ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-08-14
    Description: Declines in Ogallala aquifer levels used for irrigation has prompted research to identify methods for optimizing water use efficiency (WUE) of cotton (Gossypium hirsutum L). In this experiment, conducted at Lubbock, TX, USA in 2014, our objective was to test two canopy temperature based stress indices, each at two different irrigation trigger set points: the Stress Time (ST) method with irrigation triggers set at 5.5 (ST_5.5) and 8.5 h (ST_8.5) and the Crop Water Stress Index (CWSI) method with irrigation triggers set at 0.3 (CWSI_0.3) and 0.6 (CWSI_0.6). When these irrigation triggers were exceeded on a given day, the crop was deficit irrigated with 5 mm of water via subsurface drip tape. Also included in the experimental design were a well-watered (WW) control irrigated at 110% of potential evapotranspiration and a dry land (DL) treatment that relied on rainfall only. Seasonal crop water use ranged from 353 to 625 mm across these six treatments. As expected, cotton lint yield increased with increasing crop water use but lint yield WUE displayed asignificant (p ≤ 0.05) peak near 3.6 to 3.7 kg ha−1 mm−1 for the ST_5.5 and CWSI_0.3 treatments, respectively. Our results suggest that WUE may be optimized in cotton with less water than that needed for maximum lint yield.
    Electronic ISSN: 2073-4395
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Economics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-08-25
    Description: The irrigation water available for agriculture will be scarce in the future due to increased competition for water with other sectors, and the issue may become more serious due to climate change. In Chile, the table grape is only cultivated under irrigation. A five-year research program (2007–2012) was carried out in the Aconcagua Valley, the central area of grapes in Chile, to evaluate the response of table grape vines (Vitis vinifera L., cv Thompson Seedless) to different volumes of irrigation water. Four irrigation treatments were applied: 60, 88, 120 and 157% of crop evapotranspiration (ETc) during the first four years, and 40, 54, 92 and 108% of ETc in the last year. Irrigation over 90%–100% of ETc did not increase fruit yield, whereas the application of water below 90% ETc decreased exportable yield, berry size and pruning weight. For example, 60% ETc applied water reduced exportable yield by 20%, and only 40% of the berries were in the extra and large category size, while pruning weight was 30% lower in comparison to the treatment receiving more water.
    Electronic ISSN: 2073-4395
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Economics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-05-30
    Description: Arsenic (As) in soils causes several detrimental effects, including death. Arsenic toxicity in soybean plants (Glycine max L.) has been little studied. Arbuscular mycorrhiza (AM) increase the tolerance of host plants to abiotic stress, like As. We investigated the effects of AM fungi on soybean grown in As-contaminated soils. A pot experiment was carried out in a glasshouse, at random with five replications. We applied three levels of As (0, 25, and 50 mg As kg−1), inoculated and non-inoculated with the AM fungus Rhizophagus intraradices (N.C. Schenck & G.S. Sm.) C. Walker & A. Schüßler. Plant parameters and mycorrhizal colonization were measured. Arsenic in the substrate, roots, and leaves was quantified. Arsenic negatively affected the AM percentage of spore germination and hyphal length. As also affected soybean plants negatively: an extreme treatment caused a reduction of more than 77.47% in aerial biomass, 68.19% in plant height, 78.35% in number of leaves, and 44.96% reduction in root length, and delayed the phenological evolution. Mycorrhizal inoculation improved all of these parameters, and decreased plant As accumulation (from 7.8 mg As kg−1 to 6.0 mg As kg−1). AM inoculation showed potential to reduce As toxicity in contaminated areas. The AM fungi decreased As concentration in plants following different ways: dilution effect, less As intake by roots, and improving soybean tolerance to As.
    Electronic ISSN: 2073-4395
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Economics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-06-13
    Description: Maize (Zea mays L) is the most important food grain in sub-Saharan Africa and is mostly grown by small-scale farmers under rainfed conditions. Aluminum toxicity caused by low pH is one of the abiotic factors limiting maize production among smallholder farmers. Therefore, breeding maize hybrids that are tolerant to aluminum toxicity will sustain and increase maize production in these areas. Hence this study was undertaken to assess the genotypic variation for aluminum toxicity in maize inbred lines. Fourteen maize inbred lines of historical importance that are used in maize hybrid breeding in Zambia were studied for seedling root variation under different aluminum concentrations using hydroponic conditions. The aluminum tolerance membership index based on three traits (actual root length, relative root length and root length response) classified genotypes L3233 and L1214 as highly tolerant, L5527 and ZM421 as tolerant, and L12, L3234, and ZM521 as intermediate. The high PCV, GCV, and heritability observed for the root traits indicate that opportunities for selection and breeding for aluminum tolerance among Zambian inbred lines exist. Furthermore, the study indicated that a higher genetic gain would be expected from net root growth followed by shoot length response as selection traits, thus supporting the use of root traits for aluminum tolerance screening.
