ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (34,814)
  • 2015-2019  (33,322)
  • 2005-2009  (1,492)
  • 1975-1979
  • Sensors  (16,206)
  • 15954
  • 1
    Publication Date: 2019-12-31
    Description: There are many factors affecting oil extraction rate (OER) but a large contributor to high national OER is by processing good-quality fresh fruit bunches (FFB) at the mills. The current practice for grading oil palm fruit bunches in mills is using human graders for visual inspection, which can lead to repeated mistakes, inconsistent evaluation results, and many other related losses. This study aims to develop a fruit maturity sensor that can detect oil palm fruit maturity grade and send indication to the user whether to accept or reject the bunches. This study focuses on fruit battery principle and applying the charging concept to the fruit battery in order to generate significant load voltage readings of oil palm fruit battery. The charging process resulted in amplified load voltage readings, which were 4 times more sensitive to changes as compared to normal fruit battery without charging process. From the load voltage readings, the fruits can be characterized into their maturity grade based on moisture content. It was determined that fruits with moisture content less than 44% and average load voltage, Vavg, between 20 to 30 mV are considered ripe fruits.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-12-31
    Description: This work addresses the design and experimental characterization of on-body antennas, which play an essential role within Body Sensor Networks. Four antenna designs were selected from a set of eighteen antenna choices and finally implemented for both passive and active measurements. The issues raised during the process of this work (requirements study, technology selection, development and optimization of antennas, impedance matching, unbalanced to balanced transformation, passive and active characterization, off-body and on-body configurations, etc.) were studied and solved, driving a methodology for the characterization of on-body antennas, including transceiver effects. Despite the influence of the body, the antennas showed appropriate results for an in-door environment. Another novelty is the proposal and validation of a phantom to emulate human experimentation. The differences between experimental and simulated results highlight a set of circumstances to be taken into account during the design process of an on-body antenna: more comprehensive simulation schemes to take into account the hardware effects and a custom design process that considers the application for which the device will be used, as well as the effects that can be caused by the human body.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-12-31
    Description: Membrane-introduction mass spectrometry (MIMS) has been presented as one of the promising approaches for online and real-time analysis of monochloramine (NH2Cl) in diverse matrices such as air, human breath, and aqueous matrices. Selective pervaporation of NH2Cl through the introduction membrane overcomes the need for sample preparation steps. However, both the selectivity and sensitivity of MIMS can be affected by isobaric interferences, as reported by several researchers. High-resolution mass spectrometry helps to overcome those interferences. Recent miniaturization of Fourier transform—ion cyclotron resonance—mass spectrometry (FT-ICR MS) technology coupled to the membrane-introduction system provides a potent tool for in field analysis of monochloramine in environmental matrices. Monochloramine analysis by MIMS based FT-ICR MS system demonstrated decomposition into ammonia. To further clarify the origin of this decomposition, headspace analyses after bypassing the membrane were undertaken and showed that monochloramine decomposition was not exclusively related to interactions within the membrane. Adsorption inside the MIMS device, followed by surface-catalyzed decomposition, was suggested as a plausible additional mechanism of monochloramine decomposition to ammonia.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-12-31
    Description: The paper presents research related to the functional features of a novel three-layer circular piezoelectric actuator/sensor. The outer layers of the transducer are made of non-piezoelectric material. The middle layer comprises two elements—a piezoelectric disk, and a ring made of non-piezoelectric material. The additional external passive layer has a very important function; it protects the transducer’s electrical components against damage caused by external factors. Also, if sparking on the transducer wires or electrodes occurs, this layer prevents fire. So far, there is no analytical model for such a transducer. Closed-form analytical equations are important tools for predicting and optimizing the operation of devices. Thus, using both the Plate Theory and constitutive equations of piezoelectric materials, an analytical formula describing transducer deflection as a function of electrical loads has been found (electromechanical characteristic of the transducer). In addition, it is worth noting that under certain assumptions, the developed analytical model can also be used for two-layer transducers. The tests carried out show satisfactory compliance of the results obtained through the developed solution with both literature data and numerical data. Moreover, based on the obtained analytical model, the effect of selected non-dimensional variables on the actuator performance has been examined. These parameters include dimensions and mechanical properties of both piezoelectric disk and passive plates and strongly influence the behavior of the transducer.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-12-31
