ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (156)
  • Hindawi  (156)
  • American Physical Society (APS)
  • Institute of Physics
  • Public Library of Science
  • 2020-2024
  • 2015-2019  (156)
  • 1985-1989
  • 1975-1979
  • 1945-1949
  • International Journal of Electrochemistry  (103)
  • 165403
  • Electrical Engineering, Measurement and Control Technology  (156)
  • Energy, Environment Protection, Nuclear Power Engineering
Collection
  • Articles  (156)
Publisher
  • Hindawi  (156)
  • American Physical Society (APS)
  • Institute of Physics
  • Public Library of Science
Years
Year
Topic
  • Electrical Engineering, Measurement and Control Technology  (156)
  • Energy, Environment Protection, Nuclear Power Engineering
  • Chemistry and Pharmacology  (156)
  • 1
    Publication Date: 2015-08-21
    Description: The interaction of protionamide with alizarin red S (ARS) and its analytical application were carefully investigated in this contribution. The interaction conditions were carefully studied and optimized by cyclic voltammetry. Under the optimum conditions, the cyclic voltammetry curve of ARS showed an oxidation peak with the peak potential of 0.57 V. After the addition of protionamide to the ARS solution, the peak potential was negatively moved, and meanwhile the oxidation peak current decreased apparently to the concentration of protionamide and then a new method for the protionamide determination was established. The linear equation between the decreasing current (Δip) and protionamide concentration was got as Δip (μA) = 0.01514 (mg/L) −0.01553   with the linear range of 10.0~50.0 mg/L, and the detection limit () was got as 8.25 μg/mL. The effects of coexisting substances on the determination were carefully investigated and the protionamide artificial and tablet samples were detected with satisfactory results.
    Print ISSN: 2090-3529
    Electronic ISSN: 2090-3537
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-04-04
    Description: Electrochemical determination of acetaminophen (APAP) was successfully performed using a carbon paste electrode (CPE) modified with coffee husks (CH-CPE). Scanning electron microscopy (SEM) and SEM-energy dispersive X-ray spectroscopy (SEM-EDX) were, respectively, used for the morphological and elemental characterization of coffee husks prior to their utilization. The electrochemical oxidation of APAP was investigated by cyclic voltammetry (CV), differential pulse voltammetry (DPV), and square wave voltammetry (SWV). SWV technique appeared to be more sensitive since the oxidation current of APAP was twofold higher with the CH-CPE sensor than with the bare CPE, in relation to the increase in the organophilic character of the electrode surface. Furthermore, on CH-CPE, the current response of APAP varied linearly with its concentration in the range of 6.6 μM to 0.5 mM, leading to a detection limit of 0.66 μM (). Finally, the proposed CH-CPE sensor was successfully used to determine the amount of APAP in commercialized tablets (Doliprane® 500 and Doliprane 1000), with a recovery rate ranging from 98% to 103%. This novel sensor opens the way for the development of low-cost and reliable devices for the electroanalysis of pharmaceutical formulations in developing countries.
    Print ISSN: 2090-3529
    Electronic ISSN: 2090-3537
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-12-31
    Description: Imbalanced supercapacitor was constructed by using various ratio of activated carbon (AC) of positive to negative electrode. The electrochemical behavior of imbalanced supercapacitor was investigated using 1.0 M spiro-(1,1′)-bipyrrolidinium tetrafluoroborate electrolyte in propylene carbonate. The results showed that there are some factors that influenced the imbalanced supercapacitor with different AC ratio of positive to negative electrode, the utilization of AC, electrode potential distribution, and life cycle. The imbalanced supercapacitor with an AC weight ratio of 80 : 120 of positive to negative electrode has an average potential distribution in each electrode, and it revealed the best electrochemical performance: specific capacitor was 39.6 Fg−1, while the charge-discharge efficiency was 97.2% after 2000 life cycle tests.
    Print ISSN: 2090-3529
    Electronic ISSN: 2090-3537
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019
    Description: The challenges to be overtaken with alkaline water electrolysis are the reduction of energy consumption, the maintenance, and the cost as well as the increase of durability, reliability, and safety. Having these challenges in mind, this work focused on the reduction of the electrical resistance of the electrolyte which directly affects energy consumption. According to the definition of electrical resistance of an object, the reduction of the space between electrodes could lower the electrical resistance but, in this process, the formation of bubbles could modify this affirmation. In this work, the performance analyses of nine different spaces between stainless steel 316L electrodes were carried out, although the spaces proposed are not the same as those from the positive electrode (anode) to the separator and from the separator to the negative electrode (cathode). The reason why this is studied is that stoichiometry of the reaction states that two moles of hydrogen and one mole of oxygen can be obtained per every two moles of water. The proposed spaces were 10.65, 9.20, 8.25, 7.25, 6.30, 6.05, 4.35, 4.15, and 3.40 millimetres. From the nine different analysed distances between electrodes, it can be said that the best performance was reached by one of the smallest distances proposed, 4.15 mm. When the same distance between electrodes was compared (the same and different distance between electrodes and separator), the one that had almost twice the distance (negative compartment) presented an increase in current density of approximately 33% with respect to that where both distances (from electrodes to separator) are the same. That indicates that the stichometry of the electrolysis reaction influenced the performance.
    Print ISSN: 2090-3529
    Electronic ISSN: 2090-3537
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018
    Description: Electrocoagulation has been employed as a treatment technique for treating various wastewaters. This study focuses on the performance of electrocoagulation process for the treatment of Palm Oil Mill Effluent (POME) and Paint Wastewater (PW) using iron electrodes. POME obtained from local palm oil producers and PW from a paint industry, both in Enugu state of Nigeria, were treated by electrocoagulation using two iron electrodes. Effects of current density, electrocoagulation time, pH, and temperature were studied. Results revealed that this process could reduce the concentration of Total Suspended and Dissolved Solids (TSDP), in both POME and PW. The highest removal efficiencies of 65% and 76% were obtained for POME and PW, respectively, at 3 Amps, 60min, pH of 10, and 50°C for POME and 3 Amps, 60min, pH of 6, and 60°C for PW. Of the two kinetic models studied, second-order kinetic model fitted best to the obtained experimental kinetic data. From this study, it can be concluded that electrocoagulation is effective in the treatment of POME and PW.
    Print ISSN: 2090-3529
    Electronic ISSN: 2090-3537
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-06-18
    Description: This work investigates a one-dimensional model for the solid-state diffusion in a LiC6/LiMnO2 rechargeable cell. This cell is used in hybrid electric vehicles. In this environment the cell experiences low frequency electrical pulses that degrade the electrodes. The model’s starting point is Fick’s second law of diffusion. The Laplace transform is used to move from time as the independent variable to frequency as the independent variable. To better understand the effect of frequency changes on the cell, a transfer function is constructed. The transfer function is a transcendental function so a Padé approximant is found to better describe the model at the origin. Consider .
    Print ISSN: 2090-3529
    Electronic ISSN: 2090-3537
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-06-09
    Description: The electrochemical processes in solutions with a much lower amount of free cyanide (
    Print ISSN: 2090-3529
    Electronic ISSN: 2090-3537
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-01-19
    Description: New gel polymer electrolytes containing poly(vinylidene chloride-co-acrylonitrile) and poly(methyl methacrylate) are prepared by solution casting method. With the addition of 60 wt.% of EC to PVdC-AN/PMMA blend, ionic conductivity value  S cm−1 has been achieved. XRD and FT-IR studies have been conducted to investigate the structure and complexation in the polymer gel electrolytes. The FT-IR spectra show that the functional groups C=O and C≡N play major role in ion conduction. Thermal stability of the prepared membranes is found to be about 180°C.
    Print ISSN: 2090-3529
    Electronic ISSN: 2090-3537
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-07-09
    Description: Hydrophilized graphite felt has been used, for the first time, for the electrochemical detection of Hg2+ ions both as single metal species and via its simultaneous detection with Pb2+. To do so, square wave voltammetry (SWV) method was developed with alginate modified graphite felt as working electrode. The structure of the graphite felt such as its high porosity and specific surface area coupled with its good electrical conductivity allows achieving large peak currents via the SWV method, suggesting that the alginate coating helps to preconcentrate metals at the carbon surface. The as-described electrode has low cost, it is easy to manipulate, and the electrochemical analysis can be performed by simple immersion of the felt in the metal solution.
    Print ISSN: 2090-3529
    Electronic ISSN: 2090-3537
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-07-08
    Description: A one-dimensional model based on solvent diffusion and kinetics to study the formation of the SEI (solid electrolyte interphase) layer and its impact on the capacity of a lithium ion battery is developed. The model uses the earlier work on silicon oxidation but studies the kinetic limitations of the SEI growth process. The rate constant of the SEI formation reaction at the anode is seen to play a major role in film formation. The kinetics of the reactions for capacity fading for various battery systems are studied and the rate constants are evaluated. The model is used to fit the capacity fade in different battery systems.
    Print ISSN: 2090-3529
    Electronic ISSN: 2090-3537
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2016-01-28
    Description: This work compares voltammetric response of nalbuphine hydrochloride (NP·HCl) at both activated glassy carbon and pencil graphite electrodes. The electrochemical oxidation of the drug was studied using cyclic voltammetry (CV), differential pulse voltammetry (DPV), and square wave voltammetry (SWV) techniques. For analytical purpose a well-resolved irreversible diffusion controlled voltammetric peak was established in Britton-Robinson (B-R) buffer solution of pH 6.00 using pencil graphite electrode (PGE). Using activated glassy carbon electrode (GCE) a well-resolved irreversible diffusion controlled voltammetric peak was obtained at pH 7.00 using the same buffer solution. According to the linear relationship between the peak current and NP·HCl concentration, DPV and SWV methods were developed for their quantitative determination in pharmaceutical and human biological fluids. The linear response was obtained in the range from to  mol L−1 using PGE and from to  mol L−1 using a GC electrode, respectively. Precision and accuracy of the developed method were checked by recovery studies.
    Print ISSN: 2090-3529
    Electronic ISSN: 2090-3537
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2016-02-01
    Description: A glassy carbon electrode (GCE) was modified with a fullerene/Multiwalled Carbon Nanotubes (MWCNTs)/Nafion composite and applied to the determination of carbendazim, a fungicide. The voltammetric behavior of the analyte was investigated using Cyclic Voltammetry (CV), on the bare GCE and on the same electrode coated by a thin film of the composite material. The electrode response was more than fourfold important on the modified electrode, due to electrical conductivity of fullerene and MWCNT and to favorable electrostatic interaction between the negatively charged Nafion and the protonated fungicide. A sensitive electroanalytical procedure based on Square Wave Voltammetry (SWV) was then developed to detect the analyte. Under the optimum conditions, a linear relationship was obtained between the peak current and the concentration of carbendazim, in the range from 2.0 × 10−8 mol/L to 3.5 × 10−7 mol/L, leading to a detection limit of 1.7 × 10−8 mol/L and to a quantification limit of 5.57 × 10−8 mol/L. The developed procedure was successfully applied to detect carbendazim upon adsorption by some ferritic soils.
    Print ISSN: 2090-3529
    Electronic ISSN: 2090-3537
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2016-02-05
    Description: The primary current distribution and the resistance of a modified Hull cell are calculated by using conformal mapping technique coupled with numerical evaluation of the resulting integral equations. An approximate analytical expression for the primary current distribution of a modified Hull cell is presented. The primary current distribution along the cathode surface is noticed varying in controlled manner as a function of position on the substrate. The current distributions (primary, secondary, and tertiary) in the cell have also been calculated at different applied average current densities (2, 4.1, and 8.2 mA cm−2) through numerical simulation by using finite element based software. The numerical simulation result of the primary current distribution is then compared with the analytical solution and a good match is found. Experimentally, single Cu metal electrodeposition is carried out at different applied average current densities (2, 4.1, and 8.2 mA cm−2) in a modified Hull. The current distribution (primary, secondary, and tertiary) results obtained from the numerical simulation are compared with the experimental results and a satisfactory match is found. Surface morphology of the Cu deposits is examined using scanning electron microscopy (SEM).