    Electronic ISSN: 2073-4395
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Economics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-05-06
    Description: Greater early vigour has potential for increasing biomass and grain yields of wheat crops in Mediterranean-type environments. Embryo size is an important determinant of early vigour in barley and likely to contribute to greater vigour in wheat. Little is known of the underlying genetic control for embryo size, or its genetic association with early vigour in wheat. Over 150 doubled-haploid lines in each of three unrelated wheat populations varying for embryo size and early vigour were phenotyped across multiple controlled environments. The Quantitative Trait Locus (QTL) mapping was then undertaken to understand genetic control and chromosomal location of these characteristics. Genotypic variance was large and repeatable for embryo and leaf size (width and length) but not specific leaf area or coleoptile tiller size. Genetic correlations for embryo size with leaf width and area were moderate to strong in size while repeatabilities for embryo size and early vigour were high on a line-mean basis. Multiple genomic regions were identified of commonly small genetic effect for each trait with many of these regions being common across populations. Further, collocation of regions for many traits inferred a common genetic basis for many of these traits. Chromosomes 1B, 5B, 7A and 7D, and the Rht-B1b and Rht-D1b-containing chromosomes 4B and 4D contained QTL for embryo size and leaf width. These studies indicate that while early vigour is a genetically complex trait, the selection of larger embryo progeny can be readily achieved in a wheat breeding program targeting development of high vigour lines.
    Electronic ISSN: 2073-4395
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Economics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-06-20
    Description: Sugarcane has been widely used as a biofuel crop due to its high biological productivity, ease of conversion to ethanol, and its relatively high potential for greenhouse gas reduction and lower environmental impacts relative to other derived biofuels from traditional agronomic crops. In this investigation, we studied four sugarcane cultivars (H-65-7052, H-78-3567, H-86-3792 and H-87-4319) grown on a Hawaiian commercial sugarcane plantation to determine their ability to store and accumulate soil carbon (C) and nitrogen (N) across a 24-month growth cycle on contrasting soil types. The main study objective establish baseline parameters for biofuel production life cycle analyses; sub-objectives included (1) determining which of four main sugarcane cultivars sequestered the most soil C and (2) assessing how soil C sequestration varies among two common Hawaiian soil series (Pulehu-sandy clay loam and Molokai-clay). Soil samples were collected at 20 cm increments to depths of up to 120 cm using hand augers at the three main growth stages (tillering, grand growth, and maturity) from two experimental plots at to observe total carbon (TC), total nitrogen (TN), dissolved organic carbon (DOC) and nitrates (NO−3) using laboratory flash combustion for TC and TN and solution filtering and analysis for DOC and NO−3. Aboveground plant biomass was collected and subsampled to determine lignin and C and N content. This study determined that there was an increase of TC with the advancement of growing stages in the studied four sugarcane cultivars at both soil types (increase in TC of 15–35 kg·m2). Nitrogen accumulation was more variable, and NO−3 (〈5 ppm) were insignificant. The C and N accumulation varies in the whole profile based on the ability of the sugarcane cultivar’s roots to explore and grow in the different soil types. For the purpose of storing C in the soil, cultivar H-65-7052 (TC accumulation of ~30 kg·m−2) and H-86-3792 (25 kg·m−2) rather H-78-3567 (15 kg·m−2) and H-87-4319 (20 kg·m−2) appeared to produce more accumulated carbon in both soil types.
    Electronic ISSN: 2073-4395
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Economics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-10-24
    Description: This two-year study compared nine northwest Washington dry bean (Phaseolus vulgaris L.) heirloom (H) varieties with 11 standard (S) commercial varieties in matching market classes using organic, non-irrigated production practices. Heirloom and standard varieties differed in days to harvest (DTH) (110 DTH and 113 DTH, respectively), while both days to harvest (113 DTH and 110 DTH) and yield (2268 kg∙ha−1 and 1625 kg∙ha−1) were greater in 2013 than in 2014. Varieties with the shortest DTH both years were “Bale” (H), “Coco” (H), “Decker” (H), “Ireland Creek Annie” (H and S), “Kring” (H) and “Rockwell” (H). Varieties that had the highest yield both years were “Eclipse” (S), “Lariat” (S) and “Youngquist Brown” (H). Only “Eclipse” (S) had the shortest cooking time both years, while “Rockwell” (H), “Silver Cloud” (S) and “Soldier” (S) had short cooking times in 2013, and “Orca” (S) and “Youngquist Brown” (H) had short cooking time in 2014. Varieties with the highest protein content both years were “Calypso” (S), “Coco” (S) and “Silver Cloud” (S). Further research should investigate yield of early maturing standard varieties, with a focus on color-patterned beans that are attractive for local markets.
    Electronic ISSN: 2073-4395
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Economics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-10-28
    Description: Wheat is an important cereal crop worldwide that often suffers from moisture deficits at the reproductive stage. Polyethylene glycol (PEG)-treated hydroponic conditions create negative osmotic potential which is compared with moisture deficit stress. An experiment was conducted in a growth chamber to study the effects of PEG on root hair morphology and associated traits of wheat varieties. Plants of 13 wheat varieties were grown hydroponically and three different doses of PEG 6000 (w/v): 0% (control), 0.3% and 0.6% (less than −1 bar) were imposed on 60 days after sowing for 20 days’ duration. A low PEG concentration was imposed to observe how initial low moisture stress might affect root hair development. PEG-treated hydroponic culture significantly decreased root hair diameter and length. Estimated surface area reduction of root hairs at the main axes of wheat plants was around nine times at the 0.6% PEG level compared to the control plants. Decrease in root hair diameter and length under PEG-induced culture decreased “potential” root surface area per unit length of main root axis. A negative association between panicle traits, length and dry weight and the main axis length of young roots indicated competition for carbon during their development. Data provides insight into how a low PEG level might alter root hair development.
