ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (2,069)
  • MDPI Publishing  (2,069)
  • American Chemical Society
  • Cell Press
  • 2015-2019  (2,069)
  • 1980-1984
  • ISPRS International Journal of Geo-Information  (1,178)
  • Atmosphere  (891)
  • 160231
  • 180697
  • 1
    Publication Date: 2018-07-28
    Description: Atmosphere, Vol. 9, Pages 293: The Impact of Mount Washington on the Height of the Boundary Layer and the Vertical Structure of Temperature and Moisture Atmosphere doi: 10.3390/atmos9080293 Authors: Eric Kelsey Adriana Bailey Georgia Murray Discrimination of the type of air mass along mountain slopes can be a challenge and is not commonly performed, but is critical for identifying factors responsible for influencing montane weather, climate, and air quality. A field campaign to measure air mass type and transitions on the summit of Mount Washington, New Hampshire, USA was performed on 19 August 2016. Meteorological observations were taken at the summit and at several sites along the east and west slopes. Ozone concentrations were measured at the summit and on the valley floor. Additionally, water vapor stable isotopes were measured from a truck that drove up and down the Mount Washington Auto Road concurrent with radiosonde launches that profiled the free atmosphere. This multivariate perspective revealed thermal, moisture, and air mass height differences among the free atmosphere, leeward, and windward mountain slopes. Both thermally and mechanically forced upslope flows helped shape these differences by altering the height of the boundary layer with respect to the mountain surface. Recommendations for measurement strategies hoping to develop accurate observational climatologies of air mass exposure in complex terrain are discussed and will be important for evaluating elevation-dependent warming and improving forecasting for weather and air quality.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-07-28
    Description: Atmosphere, Vol. 9, Pages 292: A Mechanism of the Interdecadal Changes of the Global Low-Frequency Oscillation Atmosphere doi: 10.3390/atmos9080292 Authors: Ruowen Yang Quanliang Chen Yuyun Liu Lin Wang Based on the National Center for Environmental Prediction/National Center for Atmospheric Research reanalysis dataset from 1948 to 2009, this study reveals that global low-frequency oscillation features two major temporal bands. One is a quasi-60-day period known as the intraseasonal oscillation (ISO), and the other is a quasi-15-day period known as the quasi-biweekly oscillation (QBWO). After the mid-1970s, both the ISO and QBWO become intensified and more active, and these changes are equivalently barotropic. The primitive barotropic equations are adopted to study the involved mechanism. It reveals that the e-folding time of the least stable modes of both the ISO and QWBO becomes shorter if the model is solved under the atmospheric basic state after the mid-1970s than if solved under the basic state before the mid-1970s. This result suggests that the atmospheric basic flow after the mid-1970s facilitates a more rapid growth of the ISO and QBWO, and thereby an intensification of the low-frequency oscillations at the two bands.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-07-28
    Description: Atmosphere, Vol. 9, Pages 291: A Statistical Parameter Correction Technique for WRF Medium-Range Prediction of Near-Surface Temperature and Wind Speed Using Generalized Linear Model Atmosphere doi: 10.3390/atmos9080291 Authors: Jinmyeong Jeong Seung-Jae Lee A statistical post-processing method was developed to increase the accuracy of numerical weather prediction (NWP) and simulation by matching the daily distribution of predicted temperatures and wind speeds using the generalized linear model (GLM) and parameter correction, considering an increase in model bias when the range of the prediction time lengthens. The Land Atmosphere Modeling Package Weather Research and Forecasting model, which provides 12-day agrometeorological predictions for East Asia, was employed from May 2017 to April 2018. Training periods occurred one month prior to and after the test period (12 days). A probabilistic consideration accounts for the relatively short training period. Based on the total and monthly root mean square error values for each test site, the results show an improvement in the NWP accuracy after bias correction. The spatial distributions in July and January were compared in detail. It was also shown that the physical consistency between temperature and wind speed was retained in the correction procedure, and that the GLM exhibited better performance than the quantile matching method based on monthly Pearson correlation comparison. The characteristics of coastal and mountainous sites are different from inland automatic weather stations, indicating that supplements to cover these distinctive topographic locations are necessary.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-07-28
    Description: IJGI, Vol. 7, Pages 300: A Comparative Study of Three Non-Geostatistical Methods for Optimising Digital Elevation Model Interpolation ISPRS International Journal of Geo-Information doi: 10.3390/ijgi7080300 Authors: Serajis Salekin Jack H. Burgess Justin Morgenroth Euan G. Mason Dean F. Meason It is common to generate digital elevation models (DEMs) from aerial laser scanning (ALS) data. However, cost and lack of knowledge may preclude its use. In contrast, global navigation satellite systems (GNSS) are seldom used to collect and generate DEMs. These receivers have the potential to be considered as data sources for DEM interpolation, as they can be inexpensive, easy to use, and mobile. The data interpolation method and spatial resolution from this method needs to be optimised to create accurate DEMs. Moreover, the density of GNSS data is likely to affect DEM accuracy. This study investigates three different deterministic approaches, in combination with spatial resolution and data thinning, to determine their combined effects on DEM accuracy. Digital elevation models were interpolated, with resolutions ranging from 0.5 m to 10 m using natural neighbour (NaN), topo to raster (ANUDEM), and inverse distance weighted (IDW) methods. The GNSS data were thinned by 25% (0.389 points m−2), 50% (0.259 points m−2), and 75% (0.129 points m−2) and resulting DEMs were contrast against a DEM interpolated from unthinned data (0.519 points m−2). Digital elevation model accuracy was measured by root mean square error (RMSE) and mean absolute error (MAE). It was found that the highest resolution, 0.5 m, produced the lowest errors in resulting DEMs (RMSE = 0.428 m, MAE = 0.274 m). The ANUDEM method yielded the greatest DEM accuracy from a quantitative perspective (RMSE = 0.305 m and MAE = 0.197 m); however, NaN produced a more visually appealing surface. In all the assessments, IDW showed the lowest accuracy. Thinning the input data by 25% and even 50% had relatively little impact on DEM quality; however, accuracy decreased markedly at 75% thinning (0.129 points m−2). This study showed that, in a time where ALS is commonly used to generate DEMs, GNSS-surveyed data can be used to create accurate DEMs. This study confirmed the need for optimization to choose the appropriate interpolation method and spatial resolution in order to produce a reliable DEM.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-07-29
    Description: Atmosphere, Vol. 9, Pages 294: The Influence of the North Atlantic Oscillation Index on Emergency Ambulance Calls for Elevated Arterial Blood Pressure Atmosphere doi: 10.3390/atmos9080294 Authors: Jone Vencloviene Agne Braziene Jurate Zaltauskaite Paulius Dobozinskas The North Atlantic Oscillation (NAO) is the most prominent pattern of atmospheric variability over the middle and high latitudes of the Northern Hemisphere, especially during the cold season. It is found that “weather types” are associated with human health. It is possible that variations in NAO indices (NAOI) had additional impact on human health. We investigated the association between daily emergency ambulance calls (EACs) for exacerbation of essential hypertension and the NAOI by using Poisson regression, adjusting for season, weather variables and exposure to CO, particulate matter and ozone. An increased risk of EACs was associated with NAOI < −0.5 (Rate Ratio (RR) = 1.07, p = 0.013) and NAOI > 0.5 (RR = 1.06, p = 0.004) with a lag of 2 days as compared to −0.5 ≤ NAOI ≤ 0.5. The impact of NAOI > 0.5 was stronger during November-March (RR = 1.10, lag = 0, p = 0.026). No significant associations were found between the NAOI and EACs during 8:00–13:59. An elevated risk was associated during 14:00–21:59 with NAOI < −0.5 (RR = 1.09, p = 0.003) and NAOI > 0.5 (RR = 1.09, p = 0.019) and during 22:00–7:59 with NAOI < −0.5 (RR = 1.12, lag = 1, p = 0.001). The non-linear associations were found between the NAO and EACs. The different impact of the NAO was found during the periods November–March and April–October. The impact of the NAOI was not identical for different times of the day.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-07-31
    Description: Atmosphere, Vol. 9, Pages 299: The Effect of Nonlocal Vehicle Restriction Policy on Air Quality in Shanghai Atmosphere doi: 10.3390/atmos9080299 Authors: Junjie Li Xiao-Bing Li Bai Li Zhong-Ren Peng In recent years, road space rationing policies have been increasingly applied as a traffic management solution to tackle congestion and traffic emission problems in big cities. Existing studies on the effect of traffic policy on air quality have mainly focused on the odd–even day traffic restriction policy or one-day-per-week restriction policy. There are few studies paying attention to the effect of nonlocal license plate restrictions on air quality in Shanghai. Restrictions toward nonlocal vehicles usually prohibit vehicles with nonlocal license plates from entering certain urban areas or using certain subsets of the road network (e.g., the elevated expressway) during specific time periods on workdays. To investigate the impact of such a policy on the residents’ exposure to pollutants, CO concentration and Air Quality Index (AQI) were compared during January and February in 2015, 2016 and 2017. Regression discontinuity (RD) was used to test the validity of nonlocal vehicle restriction on mitigating environmental pollution. Several conclusions can be made: (1) CO concentration was higher on ground-level roads on the restriction days than those in the nonrestriction days; (2) the extension of the restriction period exposed the commuters to high pollution for a longer time on the ground, which will do harm to them; and (3) the nonlocal vehicle restriction policy did play a role in improving the air quality in Shanghai when extending the evening rush period. Additionally, some suggestions are mentioned in order to improve air quality and passenger health and safety.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-07-31
    Description: Atmosphere, Vol. 9, Pages 297: Sources Profiles of Volatile Organic Compounds (VOCs) Measured in a Typical Industrial Process in Wuhan, Central China Atmosphere doi: 10.3390/atmos9080297 Authors: Longjiao Shen Ping Xiang Shengwen Liang Wentai Chen Ming Wang Sihua Lu Zuwu Wang Industrial emission is an important source of ambient volatile organic compounds (VOCs) in Wuhan City, Hubei Province, China. We collected 53 VOC samples from petrochemical, surface coating, electronic manufacturing, and gasoline evaporation using stainless canisters to develop localized source profiles. Concentrations of 86 VOC species, including hydrocarbons, halocarbons, and oxygenated VOCs, were quantified by a gas chromatography–flame ionization detection/mass spectrometry system. Alkanes were the major constituents observed in the source profile from the petrochemical industry. Aromatics (79.5~81.4%) were the largest group in auto-painting factories, while oxygenated VOCs (82.0%) and heavy alkanes (68.7%) were dominant in gravure printing and offset printing factories, respectively. Acetone was the largest contributor and the most frequently monitored species in printed circuit board (PCB) manufacturing, while VOC species emitted from integrated chip (IC) were characterized by high contents of isopropanol (56.4–98.3%) and acetone (30.8%). Chemical compositions from vapor of gasoline 92#, 93#, and 98# were almost identical. Alkanes were the dominant VOC group, with i-pentane being the most abundant species (31.4–37.7%), followed by n-butane and n-pentane. However, high loadings of heavier alkanes were observed in the profile of diesel evaporation.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-07-31
    Description: Atmosphere, Vol. 9, Pages 298: Chemical Composition and Sources of Marine Aerosol over the Western North Pacific Ocean in Winter Atmosphere doi: 10.3390/atmos9080298 Authors: Hong-Wei Xiao Hua-Yun Xiao Chun-Yan Shen Zhong-Yi Zhang Ai-Min Long Atmospheric deposition of long-range transported continental substances from natural and anthropogenic sources affects biogeochemical processes in marine systems. Emissions of sea spray contribute aerosol particles to the marine atmosphere. Despite the importance of continental dispersion and atmospheric processes involving aerosol particles within remote marine atmosphere, knowledge of the sources of various water-soluble ions is limited because of insufficient observations. Concentrations of Total suspended particulates (TSPs) and major inorganic ions (Cl−, Na+, SO42−, Mg2+, Ca2+, K+, NO3−, NH4+), as well as organic nitrogen (ON-N) values, were measured in marine aerosol collected over the western north Pacific (WNP) during a cruise from 3 December 2014 to 13 March 2015. Aerosol samples were analyzed to determine their chemical characteristics and a source apportionment for this region and the continental influence on the open ocean when air masses are from continent in winter. TSP mass concentrations ranged from 14.1 to 136.0 μg/m3 with an average of 44.8 ± 28.1 μg/m3. Concentrations of TSPs and major ions were higher near the coast (close to Qingdao and Xiamen) and lower over the open ocean. The total mass of inorganic ions and organic nitrogen accounted for 51.1% of the total TSP. Cl− had highest concentrations among the major inorganic ions, followed by SO42−, NO3−, Mg2+, Ca2+, K+, and NH4+, respectively. However, Cl− showed a deficit relative to Na+ in most samples, likely related to heterogeneous reactions within the marine atmosphere. Most SO42−, Mg2+, Ca2+, and K+ were from sea salt, while other major ions were from continental sources. The non-sea-salt (nss) fractions of Ca2+, Mg2+ and K+ were derived from continental crust, while nss-SO42− and NO3− were derived from anthropogenic sources. ON had several sources, including reactions of NOx with volatile organic compounds (anthropogenic sources) or NH3 with gaseous hydrocarbons, as well as crustal and marine biogenic sources.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-08-03
    Description: IJGI, Vol. 7, Pages 311: Processing BIM and GIS Models in Practice: Experiences and Recommendations from a GeoBIM Project in The Netherlands ISPRS International Journal of Geo-Information doi: 10.3390/ijgi7080311 Authors: Ken Arroyo Ohori Abdoulaye Diakité Thomas Krijnen Hugo Ledoux Jantien Stoter It is widely acknowledged that the integration of BIM and GIS data is a crucial step forward for future 3D city modelling, but most of the research conducted so far has covered only the high-level and semantic aspects of GIS-BIM integration. This paper presents the results of the GeoBIM project, which tackled three integration problems focussing instead on aspects involving geometry processing: (i) the automated processing of complex architectural IFC models; (ii) the integration of existing GIS subsoil data in BIM; and (iii) the georeferencing of BIM models for their use in GIS software. All the problems have been studied using real world models and existing datasets made and used by practitioners in The Netherlands. For each problem, this paper exposes in detail the issues faced, proposed solutions, and recommendations for a more successful integration.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-08-08
    Description: Atmosphere, Vol. 9, Pages 306: Correction: Bärfuss et al. New Setup of the UAS ALADINA for Measuring Boundary Layer Properties, Atmospheric Particles and Solar Radiation. Atmosphere, 2018, 9, 28 Atmosphere doi: 10.3390/atmos9080306 Authors: Konrad Bärfuss Falk Pätzold Barbara Altstädter Endres Kathe Stefan Nowak Lutz Bretschneider Ulf Bestmann Astrid Lampert The authors would like to correct the published article [1] concerning acknowlegdements as follows[...]
