ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (260)
  • MDPI Publishing  (260)
  • American Chemical Society
  • Cell Press
  • 2015-2019  (260)
  • 1980-1984
  • 2017  (260)
  • Atmosphere  (260)
  • 160231
  • 1
    Publication Date: 2017-03-18
    Description: Since the late 1990s, land surface temperatures over Japan have increased during the summer and autumn, while global mean temperatures have not risen in this duration (i.e., the global warming hiatus). In contrast, winter and spring temperatures in Japan have decreased. To assess the impact of both global warming and global-scale decadal variability on this enhanced seasonal temperature contrast, we analyzed the outputs of 100 ensemble simulations of historical and counterfactual non-warming climate simulations conducted using a high-resolution atmospheric general circulation model (AGCM). Our simulations showed that atmospheric fields impacted by the La Nina-like conditions associated with Interdecadal Pacific Oscillation (IPO) have predominantly contributed to the seasonal temperature contrast over Japan. Compared with the impact of negative IPO, the influence of global warming on seasonal temperature contrasts in Japan was small. In addition, atmospheric variability has also had a large impact on temperatures in Japan over a decadal timescale. The results of this study suggest a future increase in heatwave risk during the summer and autumn when La Nina-like decadal phenomena and atmospheric perturbations coincide over a background of global warming.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-03-19
    Description: Using the Weather Research and Forecasting (WRF) – Advanced Research WRF (ARW) mesoscale model (WRF–ARW), we investigate how two nocturnal offshore rainbands occurring in the Mediterranean basin are modified in a warmer sea surface temperature (SST). After sunset, the thermal difference between land and sea air increases. Driven by drainage winds or land breeze, the inland cold air interacts with the relatively warmer and moister air over the sea. Vertical movement of sea air over the boundary between the two air masses may induce cloud and rain bands offshore. When an increase of SST is prescribed in the WRF simulations, a change in the precipitation pattern is simulated. The numerical experiments show an increase both in the extension and location of the rainbands and in the precipitation rate. These changes, induced by the modified SST, are analyzed by estimating and comparing several parameters such as the location of level of free convection (LFC), Convective Available Potential Energy (CAPE), or the triggering, deceleration and blockage terms of simplified conceptual models.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-02-14
    Description: This paper introduces a simple two-dimensional ray-tracing visual tool, Ray-VT, for simulating propagations in the tropospheric environment. It is capable of tracing ray paths through range-dependent refractive conditions as well as arbitrary terrain cases. The fundamental computations are based on the piece-wise application of Snell’s law including a small angle approximation. The Ray-VT can be used to investigate the effects of ducting propagations and to assess the performances of radar systems. It can also be used as an educational aid for understanding the propagation characteristics in complex environments.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-08-24
    Description: Atmosphere, Vol. 8, Pages 156: Unstable Leader Inception Criteria of Atmospheric Discharges Atmosphere doi: 10.3390/atmos8090156 Authors: Liliana Arevalo Vernon Cooray In the literature, there are different criteria to represent the formation of a leader channel in short and long gap discharges. Due to the complexity of the physics of the heating phenomena, and the limitations of the computational resources, a simplified criterion for the minimum amount of electrical charge required to incept an unstable leader has recently been used for modeling long gap discharges and lightning attachments. The criterion is based on the assumption that the total energy of the streamer is used to heat up the gas, among other principles. However, from a physics point of view, energy can also be transferred to other molecular processes, such as rotation, translation, and vibrational excitation. In this paper, the leader inception mechanism was studied based on fundamental particle physics and the energy balance of the gas media. The heating process of the plasma is evaluated with a detailed two-dimensional self-consistent model. The model is able to represent the streamer propagation, dark period, and unsuccessful leaders that may occur prior to the heating of the channel. The main processes that participate in heating the gas are identified within the model, indicating that impact ionization and detachment are the leading sources of energy injection, and that recombination is responsible for loss of electrons and limiting the energy. The model was applied to a well-known experiment for long air gaps under positive switching impulses reported in the literature, and used to validate models for lightning attachments and long gap discharges. Results indicate that the streamer–leader transition depends on the amount of energy transferred to the heating process. The minimum electric charge required for leader inception varies with the gap geometry, the background electric field, the reduction of electric field due to the space charge, the energy expended on the vibrational relation, and the environmental conditions, among others.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-08-29
    Description: Atmosphere, Vol. 8, Pages 160: Spatial Distributions of Tropical Cyclone Tornadoes by Intensity and Size Characteristics Atmosphere doi: 10.3390/atmos8090160 Authors: Todd Moore Nicholas Sokol Robert Blume Tropical cyclones that make landfall often spawn tornadoes. Previous studies have shown that these tornadoes are not uniformly distributed in the United States or in the tropical cyclone environment. They show that tornadoes tend to occur relatively close to the coastline and that they tend to cluster to the east-of-center in the tropical cyclone environment, particularly in the northeast and east-of-center quadrants. This study contributes to these studies by analyzing the spatial distributions of tropical cyclone tornadoes by intensity, path length, path width, and the damage potential index. The analyses confirm that most tornadoes occur relatively close to the coastline, but show that stronger tornadoes with larger paths are disproportionately common farther inland. They also confirm that the highest amount of activity is located within the northeast and east-of-center quadrants and show that the most potentially damaging tornadoes cluster in a sub region near the intersection of these two quadrants.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-09-12
    Description: Atmosphere, Vol. 8, Pages 169: Impacts of Urban Layouts and Open Space on Urban Ventilation Evaluated by Concentration Decay Method Atmosphere doi: 10.3390/atmos8090169 Authors: Qun Wang Mats Sandberg Yuanyuan Lin Shi Yin Jian Hang Previous researchers calculated air change rate per hour (ACH) in the urban canopy layers (UCL) by integrating the normal component of air mean velocity (convection) and fluctuation velocity (turbulent diffusions) across UCL boundaries. However they are usually greater than the actual ACH induced by flow rates flushing UCL and never returning again. As a novelty, this paper aims to verify the exponential concentration decay history occurring in UCL models and applies the concentration decay method to assess the actual UCL ACH and predict the urban age of air at various points. Computational fluid dynamic (CFD) simulations with the standard k-ε models are successfully validated by wind tunnel data. The typical street-scale UCL models are studied under neutral atmospheric conditions. Larger urban size attains smaller ACH. For square overall urban form (Lx = Ly = 390 m), the parallel wind (θ = 0°) attains greater ACH than non-parallel wind (θ = 15°, 30°, 45°), but it experiences smaller ACH than the rectangular urban form (Lx = 570 m, Ly = 270 m) under most wind directions (θ = 30° to 90°). Open space increases ACH more effectively under oblique wind (θ = 15°, 30°, 45°) than parallel wind. Although further investigations are still required, this paper provides an effective approach to quantify the actual ACH in urban-like geometries.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-09-17
    Description: Atmosphere, Vol. 8, Pages 175: Stomatal and Non-Stomatal Turbulent Deposition Flux of Ozone to a Managed Peatland Atmosphere doi: 10.3390/atmos8090175 Authors: Tarek El-Madany Katharina Niklasch Otto Klemm Ozone is a key trace gas in the troposphere; because it is a greenhouse gas, it is very reactive, and it is potentially toxic to humans, fauna, and vegetation. The main sink processes for ozone are chemical reactions and the turbulent deposition flux to the earth’s surface. The deposition process itself is rather complex: The interactions between co-varying drivers such as the tropospheric ozone concentration, turbulence, and chemical reactions are not well understood. In the case of ozone deposition to vegetation, another aspect that must be studied is the role of stomatal regulation for a wide range of conditions. Therefore, we measured turbulent deposition fluxes of ozone with the eddy covariance technique during the peak of the growing season in 2014 over a managed, rewetted peatland in NW Germany. The deposition flux was large during the day (up to −15 nmol m−2 s−1) and relatively small during the night (between −1 and −2 nmol m−2 s−1). Flux partitioning by applying the surface resistance analogy and further analysis showed that the stomatal uptake was smaller than non-stomatal deposition. The correction of stomatal conductance with the gross primary production (GPP) improved the estimation of day- and nighttime stomatal deposition fluxes. Statistical analysis confirmed that the friction velocity (u*) was the single most important driver of non-stomatal ozone deposition and that relationships with other environmental drivers are not linear and highly variable. Further research is needed to develop a better process understanding of non-stomatal ozone deposition, to quantify the role of surface deposition to the ozone budget of the atmospheric boundary layer, and to estimate uncertainties associated with the partitioning of ozone deposition into stomatal and non-stomatal fluxes.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-08-14
    Description: Atmosphere, Vol. 8, Pages 147: Improving PM2.5 Air Quality Model Forecasts in China Using a Bias-Correction Framework Atmosphere doi: 10.3390/atmos8080147 Authors: Baolei Lyu Yuzhong Zhang Yongtao Hu Chinese cities are experiencing severe air pollution in particular, with extremely high PM2.5 levels observed in cold seasons. Accurate forecasting of occurrence of such air pollution events in advance can help the community to take action to abate emissions and would ultimately benefit the citizens. To improve the PM2.5 air quality model forecasts in China, we proposed a bias-correction framework that utilized the historic relationship between the model biases and forecasted and observational variables to post-process the current forecasts. The framework consists of four components: (1) a feature selector that chooses the variables that are informative to model forecast bias based on historic data; (2) a classifier trained to efficiently determine the forecast analogs (clusters) based on clustering analysis, such as the distance-based method and the classification tree, etc.; (3) an error estimator, such as the Kalman filter, to predict model forecast errors at monitoring sites based on forecast analogs; and (4) a spatial interpolator to estimate the bias correction over the entire modeling domain. One or more methods were tested for each step. We applied five combinations of these methods to PM2.5 forecasts in 2014–2016 over China from the operational AiMa air quality forecasting system using the Community Multiscale Air Quality (CMAQ) model. All five methods were able to improve forecast performance in terms of normalized mean error (NME) and root mean square error (RMSE), though to a relatively limited degree due to the rapid changing of emission rates in China. Among the five methods, the CART-LM-KF-AN (a Classification And Regression Trees-Linear Model-Kalman Filter-Analog combination) method appears to have the best overall performance for varied lead times. While the details of our study are specific to the forecast system, the bias-correction framework is likely applicable to the other air quality model forecast as well.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-08-11
    Description: Atmosphere, Vol. 8, Pages 145: Dynamic Evaluation of Photochemical Grid Model Response to Emission Changes in the South Coast Air Basin in California Atmosphere doi: 10.3390/atmos8080145 Authors: Prakash Karamchandani Ralph Morris Andrew Wentland Tejas Shah Stephen Reid Julia Lester This paper describes a study to evaluate the capability of a photochemical grid modeling system to predict changes in ozone concentrations in response to emission changes over a period of several years. The development of regulatory emission control plans to meet air quality standards primarily relies on modeled projections of future-year air quality, although a weight of evidence approach (which takes into account a number of factors including modeling results, model evaluation and other pertinent information such as ambient trends) is recommended and is also typically used as part of the attainment demonstration. Thus, it is important to determine if the modeling system used to project future-year quality can correctly simulate ozone responses to the projected emissions reductions. Uncertainties and errors in modeled projections can lead to erroneous estimates of emissions controls required to attain the standards. We use two existing regulatory modeling databases, employed for forecasting future-year air quality in the South Coast Air Basin (SoCAB) of California, for a number of historical years to evaluate the ability of the system to accurately simulate the observed changes in air quality over a multi-year period. The evaluation results with the older (2012) database show that the modeling system consistently under-predicts the reductions in ozone in response to emission reductions over the years. Model response improves with the newer (2016) database with good agreement at some locations, but the system still tends to under-predict ozone responses by as much as a factor of 2 in recent years for the Basin maximum ozone design value. This suggests that future-year estimates of ozone design values may be overly conservative, resulting in emission controls that are technologically challenging or very expensive to implement. The development of better emission inventories and model inputs is recommended to develop a modeling system that more accurately responds to emission changes. Future regulatory planning should include dynamic evaluation in addition to the traditional operational evaluation of the model to provide more confidence to all stakeholders that the resulting policy decisions are necessary to attain the air quality standards and to protect public health.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-08-16
    Description: Atmosphere, Vol. 8, Pages 149: Chemical and Light Extinction Characteristics of Atmospheric Aerosols in Suburban Nanjing, China Atmosphere doi: 10.3390/atmos8080149 Authors: Dan Wu Fan Zhang Xinlei Ge Meng Yang Junrong Xia Gang Liu Fengying Li This work reports the chemical and light extinction characteristics of the atmospheric particles collected from January to November 2014 in suburban Nanjing. Size-segregated measurement results showed that more than 80% of the major aerosol components were concentrated in PM2.5. The concentration of PM2.5 was highest in winter and lowest in autumn. Specifically, K+ concentration peaked in late spring indicating heavy influences from straw burning, while sulfate concentration was highest in summer and its daytime concentration was also higher than its nighttime concentration, both reflecting a significant role of photochemical production. Nevertheless, except for sulfate, all other components had higher concentrations during nighttime, signifying the role of unfavorable meteorological conditions in exacerbating the air pollution. The IMPROVE formula was employed, which can reconstruct the PM2.5 mass and light extinction well. The light extinction was mainly contributed by (NH4)2SO4 and NH4NO3 (together 58.3%). Mass concentrations of all PM2.5 components increased significantly with the increase of pollution levels, but nitrate increased most rapidly; correspondingly, the contribution of nitrate to light extinction also increased quickly when pollution became heavy. Such results were different from those observed in Beijing-Tianjin-Hebei where sulfate increased most quickly. Our results thus highlight that reduction of vehicular NO2 is likely a priority for air quality improvement in Nanjing. Back trajectory analysis showed the dominance of the local air mass and the one from Huanghai, yet the air mass originated from Bohai, and passed though Shandong and north of Jiangsu province could deliver highly-polluted air to Nanjing, as well.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2017-08-17
    Description: Atmosphere, Vol. 8, Pages 151: Caribbean Air Chemistry and Dispersion Conditions Atmosphere doi: 10.3390/atmos8080151 Authors: Mark Jury The meteorological influences on Caribbean air chemistry are studied using in-situ, satellite and model data. Although African dust plumes join locally generated pollutants, concentrations are relatively low in the eastern Caribbean due to geographic remoteness and steady oceanic trade winds. Urban-industrial emissions from big cities (e.g., Kingston, Santo Domingo, San Juan), agricultural emissions from the south, and volcanic emissions from Montserrat contribute a noticeable burden. Conditions over Puerto Rico in the dry season (December–May) provide a focus for statistical analysis of air chemistry constituents and weather variables that describe dispersion conditions. Monthly and daily air indices are formed by summing the normalized values of fine aerosols and particulates, long- and short-lived trace gases from in-situ, satellite and model sources. The spatial correlation of a daily Puerto Rico air index onto regional dewpoint temperature, air pressure and outgoing longwave radiation fields in December–May 2005–2015 reveals the northward movement of a dry tongue and trough. At the climate timescale, Pacific El Nino conditions favor an increase of spring-time air pollution corresponding to anomalous inflow from Africa and the southern Caribbean coast. Composite weather patterns for a group of high air index values reflect divergent trade winds and a strong jet stream that imparts anticyclonic vorticity, subsidence and low humidity. This new understanding will underpin better air quality forecasts for Puerto Rico and the wider Caribbean.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2017-08-19
    Description: Atmosphere, Vol. 8, Pages 154: Indian Summer Monsoon and El Niño Southern Oscillation in CMIP5 Models: A Few Areas of Agreement and Disagreement Atmosphere doi: 10.3390/atmos8080154 Authors: Indrani Roy Using the CMIP5 model outputs, a few characteristics of Indian Summer Monsoon (ISM) rainfall and Niño 3.4 temperature are analysed during June–July–August–September (JJAS). Focusing on specified regions around central-northeast India, some general characteristic features of ISM precipitation are studied, which are shown to be varying among models. The trend of decreasing rainfall in that region as noticed in observations suggests an inconsistency among models. The ENSO also shows variation, and its phasing indicates disagreement. Unlike other models, FGOALS-g2 is identified as not suggesting any trend in Niño 3.4 temperature and needs attention for model evaluation purposes. ISM and ENSO correlation in either historical or the RCP 8.5 scenario confirm a negative signature, agreeing with the usual ISM, ENSO connection. Precipitation over the globe shows a rising trend in an ensemble of CMIP5 model outputs for the RCP 8.5 scenario, though no consensus is reached for the Indian region. Precipitation time series around the Indian subcontinent vary widely among models. Analyses with various future scenarios indicate that the Indian subcontinent shows much larger uncertainty, in terms of precipitation, compared to that from the whole world. This study identifies a few areas where CMIP 5 models are in agreement or disagreement with each other. Such an analysis could be useful for understanding various processes in CMIP 5 models that involve ISM precipitation and can lead to improving the representation of processes in models.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2017-08-26