    Electronic ISSN: 2073-4395
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Economics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-05-26
    Description: Reasonable fertilization is a primary concern for agronomy scientists and farmers. However, there is still no satisfying calculation formula to guide farmer’s fertilizing. Five kinds of indices were tested in more than 500 field plots successively, and more than 50 pieces of long-term and short-term fertilizer field test data acquired by others were analyzed. Quick-acting fertilizers should be applied for balanced fertilization if the soil-available nutrient content is within the normal range. Through rigorous derivation and validation by a multi-year continuous 15N tracer field test, it is obtained that, total soil exogenous N = total output N − total recovery N + soil profit or lost N; utilization efficiency of fertilizer N = (output N − exogenous N) ÷ balanced application amount of N fertilizer. Optimal balanced utilization efficiency of fertilizer N, P, K = total recovery efficiency, and soil nutrient net amount = total amount after test − total amount before test. Equation application parameters were collected from more than 50 tests, which is more applicable than collecting from a single test. When soil-available nutrient content is excessively low or excessively high, adjusting this should be based on balanced fertilization to properly increase or reduce the fertilization rate.
    Electronic ISSN: 2073-4395
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Economics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-04-18
    Description: Leaf developmental traits are an important component of crop breeding in small-grain cereals. Surprisingly, little is known about the genetic basis for the differences in barley (Hordeum vulgare L.) leaf development. The two barley row-type classes, i.e., two- and six-rowed, show clear-cut differences in leaf development. To quantify these differences and to measure the genetic component of the phenotypic variance for the leaf developmental differences in both row-type classes we investigated 32 representative spring barley accessions (14 two- and 18 six-rowed accessions) under three independent growth conditions. Leaf mass area is lower in plants grown under greenhouse (GH) conditions due to fewer, smaller, and lighter leaf blades per main culm compared to pot- and soil-grown field plants. Larger and heavier leaf blades of six-rowed barley correlate with higher main culm spike grain yield, spike dry weight, and harvest index; however, smaller leaf area (LA) in two-rowed barley can be attributed to more spikes, tillers, and biological yield (aboveground parts). In general, leaf growth rate was significantly higher between awn primordium and tipping stages. Moderate to very high broad-sense heritabilities (0.67–0.90) were found under all growth conditions, indicating that these traits are predominantly genetically controlled. In addition, our data suggests that GH conditions are suitable for studying leaf developmental traits. Our results also demonstrated that LA impacts single plant yield and can be reconsidered in future breeding programs. Six-rowed spike 1 (Vrs1) is the major determinate of barley row-types, the differences in leaf development between two- and six-rowed barleys may be attributed to the regulation of Vrs1 in these two classes, which needs further testing.
    Electronic ISSN: 2073-4395
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Economics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2015-06-19
    Description: Balanced and integrated use of organic and inorganic fertilizers may enhance the accumulation of soil organic matter and improves soil physical properties. A field experiment having randomized complete block design with four replications was conducted for 36 years at Punjab Agricultural University (PAU), Ludhiana, India to assess the effects of inorganic fertilizers and farmyard manure (FYM) on soil organic carbon (SOC), soil physical properties and crop yields in a maize (Zea mays)–wheat (Triticum aestivum) rotation. Soil fertility management treatments included were non-treated control, 100% N, 50% NPK, 100% NP, 100% NPK, 150% NPK, 100% NPK + Zn, 100% NPK + W, 100% NPK (-S) and 100% NPK + FYM. Soil pH, bulk density (BD), electrical conductivity (EC), cation exchange capacity, aggregate mean weight diameter (MWD) and infiltration were measured 36 years after the initiation of experiment. Cumulative infiltration, infiltration rate and aggregate MWD were greater with integrated use of FYM along with 100% NPK compared to non-treated control. No significant differences were obtained among fertilizer treatments for BD and EC. The SOC pool was the lowest in control at 7.3 Mg ha−1 and increased to 11.6 Mg ha−1 with 100%NPK+FYM. Improved soil physical conditions and increase in SOC resulted in higher maize and wheat yields. Infiltration rate, aggregate MWD and crop yields were positively correlated with SOC. Continuous cropping and integrated use of organic and inorganic fertilizers increased soil C sequestration and crop yields. Balanced application of NPK fertilizers with FYM was best option for higher crop yields in maize–wheat rotation.