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2018-06-14
    Description: Atmosphere, Vol. 9, Pages 229: Influences of the North Pacific Victoria Mode on the South China Sea Summer Monsoon Atmosphere doi: 10.3390/atmos9060229 Authors: Ruiqiang Ding Jianping Li Yu-heng Tseng Lijuan Li Cheng Sun Fei Xie Using the reanalysis data and the numerical experiments of a coupled general circulation model (CGCM), we illustrated that perturbations in the second dominant mode (EOF2) of springtime North Pacific sea surface temperature (SST) variability, referred to as the Victoria mode (VM), are closely linked to variations in the intensity of the South China Sea summer monsoon (SCSSM). The underlying physical mechanism through which the VM affects the SCSSM is similar to the seasonal footprinting mechanism (SFM). Thermodynamic ocean–atmosphere coupling helps the springtime SST anomalies in the subtropics associated with the VM to persist into summer and to develop gradually toward the equator, leading to a weakened zonal SST gradient across the western North Pacific (WNP) to central equatorial Pacific, which in turn induces an anomalous cyclonic flow over the WNP and westerly anomalies in the western equatorial Pacific that tend to strengthen the WNP summer monsoon (WNPSM) as well as the SCSSM. The VM influence on both the WNPSM and SCSSM is intimately tied to its influence on ENSO through westerly anomalies in the western equatorial Pacific.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2018-06-15
    Description: IJGI, Vol. 7, Pages 218: A Spatiotemporal Multi-View-Based Learning Method for Short-Term Traffic Forecasting ISPRS International Journal of Geo-Information doi: 10.3390/ijgi7060218 Authors: Shifen Cheng Feng Lu Peng Peng Sheng Wu Short-term traffic forecasting plays an important part in intelligent transportation systems. Spatiotemporal k-nearest neighbor models (ST-KNNs) have been widely adopted for short-term traffic forecasting in which spatiotemporal matrices are constructed to describe traffic conditions. The performance of the models is closely related to the spatial dependencies, the temporal dependencies, and the interaction of spatiotemporal dependencies. However, these models use distance functions and correlation coefficients to identify spatial neighbors and measure the temporal interaction by only considering the temporal closeness of traffic, which result in existing ST-KNNs that cannot fully reflect the essential features of road traffic. This study proposes an improved spatiotemporal k-nearest neighbor model for short-term traffic forecasting by utilizing a multi-view learning algorithm named MVL-STKNN that fully considers the spatiotemporal dependencies of traffic data. First, the spatial neighbors for each road segment are automatically determined using cross-correlation under different temporal dependencies. Three spatiotemporal views are built on the constructed spatiotemporal closeness, periodic, and trend matrices to represent spatially heterogeneous traffic states. Second, a spatiotemporal weighting matrix is introduced into the ST-KNN model to recognize similar traffic patterns in the three spatiotemporal views. Finally, the results of traffic pattern recognition under these three spatiotemporal views are aggregated by using a neural network algorithm to describe the interaction of spatiotemporal dependencies. Extensive experiments were conducted using real vehicular-speed datasets collected on city roads and expressways. In comparison with baseline methods, the results show that the MVL-STKNN model greatly improves short-term traffic forecasting by lowering the mean absolute percentage error between 28.24% and 46.86% for the city road dataset and, between 53.80% and 90.29%, for the expressway dataset. The results suggest that multi-view learning merits further attention for traffic-related data mining under such a dynamic and data-intensive environment, which owes to its comprehensive consideration of spatial correlation and heterogeneity as well as temporal fluctuation and regularity in road traffic.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2018-06-15
    Description: IJGI, Vol. 7, Pages 217: Deep Belief Networks Based Toponym Recognition for Chinese Text ISPRS International Journal of Geo-Information doi: 10.3390/ijgi7060217 Authors: Shu Wang Xueying Zhang Peng Ye Mi Du In Geographical Information Systems, geo-coding is used for the task of mapping from implicitly geo-referenced data to explicitly geo-referenced coordinates. At present, an enormous amount of implicitly geo-referenced information is hidden in unstructured text, e.g., Wikipedia, social data and news. Toponym recognition is the foundation of mining this useful geo-referenced information by identifying words as toponyms in text. In this paper, we propose an adapted toponym recognition approach based on deep belief network (DBN) by exploring two key issues: word representation and model interpretation. A Skip-Gram model is used in the word representation process to represent words with contextual information that are ignored by current word representation models. We then determine the core hyper-parameters of the DBN model by illustrating the relationship between the performance and the hyper-parameters, e.g., vector dimensionality, DBN structures and probability thresholds. The experiments evaluate the performance of the Skip-Gram model implemented by the Word2Vec open-source tool, determine stable hyper-parameters and compare our approach with a conditional random field (CRF) based approach. The experimental results show that the DBN model outperforms the CRF model with smaller corpus. When the corpus size is large enough, their statistical metrics become approaching. However, their recognition results express differences and complementarity on different kinds of toponyms. More importantly, combining their results can directly improve the performance of toponym recognition relative to their individual performances. It seems that the scale of the corpus has an obvious effect on the performance of toponym recognition. Generally, there is no adequate tagged corpus on specific toponym recognition tasks, especially in the era of Big Data. In conclusion, we believe that the DBN-based approach is a promising and powerful method to extract geo-referenced information from text in the future.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2018-06-16
    Description: Atmosphere, Vol. 9, Pages 233: Snow Level Characteristics and Impacts of a Spring Typhoon-Originating Atmospheric River in the Sierra Nevada, USA Atmosphere doi: 10.3390/atmos9060233 Authors: Benjamin J. Hatchett On 5–7 April 2018, a landfalling atmospheric river resulted in widespread heavy precipitation in the Sierra Nevada of California and Nevada. Observed snow levels during this event were among the highest snow levels recorded since observations began in 2002 and exceeded 2.75 km for 31 h in the northern Sierra Nevada and 3.75 km for 12 h in the southern Sierra Nevada. The anomalously high snow levels and over 80 mm of precipitation caused flooding, debris flows, and wet snow avalanches in the upper elevations of the Sierra Nevada. The origin of this atmospheric river was super typhoon Jelawat, whose moisture remnants were entrained and maintained by an extratropical cyclone in the northeast Pacific. This event was notable due to its April occurrence, as six other typhoon remnants that caused heavy precipitation with high snow levels (mean = 2.92 km) in the northern Sierra Nevada all occurred during October.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2018-06-17
    Description: IJGI, Vol. 7, Pages 222: A Citizen Science Approach for Collecting Toponyms ISPRS International Journal of Geo-Information doi: 10.3390/ijgi7060222 Authors: Aji Putra Perdana Frank O. Ostermann The emerging trends and technologies of surveying and mapping potentially enable local experts to contribute and share their local geographical knowledge of place names (toponyms). We can see the increasing numbers of toponyms in digital platforms, such as OpenStreetMap, Facebook Place Editor, Swarm Foursquare, and Google Local Guide. On the other hand, government agencies keep working to produce concise and complete gazetteers. Crowdsourced geographic information and citizen science approaches offer a new paradigm of toponym collection. This paper addresses issues in the advancing toponym practice. First, we systematically examined the current state of toponym collection and handling practice by multiple stakeholders, and we identified a recurring set of problems. Secondly, we developed a citizen science approach, based on a crowdsourcing level of participation, to collect toponyms. Thirdly, we examined the implementation in the context of an Indonesian case study. The results show that public participation in toponym collection is an approach with the potential to solve problems in toponym handling, such as limited human resources, accessibility, and completeness of toponym information. The lessons learnt include the knowledge that the success of this approach depends on the willingness of the government to advance their workflow, the degree of collaboration between stakeholders, and the presence of a communicative approach in introducing and sharing toponym guidelines with the community.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2018-06-22
    Description: Atmosphere, Vol. 9, Pages 237: Macro- and Microphysical Characteristics of Precipitating and Non-Precipitating Stratocumulus Clouds over Eastern China Atmosphere doi: 10.3390/atmos9070237 Authors: Sicong Li Yunying Li Guorong Sun Zhixian Lu Stratocumulus (Sc) is the most common cloud type in China. Sc clouds may or may not be accompanied by various types of precipitation that are representative of different macro- and microphysical characteristics. The finely resolved CloudSat data products are used in this study to quantitatively investigate the macro- and microphysical characteristics of precipitating and non-precipitating Sc (PS and NPS, respectively) clouds over Eastern China (EC). Based on statistical information extracted from the CloudSat data, Sc clouds are highly likely to occur alone, in association with liquid precipitation, or in association with drizzle over 25% of EC. The cloud bases of NPS clouds are higher than those of PS clouds, although the latter display higher cloud top heights and thicker cloud thicknesses. The spatial distributions of microphysical characteristics differ between PS and NPS clouds. The magnitudes of microphysical characteristics in NPS clouds are relatively small, whereas the magnitudes of microphysical characteristics in PS clouds are relatively large and peak in response to certain circulation patterns and over certain terrain. In NPS clouds, condensation is the primary mechanism for hydrometeor particle growth, and the liquid water content and effective radius increase with height. Once the particles are too large to be supported by the updrafts, cloud droplets form raindrops. In PS clouds, raindrops increase continuously in size via collision-coalescence processes as they fall, leading to an increase in the liquid water content and effective radius from cloud top to cloud base. The CFRHDs (contoured frequency by relative height diagrams) of radar reflectivity in different cloud thickness indicate the cloud evolution and the precipitation formation process. In thinner clouds, downward particle growth by coalescence and upward particle growth by condensation occur in the upper and lower layers of clouds, respectively. With the increases in cloud thickness, the collision-coalescence process becomes apparent in all cloud layers, and the upward condensation process is less pronounced near the cloud base. Particles can grow for a long period of time and increase to larger sizes in thicker clouds, resulting in increased precipitation frequency. In clouds thicker than 1.92 km, the continuous transition from cloud to drizzle to rain by the collision-coalescence process takes place mostly in the upper layers.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2018-06-21
    Description: IJGI, Vol. 7, Pages 232: A RSSI/PDR-Based Probabilistic Position Selection Algorithm with NLOS Identification for Indoor Localisation ISPRS International Journal of Geo-Information doi: 10.3390/ijgi7060232 Authors: Ke Han Huashuai Xing Zhongliang Deng Yichen Du In recent years, location-based services have been receiving increasing attention because of their great development prospects. Researchers from all over the world have proposed many solutions for indoor positioning over the past several years. However, owing to the dynamic and complex nature of indoor environments, accurately and efficiently localising targets in indoor environments remains a challenging problem. In this paper, we propose a novel indoor positioning algorithm based on the received signal strength indication and pedestrian dead reckoning. In order to enhance the accuracy and reliability of our proposed probabilistic position selection algorithm in mixed line-of-sight (LOS) and non-line-of-sight (NLOS) environments, a low-complexity identification approach is proposed to identify the change in the channel situation between NLOS and LOS. Numerical experiment results indicate that our proposed algorithm has a higher accuracy and is less impacted by NLOS errors than other conventional methods in mixed LOS and NLOS indoor environments.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2018-06-21
    Description: IJGI, Vol. 7, Pages 229: Automated Orthorectification of VHR Satellite Images by SIFT-Based RPC Refinement ISPRS International Journal of Geo-Information doi: 10.3390/ijgi7060229 Authors: Hakan Kartal Ugur Alganci Elif Sertel Raw remotely sensed images contain geometric distortions and cannot be used directly for map-based applications, accurate locational information extraction or geospatial data integration. A geometric correction process must be conducted to minimize the errors related to distortions and achieve the desired location accuracy before further analysis. A considerable number of images might be needed when working over large areas or in temporal domains in which manual geometric correction requires more labor and time. To overcome these problems, new algorithms have been developed to make the geometric correction process autonomous. The Scale Invariant Feature Transform (SIFT) algorithm is an image matching algorithm used in remote sensing applications that has received attention in recent years. In this study, the effects of the incidence angle, surface topography and land cover (LC) characteristics on SIFT-based automated orthorectification were investigated at three different study sites with different topographic conditions and LC characteristics using Pleiades very high resolution (VHR) images acquired at different incidence angles. The results showed that the location accuracy of the orthorectified images increased with lower incidence angle images. More importantly, the topographic characteristics had no observable impacts on the location accuracy of SIFT-based automated orthorectification, and the results showed that Ground Control Points (GCPs) are mainly concentrated in the “Forest” and “Semi Natural Area” LC classes. A multi-thread code was designed to reduce the automated processing time, and the results showed that the process performed 7 to 16 times faster using an automated approach. Analyses performed on various spectral modes of multispectral data showed that the arithmetic data derived from pan-sharpened multispectral images can be used in automated SIFT-based RPC orthorectification.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2018-06-23
    Description: IJGI, Vol. 7, Pages 244: Shaking Maps Based on Cumulative Absolute Velocity and Arias Intensity: The Cases of the Two Strongest Earthquakes of the 2016–2017 Central Italy Seismic Sequence ISPRS International Journal of Geo-Information doi: 10.3390/ijgi7070244 Authors: Antonio Costanzo By referring to the two strongest earthquakes of the 2016–2017 Central Italy seismic sequence, this paper presents a procedure to make shaking maps through empirical relationships between macroseismic intensity and ground-motion parameters. Hundreds of waveforms were processed to obtain instrumental ground-motion features which could be correlated with the potential damage intensities. To take into account peak value, frequency, duration, and energy content, which all contribute to damage, cumulative absolute velocity and Arias intensity were used to quantify the features of the ground motion. Once these parameters had been calculated at the recording sites, they were interpolated through geostatistical techniques on the whole struck area. Finally, empirical relationships were used for mapping intensities, i.e., potential effects on the built environment. The results referred to both earthquake scenarios that were analyzed and were also used for assessing the influence of the spatial coverage of the instrumental network. In fact, after the first events, the Italian seismic network was subjected to the addition and thickening of sensors in the epicentral area, especially. The results obtained by models only dependent on ground-motion parameters or even on the epicentral distance were compared with the official ShakeMaps and the observed intensities for assessing their reliability. Finally, some suggestions are proposed to improve the procedure that could be used for rapidly assessing ground shaking and mapping damage potential producing useful information for non-expert audience.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2018-06-23
    Description: IJGI, Vol. 7, Pages 242: Seamless Upscaling of the Field-Measured Grassland Aboveground Biomass Based on Gaussian Process Regression and Gap-Filled Landsat 8 OLI Reflectance ISPRS International Journal of Geo-Information doi: 10.3390/ijgi7070242 Authors: Gaofei Yin Ainong Li Chaoyang Wu Jiyan Wang Qiaoyun Xie Zhengjian Zhang Xi Nan Huaan Jin Jinhu Bian Guangbin Lei The spatially explicit aboveground biomass (AGB) generated through upscaling field measurements is critical for carbon cycle simulation and optimized management of grasslands. However, the spatial gaps that exist in the optical remote sensing data, underutilization of the multispectral data cube and unavailability of uncertainty information hinder the generation of seamless and accurate AGB maps. This study proposes a novel framework to address the above challenges. The proposed framework filled the spatial gaps in the remote sensing data via the consistent adjustment of the climatology to actual observations (CACAO) method. Gaussian process regression (GPR) was used to fully exploit the multispectral data cube and generated the pixelwise uncertainty concurrent with the AGB estimation. A case study in a 100 km × 100 km area located in the Zoige Plateau, China was used to evaluate this framework. The results show that the CACAO method can fill almost all of the gaps, accounting for 93.1% of the study area, with satisfactory accuracy. The generated AGB map from the GPR was characterized by a relatively high accuracy (R2 = 0.64, RMSE = 48.13 g/m2) compared to vegetation index-derived ones, and was accompanied by a corresponding uncertainty map that provides a new source of information on the credibility of each pixel. This study demonstrates the potential of the joint use of gap-filling and machine-learning methods to generate spatially explicit AGB.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2018-06-26
    Description: Atmosphere, Vol. 9, Pages 241: Comment on “Spatial and Temporal Trends in the Location of the Lifetime Maximum Intensity of Tropical Cyclones” by Tennille and Ellis Atmosphere doi: 10.3390/atmos9070241 Authors: James Kossin The latitude where tropical cyclones (TCs) reach their peak intensity has migrated poleward in some regions [...]
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2018-06-28
    Description: IJGI, Vol. 7, Pages 251: Optical Satellite Image Geo-Positioning with Weak Convergence Geometry ISPRS International Journal of Geo-Information doi: 10.3390/ijgi7070251 Authors: Yang Wu Yongsheng Zhang Donghong Wang Delin Mo High-resolution optical satellites are widely used in environmental monitoring. With the aim to observe the largest possible coverage, the overlapping areas and intersection angles of respective optical satellite images are usually small. However, the conventional bundle adjustment method leads to erroneous results or even failure under conditions of weak geometric convergence. By transforming the traditional stereo adjustment to a planar adjustment and combining it with linear programming (LP) theory, a new method that can solve the bias compensation parameters of all satellite images is proposed in this paper. With the support of freely available open source digital elevation models (DEMs) and sparse ground control points (GCPs), the method can not only ensure the consistent inner precision of all images, but also the absolute geolocation accuracy of the ground points. Tests of the two data sets covering different landscapes validated the effectiveness and feasibility of the method. The results showed that the geo-positioning performance of the method was better in regions of smaller topographic relief or for satellite images with a larger imaging altitude angle. The best accuracy of image geolocation with weak convergence geometry was as high as to 3.693 m in the horizontal direction and 6.510 m in the vertical direction, which is a level of accuracy equal to that of images with good intersection conditions.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2018-07-26
    Description: IJGI, Vol. 7, Pages 299: Drift-Aware Monocular Localization Based on a Pre-Constructed Dense 3D Map in Indoor Environments ISPRS International Journal of Geo-Information doi: 10.3390/ijgi7080299 Authors: Guanyuan Feng Lin Ma Xuezhi Tan Danyang Qin Recently, monocular localization has attracted increased attention due to its application to indoor navigation and augmented reality. In this paper, a drift-aware monocular localization system that performs global and local localization is presented based on a pre-constructed dense three-dimensional (3D) map. In global localization, a pixel-distance weighted least squares algorithm is investigated for calculating the absolute scale for the epipolar constraint. To reduce the accumulative errors that are caused by the relative position estimation, a map interaction-based drift detection method is introduced in local localization, and the drift distance is computed by the proposed line model-based maximum likelihood estimation sample consensus (MLESAC) algorithm. The line model contains a fitted line segment and some visual feature points, which are used to seek inliers of the estimated feature points for drift detection. Taking advantage of the drift detection method, the monocular localization system switches between the global and local localization modes, which effectively keeps the position errors within an expected range. The performance of the proposed monocular localization system is evaluated on typical indoor scenes, and experimental results show that compared with the existing localization methods, the accuracy improvement rates of the absolute position estimation and the relative position estimation are at least 30.09% and 65.59%, respectively.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2018-07-26
    Description: IJGI, Vol. 7, Pages 297: The Negative Effects of Alcohol Establishment Size and Proximity on the Frequency of Violent and Disorder Crime across Block Groups of Victoria, British Columbia ISPRS International Journal of Geo-Information doi: 10.3390/ijgi7080297 Authors: Jessica L. Fitterer Trisalyn A. Nelson Timothy Stockwell Multiple studies have associated the density of alcohol establishments with crime. What is not well understood is the influence of establishment patron capacity on the magnitude of crime in an area, or how the spacing of liquor primary establishments impacts crime levels. Using a Poisson spatial lag model, we estimated how patron capacity of on-premises licenses and the total number of off-premises licenses were associated with the frequency of violent and disorder crime occurring on Friday and Saturday nights in Victoria, British Columbia. To identify how the distance between bars and pubs was associated with the frequency of crime within 200 m of each establishment, we applied bivariate curve fitting and change detection techniques. Our model explained 76% percent of the variance in crime frequencies. Bars and pubs within block groups, and in neighboring block groups, had a significant positive association (p < 0.05) with the frequency of crime compared to other on-premises licenses (e.g., restaurants, theatres, clubs, hotels), and off-premises liquor stores. For every additional 1111 bar or pub patron seats the crime frequency per block group is expected to double over a 17 month period (factor of 1.0009 per patron seat). Crime frequency significantly dropped (p < 0.05) around (200 m) bars and pubs that are spaced greater than 300 m apart. Our results provide the first evidenced-based information for evaluating the size and spacing of on-premises licenses in Canada.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2018-07-26
