ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (10,358)
  • Elsevier  (10,358)
  • 2015-2019  (10,358)
  • Fish and Shellfish Immunology  (1,200)
  • Biomaterials  (723)
  • Seminars in Cell and Developmental Biology  (394)
  • 1585
  • 2695
  • 687
  • 791
  • Medicine  (10,358)
  • 1
    Publication Date: 2019
    Description: 〈p〉Publication date: September 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Fish & Shellfish Immunology, Volume 92〈/p〉 〈p〉Author(s): Yang Hu, Wei-Chao Chen, Yu-Feng Shen, Bin Zhu, Gao-Xue Wang〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Viral diseases in aquaculture were challenging because there are few preventative measures and/or treatments. Our previous study indicated that imidazole arctigenin derivatives possessed antiviral activities against infectious hematopoietic necrosis virus (IHNV). Based on the structure-activity relationship in that study, a new imidazole arctigenin derivative, 4-(8-(2-ethylimidazole)octyloxy)-arctigenin (EOA), was designed, synthesized and its anti-IHNV activity was evaluated. By comparing inhibitory concentration at half-maximal activity (IC〈sub〉50〈/sub〉), we found that EOA (IC〈sub〉50〈/sub〉 = 0.56 mg/L) possessed a higher antiviral activity than those imidazole arctigenin derivatives in our previous study. Besides, EOA could significantly decrease cytopathic effect (CPE) and viral titer induced by IHNV in epithelioma papulosum cyprinid (EPC) cells. In addition, EOA significantly inhibited apoptosis induced by IHNV in EPC cells. Further data verified that EOA inhibited IHNV replication in rainbow trout, with reducing 32.0% mortality of IHNV-infected fish. The results suggested that EOA was more stable with a prolonged inhibitory half-life in the early stage of virus infection (1–4 days). Consistent with above results, EOA repressed IHNV glycoprotein gene expression in virus sensitive tissues (kidney and spleen) in the early stage of virus infection. Moreover, histopathological evaluation showed that tissues from the spleen and kidney of fish infected with IHNV exhibited pathological changes. But there were no lesions in any of the tissues from the control group and EOA-treaten group. In accordance with the histopathological assay, EOA could elicited anti-inflammation response in non-viral infected rainbow trout by down-regulating the expression of cytokine genes (〈em〉IL-8〈/em〉, 〈em〉IL-12p40〈/em〉, and 〈em〉TNF-α〈/em〉). Altogether, EOA was expected to be a therapeutic agent against IHNV infection in the field of aquaculture.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 1050-4648
    Electronic ISSN: 1095-9947
    Topics: Biology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Medicine
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019
    Description: 〈p〉Publication date: September 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Fish & Shellfish Immunology, Volume 92〈/p〉 〈p〉Author(s): Junjun He, Haiying Liang, Jiaping Zhu, Xiaochen Fang〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Antibacterial peptides (AMPs) constitute an important part of the body's innate immune system and are responsible for a wide range of inhibitory effects against pathogens such as bacteria, fungi, and viruses. In this study, multi-step high performance liquid chromatography (HPLC), combined with Mass Spectrometry (MS), was used to isolate and identify proteins with antibacterial activity from the serum of 〈em〉Pinctada fucata martensii〈/em〉 (〈em〉P.f. Martensii〈/em〉) and obtain a component named 〈em〉P.f. Martensii〈/em〉 antimicrobial peptide-1 (PmAMP-1). 〈em〉PmAMP-1〈/em〉 cDNA was cloned and sequenced by rapid amplification of cDNA ends (RACE) and mRNA expression of was analyzed by quantitative real-time PCR (qRT-PCR). From the results of this study, full-length 〈em〉PmAMP-1 c〈/em〉DNA was shown to be 700 base pairs (bp) long with an open reading frame (ORF) of 294 bp, encoding 97 amino acids with a predicted structure that is mostly α-helices. 〈em〉PmAMP-〈/em〉1 mRNA was constitutively expressed in all tested tissues including the adductor muscle, mantle, hepatopancreas, gill, gonads and hemocytes. The highest level of 〈em〉PmAMP-〈/em〉1 transcription was observed at 8 h and 2 h after bacterial challenge in hemocytes and adductor muscle (p 〈 0.01), respectively. Furthermore, PmAMP-1 caused significant morphological alterations in 〈em〉E. coli,〈/em〉 as shown by transmission electron microscopy (TEM). The results from this study provide a valuable base for further exploration of molluscan innate immunity and immune response.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 1050-4648
    Electronic ISSN: 1095-9947
    Topics: Biology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Medicine
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019
    Description: 〈p〉Publication date: October 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biomaterials, Volume 218〈/p〉 〈p〉Author(s): Yuwei Liu, Biao Kuang, Benjamin B. Rothrauff, Rocky S. Tuan, Hang Lin〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Mesenchymal stem cells (MSCs) embedded in their secreted extracellular matrix (mECM) constitute an exogenous scaffold-free construct capable of generating different types of tissues. Whether MSC-mECM constructs can recapitulate endochondral ossification (ECO), a developmental process during 〈em〉in vivo〈/em〉 skeletogenesis, remains unknown. In this study, MSC-mECM constructs are shown to result in robust bone formation both 〈em〉in vitro〈/em〉 and 〈em〉in vivo〈/em〉 through the process of endochondral ossification when sequentially exposed to chondrogenic and osteogenic cues. Of interest, a novel trypsin pre-treatment was introduced to change cell morphology, which allowed MSC-mECM constructs to undergo the N-cadherin-mediated developmental condensation process and subsequent chondrogenesis. Furthermore, bone formation by MSC-mECM constructs were significantly enhanced by the ECO protocol, as compared to conventional 〈em〉in vitro〈/em〉 culture in osteogenic medium alone. This was designed to promote direct bone formation as seen in intramembranous ossification (IMO). The developmentally informed method reported in this study represents a robust and efficacious approach for stem-cell based bone generation, which is superior to the conventional osteogenic induction procedure.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 0142-9612
    Electronic ISSN: 1878-5905
    Topics: Biology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Medicine
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019
    Description: 〈p〉Publication date: September 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Fish & Shellfish Immunology, Volume 92〈/p〉 〈p〉Author(s): Bin Zhong, Zeyin Jiang, Zhenhuang Chen, Kazue Ishihara, Huilin Mao, Shanghong Wang, Gang Lin, Chengyu Hu〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Recently, studies have shown that IκB kinase β (IKKβ), a critical kinase in the nucleus factor kappa-B (NF-κB) pathway, participates in inflammatory responses associated with unfolded protein response (UPR) and plays an important role in ER stress-induced cell death. The unfolded protein response (UPR), which is a regulatory system to restore cellular homeostasis in the endoplasmic reticulum (ER), such as oxidative stress, bacterial infection, and virus invasion. The UPR pathways have been reported to be involved in immune responses in mammals, including the classical NF-κB pathway. However, the molecular mechanism of their crosstalk remains to be elucidated. Previously, we demonstrated that IKKβ also has some conserved functions between fish and human, as grass carp (〈em〉Ctenopharyngodon idella〈/em〉) IKKβ (CiIKKβ) can activate NF-κB pathway. In this study, we found that CiIKKβ level in nucleus was elevated under ER stress and CiIKKβ can interact with grass carp X-box-binding protein 1 (CiXBP1S), a key transcription factor in UPR. Consistently, fluorescent histochemical analysis of grass carp kidney (CIK) cells indicated that CiIKKβ and CiXBP1S colocalized under ER stress. Furthermore, overexpression of CiIKKβ in CIK cells enhanced ER stress tolerance by regulating UPR signaling and resulted in the significant increase of cell viability.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 1050-4648
    Electronic ISSN: 1095-9947
    Topics: Biology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Medicine
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019
    Description: 〈p〉Publication date: September 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Fish & Shellfish Immunology, Volume 92〈/p〉 〈p〉Author(s): Lu-Yun Ni, Qing Han, Hong-Ping Chen, Xiao-Chun Luo, An-Xing Li, Xue-Ming Dan, Yan-Wei Li〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Macrophage expressed gene 1 (Mpeg1) is a molecule that can form pores and destroy the cell membrane of invading pathogens. In this study, we identified two Mpeg1 isoforms from the orange-spotted grouper (〈em〉Epinephelus coioides〈/em〉) and named them EcMpeg1a and EcMpeg1b. Predicted proteins of the two EcMpeg1s contained a signal peptide, a conserved membrane attack complex/perforin (MACPF) domain, a transmembrane segment, and an intracellular region. Sequence alignment demonstrated that two EcMpeg1 proteins share a high sequence identity with that of other teleosts. Tissue distribution analysis showed that EcMpeg1s were expressed in all tissues tested in healthy grouper, with the highest expression in the head kidney and spleen. After infection with the ciliate parasite 〈em〉Cryptocaryon irritans〈/em〉, expression of the two EcMpeg1s was significantly upregulated in the spleen and gills. Furthermore, the recombinant EcMpeg1a showed antiparasitic and antibacterial activity against Gram-negative and -positive bacteria, whereas EcMpeg1b had an inhibitory effect only against Gram-positive bacteria. These results indicated that EcMpeg1s play an important role in the host response against invading pathogens.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 1050-4648
    Electronic ISSN: 1095-9947
    Topics: Biology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Medicine
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019
    Description: 〈p〉Publication date: October 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biomaterials, Volume 217〈/p〉 〈p〉Author(s): Jun Yang, Shaodong Zhai, Huan Qin, He Yan, Da Xing, Xianglong Hu〈/p〉
    Print ISSN: 0142-9612
    Electronic ISSN: 1878-5905
    Topics: Biology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Medicine
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019
    Description: 〈p〉Publication date: September 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Fish & Shellfish Immunology, Volume 92〈/p〉 〈p〉Author(s): Pengfei Chu, Libo He, Cheng Yang, Wencheng Zeng, Rong Huang, Lanjie Liao, Yongming Li, Zuoyan Zhu, Yaping Wang〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Autophagy is an essential and conserved process that plays an important role in physiological homeostasis, adaptive response to stress and the immune response. Autophagy-related proteins (ATGs) are key components of the autophagic machinery. In the study, grass carp (〈em〉Ctenopharyngodon idella〈/em〉) autophagy-related gene 5 (〈em〉ATG5〈/em〉) and 12 (〈em〉ATG12〈/em〉) were identified. In the gill and intestine, 〈em〉ATG5〈/em〉 and 〈em〉ATG12〈/em〉 were highly expressed, but after grass carp reovirus (GCRV) infection, they were decreased significantly. In 〈em〉Ctenopharyngodon idella〈/em〉 kidney (CIK) cells, the sharp variation of 〈em〉ATG5〈/em〉 and 〈em〉ATG12〈/em〉 expression was observed after poly(I:C) infection. Subcellular localisation showed that ATG5 and ATG12 were evenly distributed in the cytoplasm and nucleus. However, the interaction between ATG5 and ATG12 was only found in cytoplasm in both 293T cells and CIK cells. In addition, the overexpression of ATG5 or ATG12 in 293T cells showed enhanced autophagy, and autophagic process was facilitated when ATG5 and ATG12 were simultaneously overexpressed. Dual-luciferase activity assay indicated that both ATG5 and ATG12 remarkably suppressed the promoter activity of 〈em〉IRF3〈/em〉, 〈em〉IRF7〈/em〉, and 〈em〉IFN-I〈/em〉. Further, ATG5 and ATG12 conjugate showed far stronger inhibitory affection on the expression of 〈em〉IFN-I〈/em〉 than either ATG5 or ATG12 in response to poly(I:C) or GCRV infection. Taken together, the results demonstrate that grass carp ATG5 and ATG12 play an important role in innate immunity and autophagy.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 1050-4648
    Electronic ISSN: 1095-9947
    Topics: Biology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Medicine
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019