    Electronic ISSN: 2073-4395
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Economics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2015-02-17
    Description: Chromosomal translocations in wheat derived from alien species are a valuable source of genetic diversity that have provided increases in resistance to various diseases and improved tolerance to abiotic stresses in wheat. These alien genomic segments can also affect multiple traits, with a concomitant ability to alter yield potential in either a positive or negative fashion. The aim of this work was to characterize the effects on yield of two types of translocations, namely T4-derived translocations from Thinopyrum ponticum, carrying the leaf rust resistance gene Lr19, and the TC14 translocation from Th. intermedium, carrying the barley yellow dwarf virus resistance gene Bdv2, in Australian adapted genetic backgrounds and under Australian conditions. A large range of germplasm was developed by crossing donor sources of the translocations into 24 Australian adapted varieties producing 340 genotypes. Yield trials were conducted in 14 environments to identify effects on yield and yield components. The T4 translocations had a positive effect on yield in one high yielding environment, but negatively affected yield in low-yielding environments. The TC14 translocation was generally benign, however, it was associated with a negative impact on yield and reduced height in two genetic backgrounds. The translocation was also associated with a delayed maturity in several backgrounds. The T4 translocations results were consistent with previously published data, whilst this is the first time that such an investigation has been undertaken on the TC14 translocation. Our data suggests a limited role for each of these translocations in Australia. The T4 translocations may be useful in high yielding environments, such as under irrigation in NSW and in the more productive high rainfall regions of south-eastern Australia. Traits associated with the TC14 translocation, such as BYDV resistance and delayed maturity, would make this translocation useful in BYDV-prone areas that experience a less pronounced terminal drought (e.g., south-eastern Australia).
    Electronic ISSN: 2073-4395
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Economics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2015-02-06
    Description: The effects of regional water management practices (WMPs) on the soil salinity of a representative rice field under Mediterranean conditions (Thessaloniki plain, Greece) were investigated. The temporal variation of soil salinity parameters in the soil solution and in the exchangeable phase was monitored at and below the root zone (15–20 and 35–40 cm) during the growing season. The comparative analysis (ANOVA for p = 0.05) of the measurements before and after the growing season showed that: (a) for the soil solution of the 15–20 cm layer, Ca2+, Mg2+, K+, HCO3− and EC were significantly reduced, Na+ remained constant and Cl− increased, while in the 35–40 cm layer no significant differences were detected to all parameters except for Cl− which was increased; (b) for the exchangeable cations Ca2+, Mg2+ and K+ no significant differences were found, while exchangeable Na+ and ESP were significantly increased in both soil layers during the short period of soil drying before harvest. The final values of Na+ and ESP were quite low to indicate soil degradation hazard. Overall the results showed adequate performance of WMPs to preserve a good soil salinity status but with the cost of high water consumption, exceeding 2000 mm.
    Electronic ISSN: 2073-4395
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Economics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2015-07-03
    Description: High yield in snap bean (Phaseolus vulgaris L.) production requires relatively high nitrogen (N) inputs. However, little information is available on whether the use of rhizobial inoculants for enhanced biological dinitrogen fixation can provide adequate N to support green pod yield. The objectives of this study were to test the use of rhizobia inoculation as an alternative N source for snap bean production under rain fed conditions, and to identify suitable cultivars and appropriate agro-ecology for high pod yield and N2 fixation in Ethiopia. The study was conducted in 2011 and 2012 during the main rainy season at three locations. The treatments were factorial combinations of three N treatments (0 and 100 kg·N·ha−1, and Rhizobium etli (HB 429)) and eight snap bean cultivars. Rhizobial inoculation and applied N increased the total yield of snap bean pod by 18% and 42%, respectively. Cultivar Melkassa 1 was the most suitable for a reduced input production system due to its greatest N2 fixation and high pod yield. The greatest amount of fixed N was found at Debre Zeit location. We concluded that N2 fixation achieved through rhizobial inoculation can support the production of snap bean under rain fed conditions in Ethiopia.
    Electronic ISSN: 2073-4395
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Economics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2015-07-07
    Description: Minichromosome technology has the potential to offer a number of possibilities for expanding current biofortification strategies. While conventional genome manipulations rely on random integration of one or a few genes, engineered minichromosomes would enable researchers to concatenate several gene aggregates into a single independent chromosome. These engineered minichromosomes can be rapidly transferred as a unit to other lines through the utilization of doubled haploid breeding. If used in conjunction with other biofortification methods, it may be possible to significantly increase the nutritional value of crops.
    Electronic ISSN: 2073-4395
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Economics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2015-04-24
    Description: Weed infestations and associated yield losses require effective weed control measures in soybean and sugar beet. Besides chemical weed control, mechanical weeding plays an important role in integrated weed management systems. Field experiments were conducted at three locations for soybean in 2013 and 2014 and at four locations for sugar beet in 2014 to investigate if automatic steering technologies for inter-row weed hoeing using a camera or RTK-GNSS increase weed control efficacy, efficiency and crop yield. Treatments using precision farming technologies were compared with conventional weed control strategies. Weed densities in the experiments ranged from 15 to 154 plants m−2 with Chenopodium album, Polygonum convolvulus, Polygonum aviculare, Matricaria chamomilla and Lamium purpureum being the most abundant species. Weed hoeing using automatic steering technologies reduced weed densities in soybean by 89% and in sugar beet by 87% compared to 85% weed control efficacy in soybean and sugar beet with conventional weeding systems. Speed of weed hoeing could be increased from 4 km h−1 with conventional hoes to 7 and 10 km·h−1, when automatic steering systems were used. Precision hoeing technologies increased soybean yield by 23% and sugar beet yield by 37%. After conventional hoeing and harrowing, soybean yields were increased by 28% and sugar beet yield by 26%.