    Description: IJGI, Vol. 7, Pages 298: Grid-Based Crime Prediction Using Geographical Features ISPRS International Journal of Geo-Information doi: 10.3390/ijgi7080298 Authors: Ying-Lung Lin Meng-Feng Yen Liang-Chih Yu Machine learning is useful for grid-based crime prediction. Many previous studies have examined factors including time, space, and type of crime, but the geographic characteristics of the grid are rarely discussed, leaving prediction models unable to predict crime displacement. This study incorporates the concept of a criminal environment in grid-based crime prediction modeling, and establishes a range of spatial-temporal features based on 84 types of geographic information by applying the Google Places API to theft data for Taoyuan City, Taiwan. The best model was found to be Deep Neural Networks, which outperforms the popular Random Decision Forest, Support Vector Machine, and K-Near Neighbor algorithms. After tuning, compared to our design’s baseline 11-month moving average, the F1 score improves about 7% on 100-by-100 grids. Experiments demonstrate the importance of the geographic feature design for improving performance and explanatory ability. In addition, testing for crime displacement also shows that our model design outperforms the baseline.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2018-08-01
    Description: IJGI, Vol. 7, Pages 306: Satellite-Derived Bathymetry for Improving Canadian Hydrographic Service Charts ISPRS International Journal of Geo-Information doi: 10.3390/ijgi7080306 Authors: René Chénier Marc-André Faucher Ryan Ahola Approximately 1000 Canadian Hydrographic Service (CHS) charts cover Canada’s oceans and navigable waters. Many charts use information collected with techniques that predate the more advanced technologies available to Hydrographic Offices (HOs) today. Furthermore, gaps in survey data, particularly in the Canadian Arctic where only 6% of waters are surveyed to modern standards, are also problematic. Through a Canadian Space Agency (CSA) Government Related Initiatives Program (GRIP) project, CHS is exploring remote sensing techniques to assist with the improvement of Canadian navigational charts. Projects exploring optical/Synthetic Aperture Radar (SAR) shoreline extraction and change detection, as well as optical Satellite-Derived Bathymetry (SDB), are currently underway. This paper focuses on SDB extracted from high-resolution optical imagery, highlighting current results as well as the challenges and opportunities CHS will encounter when implementing SDB within its operational chart production process. SDB is of particular interest to CHS due to its ability to supplement depths derived from traditional hydrographic surveys. This is of great importance in shallow and/or remote Canadian waters where achieving wide-area depth coverage through traditional surveys is costly, time-consuming and a safety risk to survey operators. With an accuracy of around 1 m, SDB could be used by CHS to fill gaps in survey data and to provide valuable information in dynamic areas.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2018-08-01
    Description: IJGI, Vol. 7, Pages 305: Prioritizing Abandoned Mine Lands Rehabilitation: Combining Landscape Connectivity and Pattern Indices with Scenario Analysis Using Land-Use Modeling ISPRS International Journal of Geo-Information doi: 10.3390/ijgi7080305 Authors: Liping Zhang Shiwen Zhang Yajie Huang An Xing Zhiqing Zhuo Zhongxiang Sun Zhen Li Meng Cao Yuanfang Huang Connectivity modeling approaches for abandoned mine lands (AML) patches are limited in post-mining landscape restoration, especially where great land use changes might be expected due to large-scale land reclamation. This study presents a novel approach combining AML patch sizes with a proximity index to characterize patch-scaled connectivity for determining the spatial positions of patches with huge sizes and high connectivity. Then this study propose a scenario-based method coupled with landscape-scale metrics for quantifying landscape-scaled connectivity, which aims at exploring the optimal reclamation scheme with the highest connectivity. Using the Mentougou District in Beijing, China, as a case study, this paper confirmed which patches should be reclaimed first to meet the predetermined reclamation numbers; then this paper tested three different reclamation scenarios (i.e., cultivated land-oriented, forest-oriented, and construction land-oriented scenarios) to describe the impact of the different development strategies on landscape connectivity. The research found that the forest-oriented scenario increased connectivity quantitatively, showing an increase in the integral index of connectivity (IIC) and other landscape-scale metrics. Therefore, this paper suggests that future land-use policies should emphasize converting AML into more forest to blend in with the surrounding land-use categories. The findings presented here can contribute to better understanding the quantitative analysis of the connectivity of AML patches at both the patch scale and the landscape scale, thus providing scientific support for AML management in mine-site rehabilitation.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2018-07-25
    Description: IJGI, Vol. 7, Pages 293: Shp2graph: Tools to Convert a Spatial Network into an Igraph Graph in R ISPRS International Journal of Geo-Information doi: 10.3390/ijgi7080293 Authors: Binbin Lu Huabo Sun Paul Harris Miaozhong Xu Martin Charlton In this study, we introduce the R package shp2graph, which provides tools to convert a spatial network into an ‘igraph’ graph of the igraphR package. This conversion greatly empowers a spatial network study, as the vast array of graph analytical tools provided in igraph are then readily available to the network analysis, together with the inherent advantages of being within the R statistical computing environment and its vast array of statistical functions. Through three urban road network case studies, the calculation of road network distances with shp2graph and with igraph is demonstrated through four key stages: (i) confirming the connectivity of a spatial network; (ii) integrating points/locations with a network; (iii) converting a network into a graph; and (iv) calculating network distances (and travel times). Throughout, the required R commands are given to provide a useful tutorial on the use of shp2graph.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2018-07-25
    Description: IJGI, Vol. 7, Pages 292: Optimized Location-Allocation of Earthquake Relief Centers Using PSO and ACO, Complemented by GIS, Clustering, and TOPSIS ISPRS International Journal of Geo-Information doi: 10.3390/ijgi7080292 Authors: Bahram Saeidian Mohammad Saadi Mesgari Biswajeet Pradhan Mostafa Ghodousi After an earthquake, it is required to establish temporary relief centers in order to help the victims. Selection of proper sites for these centers has a significant effect on the processes of urban disaster management. In this paper, the location and allocation of relief centers in district 1 of Tehran are carried out using Geospatial Information System (GIS), the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) decision model, a simple clustering method and the two meta-heuristic algorithms of Particle Swarm Optimization (PSO) and Ant Colony Optimization (ACO). First, using TOPSIS, the proposed clustering method and GIS analysis tools, sites satisfying initial conditions with adequate distribution in the area are chosen. Then, the selection of proper centers and the allocation of parcels to them are modelled as a location/allocation problem, which is solved using the meta-heuristic optimization algorithms. Also, in this research, PSO and ACO are compared using different criteria. The implementation results show the general adequacy of TOPSIS, the clustering method, and the optimization algorithms. This is an appropriate approach to solve such complex site selection and allocation problems. In view of the assessment results, the PSO finds better answers, converges faster, and shows higher consistency than the ACO.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2018-08-02
    Description: Atmosphere, Vol. 9, Pages 302: Surface and Tropospheric Water Vapor Variability and Decadal Trends at Two Supersites of CO-PDD (Cézeaux and Puy de Dôme) in Central France Atmosphere doi: 10.3390/atmos9080302 Authors: Dani Hadad Jean-Luc Baray Nadège Montoux Joël Van Baelen Patrick Fréville Jean-Marc Pichon Pierre Bosser Michel Ramonet Camille Yver Kwok Nelson Bègue Valentin Duflot We present an analysis of decadal in situ and remote sensing observations of water vapor over the Cézeaux and puy de Dôme, located in central France (45° N, 3° E), in order to document the variability, cycles and trends of surface and tropospheric water vapor at different time scales and the geophysical processes responsible for the water vapor distributions. We use meteorological stations, GPS (Global Positioning System), and lidar datasets, supplemented with three remote sources of water vapor (COSMIC-radio-occultation, ERA-interim-ECMWF numerical model, and AIRS-satellite). The annual cycle of water vapor is clearly established for the two sites of different altitudes and for all types of measurement. Cezeaux and puy de Dôme present almost no diurnal cycle, suggesting that the variability of surface water vapor at this site is more influenced by a sporadic meteorological system than by regular diurnal variations. The lidar dataset shows a greater monthly variability of the vertical distribution than the COSMIC and AIRS satellite products. The Cézeaux site presents a positive trend for the GPS water vapor total column (0.42 ± 0.45 g·kg−1/decade during 2006–2017) and a significant negative trend for the surface water vapor mixing ratio (−0.16 ± 0.09 mm/decade during 2002–2017). The multi-linear regression analysis shows that continental forcings (East Atlantic Pattern and East Atlantic-West Russia Pattern) have a greater influence than oceanic forcing (North Atlantic Oscillation) on the water vapor variations.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2018-08-02
    Description: IJGI, Vol. 7, Pages 308: Identifying Modes of Driving Railway Trains from GPS Trajectory Data: An Ensemble Classifier-Based Approach ISPRS International Journal of Geo-Information doi: 10.3390/ijgi7080308 Authors: Han Zheng Zanyang Cui Xingchen Zhang Recognizing Modes of Driving Railway Trains (MDRT) can help to solve railway freight transportation problems in driver behavior research, auto-driving system design and capacity utilization optimization. Previous studies have focused on analyses and applications of MDRT, but there is currently no approach to automatically and effectively identify MDRT in the context of big data. In this study, we propose an integrated approach including data preprocessing, feature extraction, classifiers modeling, training and parameter tuning, and model evaluation to infer MDRT using GPS data. The highlights of this study are as follows: First, we propose methods for extracting Driving Segmented Standard Deviation Features (DSSDF) combined with classical features for the purpose of improving identification performances. Second, we find the most suitable classifier for identifying MDRT based on a comparison of performances of K-Nearest Neighbor, Support Vector Machines, AdaBoost, Random Forest, Gradient Boosting Decision Tree, and XGBoost. From the real-data experiment, we conclude that: (i) The ensemble classifier XGBoost produces the best performance with an accuracy of 92.70%; (ii) The group of DSSDF plays an important role in identifying MDRT with an accuracy improvement of 11.2% (using XGBoost). The proposed approach has been applied in capacity utilization optimization and new driver training for the Baoshen Railway.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2018-08-08
    Description: IJGI, Vol. 7, Pages 318: A Methodology for Planar Representation of Frescoed Oval Domes: Formulation and Testing on Pisa Cathedral ISPRS International Journal of Geo-Information doi: 10.3390/ijgi7080318 Authors: Andrea Piemonte Gabriella Caroti Isabel Martínez-Espejo Zaragoza Filippo Fantini Luca Cipriani This paper presents an original methodology for planar development of a frescoed dome with an oval plan. Input data include a rigorous geometric survey, performed with a laser scanner, and a photogrammetry campaign, which associates a high-quality photographic texture to the 3D model. Therefore, the main topics include the development of geometry and, contextually, of the associated textures. In order to overcome the inability to directly develop the surface, an orthographic azimuthal projection is used. Starting from a prerequisite study of building methodology, the dome is divided into sectors and bands, each linked with the maximum acceptable deformations and the actual geometric discontinuities detectable by the analysis of Gaussian curvature. Upon definition of the development model, a custom automation script has been devised for geometry projection. This effectively generates a (u,v) map, associated to the model, which is used for model texturing and provides the planar development of the fresco.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2018-08-09
    Description: Atmosphere, Vol. 9, Pages 308: Changes of Soil C Stock under Establishment and Abandonment of Arable Lands in Permafrost Area—Central Yakutia Atmosphere doi: 10.3390/atmos9080308 Authors: Alexey R. Desyatkin Shinya Iwasaki Roman V. Desyatkin Ryusuke Hatano Central Yakutia is in one of the most northern agricultural centers of the world. In this territory a notable area of arable land was made by removing the boreal Taiga with the primary purpose of crop cultivation. Such a method of cultivation significantly changes soil total carbon (STC, soil organic carbon + soil carbonate carbon) balance, because of the destroyed upper humus horizon. Soil organic carbon (SOC) of cultivated arable lands is almost a half of that in forest. In abandoned arable lands with grass vegetation, the recovery of SOC has increased to 30% in comparison with cultivated arable lands. On arable lands recovering with new growth of trees, the SOC is related to the abandonment period. Soil carbonates carbon (SCC) content was significantly lower than SOC and showed significant difference among abandoned and other types of arable lands. Objectives of this study are to identify how STC stocks change in response to conversion of the forests to agricultural land and to analyze the arable land system’s recovery process after abandonment. Furthermore, after transformation of forest to arable land, a significant decrease of STC was observed, primarily due to mechanical loss after plant residue removal. It was also identified that the restoration and self-recovery of STC in abandoned arable lands of Central Yakutia continuously and slightly increase. Grass vegetation regenerates STC for 20 years. While the difference of average STC of forests and cultivated arable lands reached 41%, a new growth of forest on some abandoned arable land follows the tendency of STC decrease due to a low productivity level and suppressing effect on grass vegetation.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2018-08-09
    Description: IJGI, Vol. 7, Pages 320: Exploring Railway Network Dynamics in China from 2008 to 2017 ISPRS International Journal of Geo-Information doi: 10.3390/ijgi7080320 Authors: Yaping Huang Shiwei Lu Xiping Yang Zhiyuan Zhao China’s high speed rail (HSR) network has been rapidly constructed and developed during the past 10 years. However, few studies have reported the spatiotemporal changes of railway network structures and how those structures have been affected by the operation of high speed rail systems in different periods. This paper analyzes the evolving network characteristics of China’s railway network during each of the four main stages of HSR development over a 10-year period. These four stages include Stage 1, when no HSR was in place prior to August 2008; Stage 2, when several HSR lines were put into operation between August 2008, and July 2011; Stage 3, when the network skeleton of most main HSR lines was put into place. This covered the period until January 2013. Finally, Stage 4 covers the deep intensification of several new HSR lines and the rapid development of intercity-HSR railway lines between January 2013, and July 2017. This paper presents a detailed analysis of the timetable-based statistical properties of China’s railway network, as well as the spatiotemporal patterns of the more than 2700 stations that have been affected by the opening of HSR lines and the corresponding policy changes. Generally, we find that the distribution of both degrees and strengths are characterized by scale-free patterns. In addition, the decreasing average path length and increasing network clustering coefficient indicate that the small world characteristic is more significant in the evolution of China’s railway network. Correlations between different network indices are explored, in order to further investigate the dynamics of China’s railway system. Overall, our study offers a new approach for assessing the growth and evolution of a real railway network based on train timetables. Our study can also be referenced by policymakers looking to adjust HSR operations and plan future HSR routes.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2018-08-10
    Description: Atmosphere, Vol. 9, Pages 309: Seasonal Changes of Extremes in Isolated and Mesoscale Precipitation for the Southeastern United States Atmosphere doi: 10.3390/atmos9080309 Authors: Thomas Rickenbach The association between instantaneous extreme precipitation and mesoscale organization over the southeastern United States is not well known. This study addresses whether isolated precipitation features have a distinct distribution and spatial pattern of extreme rain compared to mesoscale precipitation features, and how these distributions and spatial patterns change from spring to summer. Using a four-year surface radar precipitation data set, hourly images of instantaneous extreme rain rates were separated into isolated and mesoscale precipitation features from March through August for the four-year period of 2009–2012. Results show that that compared to isolated convection, mesoscale precipitation organization is more commonly associated with higher extremes in instantaneous rainfall in the southeastern U.S. Extreme rain values tied to mesoscale organization shift eastward and toward the coasts from spring to summer, while extreme rain from isolated convection is mainly a summer phenomenon concentrated in Florida and along the coastal plain. The implication is that dynamical processes favoring mesoscale organization such as high shear associated with baroclinic circulations are more associated with higher values of extreme rain, while thermodynamic forcing and local circulations favoring isolated convection are associated with lower values of extreme rain.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2018-08-10
    Description: Atmosphere, Vol. 9, Pages 310: The FuGas 2.3 Framework for Atmosphere–Ocean Coupling: Comparing Algorithms for the Estimation of Solubilities and Gas Fluxes Atmosphere doi: 10.3390/atmos9080310 Authors: Vasco M. N. C. S. Vieira Pavel Jurus Emanuela Clementi Marcos Mateus Accurate estimates of the atmosphere–ocean fluxes of greenhouse gases and dimethyl sulphide (DMS) have great importance in climate change models. A significant part of these fluxes occur at the coastal ocean which, although much smaller than the open ocean, have more heterogeneous conditions. Hence, Earth System Modelling (ESM) requires representing the oceans at finer resolutions which, in turn, requires better descriptions of the chemical, physical and biological processes. The standard formulations for the solubilities and gas transfer velocities across air–water surfaces are 36 and 24 years old, and new alternatives have emerged. We have developed a framework combining the related geophysical processes and choosing from alternative formulations with different degrees of complexity. The framework was tested with fine resolution data from the European coastal ocean. Although the benchmark and alternative solubility formulations generally agreed well, their minor divergences yielded differences of up to 5.8% for CH4 dissolved at the ocean surface. The transfer velocities differ strongly (often more than 100%), a consequence of the benchmark empirical wind-based formulation disregarding significant factors that were included in the alternatives. We conclude that ESM requires more comprehensive simulations of atmosphere–ocean interactions, and that further calibration and validation is needed for the formulations to be able to reproduce it. We propose this framework as a basis to update with formulations for processes specific to the air–water boundary, such as the presence of surfactants, rain, the hydration reaction or biological activity.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2018-08-11
    Description: Atmosphere, Vol. 9, Pages 313: Trends, Variability, and Seasonality of Maximum Annual Daily Precipitation in the Upper Vistula Basin, Poland Atmosphere doi: 10.3390/atmos9080313 Authors: Dariusz Młyński Marta Cebulska Andrzej Wałęga The aim of this study was to detect trends in maximum annual daily precipitation in the Upper Vistula Basin. We analyzed data from 51 weather stations between 1971 and 2014. Then we used the Mann–Kendall test to detect monotonical trends of the precipitation for three significance levels: 1, 5, and 10%. Our analysis of weather conditions helped us describe the mechanism behind the formation of maximum annual daily precipitation. To analyze precipitation seasonality, we also used Colwell indices. Our study identified a significant trend of the highest daily precipitation for the assumed significance levels (0.01, 0.05, 0.1) for 22% of the investigated weather stations at different elevations. The significant trends found were positive and an increase in precipitation is expected. From 1971 to 2014, the maximum daily total precipitation most often occurred in the summer half-year, i.e., from May until September. These months included a total of 88% of days with the highest daily precipitation. The predictability index for the highest total precipitation within the area was high and exceeded 5%. It was markedly affected by the coefficient of constancy (C) and to a lesser degree by the seasonality index (M). Our analysis demonstrated a convergence of the Colwell indices and frequency of cyclonic situation and, therefore, confirmed their usability in the analysis of precipitation seasonality.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2018-08-14
    Description: Atmosphere, Vol. 9, Pages 317: The Three-Dimensional Locating of VHF Broadband Lightning Interferometers Atmosphere doi: 10.3390/atmos9080317 Authors: Hengyi Liu Shi Qiu Wansheng Dong VHF (Very High Frequency) lightning interferometers can locate and observe lightning discharges with a high time resolution. Especially the appearance of continuous interferometers makes the 2-D location of interferometers further improve in time resolution and completeness. However, there is uncertainty in the conclusion obtained by simply analyzing the 2-D locating information. Without the support of other 3-D total lightning locating networks, the 2-station interferometer becomes an option to obtain 3-D information. This paper introduces a 3-D lightning location method of a 2-station broadband interferometer, which uses the theodolite wind measurement method for reference, and gives the simulation results of the location accuracy. Finally, using the multi-baseline continuous 2-D locating method and the 3-D locating method, the locating results of one intra-cloud flash and the statistical results of the initiation heights of 61 cloud-to-ground flashes and 80 intra-cloud flashes are given. The results show that the two-station interferometer has high observation accuracy on both sides of the connection between the two sites. The locating accuracy will deteriorate as the distance between the radiation source and the two stations increases or the height decreases. The actual locating results are similar to those of the existing VHF TDOA (Time Difference of Arrival) lightning locating network.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2018-08-20
