ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (5,197)
  • Molecular Diversity Preservation International  (4,100)
  • MDPI Publishing  (1,097)
  • American Meteorological Society
  • Cell Press
  • Atmosphere  (1,097)
  • 160231
  • 1
    Publication Date: 2020-08-27
    Description: The aerosol size distribution and cloud condensation nuclei (CCN) number concentration were measured using a wide-range particle spectrometer (WPS) and a cloud condensation nuclei counter (CCNC) on Mt. Tian from 31 July to 9 September, 2019. Combined with meteorological data, distribution characteristics of aerosol size and CCN and their influencing factors were analyzed. The results indicated that the mean aerosol number concentration was 5475.6 ± 5636.5 cm−3. The mean CCN concentrations were 183.7 ± 114.5 cm−3, 729.8 ± 376.1 cm−3, 1630.5 ± 980.5 cm−3, 2162.5 ± 1345.3 cm−3, and 2575.7 ± 1632.9 cm−3 at supersaturation levels of 0.1%, 0.2%, 0.4%, 0.6%, and 0.8%, respectively. The aerosol number size distribution is unimodal, and the dominant particle size is 30–60 nm. Affected by the height of the boundary layer and the valley wind, the diurnal variation in aerosol number concentration shows a unimodal distribution with a peak at 17:00, and the CCN number concentration showed a bimodal distribution with peaks at 18:00 and 21:00. The particle size distribution and supersaturation have a major impact on the activation of the aerosol into CCN. At 0.1% supersaturation (S), the 300–500 nm particles are most likely to activate to CCN. Particles of 100–300 nm are most easily activated at 0.2% (S), while particles of 60–80 nm are most likely activated at high supersaturation (≥0.4%). The concentrations of aerosol and CCN are higher in the northerly wind. Ambient relative humidity (RH) has little relationship with the aerosol activation under high supersaturation. According to N = CSk fitting the CCN spectrum, C = 3297 and k = 0.90 on Mt. Tian, characteristic of the clean continental type.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-08-26
    Description: The atmospheric boundary layer height is important for constraining air pollution and meteorological models. This study attempted to validate the MODIS-estimated atmospheric boundary layer height (ABLH), and variation in the ABLH in Uganda was evaluated. The ABLH was estimated from MODIS data using the mixing ratio profile gradient method and compared to the ABLH estimated from radiosonde data using three different methods. Unlike in studies in other regions of the world, correlations between ABLH estimated using MODIS and radiosonde data were weak, implying limited usefulness of MODIS data for determining ABLH. However, the diurnal variation in MODIS-derived ABLH and particulate matter (PM10) was consistent with the expected inverse relationship between PM10 mass concentration and ABLH, and the mean MODIS-derived ABLH values were significantly lower during wet seasons than dry seasons, as expected.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-08-26
    Description: People spend most of their time in indoors and, as a result, indoor air quality has become an issue of increasing concern. Due to the use of coal and heavy transportation in Beijing, China, concentrations of polycyclic aromatic hydrocarbons (PAHs) bound to PM2.5 have risen and caused concerns about health risk, both outdoors and indoors. This study carried out quantitative investigation of PM2.5-bound PAHs in middle school classrooms and estimated the health risk to adolescents. According to the results, indoor PM2.5 concentrations ranged from 20.9 μg/m3 to 257.6 μg/m3, indoor PAH concentrations ranged from 8.0 ng/m3 to 83.0 ng/m3, and both were statistically correlated with outdoor concentrations. Results of diagnostic ratios (DR) and the PMF (positive matrix factorization) model indicated that coal combustion was the main source of PAHs in the classroom environment. The average value of incremental lifetime cancer risk (ILCR) was estimated to be 1.49 × 10−6, which indicated a potential health risk to students according to USEPA standards. Predictions showed that by 2021–2022, the risk will be reduced to an acceptable level. Results of this study could provide useful information for air pollution control in Beijing and proposing targeted solution against indoor air pollution.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-08-30
    Description: An experimental product study of the reactions of furfural with the main tropospheric oxidants (Cl, OH and NO3) has been carried out using a Fourier Transform Infrared spectrophotometer (FTIR) and a gas chromatograph–mass spectrometer with a time of flight detector (GC–TOFMS). The main gas-phase products detected were 5-chloro-2(5H)-furanone, maleic anhydride, 2-nitrofuran and CO. Molar yields were quantified for the detected products in these reactions, thus suggesting the existence of nongaseous products that could not be observed with the analytical techniques employed. The formation of Secondary Organic Aerosol (SOA) from the oxidation of furfural with Cl atoms, OH, NO3 and ozone was investigated in a smog chamber in the absence of inorganic seed aerosols. The experimental results show the formation of ultrafine particles (less than 1 µm in diameter) for all of the studied reactions except for the nitrate radical. Given their small size, these ultrafine particles (