    Print ISSN: 2090-3529
    Electronic ISSN: 2090-3537
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2016-02-05
    Description: A facile solvothermal strategy is developed for the preparation of nanometer sized Pd-Cu alloy. We can control the morphology of these alloys with the use of ethylene glycol (EG) in the presence of KOH. Namely, by increasing the concentration of KOH/EG, the Pd-Cu alloys with different morphologies from near-spherical nanoparticles (NPs) to nanorods and nanowire networks have been prepared. Among all these alloys, near-spherical Pd-Cu NPs-modified electrodes exhibit the highest catalytic activity (11.7 mA/cm2) and stability toward the electrooxidation of ethanol in comparison with commercial Pd/C-modified ones (2.1 mA/cm2).
    Print ISSN: 2090-3529
    Electronic ISSN: 2090-3537
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2019
    Description: Current-voltage characteristics of few-layer graphene structures (FLGS) obtained by plasma-assisted electrochemical exfoliation of graphite in Na2SO4 solution were measured. FLGS are shown to possess electronic conductivity, which indicates the predominant functionalization of the edges of graphene planes and the preservation of the structure of basal planes in obtained nanostructures as in the source graphite. The effect of humidity on the conductivity of FLGS films was studied. The resistance of films was found to increase with an increase in the relative humidity of the environment due to the shielding of FLGS flakes by a film of water. The effect of different solvents on the current-voltage characteristics of FLGS was analyzed. The conductivity of films significantly decreased in vapors of polar protic solvents, while there was a minor effect of nonpolar aprotic solvents on the conductivity of FLGS films.
    Print ISSN: 2090-3529
    Electronic ISSN: 2090-3537
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2019
    Description: LiNi0.5Mn1.5O4 (LNMO), which has an operating voltage of 4.8 vs Li/Li+ and a theoretical capacity of 147 mAh g−1, is an interesting cathode material for advanced lithium ion batteries. However, electrolyte decomposition at the electrode can gradually decrease the capacity of the battery. In this study, the surface of the LNMO cathode has been modified with phosphoric acid (PA) to improve the capacity of the LNMO/graphite full cell. Modification of LNMO cathodes by PA is confirmed by surface analysis. Additionally, the presence of lithium bis-(oxalato) borate (LiBOB) as an electrolyte additive further enhances the performance of PA modified LNMO/graphite cells. The improved performance of PA modified cathodes and electrolytes containing LiBOB can be attributed to the suppressed Mn and Ni deposition on the anode. Elemental analysis suggests that the Mn and Ni dissolution is significantly reduced compared to unmodified LNMO/graphite cells with standard electrolyte.
    Print ISSN: 2090-3529
    Electronic ISSN: 2090-3537
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2019
    Description: This study presents the effect of heat treatment on porosity, phase composition, microhardness, and wear and corrosion resistances of the thermal sprayed NiCr20 coating after sealing with aluminum phosphate. The annealing temperatures were varied in a range of 400 to 1000°C. The obtained results indicated the porosity of coating decreased with increasing the annealing temperature. After treatment at temperatures in range of 800-1000°C, more than 90% of initial pores in the coating were successfully filled with the sealants. The XRD data revealed not only the formation of new phases of other compounds, but also the interaction between coating and sealant. After heat treatment, wear resistance of coating was 12 times higher than that without heat treatment. The corrosion test in H2SO4 solution indicated that the presence of sealant in coatings increased their corrosion resistance. From these findings, application of these NiCr20 coatings to protect steel against wear and corrosion appears very promising.
    Print ISSN: 2090-3529
    Electronic ISSN: 2090-3537
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2019
    Description: Screen printed carbon electrodes (SPCEs) provide attractive opportunity for sensitive and selective determination target analytes in clinical samples. The aim of the current work was to develop SPCEs based sensor for the determination of uric acid in clinical serum samples. The electrodes were pretreated by soaking in N,N-dimethylformamide for 5 minutes followed by drying in an oven at 100°C for 20 mins. The effect of surface pretreatment was characterized using cyclic voltammetry. The current response of uric acid detection was improved by a factor of 3.5 in differential pulse voltammetric measurement compared to unmodified electrode. Under the optimized conditions, the sensor displayed two dynamic linear ranges 5-100 μM and 100-500 μM with correlation coefficient, R2, values of 0.98782 and 0.97876, respectively. The limit of detection and limit of quantification calculated using the dynamic linear range 5-100 μM were 1.9 x 10−7 M and 6.33 x 10−7 M, respectively. The developed sensor displayed well separated and discerned peaks for UA in presence of the potential interferent (ascorbic acid and citric acid). The electrode was successfully applied for the detection of very low level of UA in clinical serum samples in a phosphate buffer solution (pH = 7). The proposed sensor showed a very high reproducibility and repeatability with the relative standard deviation of 0.9%. In conclusion, a simple and low cost sensor based on SPCEs is developed for sensitive and selective detection of uric acid in clinical samples.
    Print ISSN: 2090-3529
    Electronic ISSN: 2090-3537
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2019
    Description: This work presents a reliable, cost-effective, rapid and in-field voltammetric method for the detection of barium. The optimized method consists of an ultrathin mercury film deposited in situ on a glassy carbon electrode in dilute potassium chloride without deoxygenation, using differential pulse anodic stripping voltammetry (DP-ASV). Application of the method allowed for the quantitative determination of barium concentration in a variety of waters and brake pad dust samples. Comparative analysis of sample results from DP-ASV with inductively coupled plasma mass spectroscopy (ICP-MS) showed a mean percent difference of 1.8%.
    Print ISSN: 2090-3529
    Electronic ISSN: 2090-3537
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2019
    Description: In this study, the relevance of a food dye, namely, Fast Green-FCF (FG-FCF), was surveyed as a new inhibitor for mild steel in HCl solution. This effect was specified by electrochemical impedance spectroscopy (EIS), one of the most widely used measurement techniques. As a result of the increment of the inhibitor concentration, it was seen that the values ​​of polarization resistance increased and covered the metal surface of FG-FCF like a blanket. Tests endorse that the FG-FCF is chemically adsorbed on mild steel surface, according to the Langmuir isotherm. With surface characteristic analyses, such as field emission scanning electron microscope (FESEM) and atomic force microscope (AFM), it was further determined that the metal surface in HCl of FG-FCF was protected. By applying the hydrogen gas evolution technique, FG-FCF has been proven to provide the lowest surface area with all inhibited solutions from the blank due to its strong adsorption to the metal surface. Finally, it has been clarified that FG-FCF can be practically used as a good corrosion inhibitor for mild steel with the supported results.
    Print ISSN: 2090-3529
    Electronic ISSN: 2090-3537
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2018
    Description: The ability of different crosslinkers to crosslink nanometer thick films of the polymer poly(mercaptopropyl)methylsiloxane (PMPMS), thus stabilizing these films on solid supports, was investigated. The four crosslinkers included 1,11-bismaleimidotriethyleneglycol (BM(PEG)3), tris-(2-maleimidoethyl)amine (TMEA), bismaleimidohexane (BMH), and 1,1′-(methylenedi-4,1-phenylene) bismaleimide (BMDPM). PMPMS films treated with the four crosslinkers were compared in the effectiveness of achieved crosslinking, continuity and stability of the films to rearrangement at elevated temperatures, and modification with single-stranded DNA. The results of electrochemical analyses show that more hydrophilic crosslinkers had difficulty reacting fully with PMPMS thiols, even in these nanometer thin layers. This observation highlights the critical importance of selecting crosslinkers that are chemically compatible. Optimal selection of crosslinker yielded films in which the polymer film was largely incapable of rearranging, even at elevated temperatures, yielding reproducible and stable layers. These results validate use of these supports for applications such as monitoring thermal denaturation of immobilized DNA duplexes.
    Print ISSN: 2090-3529
    Electronic ISSN: 2090-3537
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2018
    Description: A new polarographic method for the determination of benzocaine and procaine based on the polarographic reduction of their chemically obtained oxidation products with potassium peroxymonosulfate is developed. Experimental conditions affecting quantitative yield of benzocaine and procaine oxidation products such as рH, oxidation time, reagents’ concentration, and temperature are explored. It is shown that the reduction current changes in a linear fashion (R=0.999) with increasing concentration of anesthetics over a concentration range of 1·10−6 - 5·10−5 mol L−1. The calculated limits of detection (LOD) for benzocaine and procaine are found to be 5.6·10−6 and 6·10−6 mol L−1, respectively. In the present study, quantitative polarographic determination of benzocaine in Farisil tablets and “Septolete Plus” lozenges and procaine in solution for injections is performed. The results of the analysis are in good agreement with the product specifications described in the quality certificates. The possibility of quantitative determination of benzocaine and procaine in pharmaceuticals is confirmed.
    Print ISSN: 2090-3529
    Electronic ISSN: 2090-3537
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2018
    Description: The electrodeposition of tin from SnO in ionic liquid 1-butyl-3-methylimidazolium hydrogen sulfate ([Bmim]HSO4) in the presence of water at different cathodic potential was investigated. With the addition of water to [Bmim]HSO4 ionic liquid, the electrochemical window of the electrolyte decreases and the reduction potential of Sn(II) positively shifts. The water content of ionic liquid electrolyte has a distinct effect on morphology of the deposits. As water content increased from 0 to 50% (v/v), the morphology of deposits varies from granular to hexagonal rod-like, then to hollow tubular, and finally to wire-like. The XRD phase analysis showed that both Sn and CuSn alloys were deposited in ionic liquid/water mixtures. However, in dried ionic liquids only Cu3Sn was obtained, surprisingly. The difference in the structure might be attributed to the various interactions of the ions with the Cu substrate. In addition, the deposition potential was found to play a significant role in the morphology of deposits.
    Print ISSN: 2090-3529
    Electronic ISSN: 2090-3537
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2018
    Description: In this paper, investigation on the effect of separator thickness and porosity on the performance of Lithium Iron Phosphate batteries are analyzed. In recent years there have been intensive efforts to improve the performance of the lithium-ion batteries. Separators are important component of lithium-ion batteries since they isolate the electrodes and prevent electrical short-circuits. Separators are also used as an electrolyte reservoir which is used as a medium for ions transfer during charge and discharge. Electrochemical performance of the batteries is highly dependent on the material, structure, and separators used. This paper compares the effects of material properties and the porosity of the separator on the performance of lithium-ion batteries. Four different separators, polypropylene (PP) monolayer and polypropylene/polyethylene/polypropylene (PP/PE/PP) trilayer, with the thickness of 20 μm and 25 μm and porosities of 41%, 45%, 48%, and 50% were used for testing. It was found that PP separator with porosity of 41% and PP/PE/PP separator of 45% porosity perform better compared to other separators.
    Print ISSN: 2090-3529
    Electronic ISSN: 2090-3537
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2018
    Description: Due to the advantages of high specific capacity, various temperatures, and low cost, layered LiNi0.6Co0.2Mn0.2O2 has become one of the potential cathode materials for lithium-ion battery. However, its application was limited by the high cation mixing degree and poor electric conductivity. In this paper, the influences of synthesis methods and modification such surface coating and doping materials on the electrochemical properties such as capacity, cycle stability, rate capability, and impedance of LiNi0.6Co0.2Mn0.2O2 cathode materials are reviewed and discussed. The confronting issues of LiNi0.6Co0.2Mn0.2O2 cathode materials have been pointed out, and the future development of its application is also prospected.
    Print ISSN: 2090-3529
    Electronic ISSN: 2090-3537
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2017
    Description: The Real Time Analyzer (RTA) utilizing DC- and AC-voltammetric techniques is an in situ, online monitoring system that provides a complete chemical analysis of different electrochemical deposition solutions. The RTA employs multivariate calibration when predicting concentration parameters from a multivariate data set. Although the hierarchical and multiblock Principal Component Regression- (PCR-) and Partial Least Squares- (PLS-) based methods can handle data sets even when the number of variables significantly exceeds the number of samples, it can be advantageous to reduce the number of variables to obtain improvement of the model predictions and better interpretation. This presentation focuses on the introduction of a multistep, rigorous method of data-selection-based Least Squares Regression, Simple Modeling of Class Analogy modeling power, and, as a novel application in electroanalysis, Uninformative Variable Elimination by PLS and by PCR, Variable Importance in the Projection coupled with PLS, Interval PLS, Interval PCR, and Moving Window PLS. Selection criteria of the optimum decomposition technique for the specific data are also demonstrated. The chief goal of this paper is to introduce to the community of electroanalytical chemists numerous variable selection methods which are well established in spectroscopy and can be successfully applied to voltammetric data analysis.