    Description: IJGI, Vol. 7, Pages 331: Use of Unmanned Aerial Vehicles (UAVs) for Updating Farmland Cadastral Data in Areas Subject to Landslides ISPRS International Journal of Geo-Information doi: 10.3390/ijgi7080331 Authors: Edyta Puniach Agnieszka Bieda Paweł Ćwiąkała Anita Kwartnik-Pruc Piotr Parzych The purpose of this study was to verify the applicability of unmanned aerial vehicles (UAVs) to update cadastral records in areas affected by landslides. Its authors intended to compare the accuracy of coordinates determined using different UAV data processing methods for points which form the framework of a cadastral database, and to find out whether products obtained as a result of such UAV data processing are sufficient to define the extent of changes in the cadastral objects. To achieve this, an experiment was designed to take place at the site of a landslide. The entire photogrammetry mission was planned to cover an area of more than 70 ha. Given the steep grade of the site, the UAV was flown over each line at a different, individually preset altitude, such as to ensure consistent mean shooting distance (height above ground level), and thus, appropriate ground sample distance (GSD; pixel size). The results were analyzed in four variants, differing from each other in terms of the number of control points used and the method of their measurement. This allowed identification of the factors that affect surveying accuracy and the indication of the cadastral data updatable based on an UAV photogrammetric survey.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2018-08-21
    Description: IJGI, Vol. 7, Pages 332: Using the Spatial Knowledge of Map Users to Personalize City Maps: A Case Study with Tourists in Madrid, Spain ISPRS International Journal of Geo-Information doi: 10.3390/ijgi7080332 Authors: María-Teresa Manrique-Sancho Silvania Avelar Teresa Iturrioz-Aguirre Miguel-Ángel Manso-Callejo The aim of personalized maps is to help individual users to read maps and focus on the most task-relevant information. Several approaches have been suggested to develop personalized maps for cities, but few consider the spatial knowledge of its users. We propose the design of “cognitively-aware” personalized maps, which take into account the previous experience of users in the city and how the urban space is configured in their minds. Our aim is to facilitate users’ mental links between maps and city places, stimulating users to recall features of the urban space and to assimilate new spatial knowledge. To achieve this goal, we propose the personalization of maps through a map design process based on user modeling and on inferring personalization guidelines from hand-drawn sketches of urban spaces. We applied this process in an experiment with tourists in Madrid, Spain. We categorized the participants into three types of tourists—“Guided”, “Explorer”, and “Conditioned”—according to individual and contextual factors that can influence their spatial knowledge of the city. We also extracted design guidelines from tourists’ sketches and developed map prototypes. The empirical results seem to be promising for developing personalized city maps that could be produced on-the-fly in the future.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2018-08-22
    Description: IJGI, Vol. 7, Pages 333: Generating a High-Precision True Digital Orthophoto Map Based on UAV Images ISPRS International Journal of Geo-Information doi: 10.3390/ijgi7090333 Authors: Yu Liu Xinqi Zheng Gang Ai Yi Zhang Yuqiang Zuo Unmanned aerial vehicle (UAV) low-altitude remote sensing technology has recently been adopted in China. However, mapping accuracy and production processes of true digital orthophoto maps (TDOMs) generated by UAV images require further improvement. In this study, ground control points were distributed and images were collected using a multi-rotor UAV and professional camera, at a flight height of 160 m above the ground and a designed ground sample distance (GSD) of 0.016 m. A structure from motion (SfM), revised digital surface model (DSM) and multi-view image texture compensation workflow were outlined to generate a high-precision TDOM. We then used randomly distributed checkpoints on the TDOM to verify its precision. The horizontal accuracy of the generated TDOM was 0.0365 m, the vertical accuracy was 0.0323 m, and the GSD was 0.0166 m. Tilt and shadowed areas of the TDOM were eliminated so that buildings maintained vertical viewing angles. This workflow produced a TDOM accuracy within 0.05 m, and provided an effective method for identifying rural homesteads, as well as land planning and design.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2018-08-24
    Description: Atmosphere, Vol. 9, Pages 333: Natural Gas Fugitive Leak Detection Using an Unmanned Aerial Vehicle: Localization and Quantification of Emission Rate Atmosphere doi: 10.3390/atmos9090333 Authors: Levi M. Golston Nicholas F. Aubut Michael B. Frish Shuting Yang Robert W. Talbot Christopher Gretencord James McSpiritt Mark A. Zondlo We describe a set of methods for locating and quantifying natural gas leaks using a small unmanned aerial system equipped with a path-integrated methane sensor. The algorithms are developed as part of a system to enable the continuous monitoring of methane, supported by a series of over 200 methane release trials covering 51 release location and flow rate combinations. The system was found throughout the trials to reliably distinguish between cases with and without a methane release down to 2 standard cubic feet per hour (0.011 g/s). Among several methods evaluated for horizontal localization, the location corresponding to the maximum path-integrated methane reading performed best with a mean absolute error of 1.2 m if the results from several flights are spatially averaged. Additionally, a method of rotating the data around the estimated leak location according to the wind is developed, with the leak magnitude calculated from the average crosswind integrated flux in the region near the source location. The system is initially applied at the well pad scale (100–1000 m2 area). Validation of these methods is presented including tests with unknown leak locations. Sources of error, including GPS uncertainty, meteorological variables, data averaging, and flight pattern coverage, are discussed. The techniques described here are important for surveys of small facilities where the scales for dispersion-based approaches are not readily applicable.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2018-08-24
    Description: IJGI, Vol. 7, Pages 342: Accuracy Assessment of Point Clouds from LiDAR and Dense Image Matching Acquired Using the UAV Platform for DTM Creation ISPRS International Journal of Geo-Information doi: 10.3390/ijgi7090342 Authors: Adam Salach Krzysztof Bakuła Magdalena Pilarska Wojciech Ostrowski Konrad Górski Zdzisław Kurczyński In this paper, the results of an experiment about the vertical accuracy of generated digital terrain models were assessed. The created models were based on two techniques: LiDAR and photogrammetry. The data were acquired using an ultralight laser scanner, which was dedicated to Unmanned Aerial Vehicle (UAV) platforms that provide very dense point clouds (180 points per square meter), and an RGB digital camera that collects data at very high resolution (a ground sampling distance of 2 cm). The vertical error of the digital terrain models (DTMs) was evaluated based on the surveying data measured in the field and compared to airborne laser scanning collected with a manned plane. The data were acquired in summer during a corridor flight mission over levees and their surroundings, where various types of land cover were observed. The experiment results showed unequivocally, that the terrain models obtained using LiDAR technology were more accurate. An attempt to assess the accuracy and possibilities of penetration of the point cloud from the image-based approach, whilst referring to various types of land cover, was conducted based on Real Time Kinematic Global Navigation Satellite System (GNSS-RTK) measurements and was compared to archival airborne laser scanning data. The vertical accuracy of DTM was evaluated for uncovered and vegetation areas separately, providing information about the influence of the vegetation height on the results of the bare ground extraction and DTM generation. In uncovered and low vegetation areas (0–20 cm), the vertical accuracies of digital terrain models generated from different data sources were quite similar: for the UAV Laser Scanning (ULS) data, the RMSE was 0.11 m, and for the image-based data collected using the UAV platform, it was 0.14 m, whereas for medium vegetation (higher than 60 cm), the RMSE from these two data sources were 0.11 m and 0.36 m, respectively. A decrease in the accuracy of 0.10 m, for every 20 cm of vegetation height, was observed for photogrammetric data; and such a dependency was not noticed in the case of models created from the ULS data.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2018-08-23
    Description: Atmosphere, Vol. 9, Pages 329: Numerical Simulation of a Heavy Precipitation Event in the Vicinity of Madrid-Barajas International Airport: Sensitivity to Initial Conditions, Domain Resolution, and Microphysics Parameterizations Atmosphere doi: 10.3390/atmos9090329 Authors: Pedro Bolgiani Sergio Fernández-González Francisco Valero Andrés Merino Eduardo García-Ortega José Luis Sánchez María Luisa Martín Deep convection is a threat to many human activities, with a great impact on aviation safety. On 7 July 2017, a widespread torrential precipitation event (associated with a cut-off low at mid-levels) was registered in the vicinity of Madrid, causing serious flight disruptions. During this type of episode, accurate short-term forecasts are key to minimizing risks to aviation. The aim of this research is to improve early warning systems by obtaining the best WRF model setup. In this paper, the aforementioned event was simulated. Various model configurations were produced using four different physics parameterizations, 3-km and 1-km domain resolutions, and 0.25° and 1° initial condition resolutions. Simulations were validated using data from 17 rain gauge stations. Two validation indices are proposed, accounting for the temporal behaviour of the model. Results show significant differences between microphysics parameterizations. Validation of domain resolution shows that improvement from 3 to 1 km is negligible. Interestingly, the 0.25° resolution for initial conditions produced poor results compared with 1°. This may be linked to a timing error, because precipitation was simulated further east than observed. The use of ensembles generated by combining different WRF model configurations produced reliable precipitation estimates.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2018-08-23
    Description: Atmosphere, Vol. 9, Pages 330: Evaluation of the Polarimetric-Radar Quantitative Precipitation Estimates of an Extremely Heavy Rainfall Event and Nine Common Rainfall Events in Guangzhou Atmosphere doi: 10.3390/atmos9090330 Authors: Yang Zhang Liping Liu Hao Wen Chong Wu Yonghua Zhang The development and application of operational polarimetric radar (PR) in China is still in its infancy. In this study, an operational PR quantitative precipitation estimation (QPE) algorithm is suggested based on data for PR hydrometeor classification and local drop size distribution (DSD). Even though this algorithm performs well for conventional rainfall events, in which hourly rainfall accumulations are less than 50 mm, the capability of a PR to estimate extremely heavy rainfall remains unclear. The proposed algorithm is used for nine different types of rainfall events that occurred in Guangzhou, China, in 2016 and for an extremely heavy rainfall event that occurred in Guangzhou on 6 May 2017. It performs well for all data of these nine rainfall events and for light-to-moderate rain (hourly accumulation <50 mm) in this extremely heavy rainfall event. However, it severely underestimated heavy rain (>50 mm) and the extremely heavy rain at stations where total rainfall exceeded 300 mm within 5 h in this extremely heavy rainfall event. To analyze the reasons for underestimation, a rain microphysics retrieval algorithm is presented to retrieve Dm and Nw from the PR measurements. The DSD characteristics and the factors affecting QPE are analyzed based on Dm and Nw. The results indicate that compared with statistical DSD data in Yangjiang (estimators are derived from these data), the average raindrop diameter during this rainfall event occurred on 6 May 2017 was much smaller and the number concentration was higher. The algorithm underestimated the precipitation with small and midsize particles, but overestimated the precipitation with midsize and large particles. Underestimations occurred when Dm and Nw are both very large, and the severe underestimations for heavy rain are mainly due to these particles. It is verified that some of these particles are associated with melting hail. Owing to the big differences in DSD characteristics, R(KDP, ZDR) underestimates most heavy rain. Therefore, R(AH), which is least sensitive to DSD variations, replaces R(KDP, ZDR) to estimate precipitation. This improved algorithm performs well even for extremely heavy rain. These results are important for evaluating S-band Doppler radar polarization updates in China.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2018-08-26
    Description: IJGI, Vol. 7, Pages 348: Nesting Patterns of Loggerhead Sea Turtles (Caretta caretta): Development of a Multiple Regression Model Tested in North Carolina, USA ISPRS International Journal of Geo-Information doi: 10.3390/ijgi7090348 Authors: Joanne N. Halls Alyssa L. Randall Numerous environmental conditions may influence when a female Loggerhead sea turtle (Caretta caretta) selects a nesting site. Limited research has used Geographic Information Systems (GIS) and statistical analysis to study sea turtle spatial patterns and temporal trends. Therefore, the goals of this research were to identify areas that were most prevalent for nesting and to test social and environmental variables to create a nesting suitability predictive model. Data were analyzed at all barrier island beaches in North Carolina, USA (515 km) and several variables were statistically significant: distance to hardened structures, beach nourishment, house density, distance to inlets, and beach elevation, slope, and width. Interestingly, variables that were not significant were population density, proximity to the Gulf Stream, and beach aspect. Several statistical techniques were tested and Negative Binomial Distribution produced good regional results while Geographically Weighted Regression models successfully predicted the number of nests with an average of 75% of the variance explained. Therefore, the combination of traditional and spatial statistics provided insightful predictive modeling results that may be incorporated into management strategies and may have important implications for the designation of critical Loggerhead nesting habitats.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2018-08-29
    Description: IJGI, Vol. 7, Pages 357: Space–Time Analysis of Vehicle Theft Patterns in Shanghai, China ISPRS International Journal of Geo-Information doi: 10.3390/ijgi7090357 Authors: Yuanyuan Mao Shenzhi Dai Jiajun Ding Wei Zhu Can Wang Xinyue Ye To identify and compare the space–time patterns of vehicle thefts and the effects of associated environmental factors, this paper conducts a case study of the Pudong New Area (PNA), a major urban district in Shanghai, China’s largest city. Geographic information system (GIS)-based analysis indicated that there was a stable pattern of vehicle theft over time. Hotspots of vehicle theft across different time periods were identified. These data provide clues for how law enforcement can prioritize the deployment of limited patrol and investigative resources. Vehicle thefts, especially those of non-motor vehicles, tend to be concentrated in the central-western portion of the PNA, which experienced a dramatic rate of urbanization and has a high concentration of people and vehicles. Important factors contributing to vehicle thefts include a highly mobile and transitory population, a large population density, and high traffic volume.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2018-08-28
    Description: IJGI, Vol. 7, Pages 354: On the Risk Assessment of Terrorist Attacks Coupled with Multi-Source Factors ISPRS International Journal of Geo-Information doi: 10.3390/ijgi7090354 Authors: Xun Zhang Min Jin Jingying Fu Mengmeng Hao Chongchong Yu Xiaolan Xie Terrorism has wreaked havoc on today’s society and people. The discovery of the regularity of terrorist attacks is of great significance to the global counterterrorism strategy. In this study, we improve the traditional location recommendation algorithm coupled with multi-source factors and spatial characteristics. We used the data of terrorist attacks in Southeast Asia from 1970 to 2016, and comprehensively considered 17 influencing factors, including socioeconomic and natural resource factors. The improved recommendation algorithm is used to build a spatial risk assessment model of terrorist attacks, and the effectiveness is tested. The model trained in this study is tested with precision, recall, and F-Measure. The results show that, when the threshold is 0.4, the precision is as high as 88%, and the F-Measure is the highest. We assess the spatial risk of the terrorist attacks in Southeast Asia through experiments. It can be seen that the southernmost part of the Indochina peninsula and the Philippines are high-risk areas and that the medium-risk and high-risk areas are mainly distributed in the coastal areas. Therefore, future anti-terrorism measures should pay more attention to these areas.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2018-08-28
    Description: IJGI, Vol. 7, Pages 353: Novel Method for Virtual Restoration of Cultural Relics with Complex Geometric Structure Based on Multiscale Spatial Geometry ISPRS International Journal of Geo-Information doi: 10.3390/ijgi7090353 Authors: Miaole Hou Su Yang Yungang Hu Yuhua Wu Lili Jiang Sizhong Zhao Putong Wei Because of the age of relics and the lack of historical data, the geometric forms of missing parts can only be judged by the subjective experience of repair personnel, which leads to varying restoration effects when the geometric structure of the complex relic is reconstructed. Therefore, virtual repair effects cannot fully reflect the historical appearance of cultural relics. In order to solve this problem, this paper presents a virtual restoration method based on the multiscale spatial geometric features of cultural relics in the case of complex construction where the geometric shape of the damaged area is unknown, using the Dazu Thousand-Hand Bodhisattva statue in China as an example. In this study, the global geometric features of the three-dimensional (3D) model are analyzed in space to determine the geometric shape of the damaged parts of cultural relics. The local geometric features are represented by skeleton lines based on regression analysis, and a geometric size prediction model of the defective parts is established, which is used to calculate the geometric dimensions of the missing parts. Finally, 3D surface reconstruction technology is used to quantitate virtual restoration of the defective parts. This method not only provides a new idea for the virtual restoration of artifacts with complex geometric structure, but also may play a vital role in the protection of cultural relics.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2018-08-30
    Description: Atmosphere, Vol. 9, Pages 339: Dynamic Ensemble Analysis of Frontal Placement Impacts in the Presence of Elevated Thunderstorms during PRECIP Events Atmosphere doi: 10.3390/atmos9090339 Authors: Joshua Kastman Patrick Market Neil Fox The Program for Research on Elevated Convection with Intense Precipitation (PRECIP) field campaign sampled 10 cases of elevated convection during 2014 and 2015. These intense observing periods (IOP) mostly featured well-defined stationary or warm frontal zones, over whose inversion elevated convection would form. However, not all frontal zones translated as expected, with some poleward motions being arrested and even returning equatorward. Prior analyses of the observed data highlighted the downdrafts in these events, especially diagnostics for their behavior: the downdraft convective available potential energy (DCAPE) and the downdraft convective inhibition (DCIN). With the current study, the DCAPE and DCIN are examined for four cases: two where frontal motion proceeded poleward, as expected, and two where the frontal motions were slowed significantly or stalled altogether. Using the Weather Research and Forecasting (WRF) model, a multi-model ensemble was created for each of the four cases, and the best performing members were selected for additional deterministic examination. Analyses of frontal motions and surface cold pools are explored in the context of DCAPE and DCIN. These analyses further establish the DCAPE and DCIN, not only as a means to classify elevated convection, but also to aid in explaining frontal motions in the presence of elevated convection.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2018-08-31
    Description: IJGI, Vol. 7, Pages 360: Share Our Cultural Heritage (SOCH): Worldwide 3D Heritage Reconstruction and Visualization via Web and Mobile GIS ISPRS International Journal of Geo-Information doi: 10.3390/ijgi7090360 Authors: Hari K. Dhonju Wen Xiao Jon P. Mills Vasilis Sarhosis Despite being of paramount importance to humanity, tangible cultural heritage is often at risk from natural and anthropogenic threats worldwide. As a result, heritage discovery and conservation remain a huge challenge for both developed and developing countries, with heritage sites often inadequately cared for, be it due to a lack of resources, nonrecognition of the value by local people or authorities, human conflict, or some other reason. This paper presents an online geo-crowdsourcing system, termed Share Our Cultural Heritage (SOCH), which can be utilized for large-scale heritage documentation and sharing. Supported by web and mobile GIS, cultural heritage data such as textual stories, locations, and images can be acquired via portable devices. These data are georeferenced and presented to the public via web-mapping. Using photogrammetric modelling, acquired images are used to reconstruct heritage structures or artefacts into 3D digital models, which are then visualized on the SOCH web interface to enable public interaction. This end-to-end system incubates an online virtual community to encourage public engagement, raise awareness, and stimulate cultural heritage ownership. It also provides valuable resources for cultural heritage exploitation, management, education, and monitoring over time.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2018-08-30
    Description: IJGI, Vol. 7, Pages 358: Spatial-Temporal Analysis of Human Dynamics on Urban Land Use Patterns Using Social Media Data by Gender ISPRS International Journal of Geo-Information doi: 10.3390/ijgi7090358 Authors: Chengcheng Lei An Zhang Qingwen Qi Huimin Su Jianghao Wang The relationship between urban human dynamics and land use types has always been an important issue in the study of urban problems in China. This paper used location data from Sina Location Microblog (commonly known as Weibo) users to study the human dynamics of the spatial-temporal characteristics of gender differences in Beijing’s Olympic Village in June 2014. We applied mathematical statistics and Local Moran’s I to analyze the spatial-temporal distribution of Sina Microblog users in 100 m × 100 m grids and land use patterns. The female users outnumbered male users, and the sex ratio ( S R varied under different land use types at different times. Female users outnumbered male users regarding residential land and public green land, but male users outnumbered female users regarding workplace, especially on weekends, as the S R on weekends ( S R was 120.5) was greater than that on weekdays ( S R was 118.8). After a Local Moran’s I analysis, we found that High–High grids are primarily distributed across education and scientific research land and residential land; these grids and their surrounding grids have more female users than male users. Low–Low grids are mainly distributed across sports centers and workplaces on weekdays; these grids and their surrounding grids have fewer female users than male users. The average number of users on Saturday was the highest value and, on weekends, the number of female and male users both increased in commercial land, but male users were more active than female users ( S R was 110).