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-08-28
    Description: Precise exposure assessment of air pollutants is crucial in epidemiologic studies to ensure valid estimates of health effects. We conducted a longitudinal study to evaluate the role of air quality monitoring (AQM) measurements and high-resolution modeling outcomes focusing on nitrogen dioxide (NO2) exposure and atopic dermatitis (AD). A total of 128 young children with AD in Seoul Metropolitan Area, Korea, were recruited as a panel. We estimated the participants’ exposure to NO2 for four months, from 1 April through 31 July 2014 based on (1) monitored levels from 60 AQM stations located at varying distances from residential areas (AQM station-based NO2, AQM-NO2) and (2) estimates from a community multi-scale air quality (CMAQ) modeling system with a high-resolution (1 × 1 km) (CMAQ-NO2). We then compared the effect of AQM-NO2 on AD symptoms with that of CMAQ-NO2. The average distance between the participants’ residences and the nearest AQM station was 2.03 ± 1.06 km, ranging from 0.28 km to 5.73 km. Based on AQM-NO2, the AD symptoms increased by 10.28% (95% confidence interval (CI): 3.24, 17.79) with an increase of 10 ppb of NO2. The effect estimates of CMAQ-NO2 were similar to those of AQM-NO2 when assessed in patients living within 3 km from the nearest AQM station. Even within 1 km, the CI estimate obtained from the CMAQ was much narrower than from AQM (44.18–49.54 vs. 7.02–64.75). However, the association of AQM-NO2 with AD symptoms of patients living beyond 3 km was not positive, whereas that of CMAQ-NO2 maintained positive. In conclusion, exposure to ambient NO2 is significantly associated with aggravation of AD symptoms in young children. In addition, our study suggests that exposure assessment of NO2 using measurement data obtained from monitoring stations far from residential locations can lead to misclassification bias.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-08-29
    Description: Black carbon (BC), organic carbon (OC), and total carbon (TC) in snow are important for their climatic and cryospheric effects. They are also part of the global carbon cycle. Atmospheric black and organic carbon (including brown carbon) may deposit and darken snow surfaces. Currently, there are no standardized methods for sampling, filtering, and analysis protocols to detect carbon in snow. Here, we describe our current methods and protocols to detect carbon in seasonal snow using the OCEC thermal optical method, a European standard for atmospheric elemental carbon (EC). We analyzed snow collected within and around the urban background SMEARIII (Station for Measuring Ecosystem-Atmosphere Relations) at Kumpula (60° N) and the Arctic GAW (Global Atmospheric Watch) station at Sodankylä (67° N). The median BC, OC, and TC in snow samples (ntot = 30) in Kumpula were 1118, 5279, and 6396 ppb, and in Sodankylä, they were 19, 1751, and 629 ppb. Laboratory experiments showed that error due to carbon attached to a sampling bag (n = 11) was
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-08-29
    Description: Recent advances in particle sensor technologies have led to an increased development and utilization of low-cost, compact, particulate matter (PM) monitors. These devices can be deployed in dense monitoring networks, enabling an improved characterization of the spatiotemporal variability in ambient levels and exposure. However, the reliability of their measurements is an important prerequisite, necessitating rigorous performance evaluation and calibration in comparison to reference-grade instrumentation. In this study, field evaluation of Purple Air PA-II devices (low-cost PM sensors) is performed in two urban environments and across three seasons in Greece, in comparison to different types of reference instruments. Measurements were conducted in Athens (the largest city in Greece with nearly four-million inhabitants) for five months spanning over the summer of 2019 and winter/spring of 2020 and in Ioannina, a medium-sized city in northwestern Greece (100,000 inhabitants) during winter/spring 2019–2020. The PM2.5 sensor output correlates strongly with reference measurements (R2 = 0.87 against a beta attenuation monitor and R2 = 0.98 against an optical reference-grade monitor). Deviations in the sensor-reference agreement are identified as mainly related to elevated coarse particle concentrations