    Electronic ISSN: 2073-4395
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Economics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2015-04-30
    Description: In wheat, remobilization of nitrogen absorbed before anthesis and regulation of monocarpic senescence is a major issue in breeding for nutrient use efficiency. We identified natural variants of NAM-A1, a gene having the same role as its well-characterized homoeolog NAM-B1, a NAC transcription factor associated with senescence kinetics and nutrient remobilization to the grain. Differences in haplotype frequencies between a worldwide core collection and a panel of European elite varieties were assessed and discussed. Moreover, hypotheses for the loss of function of the most common haplotype in elite European germplasm are discussed.
    Electronic ISSN: 2073-4395
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Economics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2015-07-01
    Description: Finger millet (Eleusine coracana (L.) Gaertn) is a staple food crop grown by subsistence farmers in the semi-arid tropics of South Asia and Africa. It remains highly valued by traditional farmers as it is nutritious, drought tolerant, short duration, and requires low inputs. Its continued propagation may help vulnerable farmers mitigate climate change. Unfortunately, the land area cultivated with this crop has decreased, displaced by maize and rice. Reversing this trend will involve achieving higher yields, including through improvements in crop nutrition. The objective of this paper is to comprehensively review the literature concerning yield responses of finger millet to inorganic fertilizers (macronutrients and micronutrients), farmyard manure (FYM), green manures, organic by-products, and biofertilizers. The review also describes the impact of these inputs on soils, as well as the impact of diverse cropping systems and finger millet varieties, on nutrient responses. The review critically evaluates the benefits and challenges associated with integrated nutrient management, appreciating that most finger millet farmers are economically poor and primarily use farmyard manure. We conclude by identifying research gaps related to nutrient management in finger millet, and provide recommendations to increase the yield and sustainability of this crop as a guide for subsistence farmers.
    Electronic ISSN: 2073-4395
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Economics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2015-09-19
    Description: A Differential Evolution (DE) is introduced to predict the parameters of the soil water retention curve (SWRC) and it is configured for reliability and efficiency with the Unsaturated Soil Hydraulic Property Database (UNSODA). The main investigated dataset is 235 samples from lab_drying_h-t table and the testing shows that the data resource is reliable and steady. Some specific statistical computations are designed to investigate the convergence speed and the fitness precision of DE, different measurements of hydraulic data, and parametric characteristics of textural groups. The statistical results on UNSODA show that DE has higher performance in parameter fitness and time saving than some previous optimization methods and the statistical values of soil water retention parameters (SWRP) can be directly applied in the agricultural research and practice.
    Electronic ISSN: 2073-4395
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Economics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2015-09-30
    Description: This study was undertaken with the objective of evaluating micro-dosing of mineral fertilizer combined with seed priming in sorghum, groundnut, sesame, and cowpea. On-station and on-farm trials were conducted for two consecutive seasons (2009/2010 and 2010/2011) at Al-Tukma village (12°00′57.60′′ N and 29°46′12.15′′ E) in South Kordofan State, 15 km southeast of Dilling city. Heavy cracking clay soil is the dominant soil type in the region with low fertility. The experiments for each crop consisted of two priming levels (primed seeds vs. non-primed) and four micro-doses of NPK mineral fertilizer (0, 0.3, 0.6 and 0.9 g per planting pocket or hole). On-farm trials in 15 fields consisted of control, seed priming, and seed priming + micro fertilizer (0.3 g/planting hole). Data collected included plant vigor, stand count, plant height, grain and straw yield, seed weight, and other relevant agronomic traits. This study shows that it is possible to increase productivity of sorghum, sesame, groundnut, and cowpea in the semi-arid cracking clay of South Kordofan State at a low cost and with a moderate risk for farmers through seed priming and micro-dosing of fertilizers. Seed priming combined with micro-dosing NPK mineral fertilizer of 0.9 g was the best treatment for plant establishment, seedling vigor, grain yield, and hay yield in sorghum and groundnut, whereas the combination of seed priming and 0.3 g micro-doing of fertilizer was the best in sesame. Seed priming and micro-dosing of fertilizer of 0.6 g was the best combination for cowpea. On-farm trial results indicated that priming alone and priming combined with fertilizer application significantly increased the yields of sorghum, groundnut, and cowpea over the control (P = 0.01). Of the crops tested, groundnut responded most favorably to micro-dosing and seed priming, with a value to cost ratio (VCR) of 26.6, while the highest VCR for sorghum, sesame, and cowpea was 12.5, 8.0 and 4.4, respectively. For the best productivity and profitability, we recommend using seed priming in combination with the micro-dosing of 0.9 g/hole of 15:15:15 NPK fertilizer for sorghum and groundnut, of 0.3 g/hole for sesame, and of 0.6 g/hole for cowpea grown in the semiarid South Kordofan State of Sudan.