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2018-09-01
    Description: IJGI, Vol. 7, Pages 361: Automatic Seam-Line Detection in UAV Remote Sensing Image Mosaicking by Use of Graph Cuts ISPRS International Journal of Geo-Information doi: 10.3390/ijgi7090361 Authors: Ming Li Deren Li Bingxuan Guo Lin Li Teng Wu Weilong Zhang Image mosaicking is one of the key technologies in data processing in the field of computer vision and digital photogrammetry. For the existing problems of seam, pixel aliasing, and ghosting in mosaic images, this paper proposes and implements an optimal seam-line search method based on graph cuts for unmanned aerial vehicle (UAV) remote sensing image mosaicking. This paper first uses a mature and accurate image matching method to register the pre-mosaicked UAV images, and then it marks the source of each pixel in the overlapped area of adjacent images and calculates the energy value contributed by the marker by using the target energy function of graph cuts constructed in this paper. Finally, the optimal seam-line can be obtained by solving the minimum value of target energy function based on graph cuts. The experimental results show that our method can realize seamless UAV image mosaicking, and the image mosaic area transitions naturally.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2018-09-03
    Description: Atmosphere, Vol. 9, Pages 343: The Characteristics and Contributing Factors of Air Pollution in Nanjing: A Case Study Based on an Unmanned Aerial Vehicle Experiment and Multiple Datasets Atmosphere doi: 10.3390/atmos9090343 Authors: Shudao Zhou Shuling Peng Min Wang Ao Shen Zhanhua Liu Unmanned aerial vehicle (UAV) experiments, multiple datasets from ground-based stations and satellite remote sensing platforms, and backward trajectory models were combined to investigate the characteristics and influential mechanisms of the air pollution episode that occurred in Nanjing during 3–4 December 2017. Before the experiments, the position of the detector mounted on a UAV that was minimally disturbed by the rotation of the rotors was analyzed based on computational fluid dynamics (CFD) simulations. The combined analysis indicated that the surface meteorological conditions—high relative humidity, low wind speed, and low temperature—were conducive to the accumulation of PM2.5. Strongly intense temperature inversion layers and the low thickness of the atmospheric mixed layer could have resulted in elevated PM2.5 mass concentrations. In the early stage, air pollution was affected by the synoptic circulation of the homogenous pressure field and low wind speeds, and the pollutants mainly originated from emissions from surrounding areas. The aggravated pollution was mainly attributed to the cold front and strong northwesterly winds above 850 hPa, and the pollutants mostly originated from the long-distance transport of emissions with northwesterly winds, mainly from the Beijing‒Tianjin‒Hebei (BTH) region and its surrounding areas. This long-distance transport predominated during this event. The air pollution level and aerosol optical depth (AOD) were positively correlated with respect to their spatial distributions; they could reflect shifts in areas of serious pollution. Pollution was concentrated in Anhui Province when it was alleviated in Nanjing. Polluted dust, polluted continental and smoke aerosols were primarily observed during this process. In particular, polluted dust aerosols accounted for a major part of the transport stage, and existed between the surface and 4 km. Moreover, the average extinction coefficient at lower altitudes (<1 km) was higher for aerosol deposition.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2018-09-03
    Description: IJGI, Vol. 7, Pages 362: Road Extraction from VHR Remote-Sensing Imagery via Object Segmentation Constrained by Gabor Features ISPRS International Journal of Geo-Information doi: 10.3390/ijgi7090362 Authors: Li Chen Qing Zhu Xiao Xie Han Hu Haowei Zeng Automatic road extraction from remote-sensing imagery plays an important role in many applications. However, accurate and efficient extraction from very high-resolution (VHR) images remains difficult because of, for example, increased data size and superfluous details, the spatial and spectral diversity of road targets, disturbances (e.g., vehicles, shadows of trees, and buildings), the necessity of finding weak road edges while avoiding noise, and the fast-acquisition requirement of road information for crisis response. To solve these difficulties, a two-stage method combining edge information and region characteristics is presented. In the first stage, convolutions are executed by applying Gabor wavelets in the best scale to detect Gabor features with location and orientation information. The features are then merged into one response map for connection analysis. In the second stage, highly complete, connected Gabor features are used as edge constraints to facilitate stable object segmentation and limit region growing. Finally, segmented objects are evaluated by some fundamental shape features to eliminate nonroad objects. The results indicate the validity and superiority of the proposed method to efficiently extract accurate road targets from VHR remote-sensing images.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2018-09-06
    Description: Atmosphere, Vol. 9, Pages 347: The Effect of Aerosol Radiative Heating on Turbulence Statistics and Spectra in the Atmospheric Convective Boundary Layer: A Large-Eddy Simulation Study Atmosphere doi: 10.3390/atmos9090347 Authors: Cheng Liu Jianping Huang Evgeni Fedorovich Xiao-Ming Hu Yongwei Wang Xuhui Lee Turbulence statistics and spectra in a radiatively heated convective boundary layer (CBL) under aerosol pollution conditions are less investigated than their counterparts in the clear CBL. In this study, a large-eddy simulation (LES) coupled with an aerosol radiative transfer model is employed to determine the impact of aerosol radiative heating on CBL turbulence statistics. One-dimensional velocity spectra and velocity–temperature cospectra are invoked to characterize the turbulence flow in the CBL with varying aerosol pollution conditions. The results show that aerosol heating makes the profiles of turbulent heat flux curvilinear, while the total (turbulent plus radiative) heat flux profile retains the linear relationship with height throughout the CBL. The horizontal and vertical velocity variances are reduced significantly throughout the radiatively heated CBL with increased aerosol optical depth (AOD). The potential temperature variance is also reduced, especially in the entrainment zone and near the surface. The velocity spectral density tends to be smaller overall, and the peak of the velocity spectra is shifted toward larger wavenumbers as AOD increases. This shift reveals that the energy-containing turbulent eddies become smaller, which is also supported by visual inspection of the vertical velocity pattern over horizontal planes. The modified CBL turbulence scales for velocity and temperature are found to be applicable for normalizing the corresponding profiles, indicating that a correction factor for aerosol radiative heating is needed for capturing the general features of the CBL structure in the presence of aerosol radiative heating.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2018-09-08
    Description: IJGI, Vol. 7, Pages 370: Raising Semantics-Awareness in Geospatial Metadata Management ISPRS International Journal of Geo-Information doi: 10.3390/ijgi7090370 Authors: Cristiano Fugazza Monica Pepe Alessandro Oggioni Paolo Tagliolato Paola Carrara Geospatial metadata are often encoded in formats that either are not aimed at efficient retrieval of resources or are plainly outdated. Particularly, the quantum leap represented by the Semantic Web did not induce so far a consistent, interlinked baseline in the geospatial domain. Datasets, scientific literature related to them, and ultimately the researchers behind these products are only loosely connected; the corresponding metadata intelligible only to humans, duplicated in different systems, seldom consistently. We address these issues by relating metadata items to resources that represent keywords, institutes, researchers, toponyms, and virtually any RDF data structure made available over the Web via SPARQL endpoints. Essentially, our methodology fosters delegated metadata management as the entities referred to in metadata are independent, decentralized data structures with their own life cycle. Our example implementation of delegated metadata envisages: (i) editing via customizable web-based forms (including injection of semantic information); (ii) encoding of records in any XML metadata schema; and (iii) translation into RDF. Among the semantics-aware features that this practice enables, we present a worked-out example focusing on automatic update of metadata descriptions. Our approach, demonstrated in the context of INSPIRE metadata (the ISO 19115/19119 profile eliciting integration of European geospatial resources) is also applicable to a broad range of metadata standards, including non-geospatial ones.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2018-09-08
    Description: IJGI, Vol. 7, Pages 369: GIS-Assisted Prediction and Risk Zonation of Wildlife Attacks in the Chitwan National Park in Nepal ISPRS International Journal of Geo-Information doi: 10.3390/ijgi7090369 Authors: Aleš Ruda Jaromír Kolejka Thakur Silwal Population growth forces the human community to expand into the natural habitats of wild animals. Their efforts to use natural sources often collide with wildlife attacks. These animals do not only protect their natural environment, but in the face of losing the potential food sources, they also penetrate in human settlements. The research was situated in the Chitwan National Park (CNP) in Nepal, and the aim of this study was to investigate possible geospatial connections between attacks of all kinds of animals on humans in the CNP and its surroundings between 2003 and 2013. The patterns of attacks were significantly uneven across the months, and 89% of attacks occurred outside the park. In total, 74% attacks occurred in the buffer zone forests and croplands within 1 km from the park. There was a strong positive correlation among the number of victims for all attacking animals with a maximum of one victim per 4 km2, except elephant and wild boar. The density of bear victims was higher where the tiger and rhino victims were lower, e.g., in the Madi valley. The data collected during this period did not show any signs of spatial autocorrelation. The calculated magnitude per unit area using the kernel density, together with purpose-defined land use groups, were used to determine five risk zones of wildlife attacks. In conclusion, it was found that the riskiest areas were locations near the forest that were covered by agricultural land and inhabited by humans. Our research results can support any local spatial decision-making processes for improving the co-existence of natural protection in the park and the safety of human communities living in its vicinity.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2018-09-08
    Description: IJGI, Vol. 7, Pages 368: Critical Review of Methods to Estimate PM2.5 Concentrations within Specified Research Region ISPRS International Journal of Geo-Information doi: 10.3390/ijgi7090368 Authors: Guangyuan Zhang Xiaoping Rui Yonglei Fan Obtaining PM2.5 data for the entirety of a research region underlies the study of the relationship between PM2.5 and human spatiotemporal activity. A professional sampler with a filter membrane is used to measure accurate values of PM2.5 at single points in space. However, there are numerous PM2.5 sampling and monitoring facilities that rely on data from only representative points, and which cannot measure the data for the whole region of research interest. This provides the motivation for researching the methods of estimation of particulate matter in areas having fewer monitors at a special scale, an approach now attracting considerable academic interest. The aim of this study is to (1) reclassify and particularize the most frequently used approaches for estimating the PM2.5 concentrations covering an entire research region; (2) list improvements to and integrations of traditional methods and their applications; and (3) compare existing approaches to PM2.5 estimation on the basis of accuracy and applicability.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2018-09-09
    Description: IJGI, Vol. 7, Pages 371: An Efficient Graph-Based Spatio-Temporal Indexing Method for Task-Oriented Multi-Modal Scene Data Organization ISPRS International Journal of Geo-Information doi: 10.3390/ijgi7090371 Authors: Bin Feng Qing Zhu Mingwei Liu Yun Li Junxiao Zhang Xiao Fu Yan Zhou Maosu Li Huagui He Weijun Yang Task-oriented scene data in big data and cloud environments of a smart city that must be time-critically processed are dynamic and associated with increasing complexities and heterogeneities. Existing hybrid tree-based external indexing methods are input/output (I/O)-intensive, query schema-fixed, and difficult when representing the complex relationships of real-time multi-modal scene data; specifically, queries are limited to a certain spatio-temporal range or a small number of selected attributes. This paper proposes a new spatio-temporal indexing method for task-oriented multi-modal scene data organization. First, a hybrid spatio-temporal index architecture is proposed based on the analysis of the characteristics of scene data and the driving forces behind the scene tasks. Second, a graph-based spatio-temporal relation indexing approach, named the spatio-temporal relation graph (STR-graph), is constructed for this architecture. The global graph-based index, internal and external operation mechanisms, and optimization strategy of the STR-graph index are introduced in detail. Finally, index efficiency comparison experiments are conducted, and the results show that the STR-graph performs excellently in index generation and can efficiently address the diverse requirements of different visualization tasks for data scheduling; specifically, the STR-graph is more efficient when addressing complex and uncertain spatio-temporal relation queries.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2018-09-09
    Description: IJGI, Vol. 7, Pages 373: Sino-InSpace: A Digital Simulation Platform for Virtual Space Environments ISPRS International Journal of Geo-Information doi: 10.3390/ijgi7090373 Authors: Liang Lyu Qing Xu Chaozhen Lan Qunshan Shi Wanjie Lu Yang Zhou Yinghao Zhao The implementation of increased space exploration missions reduces the distance between human beings and outer space. Although it is impossible for everyone to enter the remote outer space, virtual environments could provide computer-based digital spaces that we can observe, participate in, and experience. In this study, Sino-InSpace, a digital simulation platform, was developed to support the construction of virtual space environments. The input data are divided into two types, the environment element and the entity object, that are then supported by the unified time-space datum. The platform adopted the pyramid model and octree index to preprocess the geographic and space environment data, which ensured the efficiency of data loading and browsing. To describe objects perfectly, they were abstracted and modeled based on four aspects including attributes, ephemeris, geometry, and behavior. Then, the platform performed the organization of a visual scenario based on logical modeling and data modeling; in addition, it ensured smooth and flexible visual scenario displays using efficient data and rendering engines. Multilevel modes (application directly, visualization development, and scientific analysis) were designed to support multilevel applications for users from different grades and fields. Each mode provided representative case studies, which also demonstrated the capabilities of the platform for data integration, visualization, process deduction, and auxiliary analysis. Finally, a user study with human participants was conducted from multiple views (usability, user acceptance, presence, and software design). The results indicate that Sino-InSpace performs well in simulation for virtual space environments, while a virtual reality setup is beneficial for promoting the experience.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2018-09-09
    Description: IJGI, Vol. 7, Pages 372: Digital Image Correlation (DIC) Analysis of the 3 December 2013 Montescaglioso Landslide (Basilicata, Southern Italy): Results from a Multi-Dataset Investigation ISPRS International Journal of Geo-Information doi: 10.3390/ijgi7090372 Authors: Paolo Caporossi Paolo Mazzanti Francesca Bozzano Image correlation remote sensing monitoring techniques are becoming key tools for providing effective qualitative and quantitative information suitable for natural hazard assessments, specifically for landslide investigation and monitoring. In recent years, these techniques have been successfully integrated and shown to be complementary and competitive with more standard remote sensing techniques, such as satellite or terrestrial Synthetic Aperture Radar interferometry. The objective of this article is to apply the proposed in-depth calibration and validation analysis, referred to as the Digital Image Correlation technique, to measure landslide displacement. The availability of a multi-dataset for the 3 December 2013 Montescaglioso landslide, characterized by different types of imagery, such as LANDSAT 8 OLI (Operational Land Imager) and TIRS (Thermal Infrared Sensor), high-resolution airborne optical orthophotos, Digital Terrain Models and COSMO-SkyMed Synthetic Aperture Radar, allows for the retrieval of the actual landslide displacement field at values ranging from a few meters (2–3 m in the north-eastern sector of the landslide) to 20–21 m (local peaks on the central body of the landslide). Furthermore, comprehensive sensitivity analyses and statistics-based processing approaches are used to identify the role of the background noise that affects the whole dataset. This noise has a directly proportional relationship to the different geometric and temporal resolutions of the processed imagery. Moreover, the accuracy of the environmental-instrumental background noise evaluation allowed the actual displacement measurements to be correctly calibrated and validated, thereby leading to a better definition of the threshold values of the maximum Digital Image Correlation sub-pixel accuracy and reliability (ranging from 1/10 to 8/10 pixel) for each processed dataset.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2018-09-15
    Description: IJGI, Vol. 7, Pages 377: Application of Industrial Risk Management Practices to Control Natural Hazards, Facilitating Risk Communication ISPRS International Journal of Geo-Information doi: 10.3390/ijgi7090377 Authors: Jongook Lee Dong Kun Lee Establishing a comprehensive management framework to manage the risk from natural hazards is challenging because of the extensive affected areas, uncertainty in predictions of natural disasters, and the involvement of various stakeholders. Applying risk management practices proven in the industrial sector can assist systematic hazard identification and quantitative risk assessment for natural hazards, thereby promoting interactive risk communication to the public. The objective of this study is to introduce methods of studying risk commonly used in the process industry, and to suggest how such methods can be applied to manage natural disasters. In particular, the application of Hazard and Operability (HAZOP), Safety Integrated Level (SIL), and Quantitative Risk Analysis (QRA) was investigated, as these methods are used to conduct key studies in industry. We present case studies of the application of HAZOP to identify climate-related natural hazards, and of SIL and QRA studies that were performed to provide quantitative risk indices for landslide risk management. The analyses presented in this study can provide a useful framework for improving the risk management of natural hazards through establishing a more systematic context and facilitating risk communication.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2018-09-15
    Description: Atmosphere, Vol. 9, Pages 355: Spatio-Temporal Characteristics of Tropospheric Ozone and Its Precursors in Guangxi, South China Atmosphere doi: 10.3390/atmos9090355 Authors: Yapeng Wang Chao Yu Jinhua Tao Zifeng Wang Yidan Si Liangxiao Cheng Hongmei Wang Songyan Zhu Liangfu Chen The temporal and spatial distributions of tropospheric ozone and its precursors (NO2, CO, HCHO) are analyzed over Guangxi (GX) in South China. We used tropospheric column ozone (TCO) from the Ozone Monitoring Instrument (OMI) and Microwave Limb Sounder (MLS) onboard the Aura satellite (OMI/MLS), NO2 and HCHO from OMI and CO from the Measurements of Pollution in the Troposphere (MOPITT) instrument in the period 2005–2016. The TCO shows strong seasonality, with the highest value in spring and the lowest value observed in the monsoon season. The seasonal variation of HCHO is similar to that of TCO, while NO2 and CO show slightly different patterns with higher values in spring and winter compared to lower values in autumn and summer. The surface ozone, NO2 and CO observed by national air quality monitoring network sites are also compared with satellite-observed TCO, NO2 and CO, showing good agreement for NO2 and CO but a different seasonal pattern for ozone. Unlike TCO, surface ozone has the highest value in autumn and the lowest value in winter. To reveal the difference, the vertical profiles of ozone and CO from the measurement of ozone and water vapor by airbus in-service aircraft (MOZAIC) observations over South China are also examined. The seasonal averaged vertical profiles of ozone and CO show obvious enhancements at 2–6 km altitudes in spring. Furthermore, we investigate the dependence of TCO and surface ozone on meteorology and transport in detail along with the ECMWF reanalysis data, Tropical Rainfall Measuring Mission (TRMM) 3BV42 dataset, OMI ultraviolet index (UV index) dataset, MODIS Fire Radiative Power (FRP) and back trajectory. Our results show that the wind pattern at 800 hPa plays a significant role in determining the seasonality of TCO over GX, especially for the highest value in spring. Trajectory analysis, combined with MODIS FRP suggests that the air masses that passed through the biomass burning (BB) region of Southeast Asia (SEA) induced the enhancement of TCO and CO in the upper-middle troposphere in spring. However, the seasonal cycle of surface ozone is associated with wind patterns at 950 hPa, and the contribution of the photochemical effect is offset by the strong summer monsoon, which results in the maximum surface ozone concentration in post-monsoon September. The variations in the meteorological conditions at different levels and the influence of transport from SEA can account for the vertical distribution of ozone and CO. We conclude that the seasonal distribution of TCO results from the combined impact of meteorology and long-term transport.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2018-09-19