    Description: Atmosphere, Vol. 8, Pages 157: The Impact of Residential Combustion Emissions on Health Expenditures: Empirical Evidence from Sub-Saharan Africa Atmosphere doi: 10.3390/atmos8090157 Authors: Aboubacar Badamassi Deyi Xu Boubacar Leyla Residential combustion of fuels, especially solid, for cooking, heating and other activities generates high level emissions that considerably contribute to indoor and outdoor air pollutants concentrations, which adversely affect human health and are likely to influence heath expenditures. We used the system General Method of Moments (GMM) technique to examine the role of residential combustion (proxied by: particulate matter (PM2.5), carbon monoxide (CO), nitrogen oxide (NOx) and sulphur dioxide (SO2) emissions) in determining health expenditures while controlling for ambient air pollutants emissions from the other categories such as transportation, manufacturing industries and construction, and others. We employed data covering the period 1995–2010 in 44 countries of Sub-Saharan Africa (SSA). Health expenditures are categorized into per capita, public and private out-of-pocket; and we run three separate regressions according to the categories. The findings indicate that residential sector combustion was significantly associated with higher health expenditures, especially the out-of-pocket compared with other categories. Moreover, PM2.5 is found to have the highest impact on health expenditures. The implementation of effective public health and environmental health policies that encourage the access and use of cleaner fuels or improved cook stoves in SSA would be associated with not only a reduction in healthcare expenditures but also with other health and socio-economic benefits.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2017-08-26
    Description: Atmosphere, Vol. 8, Pages 159: Pedestrian-Level Urban Wind Flow Enhancement with Wind Catchers Atmosphere doi: 10.3390/atmos8090159 Authors: Lup Chew Negin Nazarian Leslie Norford Dense urban areas restrict air movement, causing airflow in urban street canyons to be much lower than the flow above buildings. Boosting near-ground wind speed can enhance thermal comfort in warm climates by increasing skin convective heat transfer. We explored the potential of a wind catcher to direct atmospheric wind into urban street canyons. We arranged scaled-down models of buildings with a wind catcher prototype in a water channel to simulate flow across two-dimensional urban street canyons. Velocity profiles were measured with Acoustic Doppler Velocimeters. Experiments showed that a wind catcher enhances pedestrian-level wind speed in the target canyon by 2.5 times. The flow enhancement is local to the target canyon with little effect in other canyons. With reversed flow direction, a “reversed wind catcher” has no effect in the target canyon but reduces the flow in the immediate downstream canyon. The reversed wind catcher exhibits a similar blockage effect of a tall building amid an array of lower buildings. Next, we validated Computational Fluid Dynamics (CFD) simulations of all cases with experiments and extended the study to reveal impacts on three-dimensional ensembles of buildings. A wind catcher with closed sidewalls enhances maximum pedestrian-level wind speed in three-dimensional canyons by four times. Our results encourage better designs of wind catchers to increase wind speed in targeted areas.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2017-09-07
    Description: Atmosphere, Vol. 8, Pages 165: Comparing the Spatial Patterns of Rainfall and Atmospheric Moisture among Tropical Cyclones Having a Track Similar to Hurricane Irene (2011) Atmosphere doi: 10.3390/atmos8090165 Authors: Corene Matyas Irene was the most destructive tropical cyclone (TC) of the 2011 Atlantic hurricane season due to flooding from rainfall. This study used a Geographic Information System to identify TCs with similar tracks and examine the spatial attributes of their rainfall patterns. Storm-total rainfall was calculated from the Unified Precipitation Dataset for 11 post-1948 storms and statistics corresponding to the top 10% of rainfall values left of track were computed. Irene-type tracks occur every 6.6 years. Floyd (1999) produced the highest rainfall overall and was the closest analog to Irene, yet Irene produced more rainfall in the northeastern U.S. where higher values of precipitable water existed. Areas of high rainfall expanded as five TCs moved north due to synoptic-scale forcing during extratropical transition. However, Irene and three other TCs did not exhibit this pattern. The amount of moisture in the environment surrounding the TC, rather than storm speed or intensity, exhibited the strongest correlations with rainfall totals and their spatial distribution. These results demonstrate the high variability that exists in the production of rainfall among TCs experiencing similar steering flow, and show that advection of moisture from the tropics is key to higher rainfall totals in the mid-latitudes.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2017-09-07
    Description: Atmosphere, Vol. 8, Pages 166: Effect of Thermodenuding on the Structure of Nascent Flame Soot Aggregates Atmosphere doi: 10.3390/atmos8090166 Authors: Janarjan Bhandari Swarup China Timothy Onasch Lindsay Wolff Andrew Lambe Paul Davidovits Eben Cross Adam Ahern Jason Olfert Manvendra Dubey Claudio Mazzoleni The optical properties (absorption and scattering) of soot particles depend on soot size and index of refraction, but also on the soot complex morphology and the internal mixing with materials that can condense on a freshly emitted (nascent) soot particle and coat it. This coating can affect the soot optical properties by refracting light, or by changing the soot aggregate structure. A common approach to studying the effect of coating on soot optical properties is to measure the absorption and scattering coefficients in ambient air, and then measure them again after removing the coating using a thermodenuder. In this approach, it is assumed that: (1) most of the coating material is removed; (2) charred organic coating does not add to the refractory carbon; (3) oxidation of soot is negligible; and, (4) the structure of the pre-existing soot core is left unaltered, despite the potential oxidation of the core at elevated temperatures. In this study, we investigated the validity of the last assumption, by studying the effect of thermodenuding on the morphology of nascent soot. To this end, we analyzed the morphological properties of laboratory generated nascent soot, before and after thermodenuding. Our investigation shows that there is only minor restructuring of nascent soot by thermodenuding.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2017-09-08
    Description: Atmosphere, Vol. 8, Pages 167: Emission Inventory of On-Road Transport in Bangkok Metropolitan Region (BMR) Development during 2007 to 2015 Using the GAINS Model Atmosphere doi: 10.3390/atmos8090167 Authors: Penwadee Cheewaphongphan Agapol Junpen Savitri Garivait Satoru Chatani Bangkok Metropolitan Region (BMR), including the capital city and five adjacent provinces, constitutes one of the top 10 megacities experiencing serious traffic congestion in the world, leading to air quality problems with significant adverse human health risks. Previously, there have been many operations planned to influence the fuel consumption and emissions from the on-road transport sector in the BMR area. It is necessary to estimate emissions using detailed information in order to thoroughly understand the reason for changes in emission levels and their impact on air quality. This paper aims to determine the successful implementation of energy and air pollution control policies in Thailand through an investigation of the emissions inventory of on-road transport in BMR, including ozone precursors (CO, NOX, Non-methane volatile organic compounds (NMVOCs) ), greenhouse gases (CO2, CH4, N2O), acidic substances (SO2 and NH3), and particulate matters (PM2.5, PM10, Black Carbon (BC), Organic Carbon (OC)) during the period from 2007 to 2015, using the Greenhouse Gas and Air Pollution Interactions and Synergies (GAINS) model based on the country-specific activity data together with the emission factor from the GAINS-Asia database. This study found that the amount of exhaust emissions over the BMR area in the year 2015 (and the trend during the period from 2007 to 2015) is approximately 139 kt of CO (−7.9%), 103 kt of NOX (−4.1%), 19.9 kt of NMVOC (−6.7%), 15 kt of CO2 (+1.6%), 8.6 kt of CH4 (+6.8%), 0.59 kt of N2O (+1.3%), 0.87 kt of SO2 (−25.8%), 1.1 kt of NH3 (+7.8%), 4.9 kt of PM2.5 (−5.5%), 5.1 kt of PM10 (−7.9%), 3.1 kt of BC (−2.5%), and 1.4 kt of OC (−7.7%). The change in emissions in each pollutant is a result of the more stringent control of fuel and engine standards, the shift in the fuel type used, and the effects of controlling some emissions. Light duty car gasoline fuel is identified as a major contributor of CO, NH3, N2O, and NMVOC, whereas trucks are the greatest emitters of NOX, SO2, and particulate matter. This study suggests that the most powerful implementation plan for the continuous, significant reduction of ozone precursor, SO2, and particulate matter emissions is the more stringent enforcement of fuel and vehicle standard levels, especially concerning light duty vehicles.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2017-09-09
    Description: Atmosphere, Vol. 8, Pages 168: Effects of Unstable Stratification on Ventilation in Hong Kong Atmosphere doi: 10.3390/atmos8090168 Authors: Tobias Gronemeier Siegfried Raasch Edward Ng Ventilation in cities is crucial for the well being of their inhabitants. Therefore, local governments require air ventilation assessments (AVAs) prior to the construction of new buildings. In a standard AVA, however, only neutral stratification is considered, although diabatic and particularly unstable conditions may be observed more frequently in nature. The results presented here indicate significant changes in ventilation within most of the area of Kowloon City, Hong Kong, included in the study. A new definition for calculating ventilation was introduced, and used to compare the influence of buildings on ventilation under conditions of neutral and unstable stratification. The overall ventilation increased due to enhanced vertical mixing. In the vicinity of exposed buildings, however, ventilation was weaker for unstable stratification than for neutral stratification. The influence on ventilation by building parameters, such as the plan area index, was altered when unstable stratification was considered. Consequently, differences in stratification were shown to have marked effects on ventilation estimates, which should be taken into consideration in future AVAs.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2017-09-14
    Description: Atmosphere, Vol. 8, Pages 171: Remote Ocean Response to the Madden–Julian Oscillation during the DYNAMO Field Campaign: Impact on Somali Current System and the Seychelles–Chagos Thermocline Ridge Atmosphere doi: 10.3390/atmos8090171 Authors: Toshiaki Shinoda Weiqing Han Luis Zamudio Ren-Chieh Lien Masaki Katsumata During the CINDY/DYNAMO field campaign, exceptionally large upper ocean responses to strong westerly wind events associated with the Madden–Julian oscillation (MJO) were observed in the central equatorial Indian Ocean. Strong eastward equatorial currents in the upper ocean lasted more than one month from late November 2011 to early January 2012. The remote ocean response to these unique MJO events are investigated using a high resolution (1/25°) global ocean general circulation model along with the satellite altimeter data. The local ocean response to the MJO events are realistically simulated by the global model based on the comparison with the data collected during the field campaign. The satellite altimeter data show that anomalous sea surface height (SSH) associated with the strong eastward jets propagated eastward as an equatorial Kelvin wave. The positive SSH anomalies then partly propagate westward as a reflected Rossby wave. The SSH anomalies associated with the reflected Rossby wave in the southern hemisphere propagate all the way to the western boundary. These remote ocean responses are well simulated by the global model. The analysis of the model simulation indicates the significant influence of reflected Rossby waves on sub-seasonal variability of Somali current system near the equator. The analysis further suggests that the reflected Rossby wave causes a substantial change in the structure of the Seychelles–Chagos thermocline ridge, which contributes to significant SST anomalies.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2017-09-17
    Description: Atmosphere, Vol. 8, Pages 170: Data Assimilation in Air Contaminant Dispersion Using a Particle Filter and Expectation-Maximization Algorithm Atmosphere doi: 10.3390/atmos8090170 Authors: Rongxiao Wang Bin Chen Sihang Qiu Zhengqiu Zhu Xiaogang Qiu The accurate prediction of air contaminant dispersion is essential to air quality monitoring and the emergency management of contaminant gas leakage incidents in chemical industry parks. Conventional atmospheric dispersion models can seldom give accurate predictions due to inaccurate input parameters. In order to improve the prediction accuracy of dispersion models, two data assimilation methods (i.e., the typical particle filter & the combination of a particle filter and expectation-maximization algorithm) are proposed to assimilate the virtual Unmanned Aerial Vehicle (UAV) observations with measurement error into the atmospheric dispersion model. Two emission cases with different dimensions of state parameters are considered. To test the performances of the proposed methods, two numerical experiments corresponding to the two emission cases are designed and implemented. The results show that the particle filter can effectively estimate the model parameters and improve the accuracy of model predictions when the dimension of state parameters is relatively low. In contrast, when the dimension of state parameters becomes higher, the method of particle filter combining the expectation-maximization algorithm performs better in terms of the parameter estimation accuracy. Therefore, the proposed data assimilation methods are able to effectively support air quality monitoring and emergency management in chemical industry parks.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2017-08-16
    Description: Atmosphere, Vol. 8, Pages 150: An Alternative Estimate of Potential Predictability on the Madden–Julian Oscillation Phase Space Using S2S Models Atmosphere doi: 10.3390/atmos8080150 Authors: Yuiko Ichikawa Masaru Inatsu This study proposes an alternative method to estimate the potential predictability without assuming the perfect model. A theoretical consideration relates a maximum possible value of the initial-value error to the covariance between analysis and bias-corrected ensemble-mean forecast. To test the method, the prediction limit of the Madden–Julian Oscillation (MJO) was evaluated, based on three pairs of reanalysis and forecast datasets provided by the European Centre for Medium-Range Weather Forecasting, the Japan Meteorological Agency and the National Centers for Environmental Prediction, participating in the subseasonal-to-seasonal prediction project. The results showed that the predictability was higher when MJO amplitude exceeded unity, consistent with the conventional method in which the error is evaluated as the ensemble-forecast spread. Moreover, the multimodel analysis was also conducted because the proposed method is readily applicable to the multimodel average of ensemble-mean forecasts. The phase dependency of the MJO’s potential predictability is also discussed.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2017-08-16
    Description: Atmosphere, Vol. 8, Pages 146: Evaluating the Role of the EOF Analysis in 4DEnVar Methods Atmosphere doi: 10.3390/atmos8080146 Authors: Xingxia Kou Zhekun Huang Hongnian Liu Meigen Zhang Si Shen Zhen Peng The four-dimensional variational data assimilation (4DVar) method is one of the most popular techniques used in numerical weather prediction. Nevertheless, the needs of the adjoint model and the linearization of the forecast model largely limit the wider applications of 4DVar. 4D ensemble-variational data assimilation methods (4DEnVars) exploit the strengths of the Ensemble Kalman Filter and 4DVar, and use the ensemble trajectories to directly estimate four-dimensional background error covariance. This study evaluates the role of the empirical orthogonal function (EOF) analysis in 4DEnVars. The widely-recognized 4DEnVar method DRP-4DVar (the Dimension-reduced projection 4DVar) is adopted as the representation of EOF analyses in this study. The performance of the Dimension-reduced projection 4DVar (DRP-4DVar), 4DEnVar (i.e., another traditional 4DEnVar scheme without EOF transformation), and the Ensemble Transform Kalman Filter (ETKF) was compared to demonstrate the effect of the EOF analysis in DRP-4DVar. Sensitivity experiments indicate that EOF analyses construct basis vectors in eigenvalue space and the dimension reduction in the DRP-4DVar approach helps improve computational efficiency and analysis accuracy. When compared with 4DEnVar and the ETKF, the DRP-4DVar demonstrates similar analysis root-mean-square error (RMSE) to 4DEnVar, whereas it surpasses the ETKF by 22.3%. In addition, sensitivity experiments of DRP-4DVar on the ensemble size, the assimilation window length, and the standard deviation of the initial perturbation imply that the DRP-4DVar with the optimized EOF truncation number is robust to a wide range of the parameters, but extremely low values should be avoided. The results presented here suggest the potential wide application of EOF analysis in the hybrid 4DEnVar methods.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2017-08-18
    Description: Atmosphere, Vol. 8, Pages 152: Variations of Energy Fluxes and Ecosystem Evapotranspiration in a Young Secondary Dry Dipterocarp Forest in Western Thailand Atmosphere doi: 10.3390/atmos8080152 Authors: Montri Sanwangsri Phongthep Hanpattanakit Amnat Chidthaisong Deforestation, followed by abandonment and forest regeneration, has become one of the dominant types of land cover changes in the tropics. This study applied the eddy covariance (EC) technique to quantify the energy budget and evapotranspiration in a regenerated secondary dry dipterocarp forest in Western Thailand. The mean annual net radiation was 126.69, 129.61, and 125.65 W m−2 day−1 in 2009, 2010, and 2011, respectively. On average, fluxes of this energy were disaggregated into latent heat (61%), sensible heat (27%), and soil heat flux (1%). While the number of energy exchanges was not significantly different between these years, there were distinct seasonal patterns within a year. In the wet season, more than 79% of energy fluxes were in the form of latent heat, while during the dry season, this was in the form of sensible heat. The energy closure in this forest ecosystem was 86% and 85% in 2010 and 2011, respectively, and varied between 84–87% in the dry season and 83–84% in the wet season. The seasonality of these energy fluxes and energy closure can be explained by rainfall, soil moisture, and water vapor deficit. The rates of evapotranspiration also significantly varied between the wet (average 6.40 mm day−1) and dry seasons (3.26 mm day−1).