    Description: 〈p〉Publication date: September 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Fish & Shellfish Immunology, Volume 92〈/p〉 〈p〉Author(s): Chao Xu, Wen-Bin Liu, Sofie Charlotte Remø, Bing-Ke Wang, Hua-Juan Shi, Li Zhang, Jia-Dai Liu, Xiang-Fei Li〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉This study investigated the effects of restricted feeding on the growth performance, oxidative stress and inflammation of 〈em〉Megalobrama amblycephala〈/em〉 fed high-carbohydrate (HC) diets. Fish (46.94 ± 0.04 g) were randomly assigned to four groups containing the satiation of a control diet (30% carbohydrate) and three satiate levels (100% (HC1), 80% (HC2) and 60% (HC3)) of the HC diets (43% carbohydrate) for 8 weeks. Results showed that HC1 diet remarkably decreased final weight (FW), weight gain rate (WGR), specific growth rate (SGR), feed conversion ratio (FCR), hepatic activities of total anti-oxidation capacity (T-AOC), superoxide dismutase (SOD) and catalase (CAT), the AMP/ATP ratio, the p-AMPKα/t-AMPKα ratio, sirtuin-1 (SIRT1) protein expression and hepatic transcriptions of AMPKα2, SIRT1, nuclear factor erythroid 2-related factor 2 (Nrf2), catalase (CAT), manganese superoxide dismutase (Mn-SOD), glutathione peroxidase 1 (GPx1) and interleukin10 (IL 10) compared to the control group, whereas the opposite was true for protein efficiency ratio (PER), nitrogen retention efficiency (NRE), energy retention efficiency (ERE), plasma glucose levels, alanine transaminase (AST) and aspartate aminotransferase (ALT) activities, hepatic contents of malondialdehyde (MDA), tumour necrosis factor α (TNF α) and interleukin 1β (IL 1β), ATP and AMP contents and hepatic transcriptions of kelch-like ECH associating protein 1 (Keap1), IkB kinase α (IKK α), nuclear factor kappa B (NF-κB), TNF α, IL 1β, interleukin 6 (IL 6) and transforming growth factor β (TGF β). As for the HC groups, fish fed the HC2 diet obtained relatively high values of SGR, PER, NRE, ERE, hepatic activities of T-AOC, SOD and CAT, the AMP/ATP ratio, the p-AMPKα/t-AMPKα ratio, SIRT1 protein expression and hepatic transcriptions of AMPKα2, Nrf2, CAT, copper/zinc superoxide dismutase (Cu/Zn-SOD), Mn-SOD, GPx1, glutathione S-transferase (GST) and interleukin10 (IL 10), while the opposite was true for hepatic content of IL 6 and transcription of IKK α. Overall, an 80% satiation improved the growth performance and alleviated the oxidative stress and inflammation of blunt snout bream fed HC diets via the activation of the AMPK-SIRT1 pathway and the up-regulation of the activities and transcriptions of Nrf2-modulated antioxidant enzymes coupled with the depression of the levels and transcriptions of the NF-κB-mediated pro-inflammatory cytokines.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 1050-4648
    Electronic ISSN: 1095-9947
    Topics: Biology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Medicine
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019
    Description: 〈p〉Publication date: September 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Fish & Shellfish Immunology, Volume 92〈/p〉 〈p〉Author(s): Jiangfan Zhang, Chuanju Dong, Junchang Feng, Junpeng Li, Shengjie Li, Jianxin Feng, Xiaodi Duan, Gaigai Sun, Peng Xu, Xuejun Li〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉〈em〉HIFs〈/em〉 (Hypoxia inducible factors) are the main regulators of the expression change of oxygen-dependent genes, in addition, they also play important roles in immune regulation. 〈em〉HIFs〈/em〉 participate in infectious diseases and inflammatory responses, providing us a new therapeutic target for the treatment of diseases. In this study, 16 〈em〉HIFs〈/em〉 were identified in common carp genome database. Comparative genomics analysis showed large expansion of 〈em〉HIF〈/em〉 gene family and approved the four round whole genome duplication (WGD) event in common carp. To further understand the function of 〈em〉HIFs〈/em〉, the domain architectures were predicted. All HIF proteins had the conserved HLH-PAS domain, which were essential for them to form dimer and bind to the downstream targets. The differences in domain of HIFα and HIFβ might result in their different functions. Phylogenetic analysis revealed that all 〈em〉HIFs〈/em〉 were divided into two subfamilies and the 〈em〉HIFs〈/em〉 in common carp were clustered with their teleost counterparts indicating they are highly conservative during evolution. In addition, the tissue distribution was examined by RT-PCR showed that most of 〈em〉HIF〈/em〉 genes had a wide range of tissue distribution but exhibited tissue-specific expression patterns. The expression divergences were observed between the copy genes, for example, 〈em〉HIF1A-1〈/em〉, 〈em〉HIF2A-1〈/em〉, 〈em〉ARNT-〈/em〉2 had wide tissue distribution while their copies had limited tissue distribution, proving the function divergence of copies post the WGD event. In order to find an effective activation of 〈em〉HIFs〈/em〉 and apply to treatment of aquatic diseases, we investigate the dietary supplementation effects of different strains of 〈em〉Lactococcus lactis〈/em〉 on the expression of 〈em〉HIFα〈/em〉 subfamily members in kidney of common carp infected with 〈em〉A. hydrophila〈/em〉. In addition, all of the 〈em〉HIF〈/em〉 genes have a high expression in the early stages of infection, and decreased in the treatment time point of 48 h in common carp. This phenomenon confirms that as a switch, the main function of 〈em〉HIFs〈/em〉 is to regulate the production of immune response factors in early infection. So activation of the switch may be an effective method for infectious disease treatment. As expected, the treatment groups improved the expression of 〈em〉HIFs〈/em〉 compared with the control group, and the effects of the three strains are different. The strain1 of 〈em〉L. lactis〈/em〉 had a stronger induction on 〈em〉HIF〈/em〉 genes than strain2 and strain3, and it might be applied as a potential activation of 〈em〉HIF〈/em〉 genes for disease treatment. So, adding befitting 〈em〉L. lactis〈/em〉 maybe a well method to activate the 〈em〉HIF〈/em〉 genes to protect them from mycobacterial infection.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 1050-4648
    Electronic ISSN: 1095-9947
    Topics: Biology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Medicine
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019
    Description: 〈p〉Publication date: September 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Fish & Shellfish Immunology, Volume 92〈/p〉 〈p〉Author(s): K.A.S.N. Shanaka, M.D. Neranjan Tharuka, Thanthrige Thiunuwan Priyathilaka, Jehee Lee〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Viperin, also known as RSAD2 (Radical S-adenosyl methionine domain containing 2), is an interferon-induced endoplasmic reticulum-associated antiviral protein. Previous studies have shown that viperin levels are elevated in the presence of viral RNA, but it has rarely been characterized in marine organisms. This study was designed to functionally characterize rockfish viperin (〈em〉SsVip〈/em〉), to examine the effects of different immune stimulants on its expression, and to determine its subcellular localization. SsVip is a 349 amino acid protein with a predicted molecular mass of 40.24 kDa. It contains an S-adenosyl 〈span〉l〈/span〉-methionine binding conserved domain with a CNYKCGFC sequence. Unchallenged tissue expression analysis using quantitative real time PCR (qPCR) revealed 〈em〉SsVip〈/em〉 expression to be the highest in the blood, followed by the spleen. When challenged with poly I:C, 〈em〉SsVip〈/em〉 was upregulated by approximately 60-fold in the blood after 24 h, and approximately 50-fold in the spleen after 12 h. Notable upregulation was detected throughout the poly I:C challenge experiment in both tissues. Significant expression of 〈em〉SsVip〈/em〉 was detected in the blood following 〈em〉Streptococcus iniae〈/em〉 and lipopolysaccharide challenge, and viral hemorrhagic septicemia virus (VHSV) gene transcription was significantly downregulated during SsVip overexpression. Furthermore, cell viability assay and virus titer quantification with the presence of SsVip revealed a significant reduction in virus replication. As with previously identified viperin counterparts, SsVip was localized in the endoplasmic reticulum. Our findings show that SsVip is an antiviral protein crucial to innate immune defense.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 1050-4648
    Electronic ISSN: 1095-9947
    Topics: Biology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Medicine
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2019
    Description: 〈p〉Publication date: October 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biomaterials, Volume 217〈/p〉 〈p〉Author(s): Xiao-Juan Wang, Gao-Feng Shu, Xiao-Ling Xu, Chen-Han Peng, Chen-Ying Lu, Xing-Yao Cheng, Xiang-Chao Luo, Jie Li, Jing Qi, Xu-Qi Kang, Fei-Yang Jin, Min-Jiang Chen, Xiao-Ying Ying, Jian You, Yong-Zhong Du, Jian-Song Ji〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Spinal cord injury (SCI) leads to immediate disruption of neuronal membranes and loss of neurons, followed by extensive secondary injury process. Treatment of SCI still remains a tremendous challenge clinically. Minocycline could target comprehensive secondary injury via anti-inflammatory, anti-oxidant and anti-apoptotic mechanisms. Polyethylene glycol (PEG), a known sealing agent, is able to seal the damaged cell membranes and reduce calcium influx, thereby exerting neuroprotective capacity. Here, an E-selectin-targeting sialic acid - polyethylene glycol – poly (lactic-co-glycolic acid) (SAPP) copolymer was designed for delivering hydrophobic minocycline to achieve combinational therapy of SCI. The obtained SAPP copolymer could self-assemble into micelles with critical micelle concentration being of 13.40 μg/mL, and effectively encapsulate hydrophobic minocycline. The prepared drug-loaded micelles (SAPPM) displayed sustained drug release over 72 h, which could stop microglia activation and exhibited excellent neuroprotective capacity 〈em〉in vitro〈/em〉. The SAPP micelles were efficiently accumulated in the lesion site of SCI rats via the specific binding between sialic acid and E-selectin. Due to the targeting distribution and combinational effect between PEG and minocycline, SAPPM could obviously reduce the area of lesion cavity, and realize more survival of axons and myelin sheaths from the injury, thus distinctly improving hindlimb functional recovery of SCI rats and conferring superior therapeutic effect in coparison with other groups. Our work presented an effective and safe strategy for SCI targeting therapy. Besides, neuroprotective capacity of PEG deserves further investigation on other central nervous system diseases.〈/p〉〈/div〉 〈/div〉 〈h5〉Graphical abstract〈/h5〉 〈div〉〈p〉〈figure〉〈img src="https://ars.els-cdn.com/content/image/1-s2.0-S0142961219304259-fx1.jpg" width="312" alt="Image 1" title="Image 1"〉〈/figure〉〈/p〉〈/div〉
    Print ISSN: 0142-9612
    Electronic ISSN: 1878-5905
    Topics: Biology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Medicine
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2019
    Description: 〈p〉Publication date: October 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biomaterials, Volume 217〈/p〉 〈p〉Author(s): Dandan Zhang, Liewei Wen, Ru Huang, Huanhuan Wang, Xianglong Hu, Da Xing〈/p〉
    Print ISSN: 0142-9612
    Electronic ISSN: 1878-5905
    Topics: Biology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Medicine
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2019
    Description: 〈p〉Publication date: October 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biomaterials, Volume 218〈/p〉 〈p〉Author(s): Shao-Kai Sun, Jian-Cheng Wu, Haoyu Wang, Li Zhou, Cai Zhang, Ran Cheng, Di Kan, Xuejun Zhang, Chunshui Yu〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Bioavailable persistent luminescence material is an ideal internal light source for long-term photodynamic therapy, but inevitably suffers from low utilization efficiency and weak persistent luminescence due to corrosion and screening processes. Herein, we show a facile and smart “turning solid into gel” strategy to fabricate persistent luminescence hydrogel for high-efficient persistent luminescence-sensitized photodynamic therapy. The homogeneous persistent luminescence hydrogel was synthesized via dispersing high-temperature calcined persistent luminescence material without corrosion and screening into a biocompatible alginate-Ca〈sup〉2+〈/sup〉 hydrogel. The simple synthesis strategy allows 100% of utilization efficiency and intact persistent luminescence of persistent luminescence material. The persistent luminescence hydrogel possesses favorable biocompatibility, bright persistent luminescence, red light renewability, good syringeability, and strong fixing ability in tumors. The persistent luminescence hydrogel can be easily injected in vivo as a powerful localized light source for superior persistent luminescence-sensitized photodynamic therapy of tumors. The “turning solid into gel” strategy enables taking full advantages of persistent luminescence for biological applications, and shows great potential in utilizing diverse theranostic agents regardless of hydrophilicity and hydrophobicity.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 0142-9612
    Electronic ISSN: 1878-5905
    Topics: Biology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Medicine
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2019