    Description: Atmosphere, Vol. 9, Pages 361: Current Challenges in Orographic Flow Dynamics: Turbulent Exchange Due to Low-Level Gravity-Wave Processes Atmosphere doi: 10.3390/atmos9090361 Authors: Simon B. Vosper Andrew N. Ross Ian A. Renfrew Peter Sheridan Andrew D. Elvidge Vanda Grubišić This paper examines current understanding of the influence of orographic flow dynamics on the turbulent transport of momentum and scalar quantities above complex terrain. It highlights three key low-level orographic flow phenomena governed by gravity-wave dynamics: Foehn flow, atmospheric rotors and gravity-wave modulation of the stable boundary layer. Recent observations and numerical simulations are used to illustrate how these flows can cause significant departures from the turbulent fluxes, which occur over flat terrain. Orographically forced fluxes of heat, moisture and chemical constituents are currently unaccounted for in numerical models. Moreover, whilst turbulent orographic drag parameterisation schemes are available (in some models), these do not represent the large gravity-wave scales associated with foehn dynamics; nor do they account for the spatio-temporal heterogeneity and non-local turbulence advection observed in wave-rotor dynamics or the gravity waves, which modulate turbulence in the boundary layer. The implications for numerical models, which do not resolve these flows, and for the parametrisation schemes, which should account for the unresolved fluxes, are discussed. An overarching need is identified for improved understanding of the heterogeneity in sub-grid-scale processes, such as turbulent fluxes, associated with orographic flows, and to develop new physically-based approaches for parameterizing these processes.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2018-09-19
    Description: Atmosphere, Vol. 9, Pages 359: Characteristics of Atmospheric Boundary Layer Structure during PM2.5 and Ozone Pollution Events in Wuhan, China Atmosphere doi: 10.3390/atmos9090359 Authors: Yassin Mbululo Jun Qin Jun Hong Zhengxuan Yuan In this study, we investigated six air pollutants from 21 monitoring stations scattered throughout Wuhan city by analyzing meteorological variables in the atmospheric boundary layer (ABL) and air mass backward trajectories from HYSPLIT during the pollution events. Together with this, ground meteorological variables were also used throughout the investigation period: 1 December 2015 to 30 November 2016. Analysis results during this period show that the city was polluted in winter by PM2.5 (particulate matter with aerodynamics of less than 2.5 microns) and in summer by ozone (O3). The most polluted day during the investigation period was 25 December 2015 with an air quality index (AQI) of 330 which indicates ‘severe pollution’, while the cleanest day was 26 August 2016 with an AQI of 27 indicating ‘excellent’ air quality. The average concentration of PM2.5 (O3) on the most polluted day was 265.04 (135.82) µg/m3 and 9.10 (86.40) µg/m3 on the cleanest day. Moreover, the percentage of days which exceeded the daily average limit of NO2, PM10, PM2.5, and O3 for the whole year was 2.46%, 14.48%, 23.50%, and 39.07%, respectively, while SO2 and CO were found to be below the set daily limit. The analysis of ABL during PM2.5 pollution events showed the existence of a strong inversion layer, low relative humidity, and calm wind. These observed conditions are not favorable for horizontal and vertical dispersion of air pollutants and therefore result in pollutant accumulation. Likewise, ozone pollution events were accompanied by extended sunshine hours, high temperature, a calm wind, a strongly suspended inversion layer, and zero recorded rainfall. These general characteristics are favorable for photochemical production of ozone and accumulation of pollutants. Apart from the conditions of ABL, the results from backward trajectories suggest trans-boundary movement of air masses to be one of the important factors which determines the air quality of Wuhan.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2018-09-20
    Description: Atmosphere, Vol. 9, Pages 365: Contributions of Atmospheric Transport and Rain–Vapor Exchange to Near-Surface Water Vapor in the Zhanjiang Mangrove Reserve, Southern China: An Isotopic Perspective Atmosphere doi: 10.3390/atmos9090365 Authors: Xiang Lai Jonathon S. Wright Wenyu Huang Jie Liang Guanghui Lin Shanxian Zhu Coastal mangroves are increasingly recognized as valuable natural resources and important sites of water and carbon exchange. In this study, we examine atmospheric water cycling in the boundary layer above a coastal mangrove forest in southern China. We collected site observations of isotopic ratios in water vapor and precipitation along with core meteorological variables during July 2017. Our evaluation of these data highlights the influences of large-scale atmospheric transport and rain–vapor exchange in the boundary layer water budget. Rain–vapor exchange takes different forms for different types of rainfall events. The evolution of isotopic ratios in water vapor suggests that substantial rain recycling occurs during the passage of large-scale organized convective systems, but that this process is much weaker during rainfall associated with less organized events of local origin. We further examine the influences of large-scale transport during the observation period using a Lagrangian trajectory-based moisture source analysis. More than half (63%) of the boundary layer moisture during the study period traced back to the South China Sea, consistent with prevailing southerly to southwesterly flow. Other important moisture sources included mainland Southeast Asia and the Indian Ocean, local land areas (e.g., Hainan Island and the Leizhou Peninsula), and the Pacific Ocean. Together, these five regions contributed more than 90% of the water vapor. The most pronounced changes in isotopic content due to large-scale transport during the study period were related to the passage of Tropical Storm Talas. The outer rain bands of this tropical cyclone passed over the measurement site on 15–17 July, causing a sharp reduction in the heavy isotopic content of boundary layer water vapor and a substantial increase in deuterium excess. These changes are consistent with extensive isotopic distillation and rain–vapor exchange in downdrafts associated with the intense convective systems produced by this storm.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2018-09-23
    Description: Atmosphere, Vol. 9, Pages 370: A Comprehensive Approach to Assess the Hydrological Drought of Inland River Basin in Northwest China Atmosphere doi: 10.3390/atmos9100370 Authors: Nina Zhu Jianhua Xu Weihong Li Kaiming Li Cheng Zhou How to measure and quantitatively assess hydrological drought (HD) in the inland river basins of Northwest China is a difficult problem because of the complicated geographical environment and climatic processes. To address this problem, we conducted a comprehensive approach and selected the Aksu River Basin (ARB) as a typical inland river basin to quantitatively assess the hydrological drought based on the observed data and reanalysis data during the period of 1980–2010. We used two mutual complementing indicators, i.e., the standardized runoff index (SRI) and standardized terrestrial water storage index (SWSI), to quantitatively measure the spatio-temporal pattern of HD, where the SRI calculated from the observed runoff data indicate the time trend of HD of the whole basin, while SWSI extracted from the reanalysis data indicate the spatial pattern of HD. We also used the auto-regressive distribution lag model (ARDL) to show the autocorrelation of HD and its dependence on precipitation, potential evapotranspiration (PET), and soil moisture. The main conclusions are as follows: (a) the western and eastern regions of the ARB were prone to drought, whereas the frequency of drought in the middle of the ARB is relatively lower; (b) HD presents significant autocorrelation with two months’ lag, and soil moisture is correlated with SWSI with two months’ lag, whereas PET and precipitation are correlated with SWSI with 1 month’ lag; (c) the thresholds of HD for annual PET, annual precipitation, and annual average soil moisture are greater than 844.05 mm, less than 134.52 mm, and less than 411.07 kg/m2, respectively. A drought early warning system that is based on the thresholds was designed.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2018-09-24
    Description: IJGI, Vol. 7, Pages 382: Incremental Road Network Generation Based on Vehicle Trajectories ISPRS International Journal of Geo-Information doi: 10.3390/ijgi7100382 Authors: Zhongyi Ni Lijun Xie Tian Xie Binhua Shi Yao Zheng Nowadays, most vehicles are equipped with positioning devices such as GPS which can generate a tremendous amount of trajectory data and upload them to the server in real time. The trajectory data can reveal the shape and evolution of the road network and therefore has an important value for road planning, vehicle navigation, traffic analysis, and so on. In this paper, a road network generation method is proposed based on the incremental learning of vehicle trajectories. Firstly, the input vehicle trajectory data are cleaned by a preprocess module. Then, the original scattered positions are clustered and mapped to the representation points which stand for the feature points of the real roads. After that, the corresponding representation points are connected based on the original connection information of the trajectories. Finally, all representation points are connected by a Delaunay triangulation network and the real road segments are found by a shortest path searching approach between the connected representation point pairs. Experiments show that this method can build the road network from scratch and refine it with the input data continuously. Both the accuracy and timeliness of the extracted road network can continuously be improved with the growth of real-time trajectory data.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2018-09-24
    Description: IJGI, Vol. 7, Pages 383: Care, Indifference and Anxiety—Attitudes toward Location Data in Everyday Life ISPRS International Journal of Geo-Information doi: 10.3390/ijgi7100383 Authors: Michal Rzeszewski Piotr Luczys Modern mobile devices are replete with advanced sensors that expand the array of possible methods of locating users. This can be used as a tool to gather and use spatial information, but it also brings with it the specter of “geosurveillance” in which the “location” becomes a product in itself. In the realm of software developers, space/place has been reduced and discretized to a set of coordinates, devoid of human experiences and meanings. To function in such digitally augmented realities, people need to adopt specific attitudes, often marked with anxiety. We explored attitudes toward location data collection practices using qualitative questionnaire surveys (n = 280) from Poznan and Edinburgh. The prevailing attitude that we identified is neutral with a strong undertone of resignation—surrendering personal location is viewed as a form of digital currency. A smaller number of people had stronger, emotional views, either very positive or very negative, based on uncritical technological enthusiasm or fear of privacy violation. Such a wide spectrum of attitudes is not only produced by interaction with technology but can also be a result of different values associated with space and place itself. Those attitudes can bring additional bias into spatial datasets that is not related to demographics.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2018-08-09
    Description: IJGI, Vol. 7, Pages 319: BIM-GIS Integration as Dedicated and Independent Course for Geoinformatics Students: Merits, Challenges, and Ways Forward ISPRS International Journal of Geo-Information doi: 10.3390/ijgi7080319 Authors: Ihab Hijazi Andreas Donaubauer Thomas H. Kolbe Information mined from building information models as well as associated geographical data and Geographic Information System (GIS) analyses can increase the success of construction processes and asset management, including buildings, roads, and public facilities. The integration of information from both domains requires high expertise in both spheres. The existing B.Sc and M.Sc. programs linked to the built environment at the Technical University of Munich offer courses for the Building Information Model (BIM) and GIS that are distributed among study programs in Civil Engineering, Architecture, and Geomatics. Students graduating as professionals in one of these domains rarely know how to solve pre-defined technical problems associated with the integration of information from BIM and GIS. Students in such programs seldom practice skills needed for the integration of information from BIM and GIS at a level that is needed in working life. Conversely, the technologies in both domains create artificial boundaries that do not exist in reality—for example, water and electricity would not be of use if the utilities terminated in front of buildings. To bring a change and bridge the gap between BIM and GIS, a change in the teaching methods of BIM/GIS needs to be considered. The Technical University of Munich (TUM) has developed a master’s course (M.Sc. course) for students in Geoinformatics which focuses on competencies required to achieve BIM/GIS integration. This paper describes the course development process and provides a unique perspective on the curriculum and subjects. It also presents the course objective, course development, the selection and development of learning materials, and the assessment of the intended learning outcome of the course. The developed course is validated through a questionnaire, and feedback is provided by participants of the BIM/GIS integration workshop representing a panel of experts in the domain.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2018-08-10
    Description: Atmosphere, Vol. 9, Pages 311: Post-Monsoon Season Precipitation Reduction over South Asia: Impacts of Anthropogenic Aerosols and Irrigation Atmosphere doi: 10.3390/atmos9080311 Authors: Wei-Ting Chen Kung-Tzu Huang Min-Hui Lo L. H. LinHo A significant declining trend of post-monsoon season precipitation in South Asia is observed between 2000–2014. Two major anthropogenic climate change drivers, aerosols and irrigation, have been steadily increasing during this period. The impacts of their regional and seasonal forcings on the post-monsoon precipitation reduction is investigated in this study through using idealized global climate simulations. The increased post-monsoon aerosol loadings lead to surface cooling downwind of the source areas by reduced surface shortwave flux. The addition of post-monsoon irrigation induces a stronger temperature decrease mainly around the irrigation hotspots by enhanced evaporation. Precipitation over West and North India is reduced post-monsoon by either aerosol or irrigation, which is mainly contributed by the anomalous subsidence. With concurrent forcings, the surface cooling and precipitation decrease are stronger and more extended spatially than the response to the separate forcing, with nonlinear amplification in surface cooling, but nonlinear damping in precipitation reduction. The anomalous vertical motion accelerates the transition of the regional meridional circulation, and hence the earlier withdrawal of the summer monsoon, which is consistent with the observed signals. The current results highlight the importance of including anthropogenic aerosol and irrigation effects in present and future climate simulations over South Asia.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2018-08-10
    Description: IJGI, Vol. 7, Pages 321: Extracting Indoor Space Information in Complex Building Environments ISPRS International Journal of Geo-Information doi: 10.3390/ijgi7080321 Authors: Yueyong Pang Chi Zhang Liangchen Zhou Bingxian Lin Guonian Lv Indoor space information extraction is an important aspect of reconstruction for building information modeling and a necessary process for geographic information system from outdoor to indoor. Entity model extracting methods provide advantages in terms of accuracy for building indoor spaces, as compared with network and grid model methods, and the extraction results can be converted into a network or grid model. However, existing entity model extracting methods based on a search loop do not consider the complex indoor environment of a building, such as isolated columns and walls or cross-floor spaces. In this study, such complex indoor environments are analyzed in detail, and a new approach for extracting buildings’ indoor space information is proposed. This approach is based on indoor space boundary calculation, the Boolean difference for single-floor space extraction, relationship reconstruction, and cross-floor space extraction. The experimental results showed that the proposed method can accurately extract indoor space information from the complex indoor environment of a building with geometric, semantic, and relationship information. This study is theoretically important for better understanding the complexity of indoor space extraction and practically important for improving the modeling accuracy of buildings.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2018-08-10
    Description: IJGI, Vol. 7, Pages 323: Analyzing the Tagging Quality of the Spanish OpenStreetMap ISPRS International Journal of Geo-Information doi: 10.3390/ijgi7080323 Authors: Jesús M. Almendros-Jiménez Antonio Becerra-Terón In this paper, a framework for the assessment of the quality of OpenStreetMap is presented, comprising a batch of methods to analyze the quality of entity tagging. The approach uses Taginfo as a reference base and analyses quality measures such as completeness, compliance, consistence, granularity, richness and trust . The framework has been used to analyze the quality of OpenStreetMap in Spain, comparing the main cities of Spain. Also a comparison between Spain and some major European cities has been carried out. Additionally, a Web tool has been also developed in order to facilitate the same kind of analysis in any area of the world.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2018-08-10
    Description: IJGI, Vol. 7, Pages 322: Comparison of Communication Viewsheds Derived from High-Resolution Digital Surface Models Using Line-of-Sight, 2D Fresnel Zone, and 3D Fresnel Zone Analysis ISPRS International Journal of Geo-Information doi: 10.3390/ijgi7080322 Authors: Jieun Baek Yosoon Choi We compared three methods for deriving communication viewsheds, which indicate the coverage areas for transmitter points from high-resolution digital surface models. Communication viewsheds were analyzed with a novel 3D Fresnel zone method, as well as line-of-sight (LOS) analysis and 2D Fresnel zone analysis, using high-resolution digital surface models (DSM) from a topographical survey. A LOS analysis calculates a visibility index by comparing the profile elevations of landforms between the transmitter and the receiver, using LOS elevations. A 2D Fresnel zone analysis calculates a 2D Fresnel index by comparing the profile elevations of landforms with the transverse plane elevations of the Fresnel zone. A 3D Fresnel zone analysis quantitatively analyzes communication stability by calculating a 3D Fresnel index, obtained by comparing the elevations of every terrain cell in a Fresnel zone with the total altitude of the Fresnel zone. The latter produced the most accurate results. Indexes derived by applying different transmitter offset heights, signal frequencies, and DSM resolutions for each of the three methods were then quantitatively analyzed. As both the offset height of the transmitter and the signal frequency decreased, the differences between the results derived from each method increased significantly. Moreover, larger DSM cells generated less accurate results.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2018-08-11
    Description: IJGI, Vol. 7, Pages 324: An INS/Floor-Plan Indoor Localization System Using the Firefly Particle Filter ISPRS International Journal of Geo-Information doi: 10.3390/ijgi7080324 Authors: Jian Chen Gang Ou Ao Peng Lingxiang Zheng Jianghong Shi Location-based services for smartphones are becoming more and more popular. The core of location-based services is how to estimate a user’s location. An INS/floor-plan indoor localization system, using the Firefly Particle Filter (FPF), is proposed to estimate a user’s location. INS includes an attitude angle module, a step length module and a step counting module. In the step length module, we propose a hybrid step length model. The proposed step length algorithm reasonably calculates a user’s step length. Because of sensor deviation, non-orthogonality and the user’s jitter, the main bottleneck for INS is that the error grows over time. To reduce the cumulative error, we design cascade filters including the Kalman Filter (KF) and FPF. To a certain extent, KF reduces velocity error and heading drift. On the other hand, the firefly algorithm is used to solve the particle impoverishment problem. Considering that a user may not cross an obstacle, the proposed particle filter is proposed to improve positioning performance. Results show that the average positioning error in walking experiments is 2.14 m.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2018-08-11