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2017-08-22
    Description: Atmosphere, Vol. 8, Pages 155: Validation and Accuracy Analysis of Global MODIS Aerosol Products over Land Atmosphere doi: 10.3390/atmos8080155 Authors: Qingxin Wang Lin Sun Jing Wei Yikun Yang Ruibo Li Qinhuo Liu Liangfu Chen Land surface reflectance (LSR) and aerosol types are the two main factors that affect aerosol inversions over land. According to LSR determination methods, Moderate resolution Imaging Spectroradiometer (MODIS) aerosol products are produced using the Deep Blue (DB) and Dark Target (DT) algorithms. Five aerosol types that are determined from Aerosol Robotic Network (AERONET) ground measurements are used to describe the global distribution of aerosol types in each algorithm. To assess the influence of LSR and the method used to determine aerosol type from aerosol retrievals, 10-km global aerosol products that cover 2013 are selected for validation using Level 2.0 aerosol observations from 175 AERONET sites. The variations in the retrieval accuracy of the DB and DT algorithms for different LSR values are analyzed by combining them with a global 10-km LSR database. Meanwhile, the adaptability of the MODIS products over areas covered with different aerosols is also explored. The results are as follows. (1) Compared with DT retrievals, the DB algorithm yields lower root mean squared error (RMSE) and mean absolut error (MAE) values, and a greater number of appropriate sample points fall within the expected error (EE). The DB algorithm shows higher overall reliability; (2) The aerosol retrieval accuracy of the DB and DT algorithms decline irregularly as the surface reflectance increases; the DB algorithm displays relatively high accuracy; (3) Both algorithms have a high retrieval accuracy over areas covered by weak absorbing aerosols, whereas dust aerosols and continental aerosols produce a low retrieval accuracy. The DB algorithm shows good retrieval results for most aerosols, but a lower accuracy for strong absorbing aerosols.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2017-09-15
    Description: Atmosphere, Vol. 8, Pages 172: Validation of MODIS-Aqua Aerosol Products C051 and C006 over the Beijing-Tianjin-Hebei Region Atmosphere doi: 10.3390/atmos8090172 Authors: Ke Wang Xuejin Sun Yongbo Zhou Chuanliang Zhang The recently released MODerate resolution Imaging Spectroradiometers (MODIS) Collection 6(C006) includes several significant improvements, which are expected to do well in analyzing aerosols and using the observations for air pollution application. The C006 Aerosol Optical Depth (AOD) retrievals should be validated completely before they will be applied to specific research. However, the validation of C006 AOD retrievals at a regional scale is limited. Therefore, this study evaluated the performance of the MODIS-Aqua Collection 51 (C051) and C006 AOD retrievals over the Beijing-Tianjin-Hebei region in China from 2006 to 2015 using ground-based Sun photometers. The algorithms of the AOD product include Dark Target (DT) and Deep Blue (DB). The results indicated that the improvements in DT C006 were slight, as the expected error (EE) increased by almost 9% over the two sites, and the DT C051 and DT C006 AOD were overestimated for both sites. DB C006 presented an improvement over DB C051, and a better correlation was observed between the collocated DB C006 retrievals and Sun photometer data (R ranged from 0.9343–0.9383). There was an increase in the frequency from DT C051 to DT C006, in the range 0.6–1.5, over the two sites; moreover, the AOD from the DB retrievals had a very narrow range (0.1–0.3). The spatial distribution of the AOD values was high (AOD > 0.7) over the southeastern region and low (AOD < 0.3) over the northwestern region. Changes in the DT C006 algorithm resulted in an increased AOD (0.085) for the region. The AOD values in spring and summer were higher than those in fall and winter. By subtracting the C051 AOD from the corresponding C006 values, greater positive changes (~0.2) were found in the southeastern areas during summer, presumably as the updated cloud-masking allowed heavy smoke retrievals. The accuracy of the AOD retrievals depended on the assumptions of surface reflectance and the selection of the aerosol model. The use of the DB C006 algorithm is recommended for the Beijing and Xianghe sites. Because of the limitations of the DT algorithm over sparsely vegetated surfaces, the DT C006 product is recommended for Xianghe.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2017-09-21
    Description: Atmosphere, Vol. 8, Pages 178: Variability of Precipitation in Arid Climates Using the Wavelet Approach: Case Study of Watershed of Gabes in South-East Tunisia Atmosphere doi: 10.3390/atmos8090178 Authors: Sabrine Jemai Manel Ellouze Habib Abida This study examines the variability of precipitation in the south-east of Tunisia through the analysis of data about annual and monthly precipitation at five stations in the Watershed of Gabes, from 1977 to 2015. Standardized precipitation ratio, wavelet and coherence wavelet analyses were applied to examine the temporal variability of monthly and annual precipitation and to determine the effect of climatic fluctuations on rainfall variability. Results of wavelet analysis showed varied energy bands at the studied stations at annual and inter-annual scales. The depicted bands spread according to intervals of 1-, 2- to 4-, 4- to 8- and 8- to 12-year cycles, obviously influenced by regional factors including altitude, proximity to the Mediterranean Sea and global fluctuations. Eventually, an analysis of wavelet coherence showed a strong correlation between precipitation and Mediterranean Oscillation (MO) in Gabes Watershed at different temporal scales. Contribution of the MO ranged between 51% and 93% of fluctuations (8–12 years) in the different examined rainfall stations.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2017-09-20
    Description: Atmosphere, Vol. 8, Pages 179: Multi-Year (2013–2016) PM2.5 Wildfire Pollution Exposure over North America as Determined from Operational Air Quality Forecasts Atmosphere doi: 10.3390/atmos8090179 Authors: Rodrigo Munoz-Alpizar Radenko Pavlovic Michael Moran Jack Chen Sylvie Gravel Sarah Henderson Sylvain Ménard Jacinthe Racine Annie Duhamel Samuel Gilbert Paul-André Beaulieu Hugo Landry Didier Davignon Sophie Cousineau Véronique Bouchet FireWork is an on-line, one-way coupled meteorology–chemistry model based on near-real-time wildfire emissions. It was developed by Environment and Climate Change Canada to deliver operational real-time forecasts of biomass-burning pollutants, in particular fine particulate matter (PM2.5), over North America. Such forecasts provide guidance for early air quality alerts that could reduce air pollution exposure and protect human health. A multi-year (2013–2016) analysis of FireWork forecasts over a five-month period (May to September) was conducted. This work used an archive of FireWork outputs to quantify wildfire contributions to total PM2.5 surface concentrations across North America. Different concentration thresholds (0.2 to 28 µg/m3) and averaging periods (24 h to five months) were considered. Analysis suggested that, on average over the fire season, 76% of Canadians and 69% of Americans were affected by seasonal wildfire-related PM2.5 concentrations above 0.2 µg/m3. These effects were particularly pronounced in July and August. Futhermore, the analysis showed that fire emissions contributed more than 1 µg/m3 of daily average PM2.5 concentrations on more than 30% of days in the western USA and northwestern Canada during the fire season.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2017-09-23
    Description: Atmosphere, Vol. 8, Pages 185: Empirical Subseasonal Prediction of Summer Rainfall Anomalies over the Middle and Lower Reaches of the Yangtze River Basin Based on Atmospheric Intraseasonal Oscillation Atmosphere doi: 10.3390/atmos8100185 Authors: Zhiwei Zhu Shengjie Chen Kai Yuan Yini Chen Song Gao Zhenfei Hua The middle and lower reaches of the Yangtze River basin (MLRYB) are prone to flooding because their orientation is parallel to the East Asian summer monsoon rain belt. Since the East Asian summer monsoon presents pronounced intraseasonal variability, the subseasonal prediction of summer precipitation anomalies in the MLRYB region is an imperative demand nationwide. Based on rotated empirical orthogonal function analysis, 48 stations over the MLRYB with coherent intraseasonal (10–80-day) rainfall variability are identified. Power spectrum analysis of the MLRYB rainfall index, defined as the 48-station-averaged intraseasonal rainfall anomaly, presents two dominant modes with periods of 20–30 days and 40–60 days, respectively. Therefore, the intraseasonal (10–80-day) rainfall variability is divided into 10–30-day and 30–80-day components, and their predictability sources are detected separately. Spatial-temporal projection models (STPM) are then conducted using these predictability sources. The forecast skill during the period 2003–2010 indicates that the STPM is able to capture the 30–80-day rainfall anomalies 5–30 days in advance, but unable to reproduce the 10–30-day rainfall anomalies over MLRYB. The year-to-year fluctuation in forecast skill might be related to the tropical Pacific sea surface temperature anomalies. High forecasting skill tends to appear after a strong El Niño or strong La Niña when the summer seasonal mean rainfall over the MLRYB is enhanced, whereas low skill is apparent after neutral conditions or a weak La Niña when the MLRYB summer seasonal mean rainfall is weakened. Given the feasibility of STPM, the application of this technique is recommended in the real-time operational forecasting of MLRYB rainfall anomalies during the summer flooding season.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2017-09-26
    Description: Atmosphere, Vol. 8, Pages 190: Characterization and Seasonal Variations of Organic and Elemental Carbon and Levoglucosan in PM10 in Krynica Zdroj, Poland Atmosphere doi: 10.3390/atmos8100190 Authors: Krzysztof Klejnowski Katarzyna Janoszka Marianna Czaplicka In this study, the ambient aerosol (PM10) concentrations of elemental carbon (EC), organic carbon (OC), total carbon (TC), and levoglucosan are reported for a Polish health resort following a one-year (March 2016–April 2017) sampling campaign. The seasonal variation of OC, EC, and levoglucosan (LG) concentrations showed their maximum during the heating season for this site, with monthly mean total carbonaceous material/PM10 ratios ranging between about 0.28 and 0.44 depending on the season. Average EC concentration was 1.1 ± 0.6 µg∙m−3 and changed from 0.3 µg∙m−3 up to 2.3 µg∙m−3 during the sampling campaign. The OC concentration at the site ranged from 2.4 µg∙m−3 during the non-heating season up to 22 µg∙m−3 in the heating season, with an average of 7 µg∙m−3. A strong correlation between OC and EC in the heating season suggested that they were produced from similar sources during this time. Mean LG concentration during the sampling campaign was 0.51 µg∙m−3, while in the heating season it was 0.72 µg∙m−3 and in 0.19 µg∙m−3 in the non-heating season. The obtained results indicated a strong influence of local primary source emissions on air quality, especially during the heating period.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2017-09-16
    Description: Atmosphere, Vol. 8, Pages 174: An Alternative Multi-Model Ensemble Forecast for Tropical Cyclone Tracks in the Western North Pacific Atmosphere doi: 10.3390/atmos8090174 Authors: Sanghee Jun Nam-Young Kang Woojeong Lee Youngsin Chun This study introduces an unequally weighted technique for Multi-model Ensemble (MME) forecasting for western North Pacific Tropical Cyclone (TC) tracks. Weights are calculated by partial least square regression, and members are selected by paired t-test. The performances for shorter forecast time ranges, such as 24, 48 and 72 h, are examined in order to improve the MME model, in which the weights for members are equally assigned. For longer forecast time ranges, such as 96 and 120 h, weights for MME members are thought to be less reliable, since the modeling is more likely to be influenced by the climate variability in the data period. A combination of both techniques for the shorter and the longer forecast time ranges is suggested as an alternative MME forecast procedure in operational meteorological agencies.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2017-09-16
    Description: Atmosphere, Vol. 8, Pages 173: Elemental Mixing State of Aerosol Particles Collected in Central Amazonia during GoAmazon2014/15 Atmosphere doi: 10.3390/atmos8090173 Authors: Matthew Fraund Don Pham Daniel Bonanno Tristan Harder Bingbing Wang Joel Brito Suzane de Sá Samara Carbone Swarup China Paulo Artaxo Scot Martin Christopher Pöhlker Meinrat Andreae Alexander Laskin Mary Gilles Ryan Moffet Two complementary techniques, Scanning Transmission X-ray Microscopy/Near Edge Fine Structure spectroscopy (STXM/NEXAFS) and Scanning Electron Microscopy/Energy Dispersive X-ray spectroscopy (SEM/EDX), have been quantitatively combined to characterize individual atmospheric particles. This pair of techniques was applied to particle samples at three sampling sites (ATTO, ZF2, and T3) in the Amazon basin as part of the Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) field campaign during the dry season of 2014. The combined data was subjected to k-means clustering using mass fractions of the following elements: C, N, O, Na, Mg, P, S, Cl, K, Ca, Mn, Fe, Ni, and Zn. Cluster analysis identified 12 particle types across different sampling sites and particle sizes. Samples from the remote Amazon Tall Tower Observatory (ATTO, also T0a) exhibited less cluster variety and fewer anthropogenic clusters than samples collected at the sites nearer to the Manaus metropolitan region, ZF2 (also T0t) or T3. Samples from the ZF2 site contained aged/anthropogenic clusters not readily explained by transport from ATTO or Manaus, possibly suggesting the effects of long range atmospheric transport or other local aerosol sources present during sampling. In addition, this data set allowed for recently established diversity parameters to be calculated. All sample periods had high mixing state indices (χ) that were >0.8. Two individual particle diversity (Di) populations were observed, with particles <0.5 µm having a Di of ~2.4 and >0.5 µm particles having a Di of ~3.6, which likely correspond to fresh and aged aerosols, respectively. The diversity parameters determined by the quantitative method presented here will serve to aid in the accurate representation of aerosol mixing state, source apportionment, and aging in both less polluted and more developed environments in the Amazon Basin.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2017-09-22
    Description: Atmosphere, Vol. 8, Pages 182: Interpreting Mobile and Handheld Air Sensor Readings in Relation to Air Quality Standards and Health Effect Reference Values: Tackling the Challenges Atmosphere doi: 10.3390/atmos8100182 Authors: George Woodall Mark Hoover Ronald Williams Kristen Benedict Martin Harper Jhy-Charm Soo Annie Jarabek Michael Stewart James Brown Janis Hulla Motria Caudill Andrea Clements Amanda Kaufman Alison Parker Martha Keating David Balshaw Kevin Garrahan Laureen Burton Sheila Batka Vijay Limaye Pertti Hakkinen Bob Thompson The US Environmental Protection Agency (EPA) and other federal agencies face a number of challenges in interpreting and reconciling short-duration (seconds to minutes) readings from mobile and handheld air sensors with the longer duration averages (hours to days) associated with the National Ambient Air Quality Standards (NAAQS) for the criteria pollutants-particulate matter (PM), ozone, carbon monoxide, lead, nitrogen oxides, and sulfur oxides. Similar issues are equally relevant to the hazardous air pollutants (HAPs) where chemical-specific health effect reference values are the best indicators of exposure limits; values which are often based on a lifetime of continuous exposure. A multi-agency, staff-level Air Sensors Health Group (ASHG) was convened in 2013. ASHG represents a multi-institutional collaboration of Federal agencies devoted to discovery and discussion of sensor technologies, interpretation of sensor data, defining the state of sensor-related science across each institution, and provides consultation on how sensors might effectively be used to meet a wide range of research and decision support needs. ASHG focuses on several fronts: improving the understanding of what hand-held sensor technologies may be able to deliver; communicating what hand-held sensor readings can provide to a number of audiences; the challenges of how to integrate data generated by multiple entities using new and unproven technologies; and defining best practices in communicating health-related messages to various audiences. This review summarizes the challenges, successes, and promising tools of those initial ASHG efforts and Federal agency progress on crafting similar products for use with other NAAQS pollutants and the HAPs. NOTE: The opinions expressed are those of the authors and do not necessary represent the opinions of their Federal Agencies or the US Government. Mention of product names does not constitute endorsement.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2017-09-22
    Description: Atmosphere, Vol. 8, Pages 181: Effects of N Fertilizer Application on Soil N2O Emissions and CH4 Uptake: A Two-Year Study in an Apple Orchard in Eastern China Atmosphere doi: 10.3390/atmos8100181 Authors: Baohua Xie Jiangxin Gu Junbao Yu Guangxuan Han Xunhua Zheng Yu Xu Haitao Lin Land use changes from cropland to orchards in Eastern China have raised serious concerns about the regional nitrogen (N) cycle and greenhouse gas balance. We measured soil nitrous oxide (N2O) emissions and methane (CH4) uptake using manual static chambers in an apple orchard. The primary aims were to assess the effect of N fertilizer application on gas fluxes and quantify the site-specific N2O emission factor (EFd). Field experiments were arranged in a randomized block design with three N input rates (0, 800 and 2600/2000 kg N ha−1 year−1). We found that orchard soils were a negligible CH4 sink (−1.1 to −0.4 kg C ha−1 year−1). Annual N2O emissions responded positively to N input rates, ranging from 34.1 to 60.3 kg N ha−1 year−1. EFd ranged from 1.00% to 1.65% with a mean of 1.34%. The extremely large background emissions of N2O (34.1–34.3 kg N ha−1 year−1) most likely originated from nitrate accumulation in the soil profile because of historical overuse of N fertilizer. We conclude that (1) site-specific EFd is suitable for assessing regional direct N2O emissions from upland orchards; and (2) conventional fertilization regimes must be avoided, and reduced N input rates are recommended in the study region.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2017-09-21
    Description: Atmosphere, Vol. 8, Pages 177: Assessment of Natural Ventilation Potential for Residential Buildings across Different Climate Zones in Australia Atmosphere doi: 10.3390/atmos8090177 Authors: Zijing Tan Xiang Deng In this study, the natural ventilation potential of residential buildings was numerically investigated based on a typical single-story house in the three most populous climate zones in Australia. Simulations using the commercial simulation software TRNSYS (Transient System Simulation Tool) were performed for all seasons in three representative cities, i.e., Darwin for the hot humid summer and warm winter zone, Sydney for the mild temperate zone, and Melbourne for the cool temperate zone. A natural ventilation control strategy was generated by the rule-based decision-tree method based on the local climates. Natural ventilation hour (NVH) and satisfied natural ventilation hour (SNVH) were employed to evaluate the potential of natural ventilation in each city considering local climate and local indoor thermal comfort requirements, respectively. The numerical results revealed that natural ventilation potential was related to the local climate. The greatest natural ventilation potential for the case study building was observed in Darwin with an annual 4141 SNVH out of 4728 NVH, while the least natural ventilation potential was found in the Melbourne case. Moreover, summer and transition seasons (spring and autumn) were found to be the optimal periods to sustain indoor thermal comfort by utilising natural ventilation in Sydney and Melbourne. By contrast, natural ventilation was found applicable over the whole year in Darwin. In addition, the indoor operative temperature results demonstrated that indoor thermal comfort can be maintained only by utilising natural ventilation for all cases during the whole year, except for the non-natural ventilation periods in summer in Darwin and winter in Melbourne. These findings could improve the understanding of natural ventilation potential in different climates, and are beneficial for the climate-conscious design of residential buildings in Australia.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2017-09-21