    Description: 〈p〉Publication date: October 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biomaterials, Volume 218〈/p〉 〈p〉Author(s): Shijie Zhen, Xiaoqing Yi, Zujin Zhao, Xiaoding Lou, Fan Xia, Ben Zhong Tang〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉The combination of photodynamic therapy (PDT) and chemotherapy (CT) offers a promising approach for the tumor eradication for overcoming multidrug resistance (MDR), which is a major obstacle to effective cancer treatment. However, for PDT, simultaneously achieving near-infrared (NIR) emission and efficient reactive oxygen species (ROS) generation with low dark toxicity is urgently needed but remains challenging. Herein, a series of novel fluorophores with strong NIR emission, hybridized local and charge transfer characteristics, good two-photon absorption, high photostability, low dark cytotoxicity and excellent ROS generation ability are developed. By encapsulating the NIR fluorophore (DEB-BDTO) as a photosensitizer along with a drug resistance inhibitor tariquidar (TQR) within a polymeric prodrug (PMP), a reduction-sensitive drug co-delivery system (DEB/TQR@PMP micelles) is constructed. The DEB/TQR@PMP micelles exhibit a prominent synergistic lethal effect of PDT and CT on SKOV-3 cells and SKOV-3/MDR cells, and can apparently enhance the inhibition of tumor growth compared with sole PDT or CT in the tumor-bearing mouse model. Both in vitro and in vivo experiments prove that the new NIR fluorophores are excellent photosensitizers and can furnish an efficient combination therapy of image-guided PDT and CT within drug delivery micelles, which is particularly useful for eradicating multidrug resistance cancer.〈/p〉〈/div〉 〈/div〉 〈h5〉Graphical abstract〈/h5〉 〈div〉〈p〉〈figure〉〈img src="https://ars.els-cdn.com/content/image/1-s2.0-S0142961219304296-fx1.jpg" width="500" alt="Image 1" title="Image 1"〉〈/figure〉〈/p〉〈/div〉
    Print ISSN: 0142-9612
    Electronic ISSN: 1878-5905
    Topics: Biology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Medicine
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2019
    Description: 〈p〉Publication date: Available online 1 July 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Seminars in Cell & Developmental Biology〈/p〉 〈p〉Author(s): Tânia Capelôa, Zohra Benyahia, Luca X. Zampieri, Marine C.N.M. Blackman, Pierre Sonveaux〈/p〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Anthracyclines Doxorubicin, Epirubicin, Daunorubicin and Idarubicin are used to treat a variety of tumor types in the clinics, either alone or, most often, in combination therapies. While their cardiotoxicity is well known, the emergence of chemoresistance is also a major issue accounting for treatment discontinuation. Resistance to anthracyclines is associated to the acquisition of multidrug resistance conferred by overexpression of permeability glycoprotein-1 or other efflux pumps, by altered DNA repair, changes in topoisomerase II activity, cancer stemness and metabolic adaptations. This review further details the metabolic aspects of resistance to anthracyclines, emphasizing the contributions of glycolysis, the pentose phosphate pathway and nucleotide biosynthesis, glutathione, lipid metabolism and autophagy to the chemoresistant phenotype.〈/p〉〈/div〉
    Print ISSN: 1084-9521
    Electronic ISSN: 1096-3634
    Topics: Biology , Medicine
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2019
    Description: 〈p〉Publication date: October 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biomaterials, Volume 217〈/p〉 〈p〉Author(s): Yanlin Feng, Yan Cheng, Yun Chang, Hui Jian, Runxiao Zheng, Xiaqing Wu, Keqiang Xu, Li Wang, Xiaomin Ma, Xi Li, Haiyuan Zhang〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Photochemotherapy is currently an effective anticancer therapy. Recently, it has been reported that cancer cells pretreated with epidermal growth factor receptor (EGFR) inhibitor erlotinib (Erl) can significantly synergize its apoptosis against the DNA damaging agent doxorubicin (Dox). As a result, we designed two gold nanocages (Au NCs) microcontainers covered with different smart polymer shell-PAA (pH responsive) and 〈em〉p〈/em〉 (NIPAM-co-AM) (temperature responsive) containing Erl and Dox respectively. The acidic tumor microenvironment and NIR light irradiation can selectively activate the release of Erl and Dox. Time staggered release of Erl and Dox and photothermal therapy enhance the apoptotic signaling pathways, resulting in improved tumor cell killing in both MCF-7 (low EGFR expression) and A431 (very high EGFR expression) tumor cells, but more efficient in the latter. The photochemotherapy strategy controls the order and duration of drug exposure precisely in spatial and temporal, and significantly improves the therapeutic efficacy against high EGFR expressed tumors.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 0142-9612
    Electronic ISSN: 1878-5905
    Topics: Biology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Medicine
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2019
    Description: 〈p〉Publication date: October 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biomaterials, Volume 217〈/p〉 〈p〉Author(s): Alexander J. Engler, Micha Sam B. Raredon, Andrew V. Le, Yifan Yuan, Yan A. Oczkowicz, Ellen L. Kan, Pavlina Baevova, Laura E. Niklason〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Microvascular leak is a phenomenon witnessed in multiple disease states. In organ engineering, regaining a functional barrier is the most crucial step towards creating an implantable organ. All previous methods of measuring microvascular permeability were either invasive, lengthy, introduced exogenous macromolecules, or relied on extrapolations from cultured cells. We present here a system that enables real-time measurement of microvascular permeability in intact rat lungs. Our unique system design allows direct, non-invasive measurement of average alveolar and capillary pressures, tracks flow paths within the organ, and enables calculation of lumped internal resistances including microvascular barrier. We first describe the physiology of native and decellularized lungs and the inherent properties of the extracellular matrix as functions of perfusion rate. We next track changing internal resistances and flows in injured native rat lungs, resolving the onset of microvascular leak, quantifying changing vascular resistances, and identifying distinct phases of organ failure. Finally, we measure changes in permeability within engineered lungs seeded with microvascular endothelial cells, quantifying cellular effects on internal vascular and barrier resistances over time. This system marks considerable progress in bioreactor design for intact organs and may be used to monitor and garner physiological insights into native, decellularized, and engineered tissues.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 0142-9612
    Electronic ISSN: 1878-5905
    Topics: Biology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Medicine
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2019
    Description: 〈p〉Publication date: Available online 30 August 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biomaterials〈/p〉 〈p〉Author(s): Yan Zhang, Lu Zhang, Zhenzhen Wang, Faming Wang, Lihua Kang, Fangfang Cao, Kai Dong, Jinsong Ren, Xiaogang Qu〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Covalent organic frameworks (COFs) and their derivatives represent an emerging class of crystalline porous materials with broad potential applications. However, the biomedical applications of them were limited by the large size, low dispersivity, poor bioavailability within cells and metabolic problems. Herein, renal-clearable ultrasmall COF nanodots have been synthesized and utilized as efficient cancer therapy agents. A simple liquid exfoliation strategy was used to prepare COF nanodots. After polyethylene glycol (PEG) conjugation, the PEG coated COF nanodots (COF nanodots-PEG) showed improved physiological stability and biocompatibility. In addition, the well isolated porphyrin molecules endowed COF nanodots-PEG good light-triggered reactive oxygen species production ability, which showed excellent photodynamic therapy efficiency with good tumor accumulation ability. In particular, due to the ultrasmall size, COF nanodots-PEG could be cleared from the body through the renal filtration with no appreciable in vivo toxicity. Our study highlights the potential of COFs-based nanoparticles for biomedical applications.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 0142-9612
    Electronic ISSN: 1878-5905
    Topics: Biology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Medicine
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2019
    Description: 〈p〉Publication date: November 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biomaterials, Volume 222〈/p〉 〈p〉Author(s): Eun Young Jeon, Jungho Lee, Bum Ju Kim, Kye Il Joo, Ki Hean Kim, Geunbae Lim, Hyung Joon Cha〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Significant tissue damage, scarring, and an intense inflammatory response remain the greatest concerns for conventional wound closure options, including sutures and staples. In particular, wound closure in internal organs poses major clinical challenges due to air/fluid leakage, local ischemia, and subsequent impairment of healing. Herein, to overcome these limitations, inspired by endoparasites that swell their proboscis to anchor to host's intestines, we developed a hydrogel-forming double-layered adhesive microneedle (MN) patch consisting of a swellable mussel adhesive protein (MAP)-based shell and a non-swellable silk fibroin (SF)-based core. By possessing tissue insertion capability (7-times greater than the force for porcine skin penetration), MAP-derived surface adhesion, and selective swelling-mediated physical entanglement, our hydrogel-forming adhesive MN patch achieved 〈em〉ex vivo〈/em〉 superior wound sealing capacity against luminal leaks (139.7 ± 14.1 mmHg), which was comparable to suture (151.0 ± 23.3 mmHg), as well as 〈em〉in vivo〈/em〉 excellent performance for wet and/or dynamic external and internal tissues. Collectively, our bioinspired adhesive MN patch can be successfully used in diverse practical applications ranging from vascular and gastrointestinal wound healing to transdermal delivery for pro-regenerative or anti-inflammatory agents to target tissues.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 0142-9612
    Electronic ISSN: 1878-5905
    Topics: Biology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Medicine
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2019
    Description: 〈p〉Publication date: October 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Fish & Shellfish Immunology, Volume 93〈/p〉 〈p〉Author(s): Jing Li, Zhi-Bin Wu, Zhao Zhang, Ji-Wei Zha, Shen-Ye Qu, Xiao-Zhou Qi, Gao-Xue Wang, Fei Ling〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Nowadays, there is no suitable treatment for vibriosis in groupers. So an eco-efficient and environmentally friendly treatment is necessary for the grouper industry. Probiotic-feeding has been a promising strategy to control the bacterial pathogens in aquaculture. A new 〈em〉Bacillus velezensis〈/em〉 strain named K2 was isolated from the intestinal tract of healthy grouper, and exhibited wide antimicrobial spectrum of against fish pathogens, including 〈em〉Vibrio harveyi〈/em〉, 〈em〉Vibrio alginolyticus〈/em〉, 〈em〉Aeromonas hydrophila〈/em〉, 〈em〉Aeromonas veronii〈/em〉, 〈em〉Aeromonas caviae〈/em〉, 〈em〉Enterococcus casseliflavus〈/em〉 and 〈em〉Lactococcus garvieae〈/em〉. Moreover, results of the safety of 〈em〉B. velezensis〈/em〉 K2 showed that intraperitoneal injection of K2 in healthy grouper did not cause any pathological abnormality or death, indicating this bacteria could be considered as a candidate probiotic in aquaculture. Groupers were fed with the diets containing 1 × 10〈sup〉7〈/sup〉 cfu/g of 〈em〉B. velezensis〈/em〉 K2 for 4 weeks. Various immune parameters were examined at 1, 2, 3, and 4 weeks of post-feeding. Results showed that diets supplemented with K2 significantly increased serum acid phosphatase (ACP) activity (〈em〉P〈/em〉 〈 0.05). Results of the mRNA expression of immune-related genes in the head kidney of hybrid grouper showed that the expression of lysozyme gene was significantly upregulated after 1 and 2 weeks of feeding (〈em〉P〈/em〉 〈 0.05). A significant up-regulation of the expression of piscidin, IgM and MyD88 were detected at day 21, whereas the TLR3 and TLR5 showed lower expression compared to the controls during 21 days, and a significant decrease of TLR3 gene was found at day 28 (〈em〉P〈/em〉 〈 0.05). After challenge with 〈em〉V. harveyi〈/em〉, the survival rate of fish administrated with the strain K2 for 28 days was signifiacantly higher than the controls without this strain (〈em〉P〈/em〉 〈 0.05). These results collectively suggest that 〈em〉B. velezensis〈/em〉 K2 is a potential probiotic species to improve health status and disease resistance and can be developed as a probiotic agent in grouper industry.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 1050-4648
    Electronic ISSN: 1095-9947
    Topics: Biology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Medicine
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2019