    Print ISSN: 2090-3529
    Electronic ISSN: 2090-3537
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2017
    Description: This study presents the results of a coupled electrocoagulation-phytoremediation treatment for the reduction of copper, cadmium, lead, and zinc, present in aqueous solution. The electrocoagulation was carried out in a batch reactor using aluminum electrodes in parallel arrangement; the optimal conditions were current density of 8 mA/cm2 and operating time of 180 minutes. For phytoremediation the macrophytes, Typha latifolia L., were used during seven days of treatment. The results indicated that the coupled treatment reduced metal concentrations by 99.2% Cu, 81.3% Cd, and 99.4% Pb, while Zn increased due to the natural concentrations of the plant used.
    Print ISSN: 2090-3529
    Electronic ISSN: 2090-3537
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2016
    Description: The synergistic effects of fluid flow, sand particles, and solution pH on erosion-corrosion of AISI 4330 steel alloy in saline-sand medium were studied through a rotating cylinder electrode (RCE) system by weight-loss and electrochemical measurements. The worn surface was analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Results show that, under all the test conditions assessed, the passivity of the steel alloy could not be maintained; as a result, an activation mechanism dominates the corrosion process of steel alloy. Furthermore, the potentiodynamic curves show that, with the increasing of the electrode flow rate and particle size, the anodic current density increased, which is due to deterioration of the electrode by the impacting slurry. Although the increase of particle size affects the anodic current density, the effect of particle size does not cause a significant change in the polarization behavior of the steel electrode. The electrochemical impedance and potentiodynamic curves suggest that erosion-corrosion phenomenon of the ASISI 4330 steel is under mixed control of mass transport and charge transfer. The inductive loops formed in the impedance plots are representative of an increase in roughness of the electrode caused by the particles impacting at the surface. The change in the passivity of the steel alloy as the pH is altered plays an important role in the corrosion rate.
    Print ISSN: 2090-3529
    Electronic ISSN: 2090-3537
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2016
    Description: Chemically modified mesoporous silica material (SBA-15) was used for the construction of Tl(I) selective carbon paste electrode. The best response was found with the electrode containing 10% modifier as electrode material. The electrode has a lower detection limit of 6.0 × 10−9 M in a working concentration range of 1.0 × 10−8–1.0 × 10−1 M. The selectivity coefficient calculated by match potential method (MPM) shows the high selectivity of electrode towards Tl(I) over other tested ions. The electrode was successfully applied as an indicator electrode for the titration of 0.01 M TlNO3 solution with standards EDTA solution and for sequential titration of mixture of different anions.
    Print ISSN: 2090-3529
    Electronic ISSN: 2090-3537
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2016
    Description: Electrochemical determination of acetaminophen (APAP) was successfully performed using a carbon paste electrode (CPE) modified with coffee husks (CH-CPE). Scanning electron microscopy (SEM) and SEM-energy dispersive X-ray spectroscopy (SEM-EDX) were, respectively, used for the morphological and elemental characterization of coffee husks prior to their utilization. The electrochemical oxidation of APAP was investigated by cyclic voltammetry (CV), differential pulse voltammetry (DPV), and square wave voltammetry (SWV). SWV technique appeared to be more sensitive since the oxidation current of APAP was twofold higher with the CH-CPE sensor than with the bare CPE, in relation to the increase in the organophilic character of the electrode surface. Furthermore, on CH-CPE, the current response of APAP varied linearly with its concentration in the range of 6.6 μM to 0.5 mM, leading to a detection limit of 0.66 μM (). Finally, the proposed CH-CPE sensor was successfully used to determine the amount of APAP in commercialized tablets (Doliprane® 500 and Doliprane 1000), with a recovery rate ranging from 98% to 103%. This novel sensor opens the way for the development of low-cost and reliable devices for the electroanalysis of pharmaceutical formulations in developing countries.
    Print ISSN: 2090-3529
    Electronic ISSN: 2090-3537
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2016
    Description: A facile solvothermal strategy is developed for the preparation of nanometer sized Pd-Cu alloy. We can control the morphology of these alloys with the use of ethylene glycol (EG) in the presence of KOH. Namely, by increasing the concentration of KOH/EG, the Pd-Cu alloys with different morphologies from near-spherical nanoparticles (NPs) to nanorods and nanowire networks have been prepared. Among all these alloys, near-spherical Pd-Cu NPs-modified electrodes exhibit the highest catalytic activity (11.7 mA/cm2) and stability toward the electrooxidation of ethanol in comparison with commercial Pd/C-modified ones (2.1 mA/cm2).
    Print ISSN: 2090-3529
    Electronic ISSN: 2090-3537
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2016
    Description: The electrochemical deposition of zinc on single-crystal -type GaN(0001) from a sulphate solution has been investigated on the basis of electrochemical techniques including cyclic voltammetry, chronoamperometry, and Tafel plot. The morphology and crystal structure of zinc deposits have been characterized by means of scanning electron microscopy, X-ray diffraction, and energy-dispersive X-ray analysis. The result has revealed that the deposition of Zn on GaN electrode commenced at a potential of −1.12 V versus Ag/AgCl. According to the Tafel plot, an exchange current density of ~0.132 mA cm−2 was calculated. In addition, the current transient measurements have shown that Zn deposition process followed the instantaneous nucleation in 10 mM ZnSO4 + 0.5 M Na2SO4 + 0.5 M H3BO3 (pH = 4).
    Print ISSN: 2090-3529
    Electronic ISSN: 2090-3537
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2016
    Description: The primary current distribution and the resistance of a modified Hull cell are calculated by using conformal mapping technique coupled with numerical evaluation of the resulting integral equations. An approximate analytical expression for the primary current distribution of a modified Hull cell is presented. The primary current distribution along the cathode surface is noticed varying in controlled manner as a function of position on the substrate. The current distributions (primary, secondary, and tertiary) in the cell have also been calculated at different applied average current densities (2, 4.1, and 8.2 mA cm−2) through numerical simulation by using finite element based software. The numerical simulation result of the primary current distribution is then compared with the analytical solution and a good match is found. Experimentally, single Cu metal electrodeposition is carried out at different applied average current densities (2, 4.1, and 8.2 mA cm−2) in a modified Hull. The current distribution (primary, secondary, and tertiary) results obtained from the numerical simulation are compared with the experimental results and a satisfactory match is found. Surface morphology of the Cu deposits is examined using scanning electron microscopy (SEM).
    Print ISSN: 2090-3529
    Electronic ISSN: 2090-3537
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2016
    Description: A glassy carbon electrode (GCE) was modified with a fullerene/Multiwalled Carbon Nanotubes (MWCNTs)/Nafion composite and applied to the determination of carbendazim, a fungicide. The voltammetric behavior of the analyte was investigated using Cyclic Voltammetry (CV), on the bare GCE and on the same electrode coated by a thin film of the composite material. The electrode response was more than fourfold important on the modified electrode, due to electrical conductivity of fullerene and MWCNT and to favorable electrostatic interaction between the negatively charged Nafion and the protonated fungicide. A sensitive electroanalytical procedure based on Square Wave Voltammetry (SWV) was then developed to detect the analyte. Under the optimum conditions, a linear relationship was obtained between the peak current and the concentration of carbendazim, in the range from 2.0 × 10−8 mol/L to 3.5 × 10−7 mol/L, leading to a detection limit of 1.7 × 10−8 mol/L and to a quantification limit of 5.57 × 10−8 mol/L. The developed procedure was successfully applied to detect carbendazim upon adsorption by some ferritic soils.
    Print ISSN: 2090-3529
    Electronic ISSN: 2090-3537
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2018
    Description: Carbon-based electrodes have been developed for the detection of neurotransmitters over the past 30 years using voltammetry and amperometry. The traditional electrode for neurotransmitter detection is the carbon fiber microelectrode (CFME). The carbon-based electrode is suitable for in vivo neurotransmitter detection due to the fact that it is biocompatible and relatively small in surface area. The advent of nanoscale electrodes is in high demand due to smaller surface areas required to target specific brain regions that are also minimally invasive and cause relatively low tissue damage when implanted into living organisms. Carbon nanotubes (CNTs), carbon nanofibers, carbon nanospikes, and carbon nanopetals among others have all been utilized for this purpose. Novel electrode materials have also required novel insulations such as glass, epoxy, and polyimide coated fused silica capillaries for their construction and usage. Recent research developments have yielded a wide array of carbon nanoelectrodes with superior properties and performances in comparison to traditional electrode materials. These electrodes have thoroughly enhanced neurotransmitter detection allowing for the sensing of biological compounds at lower limits of detection, fast temporal resolution, and without surface fouling. This will allow for greater understanding of several neurological disease states based on the detection of neurotransmitters.
    Print ISSN: 2090-3529
    Electronic ISSN: 2090-3537
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2018
    Description: The performance of Pd electrocatalysts for formic acid electrooxidation was improved by application of metal oxide-multiwall carbon nanotubes composites as a catalyst support. Hybrid oxides/MWCNTs were synthesized by two different methods: chemical reduction method and impregnation method. Pd based catalysts were synthesized by polyol method on the MWCNTs or oxide/MWCNTs composites. The In2O3 was deposited on MWCNTs by impregnation method (In2O3/MWCNTs-IM support) and in the presence of NaBH4 (In2O3/MWCNTs-NaBH4 support). The physical properties of the Pd/In2O3/MWCNTs-IM, Pd/In2O3/MWCNTs-NaBH4, Pd/SnO2/MWCNTs, and Pd/MWCNTs catalysts were characterized and their electrocatalytical performance in formic acid oxidation was compared. During Pd deposition on In2O3/MWCNTs-NaBH4 support, InPd2 structure was formed as observed by XRD. The electrochemical tests indicate that the two Pd/ In2O3/MWCNTs electrocatalysts have higher electrocatalytic activity than those of Pd/SnO2/MWCNTs and Pd/MWCNTs. The best performance was observed for the catalyst obtained by In2O3 impregnation of MWCNTs denoted by Pd/In2O3/MWCNTs-IM.
    Print ISSN: 2090-3529
    Electronic ISSN: 2090-3537
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2018
    Description: Analysis of the role of oxygen-containing nanoclusters in oxygen reduction reaction (ORR) on Pt-electrodes in alkaline media is provided on the basis of the concept of electrochemical processes with slowed stage of consecutive heterogeneous chemical reaction (ConHCR). Under the ConHCR concept, the main factor determining the ORR characteristics is energetic inhomogeneity of electrode surface (EIES) according to Temkin. A new concept, according to which EIES is determined by the Gibbs energy of formation of oxygen-containing surface structures with inclusions of surface defects of the platinum crystal structure, , is formulated. A correlation between the level of EIES of Pt-electrodes and packing density of atoms on the surface of Pt(hkl) monocrystals is determined. The concept, according to which the stationary potential of ORR process is considered as a “mixed potential” of two reactions (electrochemical reduction of surface atom and consecutive oxidation of by molecular oxygen), is substantiated. It is proposed that the formation of surface nanocluster transition state [⁎(OO)(OH)] defines the rate of the entire ORR process on Pt-electrodes in alkaline media.
    Print ISSN: 2090-3529
    Electronic ISSN: 2090-3537
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2018
    Description: The structure of carbon material comprising the anode is the key to the performance of a lithium ion capacitor. In addition to determining the capacity, the structure of the carbon material also determines the diffusion rate of the lithium ion into the anode which in turn controls power density which is vital in high rate applications. This paper covers details of systematic investigation of the performance of a structurally novel carbon, called Randomly Oriented High Graphene (ROHG) carbon, and graphite in a high rate application device, that is, lithium ion capacitor. Electrochemical impedance spectroscopy shows that ROHG is less resistive and has faster lithium ion diffusion rates (393.7 × 10−3 S·s(1/2)) compared to graphite (338.1 × 10−3 S·s(1/2)). The impedance spectroscopy data is supported by the cell data showing that the ROHG carbon based device has energy density of 22.8 Wh/l with a power density of 4349.3 W/l, whereas baseline graphite based device has energy density of 5 Wh/l and power density of 4243.3 W/l. This data clearly shows advantage of the randomly oriented graphene platelet structure of ROHG in lithium ion capacitor performance.