    Description: Atmosphere, Vol. 8, Pages 180: The Madden-Julian Oscillation: A Tool for Regional Seasonal Precipitation Outlooks? Atmosphere doi: 10.3390/atmos8090180 Authors: Scott Curtis The Madden-Julian Oscillation (MJO) is an important intraseasonal climate signal which circles the global tropics, but also impacts extratropical weather regimes. Few studies have investigated whether the MJO is a source of regional seasonal climate predictability. The present objective is to determine the extent to which the season and phase (geographic location) of MJO contribute to the frequency of global rainfall anomalies in ensuing seasons. Indices of June-July-August and December-January-February MJO activity for each phase and the El Niño/Southern Oscillation (ENSO) were correlated to three-month averages of rainfall up to a six-month lead time. Field significance was calculated and patterns of the relationships were described. In general, MJO shows some skill in regional seasonal precipitation prediction, but to a lesser extent than ENSO. However, the presence of MJO in the western Indian Ocean and near the date line did reveal a persistent and significant relationship with regional seasonal rainfall, especially over Northern Hemisphere land areas.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2017-09-23
    Description: Atmosphere, Vol. 8, Pages 183: Air Pollution and Public Health: A PRISMA-Compliant Systematic Review Atmosphere doi: 10.3390/atmos8100183 Authors: Marco Quarato Luigi De Maria Maria Gatti Antonio Caputi Francesca Mansi Pietro Lorusso Francesco Birtolo Luigi Vimercati (1) Background: Particulate matter increases the risk of respiratory, allergic and oncological diseases in both exposed workers and the general population due to its toxic compounds (e.g., PAHs, gases, heavy metals, microorganisms). The aim of this review is to show the results obtained by our department regarding air pollution’s contributions to health damage in both occupationally and non-occupationally exposed people. (2) Methods: This review was performed according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, searching articles on PubMed, using eligibility criteria, extracting data independently from reports to reduce bias and considering the accuracy of the statistical analyses. (3) Results: Of fifteen papers, only three respected the abovementioned criteria. A total of 453 cases (174 occupationally exposed and 279 non-occupationally exposed individuals) were included in the review. Qualitative analysis showed that among workers, occupational exposure to air pollution increased the risk of allergic and pulmonary diseases, whereas environmental exposure to PM increased heavy metal intake, the last of which was characterized by well-known carcinogenic effects. 4) Conclusion: The use of personal protective equipment, a meticulous health surveillance program and specific environmental protection policies are needed to protect public health from damages due to air pollution.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2017-09-26
    Description: Atmosphere, Vol. 8, Pages 189: Summertime Day-Night Differences of PM2.5 Components (Inorganic Ions, OC, EC, WSOC, WSON, HULIS, and PAHs) in Changzhou, China Atmosphere doi: 10.3390/atmos8100189 Authors: Zhaolian Ye Qing Li Shuaishuai Ma Quanfa Zhou Yuan Gu Yalan Su Yanfang Chen Hui Chen Junfeng Wang Xinlei Ge This work reports the day-night differences of a suite of chemical species including elemental carbon (EC), organic carbon (OC), water-soluble organic carbon (WSOC), water-soluble organic nitrogen (WSON), selected polycyclic aromatic hydrocarbons (PAHs), and secondary inorganic ions (NO3−, SO42−, NH4+) in ambient fine particles (PM2.5) collected from 23 July to 23 August 2016 in Changzhou, China. Mass concentrations of PM2.5 and SO42− show a 10–20% increase during daytime, while NO3− concentration decreases by a factor of three from nighttime to daytime due to its semi-volatile nature. PAHs, EC, and WSON show higher mass concentration in the night too. Mass ratios of WSOC to OC are high in both day and night, indicating that secondary organic aerosol (SOA) formation could occur throughout the day, while the slightly higher ratio during daytime suggests a more significant contribution from daytime photochemical oxidation. Strong positive correlations between HULIS-C and WSOC, and HULIS-C with O3 both in day and night, imply that HULIS-C, similar to WSOC, is mainly composed of secondary species. HULIS-C accounted for a large fraction of WSOC, with an average of ~60%. Moreover, the average WSON concentrations are 1.08 and 1.46 µg/m3, constituting ~16% and ~18% of water-soluble total nitrogen in day and night, respectively. Correlation analyses suggest that WSON is also predominantly produced from secondary processes. PAHs concentrations are found to be very low in summer aerosols. Overall, our findings highlight the dominant contribution of secondary processes to the major aerosol components in Changzhou, suggesting proper measures to effectively reduce gaseous precursors are also important to improve air quality.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2017-09-26
    Description: Atmosphere, Vol. 8, Pages 184: Impact of Grid Nudging Parameters on Dynamical Downscaling during Summer over Mainland China Atmosphere doi: 10.3390/atmos8100184 Authors: Xiaoping Mai Yuanyuan Ma Yi Yang Deqin Li Xiaobin Qiu The grid nudging technique is often used in regional climate dynamical downscaling to make the simulated large-scale fields consistent with the driving fields. In this study, we focused on two specific questions about grid nudging: (1) which nudged variable has a larger impact on the downscaling results; and (2) what is the “optimal” grid nudging strategy for each nudged variable to achieve better downscaling result during summer over the mainland China. To solve these queries, 41 three-month-long simulations for the summer of 2009 and 2010 were performed using the Weather Research and Forecasting model (WRF) to downscale National Centers for Environmental Prediction (NCEP) Final Operational Global Analysis (FNL) data to a 30-km horizontal resolution. The results showed that nudging horizontal wind or temperature had significant influence on the simulation of almost all conventional meteorological elements, while nudging water vapor mainly affected the precipitation, humidity, and 500 hPa temperature. As a whole, the optimal nudging time was one hour or three hours for nudging wind, three hours for nudging temperature, and one hour for nudging water vapor. The optimal nudged level was above the planetary boundary layer for almost every nudged variable. Despite these findings, it should be noted that the optimum nudging scheme varied with simulated regions and layers, and dedicated research for different regions, seasons, and model configuration is advisable.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2017-08-14
    Description: Atmosphere, Vol. 8, Pages 148: An Interactive Web Mapping Visualization of Urban Air Quality Monitoring Data of China Atmosphere doi: 10.3390/atmos8080148 Authors: Wei Lu Tinghua Ai Xiang Zhang Yakun He In recent years, main cities in China have been suffering from hazy weather, which is gaining great attention among the public, government managers and researchers in different areas. Many studies have been conducted on the topic of urban air quality to reveal different aspects of the air quality problem in China. This paper focuses on the visualization problem of the big air quality monitoring data of all main cities on a nationwide scale. To achieve the intuitive visualization of this data set, this study develops two novel visualization tools for multi-granularity time series visualization (timezoom.js) and a dynamic symbol declutter map mashup layer for thematic mapping (symadpative.js). With the two invented tools, we develops an interactive web map visualization application of urban air quality data of all main cities in China. This application shows us significant air pollution findings at the nationwide scale. These results give us clues for further studies on air pollutant characteristics, forecasting and control in China. As the tools are invented for general visualization purposes of geo-referenced time series data, they can be applied to other environmental monitoring data (temperature, precipitation, etc.) through some configurations.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2017-08-19
    Description: Atmosphere, Vol. 8, Pages 153: Comparison of Five Modeling Approaches to Quantify and Estimate the Effect of Clouds on the Radiation Amplification Factor (RAF) for Solar Ultraviolet Radiation Atmosphere doi: 10.3390/atmos8080153 Authors: Eric Hall A generally accepted value for the Radiation Amplification Factor (RAF), with respect to the erythemal action spectrum for sunburn of human skin, is −1.1, indicating that a 1.0% increase in stratospheric ozone leads to a 1.1% decrease in the biologically damaging UV radiation in the erythemal action spectrum reaching the Earth. The RAF is used to quantify the non-linear change in the biologically damaging UV radiation in the erythemal action spectrum as a function of total column ozone (O3). Spectrophotometer measurements recorded at ten US monitoring sites were used in this analysis, and over 71,000 total UVR measurement scans of the sky were collected at those 10 sites between 1998 and 2000 to assess the RAF value. This UVR dataset was examined to determine the specific impact of clouds on the RAF. Five de novo modeling approaches were used on the dataset, and the calculated RAF values ranged from a low of −0.80 to a high of −1.38.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2017-08-30
    Description: Atmosphere, Vol. 8, Pages 162: The Impact of Sampling Medium and Environment on Particle Morphology Atmosphere doi: 10.3390/atmos8090162 Authors: Chao Chen Ogochukwu Enekwizu Yan Ma Dmitry Zakharov Alexei Khalizov Sampling on different substrates is commonly used in laboratory and field studies to investigate the morphology and mixing state of aerosol particles. Our focus was on the transformations that can occur to the collected particles during storage, handling, and analysis. Particle samples were prepared by electrostatic deposition of size-classified sodium chloride, sulfuric acid, and coated soot aerosols on different substrates. The samples were inspected by electron microscopy before and after exposure to various environments. For coated soot, the imaging results were compared against mass-mobility measurements of airborne particles that underwent similar treatments. The extent of sample alteration ranged from negligible to major, depending on the environment, substrate, and particle composition. We discussed the implications of our findings for cases where morphology and the mixing state of particles must be preserved, and cases where particle transformations are desirable.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2017-08-30
    Description: Atmosphere, Vol. 8, Pages 161: Comparing CMAQ Forecasts with a Neural Network Forecast Model for PM2.5 in New York Atmosphere doi: 10.3390/atmos8090161 Authors: Samuel Lightstone Fred Moshary Barry Gross Human health is strongly affected by the concentration of fine particulate matter (PM2.5). The need to forecast unhealthy conditions has driven the development of Chemical Transport Models such as Community Multi-Scale Air Quality (CMAQ). These models attempt to simulate the complex dynamics of chemical transport by combined meteorology, emission inventories (EI’s), and gas/particle chemistry and dynamics. Ultimately, the goal is to establish useful forecasts that could provide vulnerable members of the population with warnings. In the simplest utilization, any forecast should focus on next day pollution levels, and should be provided by the end of the business day (5 p.m. local). This paper explores the potential of different approaches in providing these forecasts. First, we assess the potential of CMAQ forecasts at the single grid cell level (12 km), and show that significant variability not encountered in the field measurements occurs. This observation motivates the exploration of other data driven approaches, in particular, a neural network (NN) approach. This approach makes use of meteorology and PM2.5 observations as model predictors. We find that this approach generally results in a more accurate prediction of future pollution levels at the 12 km spatial resolution scale of CMAQ. Furthermore, we find that the NN is able to adjust to the sharp transitions encountered in pollution transported events, such as smoke plumes from forest fires, more accurately than CMAQ.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2017-08-30
    Description: Atmosphere, Vol. 8, Pages 163: Tropospheric Ozone at Northern Mid-Latitudes: Modeled and Measured Long-Term Changes Atmosphere doi: 10.3390/atmos8090163 Authors: Johannes Staehelin Fiona Tummon Laura Revell Andrea Stenke Thomas Peter In this paper, we investigate why current state-of-the-art chemistry-climate models underestimate the tropospheric ozone increase from the 1950s to the 1990s by approximately 50%. The accuracy of these models is vital, not only for understanding and predicting air quality globally, but also since they are used to quantify the contribution of ozone in the troposphere and lower stratosphere to climate change, where its greenhouse effect is largest. We briefly describe available northern mid-latitude ozone measurements, which include representative and reliable data from European sites that extend back to the 1950s. We use the SOCOLv3 (Solar Climate Ozone Links version 3) global chemistry-climate model to investigate the individual terms of the tropospheric ozone budget. These include: inflow from the stratosphere, dry deposition, and chemical formation and destruction. For 1960 to 2000 SOCOLv3 indicates a tropospheric ozone increase at 850 hPa over the Swiss Alps (Arosa) of 17 ppb, or around 30%. This increase is smaller than that seen in the surface ozone measurements but similar to other chemistry-climate models, including those with more complex NMVOC (Non Methane Volatile Organic Compound) schemes than SOCOLv3’s. It is likely that the underestimated increase in tropospheric ozone could be explained by issues in the underlying emissions inventories used in the model simulations, with ozone precursor emissions, particularly NOx (NO + NO2), from the 1960s being too large.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2017-08-30
    Description: Atmosphere, Vol. 8, Pages 164: Numerical Study on the Urban Ventilation in Regulating Microclimate and Pollutant Dispersion in Urban Street Canyon: A Case Study of Nanjing New Region, China Atmosphere doi: 10.3390/atmos8090164 Authors: Fan Liu Hua Qian Xiaohong Zheng Lun Zhang Wenqing Liang Urban ventilation plays an important role in regulating city climate and air quality. A numerical study was conducted to explore the ventilation effectiveness on the microclimate and pollutant removal in the urban street canyon based on the rebuilt Southern New Town region in Nanjing, China. The RNG k − ε turbulence model in the computational fluid dynamics (CFD) was employed to study the street canyon under parallel and perpendicular wind directions, respectively. Velocity inside of the street canyon and temperature on the building envelopes were obtained. A novel pressure coefficient was defined, and three methods were applied to evaluate the urban ventilation effectiveness. Results revealed that there was little comfort difference for the human body under two ventilation patterns in the street canyon. Air stagnation occurred easily in dense building clusters, especially under the perpendicular wind direction. In addition, large pressure coefficients ( C P > 1 ) appeared at the windward region, contributing to promising ventilation. The air age was introduced to evaluate the “freshness” of the air in the street canyon and illustrated the ventilation effectiveness on the pollutant removal. It was found that the young air distributed where the corresponding ventilation was favorable and the wind speed was large. The results from this study can be useful in further city renovation for the street canyon construction and municipal planning.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2017-08-27
    Description: Atmosphere, Vol. 8, Pages 158: Origins of Moist Air in Global Lagrangian Simulations of the Madden–Julian Oscillation Atmosphere doi: 10.3390/atmos8090158 Authors: Patrick Haertel William Boos Katherine Straub Many recent studies have characterized the Madden–Julian Oscillation (MJO) as a moisture mode, suggesting that its amplification and eastward propagation result from processes that build up moisture to the east of the MJO’s convective center, including frictionally driven boundary layer convergence, surface fluxes, and shallow convection. Discussions of MJO moistening under this theory often implicitly assume an Eulerian framework; i.e., that local increases in moisture result from physical processes acting in the same location as the moistening is observed. In this study, the authors examine MJO moistening in a Lagrangian framework using a model that simulates atmospheric circulations by predicting the motions of individual air parcels. Back trajectories are presented for parcels in moist convecting regions of the MJO, and the effects of different physical processes on their moisture and moist static energy budgets are quantified. The Lagrangian MJO simulations suggest that much of the low-level moist air in heavily precipitating regions of the MJO arrives via the mid troposphere, coming from nearby equatorial regions, where it has been moistened largely by convective processes. Consequently, a thorough understanding of MJO moistening requires knowledge of the origin of the moist air and information about remote moisture sources.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2017-02-25
    Description: Northeast China is located in a high latitude area of the world and undergoes a cold season that lasts six months each year. Recently, regional haze episodes with high concentrations of fine particles (PM2.5) have frequently been occurring in Northeast China during the heating period, but little information has been available. Aerosol particles were collected in winter at a site in a suburban county town (T1) and a site in a background rural area (T2). Morphology, size, elemental composition, and mixing state of individual aerosol particles were characterized by transmission electron microscopy (TEM). Aerosol particles were mainly composed of organic matter (OM) and S-rich and certain amounts of soot and K-rich. OM represented the most abundant particles, accounting for 60.7% and 53.5% at the T1 and T2 sites, respectively. Abundant spherical OM particles were likely emitted directly from coal-burning stoves. Soot decreased from 16.9% at the T1 site to 4.6% at the T2 site and sulfate particles decrease from 35.9% at the T2 site to 15.7% at the T1 site, suggesting that long-range transport air masses experienced more aging processes and produced more secondary particles. Based on our investigations, we proposed that emissions from coal-burning stoves in most rural areas of the west part of Northeast China can induce regional haze episodes.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2017-02-28
    Description: Wavelet analysis methods (CWT, XWT, WTC) were employed to evaluate the impact of dominant climatic driving factors on summer precipitation in the Beijing area based on monthly precipitation data of Beijing ranging from 1880 to 2014. The two climatic driving factors, i.e., the East Asian summer monsoon (EASM) and the Northern Limit of Western Pacific Subtropical High (NWPSH) were considered in particular. The relationships between summer precipitation and EASM/NWPSH were also examined. The results revealed similar periods in low-frequency oscillation (76–95 years) and mid-range frequency oscillation (32–60 years) for the summer precipitation in the Beijing area and EASM/NWPSH. The summer precipitation correlated positively with the NWPSH and EASM, especially for periods of 43 years and 33 years, respectively. This indicates that summer precipitation during 1880–1960 and during the years after 1960 was significantly affected by NWPSH and EASM, respectively. Based on the periodic change of 33 years for both summer precipitation and EASM, heavy precipitation can be expected to occur again in Beijing at approximately 2026. Understanding the relationships between summer precipitation and climatic factors is of significant importance for precipitation predictions and water resource variations in the Beijing area.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2017-03-02