    Electronic ISSN: 2073-4395
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Economics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2015-12-17
    Description: Arbuscular mycorrhizal (AM) fungi play an essential role for the nutrient uptake of the majority of land plants, including many important crop species. The extraradical mycelium of the fungus takes up nutrients from the soil, transfers these nutrients to the intraradical mycelium within the host root, and exchanges the nutrients against carbon from the host across a specialized plant-fungal interface. The contribution of the AM symbiosis to the phosphate nutrition has long been known, but whether AM fungi contribute similarly to the nitrogen nutrition of their host is still controversially discussed. However, there is a growing body of evidence that demonstrates that AM fungi can actively transfer nitrogen to their host, and that the host plant with its carbon supply stimulates this transport, and that the periarbuscular membrane of the host is able to facilitate the active uptake of nitrogen from the mycorrhizal interface. In this review, our current knowledge about nitrogen transport through the fungal hyphae and across the mycorrhizal interface is summarized, and we discuss the regulation of these pathways and major research gaps.
    Electronic ISSN: 2073-4395
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Economics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2015-10-31
    Description: Greenhouse and field experiments showed that conidia of the fungal pathogen, Phoma commelinicola, exhibited bioherbicidal activity against spreading dayflower (Commelina diffusa) seedlings when applied at concentrations of 106 to 109 conidia·mL−1. Greenhouse tests determined an optimal temperature for conidial germination of 25 °C–30 °C, and that sporulation occurred on several solid growth media. A dew period of ≥ 12 h was required to achieve 60% control of cotyledonary-first leaf growth stage seedlings when applications of 108 conidia·mL−1 were applied. Maximal control (80%) required longer dew periods (21 h) and 90% plant dry weight reduction occurred at this dew period duration. More efficacious control occurred on younger plants (cotyledonary-first leaf growth stage) than older, larger plants. Mortality and dry weight reduction values in field experiments were ~70% and >80%, respectively, when cotyledonary-third leaf growth stage seedlings were sprayed with 108 or 109 conidia·mL−1. These results indicate that this fungus has potential as a biological control agent for controlling this problematic weed that is tolerant to the herbicide glyphosate.
    Electronic ISSN: 2073-4395
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Economics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2015-11-28
    Description: Tobacco blue mold, caused by the obligately biotrophic oomycete pathogen Peronospora tabacina D.B. Adam, is a major foliar disease that results in significant losses in tobacco-growing areas. Natural resistance to P. tabacina has not been identified in any variety of common tobacco. Complete resistance, conferred by RBM1, was found in N. debneyi and was transferred into cultivated tobacco by crossing. In the present study, we characterized the RBM1-mediated resistance to blue mold in tobacco and show that the hypersensitive response (HR) plays an important role in the host defense reactions. Genetic mapping indicated that the disease resistance gene locus resides on chromosome 7. The genetic markers linked to this gene and the genetic map we generated will not only benefit tobacco breeders for variety improvement but will also facilitate the positional cloning of RBM1 for biologists.
    Electronic ISSN: 2073-4395
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Economics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2015-12-05
    Description: Although the demand on agriculture to produce food could double by 2050, changing diets will expand the global demand for protein even faster. Canadian livestock producers will likely expand in response to this market opportunity. Because of the high greenhouse gas (GHG) emissions from animal protein production, the portion of this protein demand that can be met by pulse crops must be considered. The protein basis for GHG emission intensity was assessed for 2006 using a multi-commodity GHG emissions inventory model. Because arable land is required for other agricultural products, protein production and GHG emissions were also assessed on the basis of the land use. GHG emissions per unit of protein are one or two orders of magnitude higher for protein from livestock, particularly ruminants, than for protein from pulses. The protein production from pulses was moderately higher per unit of land than the protein from livestock. This difference was greater when soybeans were the only pulse in the comparison. Protein from livestock, especially ruminants, resulted in much higher GHG emissions per unit of land than the protein from pulses. A shift towards more protein from pulses could assure a better global protein supply and reduce GHG emissions associated with that supply.
    Electronic ISSN: 2073-4395
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Economics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2015-03-24
    Description: Geostatistical tools were used to estimate spatial relations between wheat yield and soil parameters under organic farming field conditions. Thematic maps of each factor were created as raster images in R software using kriging. The Geographic Resources Analysis Support System (GRASS) calculated the principal component analysis raster images for soil parameters and yield. The correlation between the raster arising from the PC1 of soil and yield parameters showed high linear correlation (r = 0.75) and explained 48.50% of the data variance. The data show that durum wheat yield is strongly affected by soil parameter variability, and thus, the average production can be substantially lower than its potential. Soil water content was the limiting factor to grain yield and not nitrate as in other similar studies. The use of precision agriculture tools helped reduce the level of complexity between the measured parameters by the grouping of several parameters and demonstrating that precision agriculture tools can be applied in small organic fields, reducing costs and increasing wheat yield. Consequently, site-specific applications could be expected to improve the yield without increasing excessively the cost for farmers and enhance environmental and economic benefits.