    Description: 〈p〉Publication date: October 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Fish & Shellfish Immunology, Volume 93〈/p〉 〈p〉Author(s): Phennapa Promthale, Pattira Pongtippatee, Boonsirm Withyachumnarnkul, Kanokpan Wongprasert〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Fishmeal is the main source of protein in the shrimp feed industry and is normally derived from trash fish. As such, the production of fishmeal has an adverse effect on the marine environment by taking away small and juvenile fish, leading to depletion of marine species. There is a need for alternative sources of protein which will substitute fishmeal in the aquaculture industry. This study evaluated the components and nutritional efficacy of bioflocs, which were used to substitute fishmeal protein. The effect of bioflocs diets on growth performance, survival rate, and immune response in shrimp compared to normal fishmeal feed were determined. Bioflocs were harvested from the shrimp ponds (C:N ratio 〉12:1) at Shrimp Village, Chaiya district, Surat Thani, Thailand. The total protein in bioflocs was about 48% and the total lipid was about 5% (dried weight) and the percentages of essential amino acids (EAA) and fatty acids (EFA) in bioflocs were similar to those of fishmeal feed. Shrimp fed with the different dietary bioflocs feed regimens [% to replace fishmeal; 0% (B0), 25% (B25), 50% (B50), 75% (B75), and 100% (B100)] for 42 days revealed that all growth parameters were almost similar to those of the control shrimp (shrimp fed with normal fishmeal, B0) including final body weight, weight gain, specific growth rate, and feed conversion ratio. Remarkably, the survival rates, the levels of immune parameters, and expression of immune genes (proPO-I, PEN-4 and dicer) were significantly higher in bioflocs fed shrimp, especially in B25 and B50 shrimp. Moreover, B25 and B50 bioflocs fed shrimp showed notably increased survival rates following 〈em〉Vibrio parahaemolyticus (V. parahaemolyticus)〈/em〉 infection. In conclusion, the present study demonstrates that shrimp survival and immunity are enhanced by biofiocs substituted fishmeal. Significantly, the bioflocs diets activated the immune response to prevent 〈em〉V. parahaemolyticus〈/em〉 infection.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 1050-4648
    Electronic ISSN: 1095-9947
    Topics: Biology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Medicine
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2019
    Description: 〈p〉Publication date: October 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Fish & Shellfish Immunology, Volume 93〈/p〉 〈p〉Author(s): Sarah J. Poynter, Shanee Herrington-Krause, Stephanie J. DeWitte-Orr〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉In mammals, the multifunctional DExH/D-box helicases, DDX3 and DHX9, are nucleic acid sensors with a role in antiviral immunity; their role in innate immunity in fish is not yet understood. In the present study, full-length DDX3 and DHX9 coding sequences were identified in rainbow trout (〈em〉Oncorhynchus mykiss)〈/em〉. Bioinformatic analysis demonstrated both deduced proteins were similar to those of other species, with ~80% identity to other fish species and ~70–75% identity to mammals, and both protein sequences had conserved domains found amongst all species. Phylogenetic analysis revealed clustering of DDX3 and DHX9 with corresponding proteins from other fish. Cellular localization of overexpressed DDX3 and DHX9 was performed using GFP-tagged proteins, and endogenous DDX3 localization was measured using immunocytochemistry. In the rainbow trout gonadal cell line, RTG-2, DHX9 localized mostly to the nucleus, while DDX3 was found mainly in the cytoplasm. Tissue distribution from healthy juvenile rainbow trout revealed ubiquitous constitutive expression, highest levels of DDX3 expression were seen in the liver and DHX9 levels were fairly consistent among all tissues tested. Stimulation of RTG-2 cells revealed that DDX3 and DHX9 transcripts were both significantly upregulated by treatment with the dsRNA molecule, poly I:C. A pull-down assay suggested both proteins were able to bind dsRNA. In addition to their roles in RNA metabolism, the conserved common domains found between the rainbow trout proteins and other species having defined antiviral roles, combined with the ability for the proteins to bind to dsRNA, suggest these proteins may play an important role in fish innate antiviral immunity. Future studies on both DDX3 and DHX9 function will contribute to a better understanding of teleost immunity.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 1050-4648
    Electronic ISSN: 1095-9947
    Topics: Biology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Medicine
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2019
    Description: 〈p〉Publication date: November 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Fish & Shellfish Immunology, Volume 94〈/p〉 〈p〉Author(s): Ke-Cheng Zhu, Hua-Yang Guo, Nan Zhang, Bao-Suo Liu, Liang Guo, Shi-Gui Jiang, Dian-Chang Zhang〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Interferon regulatory factor 8 (IRF8) increases type I IFN transcription levels by binding to IFN promoters, thereby playing a role in innate immunity. Nevertheless, the detailed mechanism through which IRF8 regulates type II IFN in fish remains ambiguous. In the present study, two genes from the golden pompano (〈em〉Trachinotus ovatus〈/em〉), 〈em〉IRF8〈/em〉 (〈em〉ToIRF8〈/em〉) and 〈em〉IFN gamma〈/em〉 (〈em〉ToIFNγ〈/em〉), were identified in the IFN/IRF-based signalling pathway. The full-length 〈em〉ToIRF8〈/em〉 cDNA was composed of 2,141 bp and encoded a 421 amino acid polypeptide; the genomic DNA was 2,917 bp in length and consisted of 8 exons and 7 introns. The putative protein showed the highest sequence identity (90–92%) with fish IRF8 and possessed a DNA-binding domain (DBD), an IRF-association domain (IAD) and a nuclear localization signal (NLS) motif consistent with those of IRF8 in other vertebrates. Furthermore, the 〈em〉ToIRF8〈/em〉 transcripts were expressed in all examined tissues of healthy fish, with higher levels observed in the central nervous and immune relevant tissues. They were upregulated by polyinosinic acid: polycytidylic acid [poly (I: C)], lipopolysaccharide (LPS) and flagellin treatments in the blood, liver, intestine and kidney. The results from assays of subcellular localization showed that 〈em〉ToIRF8〈/em〉 was localized to the cytoplasm. Moreover, to investigate whether ToIRF8 was a regulator of 〈em〉ToIFNγ〈/em〉, a promoter analysis was performed using progressive deletion mutations of 〈em〉ToIFNγ〈/em〉. The results indicated that the region from −601 bp to −468 bp includes the core promoter. Mutation analyses indicated that the activity of the 〈em〉ToIFNγ〈/em〉 promoter significantly decreased after the targeted mutation of the M1-M3 binding sites. Additionally, overexpressed 〈em〉ToIRF8〈/em〉 in vitro notably increased the expression of several IFN/IRF-based signalling pathway genes. These results suggest that 〈em〉IRF8〈/em〉 is vital in the defence of 〈em〉T. ovatus〈/em〉 against bacterial infection and contributes to a better understanding of the transcriptional mechanisms of ToIRF8 on type II IFN in fish.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 1050-4648
    Electronic ISSN: 1095-9947
    Topics: Biology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Medicine
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2019
    Description: 〈p〉Publication date: October 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Fish & Shellfish Immunology, Volume 93〈/p〉 〈p〉Author(s): Tetsuro Ikuta, Akihiro Tame, Masaki Saito, Yui Aoki, Yukiko Nagai, Makoto Sugimura, Koji Inoue, Katsunori Fujikura, Kazue Ohishi, Tadashi Maruyama, Takao Yoshida〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉In symbiotic systems in which symbionts are transmitted horizontally, hosts must accept symbionts from the environment while defending themselves against invading pathogenic microorganisms. How they distinguish pathogens from symbionts and how the latter evade host immune defences are not clearly understood. Recognition of foreign materials is one of the most critical steps in stimulating immune responses, and pattern recognition receptors (PRRs) play vital roles in this process. In this study, we focused on a group of highly conserved PRRs, peptidoglycan recognition proteins (PGRPs), in the deep-sea mussel, 〈em〉Bathymodiolus septemdierum〈/em〉, which harbours chemosynthetic bacteria in their gill epithelial cells. We isolated 〈em〉B. septemdierum〈/em〉 PGRP genes 〈em〉BsPGRP-S〈/em〉 and 〈em〉BsPGRP-L〈/em〉, which encode a short- and a long-type PGRP, respectively. The short-type PGRP has a signal peptide and was expressed in the asymbiotic goblet mucous cells in the gill epithelium, whereas the long-type PGRP was predicted to include a transmembrane domain and was expressed in gill bacteriocytes. Based on these findings, we hypothesize that the secreted and transmembrane PGRPs are engaged in host defence against pathogenic bacteria and/or in the regulation of symbiosis via different cellular localizations and mechanisms.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 1050-4648
    Electronic ISSN: 1095-9947
    Topics: Biology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Medicine
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2019
    Description: 〈p〉Publication date: October 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Fish & Shellfish Immunology, Volume 93〈/p〉 〈p〉Author(s): Guilherme Rabelo Coelho, Pedro Prezotto Neto, Fernanda Cortinhas Barbosa, Rafael Silva Dos Santos, Patrícia Brigatte, Patrick Jack Spencer, Sandra Coccuzzo Sampaio, Fernanda D’Amélio, Daniel Carvalho Pimenta, Juliana Mozer Sciani〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Stingrays skin secretions are largely studied due to the human envenoming medical relevance of the sting puncture that evolves to inflammatory events, including necrosis. Such toxic effects can be correlated to the biochemical composition of the sting mucus, according to the literature. Fish skin plays important biological roles, such as the control of the osmotic pressure gradient, protection against mechanical forces and microorganism infections. The mucus, on the other hand, is a rich and complex fluid, acting on swimming, nutrition and the innate immune system. The elasmobranch's epidermis is a tissue composed mainly by mucus secretory cells, and marine stingrays have already been described to present secretory glands spread throughout the body. Little is known about the biochemical composition of the stingray mucus, but recent studies have corroborated the importance of mucus in the envenomation process. Aiming to assess the mucus composition, a new non-invasive mucus collection method was developed that focused on peptides and proteins, and biological assays were performed to analyze the toxic and immune activities of the 〈em〉Hypanus americanus〈/em〉 mucus. Pathophysiological characterization showed the presence of peptidases on the mucus, as well as the induction of edema and leukocyte recruitment in mice. The fractionated mucus improved phagocytosis on macrophages and showed antimicrobial activity against 〈em〉T. rubrumç. neoformans〈/em〉 and 〈em〉C. albicans in vitro〈/em〉. The proteomic analyses showed the presence of immune-related proteins like actin, histones, hemoglobin, and ribosomal proteins. This protein pattern is similar to those reported for other fish mucus and stingray venoms. This is the first report depicting the 〈em〉Hypanus〈/em〉 stingray mucus composition, highlighting its biochemical composition and importance for the stingray immune system and the possible role on the envenomation process.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 1050-4648
    Electronic ISSN: 1095-9947
    Topics: Biology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Medicine
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2019
    Description: 〈p〉Publication date: October 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Fish & Shellfish Immunology, Volume 93〈/p〉 〈p〉Author(s): Mariana Maluli Marinho de Mello, Camila de Fátima Pereira de Faria, Fábio Sabbadin Zanuzzo, Elisabeth Criscuolo Urbinati〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉In this study, we show that β-glucan can modulate cortisol release in fish. We simulated a common situation in aquaculture: the transport of fish followed by contact with an opportunistic pathogen and observed what effect glucan had on the immune and stress response in these conditions. Pacu (〈em〉Piaractus mesopotamicus〈/em〉) were fed with a diet containing β-glucan (0.1%) for 15 days prior to transport followed by an injection with heat-killed 〈em〉Aeromonas hydrophila.〈/em〉 We sampled fish before transport, at arrival and at 3 and 24 h after bacterial injection. β-Glucans are used in aquaculture and have a known immunostimulatory effect, which was observed in this study. The results showed that β-glucan modulated the plasma cortisol levels differently by increasing these levels up to 24 h after transport and preventing the increase caused by bacterial inoculum injection. In addition, β-glucan enhanced the activity of the complement system at 24 h and reduced the monocytes and lymphocytes number in peripheral blood at 3 and 24 h after bacterial inoculation. Our results suggest that β-glucan modulated a bidirectional interaction between the stress and the immune responses. The modulation of cortisol levels and the immunostimulation by β-glucan at different moments in our study suggest the compound has a protective effect by avoiding higher levels of the hormone and improving resistance against bacterial infection in pacu. These results add evidence to support the use of β-glucan as an immunomodulator in the aquaculture industry.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 1050-4648