    Description: Heat waves and warm spells are extreme meteorological events that generate a significant number of casualties in temperate regions, as well as outside of temperate regions. For the purpose of this paper, heat waves and warm spells were identified based on daily maximum temperatures recorded at 27 weather stations located in Romania over a 55-year period (1961–2015). The intensity threshold was the 90th percentile, and the length of an event was of minimum three consecutive days. We analyzed 111 heat wave and warm spell events totaling 423 days. The classification of synoptic conditions was based on daily reanalysis at three geopotential levels and on the online version of a backward trajectories model. The main findings are that there are two major types of genetic conditions. These were identified as: (i) radiative heat waves and warm spells (type A) generated by warming the air mass due to high amounts of radiation which was found dominant in warm season; and (ii) advective heat waves and warm spells (type B) generated mainly by warm air mass advection which prevails in winter and transition seasons. These major types consist of two and three sub-types, respectively. The results could become a useful tool for weather forecasters in order to better predict the occurrence of heat waves and warm spells.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2017-03-02
    Description: This paper asks the simple question: How can we interpret vertical time series of middle atmosphere gravity wave measurements by ground-based temperature lidars? Linear wave theory is used to show that the association of identified phase lines with quasi-monochromatic waves should be considered with great care. The ambient mean wind has a substantial effect on the inclination of the detected phase lines. The lack of knowledge about the wind might lead to a misinterpretation of the vertical propagation direction of the observed gravity waves. In particular, numerical simulations of three archetypal atmospheric mountain wave regimes show a sensitivity of virtual lidar observations on the position relative to the mountain and on the scale of the mountain.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2017-03-04
    Description: Extreme temperatures and heat wave trends in five cities within the Sonoran Desert region (e.g., Tucson and Phoenix, Arizona, in the United States and Ciudad Obregon and San Luis Rio Colorado, Sonora; and Mexicali, Baja California, in Mexico) and one city within the Mojave Desert region (e.g., Las Vegas, Nevada) were assessed using field data collected from 1950 to 2014. Instead of being selected by watershed, the cities were selected because they are part of the same arid climatic region. The data were analyzed for maximum temperature increases and the trends were confirmed statistically using Spearman’s nonparametric test. Temperature trends were correlated with the mortality information related with extreme heat events in the region. The results showed a clear trend of increasing maximum temperatures during the months of June, July, and August for five of the six cities and statically confirmed using Spearman’s rho values. Las Vegas was the only city where the temperature increase was not confirmed using Spearman’s test, probably because it is geographically located outside of the Sonoran Desert or because of its proximity to the Hoover Dam. The relationship between mortality and temperature was analyzed for the cities of Mexicali, Mexico and Phoenix. Arizona.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2017-03-04
    Description: The 2015 release of the precipitation climatology from the Global Precipitation Climatology Centre (GPCC) for 1951–2000, based on climatological normals of about 75,100 rain gauges, allows for quantification of mean land surface precipitation as part of the global water cycle. In GPCC’s 2011-release, a bulk climatological correction was applied to compensate for gauge undercatch. In this paper we derive an improved correction approach based on the synoptic weather reports for the period 1982–2015. The compared results show that the climatological approach tends to overestimate the correction for Central and Eastern Europe, especially in the northern winter, and in other regions throughout the year. Applying the mean weather-dependent correction to the GPCC’s uncorrected precipitation climatology for 1951–2000 gives a value of 854.7 mm of precipitation per year (excluding Antarctica) or 790 mm for the global land surface. The warming of nearly 1 K relative to pre-industrial temperatures is expected to be accompanied by a 2%–3% increase in global (land and ocean) precipitation. However, a comparison of climatology for 30-year reference periods from 1931–1960 up to 1981–2010 reveals no significant trend for land surface precipitation. This may be caused by the large variability of precipitation, the varying data coverage over time and other issues related to the sampling of rain-gauge networks. The GPCC continues to enlarge and further improve the quality of its database, and will generate precipitation analyses with homogeneous data coverage over time. Another way to reduce the sampling issues is the combination of rain gauge-based analyses with remote sensing (i.e., satellite or radar) datasets.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2017-06-05
    Description: Air pollution had become a vital concern for the 2014 Youth Olympic Games in Nanjing. In order to control air pollutant emissions and ensure better air quality during the Games, the Nanjing municipal government took a series of aggressive control measures to reduce pollutant emissions in Nanjing and its surrounding cities during the Youth Olympic Games. The Air Quality Index (AQI) is an index of air quality which is used to inform the public about levels of air pollution and associated health risks. In this study, we use the AQI and air pollutant concentrations data to evaluate the effectiveness of the implementation of control measures. The results suggest that the emission reduction measures significantly improved air quality in Nanjing. In August 2014, the mean concentrations of PM2.5, PM10, SO2, NO2, CO and O3 were 42.44 μg·m−3, 59.01 μg·m−3, 11.12 μg·m−3, 31.09 μg·m−3, 0.76 mg·m−3 and 38.39 μg·m−3, respectively, and fell by 35.92%, 36.75%, 20.40%, 15.05%, 8.54% and 47.15%, respectively, compared to the prophase mean before the emission reduction. After the emission reduction, the mean concentrations of PM2.5, PM10, SO2, NO2, and O3 increased by 20.81%, 41.84%, 22.84%, 21.16% and 60.93%, respectively, which is due to the cancellation of temporary atmospheric pollution control measures. The air pollutants diurnal variation curve during the emission reduction was lower than the other two periods, except for CO. In addition, the AQI of Nanjing and its surrounding cities showed a downward trend, compared with July 2014. The most of effective method to control air pollution is to implement the measures of regional cooperation and joint defense and control, and reduce local emissions during the polluted period, such as airborne dust, coal-burning, vehicle emissions, mobile sources and industrial production.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2017-06-10
    Description: This paper explores the method of assessing regional spatial ventilation performance for the design of residential building arrangements at an operational level. Three ventilation efficiency (VE) indices, Net Escape Velocity (NEV), Visitation Frequency (VF) and spatial-mean Velocity Magnitude (VM), are adopted to quantify the influence of design variation on VE within different regional spaces. Computational Fluid Dynamics (CFD) method is applied to calculate VE indices mentioned above. Several residential building arrangement cases are set to discuss the effect of different building length, lateral spacing and layouts on four typical space patterns under wind directions oblique or perpendicular to the main (long) building facade. The simulation results prove that NEV, VF and VM are useful VE indices, which can reflect different features of flow pattern in studied regional domains. Preliminary parametric studies indicate that wind direction might be the most important factor for improving spatial ventilation. When the angle between main building facade and wind direction is more than 30°, ventilation of different exterior spaces could improve evidently. When wind direction is perpendicular to main building façade, decreasing building length can increase NEV of the middle space by 50%, while decreasing lateral spacing would decrease NEV of the intersection space by 35%.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2017-06-11
    Description: Concentrated livestock feeding operations have become a source of odorous gas emissions that impact air quality. Comprehensive and practical technologies are needed for a sustainable mitigation of the emissions. In this study, we advance the concept of using a catalyst for barn walls and ceilings for odor mitigation. Two catalysts, a new TiO2-based catalyst, PureTi Clean, and a conventional Evonik (formerly Degussa, Evonik Industries, Essen, Germany) P25 (average particle size 25 nm) catalyst, were studied for use in reducing simulated odorous volatile organic compound (VOC) emissions on a laboratory scale. The UV source was black light. Dimethyl disulfide (DMDS), diethyl disulfide (DEDS), dimethyl trisulfide (DMTS), butyric acid, p-cresol, and guaiacol were selected as model odorants. The effects of the environmental parameters, the presence of swine dust covering the catalyst, the catalyst type and layer density, and the treatment time were tested. The performance of the PureTi catalyst at 10 µg/cm2 was comparable to that of P25 at 250 µg/cm2. The odorant reduction ranged from 100.0 ± 0.0% to 40.4 ± 24.8% at a treatment time of 200 s, simulating wintertime barn ventilation. At a treatment time of 40 s (simulating summertime barn ventilation), the reductions were lower (from 27.4 ± 8.3% to 62.2 ± 7.5%). The swine dust layer on the catalyst surface blocked 15.06 ± 5.30% of UV365 and did not have a significant impact (p > 0.23) on the catalyst performance. Significant effects of relative humidity and temperature were observed.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2017-06-16
    Description: Rain clusters are mesoscale disaster weather systems, and some of rain clusters have spiral structures. In this paper, a theoretical model of spiral rain cluster is established under pseudo-adiabatic approximation, and its horizontal structure equation is obtained. The study shows that the horizontal structure with spiral arm rain clusters has the following characteristics: at locations close enough to the center of the rain clusters, its shape is round and symmetrical; at locations far from the center, there may be spiral arms; the intensity of the vertical ascending motion of the rain cluster decreases with increasing distance from the center; and the vertical ascending motion is larger on the axis of the spiral arms of rain clusters. The conclusions obtained are consistent with not only the numerical results but also the observational facts.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2017-06-03
    Description: Many researchers have failed to utilize back-calculation to estimate traffic emissions effectively or have obtained unclear results. In this study, the back-calculation of traffic-related PM10 emission factors based on roadside concentration measurements was analyzed. Experimental conditions were considered to ensure the success of back-calculation. Roadside measurements were taken in a street canyon in Shanghai, China. Concentrations from a background site were often found to exceed the measured concentrations at the roadside on polluted days as more errors occurred in the background concentrations. On clean days, these impacts were negligible. Thus, only samples collected on clean days were used in back-calculation. The mean value from back-calculation was 0.138 g/km, which was much smaller than the results obtained using official emission models. Emission factors for light-duty vehicles (LDV), medium-duty vehicles (MDV), heavy-duty vehicles (HDV), and motorcycles were approximately 0.121, 0.427, 0.445, and 0.096 g/km, respectively. The fleet-averaged non-exhaust emission factor was approximately 0.121 g/km, indicating that road dust accounted for 87.7% of the roadside concentration increments. According to the dispersion simulation of reserved samples, the concentrations simulated using back-calculated emission factors were in better agreement with the measured data than the concentrations derived using modeled emission factors.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2017-06-07
    Description: The sensible heat is an important component in surface energy partitioning over the land surface. This paper compared the sensible heat fluxes measured by a large aperture scintillometer system (LAS) and an eddy covariance system (EC) over a rice paddy with a patch of mulberry seedlings in the east China coastal region during the period from 13 September–11 October 2015. During the observation period, easterlies and northerlies prevailed, and 96% easterlies and northerlies had a speed of 0–6 m s−1. The sensible heat fluxes measured by the two systems reflected that the value of HLAS generally was inclined to be larger than HEC with the average difference of 20.30 W m−2, and the uncertainty for two instruments was less than 17 W m−2. Analysis of the average footprint resulted that the mulberry seedling field always had a higher contribution to LAS than that to EC, which could be the reason that HLAS was always larger than HEC. During the days when the contributions of the mulberry seedling field to the two systems were close to each other, the sensible heat flux measurements of the two instruments were similar. The case analysis on typical sunny days showed that there would be larger sensible heat fluxes over the mulberry seedling field than in the rice paddy field especially under larger net radiation conditions.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2017-06-13
    Description: The aerosol optical depth (AOD) from satellites or ground-based sun photometer spectral observations has been widely used to estimate ground-level PM2.5 concentrations by regression methods. The boundary layer height (BLH) is a popular factor in the regression model of AOD and PM2.5, but its effect is often uncertain. This may result from the structures between the stable and convective BLHs and from the calculation methods of the BLH. In this study, the boundary layer is divided into two types of stable and convective boundary layer, and the BLH is calculated using different methods from radiosonde data and National Centers for Environmental Prediction (NCEP) reanalysis data for the station in Beijing, China during 2014–2015. The BLH values from these methods show significant differences for both the stable and convective boundary layer. Then, these BLHs were introduced into the regression model of AOD-PM2.5 to seek the respective optimal BLH for the two types of boundary layer. It was found that the optimal BLH for the stable boundary layer is determined using the method of surface-based inversion, and the optimal BLH for the convective layer is determined using the method of elevated inversion. Finally, the optimal BLH and other meteorological parameters were combined to predict the PM2.5 concentrations using the stepwise regression method. The results indicate that for the stable boundary layer, the optimal stepwise regression model includes the factors of surface relative humidity, BLH, and surface temperature. These three factors can significantly enhance the prediction accuracy of ground-level PM2.5 concentrations, with an increase of determination coefficient from 0.50 to 0.68. For the convective boundary layer, however, the optimal stepwise regression model includes the factors of BLH and surface wind speed. These two factors improve the determination coefficient, with a relatively low increase from 0.65 to 0.70. It is found that the regression coefficients of the BLH are positive and negative in the stable and convective regression models, respectively. Moreover, the effects of meteorological factors are indeed related to the types of BLHs.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2017-06-16
    Description: Evidences of highly localized methane fluxes are reported from the Arctic shelf, hot spots of methane emissions in thermokarst lakes, and are believed to evolve to features like Yamal crater on land. The origin of large methane outbursts is problematic. Here we show, that the biogenic methane (13C ≤ −71‰) which formed before and during soil freezing is presently held in the permafrost. Field and experimental observations show that methane tends to accumulate at the permafrost table or in the coarse-grained lithological pockets surrounded by the sediments less-permeable for gas. Our field observations, radiocarbon dating, laboratory tests and theory all suggest that depending on the soil structure and freezing dynamics, this methane may have been displaced downwards tens of meters during freezing and has accumulated in the lithological pockets. The initial flux of methane from the one pocket disclosed by drilling was at a rate of more than 2.5 kg C(CH4) m−2 h−1. The age of the methane was 8–18 thousand years younger than the age of the sediments, suggesting that it was displaced tens of meters during freezing. The theoretical background provided the insight on the cryogenic displacement of methane in support of the field and experimental data. Upon freezing of sediments, methane follows water migration and either dissipates in the freezing soils or concentrates at certain places controlled by the freezing rate, initial methane distribution and soil structure.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2017-06-18
    Description: Benzene, toluene, ethylbenzene, p-xylene, O3, NOx, CO, PM2.5 and meteorological parameters were measured in urban air of two sites in Merida, Yucatan, Mexico during 2016–2017. Samples were collected using 1.5 h time intervals at three different sampling periods before being analyzed by gas chromatography with flame ionization detection. The highest concentrations of BTEX occurred during midday and afternoon in spring and summer seasons. Mean concentrations of, BTEX for the Cholul and SEDUMA sites, respectively, were 40.91 μg/m3 and 32.86 μg/m3 for benzene; 6.87 μg/m3 and 3.29 μg/m3 for toluene; 13.87 μg/m3 and 8.29 μg/m3 for p-xylene; and 6.23 μg/m3 and 4.48 μg/m3 for ethylbenzene. The toluene/benzene and xylene/ethylbenzene concentration ratios indicated that BTEX levels at both sites were influenced by local and fresh emissions (vehicular traffic). Bivariate and multivariate analyses were performed in order to correlate BTEX concentrations with criteria air pollutants to infer their possible sources. Health risk assessment revealed that exposure to benzene exceeded the recommended value for the integrated lifetime cancer risk. These results suggest that Merida’s population is exposed to cancer risk, and changes in the existing environmental policies should therefore be applied to improve air quality.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2017-06-29
    Description: Observation of the ambient aerosol surface area concentrations is important to understand the aerosol toxicity because an increased surface area may be able to act as an enhanced reaction interface for certain reactions between aerosol particles and biological cells, as well as an extended surface for adsorbing and carrying co-pollutants that are originally in gas phase. In this study, the concentration of aerosol surface area was measured from April 2015 to March 2016 in Fukuoka, Japan. We investigated the monthly and diurnal variations in the correlations between the aerosol surface area and black carbon (BC) and sulfate concentrations. Throughout the year, aerosol surface area concentration was strongly correlated with the concentrations of BC, which has a relatively large surface area since BC particles are usually submicron agglomerates consisting of much smaller (tens of nanometers) sized primary soot particles. The slopes of the regression between the aerosol surface area and BC concentrations was highest in August and September 2015. We presented evidence that this was caused by an increase in the proportion of airmasses that originated on the main islands of Japan. This may enhance the introduction of the BC to Fukuoka from the main islands of Japan which we hypothesize to be relatively fresh or “uncoated”, thereby maintaining its larger surface area.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2017-07-08
    Description: In this study, the sensitivity of the optical properties of carbonaceous aerosols, especially humic-like substances (HULIS), are investigated based on a one-year measurement of ambient fine atmospheric particulate matter (PM2.5) at a Global Atmospheric Watch (GAW) station in South Korea. The extinction, absorption coefficient, and radiative forcing (RF) are calculated from the analysis data of water soluble (WSOC) and insoluble (WISOC) organic aerosols, elemental carbon (EC), and HULIS. The sensitivity of the optical properties on the variations of refractive index, hygroscopicity, and light absorption properties of HULIS as well as the polydispersity of organic aerosols are studied. The results showed that the seasonal absorption coefficient of HULIS varied from 0.09 to 11.64 Mm−1 and EC varied from 0.11 to 3.04 Mm−1 if the geometric mean diameter varied from 0.1 to 1.0 µm and the geometric standard deviation varied from 1.1 to 2.0, with the imaginary refractive index (IRI) of HULIS varying from 0.006 to 0.3. Subsequently, this study shows that the RF of HULIS was larger than other constituents, which suggested that HULIS contributed significantly to radiative forcing.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2017-07-08
