular and hexagonal grids is explored. Second, an equivalent triangular grid model is established based on the hexagonal grid, using this weak duality relationship. Third, the two-dimensional discrete line model is solved by transforming it into a one-dimensional optimal wandering path model. Finally, we design and implement the dimensionality reduction generation algorithm for a discrete line in a triangular grid. The results of our comparative experiment indicate that the proposed algorithm has a computation speed that is approximately 10 times that of similar existing algorithms; in addition, it has better fitting effectiveness. Our proposed algorithm has broad applications, and it can be used for real-time grid transformation of vector data, discrete global grid system (DGGS), and other similar applications.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2018
    Description: Neighborhoods are vaguely defined, localized regions that share similar characteristics. They are most often defined, delineated and named by the citizens that inhabit them rather than municipal government or commercial agencies. The names of these neighborhoods play an important role as a basis for community and sociodemographic identity, geographic communication and historical context. In this work, we take a data-driven approach to identifying neighborhood names based on the geospatial properties of user-contributed rental listings. Through a random forest ensemble learning model applied to a set of spatial statistics for all n-grams in listing descriptions, we show that neighborhood names can be uniquely identified within urban settings. We train a model based on data from Washington, DC, and test it on listings in Seattle, WA, and Montréal, QC. The results indicate that a model trained on housing data from one city can successfully identify neighborhood names in another. In addition, our approach identifies less common neighborhood names and suggestions of alternative or potentially new names in each city. These findings represent a first step in the process of urban neighborhood identification and delineation.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2018
    Description: Multiple land use and land cover (LUC) datasets are available for the analysis of LUC changes (LUCC) in distinct territories. Sometimes, different LUCC results are produced to characterize these changes for the same territory and the same period. These differences reflect: (1) The different properties of LUC geoinformation (GI) used in the LUCC assessment, and (2) different criteria used for vector-to-raster conversion, namely, those deriving from outputs with different spatial resolutions. In this research, we analyze LUCC in mainland Portugal using two LUC datasets with different properties: Corine Land Cover (CLC 2006 and 2012) and LUC official maps of Portugal (Carta de Ocupação do Solo, COS 2007 and 2010) provided by the European Environment Agency (EEA) and the General Directorate for Territorial Development (DGT). Each LUC dataset has undergone vector-to-raster conversion, with different resolutions (10, 25, 50, 100, and 200 m). LUCC were analyzed based on the vector GI of each LUC dataset, and with LUC raster outputs using different resolutions. Initially, it was observed that the areas with different LUC types in two LUC datasets in vector format were not similar—a fact explained by the different properties of this type of GI. When using raster GI to perform the analysis of LUCC, it was observed that at high resolutions, the results are identical to the results obtained when using vector GI, but this ratio decreases with increased cell size. In the analysis of LUCC results obtained with raster LUC GI, the outputs with pixel size greater than 100 m do not follow the same trend of LUCC obtained with high raster resolutions or using LUCC obtained with vector GI. These results point out the importance of the factor form and the area of the polygons, and different effects of amalgamation and dilation in the vector-to-raster conversion process, more evident at low resolutions. These findings are important for future evaluations of LUCC that integrate raster GI and vector/raster conversions, because the different LUC GI resolution in line with accuracy can explain the different results obtained in the evaluation of LUCC. The present work demonstrates this fact, i.e., the effects of vector-to-raster conversions using various resolutions culminated in different results of LUCC.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2018
    Description: Knowledge discovery about people and cities from emerging location data has been an active research field but is still relatively unexplored. In recent years, a considerable amount of work has been developed around the use of social media data, most of which focusses on mining the content, with comparatively less attention given to the location information. Furthermore, what aggregated scale spatial patterns show still needs extensive discussion. This paper proposes a tweet-topic-function-structure framework to reveal spatial patterns from individual tweets at aggregated spatial levels, combining an unsupervised learning algorithm with spatial measures. Two-year geo-tweets collected in Greater London were analyzed as a demonstrator of the framework and as a case study. The results indicate, at a disaggregated level, that the distribution of topics possess a fair degree of spatial randomness related to tweeting behavior. When aggregating tweets by zones, the areas with the same topics form spatial clusters but of entangled urban functions. Furthermore, hierarchical clustering generates a clear spatial structure with orders of centers. Our work demonstrates that although uncertainties exist, geo-tweets should still be a useful resource for informing spatial planning, especially for the strategic planning of economic clusters.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2018
    Description: The nature of contemporary spatial data infrastructures lies in the provision of geospatial information in an on-demand fashion. Although recent applications identified the need to react to real-time information in a time-critical way, research efforts in the field of geospatial Internet of Things in particular have identified substantial gaps in this context, ranging from a lack of standardisation for event-based architectures to the meaningful handling of real-time information as “events”. This manuscript presents work in the field of event-driven architectures as part of spatial data infrastructures with a particular focus on sensor networks and the devices capturing in-situ measurements. The current landscape of spatial data infrastructures is outlined and used as the basis for identifying existing gaps that retain certain geospatial applications from using real-time information. We present a selection of approaches—developed in different research projects—to overcome these gaps. Being designed for specific application domains, these approaches share commonalities as well as orthogonal solutions and can build the foundation of an overall event-driven spatial data infrastructure.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2018