    Electronic ISSN: 2073-4395
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Economics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2015-01-09
    Description: The editors of Agronomy would like to express their sincere gratitude to the following reviewers for assessing manuscripts in 2014:[...]
    Electronic ISSN: 2073-4395
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Economics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2015-01-09
    Description: Field trials of transgenic crops may result in unintentional transgene flow to compatible crop, native, and weedy species. Hybridization outside crop fields may create novel forms with potential negative outcomes for wild and weedy plant populations. We report here the outcome of large outdoor mesocosm studies with canola (Brassica napus), transgenic canola, a sexually compatible weed B. rapa, and their hybrids. Brassica rapa was hybridized with canola and canola carrying a transgene for herbivore resistance (Bt Cry1Ac) and grown in outdoor mesocosms under varying conditions of competition and insect herbivory. Treatment effects differed significantly among genotypes. Hybrids were larger than all other genotypes, and produced more seeds than the B. rapa parent. Under conditions of heavy herbivory, plants carrying the transgenic resistance were larger and produced more seeds than non-transgenic plants. Pollen derived gene flow from transgenic canola to B. rapa varied between years (5%–22%) and was not significantly impacted by herbivory. These results confirm that canola-weed hybrids benefit from transgenic resistance and are aggressive competitors with congeneric crops and ruderals. Because some crop and crop-weed hybrids may be competitively superior, escapees may alter the composition and ecological functions of plant communities near transgenic crop fields.
    Electronic ISSN: 2073-4395
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Economics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2015-11-10
    Description: Although iodine is not essential for plants, they take it up readily and, in foodchains, are significant sources of iodine for organisms with an essential requirement for it. During several nuclear accidents radioiodine has been an important component of releases of radioactivity and has caused serious contamination of foodchains. Differences in iodine uptake by different plant taxa are, therefore, important to nutritional and radioecological studies. Using techniques we have developed for a range of other elements, we analyzed inter-taxa differences in radioiodine uptake by 103 plant species and between varieties of two species, and analyzed them using a recent, phylogenetically-informed, taxonomy. The results show that there are significant differences in uptake above and below the species level. There are significant differences between Monocots and Eudicots in iodine uptake, and, in particular, hierarchical ANOVA revealed significant differences between Genera within Families. These analyses of the taxonomic origin of differences in plant uptake of iodine can help the prediction of crop contamination with radioiodine and the management of stable iodine in crops for nutritional purposes.
    Electronic ISSN: 2073-4395
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Economics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2015-08-01
    Description: Sugarcane (Saccharum spp.) brown rust (caused by Puccinia melanocephala H. & P. Sydow) was first reported in the United States in 1978 and is still one of the great challenges for sugarcane production. A better understanding of sugarcane genotypic variation in response to brown rust will help optimize breeding and selection strategies for disease resistance. Brown rust ratings were scaled from non-infection (0) to severe infection (4) with intervals of 0.5 and routinely recorded for genotypes in the first clonal selection stage of the Canal Point sugarcane breeding program in Florida. Data were collected from 14,272 and 12,661 genotypes and replicated check cultivars in 2012 and 2013, respectively. Mean rust rating, % infection, and severity in each family and progeny of female parent were determined, and their coefficients of variation (CV) within and among families (females) were estimated. Considerable variation exists in rust ratings among families or females. The families and female parents with high susceptibility or resistance to brown rust were identified and ranked. The findings of this study can help scientists to evaluate sugarcane crosses and parents for brown rust disease, to use desirable parents for crossing, and to improve genetic resistance to brown rust in breeding programs.
    Electronic ISSN: 2073-4395
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Economics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2015-08-29
    Description: Aluminium (Al) toxicity is a major factor reducing crop productivity worldwide. There is a broad variation in intra- and inter-specific Al resistance. Whereas the Al resistance mechanisms have generally been well explored in Al-excluding plant species, Al resistance through Al accumulation and Al tolerance is not yet well understood. Therefore, a set of 94 genotypes from three Fagopyrum species with special emphasis on F. esculentum Moench were screened, with the objective of identifying genotypes with greatly differing Al accumulation capacity. The genotypes were grown in Al-enriched peat-based substrate for 21 days. Based on the Al concentration of the xylem sap, which varied by a factor of five, only quantitative but not qualitative genotypic differences in Al accumulation could be identified. Aluminium and citrate and Al and Fe concentrations in the xylem sap were positively correlated suggesting that Fe and Al are loaded into and transported in the xylem through related mechanisms. In a nutrient solution experiment using six selected F. esculentum genotypes differing in Al and citrate concentrations in the xylem sap the significant correlation between Al and iron transport in the xylem could be confirmed. Inhibition of root elongation by Al was highly significantly correlated with root oxalate-exudation and leaf Al accumulation. This suggests that Al-activated oxalate exudation and rapid transport of Al to the shoot are prerequisites for the protection of the root apoplast from Al injury and thus overall Al resistance and Al accumulation in buckwheat.