    Description: An objective method was developed to analyze longwave and shortwave trough lines in wind field data using different methods, given that these trough lines were researched in different ways. Longwave trough lines were analyzed by locating the cyclonic center and filtering candidate trough points simultaneously; the candidate longwave trough points were then traced based on distance and angle conditions. Next, candidate shortwave trough points were determined based on angular deflection and vorticity data, which were clustered and fitted to a curve for extraction. This method was applied to wind field data from the National Center for Environmental Prediction (NCEP) to analyze trough lines in East Asia and South Asia. The experimental results show that our method can effectively identify trough lines by comparing them with manual analysis results. The statistical results indicate that the method more precisely identifies longwave trough lines than shortwave trough lines, and that trough lines during the fall and winter are more accurately and effectively identified than those during the spring and summer.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2017-07-17
    Description: Street-level ventilation is often weakened by the surrounding high-rise buildings. A thorough understanding of the flows and turbulence over urban areas assists in improving urban air quality as well as effectuating environmental management. In this paper, reduced-scale physical modeling in a wind tunnel is employed to examine the dynamics in hypothetical urban areas in the form of identical surface-mounted ribs in crossflows (two-dimensional scenarios) to enrich our fundamental understanding of the street-level ventilation mechanism. We critically compare the flow behaviors over rough surfaces with different aerodynamic resistance. It is found that the friction velocity u τ is appropriate for scaling the dynamics in the near-wall region but not the outer layer. The different freestream wind speeds ( U ∞ ) over rough surfaces suggest that the drag coefficient C d (= 2 u τ 2 / U ∞ 2 ) is able to characterize the turbulent transport processes over hypothetical urban areas. Linear regression shows that street-level ventilation, which is dominated by the turbulent component of the air change rate (ACH), is proportional to the square root of drag coefficient ACH ″ ∝ C d 1 / 2 . This conceptual framework is then extended to formulate a new indicator, the vertical fluctuating velocity scale in the roughness sublayer (RSL) w ^ RSL ″ , for breathability assessment over urban areas with diversified building height. Quadrant analyses and frequency spectra demonstrate that the turbulence is more inhomogeneous and the scales of vertical turbulence intensity w ″ w ″ ¯ 1 / 2 are larger over rougher surfaces, resulting in more efficient street-level ventilation.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2017-07-19
    Description: Atmosphere, Vol. 8, Pages 126: Observed and Model-Derived Ozone Production Efficiency over Urban and Rural New York State Atmosphere doi: 10.3390/atmos8070126 Authors: Matthew Ninneman Sarah Lu Pius Lee Jeffery McQueen Jianping Huang Kenneth Demerjian James Schwab This study examined the model-derived and observed ozone production efficiency (OPE = ∆Ox/∆NOz) in one rural location, Pinnacle State Park (PSP) in Addison, New York (NY), and one urban location, Queens College (QC) in Flushing, NY, in New York State (NYS) during photo-chemically productive hours (11 a.m.–4 p.m. Eastern Standard Time (EST)) in summer 2016. Measurement data and model predictions from National Oceanic and Atmospheric Administration National Air Quality Forecast Capability (NOAA NAQFC)—Community Multiscale Air Quality (CMAQ) model versions 4.6 (v4.6) and 5.0.2 (v5.0.2) were used to assess the OPE at both sites. CMAQ-predicted and observed OPEs were often in poor agreement at PSP and in reasonable agreement at QC, with model-predicted and observed OPEs, ranging from approximately 5–11 and 10–13, respectively, at PSP; and 4–7 and 6–8, respectively, at QC. The observed relationship between OPE and oxides of nitrogen (NOx) was studied at PSP to examine where the OPE downturn may have occurred. Summer 2016 observations at PSP did not reveal a distinct OPE downturn, but they did indicate that the OPE at PSP remained high (10 or greater) regardless of the [NOx] level. The observed OPEs at QC were found by using species-specific reactive odd nitrogen (NOy) instruments and an estimated value for nitrogen dioxide (NO2), since observed OPEs determined using non-specific NOx and NOy instruments yielded observed OPE results that (1) varied from approximately 11–25, (2) sometimes had negative [NOz] concentrations, and (3) were inconsistent with CMAQ-predicted OPE. This difference in observed OPEs at QC depending on the suite of instruments used suggests that species-specific NOx and NOy instruments may be needed to obtain reliable urban OPEs.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2017-07-20
    Description: Atmosphere, Vol. 8, Pages 129: Numerical Investigation on the Effect of Avenue Trees on PM2.5 Dispersion in Urban Street Canyons Atmosphere doi: 10.3390/atmos8070129 Authors: Bo Hong Borong Lin Hongqiao Qin The Reynolds-averaged Navier-Stokes (RANS) model and revised generalized drift flux model were used to investigate the characteristics of airflow fields and PM2.5 dispersion in street canyons with a variety setting on tree crown morphologies (i.e., conical, spherical, and cylindrical), leaf area densities (LADs = 0.5, 1.5, and 2.5 m2/m3), and street canyon aspect ratios (H/W = 0.5, 1.0, and 2.0). Results were as follows: (1) airflow fields were reversed in the presence of trees and enhanced with higher LAD; (2) air velocity decreased negligibly when LAD increased from 1.5 to 2.5, but significantly when LAD increased from 0.5 to 1.5; (3) tree crown morphologies, building aspect ratios, and LADs were interrelated. The comparison of PM2.5 showed that the most critical situations in H/W = 0.5, 1.0, and 2.0 corresponded to LAD = 0.5 with a conical canopy; (4) the H/W = 1.0 and LAD = 1.5 scenario was identified as the most efficient combination for PM2.5 capture; (5) the maximum PM2.5 reduction ratio was ordered from low to high in the sequence of conical, spherical, and cylindrical canopies. At predestinated LADs and aspect ratio, Populus tomentosa with cylindrical crown morphology exhibited the best efficiency on PM2.5 capture with a reduction ratio of 75% to 85% at pedestrian height.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2017-07-20
    Description: Atmosphere, Vol. 8, Pages 128: Impacts of the Lower Stratosphere on the Development of Intense Tropical Cyclones Atmosphere doi: 10.3390/atmos8070128 Authors: Zachary Moon Chanh Kieu This study examines potential impacts of the lower stratosphere on the development and the inner-core structure of intense tropical cyclones (TCs). By initializing the Hurricane Weather Research and Forecasting (HWRF) model with different monthly averaged sounding profiles in the Northwestern Pacific and the North Atlantic basins, it is shown that the lower stratosphere layer (LSL) can impose a noticeable influence on the TC structure and development via formation of an extra warm core near the tropopause along with a thin layer of inflow in the LSL at the high-intensity limit. Specifically, a lower tropopause level allows for higher TC intensity and a more distinct double warm core structure. Likewise, a weaker LSL stratification also corresponds to a warmer upper-level core and higher intensity. Of further significance is that the double warm core formation is more sensitive to tropopause variations in the Northwestern Pacific basin than those in the North Atlantic basin, given the same sea surface temperature. The results suggest that variations in tropopause level and LSL stratification could be an important factor that is responsible for the long-term variability of TC intensity.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2017-07-26
    Description: Atmosphere, Vol. 8, Pages 134: A Support Vector Machine Hydrometeor Classification Algorithm for Dual-Polarization Radar Atmosphere doi: 10.3390/atmos8080134 Authors: Nicoletta Roberto Luca Baldini Elisa Adirosi Luca Facheris Fabrizio Cuccoli Alberto Lupidi Andrea Garzelli An algorithm based on a support vector machine (SVM) is proposed for hydrometeor classification. The training phase is driven by the output of a fuzzy logic hydrometeor classification algorithm, i.e., the most popular approach for hydrometer classification algorithms used for ground-based weather radar. The performance of SVM is evaluated by resorting to a weather scenario, generated by a weather model; the corresponding radar measurements are obtained by simulation and by comparing results of SVM classification with those obtained by a fuzzy logic classifier. Results based on the weather model and simulations show a higher accuracy of the SVM classification. Objective comparison of the two classifiers applied to real radar data shows that SVM classification maps are spatially more homogenous (textural indices, energy, and homogeneity increases by 21% and 12% respectively) and do not present non-classified data. The improvements found by SVM classifier, even though it is applied pixel-by-pixel, can be attributed to its ability to learn from the entire hyperspace of radar measurements and to the accurate training. The reliability of results and higher computing performance make SVM attractive for some challenging tasks such as its implementation in Decision Support Systems for helping pilots to make optimal decisions about changes inthe flight route caused by unexpected adverse weather.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2017-07-26
    Description: Atmosphere, Vol. 8, Pages 133: Parameterization of the Aerosol Upscatter Fraction as Function of the Backscatter Fraction and Their Relationships to the Asymmetry Parameter for Radiative Transfer Calculations Atmosphere doi: 10.3390/atmos8080133 Authors: Hans Moosmüller John A. Ogren Simple analytical approximations for aerosol radiative forcing generally contain the aerosol upscatter fraction (the fraction of scattered light that is scattered into the upper hemisphere), while ambient measurements generally yield the backscatter fraction, and theoretical calculations of scattering phase functions often yield the asymmetry parameter. Therefore, simple analytical relationships and parameterizations relating these three parameters are very valuable for radiative transfer calculations. Here, we review published parameterizations, mostly based on the Henyey-Greenstein phase function, and evaluate their goodness and range of validity. In addition, we give new parameterizations that are valid over the full range of backscatter fractions that are possibly encountered in the ambient atmosphere (i.e., 0 to 0.5).
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2017-07-27
    Description: Atmosphere, Vol. 8, Pages 136: Assessment of Indoor-Outdoor Particulate Matter Air Pollution: A Review Atmosphere doi: 10.3390/atmos8080136 Authors: Matteo Bo Pietro Salizzoni Marina Clerico Riccardo Buccolieri Background: Air pollution is a major global environmental risk factor. Since people spend most of their time indoors, the sole measure of outdoor concentrations is not sufficient to assess total exposure to air pollution. Therefore, the arising interest by the international community to indoor-outdoor relationships has led to the development of various techniques for the study of emission and exchange parameters among ambient and non-ambient pollutants. However, a standardised method is still lacking due to the complex release and dispersion of pollutants and the site conditions among studies. Methods: This review attempts to fill this gap to some extent by focusing on the analysis of the variety of site-specific approaches for the assessment of particulate matter in work and life environments. Results: First, the main analogies and differences between indoor and outdoor particles emerging from several studies are briefly described. Commonly-used indicators, sampling methods, and other approaches are compared. Second, recommendations for further studies based on recent results in order to improve the assessment and management of those issues are provided. Conclusions: This review is a step towards a comprehensive understanding of indoor and outdoor exposures which may stimulate the development of innovative tools for further epidemiological and multidisciplinary research.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2017-07-28
    Description: Atmosphere, Vol. 8, Pages 137: Temporal and Spatial Patterns of China’s Main Air Pollutants: Years 2014 and 2015 Atmosphere doi: 10.3390/atmos8080137 Authors: Tiancai Zhou Jian Sun Huan Yu China faces unprecedented air pollution today. In this study, a database (SO2, NO2, CO, O3, PM2.5 (particulate matter with aerodynamic diameter less than 2.5 μm), and PM10 (particulate matter with aerodynamic diameter less than 10 μm) was developed from recordings in 188 cities across China in 2014 and 2015 to explore the spatial-temporal characteristics, relationships among atmospheric contaminations, and variations in these contaminants. Across China, the results indicated that the average monthly concentrations of air pollutants were higher from November to February than in other months. Further, the spatial patterns of air pollutants showed that the most polluted areas were located in Shandong, Henan, and Shanxi provinces, and the Beijing-Tianjin-Hebei region. In addition, the average daily concentrations of air pollutants were also higher in spring and winter, and significant relationships between the principal air pollutants (negative for O3 and positive for the others) were found. Finally, the results of a generalized additive model (GAM) indicated that the concentrations of PM10 and O3 fluctuate dynamically; there was a consistent increase in CO and NO2, and PM2.5 and SO2 showed a sharply decreasing trend. To minimize air pollution, open biomass burning should be prohibited, the energy efficiency of coal should be improved, and the full use of clean fuels (nuclear, wind, and solar energy) for municipal heating should be encouraged from November to February. Consequently, an optimized program of urban development should be highlighted.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2017-07-30
    Description: Atmosphere, Vol. 8, Pages 139: An Advanced Radiative Transfer and Neural Network Scheme and Evaluation for Estimating Water Vapor Content from MODIS Data Atmosphere doi: 10.3390/atmos8080139 Authors: Kebiao Mao Xinyi Shen Zhiyuan Zuo Ying Ma Guang Liu Huajun Tang This work made an improvement upon and a further evaluation of previous work for estimating water vapor content from near-infrared around 1 μm from MODIS data. The accuracy of RM-NN is determined by the complicated relationship of the geophysical parameters. An advanced scheme is proposed for building different training databases for different seasons in different regions to reduce the complexity. The training database includes three parts. The first part is a simulation database by MODTRAN for different weather conditions, which is made as a basic database; the second part is reliable field measurement data in observation stations; and the third part is the MYD05_L2 product on clear days, which is produced by the standard product algorithm for water vapor content. The comparative analyses based on simulation data indicate that maximum accuracy of single condition could be improved by about 34% relative to the “all conditions” results. Two study regions in China and America are selected as test areas, and the evaluation shows that the mean and the standard deviation of estimation error are about 0.08 g cm−2 and 0.09 g cm−2, respectively. All the analysis indicates that the advanced scheme can improve the retrieval accuracy of water vapor content, which can make full use of the advantages of previous methods.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2017-07-30
    Description: Atmosphere, Vol. 8, Pages 138: Perspectives on the Future of Ice Nucleation Research: Research Needs and Unanswered Questions Identified from Two International Workshops Atmosphere doi: 10.3390/atmos8080138 Authors: Ivan Coluzza Jessie Creamean Michel Rossi Heike Wex Peter Alpert Valentino Bianco Yvonne Boose Christoph Dellago Laura Felgitsch Janine Fröhlich-Nowoisky Hartmut Herrmann Swetlana Jungblut Zamin Kanji Georg Menzl Bruce Moffett Clemens Moritz Anke Mutzel Ulrich Pöschl Michael Schauperl Jan Scheel Emiliano Stopelli Frank Stratmann Hinrich Grothe David Schmale There has been increasing interest in ice nucleation research in the last decade. To identify important gaps in our knowledge of ice nucleation processes and their impacts, two international workshops on ice nucleation were held in Vienna, Austria in 2015 and 2016. Experts from these workshops identified the following research needs: (1) uncovering the molecular identity of active sites for ice nucleation; (2) the importance of modeling for the understanding of heterogeneous ice nucleation; (3) identifying and quantifying contributions of biological ice nuclei from natural and managed environments; (4) examining the role of aging in ice nuclei; (5) conducting targeted sampling campaigns in clouds; and (6) designing lab and field experiments to increase our understanding of the role of ice-nucleating particles in the atmosphere. Interdisciplinary teams of scientists should work together to establish and maintain a common, unified language for ice nucleation research. A number of commercial applications benefit from ice nucleation research, including the production of artificial snow, the freezing and preservation of water-containing food products, and the potential modulation of weather. Additional work is needed to increase our understanding of ice nucleation processes and potential impacts on precipitation, water availability, climate change, crop health, and feedback cycles.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2017-07-30
    Description: Atmosphere, Vol. 8, Pages 140: Occurrence and Potential Sources of Quinones Associated with PM2.5 in Guadalajara, Mexico Atmosphere doi: 10.3390/atmos8080140 Authors: Adriana Barradas-Gimate Mario Murillo-Tovar José Díaz-Torres Leonel Hernández-Mena Hugo Saldarriaga-Noreña Juana Delgado-Saborit Alberto López-López This study aims to establish the influence of primary emission sources and atmospheric transformation process contributing to the concentrations of quinones associated to particulate matter of less than 2.5 µm (PM2.5) in three sites within the Metropolitan Area of Guadalajara (MAG), namely Centro (CEN), Tlaquepaque (TLA) and Las Águilas (AGU). Environmental levels of quinones extracted from PM2.5 filters were analyzed using Gas Chromatography coupled to Mass Spectrometry (GC-MS). Overall, primary emissions in combination with photochemical and oxidation reactions contribute to the presence of quinones in the urban atmosphere of MAG. It was found that quinones in PM2.5 result from the contributions from direct emission sources by incomplete combustion of fossil fuels such as diesel and gasoline that relate mainly to vehicular activity intensity in the three sampling sites selected. However, this also suggests that the occurrence of quinones in MAG can be related to photochemical transformation of the parent Polycyclic Aromatic Hydrocarbons (PAHs), to chemical reactions with oxygenated species, or a combination of both routes. The higher concentration of 1,4-Chrysenequinone during the rainy season compared to the warm-dry season indicates chemical oxidation of chrysene, since the humidity could favor singlet oxygen collision with parent PAH present in the particle phase. On the contrary, 9,10-Anthraquinone/Anthracene and 1,4-Naftoquinone/Naphthalene ratios were higher during the warm-dry season compared to the rainy season, which might indicate a prevalence of the photochemical formation during the warm-dry season favored by the large solar radiation typical of the season. In addition, the estimated percentage of photochemical formation of 9,10-Phenanthrenequinone showed that the occurrence of this compound in Tlaquepaque (TLA) and Las Águilas (AGU) sites is mainly propagated by conditions of high solar radiation such as in the warm-dry season and during long periods of advection of air masses from emission to the reception areas. This was shown by the direct association between the number hourly back trajectories arriving in the TLA and AGU from Centro and other areas in MAG and the highest photochemical formation percentage.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2017-08-01