    Electronic ISSN: 1095-9947
    Topics: Biology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Medicine
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2019
    Description: 〈p〉Publication date: October 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Fish & Shellfish Immunology, Volume 93〈/p〉 〈p〉Author(s): Min Sun Kim, Ki Hong Kim〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Although the type I interferon-mediated increase of Mx1 and ISG15 gene expression in Epithelioma papulosum cyprini (EPC) cells has been reported, the antiviral role of Mx1 and ISG15 in EPC cells has not been investigated. In this study, to know the anti-viral hemorrhagic septicemia virus (VHSV) role of Mx1 and ISG15 of EPC cells, either Mx1 or ISG15 gene was knocked-out using a CRISPR/Cas9 system, and the progression of cytopathic effects (CPE) and viral growth were analyzed. Mx1 gene and ISG15 gene knockout EPC cells were successfully produced via CRISPR/Cas9 coupled with a single-cell cloning. Through the sequence analysis, one clone showing two heterozygous indel patterns in Mx1 gene and a clone showing three heterozygous indel patterns in ISG15 gene were selected for further analyses. Mx1 knockout EPC cells did not show any differences in VHSV-mediated CPE progression, even when pre-treated with polyinosinic:polycytidylic acid (poly I:C), compared to control EPC cells. These results suggest that Mx1 in EPC cells may be unfunctional to cytoplasmic RNA viruses. In contrast to Mx1, ISG15 knockout cells showed clearly hampered anti-VHSV activity even when pre-treated with poly I:C, indicating that ISG15 plays an important role in type I interferon-mediated anti-viral activity in EPC cells, which allowed VHSV to replicate more efficiently in ISG15 knockout cells than Mx1 knockout and control cells.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 1050-4648
    Electronic ISSN: 1095-9947
    Topics: Biology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Medicine
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2019
    Description: 〈p〉Publication date: November 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Fish & Shellfish Immunology, Volume 94〈/p〉 〈p〉Author(s): José Luis Sánchez-Salgado, Mohamed Alí Pereyra, Concepción Agundis, Montserrat Calzada-Ruiz, Erika Kantun-Briceño, Edgar Zenteno〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉In crustaceans, it has been suggested that specific protection against pathogens could be triggered by vaccines and biological response modifiers; although the specific mechanisms of this protection have not been clarified yet. In the crayfish 〈em〉Cherax quadricarinatus〈/em〉, a humoral lectin (CqL) binds its own granular hemocytes through a specific receptor (CqLR) and increases the production of reactive oxygen species (ROS). In the present study, we challenged 〈em〉in vivo〈/em〉 crayfishes with immunostimulants, β-glucan (200 μg/kg) or LPS (20 μg/kg), and identified the participation of cellular and humoral mechanisms. The stimulants generated a complex modification in the total hemocytes count (THC), as well as in the proportion of hemocyte subsets. At 2 h after the challenge, the largest value in THC was observed in either challenged crayfishes. Furthermore, at the same time, hyaline hemocytes were the most abundant subset in the hemolymph; after 6 h, granular hemocytes (GH) were the most abundant hemocyte subset. It has been observed that a specific subset of GH possesses a CqLR that has been related to ROS production. After 2 and 6 h of the β-glucan challenge, a significant increase in CqLR expression was observed in the three circulating hemocyte subsets; also, an increased expression of CqL was detected in a granular hemocytes sub-population. After 2 and 6 h of stimulation, the specific activity of the serum lectin challenged with β-glucan was 250% and 160% higher than in the LPS-treated-group, respectively (〈em〉P〈/em〉 〈 0.05). Hemocytes from challenged crayfishes were stimulated 〈em〉ex vivo〈/em〉 with CqL, ROS production was 180% higher in hemocytes treated with β-glucan + CqL than in hemocytes treated with LPS + CqL (〈em〉P〈/em〉 〈 0.05). The results evidence the effectivity of immune stimulators to activate specific crayfish defense mechanisms, the participation of CqL and its receptor (CqLR) could play an important role in the regulation of immune cellular functions, like ROS production, in 〈em〉Cherax quadricarinatus〈/em〉.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 1050-4648
    Electronic ISSN: 1095-9947
    Topics: Biology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Medicine
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2019
    Description: 〈p〉Publication date: October 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Fish & Shellfish Immunology, Volume 93〈/p〉 〈p〉Author(s): Nikolai Mugue, Nadezhda Terekhanova, Sergey Afanasyev, Aleksei Krasnov〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Sturgeons represent a substantial scientific interest due to their high economic value, endangered status and also as the most primitive group of ray-finned fishes. Rapid progress in knowledge of sturgeon immunity was achieved recently with use of RNA sequencing. We report transcriptome sequencing of gill, head kidney, and spleen of bester sturgeon (a hybrid of beluga 〈em〉Huso huso〈/em〉 and sterlet 〈em〉Acipen〈/em〉s〈em〉er ruthenus〈/em〉) injected with synthetic double-stranded RNA (polyI:C). The composition of transcriptome and responses to treatment were examined in the context of comparative genomics with focus on immune genes. Sturgeon transcripts matched to 21.5 k different proteins (blastx). With reference to Atlantic salmon, the functional groups and pathways of the immune system were uniformly represented: at average 36.5 ± 0.8% genes were found. Immune genes comprise a significant fraction of transcriptome. Among twenty genes with highest transcription levels, five are specialized immune genes and two encode heme and iron binding proteins (〈em〉serotransferrin〈/em〉 and 〈em〉hemopexin〈/em〉) also known as acute phase proteins. Challenge induced multiple functional groups including apoptosis, cell cycle and a number of metabolic pathways. Treatment stimulated innate antiviral immunity, which is well conserved between sturgeon and salmon, the most responsive genes were 〈em〉mx, rsad2 (viperin)〈/em〉, 〈em〉interferon induced protein 44〈/em〉 and 〈em〉protein with tetratricopeptide repeats 5〈/em〉, 〈em〉cd87〈/em〉 and 〈em〉receptor transporting protein 3〈/em〉. Results added to knowledge of immune phylogeny. Gain and loss of genes was assessed by comparison with genomes from different phylogenetic groups. Among differentially expressed genes, percentage of acquired and lost genes was much lower in comparison with genes present in all vertebrates. Innate antiviral immunity was subject to the greatest changes in evolution of jawed vertebrates. A significant fraction of genes (15%) was lost in mammals and only half of genes is annotated in public databases as involved in antiviral responses. Change of function may have an important role in evolution of immunity together with gain and loss of genes.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 1050-4648
    Electronic ISSN: 1095-9947
    Topics: Biology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Medicine
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2019
    Description: 〈p〉Publication date: October 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Fish & Shellfish Immunology, Volume 93〈/p〉 〈p〉Author(s): Malene Soleng, Lill-Heidi Johansen, Hanne Johnsen, Gunhild S. Johansson, Mette W. Breiland, Lisbeth Rørmark, Karin Pittman, Lars-Flemming Pedersen, Carlo C. Lazado〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Peracetic acid (PAA), a strong organic peroxide, is considered a relatively sustainable disinfectant in aquaculture because of its broad effectivity against many pathogens at low concentrations and because it degrades spontaneously to harmless residues. The impacts of PAA on fish health must be determined before its use as either a routine disinfectant or chemotherapeutant. Here we investigated the systemic and mucosal stress responses of Atlantic salmon (〈em〉Salmo salar〈/em〉) to PAA. In experiment 1, salmon were exposed to different nominal concentrations (0, 0.6, and 2.4 ppm) of PAA for 5 min, followed by a re-exposure to the same concentrations for 30 min 2 weeks later. Sampling was performed before exposure to PAA and at 2 h, 48 h, and 2 w after exposures. In experiment 2, fish were subjected to crowding stress prior to PAA exposure at 4.8 ppm for 30 min. The fish were sampled before exposure and 1 h, 4 h, and 2 w after. The two trials were performed in a recirculation system. Both systemic (i.e., plasma cortisol, glucose, lactate, total antioxidant capacity) and mucosal (i.e., expression of antioxidant coding genes in the skin and gills) stress indicators were affected by the treatments at varying levels, and it was apparent that the fish were able to mount a robust response to the physiological demands of PAA exposure. The cortisol levels increased in the early hours after exposure and returned to basal level afterwards. Prior exposure history to PAA did not markedly affect the levels of plasma lactate and glucose when fish were re-exposed to PAA. Crowding stress before PAA treatment, however, did alter some of the stress indicators (i.e., lactate, glucose and expression of antioxidant genes in the gills), suggesting that stress history serves as both a confounding and compounding factor on how stress responses to PAA are mobilised. Nonetheless, the changes were not substantial. Gene expression profile analyses revealed that the antioxidant system was more responsive to PAA in the gills than in the skin. The increased antioxidant capacity in the plasma, particularly at 2.4 ppm and higher, indicates that antioxidants were produced to neutralise the internal redox imbalance resulting from PAA exposure. In conclusion, the results show that salmon were able to mount a robust adaptive response to different PAA doses and exposure times, and a combined exposure to stress and PAA. These results underscore the potential of PAA as a chemotherapeutant for salmon at PAA concentrations commonly applied to control parasitic infestations.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 1050-4648
    Electronic ISSN: 1095-9947
    Topics: Biology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Medicine
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2019
    Description: 〈p〉Publication date: October 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Fish & Shellfish Immunology, Volume 93〈/p〉 〈p〉Author(s): Zhiwei Cao, Sijia Liu, Hao Nan, Kaixia Zhao, Xiaodong Xu, Gaoxue Wang, Hong Ji, Hongying Chen〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Cyprinid herpesvirus 2 (CyHV-2) is the causative pathogen of herpesviral haematopoietic necrosis disease, which has caused huge economic losses to aquaculture industry in China. In this study, nine truncated CyHV-2 membrane glycoproteins (ORF25, ORF25C, ORF25D, ORF30, ORF124, ORF131, ORF136, ORF142A, ORF146) and a GFP reporter protein were respectively expressed using baculovirus surface displaying system. Western blot showed that the proteins were successfully packaged in the recombinant virus particles. In baculovirus transduced gibel carp kidney cells, the target proteins were expressed and displayed on the fish cell surface. Healthy gibel carp were immunized by immersion with the recombinant baculoviruses and the fish treated with phosphate-buffered saline (PBS) were served as mock group. The expression of 〈em〉interleukin-11〈/em〉 (〈em〉IL-11〈/em〉), 〈em〉interferon α〈/em〉 (〈em〉IFNα〈/em〉) and a complement component gene 〈em〉C3〈/em〉 were significantly up-regulated in most experimental groups, and 〈em〉interferon γ〈/em〉 (〈em〉IFNγ〈/em〉) expression in some groups were also induced after immunization. Subsequently, the immunized gibel carp were challenged by intraperitoneal injection of CyHV-2 virus. All the immunized groups exhibited reduced mortality after CyHV-2 challenge. In the groups immunized with baculoviruses displaying and expressing ORF25, ORF25C and ORF146, the relative percentage survival values reached 83.3%, 87.5% and 70.8%, respectively. Our data suggested that baculovirus-displayed ORF25, ORF25C and ORF146 could be potential vaccine candidates for the prevention of CyHV-2 infection in gibel carp.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 1050-4648