    Print ISSN: 2090-3529
    Electronic ISSN: 2090-3537
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2018
    Description: Epoxy reinforced with two kinds of nanoparticles dealing with nano-SiO2 and nano-Fe2O3 was coated on steel rebar embedded in a chloride contaminated cement mortar. NaCl was added to the fresh Portland cement paste (at 0.3% and 0.5% by weight of cement) to simulate the chloride contamination at the critical level. The effect of incorporating nanoparticles on the corrosion resistance of epoxy-coated steel rebar was investigated by linear potentiodynamic polarization and electrochemical impedance spectroscopy. For the 0.3 wt.% chloride mortars, the electrochemical monitoring of the coated steel rebars during immersion for 56 days in 0.1 M NaOH solutions suggested the beneficial role of nano-Fe2O3 particles in significantly improving the corrosion resistance of the epoxy-coated rebar. After 56 days of immersion, the nano-Fe2O3 reduced the corrosion current of epoxy-coated rebar by a factor of 7.9. When the chloride concentration in the cement mortar was 0.5 wt.%, the incorporation of nanoparticles into the epoxy matrix did not enhance the corrosion resistance of epoxy coating for the rebar. At this critical level, chloride ions initiated rebar corrosion through nanoparticles at the epoxy/rebar interface.
    Print ISSN: 2090-3529
    Electronic ISSN: 2090-3537
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2018
    Description: The voltammetric response of platinum metal oxides is discussed with respect to novel pH sensors combining both miniaturization and stability. For practical applications in solutions of any kind, for example, in tap water and in domestic sewage, various interferences must be considered, such as chloride and reducing agents. This work clarifies the voltammetric behavior of RuO2 electrodes in solutions of different pH values and ionic strengths.
    Print ISSN: 2090-3529
    Electronic ISSN: 2090-3537
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2018
    Description: By cyclic voltammetry at high scan rates, the electrochemical properties of RuO2 in acidic and alkaline solutions were investigated in detail. Thirteen current peaks can be distinguished in sulfuric acid and sodium hydroxide. With respect to the pH sensitivity of RuO2 electrodes, we considered charge calculations, peak currents, and apparent diffusion coefficients. The nature of the Ru(II) oxidation was clarified by Ru(I)−Ru(III) species.
    Print ISSN: 2090-3529
    Electronic ISSN: 2090-3537
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2018
    Description: Pd crystals enclosed by (100) facets were prepared in an aqueous solution containing cetyltrimethylammonium bromide (CTAB) as the capping agent and ascorbic acid as the reducing agent at 30, 40, and 50°C by a modified seed-mediated fabrication technique. Regardless of the reaction temperature, the absorption peak between 300 and 400 nm assigned to decreased with an increase in the reaction time after the addition of ascorbic acid in the aqueous solution containing CTAB because of Pd deposition. The field emission-scanning electron microscopy images showed that the Pd crystals were enclosed by only (100) facets, and their fractions depended on the reaction temperature. The ratios of the peak current at 0.54 and 0.48 V were 0.60, 0.54, and 0.47 for the samples prepared at 30, 40, and 50°C, respectively, suggesting that the proportion of the (100) facet on the Pd surface was higher at lower temperatures.
    Print ISSN: 2090-3529
    Electronic ISSN: 2090-3537
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2017
    Description: Metal–air batteries exhibit high potential for grid-scale energy storage because of their high theoretical energy density, their abundance in the earth’s crust, and their low cost. In these batteries, the oxygen evolution reaction (OER) occurs on the air electrode during charging. This study proposes a method for improving the OER electrode performance. The method involves sequentially depositing a Ni underlayer, Sn whiskers, and a Ni protection layer on the metal mesh. Small and uniform gas bubbles form on the Ni/Sn/Ni mesh, leading to low overpotential and a decrease in the overall resistance of the OER electrode. The results of a simulated life cycle test indicate that the Ni/Sn/Ni mesh has a life cycle longer than 1,300 cycles when it is used as the OER electrode in 6 M KOH.
    Print ISSN: 2090-3529
    Electronic ISSN: 2090-3537
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2017
    Description: This paper covers details of systematic investigation of the thermodynamics (entropy and enthalpy) of intercalation associated with lithium ion in a structurally novel carbon, called Randomly Oriented High Graphene (ROHG) carbon and graphite. Equilibrated OCV (Open Circuit Voltage) versus temperature relationship is investigated to determine the thermodynamic changes with the lithium intercalation. ROHG carbon shows entropy of 9.36 J·mol−1·K−1 and shows no dependency on the inserted lithium concentration. Graphite shows initial entropy of 84.27 J·mol−1·K−1 and shows a strong dependence on lithium concentration. ROHG carbon (from −90.85 kJ mol−1 to −2.88 kJ mol−1) shows gradual change in the slope of enthalpy versus lithium ion concentration plot compared to graphite (−48.98 kJ mol−1 to 1.84 kJ mol−1). The study clearly shows that a lower amount of energy is required for the lithium ion intercalation into the ROHG structure compared to graphite structure. Randomly oriented graphene platelet cluster structure of ROHG carbon makes it easier for the intercalation or deintercalation of lithium ion. The ease of intercalation and the small cluster structure of ROHG as opposed to the long linear platelet structure of graphite lead to higher rates of the charge-discharge process for ROHG, when used as an electrode material in electrochemical applications.
    Print ISSN: 2090-3529
    Electronic ISSN: 2090-3537
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2017
    Description: Environmental concerns and energy security uncertainties associated with fossil fuels have driven the world to shift to renewable energy sources. However, most renewable energy sources with exception of hydropower are intermittent in nature and thus need storage systems. Amongst various storage systems, supercapacitors are the promising candidates for energy storage not only in renewable energies but also in hybrid vehicles and portable devices due to their high power density. Supercapacitor electrodes are almost invariably made of carbon derived from biomass. Several reviews had been focused on general carbon materials for supercapacitor electrode. This review is focused on understanding the extent to which different types of biomasses have been used as porous carbon materials for supercapacitor electrodes. It also details hydrothermal microwave assisted, ionothermal, and molten salts carbonization as techniques of synthesizing activated carbon from biomasses as well as their characteristics and their impacts on electrochemical performance.
    Print ISSN: 2090-3529
    Electronic ISSN: 2090-3537
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2016
    Description: Porous metals and alloys, such as those fabricated via electrochemical dealloying, are of interest for a variety of energy applications, ranging from their potential for enhanced catalytic behavior to their use as high surface area supports for pseudocapacitor materials. Here, the electrochemical dealloying process was explored for electrodeposited binary NiCo and ternary NiCoCu thin films. For each of the four different metal ratios, films were dealloyed using linear sweep voltammetry to various potentials in order to gain insight into the evolution of the film over the course of the linear sweep. Electrochemical capacitance, scanning electron microscopy, and energy dispersive X-ray spectroscopy were used to examine the structure and composition of each sample before and after linear sweep voltammetry was performed. For NiCo films, dealloying resulted in almost no change in composition but did result in an increased capacitance, with greater increases occurring at higher linear sweep potentials, indicating the removal of material from the films. Dealloying also resulted in the appearance of large pores on the surface of the high nickel percentage NiCo films, while low nickel percentage NiCo films had little observable change in morphology. For NiCoCu films, Cu was almost completely removed at linear sweep potentials greater than 0.5 V versus Ag/AgCl. The linear sweep removed large Cu-rich dendrites from the films, while also causing increases in measured capacitance.
    Print ISSN: 2090-3529
    Electronic ISSN: 2090-3537
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2016
    Description: Most recently, green synthesis of metal oxide nanoparticles has become an interesting subject of the nanoscience and nanotechnology. The use of plant systems has been deemed a green route and a dependable method for nanoparticle biosynthesis, owing to its environmental friendly nature. The present work demonstrates the bioreductive green synthesis of nanosized zinc oxide (ZnO) using peel extracts of pomegranate. Highly crystalline ZnO nanoparticles (ZnO NPs) which are 5 nm in particle size were characterised by HRTEM and XRD. FT-IR spectra confirmed the presence of the biomolecules and formation of plant protein-coated ZnO NPs and also the pure ZnO NPs. Electrochemical investigation revealed the redox properties and the conductivity of the as-prepared ZnO nanoparticles. The optical band gap of ZnO NPs was calculated to be 3.48 eV which indicates that ZnO NPs can be used in metal oxide semiconductor-based devices. Further, the nanomaterials were also found to be good inhibitors of bacterial strains at both low and high concentrations of 5–10 mg mL−1.
    Print ISSN: 2090-3529
    Electronic ISSN: 2090-3537
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2016
    Description: The Baltic Sea is a relatively shallow inland sea surrounded by the countries of North-Eastern Europe and Scandinavia. The brackish water in the Baltic Sea has low salt concentration and it is typically one-sixth of the ocean seawater. The “nominal” amount of dissolved solids, upon which formulae for artificial seawater are based, is about 34,500 ppm, of which most is sodium chloride. The major constituents are those whose concentrations are greater than 1 mg/L and are not greatly affected by biological processes. The ratio of concentrations of these ions and molecules to each other is relatively constant. Corrosion rates were determined in long-term tests in Gulf of Finland brackish water off Helsinki. The water temperature varies through the year from about 0°C in January to 15-16°C in June to August. Salinity is 4–6, highest at the end of summer and lowest when ice melts. pH is between 7.0 and 8.1. Weight loss tests from one- to four-year tests for steel, stainless steel, copper, aluminium, zinc, and galvanized steel are reported and compared to short term laboratory tests in artificial seawater. Tests for passivation rates and crevice corrosion for stainless steel are discussed in terms of environment variation. The effect of corrosion on strength of steel is also discussed.
    Print ISSN: 2090-3529
    Electronic ISSN: 2090-3537
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2016
    Description: The electrochemical processes in solutions with a much lower amount of free cyanide (
    Print ISSN: 2090-3529
    Electronic ISSN: 2090-3537
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2016
    Description: Corrosion behavior of Mg-5Y-1.5Nd alloy was investigated after heat treatment. The microstructure and precipitation were studied by scanning electron microscope (SEM) and energy dispersive spectrometer (EDS). The weight loss rates of different samples were arranged as T6-24 hT6-6 hT6-14 has-castT4. The open circuit potential (OCP) showed that T4 sample had a more positive potential than that of other samples. The potentiodynamic polarization curves showed that the T6-24 h sample had the highest corrosion current density of 245.362 μAcm−2, whereas the T4 sample had the lowest at 52.164 μAcm−2. The EIS results confirmed that the heat treatment reduced the corrosion resistance for Mg-5Y-1.5Nd alloy, because the precipitations acted as the cathode of electrochemical reactions to accelerate the corrosion process. The corrosion rates of different samples were mainly determined by the amount and distribution of the precipitations. The precipitations played dual roles that depended on the amount and distribution. The presence of the phase in the alloys could deteriorate the corrosion performance as it could act as an effective galvanic cathode. Otherwise, a fine and homogeneous phase appeared to be a better anticorrosion barrier.
    Print ISSN: 2090-3529
    Electronic ISSN: 2090-3537
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2018
    Description: An improved mathematical model was used to extend polarization curves for direct propane fuel cells (DPFCs) to larger current densities than could be obtained with any of the previous models. DPFC performance was then evaluated using eleven different variables. The variables related to transport phenomena had little effect on DPFC polarization curves. The variables that had the greatest influence on DPFC polarization curves were all related to reaction rate phenomena. Reaction rate phenomena were dominant over the entire DPFC polarization curve up to 100 mA/cm2, which is a value that approaches the limiting current densities of DPFCs. Previously it was known that DPFCs are much different than hydrogen proton exchange membrane fuel cells (PEMFCs). This is the first work to show the reason for that difference. Reaction rate phenomena are dominant in DPFCs up to the limiting current density. In contrast the dominant phenomenon in hydrogen PEMFCs changes from reaction rate phenomena to proton migration through the electrolyte and to gas diffusion at the cathode as the current density increases up to the limiting current density.