    Description: Atmosphere, Vol. 8, Pages 141: Evaluation of the Common Land Model (CoLM) from the Perspective of Water and Energy Budget Simulation: Towards Inclusion in CMIP6 Atmosphere doi: 10.3390/atmos8080141 Authors: Chengwei Li Hui Lu Kun Yang Jonathon S. Wright Le Yu Yingying Chen Xiaomeng Huang Shiming Xu Land surface models (LSMs) are important tools for simulating energy, water and momentum transfer across the land–atmosphere interface. Many LSMs have been developed over the past 50 years, including the Common Land Model (CoLM), a LSM that has primarily been developed and maintained by Chinese researchers. CoLM has been adopted by several Chinese Earth System Models (GCMs) that will participate in the Coupled Model Intercomparison Project Phase 6 (CMIP6). In this study, we evaluate the performance of CoLM with respect to simulating the water and energy budgets. We compare simulations using the latest version of CoLM (CoLM2014), the previous version of CoLM (CoLM2005) that was used in the Beijing Normal University Earth System Model (BNU-GCM) for CMIP5, and the Community Land Model version 4.5 (CLM4.5) against global diagnostic data and observations. Our results demonstrate that CLM4.5 outperforms CoLM2005 and CoLM2014 in simulating runoff (R), although all three models overestimate runoff in northern Europe and underestimate runoff in North America and East Asia. Simulations of runoff and snow depth (SNDP) are substantially improved in CoLM2014 relative to CoLM2005, particularly in the Northern Hemisphere. The simulated global energy budget is also substantially improved in CoLM2014 relative to CoLM2005. Simulations of sensible heat (SH) based on CoLM2014 compare favorably to those based on CLM4.5, while root-mean-square errors (RMSEs) in net surface radiation indicate that CoLM2014 (RMSE = 16.02 W m−2) outperforms both CoLM2005 (17.41 W m−2) and CLM4.5 (23.73 W m−2). Comparisons at regional scales show that all three models perform poorly in the Amazon region but perform relatively well over the central United States, Siberia and the Tibetan Plateau. Overall, CoLM2014 is improved relative to CoLM2005, and is comparable to CLM4.5 with respect to many aspects of the energy and water budgets. Our evaluation confirms CoLM2014 is suitable for inclusion in Chinese GCMs, which will increase the diversity of LSMs considered during CMIP6.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2017-08-04
    Description: Atmosphere, Vol. 8, Pages 135: Decadal Spatial-Temporal Variations in the Spatial Pattern of Anomalies of Extreme Precipitation Thresholds (Case Study: Northwest Iran) Atmosphere doi: 10.3390/atmos8080135 Authors: Iman Rousta Mohammad Nasserzadeh Masoud Jalali Esmaeil Haghighi Haraldur Ólafsson Saeide Ashrafi Mehdi Doostkamian Ali Ghasemi This study focused on decadalvariations of extreme precipitation thresholds within a 50-year period (1961–2010) for 250 stations of Iran’s northwest. The 99th percentile was used as the threshold of extreme precipitation. In order to analyze threshold cycles and spatial autocorrelation pattern dominating extreme precipitation thresholds, spectral analysis and Gi (known as HOTSPOT) were used respectively. The results revealed that the highest threshold of extreme precipitation occurred along the Ghoosheh Dagh mountain range. Additionally, in all the five studied decades, the highest positive anomalies were observed in the same region (i.e., the Ghoosheh Dagh). The findings also showed that the intensity of positive spatial autocorrelation pattern of extreme precipitation thresholds experienced a declining trend in recent decades. At the same time, extreme precipitation weighted mean center indicated that they followed an ordered pattern during the studied period. The results of harmonic analysis demonstrated that, in all decades, short-term (2–4 years) and mid-term (4–8 years) cycles of extreme precipitation thresholds were dominated. However, especially the southwest of the studied area, the return period of extreme precipitation thresholds was as long as the studied period, a phenomenon that indicates the existence of a trend in extreme precipitation thresholds of these regions.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2017-08-04
    Description: Atmosphere, Vol. 8, Pages 142: The Influence of Drop Size Distributions on the Relationship between Liquid Water Content and Radar Reflectivity in Radiation Fogs Atmosphere doi: 10.3390/atmos8080142 Authors: Boris Thies Sebastian Egli Jörg Bendix This study investigates the temporal dynamics of the drop size distribution (DSD) and its influence on the relationship between the liquid water content (LWC) and the radar reflectivity (Z) in fogs. Data measured during three radiation fog events at the Marburg Ground Truth and Profiling Station in Linden-Leihgestern, Germany, form the basis of this analysis. Specifically, we investigated the following questions: (1) Do the different fog life cycle stages exhibit significantly different DSDs? (2) Is it possible to identify characteristic DSDs for each life cycle stage? (3) Is it possible to derive reliable Z-LWC relationships by means of a characteristic DSD? The results showed that there were stage-dependent differences in the fog life cycles, although each fog event was marked by unique characteristics, and a general conclusion about the DSD during the different stages could not be made. A large degree of variation within each stage also precludes the establishment of a representative average spectrum.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2017-08-07
    Description: Atmosphere, Vol. 8, Pages 143: Impacts of Climate Change on Rainfall Erosivity in the Huai Luang Watershed, Thailand Atmosphere doi: 10.3390/atmos8080143 Authors: Pheerawat Plangoen Parmeshwar Udmale This study focuses on the impacts of climate change on rainfall erosivity in the Huai Luang watershed, Thailand. The multivariate climate models (IPCC AR5) consisting of CCSM4, CSIRO-MK3.6.0 and MRI-CGCM3 under RCP4.5 and RCP8.5 emission scenarios are analyzed. The Quantile mapping method is used as a downscaling technique to generate future precipitation scenarios which enable the estimation of future rainfall erosivity under possible changes in climatic conditions. The relationship between monthly precipitation and rainfall erosivity is used to estimate monthly rainfall erosivity under future climate scenarios. The assessment compared values of rainfall erosivity during 1982–2005 with future timescales (i.e., the 2030s, 2050s, 2070s and 2090s). The results indicate that the average of each General Circulation Model (GCM) combination shows a rise in the average annual rainfall erosivity for all four future time scales, as compared to the baseline of 8302 MJ mm ha−1 h−1 year−1, by 12% in 2030s, 24% in 2050s, 43% in 2070s and 41% in 2090s. The magnitude of change varies, depending on the GCMs (CCSM4, CSIRO-MK3.6.0, and MRI-CGCM3) and RCPs with the largest change being 82.6% (15,159 MJ mm ha−1 h−1 year−1) occurring under the MRI-CGCM3 RCP8.5 scenario in 2090s. A decrease in rainfall erosivity has been found, in comparison to the baseline by 2.3% (8114 MJ mm ha−1 h−1 year−1) for the CCSM4 RCP4.5 scenario in 2030s and 2.6% (8088 MJ mm ha−1 h−1 year−1) for the 2050s period. However, this could be considered uncertain for future rainfall erosivity estimation due to different GCMs. The results of this study are expected to help development planners and decision makers while planning and implementing suitable soil erosion and deposition control plans to adapt climate change in the Huai Luang watershed.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2017-08-09
    Description: Atmosphere, Vol. 8, Pages 144: Seasonal Trends of Formaldehyde and Acetaldehyde in the Megacity of São Paulo Atmosphere doi: 10.3390/atmos8080144 Authors: Thiago Nogueira Pamela Dominutti Adalgiza Fornaro Maria Andrade The Metropolitan Area of São Paulo (MASP) is the largest megacity in South America, with 21 million inhabitants and more than 8 million vehicles. Those vehicles run on a complex fuel mix, with ethanol accounting for nearly 50% of all fuel sold. That has made the MASP a unique case study to assess the impact of biofuel use on air quality. Currently, the greatest challenge in terms of improving air quality is controlling the formation of secondary pollutants such as ozone, which represents the main air pollution problem in the MASP. We evaluated the temporal trends in the concentrations of ozone, its precursors (formaldehyde, acetaldehyde, and NO2), CO, and NO, from 2012 to 2016. Formaldehyde and acetaldehyde concentrations were frequently higher in winter than in other seasons, showing the importance of meteorological conditions to the distribution of atmospheric pollutants in the MASP. We found no clear evidence that the recent growth in ethanol consumption in Brazil has affected acetaldehyde concentrations, which are associated with emissions from ethanol combustion. In fact, the formaldehyde/acetaldehyde ratio remained relatively constant over the period studied, despite the change in the fuel consumption profile in the MASP.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2017-10-01
    Description: Atmosphere, Vol. 8, Pages 191: Historical Trends and Variability in Heat Waves in the United Kingdom Atmosphere doi: 10.3390/atmos8100191 Authors: Michael Sanderson Theo Economou Kate Salmon Sarah Jones Increases in numbers and lengths of heat waves have previously been identified in global temperature records, including locations within Europe. However, studies of changes in UK heat wave characteristics are limited. Historic daily maximum temperatures from 29 weather stations with records exceeding 85 years in length across the country were examined. Heat waves were defined as periods with unusually high temperatures for each station, even if the temperatures would not be considered warm in an absolute sense. Positive trends in numbers and lengths of heat waves were identified at some stations. However, for some stations in the south east of England, lengths of very long heat waves (over 10 days) had declined since the 1970s, whereas the lengths of shorter heat waves had increased slightly. Considerable multidecadal variability in heat wave numbers and lengths was apparent at all stations. Logistic regression, using a subset of eight stations with records beginning in the nineteenth century, suggested an association between the Atlantic Multidecadal Oscillation and the variability in heat wave numbers and lengths, with the summertime North Atlantic Oscillation playing a smaller role. The results were robust against different temperature thresholds.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2017-10-01
    Description: Atmosphere, Vol. 8, Pages 192: Impact of Madden–Julian Oscillation upon Winter Extreme Rainfall in Southern China: Observations and Predictability in CFVs2 Atmosphere doi: 10.3390/atmos8100192 Authors: Hong-Li Ren Pengfei Ren The impact of Madden–Julian oscillation (MJO) upon extreme rainfall in southern China was studied using the Real-time Multivariate MJO (RMM) index and daily precipitation data from high-resolution stations in China. The probability-distribution function (PDF) of November–March rainfall in southern China was found to be skewed toward larger (smaller) values in phases 2–3 (6–7) of MJO, during which the probability of extreme rainfall events increased (reduced) by 30–50% (20–40%) relative to all days in the same season. Physical analysis indicated that the favorable conditions for generating extreme rainfall are associated with southwesterly moisture convergence and vertical moisture advection over southern China, while the direct contributions from horizontal moisture advection are insignificant. Based on the above results, the model-based predictability for extreme rainfall in winter was examined using hindcasts from the Climate Forecast System version 2 (CFSv2) of NOAA. It is shown that the modulations of MJO on extreme rainfall are captured and forecasted well by CFSv2, despite the existence of a relatively small bias. This study suggests the feasibility of deriving probabilistic forecasts of extreme rainfall in southern China based on RMM indices.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2017-10-06
    Description: Atmosphere, Vol. 8, Pages 194: A Review of Parametric Descriptions of Tropical Cyclone Wind-Wave Generation Atmosphere doi: 10.3390/atmos8100194 Authors: Ian Young More than three decades of observations of tropical cyclone wind and wave fields have resulted in a detailed understanding of wave-growth dynamics, although details of the physics are still lacking. These observations are presented in a consistent manner, which provides the basis to be able to characterize the full wave spectrum in a parametric form throughout tropical cyclones. The data clearly shows that an extended fetch model can be used to represent the maximum significant wave height in such storms. The shape stabilizing influence of nonlinear interactions means that the spectral shape is remarkably similar to fetch-limited cases. As such, the tropical cyclone spectrum can also be described by using well-known parametric models. A detailed process is described to parameterize the wave spectrum at any point in a tropical cyclone.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2017-10-08
    Description: Atmosphere, Vol. 8, Pages 196: Atmospheric Levels of Benzene and C1-C2 Carbonyls in San Nicolas de los Garza, Nuevo Leon, Mexico: Source Implications and Health Risk Atmosphere doi: 10.3390/atmos8100196 Authors: Julia Griselda Cerón Bretón Rosa María Cerón Bretón Jonathan D.W. Kahl Reyna del Carmen Lara-Severino Evangelina Ramírez Lara María de la Luz Espinosa Fuentes Marcela Rangel Marrón Martha Patricia Uc Chi Atmospheric benzene and carbonyls were studied in San Nicolas de los Garza, Nuevo Leon, during 2011 and 2012. The relative abundance for measured VOCs was the following: formaldehyde (9.06 µg m−3) > acetaldehyde (8.06 µg m−3) > benzene (0.65 µg m−3). All measured VOCs had a clear seasonal trend with higher values of concentration during summer. Benzene and formaldehyde had a marked diurnal trend with the highest levels during morning, whereas acetaldehyde did not show a clear diurnal pattern. Meteorological analysis showed that the dominant winds came from NNE and ENE, suggesting that sources located in these directions contribute to the VOC levels. Principal component analysis (PCA) analysis revealed that photochemical activity influenced benzene and carbonyl levels during summer and that benzene was associated with vehicular traffic emissions during autumn and winter, showing good correlation with CO. Meteorological data showed that measured VOCs were influenced by regional sources. A health risk assessment showed that local exposure to carbonyls and benzene exceeded 1 × 10−6 for integrated lifetime cancer risk. People living in San Nicolas de los Garza, thus, have a probable risk of suffering cancer in their lifetime. It is, therefore, necessary to improve environmental policies for controlling VOC levels in this area.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2017-10-11
    Description: Atmosphere, Vol. 8, Pages 198: Spatial and Temporal Trends in the Location of the Lifetime Maximum Intensity of Tropical Cyclones Atmosphere doi: 10.3390/atmos8100198 Authors: Sarah Tennille Kelsey Ellis The climatology of tropical cyclones is an immediate research need, specifically to better understand their long-term patterns and elucidate their future in a changing climate. One important pattern that has recently been detected is the poleward shift of the lifetime maximum intensity (LMI) of tropical cyclones. This study further assessed the recent (1977–2015) spatial changes in the LMI of tropical cyclones, specifically those of tropical storm strength or stronger in the North Atlantic and northern West Pacific basins. Analyses of moving decadal means suggested that LMI locations migrated south in the North Atlantic and north in the West Pacific. In addition to a linear trend, there is a cyclical migration of LMI that is especially apparent in the West Pacific. Relationships between LMI migration and intensity were explored, as well as LMI location relative to landfall. The southerly trend of LMI in the North Atlantic was most prevalent in the strongest storms, resulting in these storms reaching their LMI farther from land. The relationship between intensity and LMI migration in the West Pacific was not as clear, but the most intense storms have been reaching LMI closer to their eventual landfall location. This work adds to those emphasizing the importance of understanding the climatology of the most intense hurricanes and shows there are potential human impacts resulting from any migration of LMI.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2017-10-04
    Description: Atmosphere, Vol. 8, Pages 193: Moisture Transport Anomalies over the Danube River Basin during Two Drought Events: A Lagrangian Analysis Atmosphere doi: 10.3390/atmos8100193 Authors: Milica Stojanovic Anita Drumond Raquel Nieto Luis Gimeno In this paper, we provide a Lagrangian analysis of the anomalies in the moisture transport during two important drought events (1989/1990 and 2003) configured over the Danube River Basin (DRB) region. Firstly, we identified the drought episodes that occurred over the DRB in the period of 1980–2014 through the Standardized Precipitation Evapotranspiration Index (SPEI). SPEI was calculated using monthly Climatic Research Unit (CRU) Time-Series (TS) Version 3.23 precipitation and potential evapotranspiration (PET) datasets with a spatial resolution of 0.5 degrees. The monthly SPEI-1 index was applied to identify the drought episodes and their respective indicators, including duration, severity, and intensity. Two significant drought events were selected: 1989/1990 (presenting dry conditions during October 1989–March 1990) and 2003 (presenting dry conditions during April 2003–September 2003). These events were associated with the two most severe SPEI-1 episodes identified over the DRB during 1980–2014. Then, an analysis of anomalies in the moisture transport was conducted in order to verify possible changes in the moisture supply from the climatological sources for the DRB during these episodes. The moisture transport analysis was performed through a Lagrangian approach, which uses the outputs of the FLEXiblePARTicle dispersion model FLEXPART integrated with one of the reanalysis produced by the European Centre for Medium-Range Weather Forecasts (ECMWF): the ECMWF Re-Analysis (ERA)-Interim dataset. The DRB receives moisture from seven different moisture source regions: the North Atlantic Ocean (NATL), North Africa (NAF), the Mediterranean Sea (MED), the Black Sea (BS), the Caspian Sea (CS), the DRB, and Central and Eastern Europe (Rest of Land (RestL)). The analysis of drought events shows that the precipitation and moisture supply from the selected sources weakened mainly during both drought events. Anomalous subsidence and an increased PET also prevailed over the DRB during these SPEI-1 episodes. RestL and MED registered the most intensive reduction in the moisture supply over the DRB during both periods.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2017-10-09
    Description: Atmosphere, Vol. 8, Pages 197: Evaluation of Surface Fluxes in the WRF Model: Case Study for Farmland in Rolling Terrain Atmosphere doi: 10.3390/atmos8100197 Authors: Xia Sun Heather Holmes Olabosipo Osibanjo Yun Sun Cesunica Ivey The partitioning of available energy into surface sensible and latent heat fluxes impacts the accuracy of simulated near surface temperature and humidity in numerical weather prediction models. This case study evaluates the performance of the Weather Research and Forecasting (WRF) model on the simulation of surface heat fluxes using field observations collected from a surface flux tower in Oregon, USA. Further, WRF-modeled heat flux sensitivities to North American Mesoscale (NAM) and North American Regional Reanalysis (NARR) large-scale input forcing datasets; U.S. Geological Survey (USGS) and the Moderate Resolution Imaging Spectroradiometer (MODIS) land use datasets; Pleim-Xiu (PX) and Noah land surface models (LSM); Yonsei University (YSU) and Mellor-Yamada-Janjic (MYJ) planetary boundary layer (PBL) schemes using the Noah LSM; and Asymmetric Convective Model version 2 (ACM2) PBL scheme using PX LSM are investigated. The errors for simulating 2-m temperature, 2-m humidity, and 10-m wind speed were reduced on average when using NAM compared with NARR. Simulated friction velocity had a positive bias on average, with the YSU PBL scheme producing the largest overestimation in the innermost domain (0.5 km horizontal grid resolution). The simulated surface sensible heat flux had a similar temporal behavior as the observations but with a larger magnitude. The PX LSM produced lower and more reliable sensible heat fluxes compared with the Noah LSM. However, Noah latent heat fluxes were improved with a lower RMSE compared to PX, when NARR forcing data was used. Overall, these results suggest that there is not one WRF configuration that performs best for all the simulated variables (surface heat fluxes and meteorological variables) and situations (day and night).