    Description: Atmosphere, Vol. 9, Pages 312: Difference in PM2.5 Variations between Urban and Rural Areas over Eastern China from 2001 to 2015 Atmosphere doi: 10.3390/atmos9080312 Authors: Changqing Lin Alexis K. H. Lau Ying Li Jimmy C. H. Fung Chengcai Li Xingcheng Lu Zhiyuan Li To more effectively reduce population exposure to PM2.5, control efforts should target densely populated urban areas. In this study, we took advantage of satellite-derived PM2.5 data to assess the difference in PM2.5 variations between urban and rural areas over eastern China during the past three Five-Year Plan (FYP) periods (2001–2015). The results show that urban areas experienced less of a decline in PM2.5 concentration than rural areas did in more than half of the provinces during the 11th FYP period (2006–2010). In contrast, most provinces experienced a greater reduction of PM2.5 concentration in urban areas than in rural areas during the 10th and 12th FYP periods (2001–2005 and 2011–2015, respectively). During the recent 12th FYP period, the rates of decline in PM2.5 concentration in urban areas were more substantial than in rural areas by as much as 1.5 μg·m−3·year−1 in Beijing and 2.0 μg·m−3·year−1 in Tianjin. These results suggest that the spatial difference in PM2.5 change was conducive to a reduction in the population exposure to PM2.5 in most provinces during recent years.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2018-08-12
    Description: Atmosphere, Vol. 9, Pages 314: Variations of Haze Pollution in China Modulated by Thermal Forcing of the Western Pacific Warm Pool Atmosphere doi: 10.3390/atmos9080314 Authors: Yingchang You Xugeng Cheng Tianliang Zhao Xiangde Xu Sunling Gong Xiaoye Zhang Yu Zheng Huizheng Che Chao Yu Jiacheng Chang Guoxu Ma Ming Wu In addition to the impact of pollutant emissions, haze pollution is connected with meteorology and climate change. Based on the interannual change analyses of meteorological and environmental observation data from 1981 to 2010, we studied the relationship between the winter haze frequency in central-eastern China (CEC) and the interannual variations of sea surface temperature (SST) over Western Pacific Warm Pool (WPWP) and its underlying mechanism to explore the thermal effect of WPWP on haze pollution variation in China. The results show a significant positive correlation coefficient reaching up to 0.61 between the interannual variations of SST in WPWP and haze pollution frequency in the CEC region over 1981–2010, reflecting the WPWP’s thermal forcing exerting an important impact on haze variation in China. The anomalies of thermal forcing of WPWP could induce to the changes of East Asian winter monsoonal winds and the vertical thermal structures in the troposphere over the CEC region. In the winter with anomalously warm SST over the WPWP, the near-surface winds were declined, and vertical thermal structure in the lower troposphere tended to be stable over the CEC-region, which could be conducive to air pollutant accumulation leading to the more frequent haze occurrences especially the heavy haze regions of Yangtze River Delta (YRD) and Pearl River Delta (PRD); In the winter with the anomalously cold WPWP, it is only the reverse of warm WPWP with the stronger East Asian winter monsoonal winds and the unstable thermal structure in the lower troposphere, which could attribute to the less frequent haze pollution over the CEC region. Our study revealed that the thermal forcing of the WPWP could have a modulation on air environment change in China.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2018-08-13
    Description: IJGI, Vol. 7, Pages 325: Journey-to-Crime Distances of Residential Burglars in China Disentangled: Origin and Destination Effects ISPRS International Journal of Geo-Information doi: 10.3390/ijgi7080325 Authors: Luzi Xiao Lin Liu Guangwen Song Stijn Ruiter Suhong Zhou Research on journey-to-crime distance has revealed the importance of both the characteristics of the offender as well as those of target communities. However, the effect of the home community has so far been ignored. Besides, almost all journey-to-crime studies were done in Western societies, and little is known about how the distinct features of communities in major Chinese cities shape residential burglars’ travel patterns. To fill this gap, we apply a cross-classified multilevel regression model on data of 3763 burglary trips in ZG City, one of the bustling metropolises in China. This allows us to gain insight into how residential burglars’ journey-to-crime distances are shaped by their individual-level characteristics as well as those of their home and target communities. Results show that the characteristics of the home community have larger effects than those of target communities, while individual-level features are most influential. Older burglars travel over longer distances to commit their burglaries than the younger ones. Offenders who commit their burglaries in groups tend to travel further than solo offenders. Burglars who live in communities with a higher average rent, a denser road network and a higher percentage of local residents commit their burglaries at shorter distances. Communities with a denser road network attract burglars from a longer distance, whereas those with a higher percentage of local residents attract them from shorter by.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2018-08-14
    Description: Atmosphere, Vol. 9, Pages 316: Extreme Wave Storms and Atmospheric Variability at the Spanish Coast of the Bay of Biscay Atmosphere doi: 10.3390/atmos9080316 Authors: Domingo Rasilla Juan Carlos García-Codron Carolina Garmendia Sixto Herrera Victoria Rivas This paper examines the characteristics and long-term variability of storminess for the Spanish coast of the Bay of Biscay for the period 1948 to 2015, by coupling wave (observed and modelled) and atmospheric datasets. The diversity of atmospheric mechanisms that are responsible for wave storms are highlighted at different spatial and temporal scales: synoptic (cyclone) and low frequency (teleconnection patterns) time scales. Two types of storms, defined mostly by wave period and storm energy, are distinguished, resulting from the distance to the forcing cyclones, and the length of the fetch area. No statistically significant trends were found for storminess and the associated atmospheric indices over the period of interest. Storminess reached a maximum around the decade of the 1980s, while less activity occurred at the beginning and end of the period of study. In addition, the results reveal that only the WEPI (West Europe Pressure Anomaly Index), EA (Eastern Atlantic), and EA/WR (Eastern Atlantic/Western Russia) teleconnection patterns are able to explain a substantial percentage of the variability in storm climate, suggesting the importance of local factors (W-E exposition of the coast) in controlling storminess in this region.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2018-08-14
    Description: Atmosphere, Vol. 9, Pages 315: Identification and Characterization of an Anomaly in Two-Dimensional Video Disdrometer Data Atmosphere doi: 10.3390/atmos9080315 Authors: Michael L. Larsen Michael Schönhuber The two-dimensional video distrometer (2DVD) is a well known ground based point-monitoring precipitation gauge, often used as a ground truth instrument to validate radar or satellite rainfall retrieval algorithms. This instrument records a number of variables for each detected hydrometeor, including the detected position within the sample area of the instrument. Careful analyses of real 2DVD data reveal an artifact—there are time periods where hydrometeor detections within parts of the sample area are artificially enhanced or diminished. Here, we (i) illustrate this anomaly with an exemplary 2DVD data set, (ii) describe the origin of this anomaly, (iii) develop and present an algorithm to help flag data potentially partially corrupted by this anomaly, and (iv) explore the prevalence and quantitative impact of this anomaly. Although the anomaly is seen in every major rain event studied and by every 2DVD the authors have examined, the anomaly artificially induces less than 3% of all detected drops and typically alters estimates of rain rates and accumulations by less than 2%.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2018-08-16
    Description: IJGI, Vol. 7, Pages 328: Method for the Analysis and Visualization of Similar Flow Hotspot Patterns between Different Regional Groups ISPRS International Journal of Geo-Information doi: 10.3390/ijgi7080328 Authors: Haiping Zhang Xingxing Zhou Xin Gu Lei Zhou Genlin Ji Guoan Tang Interaction among different regions can be illustrated in the form of a stream. For example, the interaction between the flows of people and information among different regions can reflect city network structures, as well as city functions and interconnections. The popularization of big data has facilitated the acquisition of flow data for various types of individuals. The application of the regional interaction model, which is based on the summary level of individual flow data mining, is currently a hot research topic. Thus far, however, previous research on spatial interaction methods has mainly focused on point-to-point and area-to-area interaction patterns, and investigations on the patterns of interaction hotspots between two regional groups with predefined neighborhood relationships, that being with two regions, remain scarce. In this study, a method for the identification of similar interaction hotspot patterns between two regional groups is proposed, and geo-information Tupu methods are applied to visualize interaction patterns. China’s air traffic flow data are used as an example to illustrate the performance of the proposed method to identify and analyze interaction hotspot patterns between regional groups with adjoining relationships across China. Research results indicate that the proposed method efficiently identifies the patterns of interaction flow hotspots between regional groups. Moreover, it can be applied to analyze any flow space in the excavation of the patterns of regional group interaction hotspots.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2018-08-16
    Description: IJGI, Vol. 7, Pages 327: A Parallel N-Dimensional Space-Filling Curve Library and Its Application in Massive Point Cloud Management ISPRS International Journal of Geo-Information doi: 10.3390/ijgi7080327 Authors: Xuefeng Guan Peter van Oosterom Bo Cheng Because of their locality preservation properties, Space-Filling Curves (SFC) have been widely used in massive point dataset management. However, the completeness, universality, and scalability of current SFC implementations are still not well resolved. To address this problem, a generic n-dimensional (nD) SFC library is proposed and validated in massive multiscale nD points management. The library supports two well-known types of SFCs (Morton and Hilbert) with an object-oriented design, and provides common interfaces for encoding, decoding, and nD box query. Parallel implementation permits effective exploitation of underlying multicore resources. During massive point cloud management, all xyz points are attached an additional random level of detail (LOD) value l. A unique 4D SFC key is generated from each xyzl with this library, and then only the keys are stored as flat records in an Oracle Index Organized Table (IOT). The key-only schema benefits both data compression and multiscale clustering. Experiments show that the proposed nD SFC library provides complete functions and robust scalability for massive points management. When loading 23 billion Light Detection and Ranging (LiDAR) points into an Oracle database, the parallel mode takes about 10 h and the loading speed is estimated four times faster than sequential loading. Furthermore, 4D queries using the Hilbert keys take about 1~5 s and scale well with the dataset size.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2018-08-20
    Description: Atmosphere, Vol. 9, Pages 322: An Analysis of Precipitation Extremes in the Inner Mongolian Plateau: Spatial-Temporal Patterns, Causes, and Implications Atmosphere doi: 10.3390/atmos9080322 Authors: Chunlan Li Walter Leal Filho Jun Wang Hubert Fudjumdjum Mariia Fedoruk Richa Hu Shan Yin Yuhai Bao Shan Yu Julian Hunt To improve how extreme events and climate variations are managed, there is a need to foster a deeper understanding of their interconnections. Consistent with this objective, this paper describes how precipitation extremes change both temporally and spatially in the Inner Mongolian Plateau (IMP), China and explains their causal factors. The paper refers to data collected from 43 meteorological stations in IMP and describes how precipitation extremes formed and how they influence agriculture. Data gathered and presented in this paper may be useful in understanding the extent to which the IMP is being influenced by global environmental change. This study reveals that the eleven precipitation extremes indices, except the number of precipitation days with over 0.5 mm (R0.5), number of heavy precipitation days (R10), and total precipitation in wet days (PRCPTOT), decreased in the IMP between 1959 and 2014, and most of them were non-significant in temporal. But the dry index has a larger magnitude decreasing trend than that of the wet indices, which can indicate that the dry situation was alleviated in IMP during the study interval. This study also indicated that precipitation extremes have strong relationships with elevation, latitude, and longitude. Atmospheric circulation and topography may be further primary reasons which result in the spatial variation characteristics in precipitation extremes over the IMP. Decreases in precipitation extremes, together with human activities such as livestock improvement and ecological restoration programs, has a positive effect in gross output value of agriculture and animal husbandry in the IMP. The results contribute to a deeper insight on the possible impacts of precipitation extremes and support the development of appropriate adaptation and mitigation strategies to cope with climate extremes. This paper further proposes science-based policies for grassland protection, agriculture, and animal husbandry on the national or regional and herdsman scales.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2018-08-19
    Description: Atmosphere, Vol. 9, Pages 321: Outdoor Thermal Comfort during Anomalous Heat at the 2015 Pan American Games in Toronto, Canada Atmosphere doi: 10.3390/atmos9080321 Authors: Alexandria J. Herdt Robert D. Brown Ian Scott-Fleming Guofeng Cao Melissa MacDonald Dave Henderson Jennifer K. Vanos Mass sporting events in the summertime are influenced by underlying weather patterns, with high temperatures posing a risk for spectators and athletes alike. To better understand weather variations in the Greater Toronto Area (GTA) during the Pan American Games in 2015 (PA15 Games), Environment and Climate Change Canada deployed a mesoscale monitoring network system of 53 weather stations. Spatial maps across the GTA demonstrate large variations by heat metric (e.g., maximum temperature, humidex, and wet bulb globe temperature), identifying Hamilton, Ontario as an area of elevated heat and humidity, and hence risk for heat-related illness. A case study of the Hamilton Soccer Center examined on-site thermal comfort during a heat event and PA15 Soccer Games, demonstrating that athletes and spectators were faced with thermal discomfort and a heightened risk of heat-related illness. Results are corroborated by First Aid and emergency response data during the events, as well as insight from personal experiences and Twitter feed. Integrating these results provides new information on potential benefits to society from utilizing mesonet systems during large-scale sporting events. Results further improve our understanding of intra-urban heat variability and heat-health burden. The benefits of utilizing more comprehensive modeling approaches for human heat stress that coincide with fine-scale weather information are discussed.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2018-08-19
    Description: Atmosphere, Vol. 9, Pages 320: Rate Constants for the Reaction of OH Radicals with Hydrocarbons in a Smog Chamber at Low Atmospheric Temperatures Atmosphere doi: 10.3390/atmos9080320 Authors: Lei Han Frank Siekmann Cornelius Zetzsch The photochemical reaction of OH radicals with the 17 hydrocarbons n-butane, n-pentane, n-hexane, n-heptane, n-octane, n-nonane, cyclooctane, 2,2-dimethylbutane, 2,2-dimethylpentane, 2,2-dimethylhexane, 2,2,4-trimethylpentane, 2,2,3,3-tetramethylbutane, benzene, toluene, ethylbenzene, p-xylene, and o-xylene was investigated at 288 and 248 K in a temperature controlled smog chamber. The rate constants were determined from relative rate calculations with toluene and n-pentane as reference compounds, respectively. The results from this work at 288 K show good agreement with previous literature data for the straight-chain hydrocarbons, as well as for cyclooctane, 2,2-dimethylbutane, 2,2,4-trimethylpentane, 2,2,3,3-tetramethylbutane, benzene, and toluene, indicating a convenient method to study the reaction of OH radicals with many hydrocarbons simultaneously. The data at 248 K (k in units of 10−12 cm3 s−1) for 2,2-dimethylpentane (2.97 ± 0.08), 2,2-dimethylhexane (4.30 ± 0.12), 2,2,4-trimethylpentane (3.20 ± 0.11), and ethylbenzene (7.51 ± 0.53) extend the available data range of experiments. Results from this work are useful to evaluate the atmospheric lifetime of the hydrocarbons and are essential for modeling the photochemical reactions of hydrocarbons in the real troposphere.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2018-08-22
    Description: Atmosphere, Vol. 9, Pages 327: Evaluation of NESMv3 and CMIP5 Models’ Performance on Simulation of Asian-Australian Monsoon Atmosphere doi: 10.3390/atmos9090327 Authors: Juan Li Young-Min Yang Bin Wang The Asian-Australian monsoon (AAM) has far-reaching impacts on global and local climate. Accurate simulations of AAM precipitation and its variabilities are of scientific and social importance, yet remain a great challenge in climate modeling. The present study assesses the performance of the newly developed Nanjing University of Information Science and Technology Earth System Model version 3 (NESMv3), together with that of 20 Coupled Model Intercomparison Project phase 5 (CMIP5) models, in the simulation of AAM climatology, its major modes of variability, and their relationships with El Nino-Southern Oscillation (ENSO). It is concluded that NESMv3 (1) reproduces, well, the observed features of AAM annual mean precipitation; (2) captures the solstice mode (the first annual cycle mode) of AAM realistically, but has difficulty in simulating the equinox mode (the second annual cycle mode) of AAM; (3) underestimates the monsoon precipitation intensity over the East Asian subtropical frontal zone, but overestimates that over the tropical western North Pacific; (4) faithfully reproduces the first season-reliant empirical orthogonal function (SEOF) mode of AAM precipitation and the associated circulation anomalies, as well as its relationship with ENSO turnabout, although the correlation is underestimated. Precipitation anomaly patterns of the second SEOF mode and its relationship with El Nino are poorly simulated by NESMv3 and most of the CMIP5 models as well, indicating that the monsoon variability prior to the ENSO onset is difficult to reproduce. In general, NESMv3’s performance in simulating AAM precipitation ranks among the top or above-average compared with the 20 CMIP5 models. Better simulation of East Asian summer monsoon and western Pacific subtropical high remains a major target for future improvement, in order to provide a reliable tool to understand and predict AAM precipitation.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2018-08-22
    Description: Atmosphere, Vol. 9, Pages 326: Innovative Trend Analysis of Annual and Seasonal Rainfall Variability in Amhara Regional State, Ethiopia Atmosphere doi: 10.3390/atmos9090326 Authors: Mohammed Gedefaw Denghua Yan Hao Wang Tianling Qin Abel Girma Asaminew Abiyu Dorjsuren Batsuren This study investigated the annual and seasonal rainfall variability at five selected stations of Amhara Regional State, by using the innovative trend analysis method (ITAM), Mann-Kendall (MK) and Sen’s slope estimator test. The result showed that the trend of annual rainfall was increasing in Gondar (Z = 1.69), Motta (Z = 0.93), and Bahir Dar (Z = 0.07) stations. However, the trends in Dangla (Z = −0.37) and Adet (Z = −0.32) stations showed a decreasing trend. As far as monthly and seasonal variability of rainfall are concerned, all the stations exhibited sensitivity of change. The trend of rainfall in May, June, July, August, and September was increasing. However, the trend on the rest of other months showed a decreasing trend. The increase in rainfall during Kiremt season, along with the decrease in number of rainy days, leads to an increase of extreme rainfall events over the region during 1980–2016. The consistency in rainfall trends over the study region confirms the robustness of the change in trends. Innovative trend analysis method is very crucial method for detecting the trends in rainfall time series data due to its potential to present the results in graphical format as well. The findings of this paper could help researchers to understand the annual and seasonal variability of rainfall over the study region and become a foundation for further studies.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2018-08-23