and high ambient relative humidity. Simple and multiple regression models are tested to compensate for these biases, drastically improving the sensor’s response. Large decreases in sensor error are observed after implementation of models, leading to mean absolute percentage errors of 0.18 and 0.12 for the Athens and Ioannina datasets, respectively. Overall, a quality-controlled and robustly evaluated low-cost network can be an integral component for air quality monitoring in a smart city. Case studies are presented along this line, where a network of PA-II devices is used to monitor the air quality deterioration during a peri-urban forest fire event affecting the area of Athens and during extreme wintertime smog events in Ioannina, related to wood burning for residential heating.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-08-29
    Description: Fertilized agricultural soils serve as a primary source of anthropogenic N2O emissions. In South Africa, there is a paucity of data on N2O emissions from fertilized, irrigated dairy-pasture systems and emission factors (EF) associated with the amount of N applied. A first study aiming to quantify direct N2O emissions and associated EFs of intensive pasture-based dairy systems in sub-Sahara Africa was conducted in South Africa. Field trials were conducted to evaluate fertilizer rates (0, 220, 440, 660, and 880 kg N ha−1 year−1) on N2O emissions from irrigated kikuyu–perennial ryegrass (Pennisetum clandestinum–Lolium perenne) pastures. The static chamber method was used to collect weekly N2O samples for one year. The highest daily N2O fluxes occurred in spring (0.99 kg ha−1 day−1) and summer (1.52 kg ha−1 day−1). Accumulated N2O emissions ranged between 2.45 and 15.5 kg N2O-N ha−1 year−1 and EFs for mineral fertilizers applied had an average of 0.9%. Nitrogen in yielded herbage varied between 582 and 900 kg N ha−1. There was no positive effect on growth of pasture herbage from adding N at high rates. The relationship between N balance and annual N2O emissions was exponential, which indicated that excessive fertilization of N will add directly to N2O emissions from the pastures. Results from this study could update South Africa’s greenhouse gas inventory more accurately to facilitate Tier 3 estimates.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-08-29
    Description: In November 2019, the Supreme Court of India issued a notification to all the states in the National Capital Region of Delhi to install smog towers for clean air and allocated INR 36 crores (~USD 5.2 million) for a pilot. Can we vacuum our air pollution problem using smog towers? The short answer is “no”. Atmospheric science defines the air pollution problem as (a) a dynamic situation where the air is moving at various speeds with no boundaries and (b) a complex mixture of chemical compounds constantly forming and transforming into other compounds. With no boundaries, it is unscientific to assume that one can trap air, clean it, and release into the same atmosphere simultaneously. In this paper, we outline the basics of atmospheric science to describe why the idea of vacuuming outdoor air pollution is unrealistic, and the long view on air quality management in Indian cities.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-08-29
    Description: The problem of wave identification is formulated as applied to the results of measurements of the temperature and the density of the neutral atmosphere in the range height 90–120 km by the artificial periodic irregularities (APIs) technique. The technique is based on the resonant scattering of radio waves by artificial periodic irregularities of the ionospheric plasma emerging in the field of a standing wave arising from the interference of the incident and reflected waves from the ionosphere. APIs were created using SURA heating facility (named as SURA experiment). The acoustic wave theory is reformulated on the base of data which can be observed in the given experimental setup. The basic system of equations is reduced so that it accounts only upward and downward directed waves, ignoring entropy mode. The algorithm of wave identification based on usage of dynamic projection operators for such a reduced case is proposed and explicit form of projection operators is derived. Its application to finite number dataset via Discrete Fourier Transform (DFT) is described and results of its application to the DFT-transformed set of experimental observation of the temperature and density perturbations are presented. The result yields hybrid amplitudes, that allow us to calculate energy of the directed waves that enter the observed superposition. The problem of entropy mode detection is discussed, the corresponding projecting operators for the full evolution system are built and a way to apply the method to quantification of it is proposed.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...