    Description: Bearing state recognition, especially under variable working conditions, has the problems of low reusability of monitoring data, low state recognition accuracy and low generalization ability of the model. The feature-based transfer learning method can solve the above problems, but it needs to rely on signal processing knowledge and expert diagnosis experience to obtain the cross-characteristics of different working conditions data in advance. Therefore, this paper proposes an improved balanced distribution adaptation (BDA), named multi-core balanced distribution adaptation (MBDA). This method constructs a weighted mixed kernel function to map different working conditions data to a unified feature space. It does not need to obtain the cross-characteristics of different working conditions data in advance, which simplifies the data processing and meet end-to-end state recognition in practical applications. At the same time, MBDA adopts the A–Distance algorithm to estimate the balance factor of the distribution and the balance factor of the kernel function, which not only effectively reduces the distribution difference between different working conditions data, but also improves efficiency. Further, feature self-learning and rolling bearing state recognition are realized by the stacked autoencoder (SAE) neural network with classification function. The experimental results show that compared with other algorithms, the proposed method effectively improves the transfer learning performance and can accurately identify the bearing state under different working conditions.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-12-31
    Description: In this paper, a novel multi-sensor clustering algorithm, based on the density peaks clustering (DPC) algorithm, is proposed to address the multi-sensor data fusion (MSDF) problem. The MSDF problem is raised in the multi-sensor target detection (MSTD) context and corresponds to clustering observations of multiple sensors, without prior information on clutter. During the clustering process, the data points from the same sensor cannot be grouped into the same cluster, which is called the cannot link (CL) constraint; the size of each cluster should be within a certain range; and overlapping clusters (if any) must be divided into multiple clusters to satisfy the CL constraint. The simulation results confirm the validity and reliability of the proposed algorithm.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-12-31
    Description: This paper presents a new antenna design for a capsule endoscope. The proposed antenna comprises a camera hole and meandered line. These features enable the antenna to be integrated on the same side as the camera, within the capsule endoscope. Moreover, light-emitting diodes can be mounted on the surface of the antenna for illumination. The antenna achieves a wide bandwidth, despite the small size owing to its meandered line structure.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-12-31
    Description: In order to keep track of the operational state of power grids, the world’s largest sensor system, smart grid, was built by deploying hundreds of millions of smart meters. Such a system makes it possible to discover and make quick response to any hidden threat to the entire power grid. Non-technical losses (NTLs) have always been a major concern for their consequent security risks as well as immeasurable revenue loss. However, various causes of NTL may have different characteristics reflected in the data. Accurately capturing these anomalies faced with such a large scale of collected data records is rather tricky as a result. In this paper, we proposed a new methodology of detecting abnormal electricity consumptions. We did a transformation of the collected time-series data which turns it into an image representation that could well reflect users’ relatively long term consumption behaviors. Inspired by the excellent neural network architecture used for objective detection in computer vision, we designed our deep learning model that takes the transformed images as input and yields joint features inferred from the multiple aspects the input provides. Considering the limited amount of labeled samples, especially the abnormal ones, we used our model in a semi-supervised fashion that was brought about in recent years. The model is tested on samples which are verified by on-field inspections and our method showed significant improvement for NTL detection compared with the state-of-the-art methods.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-12-31
    Description: The transient contact-impact mechanism and driving capability of the piezoelectric stack actuator is analyzed using both experimental and theoretical methods. An experimental setup and its corresponding measurement approaches for the transient responses are designed. The launch range of the object resulting from the first contact-impact is measured through laser doppler vibrometer and the motion process is captured by high-speed camera. Experimental results illustrate that the launch range increases firstly and decreases subsequently as the frequency of the sine driving voltage increases. Meanwhile, considering the local viscoelastic contact deformation, a theoretical methodology including the mechanics model for the driving process is proposed. Based on the Lagrange equations of second kind, the governing equation of the driving system is derived. Transient responses are calculated using the fourth-order Runge–Kutta integration method. Contact forces and Poisson’s coefficient of restitution are calculated by the proposed theoretical method. The results of launch range show that the theoretical solutions have a good agreement with the experimental data. The peak value of contact force increases firstly and decreases subsequently with the increase of voltage frequency. In addition, the coefficient of restitutions is roughly 0.9 when f is greater than 3.5 kHz.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-12-31
    Description: With the rapid development of the Internet of Things (IoT), the radio frequency identification (RFID) system becomes increasingly important. Tag identification is a basic problem of the RFID system, whose purpose is to inventory tags. However, in recent years, it requires a very short time for massive tag identification, which brings serious challenges. The traditional Aloha based anti-collision algorithms have disadvantages of either low efficiency or high complexity. Therefore, this article proposes a low complexity dynamic frame slotted Aloha (DFSA) anti-collision algorithm, named LC-DFSA. The reader can estimate the range of tag numbers according to the last frame size, the number of successful slots and the ratio of idle slots. Then the optimal frame size can be calculated. Complexity analysis is deployed in this article, and we validate the correctness of the analysis. Through our simulations, LC-DFSA outperforms other schemes in both the average access efficiency and the algorithm complexity. It also can be conveniently applied to engineering implementations.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...