    Description: Cellular automata (CA) is a spatially explicit modeling tool that has been shown to be effective in simulating urban growth dynamics and in projecting future scenarios across scales. At the core of urban CA models are transition rules that define land transformation from non-urban to urban. Our objective is to compare the urban growth simulation and prediction abilities of different metaheuristics included in the R package optimx. We applied five metaheuristics in optimx to near-optimally parameterize CA transition rules and construct CA models for urban simulation. One advantage of metaheuristics is their ability to optimize complexly constrained computational problems, yielding objective parameterization with strong predictive power. From these five models, we selected conjugate gradient-based CA (CG-CA) and spectral projected gradient-based CA (SPG-CA) to simulate the 2005–2015 urban growth and to project future scenarios to 2035 with four strategies for Su-Xi-Chang Agglomeration in China. The two CA models produced about 86% overall accuracy with standard Kappa coefficient above 69%, indicating their good ability to capture urban growth dynamics. Four alternative scenarios out to the year 2035 were constructed considering the overall effect of all candidate influencing factors and the enhanced effects of county centers, road networks and population density. These scenarios can provide insight into future urban patterns resulting from today’s urban planning and infrastructure, and can inform future development strategies for sustainable cities. Our proposed metaheuristic CA models are also applicable in modeling land-use and urban growth in other rapidly developing areas.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2018
    Description: In this paper, we present the optical image simulation from synthetic aperture radar (SAR) data using deep learning based methods. Two models, i.e., optical image simulation directly from the SAR data and from multi-temporal SAR-optical data, are proposed to testify the possibilities. The deep learning based methods that we chose to achieve the models are a convolutional neural network (CNN) with a residual architecture and a conditional generative adversarial network (cGAN). We validate our models using the Sentinel-1 and -2 datasets. The experiments demonstrate that the model with multi-temporal SAR-optical data can successfully simulate the optical image; meanwhile, the state-of-the-art model with simple SAR data as input failed. The optical image simulation results indicate the possibility of SAR-optical information blending for the subsequent applications such as large-scale cloud removal, and optical data temporal super-resolution. We also investigate the sensitivity of the proposed models against the training samples, and reveal possible future directions.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2018
    Description: The massive property development of high-rises and complex structures above and below the ground surface in cities indicates the lack of land and high demand to use spaces. However, the existing land and property administration systems are mainly two dimensional and not capable of efficiently managing these complex spaces. As ownership rights on plans are recorded in paper or PDF, understanding these rights and making effective decisions and analyses can be difficult without having experience in the art of reading and interpreting plan information. This paper attempts to address these issues by presenting a prototype for visualizing three-dimensional land and property information. The aim of this prototype is to illustrate and communicate the requirements and benefits of a 3D digital cadastre platform. The prototype is a web-based application and includes functionality to display both legal and physical data, interact with 3D models, display administrative data, identify objects and search objects, visualize cross-sections, and undertake measurements in 3D. For this prototype, a multi-story building was selected as a case study and its 3D model was imported into the prototype to display ownership rights. The prototype was then evaluated by various stakeholders and their feedback was considered for future enhancement.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2018
    Description: Modern mobile devices are replete with advanced sensors that expand the array of possible methods of locating users. This can be used as a tool to gather and use spatial information, but it also brings with it the specter of “geosurveillance” in which the “location” becomes a product in itself. In the realm of software developers, space/place has been reduced and discretized to a set of coordinates, devoid of human experiences and meanings. To function in such digitally augmented realities, people need to adopt specific attitudes, often marked with anxiety. We explored attitudes toward location data collection practices using qualitative questionnaire surveys (n = 280) from Poznan and Edinburgh. The prevailing attitude that we identified is neutral with a strong undertone of resignation—surrendering personal location is viewed as a form of digital currency. A smaller number of people had stronger, emotional views, either very positive or very negative, based on uncritical technological enthusiasm or fear of privacy violation. Such a wide spectrum of attitudes is not only produced by interaction with technology but can also be a result of different values associated with space and place itself. Those attitudes can bring additional bias into spatial datasets that is not related to demographics.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2018