    Print ISSN: 2090-3529
    Electronic ISSN: 2090-3537
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2019
    Description: A simple and efficient new electrochemical sensor based on molecularly imprinted polymer has been developed for selective detection of an anticancer agent Etoposide (ETP). The sensor was prepared by electropolymerization via cyclic voltammetry (CV) of pyrrole onto a glassy carbon electrode (GCE) in the presence of ETP molecules. The extraction of ETP molecules embedded in the polymeric matrix was carried out by overoxidation in sodium hydroxide medium using CV. Various important parameters affecting the performance of the imprinted film (MIP) coated sensor were studied and optimized using differential pulse voltammetry (DPV). Under optimal conditions, the sensor response exhibited a linear dependence on ETP concentration (R2 = 0.999) over the range 5.0×10−7 M – 1.0×10−5 M with a LOD (3σ/m) of 2.8×10−9 M. The precision (% RSD, n=6) of the proposed sensor for intra- and interdays was found to be 0.84 and 2.46%, respectively. The selectivity of MIP/GCE sensor toward ETP was investigated in the presence of different interfering molecules including excipients and ETP metabolites. The developed sensor showed great recognition ability toward ETP and was successfully applied for its determination in injectable dosage forms and biological human fluids.
    Print ISSN: 2090-3529
    Electronic ISSN: 2090-3537
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2019
    Description: Considering the importance of conductive polymer nanocomposite, the present paper attempts to create a method for increasing the conductivity of poly(o-aminophenol). Nanocomposite MnO2/poly(o-aminophenol) thin film was synthesized by using pulse potential electrodeposition technique on a graphite electrode. In this research, nanoparticles of MnO2 are used after synthesis to prepare polymer nanocomposites in one-step. Appending of MnO2 to polymer matrix increases the current. This current growth could be ascribed to the synergistic MnO2 nanostructure, which presents the superior surface area and smaller particle size that is increasingly acting sites. Morphology or samples composition was investigated by the scanning electron microscope and the UV-Vis method, which clearly indicate the formation of nanocomposites. The findings show that the capacitive behavior of MnO2-poly(o-aminophenol) is superior to poly(o-aminophenol), especially at high potential high temperatures. The results showed that MnO2/poly(o-aminophenol) had a higher level of activity and the electron transfer capability was faster than pure polymer film. The doped MnO2 polymer also has excellent cyclic performance and load discharge features. Additional electrochemical properties of these polymer composites were observed against pure polymer so that capacity of 645 Fg−1 has been designated.
    Print ISSN: 2090-3529
    Electronic ISSN: 2090-3537
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2019
    Description: Heterocyclic compounds containing the 1,2,3-triazole moiety can be synthesized through click-chemistry, which is rapid reactions with good yields allowing the synthesis of great derivatives diversity by making minor changes in the reagents. The products were obtained with good yields through a synthetic route which uses ready available nonexpensive commercial reagents and without any further purification of any product or intermediate. The carbon steel anticorrosive activity was tested through weight loss and electrochemical assays in acid media. It was observed relevant inhibition efficiency (〉 90%) for inhibitors 1 and 2. From Langmuir isotherm, it was hypothesized the adsorption of inhibitors on the carbon steel surface might occur by physical and chemical interaction; however, the activation energy raised suggests a physisorption process for the interaction of the inhibitor on the carbon steel surface.
    Print ISSN: 2090-3529
    Electronic ISSN: 2090-3537
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2018
    Description: Micro- and nanostructured Ni/NiO surfaces were generated by femtosecond laser structuring for oxygen evolution reaction in alkaline water electrolysis cells. For two different angles between the laser beam and the nickel surface, two different types of laser-structured electrodes were prepared, characterized, and compared with a plane tempered nickel electrode. Their electrochemical activities for the oxygen evolution reaction were tested by using cyclic and linear sweep voltammetry. The chemical surface composition was investigated by X-ray photoelectron spectroscopy. Laser structuring increased the overall electrochemical performance by more than one order of magnitude. The overpotential of the laser-structured electrodes for the oxygen evolution reaction was decreased by more than 100 mV due to high defect densities of the structures created by the laser ablation process.
    Print ISSN: 2090-3529
    Electronic ISSN: 2090-3537
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2016-05-17
    Description: The Baltic Sea is a relatively shallow inland sea surrounded by the countries of North-Eastern Europe and Scandinavia. The brackish water in the Baltic Sea has low salt concentration and it is typically one-sixth of the ocean seawater. The “nominal” amount of dissolved solids, upon which formulae for artificial seawater are based, is about 34,500 ppm, of which most is sodium chloride. The major constituents are those whose concentrations are greater than 1 mg/L and are not greatly affected by biological processes. The ratio of concentrations of these ions and molecules to each other is relatively constant. Corrosion rates were determined in long-term tests in Gulf of Finland brackish water off Helsinki. The water temperature varies through the year from about 0°C in January to 15-16°C in June to August. Salinity is 4–6, highest at the end of summer and lowest when ice melts. pH is between 7.0 and 8.1. Weight loss tests from one- to four-year tests for steel, stainless steel, copper, aluminium, zinc, and galvanized steel are reported and compared to short term laboratory tests in artificial seawater. Tests for passivation rates and crevice corrosion for stainless steel are discussed in terms of environment variation. The effect of corrosion on strength of steel is also discussed.
    Print ISSN: 2090-3529
    Electronic ISSN: 2090-3537
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2016-05-18
    Description: The synergistic effects of fluid flow, sand particles, and solution pH on erosion-corrosion of AISI 4330 steel alloy in saline-sand medium were studied through a rotating cylinder electrode (RCE) system by weight-loss and electrochemical measurements. The worn surface was analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Results show that, under all the test conditions assessed, the passivity of the steel alloy could not be maintained; as a result, an activation mechanism dominates the corrosion process of steel alloy. Furthermore, the potentiodynamic curves show that, with the increasing of the electrode flow rate and particle size, the anodic current density increased, which is due to deterioration of the electrode by the impacting slurry. Although the increase of particle size affects the anodic current density, the effect of particle size does not cause a significant change in the polarization behavior of the steel electrode. The electrochemical impedance and potentiodynamic curves suggest that erosion-corrosion phenomenon of the ASISI 4330 steel is under mixed control of mass transport and charge transfer. The inductive loops formed in the impedance plots are representative of an increase in roughness of the electrode caused by the particles impacting at the surface. The change in the passivity of the steel alloy as the pH is altered plays an important role in the corrosion rate.
    Print ISSN: 2090-3529
    Electronic ISSN: 2090-3537
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2016-03-29
    Description: Chemically modified mesoporous silica material (SBA-15) was used for the construction of Tl(I) selective carbon paste electrode. The best response was found with the electrode containing 10% modifier as electrode material. The electrode has a lower detection limit of 6.0 × 10−9 M in a working concentration range of 1.0 × 10−8–1.0 × 10−1 M. The selectivity coefficient calculated by match potential method (MPM) shows the high selectivity of electrode towards Tl(I) over other tested ions. The electrode was successfully applied as an indicator electrode for the titration of 0.01 M TlNO3 solution with standards EDTA solution and for sequential titration of mixture of different anions.
    Print ISSN: 2090-3529
    Electronic ISSN: 2090-3537
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2016-04-20
    Description: Corrosion behavior of Mg-5Y-1.5Nd alloy was investigated after heat treatment. The microstructure and precipitation were studied by scanning electron microscope (SEM) and energy dispersive spectrometer (EDS). The weight loss rates of different samples were arranged as T6-24 hT6-6 hT6-14 has-castT4. The open circuit potential (OCP) showed that T4 sample had a more positive potential than that of other samples. The potentiodynamic polarization curves showed that the T6-24 h sample had the highest corrosion current density of 245.362 μAcm−2, whereas the T4 sample had the lowest at 52.164 μAcm−2. The EIS results confirmed that the heat treatment reduced the corrosion resistance for Mg-5Y-1.5Nd alloy, because the precipitations acted as the cathode of electrochemical reactions to accelerate the corrosion process. The corrosion rates of different samples were mainly determined by the amount and distribution of the precipitations. The precipitations played dual roles that depended on the amount and distribution. The presence of the phase in the alloys could deteriorate the corrosion performance as it could act as an effective galvanic cathode. Otherwise, a fine and homogeneous phase appeared to be a better anticorrosion barrier.
    Print ISSN: 2090-3529
    Electronic ISSN: 2090-3537
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2016-02-10
    Description: The electrochemical deposition of zinc on single-crystal -type GaN(0001) from a sulphate solution has been investigated on the basis of electrochemical techniques including cyclic voltammetry, chronoamperometry, and Tafel plot. The morphology and crystal structure of zinc deposits have been characterized by means of scanning electron microscopy, X-ray diffraction, and energy-dispersive X-ray analysis. The result has revealed that the deposition of Zn on GaN electrode commenced at a potential of −1.12 V versus Ag/AgCl. According to the Tafel plot, an exchange current density of ~0.132 mA cm−2 was calculated. In addition, the current transient measurements have shown that Zn deposition process followed the instantaneous nucleation in 10 mM ZnSO4 + 0.5 M Na2SO4 + 0.5 M H3BO3 (pH = 4).
    Print ISSN: 2090-3529
    Electronic ISSN: 2090-3537
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2016-01-18
    Description: A method for the simultaneous electrochemical purification of hydrogen sulfide and sulfur dioxide from sea water or industrial wastes is proposed. Fundamentally the method is based on the electrochemical affinity of the pair H2S and SO2. The reactions (oxidation of H2S and reduction of SO2) proceed on а proper catalyst in a flow reactor, without an external power by electrochemical means. The partial curves of oxidation of H2S and reduction of SO2 have been studied electrochemically on different catalysts. Following the additive principle the rate of the process has been found by intersection of the curves. The overall process rate has been studied in a flow type reactor. Similar values of the process rate have been found and these prove the electrochemical mechanism of the reactions. As a result the electrochemical method at adequate conditions is developed. The process is able to completely convert the initial reagents (concentrations ), which is difficult given the chemical kinetics.
    Print ISSN: 2090-3529
    Electronic ISSN: 2090-3537
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2019
    Description: Schiff base 2,2’-(5,5-dimethylcyclohexane-1,3-diylidene)bis(azan-1-yl-1-ylidene) diphenol (DmChDp) was synthesized and characterized using spectroscopic methods (IR, UV, NMR, and Mass) and cyclic voltammetric (CV) studies. The corrosion inhibition potency of (DmChDp) on mild steel (MS) in 1M HCl and 0.5M H2SO4 was investigated. The corrosion monitoring techniques employed for this purpose are gravimetric and electrochemical methods (EIS and potentiodynamic polarization studies). The study reveals that the Schiff base, DmChDp, acts as excellent corrosion inhibitor on mild steel in 1M HCl. DmChDp obeys Langmuir adsorption isotherm both in 1M HCl and 0.5M H2SO4 on MS. Polarization studies show that DmChDp behaves as a mixed type inhibitor in both media. Scanning electron microscopic analysis established the protective nature of DmChDp on mild steel surface. The impact of temperature on the corrosion of MS was also evaluated using gravimetric method.
    Print ISSN: 2090-3529
    Electronic ISSN: 2090-3537
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2018-03-06
    Description: By cyclic voltammetry at high scan rates, the electrochemical properties of RuO2 in acidic and alkaline solutions were investigated in detail. Thirteen current peaks can be distinguished in sulfuric acid and sodium hydroxide. With respect to the pH sensitivity of RuO2 electrodes, we considered charge calculations, peak currents, and apparent diffusion coefficients. The nature of the Ru(II) oxidation was clarified by Ru(I)−Ru(III) species.
    Print ISSN: 2090-3529
    Electronic ISSN: 2090-3537
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2018-03-06
    Description: The voltammetric response of platinum metal oxides is discussed with respect to novel pH sensors combining both miniaturization and stability. For practical applications in solutions of any kind, for example, in tap water and in domestic sewage, various interferences must be considered, such as chloride and reducing agents. This work clarifies the voltammetric behavior of RuO2 electrodes in solutions of different pH values and ionic strengths.