    Electronic ISSN: 1095-9947
    Topics: Biology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Medicine
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2019
    Description: 〈p〉Publication date: October 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Fish & Shellfish Immunology, Volume 93〈/p〉 〈p〉Author(s): Armando Vega-López, Nataraj S. Pagadala, Brenda P. López-Tapia, Ruth L. Madera-Sandoval, Erika Rosales-Cruz, Minerva Nájera-Martínez, Elba Reyes-Maldonado〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉The signaling mediated by small non-proteinogenic molecules, which probably have the capacity to serve as a bridge amongst complex systems is one of the most exiting challenges for the study. In the current report, stem cells differentiation of the immune system in Nile tilapia treated with sub-basal doses of GABA evaluated as c-kit〈sup〉+〈/sup〉 and Sca-1〈sup〉+〈/sup〉 cells disappearance on pronephros, thymus, spleen and peripheral blood mononuclear cells by flow cytometry was assessed. Explanation of biological response was performed by molecular docking approach and multiparametric analysis. Stem cell differentiation depends on a delicate balance of negative and positive interactions of this neurotransmitter with receptors and transcription factors involved in this process. This in turn depends on the type of interaction with hematopoietic niche to differentiate into primordial, early or late hematopoiesis as well as from the dose delivery. In fish treated with the low doses of GABA (0.1% over basal value) primordial hematopoiesis is regulated by interaction of glutamate (Glu) with the Ly-6 antigen. Early hematopoiesis was influenced by the bond of GABA near or adjacent to turns of FLTR3-Ig-IV domain. During late hematopoiesis, negative regulation by structural modifications on PU.1/IRF-4 complex, IL-7Rα and GM-CSFR mainly prevails. Results of molecular docking were in agreement with the percentages of the main blood cells lineages estimated in pronephros by flow cytometry. Current study provides the first evidences about the role of inhibitory and excitatory neurotransmitters such as GABA and Glu, respectively with the most transcriptional factors and receptors involved on hematopoiesis in adult Nile tilapia.〈/p〉〈/div〉 〈/div〉 〈h5〉Graphical abstract〈/h5〉 〈div〉〈p〉〈figure〉〈img src="https://ars.els-cdn.com/content/image/1-s2.0-S1050464819308320-fx1.jpg" width="266" alt="Image 1" title="Image 1"〉〈/figure〉〈/p〉〈/div〉
    Print ISSN: 1050-4648
    Electronic ISSN: 1095-9947
    Topics: Biology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Medicine
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2019
    Description: 〈p〉Publication date: October 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Fish & Shellfish Immunology, Volume 93〈/p〉 〈p〉Author(s): Xianyun Ren, Yunbin Zhang, Ping Liu, Jian Li〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉This study aimed to use isobaric tags (IBTs) to investigate the immune response of the hepatopancreas of 〈em〉Marsupenaeus japonicas〈/em〉 infected with 〈em〉Vibrio parahaemolyticus〈/em〉 or white spot syndrome virus (WSSV). Liquid chromatography-tandem mass spectrometry and protein sequencing identified 1005 proteins. Among them, 109 proteins were upregulated and 94 were downregulated after 〈em〉V. parahaemolyticus〈/em〉 infection. After WSSV infection, 130 proteins were identified as differentially abundant, including 88 that were upregulated and 42 were downregulated. Fifty-four proteins were identified as differentially abundant after both 〈em〉V. parahaemolyticus〈/em〉 and WSSV infection. A number of proteins related to cytoskeletal processes, including actin and myosin, and apoptosis-related proteins were upregulated in shrimp after 〈em〉V. parahaemolyticus〈/em〉 and WSSV infection, indicating that phagocytosis and apoptosis may be involved in the response to in 〈em〉V. parahaemolyticus〈/em〉 or WSSV infection. Quantitative real-time PCR was carried out to verify the reliability of the proteomic data. These data provide a basis to characterize the immunity-related processes of shrimp in response to infection with WSSV or 〈em〉V. parahaemolyticus〈/em〉.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 1050-4648
    Electronic ISSN: 1095-9947
    Topics: Biology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Medicine
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2019
    Description: 〈p〉Publication date: Available online 22 August 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biomaterials〈/p〉 〈p〉Author(s): Hao Fu, Chongchong Miao, Yuanpeng Rui, Fenglin Hu, Ming Shen, Hong Xu, Chunfu Zhang, Yi Dong, Wenping Wang, Hongchen Gu, Yourong Duan〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Polyelectrolyte modified iron oxide nanoparticles have great potential applications for clinical magnetic resonance imaging (MRI) and anemia treatments, however, possible associated heart toxicity is rarely reported. Here, polyacrylic acid (PAA)-coated Fe〈sub〉3〈/sub〉O〈sub〉4〈/sub〉 nanoparticles (PION) were synthesized and lethal reactions appeared when it was applied 〈em〉in vivo〈/em〉. The investigation of underlying mechanism showed that PION could break electrolyte balance and further resulted in serious heart failure, which was observed under color doppler ultrasound and dynamic vector blood flow technique. The results demonstrated that PION had a strong absorption tendency for divalent ions and the maximum tolerated dose (MTD) was lower than 100 mg/kg. From electrocardiography (ECG), PION presented an obvious impact on CaV〈sub〉1.2〈/sub〉 ion channel, which leading to fatal arrhythmia. An appropriate solution for preventing this deadly effect was pre-adding Ca〈sup〉2+〈/sup〉 (n 〈sub〉(Ca〈/sub〉〈sup〉2+〈/sup〉〈sub〉)〈/sub〉: n 〈sub〉(COOH)〈/sub〉 = 3: 8) to PION (PION-Ca), which displayed much higher cardiac and electrophysiological safety when sealing the binding point of divalent cation ions with PAA. The injection in Beagle dogs further confirmed the safety of PION-Ca. This study explored the mechanism and offered a solution for cardiac toxicity induced by PAA-coated nanoparticles, which guides for enhancing the safety of such polyelectrolyte decorated nanoparticles and provides assurance for clinical applications.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 0142-9612
    Electronic ISSN: 1878-5905
    Topics: Biology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Medicine
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2019
    Description: 〈p〉Publication date: November 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Fish & Shellfish Immunology, Volume 94〈/p〉 〈p〉Author(s): Jiajia Yu, Hongxia Wang, Xin Yue, Baozhong Liu〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉〈em〉Meretrix petechialis〈/em〉 is an important commercial aquaculture species in China. During the clam culture period, mass mortality events often occurred due to the 〈em〉Vibrio〈/em〉 infection. In this paper, 〈em〉M. petechialis〈/em〉 were challenged with 〈em〉Vibrio parahaemolyticus〈/em〉 immersion to simulate a natural infection, and the infection process were divided into four phases including latency, prodrome, onset and recovery phases based on the clam mortality data. Then, the dynamic response of clams to 〈em〉Vibrio〈/em〉 infection at different infection phases were investigated by transcriptome analysis. A total of 38,067 differentially expressed genes (DEGs) were identified at different infection phases. DEG annotations showed that immune-related and metabolism-related signaling pathways were enriched, indicating that immune defense and metabolism process play key roles during bacterial infection. Three kinds of expression pattern were classified by cluster analysis, including U-shape, L-shape and inverted V-shape. Anabolism and cellular growth proliferation related signaling pathways were repressed (long-lasting or transient) during bacterial infection. However, the immune related signaling pathways with different immune functions showed induction expression or repression expression against bacterial infection, which indicated that immune system take different strategies against bacterial infection. Furthermore, some signaling pathways such as PI3K-Akt signaling pathway both involved in immune defense and cell metabolism. This study provides a sight that the dynamic immunity and metabolic responses may be integrated to improve the host survival and shift more energy for immune defense.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 1050-4648
    Electronic ISSN: 1095-9947
    Topics: Biology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Medicine
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2019
    Description: 〈p〉Publication date: October 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Fish & Shellfish Immunology, Volume 93〈/p〉 〈p〉Author(s): Guang-hua Wang, Zhao-xia Li, En-mian Guo, Jing-jing Wang, Min Zhang, Yong-hua Hu〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Calreticulin (CRT) is a highly conserved and multi-functional protein with diverse localizations. CRT has lectin-like properties and possesses important immunological activities in mammalian. In teleost, very limited studies on CRT immunologic function have been documented. In the present study, a CRT homologue (SsCRT) was cloned, identified and characterized from black rockfish, 〈em〉Sebastes schlegeli〈/em〉, an important aquaculture species in East Asia. The full length of 〈em〉SsCRT〈/em〉 cDNA is 2180 bp and encoded a polypeptide of 425 amino acids. SsCRT contains a signal peptide, three distinct structural and functional domains (N-, P- and C-domains), and an endoplasmic reticulum (ER) retrieval signal sequence (KDEL). The deduced amino acid sequence of SsCRT shares 89–92% overall sequence identities with the CRT proteins of several fish species. 〈em〉SsCRT〈/em〉 was distributed ubiquitously in all the detected tissues and was highly expressed in the spleen, muscle and liver. After the infection of fish extracellular bacterial pathogen 〈em〉Vibrio anguillarum〈/em〉 and intracellular bacterial pathogen 〈em〉Edwardsiella tarda〈/em〉, the mRNA transcripts of 〈em〉SsCRT〈/em〉 in spleen, liver, and head kidney were significantly up-regulated. The expression patterns were time-dependent and tissue-dependent. Recombinant SsCRT (rSsCRT) exhibited apparent binding activities against different bacteria and PAMPs. 〈em〉In vivo〈/em〉 studies showed that the expressions of multiple immune-related genes such as TNF13B, IL-1β, IL-8, SAA, Hsp70, and ISG15 in head kidney were significantly enhanced when black rockfish were treated with rSsCRT. Furthermore, rSsCRT reduced pathogen dissemination and replication in fish kidney and spleen. These results indicated that SsCRT served as an immune receptor to recognize and eliminate the invading pathogens, which played a vital role in the immune response of 〈em〉Sebastes schlegeli〈/em〉. These findings provide new insights into understanding the roles of CRT proteins in immune response and pathogen infection in teleost.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 1050-4648
    Electronic ISSN: 1095-9947
    Topics: Biology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Medicine
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2019
    Description: 〈p〉Publication date: October 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Fish & Shellfish Immunology, Volume 93〈/p〉 〈p〉Author(s): Ying Wu, Yongcan Zhou, Zhenjie Cao, Yun Sun, Yang Chen, Yajing Xiang, Lu Wang, Shengnan Zhang, Weiliang Guo〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Interleukins (ILs) are a subgroup of cytokines, which are molecules involved in the intercellular regulation of the immune system. These cytokines have been extensively studied in mammalian models, but systematic analyses of fish are limited. In the current study, 3 IL genes from golden pompano (〈em〉Trachinotus ovatus〈/em〉) were characterized. The IL-1β protein contains IL-1 family signature motif, and four long helices (αA - αD) in IL-11 and IL-34, which were well conserved. All 3 ILs clustered phylogenetically with their respective IL relatives in mammalian and other teleost species. Under normal physiological conditions, the expression of IL-1β, IL-11, and IL-34 were detected at varied levels in the 11 tissues examined. Most of the 3 ILs examined were highly expressed in liver, spleen, kidney, gill, or skin. Following pathogenic bacterial, viral, or parasitic challenge, IL-1β, IL-11, and IL-34 exhibited distinctly different expression profiles in a time-, tissue-, and pathogen-dependent manner. In general, IL-1β was expressed at higher levels following challenge with all pathogens examined than was observed for IL-11 and IL-34. Furthermore, 〈em〉Streptococcus agalactiae〈/em〉 and 〈em〉Cryptocaryon irritans〈/em〉 caused higher levels of IL-1β and IL-11 expression than 〈em〉Vibrio harveyi〈/em〉 and viral nervous necrosis virus (VNNV). The increased expression of IL-34 caused by VNNV and 〈em〉C. irritans〈/em〉 were higher than that caused by 〈em〉V. harveyi〈/em〉 and 〈em〉S. agalactiae〈/em〉. These results suggest that these 3 ILs in 〈em〉T. ovatus〈/em〉 may play different effect pathogen type specific responses.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 1050-4648