    Description: IJGI, Vol. 7, Pages 336: Susceptibility to Translational Slide-Type Landslides: Applicability of the Main Scarp Upper Edge as a Dependent Variable Representation Using by Reduced Chi-Square Analysis ISPRS International Journal of Geo-Information doi: 10.3390/ijgi7090336 Authors: Marco Capitani Adriano Ribolini Monica Bini The applicability of main scarp upper edge (MSUE) as dependent variable representation was performed in a translational slide susceptibility zonation of the Milia and Roglio basins, Italy. Two landslide inventories were built thanks to detailed geomorphological mapping and aerial photograph analysis. The landslides were used to create the models before 1975, while those after 1975 were employed to validate the predictive power of the model. Possible landslide-related factors were chosen from a geomorphological survey. The inventory landslide maps and the landslide-related factor maps were processed by conditional analysis, producing landslide susceptibility maps with five susceptibility classes. A comparison between the distribution of landslides after 1975 and those derived from models provided the predictive power of each model, which in turn was used to define the best predictive model. Reduced chi-square analysis allowed to define the efficiency of MSUE as dependent variable representation. MSUE can be applied as dependent variable representation to landslide susceptibility zonation with appreciable results. In the Roglio basin, slope angle, distance from streams, and from tectonic lineaments proved to be the main controlling factors of translational slides, whereas in the Milia basin, lithology and slope angle gave more satisfactory results as landslide-predisposing factors.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2018-08-23
    Description: IJGI, Vol. 7, Pages 337: Using Eye Tracking to Explore Differences in Map-Based Spatial Ability between Geographers and Non-Geographers ISPRS International Journal of Geo-Information doi: 10.3390/ijgi7090337 Authors: Weihua Dong Liangyu Zheng Bing Liu Liqiu Meng In this article, we use eye-tracking methods to analyze the differences in spatial ability between geographers and non-geographers regarding topographic maps, as reflected in the following three aspects: map-based spatial localization, map-based spatial orientation, and map-based spatial visualization. We recruited 32 students from Beijing Normal University (BNU) and divided them into groups of geographers and non-geographers based on their major. In terms of their spatial localization ability, geographers had shorter response times, higher fixation frequencies, and fewer saccades than non-geographers, and the differences were significant. For their spatial orientation ability, compared to non-geographers, geographers had significantly lower response times, lower fixation counts and fewer saccades as well as significantly higher fixation frequencies. In terms of their spatial visualization ability, geographers’ response times were significantly shorter than those of non-geographers, but there was no significant difference between the two groups in terms of fixation count, fixation frequency or saccade count. We also found that compared to geographers, non-geographers usually spent more time completing these tasks. The results of this study are helpful in improving the map-based spatial ability of users of topographic maps.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2018-08-23
    Description: IJGI, Vol. 7, Pages 341: Quantifying Surface Urban Heat Island Formation in the World Heritage Tropical Mountain City of Sri Lanka ISPRS International Journal of Geo-Information doi: 10.3390/ijgi7090341 Authors: Manjula Ranagalage DMSLB Dissanayake Yuji Murayama Xinmin Zhang Ronald C. Estoque ENC Perera Takehiro Morimoto Presently, the urban heat island (UHI) phenomenon, and its adverse impacts, are becoming major research foci in various interrelated fields due to rapid changes in urban ecological environments. Various cities have been investigated in previous studies, and most of the findings have facilitated the introduction of proper mitigation measures to overcome the negative impact of UHI. At present, most of the mountain cities of the world have undergone rapid urban development, and this has resulted in the increasing surface UHI (SUHI) phenomenon. Hence, this study focuses on quantifying SUHI in Kandy City, the world heritage tropical mountain city of Sri Lanka, using Landsat data (1996 and 2017) based on the mean land surface temperature (LST), the difference between the fraction of impervious surfaces (IS), and the fraction of green space (GS). Additionally, we examined the relationship of LST to the green space/impervious surface fraction ratio (GS/IS fraction ratio) and the magnitude of the GS/IS fraction ratio. The SUHI intensity (SUHII) was calculated based on the temperature difference between main land use/cover categories and the temperature difference between urban-rural zones. We demarcated the rural zone based on the fraction of IS recorded, <10%, along with the urban-rural gradient zone. The result shows a SUHII increase from 3.9 °C in 1996 to 6.2 °C in 2017 along the urban-rural gradient between the urban and rural zones (10 < IS). These results relate to the rapid urban expansion of the study areas from 1996 to 2017. Most of the natural surfaces have changed to impervious surfaces, causing an increase of SUHI in Kandy City. The mean LST has a positive relationship with the fraction of IS and a negative relationship with the fraction of GS. Additionally, the GS/IS fraction ratio shows a rapid decline. Thus, the findings of this study can be considered as a proxy indicator for introducing proper landscape and urban planning for the World Heritage tropical mountain city of Kandy in Sri Lanka.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2018-08-23
    Description: IJGI, Vol. 7, Pages 334: Applications of Internet of Things ISPRS International Journal of Geo-Information doi: 10.3390/ijgi7090334 Authors: Chi-Hua Chen Kuen-Rong Lo This editorial introduces the special issue entitled “Applications of Internet of Things”, of ISPRS International Journal of Geo-Information. Topics covered in this issue include three main parts: (I) intelligent transportation systems (ITS), (II) location-based services (LBS), and (III) sensing techniques and applications. Three papers on ITS are as follows: (1) “Vehicle positioning and speed estimation based on cellular network signals for urban roads,” by Lai and Kuo; (2) “A method for traffic congestion clustering judgment based on grey relational analysis,” by Zhang et al.; and (3) “Smartphone-based pedestrian’s avoidance behavior recognition towards opportunistic road anomaly detection,” by Ishikawa and Fujinami. Three papers on LBS are as follows: (1) “A high-efficiency method of mobile positioning based on commercial vehicle operation data,” by Chen et al.; (2) “Efficient location privacy-preserving k-anonymity method based on the credible chain,” by Wang et al.; and (3) “Proximity-based asynchronous messaging platform for location-based Internet of things service,” by gon Jo et al. Two papers on sensing techniques and applications are as follows: (1) “Detection of electronic anklet wearers’ groupings throughout telematics monitoring,” by Machado et al.; and (2) “Camera coverage estimation based on multistage grid subdivision,” by Wang et al.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2018-08-24
    Description: Atmosphere, Vol. 9, Pages 334: Gap-Filling of MODIS Time Series Land Surface Temperature (LST) Products Using Singular Spectrum Analysis (SSA) Atmosphere doi: 10.3390/atmos9090334 Authors: Hamid Reza Ghafarian Malamiri Iman Rousta Haraldur Olafsson Hadi Zare Hao Zhang Land surface temperature (LST) is a basic parameter in energy exchange between the land and the atmosphere, and is frequently used in many sciences such as climatology, hydrology, agriculture, ecology, etc. Time series of satellite LST data have usually deficient, missing, and unacceptable data caused by the presence of clouds in images, the presence of dust in the atmosphere, and sensor failure. In this study, the singular spectrum analysis (SSA) algorithm was used to resolve the problem of missing and outlier data caused by cloud cover. The region studied in the present research included an image frame of the Moderate Resolution Imaging Spectroradiometer (MODIS) with horizontal number 22 and vertical number 05 (h22v05). This image involved a large part of Iran, Turkmenistan, and the Caspian Sea. In this study, MODIS LST products (MOD11A1) were used during 2015 with approximately 1 km × 1 km spatial resolution and day/night LST data (daily temporal resolution). On average, the data have 36.37% gaps in each pixel profile with 730 day/night LST data. The results of the SSA algorithm in the reconstruction of LST images indicated a root mean square error (RMSE) of 2.95 Kelvin (K) between the original and reconstructed LST time series data in the study region. In general, the findings showed that the SSA algorithm using spatio-temporal interpolation can be effectively used to resolve the problem of missing data caused by cloud cover.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2018-08-24
    Description: IJGI, Vol. 7, Pages 346: Place and City: Toward Urban Intelligence ISPRS International Journal of Geo-Information doi: 10.3390/ijgi7090346 Authors: Albert Acedo Marco Painho Sven Casteleyn Stéphane Roche Place, as a concept, is subject to a lively, ongoing discussion involving different disciplines. However, most of these discussions approach the issue without a geographic perspective, which is the natural habitat of a place. This study contributes to this discourse through the exploratory examination of urban intelligence utilizing the geographical relationship between sense of place and social capital at the collective and individual level. Using spatial data collected through a web map-based survey, we perform an exhaustive examination of the spatial relationship between sense of place and social capital. We found a significant association between sense of place and social capital from a spatial point of view. Sense of place and social capital spatial dimensions obtain a non-disjoint relationship for approximately half of the participants and a spatial clustering when they are aggregated. This research offers a new exploratory perspective for place studies in the context of cities, and simultaneously attempts to depict a platial–social network based on sense of place and social capital, which cities currently lack.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2018-08-24
    Description: IJGI, Vol. 7, Pages 345: Shortest Paths from a Group Perspective—A Note on Selfish Routing Games with Cognitive Agents ISPRS International Journal of Geo-Information doi: 10.3390/ijgi7090345 Authors: Johannes Scholz Richard L. Church This paper presents an analysis of the effects of cognitive agents employing selfish routing behavior in traffic networks with linear latency functions. Selfish routing occurs when each agent traveling on a network acts in a purely selfish manner, therefore the Braess Paradox is likely to occur. The Braess Paradox describes a situation where an additional edge with positive capacity is added to a given network, which leads to higher total system delay. By applying the concept of cognitive agents, each agent is able to make a range of non-selfish and selfish decisions. In addition, each agent has to cope with uncertainty in terms of travel time information associated with the traffic system, a factor in real-world traffic networks. This paper evaluates the influence of travel time uncertainty, and possible non-selfish decisions of the agents on overall network delay. The results indicate that both non-selfish behavior and uncertainty have an influence on overall travel delay. In addition, understanding the influence of cognitive agents on delay can help to better plan and influence traffic flows resulting in “closer to optimal” flows involving overall lower delays.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2018-08-23
    Description: Atmosphere, Vol. 9, Pages 332: The Reducing Effect of Green Spaces with Different Vegetation Structure on Atmospheric Particulate Matter Concentration in BaoJi City, China Atmosphere doi: 10.3390/atmos9090332 Authors: Ling Qiu Fang Liu Xiang Zhang Tian Gao With the acceleration of urbanisation and industrialisation, atmospheric particulate pollution has become one of the most serious environmental problems in China. In this study, green spaces in Baoji city were classified into different patterns on the basis of vegetation structural parameters, i.e., horizontal structure, vertical structure and vegetation type. Eleven types of green space with different structures were selected for investigating the relationships between atmospheric particulate matter (PM) concentration and green spaces with different vegetation structure, based on the “matrix effect” of environmental factors, i.e., location, time, wind velocity, temperature, humidity and area to the concentration of PM2.5 and PM10 in the green spaces. The results showed that: (1) Location, time, wind velocity, temperature and humidity had highly significant effects on the concentration of PM2.5 and PM10. In sunny and breeze weather conditions, PM2.5 and PM10 concentration increased with the wind velocity and humidity, and decreased with the temperature. The range of PM10 concentration was greater than the range of PM2.5 concentration. (2) Less than 2 hectares of the green space had no significant influence on the concentration of PM2.5 and PM10. (3) The concentration of PM2.5 and PM10 showed no significant difference between all the green spaces and the control group. There was no significant difference in the reduction of PM2.5 concentration between different structural green spaces, but there was a significant difference in the reduction of PM10 concentration. The above results will provide a theoretical basis and practical methods for the optimisation of urban green space structures for improving urban air quality effectively in the future.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2018-08-23
    Description: Atmosphere, Vol. 9, Pages 331: Effects of Northern Hemisphere Atmospheric Blocking on Arctic Sea Ice Decline in Winter at Weekly Time Scales Atmosphere doi: 10.3390/atmos9090331 Authors: Yao Yao Dehai Luo Linhao Zhong In this study, the effects of the Northern Hemisphere atmospheric blocking circulation on Arctic sea ice decline at weekly time scales are examined by defining four key regions based on observational data analysis. Given the regression analysis, the frequently occurring atmospheric patterns related to the sea ice decline in four key sea regions (Baffin Bay, Barents-Kara Seas, Okhotsk Sea and Bering Sea) are found to be Greenland blocking (GB), Ural blocking (UB), western Pacific blocking (PB-W) and eastern Pacific blocking (PB-E), respectively. The results show that the regional blocking frequency is higher (lower) in lower (higher) sea ice winters for each key region. Moreover, composite analysis indicates that blocking evolution is usually accompanied by significant sea ice decline at weekly time scales during the blocking life cycle for each key region. In addition, the intensified surface downward infrared radiation (IR) anomaly and the precipitable water for the entire atmosphere (PWA) in each key region are found to make significant contributions to the positive surface air temperature (SAT) anomaly, which is beneficial for the reduction in sea ice. The approximate quantitative analysis of different surface energy fluxes induced by blocking is also applied. Further analysis shows that the blocking event and the associated changes in SAT and radiation anomalies for each key region lead the sea ice decline by approximately 3~6 days. This result indicates that regional blocking can contribute to regional sea ice decline at weekly time scales through surface warming associated with enhanced water vapor and associated IR variations. Further quantitative estimates indicate that regional blocking can reduce regional sea ice cover (SIC) by 49.6%, 49.4%, 52.2% and 49.5% for Baffin Bay, Barents-Kara Seas, Okhotsk Sea and Bering Sea, respectively, during the blocking life cycle. Finally, a physical process diagrammatic sketch is given to illustrate how blocking affects SIC decline.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2018-08-28
    Description: IJGI, Vol. 7, Pages 356: Studies on Three-Dimensional (3D) Modeling of UAV Oblique Imagery with the Aid of Loop-Shooting ISPRS International Journal of Geo-Information doi: 10.3390/ijgi7090356 Authors: Jia Li Yongxiang Yao Ping Duan Yun Chen Shuang Li Chi Zhang Oblique imagery obtained from an Unmanned Aerial Vehicle (UAV) has been widely applied to large-scale three-dimensional (3D) reconstruction; however, the problems of partially missing model details caused by such factors as occlusion, distortion, and airflow, are still not well resolved. In this paper, a loop-shooting-aided technology is used to solve the problem of details loss in the 3D model. The use of loop-shooting technology can effectively compensate for losses caused by occlusion, distortion, or airflow during UAV flight and enhance the 3D model details in large scene- modeling applications. Applying this technology involves two key steps. First, based on the 3D modeling construction process, the missing details of the modeling scene are found. Second, using loop-shooting image sets as the data source, incremental iterative fitting based on aerotriangulation theory is used to compensate for the missing details in the 3D model. The experimental data used in this paper were collected from Yunnan Normal University, Chenggong District, Kunming City, Yunnan Province, China. The experiments demonstrate that loop-shooting significantly improves the aerotriangulation accuracy and effectively compensates for defects during 3D large-scale model reconstruction. In standard-scale distance tests, the average relative accuracy of our modeling algorithm reached 99.87% and achieved good results. Therefore, this technique not only optimizes the model accuracy and ensures model integrity, but also simplifies the process of refining the 3D model. This study can be useful as a reference and as scientific guidance in large-scale stereo measurements, cultural heritage protection, and smart city construction.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2018-08-28
    Description: IJGI, Vol. 7, Pages 355: Achieving Complete and Near-Lossless Conversion from IFC to CityGML ISPRS International Journal of Geo-Information doi: 10.3390/ijgi7090355 Authors: Rudi Stouffs Helga Tauscher Filip Biljecki The Singapore Government has embarked on a project to establish a three-dimensional city model and collaborative data platform for Singapore. The research herein contributes to this endeavour by developing a methodology and algorithms to automate the conversion of Building Information Models (BIM), in the Industry Foundation Classes (IFC) data format, into CityGML building models, capturing both geometric and semantic information as available in the BIM models, and including exterior as well as interior structures. We adopt a Triple Graph Grammar (TGG) to formally relate IFC and CityGML, both semantically and geometrically, and to transform a building information model, expressed as an IFC object graph, into a city model expressed as a CityGML object graph. The work pipeline includes extending the CityGML data model with an Application Domain Extension (ADE), which allows capturing information from IFC that is relevant in the geospatial context but at the same time not supported by CityGML in its standard form. In this paper, we elaborate on the triple graph grammar approach and the motivation and roadmap for the development of the ADE. While a fully complete and lossless conversion may never be achieved, this paper suggests that both a TGG and an ADE are natural choices for supporting the conversion between IFC and CityGML.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2018-08-28
    Description: IJGI, Vol. 7, Pages 352: Exploring the Factors Driving Changes in Farmland within the Tumen/Tuman River Basin ISPRS International Journal of Geo-Information doi: 10.3390/ijgi7090352 Authors: Cholhyok Kang Yili Zhang Basanta Paudel Linshan Liu Zhaofeng Wang Ryongsu Li Understanding farmland changes and their mechanisms is important for food security and sustainable development. This study assesses the farmland changes and their drivers within the Tumen River of China and the Tuman River within the Democratic People’s Republic of Korea (DPR Korea) from 1991 to 2016 (1991–2000, 2000–2010, and 2010–2016). Farmland surfaces in Tumen/Tuman River Basin (TRB) for each of the years were mapped from satellite imagery using an object-based image segmentation and a support vector machine (SVM) approach. A logistic regression was applied to discern the mechanisms underlying farmland changes. Results indicate that cultivated surfaces changes within the two regions were characterized by large differences during the three time periods. The decreases of cultivated surface of −15.55 km2 (i.e., 0.55% of total cultivated surface area in 2000) and −23.61 km2 (i.e., 0.83% of total cultivated surface area in 2016) occurred in China between 1991 and 2000 and between 2010 and 2016, respectively; while an increase of 30.98 km2 (i.e., 1.09% of total cultivated surface area in 2010) was seen between 2000 and 2010. Cultivated surfaces increased within DPR Korea side over the three time periods; a marked increase, in particular, was seen between 1991 and 2000 by 443.93 km2 (i.e., 23.43% of total cultivated surface area in 2000), while farmland increased by 140.87 km2 (i.e., 6.92% of total cultivated surface area in 2010) and 180.86 km2 (i.e., 1.78% of total cultivated surface area in 2016), respectively, between 2000 and 2010 and between 2010 and 2016. We also found that expansions and contractions in farmland within both regions of the TRB were mainly influenced by topographic, soil, climatic, and distance factors, which had different importance degrees. Among these significant forces, the temperatures in the two regions were paramount positive factors on farmland changes during 1991–2016 and slope in China and precipitation in DPR Korea were the paramount negative factors affecting farmland changes, respectively. Additionally, except for between 2000 and 2010 in DPR Korea TRB region, most of the factors significantly influencing the farmland changes revealed the same positive or negative effects in different periods, because of mountainous topography. This study allows enhancing understanding of the mechanisms underlying farmland changes in the TRB.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...