    Print ISSN: 2090-3529
    Electronic ISSN: 2090-3537
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2018-03-06
    Description: Pd crystals enclosed by (100) facets were prepared in an aqueous solution containing cetyltrimethylammonium bromide (CTAB) as the capping agent and ascorbic acid as the reducing agent at 30, 40, and 50°C by a modified seed-mediated fabrication technique. Regardless of the reaction temperature, the absorption peak between 300 and 400 nm assigned to decreased with an increase in the reaction time after the addition of ascorbic acid in the aqueous solution containing CTAB because of Pd deposition. The field emission-scanning electron microscopy images showed that the Pd crystals were enclosed by only (100) facets, and their fractions depended on the reaction temperature. The ratios of the peak current at 0.54 and 0.48 V were 0.60, 0.54, and 0.47 for the samples prepared at 30, 40, and 50°C, respectively, suggesting that the proportion of the (100) facet on the Pd surface was higher at lower temperatures.
    Print ISSN: 2090-3529
    Electronic ISSN: 2090-3537
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2018-03-06
    Description: The structure of carbon material comprising the anode is the key to the performance of a lithium ion capacitor. In addition to determining the capacity, the structure of the carbon material also determines the diffusion rate of the lithium ion into the anode which in turn controls power density which is vital in high rate applications. This paper covers details of systematic investigation of the performance of a structurally novel carbon, called Randomly Oriented High Graphene (ROHG) carbon, and graphite in a high rate application device, that is, lithium ion capacitor. Electrochemical impedance spectroscopy shows that ROHG is less resistive and has faster lithium ion diffusion rates (393.7 × 10−3 S·s(1/2)) compared to graphite (338.1 × 10−3 S·s(1/2)). The impedance spectroscopy data is supported by the cell data showing that the ROHG carbon based device has energy density of 22.8 Wh/l with a power density of 4349.3 W/l, whereas baseline graphite based device has energy density of 5 Wh/l and power density of 4243.3 W/l. This data clearly shows advantage of the randomly oriented graphene platelet structure of ROHG in lithium ion capacitor performance.
    Print ISSN: 2090-3529
    Electronic ISSN: 2090-3537
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2018-03-06
    Description: Environmental concerns and energy security uncertainties associated with fossil fuels have driven the world to shift to renewable energy sources. However, most renewable energy sources with exception of hydropower are intermittent in nature and thus need storage systems. Amongst various storage systems, supercapacitors are the promising candidates for energy storage not only in renewable energies but also in hybrid vehicles and portable devices due to their high power density. Supercapacitor electrodes are almost invariably made of carbon derived from biomass. Several reviews had been focused on general carbon materials for supercapacitor electrode. This review is focused on understanding the extent to which different types of biomasses have been used as porous carbon materials for supercapacitor electrodes. It also details hydrothermal microwave assisted, ionothermal, and molten salts carbonization as techniques of synthesizing activated carbon from biomasses as well as their characteristics and their impacts on electrochemical performance.
    Print ISSN: 2090-3529
    Electronic ISSN: 2090-3537
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2018-03-06
    Description: Porous metals and alloys, such as those fabricated via electrochemical dealloying, are of interest for a variety of energy applications, ranging from their potential for enhanced catalytic behavior to their use as high surface area supports for pseudocapacitor materials. Here, the electrochemical dealloying process was explored for electrodeposited binary NiCo and ternary NiCoCu thin films. For each of the four different metal ratios, films were dealloyed using linear sweep voltammetry to various potentials in order to gain insight into the evolution of the film over the course of the linear sweep. Electrochemical capacitance, scanning electron microscopy, and energy dispersive X-ray spectroscopy were used to examine the structure and composition of each sample before and after linear sweep voltammetry was performed. For NiCo films, dealloying resulted in almost no change in composition but did result in an increased capacitance, with greater increases occurring at higher linear sweep potentials, indicating the removal of material from the films. Dealloying also resulted in the appearance of large pores on the surface of the high nickel percentage NiCo films, while low nickel percentage NiCo films had little observable change in morphology. For NiCoCu films, Cu was almost completely removed at linear sweep potentials greater than 0.5 V versus Ag/AgCl. The linear sweep removed large Cu-rich dendrites from the films, while also causing increases in measured capacitance.
    Print ISSN: 2090-3529
    Electronic ISSN: 2090-3537
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2018-03-06
    Description: Most recently, green synthesis of metal oxide nanoparticles has become an interesting subject of the nanoscience and nanotechnology. The use of plant systems has been deemed a green route and a dependable method for nanoparticle biosynthesis, owing to its environmental friendly nature. The present work demonstrates the bioreductive green synthesis of nanosized zinc oxide (ZnO) using peel extracts of pomegranate. Highly crystalline ZnO nanoparticles (ZnO NPs) which are 5 nm in particle size were characterised by HRTEM and XRD. FT-IR spectra confirmed the presence of the biomolecules and formation of plant protein-coated ZnO NPs and also the pure ZnO NPs. Electrochemical investigation revealed the redox properties and the conductivity of the as-prepared ZnO nanoparticles. The optical band gap of ZnO NPs was calculated to be 3.48 eV which indicates that ZnO NPs can be used in metal oxide semiconductor-based devices. Further, the nanomaterials were also found to be good inhibitors of bacterial strains at both low and high concentrations of 5–10 mg mL−1.
    Print ISSN: 2090-3529
    Electronic ISSN: 2090-3537
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2018-03-06
    Description: This study presents the results of a coupled electrocoagulation-phytoremediation treatment for the reduction of copper, cadmium, lead, and zinc, present in aqueous solution. The electrocoagulation was carried out in a batch reactor using aluminum electrodes in parallel arrangement; the optimal conditions were current density of 8 mA/cm2 and operating time of 180 minutes. For phytoremediation the macrophytes, Typha latifolia L., were used during seven days of treatment. The results indicated that the coupled treatment reduced metal concentrations by 99.2% Cu, 81.3% Cd, and 99.4% Pb, while Zn increased due to the natural concentrations of the plant used.
    Print ISSN: 2090-3529
    Electronic ISSN: 2090-3537
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2018-03-06
    Description: This paper covers details of systematic investigation of the thermodynamics (entropy and enthalpy) of intercalation associated with lithium ion in a structurally novel carbon, called Randomly Oriented High Graphene (ROHG) carbon and graphite. Equilibrated OCV (Open Circuit Voltage) versus temperature relationship is investigated to determine the thermodynamic changes with the lithium intercalation. ROHG carbon shows entropy of 9.36 J·mol−1·K−1 and shows no dependency on the inserted lithium concentration. Graphite shows initial entropy of 84.27 J·mol−1·K−1 and shows a strong dependence on lithium concentration. ROHG carbon (from −90.85 kJ mol−1 to −2.88 kJ mol−1) shows gradual change in the slope of enthalpy versus lithium ion concentration plot compared to graphite (−48.98 kJ mol−1 to 1.84 kJ mol−1). The study clearly shows that a lower amount of energy is required for the lithium ion intercalation into the ROHG structure compared to graphite structure. Randomly oriented graphene platelet cluster structure of ROHG carbon makes it easier for the intercalation or deintercalation of lithium ion. The ease of intercalation and the small cluster structure of ROHG as opposed to the long linear platelet structure of graphite lead to higher rates of the charge-discharge process for ROHG, when used as an electrode material in electrochemical applications.
    Print ISSN: 2090-3529
    Electronic ISSN: 2090-3537
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2018-03-06
    Description: The Real Time Analyzer (RTA) utilizing DC- and AC-voltammetric techniques is an in situ, online monitoring system that provides a complete chemical analysis of different electrochemical deposition solutions. The RTA employs multivariate calibration when predicting concentration parameters from a multivariate data set. Although the hierarchical and multiblock Principal Component Regression- (PCR-) and Partial Least Squares- (PLS-) based methods can handle data sets even when the number of variables significantly exceeds the number of samples, it can be advantageous to reduce the number of variables to obtain improvement of the model predictions and better interpretation. This presentation focuses on the introduction of a multistep, rigorous method of data-selection-based Least Squares Regression, Simple Modeling of Class Analogy modeling power, and, as a novel application in electroanalysis, Uninformative Variable Elimination by PLS and by PCR, Variable Importance in the Projection coupled with PLS, Interval PLS, Interval PCR, and Moving Window PLS. Selection criteria of the optimum decomposition technique for the specific data are also demonstrated. The chief goal of this paper is to introduce to the community of electroanalytical chemists numerous variable selection methods which are well established in spectroscopy and can be successfully applied to voltammetric data analysis.
    Print ISSN: 2090-3529
    Electronic ISSN: 2090-3537
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2018-03-06
    Description: Metal–air batteries exhibit high potential for grid-scale energy storage because of their high theoretical energy density, their abundance in the earth’s crust, and their low cost. In these batteries, the oxygen evolution reaction (OER) occurs on the air electrode during charging. This study proposes a method for improving the OER electrode performance. The method involves sequentially depositing a Ni underlayer, Sn whiskers, and a Ni protection layer on the metal mesh. Small and uniform gas bubbles form on the Ni/Sn/Ni mesh, leading to low overpotential and a decrease in the overall resistance of the OER electrode. The results of a simulated life cycle test indicate that the Ni/Sn/Ni mesh has a life cycle longer than 1,300 cycles when it is used as the OER electrode in 6 M KOH.
    Print ISSN: 2090-3529
    Electronic ISSN: 2090-3537
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2018
    Description: The electrodeposition of tin from SnO in ionic liquid 1-butyl-3-methylimidazolium hydrogen sulfate ([Bmim]HSO4) in the presence of water at different cathodic potential was investigated. With the addition of water to [Bmim]HSO4 ionic liquid, the electrochemical window of the electrolyte decreases and the reduction potential of Sn(II) positively shifts. The water content of ionic liquid electrolyte has a distinct effect on morphology of the deposits. As water content increased from 0 to 50% (v/v), the morphology of deposits varies from granular to hexagonal rod-like, then to hollow tubular, and finally to wire-like. The XRD phase analysis showed that both Sn and CuSn alloys were deposited in ionic liquid/water mixtures. However, in dried ionic liquids only Cu3Sn was obtained, surprisingly. The difference in the structure might be attributed to the various interactions of the ions with the Cu substrate. In addition, the deposition potential was found to play a significant role in the morphology of deposits.
    Print ISSN: 2090-3529
    Electronic ISSN: 2090-3537
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2018
    Description: Carbon-based electrodes have been developed for the detection of neurotransmitters over the past 30 years using voltammetry and amperometry. The traditional electrode for neurotransmitter detection is the carbon fiber microelectrode (CFME). The carbon-based electrode is suitable for in vivo neurotransmitter detection due to the fact that it is biocompatible and relatively small in surface area. The advent of nanoscale electrodes is in high demand due to smaller surface areas required to target specific brain regions that are also minimally invasive and cause relatively low tissue damage when implanted into living organisms. Carbon nanotubes (CNTs), carbon nanofibers, carbon nanospikes, and carbon nanopetals among others have all been utilized for this purpose. Novel electrode materials have also required novel insulations such as glass, epoxy, and polyimide coated fused silica capillaries for their construction and usage. Recent research developments have yielded a wide array of carbon nanoelectrodes with superior properties and performances in comparison to traditional electrode materials. These electrodes have thoroughly enhanced neurotransmitter detection allowing for the sensing of biological compounds at lower limits of detection, fast temporal resolution, and without surface fouling. This will allow for greater understanding of several neurological disease states based on the detection of neurotransmitters.
    Print ISSN: 2090-3529
    Electronic ISSN: 2090-3537
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2018
    Description: Due to the advantages of high specific capacity, various temperatures, and low cost, layered LiNi0.6Co0.2Mn0.2O2 has become one of the potential cathode materials for lithium-ion battery. However, its application was limited by the high cation mixing degree and poor electric conductivity. In this paper, the influences of synthesis methods and modification such surface coating and doping materials on the electrochemical properties such as capacity, cycle stability, rate capability, and impedance of LiNi0.6Co0.2Mn0.2O2 cathode materials are reviewed and discussed. The confronting issues of LiNi0.6Co0.2Mn0.2O2 cathode materials have been pointed out, and the future development of its application is also prospected.