    Electronic ISSN: 1095-9947
    Topics: Biology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Medicine
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2019
    Description: 〈p〉Publication date: October 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Fish & Shellfish Immunology, Volume 93〈/p〉 〈p〉Author(s): Dinglong Yang, Yijing Han, Lizhu Chen, Ruiwen Cao, Qing Wang, Zhijun Dong, Hui Liu, Xiaoli Zhang, Qianqian Zhang, Jianmin Zhao〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Bactericidal permeability-increasing protein (BPI) is an antimicrobial protein with potent endotoxin-neutralising activity and plays a crucial role in innate immunity against bacterial infection. In the present study, a 〈em〉bpi〈/em〉 (designed as 〈em〉rpbpi〈/em〉) was identified and characterized from manila clam 〈em〉Ruditapes philippinarum〈/em〉. Multiple alignments and phylogenetic analysis suggested that 〈em〉rpbpi〈/em〉 was a new member of the 〈em〉bpis〈/em〉 family. In non-stimulated clams, 〈em〉rpbpi〈/em〉 transcripts were ubiquitously expressed in all tested tissues with the highest expression level in hemocytes. After 〈em〉Vibrio anguillarum〈/em〉 challenge, the expression levels of 〈em〉rpbpi〈/em〉 mRNA in hemocytes were up-regulated significantly at 3 h and 48 h compared with that in the control, which were 4.01- and 19.10-fold (〈em〉P〈/em〉 〈 0.05), respectively. The recombinant RpBPI (rRpBPI) showed high antibacterial activities against Gram-negative bacteria 〈em〉Escherichia coli〈/em〉 and 〈em〉V. anguillarum〈/em〉, but not 〈em〉Staphylococcus aureus〈/em〉. Moreover, membrane integrity analysis revealed that rRpBPI increased the membrane permeability of Gram-negative bacteria, and then resulted in cell death. Overall, our results suggested that RpBPI played an important role in the elimination of invaded bacteria through membrane-disruptive activity.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 1050-4648
    Electronic ISSN: 1095-9947
    Topics: Biology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Medicine
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2019
    Description: 〈p〉Publication date: October 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Fish & Shellfish Immunology, Volume 93〈/p〉 〈p〉Author(s): Wenlin Wu, Congjie Dai, Xunwei Duan, Cuifang Wang, Xiaosi Lin, Jiaying Ke, Yixuan Wang, Xiaobo Zhang, Haipeng Liu〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉White shrimp 〈em〉Litopenaeus vannamei〈/em〉 are widely cultured in the world and white spot syndrome virus (WSSV) led to huge economic losses in the shrimp industry every year. In the present study, miRNAs involved in the response of shrimp 〈em〉L. vannamei〈/em〉 to WSSV infection were obtained through the Illumina HiSeq 2500 high-throughput next-generation sequencing technique. A total number of 7 known miRNAs and 54 putative novel miRNAs were obtained. Among them, 14 DEMs were identified in the shrimp infected with WSSV. The putative target genes of these DEMs were related to host immune response or signaling pathways, indicating the importance of miRNAs in shrimp against WSSV infection. The results will provide information for further research on shrimp response to virus infection and contribute to the development of new strategies for effective protection against WSSV infections.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 1050-4648
    Electronic ISSN: 1095-9947
    Topics: Biology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Medicine
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2019
    Description: 〈p〉Publication date: October 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Fish & Shellfish Immunology, Volume 93〈/p〉 〈p〉Author(s): Rahul Krishnan, Syed Shariq Nazir Qadiri, Myung-Joo Oh〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Nectin-4/PVRL4 belonging to the family of immunoglobulin-like cell adhesion molecules was identified as a potential cellular receptor for several animal viruses. Here we show that nervous necrosis virus that causes viral nervous necrosis in teleosts uses the same receptor in its life cycle. Transfection of SSN-1 cell lines with an expression vector encoding Nectin-4 rendered them to be more susceptible to NNV. Immunofluorescence microscopy on Nectin-4 expressing cells revealed that the protein interacted with NNV specifically. A virus binding assay indicated that Nectin-4 was a bonafide receptor that supported virus attachment to the host cell whereas siRNA directed against Nectin-4 blocked NNV infections in grouper primary brain cells. Results of the present study will improve our understanding of the pathogenesis of NNV infection and provide a target for the development of novel antiviral interventions in marine finfish aquaculture.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 1050-4648
    Electronic ISSN: 1095-9947
    Topics: Biology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Medicine
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2019
    Description: 〈p〉Publication date: October 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Fish & Shellfish Immunology, Volume 93〈/p〉 〈p〉Author(s): Jun Di, Zhipeng Chu, Shuhuan Zhang, Jun Huang, Hao Du, Qiwei Wei〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉In the present study, we aimed to screen the potential probiotic 〈em〉Bacillus subtilis〈/em〉 isolated from the gut of healthy fish using 〈em〉in vitro〈/em〉 assays and to evaluate its effect on Dabry's sturgeon (〈em〉Acipenser dabryanus〈/em〉) using 〈em〉in vivo〈/em〉 feeding experiments. Among the isolates, 〈em〉B. subtilis〈/em〉 BSth-5 and BSth-19 exhibited antimicrobial effect against four sturgeon-pathogenic bacteria, including 〈em〉Aeromonas hydrophila〈/em〉, 〈em〉A. veronii〈/em〉, 〈em〉A. media〈/em〉, and 〈em〉Streptococcus iniae〈/em〉. The cell number of 〈em〉B. subtilis〈/em〉 BSth-5 and BSth-19 changed little after 2 h of exposure to pH 3.0 or fresh Dabry's sturgeon bile at 2.5% and 5.0%. Meanwhile, 〈em〉B. subtilis〈/em〉 BSth-5 and BSth-19 produced extracellular protease, cellulose, and lipase. And it was proved that 〈em〉B. subtilis〈/em〉 BSth-5 and BSth-19 were harmless after injection of Dabry's sturgeon. One group of Dabry's sturgeon was fed a control diet and two groups were fed experimental diets containing 2.0 × 10〈sup〉8〈/sup〉 CFU/g BSth-5 (T1 group) or BSth-19 (T2 group) for 8 weeks. No significant differences in final weight, weight gain rate, and special growth rate were observed in the T1 and T2 groups compared to the control group (〈em〉P〈/em〉 〉 0.05), but a significant improvement in survival rate was detected after 4 and 8 weeks of feeding (〈em〉P〈/em〉 〈 0.05). After 8 weeks, serum total antioxidant capacity, total superoxide dismutase activity, and IgM levels were significantly higher in the T1 and T2 groups compared to the control group (〈em〉P〈/em〉 〈 0.05). Moreover, serum lysozyme activity was significantly higher in the T1 group relative to the control group during the whole experiment period (〈em〉P〈/em〉 〈 0.05); however, the differences were not significant between the T2 and control groups (〈em〉P〈/em〉 〉 0.05). Serum malondialdehyde levels in the T1 and T2 groups were significantly lower than those in the control group after 4 weeks (〈em〉P〈/em〉 〈 0.05). Sturgeons in the T1 and T2 groups showed a higher survival rate after 〈em〉Aeromonas hydrophila〈/em〉 infection. To summarize, dietary supplementation with BSth-5 and BSth-19 could enhance the survival rate, antioxidant activity, serum immunity, and disease resistance in 〈em〉A. dabryanus〈/em〉.〈/p〉〈/div〉 〈/div〉 〈h5〉Graphical abstract〈/h5〉 〈div〉〈p〉〈figure〉〈img src="https://ars.els-cdn.com/content/image/1-s2.0-S1050464819308204-fx1.jpg" width="388" alt="Image 1" title="Image 1"〉〈/figure〉〈/p〉〈/div〉
    Print ISSN: 1050-4648
    Electronic ISSN: 1095-9947
    Topics: Biology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Medicine
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2019
    Description: 〈p〉Publication date: October 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Fish & Shellfish Immunology, Volume 93〈/p〉 〈p〉Author(s): Håvard Bjørgen, Oskar Mongstad Løken, Ida Bergva Aas, Per Gunnar Fjelldal, Tom Hansen, Lars Austbø, Erling Olaf Koppang〈/p〉
    Print ISSN: 1050-4648
    Electronic ISSN: 1095-9947
    Topics: Biology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Medicine
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2019
    Description: 〈p〉Publication date: October 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Fish & Shellfish Immunology, Volume 93〈/p〉 〈p〉Author(s): Pan Wu, Weiguang Yang, Yuying Dong, Yanling Wang, Ying Zhang, Xuejun Zou, Hui Ge, Dongxue Hu, Yubo Cui, Zhaobo Chen〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Application of traditional bait in aquaculture caused environment pollution and disease frequent occurrence. Residual coconut could be re-utilized to culture Spinibarbus sinensis as dietary supplement. Therefore, a novel integrated system of the improvement of yield, antioxidant and nonspecific immunity of Spinibarbus sinensis by dietary residual coconut was proposed and investigated. Spinibarbus sinensis could grow well in all supplement residual coconut groups. Survival rate, yield, whole fish body composition under 15–45% groups were increased compared with control group (CK). Bioactive substances (polyphenols and vitamin) in residual coconut enhanced AKP, ACP, phagocytic, SOD, CAT activities through up-regulating 〈em〉AKP, ACP, SOD, CAT〈/em〉 genes expression levels. Theoretical analysis showed bioactive substances regulated these genes expressions and enzyme activities as stimulus signal, component, active center. Moreover, residual coconut improved mTOR and NF-kB signaling pathway. Furthermore, residual coconut inhibited 〈em〉Aeromonas hydrophila〈/em〉 that increased resistance to diseases. This technology completed the solid waste recovery and the Spinibarbus sinensis culture simultaneously.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 1050-4648
    Electronic ISSN: 1095-9947
    Topics: Biology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Medicine
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2019
    Description: 〈p〉Publication date: October 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Fish & Shellfish Immunology, Volume 93〈/p〉 〈p〉Author(s): Jianting Lu, Xianyong Bu, Shusheng Xiao, Zhideng Lin, Xinyue Wang, Yongyi Jia, Xiaodan Wang, Jian G. Qin, Liqiao Chen〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉This study evaluates the effect of dietary supplementation of immunostimulants on the Chinese mitten crab (〈em〉Eriocheir sinensis〈/em〉) with a single administration of mannan oligosaccharide (MOS), or its combination with either β-glucan or with inulin for 8 weeks. Four diets included an untreated control diet (C), MOS alone (3 g kg〈sup〉−1〈/sup〉, M), MOS with β-glucan (3 g kg 〈sup〉−1〈/sup〉 MOS + 1.5 g kg 〈sup〉−1〈/sup〉 β-glucan, MB), and MOS with inulin (3 g kg 〈sup〉−1〈/sup〉 MOS + 10 g kg 〈sup〉−1〈/sup〉 inulin, MI). The weight gain and specific growth rate of the crabs fed M, MB, and MI diets were improved by lowing feed conversion ratio. The growth and feed utilization of the crabs fed the MB diet were improved compared with the other three groups. The crabs fed the M, MB and MI diets showed a higher intestinal trypsin activity than that in the M and control groups. The highest trypsin activity in the hepatopancreas was observed in the MB group. Crabs fed M, MB and MI diets increased antioxidant system-related enzyme activities, but reduced malondialdehyde. The highest activities of alkaline phosphatase, acid phosphatase, lysozyme and phenol oxidase in the gut and the respiratory burst of the crabs were found in the MB group. The MB diet promoted the mRNA expression of 〈em〉E. sinensis〈/em〉 immune genes (ES-PT, ES-Relish, ES-LITAF, p38MAPK and Crustin) compared with the control. After 3 days of infection with 〈em〉Aeromonas hydrophila〈/em〉, the highest survival of crabs was also found in the MB group. This study indicates that the combination of MOS with β-glucan or with inulin can improve growth, antioxidant capacity, non-specific immunity and disease resistance in 〈em〉E. sinensis〈/em〉.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 1050-4648
    Electronic ISSN: 1095-9947
    Topics: Biology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Medicine
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2019