    Description: Nowadays, most vehicles are equipped with positioning devices such as GPS which can generate a tremendous amount of trajectory data and upload them to the server in real time. The trajectory data can reveal the shape and evolution of the road network and therefore has an important value for road planning, vehicle navigation, traffic analysis, and so on. In this paper, a road network generation method is proposed based on the incremental learning of vehicle trajectories. Firstly, the input vehicle trajectory data are cleaned by a preprocess module. Then, the original scattered positions are clustered and mapped to the representation points which stand for the feature points of the real roads. After that, the corresponding representation points are connected based on the original connection information of the trajectories. Finally, all representation points are connected by a Delaunay triangulation network and the real road segments are found by a shortest path searching approach between the connected representation point pairs. Experiments show that this method can build the road network from scratch and refine it with the input data continuously. Both the accuracy and timeliness of the extracted road network can continuously be improved with the growth of real-time trajectory data.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2018
    Description: In order to achieve the ambitious Sustainable Development Goal #11 (Sustainable Cities and Communities), an integrative approach is necessary. Complex outcomes such as sustainable cities are the product of a range of policies and drivers that are sometimes at odds with each other. Yet, traditional policy assessments often focus on specific ambitions such as housing, green spaces, etc., and are blind to the consequences of policy interactions. This research proposes the use of remote sensing technologies to monitor and analyse the resultant effects of opposing urban policies. In particular, we will look at the conflicting policy goals in Amsterdam between the policy to densify, on the one hand, and, on the other hand, goals of protecting and improving urban green space. We conducted an analysis to detect changes in land-uses within the urban core of Amsterdam, using satellite images from 2003 and 2016. The results indeed show a decrease of green space and an increase in the built-up environment. In addition, we reveal strong fragmentation of green space, indicating that green space is increasingly available in smaller patches. These results illustrate that the urban green space policies of the municipality appear insufficient to mitigate the negative outcomes of the city’s densification on urban green space. Additionally, we demonstrate how remote sensing can be a valuable instrument in investigating the net consequences of policies and urban developments that would be difficult to monitor through traditional policy assessments.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2018
    Description: The concept of the local climate zone (LCZ) has been recently proposed as a generic land-cover/land-use classification scheme. It divides urban regions into 17 categories based on compositions of man-made structures and natural landscapes. Although it was originally designed for temperature study, the morphological structure concealed in LCZs also reflects economic status and population distribution. To this end, global LCZ classification is of great value for worldwide studies on economy and population. Conventional classification approaches are usually successful for an individual city using optical remote sensing data. This paper, however, attempts for the first time to produce global LCZ classification maps using polarimetric synthetic aperture radar (PolSAR) data. Specifically, we first produce polarimetric features, local statistical features, texture features, and morphological features and compare them, with respect to their classification performance. Here, an ensemble classifier is investigated, which is trained and tested on already separated transcontinental cities. Considering the challenging global scope this work handles, we conclude the classification accuracy is not yet satisfactory. However, Sentinel-1 dual-Pol SAR data could contribute the classification for several LCZ classes. According to our feature studies, the combination of local statistical features and morphological features yields the best classification results with 61.8% overall accuracy (OA), which is 3% higher than the OA produced by the second best features combination. The 3% is considerably large for a global scale. Based on our feature importance analysis, features related to VH polarized data contributed the most to the eventual classification result.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2018
    Description: We presented a methodology for estimating building heights in downtown Vancouver, British Columbia, Canada, using a high definition video (HDV) recorded from the International Space Station. We developed an iterative routine based on multiresolution image segmentation to track the radial displacement of building roofs over the course of the HDV, and to predict the building heights using an ordinary least-squares regression model. The linear relationship between the length of the tracking vector and the height of the buildings was excellent (r2 ≤ 0.89, RMSE ≤ 8.85 m, p 〈 0.01). Notably, the accuracy of the height estimates was not improved considerably beyond 10 s of outline tracking, revealing an optimal video length for estimating the height or elevation of terrestrial features. HDVs are demonstrated to be a viable and effective data source for target tracking and building height prediction when high resolution imagery, spectral information, and/or topographic data from other sources are not available.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2018
    Description: Establishing a comprehensive management framework to manage the risk from natural hazards is challenging because of the extensive affected areas, uncertainty in predictions of natural disasters, and the involvement of various stakeholders. Applying risk management practices proven in the industrial sector can assist systematic hazard identification and quantitative risk assessment for natural hazards, thereby promoting interactive risk communication to the public. The objective of this study is to introduce methods of studying risk commonly used in the process industry, and to suggest how such methods can be applied to manage natural disasters. In particular, the application of Hazard and Operability (HAZOP), Safety Integrated Level (SIL), and Quantitative Risk Analysis (QRA) was investigated, as these methods are used to conduct key studies in industry. We present case studies of the application of HAZOP to identify climate-related natural hazards, and of SIL and QRA studies that were performed to provide quantitative risk indices for landslide risk management. The analyses presented in this study can provide a useful framework for improving the risk management of natural hazards through establishing a more systematic context and facilitating risk communication.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...