    Print ISSN: 2090-3529
    Electronic ISSN: 2090-3537
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2019
    Description: This study presents the effect of heat treatment on porosity, phase composition, microhardness, and wear and corrosion resistances of the thermal sprayed NiCr20 coating after sealing with aluminum phosphate. The annealing temperatures were varied in a range of 400 to 1000°C. The obtained results indicated the porosity of coating decreased with increasing the annealing temperature. After treatment at temperatures in range of 800-1000°C, more than 90% of initial pores in the coating were successfully filled with the sealants. The XRD data revealed not only the formation of new phases of other compounds, but also the interaction between coating and sealant. After heat treatment, wear resistance of coating was 12 times higher than that without heat treatment. The corrosion test in H2SO4 solution indicated that the presence of sealant in coatings increased their corrosion resistance. From these findings, application of these NiCr20 coatings to protect steel against wear and corrosion appears very promising.
    Print ISSN: 2090-3529
    Electronic ISSN: 2090-3537
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2018
    Description: The performance of Pd electrocatalysts for formic acid electrooxidation was improved by application of metal oxide-multiwall carbon nanotubes composites as a catalyst support. Hybrid oxides/MWCNTs were synthesized by two different methods: chemical reduction method and impregnation method. Pd based catalysts were synthesized by polyol method on the MWCNTs or oxide/MWCNTs composites. The In2O3 was deposited on MWCNTs by impregnation method (In2O3/MWCNTs-IM support) and in the presence of NaBH4 (In2O3/MWCNTs-NaBH4 support). The physical properties of the Pd/In2O3/MWCNTs-IM, Pd/In2O3/MWCNTs-NaBH4, Pd/SnO2/MWCNTs, and Pd/MWCNTs catalysts were characterized and their electrocatalytical performance in formic acid oxidation was compared. During Pd deposition on In2O3/MWCNTs-NaBH4 support, InPd2 structure was formed as observed by XRD. The electrochemical tests indicate that the two Pd/ In2O3/MWCNTs electrocatalysts have higher electrocatalytic activity than those of Pd/SnO2/MWCNTs and Pd/MWCNTs. The best performance was observed for the catalyst obtained by In2O3 impregnation of MWCNTs denoted by Pd/In2O3/MWCNTs-IM.
    Print ISSN: 2090-3529
    Electronic ISSN: 2090-3537
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2018
    Description: The ability of different crosslinkers to crosslink nanometer thick films of the polymer poly(mercaptopropyl)methylsiloxane (PMPMS), thus stabilizing these films on solid supports, was investigated. The four crosslinkers included 1,11-bismaleimidotriethyleneglycol (BM(PEG)3), tris-(2-maleimidoethyl)amine (TMEA), bismaleimidohexane (BMH), and 1,1′-(methylenedi-4,1-phenylene) bismaleimide (BMDPM). PMPMS films treated with the four crosslinkers were compared in the effectiveness of achieved crosslinking, continuity and stability of the films to rearrangement at elevated temperatures, and modification with single-stranded DNA. The results of electrochemical analyses show that more hydrophilic crosslinkers had difficulty reacting fully with PMPMS thiols, even in these nanometer thin layers. This observation highlights the critical importance of selecting crosslinkers that are chemically compatible. Optimal selection of crosslinker yielded films in which the polymer film was largely incapable of rearranging, even at elevated temperatures, yielding reproducible and stable layers. These results validate use of these supports for applications such as monitoring thermal denaturation of immobilized DNA duplexes.
    Print ISSN: 2090-3529
    Electronic ISSN: 2090-3537
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2019
    Description: The conductivity of an electrolyte plays a significant role in deciding the performance of any battery over a wide temperature range from −40°C to 60°C. In this work, the conductivity of lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) at a varied salt concentration range from 0.2 M to 2.0 M in a multisolvent organic electrolyte system over a wide temperature range from −40°C to 60°C is reported. The mixed solvents used were 1,3-dioxolane (DOL), 1,2-dimethoxyethane (DME), and tetraethylene glycol dimethyl ether (TEGDME) with an equal ratio of DOL : DME : TEGDME (1 : 1 : 1 by volume). The experimental analysis performed over a wide temperature range revealed the maximum conductivity at salt concentrations ranging from 1.0 M to 1.4 M for equal molar solvents. The optimum salt concentration and maximum conductivity in a different solvent composition ratio (i.e., 3 : 2 : 1) for all the temperatures is reported herein. The temperature-dependence conductivity of the salt concentration did not fit the Arrhenius plot, but it resembled the Vogel–Tamman–Fulcher plot behavior. The present conductivity study was carried out to evaluate the overall operable temperature limit of the electrolyte used in the lithium-sulfur battery.
    Print ISSN: 2090-3529
    Electronic ISSN: 2090-3537
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2019
    Description: The challenges to be overtaken with alkaline water electrolysis are the reduction of energy consumption, the maintenance, and the cost as well as the increase of durability, reliability, and safety. Having these challenges in mind, this work focused on the reduction of the electrical resistance of the electrolyte which directly affects energy consumption. According to the definition of electrical resistance of an object, the reduction of the space between electrodes could lower the electrical resistance but, in this process, the formation of bubbles could modify this affirmation. In this work, the performance analyses of nine different spaces between stainless steel 316L electrodes were carried out, although the spaces proposed are not the same as those from the positive electrode (anode) to the separator and from the separator to the negative electrode (cathode). The reason why this is studied is that stoichiometry of the reaction states that two moles of hydrogen and one mole of oxygen can be obtained per every two moles of water. The proposed spaces were 10.65, 9.20, 8.25, 7.25, 6.30, 6.05, 4.35, 4.15, and 3.40 millimetres. From the nine different analysed distances between electrodes, it can be said that the best performance was reached by one of the smallest distances proposed, 4.15 mm. When the same distance between electrodes was compared (the same and different distance between electrodes and separator), the one that had almost twice the distance (negative compartment) presented an increase in current density of approximately 33% with respect to that where both distances (from electrodes to separator) are the same. That indicates that the stichometry of the electrolysis reaction influenced the performance.
    Print ISSN: 2090-3529
    Electronic ISSN: 2090-3537
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2019
    Description: Schiff base 2,2’-(5,5-dimethylcyclohexane-1,3-diylidene)bis(azan-1-yl-1-ylidene) diphenol (DmChDp) was synthesized and characterized using spectroscopic methods (IR, UV, NMR, and Mass) and cyclic voltammetric (CV) studies. The corrosion inhibition potency of (DmChDp) on mild steel (MS) in 1M HCl and 0.5M H2SO4 was investigated. The corrosion monitoring techniques employed for this purpose are gravimetric and electrochemical methods (EIS and potentiodynamic polarization studies). The study reveals that the Schiff base, DmChDp, acts as excellent corrosion inhibitor on mild steel in 1M HCl. DmChDp obeys Langmuir adsorption isotherm both in 1M HCl and 0.5M H2SO4 on MS. Polarization studies show that DmChDp behaves as a mixed type inhibitor in both media. Scanning electron microscopic analysis established the protective nature of DmChDp on mild steel surface. The impact of temperature on the corrosion of MS was also evaluated using gravimetric method.
    Print ISSN: 2090-3529
    Electronic ISSN: 2090-3537
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2019
    Description: This work presents a reliable, cost-effective, rapid and in-field voltammetric method for the detection of barium. The optimized method consists of an ultrathin mercury film deposited in situ on a glassy carbon electrode in dilute potassium chloride without deoxygenation, using differential pulse anodic stripping voltammetry (DP-ASV). Application of the method allowed for the quantitative determination of barium concentration in a variety of waters and brake pad dust samples. Comparative analysis of sample results from DP-ASV with inductively coupled plasma mass spectroscopy (ICP-MS) showed a mean percent difference of 1.8%.
    Print ISSN: 2090-3529
    Electronic ISSN: 2090-3537
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2019
    Description: LiNi0.5Mn1.5O4 (LNMO), which has an operating voltage of 4.8 vs Li/Li+ and a theoretical capacity of 147 mAh g−1, is an interesting cathode material for advanced lithium ion batteries. However, electrolyte decomposition at the electrode can gradually decrease the capacity of the battery. In this study, the surface of the LNMO cathode has been modified with phosphoric acid (PA) to improve the capacity of the LNMO/graphite full cell. Modification of LNMO cathodes by PA is confirmed by surface analysis. Additionally, the presence of lithium bis-(oxalato) borate (LiBOB) as an electrolyte additive further enhances the performance of PA modified LNMO/graphite cells. The improved performance of PA modified cathodes and electrolytes containing LiBOB can be attributed to the suppressed Mn and Ni deposition on the anode. Elemental analysis suggests that the Mn and Ni dissolution is significantly reduced compared to unmodified LNMO/graphite cells with standard electrolyte.
    Print ISSN: 2090-3529
    Electronic ISSN: 2090-3537
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2019
    Description: Current-voltage characteristics of few-layer graphene structures (FLGS) obtained by plasma-assisted electrochemical exfoliation of graphite in Na2SO4 solution were measured. FLGS are shown to possess electronic conductivity, which indicates the predominant functionalization of the edges of graphene planes and the preservation of the structure of basal planes in obtained nanostructures as in the source graphite. The effect of humidity on the conductivity of FLGS films was studied. The resistance of films was found to increase with an increase in the relative humidity of the environment due to the shielding of FLGS flakes by a film of water. The effect of different solvents on the current-voltage characteristics of FLGS was analyzed. The conductivity of films significantly decreased in vapors of polar protic solvents, while there was a minor effect of nonpolar aprotic solvents on the conductivity of FLGS films.
    Print ISSN: 2090-3529
    Electronic ISSN: 2090-3537
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2019
    Description: Screen printed carbon electrodes (SPCEs) provide attractive opportunity for sensitive and selective determination target analytes in clinical samples. The aim of the current work was to develop SPCEs based sensor for the determination of uric acid in clinical serum samples. The electrodes were pretreated by soaking in N,N-dimethylformamide for 5 minutes followed by drying in an oven at 100°C for 20 mins. The effect of surface pretreatment was characterized using cyclic voltammetry. The current response of uric acid detection was improved by a factor of 3.5 in differential pulse voltammetric measurement compared to unmodified electrode. Under the optimized conditions, the sensor displayed two dynamic linear ranges 5-100 μM and 100-500 μM with correlation coefficient, R2, values of 0.98782 and 0.97876, respectively. The limit of detection and limit of quantification calculated using the dynamic linear range 5-100 μM were 1.9 x 10−7 M and 6.33 x 10−7 M, respectively. The developed sensor displayed well separated and discerned peaks for UA in presence of the potential interferent (ascorbic acid and citric acid). The electrode was successfully applied for the detection of very low level of UA in clinical serum samples in a phosphate buffer solution (pH = 7). The proposed sensor showed a very high reproducibility and repeatability with the relative standard deviation of 0.9%. In conclusion, a simple and low cost sensor based on SPCEs is developed for sensitive and selective detection of uric acid in clinical samples.
    Print ISSN: 2090-3529
    Electronic ISSN: 2090-3537
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2019
    Description: Heterocyclic compounds containing the 1,2,3-triazole moiety can be synthesized through click-chemistry, which is rapid reactions with good yields allowing the synthesis of great derivatives diversity by making minor changes in the reagents. The products were obtained with good yields through a synthetic route which uses ready available nonexpensive commercial reagents and without any further purification of any product or intermediate. The carbon steel anticorrosive activity was tested through weight loss and electrochemical assays in acid media. It was observed relevant inhibition efficiency (〉 90%) for inhibitors 1 and 2. From Langmuir isotherm, it was hypothesized the adsorption of inhibitors on the carbon steel surface might occur by physical and chemical interaction; however, the activation energy raised suggests a physisorption process for the interaction of the inhibitor on the carbon steel surface.
    Print ISSN: 2090-3529
    Electronic ISSN: 2090-3537
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2019
    Description: Considering the importance of conductive polymer nanocomposite, the present paper attempts to create a method for increasing the conductivity of poly(o-aminophenol). Nanocomposite MnO2/poly(o-aminophenol) thin film was synthesized by using pulse potential electrodeposition technique on a graphite electrode. In this research, nanoparticles of MnO2 are used after synthesis to prepare polymer nanocomposites in one-step. Appending of MnO2 to polymer matrix increases the current. This current growth could be ascribed to the synergistic MnO2 nanostructure, which presents the superior surface area and smaller particle size that is increasingly acting sites. Morphology or samples composition was investigated by the scanning electron microscope and the UV-Vis method, which clearly indicate the formation of nanocomposites. The findings show that the capacitive behavior of MnO2-poly(o-aminophenol) is superior to poly(o-aminophenol), especially at high potential high temperatures. The results showed that MnO2/poly(o-aminophenol) had a higher level of activity and the electron transfer capability was faster than pure polymer film. The doped MnO2 polymer also has excellent cyclic performance and load discharge features. Additional electrochemical properties of these polymer composites were observed against pure polymer so that capacity of 645 Fg−1 has been designated.