    Electronic ISSN: 2073-4395
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Economics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2015-08-19
    Description: Trace elements (TEs) are vital for the operation of metabolic pathways that promote growth and structural integrity. Paddy soils are often prone to TE limitation due to intensive cultivation and irrigation practices. Apart from this, rice paddies are potentially contaminated with transition metals such as Cd, which are often referred to as toxic TEs. Deficiency of TEs in the soil not only delays plant growth but also causes exposure of plant roots to toxic TEs. Fine-tuning of nutrient cycling in the rice field is a practical solution to cope with TEs deficiency. Adjustment of soil physicochemical properties, biological process such as microbial activities, and fertilization helps to control TEs mobilization in soil. Modifications in root architecture, metal transporters activity, and physiological processes are also promising approaches to enhance TEs accumulation in grains. Through genetic manipulation, these modifications help to increase TE mining capacity of rice plants as well as transport and trafficking of TEs into the grains. The present review summarizes that regulation of TE mobilization in soil, and the genetic improvement of TE acquisition traits help to boost essential TE content in rice grain.
    Electronic ISSN: 2073-4395
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Economics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2015-09-10
    Description: This study was designed to evaluate the role of growth regulator trinexapac and fungicides on growth, yield, and quality of winter rapeseed (Brassica napus L.). The experiment was conducted simultaneously at different locations in Germany using two cultivars of rapeseed. Five different fungicides belonging to the triazole and strobilurin groups, as well as a growth regulator trinexapac, were tested in this study. A total of seven combinations of these fungicides and growth regulator trinexapac were applied at two growth stages of rapeseed. These two stages include green floral bud stage (BBCH 53) and the course of pod development stage (BBCH 65). The results showed that plant height and leaf area index were affected significantly by the application of fungicides. Treatments exhibited induced photosynthetic ability and delayed senescence, which improved the morphological characters and yield components of rape plants at both locations. Triazole, in combination with strobilurin, led to the highest seed yield over other treatments at both experimental locations. Significant effects of fungicides on unsaturated fatty acids of rapeseed oil were observed. Fungicides did not cause any apparent variation in the values of free fatty acids and peroxide of rapeseed oil. Results of our study demonstrate that judicious use of fungicides in rapeseed may help to achieve sustainable farming to obtain higher yield and better quality of rapeseed.
    Electronic ISSN: 2073-4395
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Economics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2015-09-10
    Description: Copper, zinc, manganese, iron, nickel and molybdenum are essential micronutrients for plants. However, when present in excess they may damage the plant or decrease the quality of harvested plant products. Some other heavy metals such as cadmium, lead or mercury are not needed by plants and represent pollutants. The uptake into the roots, the loading into the xylem, the acropetal transport to the shoot with the transpiration stream and the further redistribution in the phloem are crucial for the distribution in aerial plant parts. This review is focused on long-distance transport of heavy metals via xylem and phloem and on interactions between the two transport systems. Phloem transport is the basis for the redistribution within the shoot and for the accumulation in fruits and seeds. Solutes may be transferred from the xylem to the phloem (e.g., in the small bundles in stems of cereals, in minor leaf veins). Nickel is highly phloem-mobile and directed to expanding plant parts. Zinc and to a lesser degree also cadmium are also mobile in the phloem and accumulate in meristems (root tips, shoot apex, axillary buds). Iron and manganese are characterized by poor phloem mobility and are retained in older leaves.
    Electronic ISSN: 2073-4395
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Economics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2015-07-22
    Description: Biochars are complex heterogeneous materials that consist of mineral phases, amorphous C, graphitic C, and labile organic molecules, many of which can be either electron donors or acceptors when placed in soil. Biochar is a reductant, but its electrical and electrochemical properties are a function of both the temperature of production and the concentration and composition of the various redox active mineral and organic phases present. When biochars are added to soils, they interact with plant roots and root hairs, micro-organisms, soil organic matter, proteins and the nutrient-rich water to form complex organo-mineral-biochar complexes Redox reactions can play an important role in the development of these complexes, and can also result in significant changes in the original C matrix. This paper reviews the redox processes that take place in soil and how they may be affected by the addition of biochar. It reviews the available literature on the redox properties of different biochars. It also reviews how biochar redox properties have been measured and presents new methods and data for determining redox properties of fresh biochars and for biochar/soil systems.
    Electronic ISSN: 2073-4395
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Economics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2015-03-18
    Description: Recent progress in genotyping allows for studies of the molecular genetic basis of cold resistance in cereals. However, as in many other fields of molecular genetic analysis, phenotyping for high numbers of genotypes is still a major bottleneck. The use of chlorophyll fluorescence measurements as an indicator for freezing stress is a well established and rapid method for evaluation of frost tolerance. In order to extend the applicability of this technique beyond plants grown under controlled conditions in growth chambers and sacrificed for the test, here we study its applicability for leaves harvested from field trials during winter and subjected to freezing tests. Such an approach allows for simultaneous studies of the advancement of cold hardening and other components of winter survival apart from frost tolerance. It is shown that cutting or senescence of cut leaves does not have adverse effects on the outcome of subsequent freezing stress tests. The time requirements for field sampling and laboratory testing on high numbers of genotypes allow for the application of the proposed approach for genotyping/phenotyping studies.
    Electronic ISSN: 2073-4395
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Economics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...