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2017-10-18
    Description: Atmosphere, Vol. 8, Pages 203: The Peñalara Mountain Meteorological Network (1999–2014): Description, Preliminary Results and Lessons Learned Atmosphere doi: 10.3390/atmos8100203 Authors: Luis Durán Irene Rodríguez-Muñoz Enrique Sánchez This work describes a mountain meteorological network that was in operation from 1999 to 2014 in a mountain range with elevations ranging from 1104 to 2428 m in Central Spain. Additionally, some technical details of the network are described, as well as variables measured and some meta information presented, which is expected to be useful for future users of the observational database. A strong emphasis is made on showing the observational methods and protocols evolution, as it will help researchers to understand the sources of errors, data gaps and the final stage of the network. This paper summarizes mostly the common sources of errors when designing and operating a small network of this kind, so it can be useful for individual researchers and small size groups that undertake a similar task on their own. Strengths and weaknesses of some of the variables measured are discussed and some basic calculations are made in order to show the otential of the database and to anticipate future deeper climatological analyses over the area. Finally, the configuration of an automatic mountain meteorology station is suggested as a result of the lessons learned and the the common state of the art automatic measuring techniques
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2017-10-18
    Description: Atmosphere, Vol. 8, Pages 202: Ice Nucleating Particle Concentrations Increase When Leaves Fall in Autumn Atmosphere doi: 10.3390/atmos8100202 Authors: Franz Conen Mikhail Yakutin Karl Yttri Christoph Hüglin Ice nucleating particles active at −8 °C or warmer (INP−8) are produced by plants and by microorganisms living from and on them. Laboratory studies have shown that large numbers of INP−8 are produced by decaying leaves. At three widely dispersed locations in Northwestern Eurasia, we saw, from an analysis of PM10 filter samples, that seasonal median concentrations of INP−8 in the boundary layer doubled from summer to autumn. Concentrations of INP−8 increased in autumn soon after the normalized differential vegetation index had started to decrease. Whether the large-scale phenological event of leaf senescence and shedding in autumn has an impact on ice formation in clouds is a justified question.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2017-10-05
    Description: Atmosphere, Vol. 8, Pages 195: Development of an Unmanned Aerial Vehicle for the Measurement of Turbulence in the Atmospheric Boundary Layer Atmosphere doi: 10.3390/atmos8100195 Authors: Brandon Witte Robert Singler Sean Bailey This paper describes the components and usage of an unmanned aerial vehicle developed for measuring turbulence in the atmospheric boundary layer. A method of computing the time-dependent wind speed from a moving velocity sensor data is provided. The physical system built to implement this method using a five-hole probe velocity sensor is described along with the approach used to combine data from the different on-board sensors to allow for extraction of the wind speed as a function of time and position. The approach is demonstrated using data from three flights of two unmanned aerial vehicles (UAVs) measuring the lower atmospheric boundary layer during transition from a stable to convective state. Several quantities are presented and show the potential for extracting a range of atmospheric boundary layer statistics.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2017-10-12
    Description: Atmosphere, Vol. 8, Pages 199: Data Analysis of the TK-1G Sounding Rocket Installed with a Satellite Navigation System Atmosphere doi: 10.3390/atmos8100199 Authors: Lesong Zhou Zheng Sheng Zhiqiang Fan Qixiang Liao This article gives an in-depth analysis of the experimental data of the TK-1G sounding rocket installed with the satellite navigation system. It turns out that the data acquisition rate of the rocket sonde is high, making the collection of complete trajectory and meteorological data possible. By comparing the rocket sonde measurements with those obtained by virtue of other methods, we find that the rocket sonde can be relatively precise in measuring atmospheric parameters within the scope of 20–60 km above the ground. This establishes the fact that the TK-1G sounding rocket system is effective in detecting near-space atmospheric environment.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2017-10-12
    Description: Atmosphere, Vol. 8, Pages 200: Monitoring and Evaluation of Terni (Central Italy) Air Quality through Spatially Resolved Analyses Atmosphere doi: 10.3390/atmos8100200 Authors: Lorenzo Massimi Martina Ristorini Marta Eusebio Darla Florendo Adeola Adeyemo Davide Brugnoli Silvia Canepari A study of spatial variability of PM10 elemental components was conducted in Terni city (Central Italy), situated in an intramountain depression characterized by the presence of several particulate matter emission sources. The meteorological conditions of the Terni basin limit the dispersion and enhance the accumulation of atmospheric pollutants. Thanks to the utilization of new smart samplers, used for the first time and working in parallel at 23 sampling sites, spatially resolved data were obtained. Localizations of the samplers were chosen in order to evaluate the impact of different local PM10 sources. Chemical composition of the samples was determined in combination with a chemical fractioning procedure that allowed us to discriminate water-soluble and residual fractions of analyzed elements in which proved to be a valuable approach for increasing selectivity of elements as source tracers. Spatial variability of elements underlined the contribution of local emission sources and the different dispersion capacity of each element. The city of Terni resulted to be an ideal area to test and validate a new experimental method for the acquisition of spatially resolved data providing the possibility to properly evaluate the spatial variability of PM10 and its chemical components.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2017-10-18
    Description: Atmosphere, Vol. 8, Pages 201: Aerosol Optical Properties over China from RAMS-CMAQ Model Compared with CALIOP Observations Atmosphere doi: 10.3390/atmos8100201 Authors: Tong Wu Meng Fan Jinhua Tao Lin Su Ping Wang Dong Liu Mingyang Li Xiao Han Liangfu Chen The horizontal and vertical distributions of aerosol optical properties over China in 2013–2015 were investigated using RAMS (Regional Atmospheric Modeling System)-CMAQ (Models-3 Community Multiscale Air Quality) simulations and CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) observations. To better understand the performance of the RAMS-CMAQ model over China, comparisons with the ground-based Sun photometers AERONET (Aerosol Robotic Network), MODIS (Moderate Resolution Imaging Spectroradiometers) data and the on-board Lidar CALIOP were used for comprehensive evaluations, which could characterize the abilities of the model to simulate the spatial and vertical distributions of the AOD (Aerosol Optical Depth) as well as the optical properties for four seasons. Several high value areas (e.g., the Sichuan Basin, Taklamakan Desert, North China Plain, and Yangtze River Delta) were found over China during the study period, with the maximum mean AOD (CALIOP: ~0.7; RAMS-CMAQ: >1) in the Sichuan district. Compared with AODs of AERONET, both the CALIOP and RAMS-CMAQ AODs were underestimated, but the RAMS-CMAQ data show a better correlation with AERONET (AERONET vs. RAMS-CMAQ R: 0.69, AERONET vs. CALIOP R: 0.5). The correlation coefficients between RAMS-CMAQ and CALIOP are approximately 0.6 for all four seasons. The AEC (Aerosol Extinction Coefficient) vertical profiles over major cities and their cross sections exhibit two typical features: (1) most of the AEC peaks occurred in the lowest ~0.5 km, decreasing with increasing altitude; and (2) the RAMS-CMAQ AEC underestimated the region with high AODs in the northwest of China and overestimated the region with high AODs in the east–central plain and the central basin regions. The major difference in the AEC values of RAMS-CMAQ and CALIOP is mainly caused by the level of relative humidity and the hygroscopic growth effects of water-soluble aerosols, especially, in the Sichuan district. In general, both the column and vertical RAMS-CMAQ aerosol optical properties could be supplemented efficiently when satellite observations are not available or invalid over China in the applications of climate change and air pollution.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2017-11-16
    Description: Atmosphere, Vol. 8, Pages 223: Trends and Variability in Aerosol Optical Depth over North China from MODIS C6 Aerosol Products during 2001–2016 Atmosphere doi: 10.3390/atmos8110223 Authors: Peng Wang Shangjun Ning Jiageng Dai Jingmin Sun Mingjia Lv Qingli Song Xin Dai Jinrong Zhao Dajiang Yu This study analyzed the variability and trend in aerosol optical depth (AOD) over North China using the latest MODIS/Terra C6 merged Dark Target/Deep Blue AOD monthly data at 550 nm from 2001 to 2016. The spatial distribution of the annual mean AOD was generally characterized by two prominent high-value centers located in the industrially and economically developed areas of the North China Plain and East China, and the dust aerosol-dominated areas of southern Xinjiang. The seasonally averaged AOD reached its maximum in spring (0.430 ± 0.049), followed by summer (0.356 ± 0.035) and winter (0.282 ± 0.039), with the minimum occurring in autumn (0.219 ± 0.022). There were notable long-term annual trends in AOD in different regions over North China during 2001–2016: a decreasing AOD trend was found in Qinghai Tibet (−0.015 ± 0.010/decade), Northwest China (−0.059 ± 0.013/decade at 99% confidence level), and the North China Plain (−0.007 ± 0.021/decade), but a positive increasing trend was identified in northern Xinjiang (0.01 ± 0.006/decade), southern Xinjiang (0.002 ± 0.013/decade), East China (0.053 ± 0.042/decade), and Northeast China (0.016 ± 0.029/decade). Seasonal patterns in the AOD regional long-term trend were evident. The AODs in spring over all the study regions, except East China, exhibited a decreasing trend, with the maximum trend value observed in Northwest China (−0.099 ± 0.029/decade at 99% confidence level); whereas AODs in autumn, except in Northwest China, showed an increasing trend, with the maximum trend value occurring in East China (0.073 ± 0.038/decade). Geographically, we also examined the annual and seasonal spatial patterns of AOD trends over North China. The annual spatial trends in AOD revealed a dominance of positive trends in most regions over the whole of North China from 2001 to 2016, but especially in East and Northeast China (AOD trend value of about 0.16/decade); whereas a negative trend was observed over northern Inner Mongolia (AOD trend value of about −0.12/decade). In addition, seasonal spatial trend analyses indicated that a continual clear upward trend occurred in East China in the autumn and winter seasons during the study period, with the maximum average increase occurring in winter (about 0.20/decade).
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2017-11-21
    Description: Atmosphere, Vol. 8, Pages 227: Evaluation of the MODIS C6 Aerosol Optical Depth Products over Chongqing, China Atmosphere doi: 10.3390/atmos8110227 Authors: Guangming Shi Ruiling Liu Ding Wang Fumo Yang The Moderate Resolution Imaging Spectroradiometer (MODIS) Collection 6 (C6) aerosol optical depth (AOD) products from the 10/3 km Dark Target (DT) and Deep Blue (DB) algorithms are firstly evaluated using ground observed AODs by the sun photometer in Chongqing, a mountainous mega-city in southwest China. The validation results show that MODIS AODs from 10/3 km DT algorithm are comparable with those of the sun photometer, although there are slight overestimations. However, the DB algorithm substantially underestimates MODIS AODs when comparing with those of the sun photometer. Error analyses imply that the bias of surface reflectance estimation is the main error source for both algorithms. The cloud screening scheme of the DT algorithm is more effective than the DB algorithm. The cloud vicinity effect should be considered in the quality control processes for both of the algorithms. A sensitivity test suggests that in complex terrain area, like Chongqing, the collocation method in the validation of satellite products should be carefully selected according to local circumstances. When comparing the monthly mean AODs of MODIS products with sun photometer observations, it shows that the Terra MODIS AOD products are valid to represent the mean statuses in summer and autumn, but the monthly mean of Aqua MODIS AODs are limited in Chongqing.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2017-11-27
    Description: Atmosphere, Vol. 8, Pages 235: North Atlantic and Indian Ocean links with Iraq Climate Atmosphere doi: 10.3390/atmos8120235 Authors: Jasim Al-Khalidi Mihai Dima Petru Vaideanu Sabina Stefan We investigate the connections of the North Atlantic and Indian Ocean sectors with Iraq winter/summer temperature and precipitation. Canonical Correlation Analyses (CCAs) are performed in order to identify potential links between Iraq climate and the atmospheric circulation over these two regions. Regression maps of 200 hPa and 500 hPa geopotential height and sea level pressure fields on the time series derived through CCAs are constructed in order to infer the physical mechanisms connecting the North Atlantic and Indian Ocean regions with Iraq climate. The winter temperature in this country is linked with the North Atlantic Scandinavian pattern, whereas the winter precipitation is associated with the North Atlantic Oscillation. In the free atmosphere, the connection with Iraq temperature is provided by Rossby waves, while the winter precipitation is linked to a more zonal structure. At surface, the air advection is a relevant mechanism through which North Atlantic modes appear to affect Iraq climate.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2017-12-02
    Description: Atmosphere, Vol. 8, Pages 238: An Effective Surrogate Tracer Technique for S. aureus Bioaerosols in a Mechanically Ventilated Hospital Room Replica Using Dilute Aqueous Lithium Chloride Atmosphere doi: 10.3390/atmos8120238 Authors: Marco-Felipe King Miller Camargo-Valero Adriana Matamoros-Veloza P. Sleigh Catherine Noakes Finding a non-pathogenic surrogate aerosol that represents the deposition of typical bioaerosols in healthcare settings is beneficial from the perspective of hospital facility testing, general infection control and outbreak analysis. This study considers aerosolization of dilute aqueous lithium chloride (LiCl) and sodium chloride (NaCl) solutions as surrogate tracers capable of representing Staphylococcus aureus bioaerosol deposition on surfaces in mechanically ventilated rooms. Tests were conducted in a biological test chamber set up as a replica hospital single patient room. Petri dishes on surfaces were used to collect the Li, Na and S. aureus aerosols separately after release. Biological samples were analyzed using cultivation techniques on solid media, and flame atomic absorption spectroscopy was used to measure Li and Na atom concentrations. Spatial deposition distribution of Li tracer correlated well with S. aureus aerosols (96% of pairs within a 95% confidence interval). In the patient hospital room replica, results show that the most contaminated areas were on surfaces 2 m away from the source. This indicates that the room’s airflow patterns play a significant role in bioaerosol transport. NaCl proved not to be sensitive to spatial deposition patterns. LiCl as a surrogate tracer for bioaerosol deposition was most reliable as it was robust to outliers, sensitive to spatial heterogeneity and found to require less replicates than the S. aureus counterpart to be in good spatial agreement with biological results.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2017-12-03
    Description: Atmosphere, Vol. 8, Pages 240: Influence of Raindrop Size Distribution on Throughfall Dynamics under Pine and Birch Trees at the Rainfall Event Level Atmosphere doi: 10.3390/atmos8120240 Authors: Katarina Zabret Jože Rakovec Matjaž Mikoš Mojca Šraj Part of precipitation is intercepted by forest canopies, while the rest reaches the ground as throughfall or stemflow. This process is influenced by various meteorological variables, of which we have mainly focused on drop diameter and velocity. Rainfall in the open and throughfall under birch and pine trees have both been measured since 2014 in Ljubljana, Slovenia. The results demonstrate that the total throughfall during 3.5 years was 73% and 53% of rainfall under birch and pine trees, respectively. During the 236 analysed events, the median volume diameter was 1.8 mm (±1.7 mm), and kinetic energy between 0.01 mJ/cm2 and 23.3 mJ/cm2 was recorded. We closely analysed the effect of rainfall microstructure on throughfall under pine and birch trees during three specific rainfall events. The increase in drop diameter and fall velocity during a rainfall event instantaneously increased throughfall under pine trees between 25% and 47%, whereas no such changes were observed under birch trees. This may be the consequence of different tree properties of the two species. Additionally, in the case of a saturated canopy, throughfall under pine trees exceeded rainfall in the open after an onset of larger and faster drops.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2017-12-05
    Description: Atmosphere, Vol. 8, Pages 242: Analysis of the Long-Term Variability of Poor Visibility Events in the UAE and the Link with Climate Dynamics Atmosphere doi: 10.3390/atmos8120242 Authors: Amal Aldababseh Marouane Temimi The goal of this study is to investigate the variability of poor visibility events occurring hourly in the UAE and their relationship to climate dynamics. Hourly visibility observation data spanning more than three decades from ten stations across the country were used. Four intervals of low visibility, between 0.10 km and 5.0 km, were considered. Poor visibility records were analyzed under wet and dry weather conditions. The Mann–Kendall test was used to assess the inferred trends of low visibility records. The relationships between poor visibility measurements and associated meteorological variables and climate oscillations were also investigated. Results show that Fujairah city has the highest average visibility values under wet weather conditions, while Abu Dhabi city has the lowest average visibility values under both wet and dry conditions. Wet weather conditions had a greater impact than dry weather conditions on visibility deterioration in seven out of the ten stations. Results confirm that fog and dust contribute significantly to the deterioration of visibility in the UAE and that Abu Dhabi has been more impacted by those events than Dubai. Furthermore, the numbers of fog and dust events show steep increasing trends for both cities. A change point in poor visibility records triggered by fog and dust events was detected around the year 1999 at Abu Dhabi and Dubai stations after the application of the cumulative sum method. Increasing shifts in the means and the variances were noticed in the total annual fog events when Student’s t-test and Levene’s test were applied. In Abu Dhabi, the mean annual number of dust events was approximately 112.5 before 1999, increasing to 337 dust events after 1999. In Dubai, the number of dust events increased from around 85.5 to 315.6 events. The inferred fog and dust trends were compared to four climate indices. Results showed a significant correlation (positive and negative) between four climate indices and the occurrence of fog and dust events in the UAE.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2017-12-08
    Description: Atmosphere, Vol. 8, Pages 245: Modeling the Stepping Process of Negative Lightning Stepped Leaders Atmosphere doi: 10.3390/atmos8120245 Authors: Vernon Cooray Liliana Arevalo A physical model based on the mechanism observed in experimental investigations is introduced to describe the formation of negative leader steps. Starting with a small length of a space leader located at the periphery of the negative streamer system of the stepped leader, the model simulates the growth and the subsequent formation of the leader step. Based on the model, the step length, the step forming time, and the propagation speed of stepped leaders as a function of the prospective return stroke peak current are estimated. The results show that the step length and the leader speed increase with increasing prospective return stroke current. The results also show that the speed of the stepped leader increases as it approaches the ground. For prospective return stroke currents in the range of 15 kA–60 kA, the step lengths lie within the range 5 m–100 m, the step forming times lie within the range 10 μs–250 μs, and the leader speed lies within the range 105 m/s −1.5 × 106 m/s. The results obtained are in reasonable agreement with the experimental observations.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2017-11-15
    Description: Atmosphere, Vol. 8, Pages 220: Study on Extension of Standard Meteorological Data for Cities in South Korea Using ISO 15927-4 Atmosphere doi: 10.3390/atmos8110220 Authors: Yeweon Kim Hi-Kyoung Jang Ki-Hyung Yu Accurate standard meteorological data sets for each city are essential elements to assess and analyze high-performance buildings quantitatively in order to ensure that they comply with energy saving policies of the nation. ECO2, which is an assessment program of building energy in Korea, has employed meteorological data of the closest city to the target location from 13 urban meteorological data references; the employment of this program has demonstrated the ability to reflect climatic differences between cities. The present study expanded urban meteorological data to ISO TRY (International Organization for Standard Test Reference Year), an international standard methodology that can calculate the data in a relatively simple manner using observed data in Korea, as much as possible in order to reflect meteorological data, including the air temperature relevant for heating and cooling energy as well as solar radiation (cooling/heating energy) for each city, that affected the assessment of building energy the most. In the present study, existing data is expanded to a show the standard meteorological data of 66 cities that can be put into the Korean assessment program (ECO2). This data considered valid meteorological data (minimum statistical period, air temperature, relative humidity, wind, and solar radiation, etc.) among manned and unmanned observational data obtained from 479 locations from 2001 to 2010. For cities other than the 66 aforementioned cities, zoning was conducted to separate cities that had and did not have the standard meteorological data using a cumulative temperature density graph. In this way, meteorological data can be available in all cities, which will enable more accurate simulation assessments on building energy.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...