    Print ISSN: 2090-3529
    Electronic ISSN: 2090-3537
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2018
    Description: An improved mathematical model was used to extend polarization curves for direct propane fuel cells (DPFCs) to larger current densities than could be obtained with any of the previous models. DPFC performance was then evaluated using eleven different variables. The variables related to transport phenomena had little effect on DPFC polarization curves. The variables that had the greatest influence on DPFC polarization curves were all related to reaction rate phenomena. Reaction rate phenomena were dominant over the entire DPFC polarization curve up to 100 mA/cm2, which is a value that approaches the limiting current densities of DPFCs. Previously it was known that DPFCs are much different than hydrogen proton exchange membrane fuel cells (PEMFCs). This is the first work to show the reason for that difference. Reaction rate phenomena are dominant in DPFCs up to the limiting current density. In contrast the dominant phenomenon in hydrogen PEMFCs changes from reaction rate phenomena to proton migration through the electrolyte and to gas diffusion at the cathode as the current density increases up to the limiting current density.
    Print ISSN: 2090-3529
    Electronic ISSN: 2090-3537
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2018
    Description: Micro- and nanostructured Ni/NiO surfaces were generated by femtosecond laser structuring for oxygen evolution reaction in alkaline water electrolysis cells. For two different angles between the laser beam and the nickel surface, two different types of laser-structured electrodes were prepared, characterized, and compared with a plane tempered nickel electrode. Their electrochemical activities for the oxygen evolution reaction were tested by using cyclic and linear sweep voltammetry. The chemical surface composition was investigated by X-ray photoelectron spectroscopy. Laser structuring increased the overall electrochemical performance by more than one order of magnitude. The overpotential of the laser-structured electrodes for the oxygen evolution reaction was decreased by more than 100 mV due to high defect densities of the structures created by the laser ablation process.
    Print ISSN: 2090-3529
    Electronic ISSN: 2090-3537
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2018
    Description: Electrocoagulation has been employed as a treatment technique for treating various wastewaters. This study focuses on the performance of electrocoagulation process for the treatment of Palm Oil Mill Effluent (POME) and Paint Wastewater (PW) using iron electrodes. POME obtained from local palm oil producers and PW from a paint industry, both in Enugu state of Nigeria, were treated by electrocoagulation using two iron electrodes. Effects of current density, electrocoagulation time, pH, and temperature were studied. Results revealed that this process could reduce the concentration of Total Suspended and Dissolved Solids (TSDP), in both POME and PW. The highest removal efficiencies of 65% and 76% were obtained for POME and PW, respectively, at 3 Amps, 60min, pH of 10, and 50°C for POME and 3 Amps, 60min, pH of 6, and 60°C for PW. Of the two kinetic models studied, second-order kinetic model fitted best to the obtained experimental kinetic data. From this study, it can be concluded that electrocoagulation is effective in the treatment of POME and PW.
    Print ISSN: 2090-3529
    Electronic ISSN: 2090-3537
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2018
    Description: A new polarographic method for the determination of benzocaine and procaine based on the polarographic reduction of their chemically obtained oxidation products with potassium peroxymonosulfate is developed. Experimental conditions affecting quantitative yield of benzocaine and procaine oxidation products such as рH, oxidation time, reagents’ concentration, and temperature are explored. It is shown that the reduction current changes in a linear fashion (R=0.999) with increasing concentration of anesthetics over a concentration range of 1·10−6 - 5·10−5 mol L−1. The calculated limits of detection (LOD) for benzocaine and procaine are found to be 5.6·10−6 and 6·10−6 mol L−1, respectively. In the present study, quantitative polarographic determination of benzocaine in Farisil tablets and “Septolete Plus” lozenges and procaine in solution for injections is performed. The results of the analysis are in good agreement with the product specifications described in the quality certificates. The possibility of quantitative determination of benzocaine and procaine in pharmaceuticals is confirmed.
    Print ISSN: 2090-3529
    Electronic ISSN: 2090-3537
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2018
    Description: In this paper, investigation on the effect of separator thickness and porosity on the performance of Lithium Iron Phosphate batteries are analyzed. In recent years there have been intensive efforts to improve the performance of the lithium-ion batteries. Separators are important component of lithium-ion batteries since they isolate the electrodes and prevent electrical short-circuits. Separators are also used as an electrolyte reservoir which is used as a medium for ions transfer during charge and discharge. Electrochemical performance of the batteries is highly dependent on the material, structure, and separators used. This paper compares the effects of material properties and the porosity of the separator on the performance of lithium-ion batteries. Four different separators, polypropylene (PP) monolayer and polypropylene/polyethylene/polypropylene (PP/PE/PP) trilayer, with the thickness of 20 μm and 25 μm and porosities of 41%, 45%, 48%, and 50% were used for testing. It was found that PP separator with porosity of 41% and PP/PE/PP separator of 45% porosity perform better compared to other separators.
    Print ISSN: 2090-3529
    Electronic ISSN: 2090-3537
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2018
    Description: Analysis of the role of oxygen-containing nanoclusters in oxygen reduction reaction (ORR) on Pt-electrodes in alkaline media is provided on the basis of the concept of electrochemical processes with slowed stage of consecutive heterogeneous chemical reaction (ConHCR). Under the ConHCR concept, the main factor determining the ORR characteristics is energetic inhomogeneity of electrode surface (EIES) according to Temkin. A new concept, according to which EIES is determined by the Gibbs energy of formation of oxygen-containing surface structures with inclusions of surface defects of the platinum crystal structure, , is formulated. A correlation between the level of EIES of Pt-electrodes and packing density of atoms on the surface of Pt(hkl) monocrystals is determined. The concept, according to which the stationary potential of ORR process is considered as a “mixed potential” of two reactions (electrochemical reduction of surface atom and consecutive oxidation of by molecular oxygen), is substantiated. It is proposed that the formation of surface nanocluster transition state [⁎(OO)(OH)] defines the rate of the entire ORR process on Pt-electrodes in alkaline media.
    Print ISSN: 2090-3529
    Electronic ISSN: 2090-3537
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2019
    Description: A simple and efficient new electrochemical sensor based on molecularly imprinted polymer has been developed for selective detection of an anticancer agent Etoposide (ETP). The sensor was prepared by electropolymerization via cyclic voltammetry (CV) of pyrrole onto a glassy carbon electrode (GCE) in the presence of ETP molecules. The extraction of ETP molecules embedded in the polymeric matrix was carried out by overoxidation in sodium hydroxide medium using CV. Various important parameters affecting the performance of the imprinted film (MIP) coated sensor were studied and optimized using differential pulse voltammetry (DPV). Under optimal conditions, the sensor response exhibited a linear dependence on ETP concentration (R2 = 0.999) over the range 5.0×10−7 M – 1.0×10−5 M with a LOD (3σ/m) of 2.8×10−9 M. The precision (% RSD, n=6) of the proposed sensor for intra- and interdays was found to be 0.84 and 2.46%, respectively. The selectivity of MIP/GCE sensor toward ETP was investigated in the presence of different interfering molecules including excipients and ETP metabolites. The developed sensor showed great recognition ability toward ETP and was successfully applied for its determination in injectable dosage forms and biological human fluids.
    Print ISSN: 2090-3529
    Electronic ISSN: 2090-3537
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2018
    Description: The structure of carbon material comprising the anode is the key to the performance of a lithium ion capacitor. In addition to determining the capacity, the structure of the carbon material also determines the diffusion rate of the lithium ion into the anode which in turn controls power density which is vital in high rate applications. This paper covers details of systematic investigation of the performance of a structurally novel carbon, called Randomly Oriented High Graphene (ROHG) carbon, and graphite in a high rate application device, that is, lithium ion capacitor. Electrochemical impedance spectroscopy shows that ROHG is less resistive and has faster lithium ion diffusion rates (393.7 × 10−3 S·s(1/2)) compared to graphite (338.1 × 10−3 S·s(1/2)). The impedance spectroscopy data is supported by the cell data showing that the ROHG carbon based device has energy density of 22.8 Wh/l with a power density of 4349.3 W/l, whereas baseline graphite based device has energy density of 5 Wh/l and power density of 4243.3 W/l. This data clearly shows advantage of the randomly oriented graphene platelet structure of ROHG in lithium ion capacitor performance.
    Print ISSN: 2090-3529
    Electronic ISSN: 2090-3537
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2019
    Description: In this study, the relevance of a food dye, namely, Fast Green-FCF (FG-FCF), was surveyed as a new inhibitor for mild steel in HCl solution. This effect was specified by electrochemical impedance spectroscopy (EIS), one of the most widely used measurement techniques. As a result of the increment of the inhibitor concentration, it was seen that the values ​​of polarization resistance increased and covered the metal surface of FG-FCF like a blanket. Tests endorse that the FG-FCF is chemically adsorbed on mild steel surface, according to the Langmuir isotherm. With surface characteristic analyses, such as field emission scanning electron microscope (FESEM) and atomic force microscope (AFM), it was further determined that the metal surface in HCl of FG-FCF was protected. By applying the hydrogen gas evolution technique, FG-FCF has been proven to provide the lowest surface area with all inhibited solutions from the blank due to its strong adsorption to the metal surface. Finally, it has been clarified that FG-FCF can be practically used as a good corrosion inhibitor for mild steel with the supported results.
    Print ISSN: 2090-3529
    Electronic ISSN: 2090-3537
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2018
    Description: Epoxy reinforced with two kinds of nanoparticles dealing with nano-SiO2 and nano-Fe2O3 was coated on steel rebar embedded in a chloride contaminated cement mortar. NaCl was added to the fresh Portland cement paste (at 0.3% and 0.5% by weight of cement) to simulate the chloride contamination at the critical level. The effect of incorporating nanoparticles on the corrosion resistance of epoxy-coated steel rebar was investigated by linear potentiodynamic polarization and electrochemical impedance spectroscopy. For the 0.3 wt.% chloride mortars, the electrochemical monitoring of the coated steel rebars during immersion for 56 days in 0.1 M NaOH solutions suggested the beneficial role of nano-Fe2O3 particles in significantly improving the corrosion resistance of the epoxy-coated rebar. After 56 days of immersion, the nano-Fe2O3 reduced the corrosion current of epoxy-coated rebar by a factor of 7.9. When the chloride concentration in the cement mortar was 0.5 wt.%, the incorporation of nanoparticles into the epoxy matrix did not enhance the corrosion resistance of epoxy coating for the rebar. At this critical level, chloride ions initiated rebar corrosion through nanoparticles at the epoxy/rebar interface.
    Print ISSN: 2090-3529
    Electronic ISSN: 2090-3537
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2018
    Description: The voltammetric response of platinum metal oxides is discussed with respect to novel pH sensors combining both miniaturization and stability. For practical applications in solutions of any kind, for example, in tap water and in domestic sewage, various interferences must be considered, such as chloride and reducing agents. This work clarifies the voltammetric behavior of RuO2 electrodes in solutions of different pH values and ionic strengths.
    Print ISSN: 2090-3529
    Electronic ISSN: 2090-3537
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2018
    Description: Pd crystals enclosed by (100) facets were prepared in an aqueous solution containing cetyltrimethylammonium bromide (CTAB) as the capping agent and ascorbic acid as the reducing agent at 30, 40, and 50°C by a modified seed-mediated fabrication technique. Regardless of the reaction temperature, the absorption peak between 300 and 400 nm assigned to decreased with an increase in the reaction time after the addition of ascorbic acid in the aqueous solution containing CTAB because of Pd deposition. The field emission-scanning electron microscopy images showed that the Pd crystals were enclosed by only (100) facets, and their fractions depended on the reaction temperature. The ratios of the peak current at 0.54 and 0.48 V were 0.60, 0.54, and 0.47 for the samples prepared at 30, 40, and 50°C, respectively, suggesting that the proportion of the (100) facet on the Pd surface was higher at lower temperatures.
    Print ISSN: 2090-3529
    Electronic ISSN: 2090-3537
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...