    Description: 〈p〉Publication date: October 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Fish & Shellfish Immunology, Volume 93〈/p〉 〈p〉Author(s): Marco Rozas-Serri, Andrea Peña, Lucerina Maldonado〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Piscirickettsiosis is the most challenging disease present in the Chilean salmon industry. The aim of this study was to describe the expression of genes associated with immune response of Atlantic salmon intraperitoneally infected with LF-89 and EM-90 〈em〉Piscirickettsia salmonis〈/em〉 and vaccinated with inactivated whole-cell bacterin of 〈em〉P. salmonis〈/em〉. The fish infected with PS-LF-89 showed an anti-inflammatory response, whereas this finding was not observed in the PS-EM-90-infected fish and vaccinated fish. Fish infected with both 〈em〉P. salmonis〈/em〉 isolates showed 〈em〉mhc1-mhc2〈/em〉, 〈em〉cd4-cd8b〈/em〉 and 〈em〉igm〈/em〉 overexpression, suggesting that 〈em〉P. salmonis〈/em〉 promotes a T CD4〈sup〉+〈/sup〉 and T CD8〈sup〉+〈/sup〉 cell response and a humoral immune response. The vaccinated-fish exhibited 〈em〉mhc1〈/em〉, 〈em〉mhc2〈/em〉 and 〈em〉cd4〈/em〉 overexpression but a significant downregulation of 〈em〉cd8b〈/em〉 and 〈em〉igm〈/em〉, suggesting that the vaccine supported the CD4〈sup〉+〈/sup〉 T-cell response but did not induce an immune response mediated by CD8〈sup〉+〈/sup〉 T cells or a humoral response. In conclusion, the expression pattern of genes related to the humoral and cell-mediated adaptive immune response showed upregulation in fish infected with 〈em〉P. salmonis〈/em〉 and down-regulation in vaccinated fish. The results of this study contribute to our understanding of the immune response against 〈em〉P. salmonis〈/em〉 and can be used in the optimization of SRS prevention and control measures.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 1050-4648
    Electronic ISSN: 1095-9947
    Topics: Biology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Medicine
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2019
    Description: 〈p〉Publication date: October 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Fish & Shellfish Immunology, Volume 93〈/p〉 〈p〉Author(s): Wen-rui Li, Yong-hua Hu, Shuai Jiang, Li Sun〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Japanese flounder (〈em〉Paralichthys olivaceus〈/em〉) is an important economic fish species farmed in China and other countries. It is susceptible to infection by 〈em〉Edwardsiella tarda〈/em〉, a severe fish pathogen with a broad host range. In this study, we employed high-throughput deep sequencing technology to identify, in a global scale, flounder kidney microRNAs (miRNAs) induced by 〈em〉E. tarda〈/em〉 at different stages of infection. Differentially expressed miRNAs (DEmiRNAs) and mRNAs (DEmRNAs) exhibiting significantly altered expression levels before and after 〈em〉E. tarda〈/em〉 infection were examined. A total of 96 DEmiRNAs were identified, for which 2779 target genes were predicted. Eighty-seven miRNA–mRNA pairs, involving 29 DEmiRNAs and 86 DEmRNAs, showed negative correlations in their expression patterns. GO and KEGG enrichment analysis revealed that the putative target genes of the DEmiRNAs were associated with diverse biological processes, cellular components, and molecular functions. One of the DEmiRNAs, pol-miR-182-5p, was demonstrated to regulate sphingosine-1-phosphate receptor 1 (PoS1PR1) negatively in a manner that depended on the specific interaction between the seed sequence of pol-miR-182-5p and the 3'-UTR of PoS1PR1. Overexpression of pol-miR-182-5p in flounder cells promoted apoptosis and inhibited cellular viability. Knockdown of PoS1PR1 in flounder enhanced 〈em〉E. tarda〈/em〉 invasion and dissemination in fish tissues. These results provide new insights into miRNA-mediated anti-bacterial immunity in flounder.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 1050-4648
    Electronic ISSN: 1095-9947
    Topics: Biology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Medicine
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2019
    Description: 〈p〉Publication date: October 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Fish & Shellfish Immunology, Volume 93〈/p〉 〈p〉Author(s): Hongli Xia, Yuan Li, Zhiwen Wang, Wenjie Chen, Jun Cheng, Dapeng Yu, Yishan Lu〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Nile tilapia (〈em〉Oreochromis niloticus〈/em〉) is a pivotal economic fish that has been plagued by Streptococcus infections. Tumor necrosis factor receptor-associated factor 5 (TRAF5) is a crucial adaptor molecule, which can trigger downstream signaling cascades involved in immune pathway. In this study, Nile tilapia TRAF5 coding sequence (named OnTRAF5) was obtained, which contained typical functional domains, such as RING, zinc finger, coiled-coil and MATH domain. Different from other TRAF molecules, OnTRAF5 had shown relatively low identify with its homolog, and it was clustered into other teleost TRAF5 proteins. qRT-PCR was used to analysis the expression level of OnTRAF5 in gill, skin, muscle, head kidney, heart, intestine, thymus, liver, spleen and brain, In healthy Nile tilapia, the expression level of OnTRAF5 in intestine, gill and spleen were significantly higher than other tissues. While under 〈em〉Streptococcus agalactiae〈/em〉 infection, the expression level of OnTRAF5 was improved significantly in all detected organs. Additionally, over-expression WT OnTRAF5 activated NF-κB, deletion of RING or zinc finger caused the activity impaired. In conclusion, OnTRAF5 participate in anti-bacteria immune response and is crucial for the signaling transduction.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 1050-4648
    Electronic ISSN: 1095-9947
    Topics: Biology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Medicine
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2019
    Description: 〈p〉Publication date: October 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Fish & Shellfish Immunology, Volume 93〈/p〉 〈p〉Author(s): Tianjian Hu, Ran Chen, Lingzhi Zhang, Zhuang Wang, Dahai Yang, Yuanxing Zhang, Xiaohong Liu, Qin Liu〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉〈em〉Edwardsiella piscicida〈/em〉 is an important pathogen that infects a wide range of hosts, from fish to human. Its infection leads to extensive losses in a diverse array of commercially important fish, like Japanese flounder, turbot, and tilapia. During the infection, type III secretion system (T3SS) and type VI secretion system (T6SS) of 〈em〉E. piscicida〈/em〉 play significant roles, but how T3SS and T6SS cooperatively contribute to its virulence is still unknown. In this study, we first examined the roles of T3SS and T6SS in different processes during 〈em〉E. piscicida〈/em〉 infection of host cells, and revealed that T3SS of 〈em〉E. piscicida〈/em〉 is responsible for promoting bacterial invasion, the following intracellular replication and inducing cell death in host cells, while T6SS restrains 〈em〉E. piscicida〈/em〉 intracellular replication and cell death in J774A.1 cells, which suggested that T3SS and T6SS antagonistically concert 〈em〉E. piscicida〈/em〉 infection. Furthermore, we found an significant decrease in transcription level of IL-1β in zebrafish kidney infected with T3SS mutant and an drastically increase in transcription level of TNF- α infected with T6SS mutant when compared with the wild-type. Interestingly, both T3SS and T6SS mutants showed significant attenuated virulence in the zebrafish infection model when compared with the wild-type. Finally, considering the cooperative role of T3SS and T6SS, we generated a mutant strain WEDΔT6SS based on the existing live attenuated vaccine (LAV) WED which showed improved vaccine safety and comparable immune protection. Therefore, WEDΔT6SS could be used as an optimized LAV in the future. Taken together, this work suggested a bilateral role of T3SS and T6SS which respectively act as spear and shield during 〈em〉E. piscicida〈/em〉 infection, together contribute to 〈em〉E. piscicida〈/em〉 virulence.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 1050-4648
    Electronic ISSN: 1095-9947
    Topics: Biology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Medicine
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2019
    Description: 〈p〉Publication date: October 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Fish & Shellfish Immunology, Volume 93〈/p〉 〈p〉Author(s): Yuanxia Cheng〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉This study aims to investigate the effects of 〈em〉Rhodiola rosea〈/em〉 polysaccharide (RRP) on the growth performance and nonspecific immunity of red swamp crayfish 〈em〉Procambarus clarkia〈/em〉. RRP was prepared by hot water extraction and partly characterised by high-performance liquid chromatography and sugar composition analyses. Three diets supplemented with three different levels of RRP (0.2, 0.6 and 1 g kg diet〈sup〉−1〈/sup〉) were formulated and tested for growth performance and nonspecific immunity of red swamp crayfish 〈em〉Procambarus clarkii,〈/em〉 while a diet without any RRP supplementation served as control. After 8 weeks of feeding, body weight gain, feed efficiency, survival rate, phenoloxidase activity, superoxide dismutase activity, glutathione peroxidase level, total haemocyte count and number of hyaline cells, semigranular cells and granular cells and resistance to 〈em〉Aeromonas hydrophila〈/em〉 were higher than those of the control. Moreover, based on the efficiency of RRP on the growth performance and nonspecific immunity of crayfish, the optimum dose of RRP was found to be 0.6 g kg diet〈sup〉−1〈/sup〉. Hence, intake of diets containing RRP could enhance the growth performance, immune responses and improve resistance of crayfish to infection by 〈em〉A. hydrophila.〈/em〉〈/p〉〈/div〉 〈/div〉
    Print ISSN: 1050-4648
    Electronic ISSN: 1095-9947
    Topics: Biology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Medicine
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2019
    Description: 〈p〉Publication date: November 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biomaterials, Volume 222〈/p〉 〈p〉Author(s): J. Daniel Griffin, Jimmy Y. Song, Aric Huang, Alexander R. Sedlacek, Kaitlin L. Flannagan, Cory J. Berkland〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Relapsing-remitting patterns of many autoimmune diseases such as multiple sclerosis (MS) are perpetuated by a recurring circuit of adaptive immune cells that amplify in secondary lymphoid organs (SLOs) and traffic to compartments where antigen is abundant to elicit damage. Some of the most effective immunotherapies impede the migration of immune cells through this circuit, however, broadly suppressing immune cell migration can introduce life-threatening risks for patients. We developed antigen-specific immune decoys (ASIDs) to mimic tissues targeted in autoimmunity and selectively intercept autoimmune cells to preserve host tissue. Using Experimental Autoimmune Encephalomyelitis (EAE) as a model, we conjugated autoantigen PLP〈sub〉139-151〈/sub〉 to a microporous collagen scaffold. By subcutaneously implanting ASIDs after induction but prior to the onset of symptoms, mice were protected from paralysis. ASID implants were rich with autoimmune cells, however, reactivity to cognate antigen was substantially diminished and apoptosis was prevalent. ASID-implanted mice consistently exhibited engorged spleens when disease normally peaked. In addition, splenocyte antigen-presenting cells were highly activated in response to PLP rechallenge, but CD3〈sup〉+〈/sup〉 and CD19 〈sup〉+〈/sup〉 effector subsets were significantly decreased, suggesting exhaustion. ASID-implanted mice never developed EAE relapse symptoms even though the ASID material had long since degraded, suggesting exhausted autoimmune cells did not recover functionality. Together, data suggested ASIDs were able to sequester and exhaust immune cells in an antigen-specific fashion, thus offering a compelling approach to inhibit the migration circuit underlying autoimmunity.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 0142-9612
    Electronic ISSN: 1878-5905
    Topics: Biology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Medicine
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2019
    Description: 〈p〉Publication date: October 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Fish & Shellfish Immunology, Volume 93〈/p〉 〈p〉Author(s): Xiujuan Zhou, Jing Xing, Xiaoqian Tang, Xiuzhen Sheng, Wenbin Zhan〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Interleukin-2 receptor subunit beta of flounder (〈em〉Paralichthys olivace〈/em〉, fIL-2Rβ) was annotated on the NCBI, its gene was cloned and characterized functionally in this study. And then the amino acids sequences and tertiary structure of fIL-2Rβ were analyzed, respectively. RT-PCR and ImageJ analyzed showed that fIL-2Rβ mRNA were expressed in the gill, spleen, kidney, intestines, liver, blood, muscle and skin, which showed high signals in spleen and blood. And then the recombinant protein of fIL-2Rβ extracellular region and its polyclonal antibodies were produced, native fIL-2Rβ molecules in flounder peripheral blood leukocytes (PBLs) were identified at 60.7 kDa by Mass spectrometry, which were in accordance with the molecular mass of full fIL-2Rβ protein calculated on the predicted protein sequence. Then the IL-2Rβ+ cell in T/B lymphocytes were characterized by Flow cytometry and indirect immunofluorescence assay, respectively. The results showed that the percentages of IL-2Rβ+ leukocytes, IL-2Rβ+/CD4+, IL-2Rβ+/IgM+ lymphocytes were 18.4 ± 2.7%, 4.5 ± 0.8%, 4.3% ± 0.5 in PBLs, and were 13.6 ± 0.9%, 4.6 ± 1.1%, 6.1% ± 0.4 in spleen, similarly, the percentages of IL-2Rβ+ leukocytes, IL-2Rβ+/CD4+, IL-2Rβ+/IgM+ lymphocytes were 9.4 ± 0.3%, 4.0 ± 0.5%, 5.7 ± 0.1% in head kidney, respectively. After KLH injection, compared with control group, the gene expression of IL-2, IL-2Rβ, CD3, TCR, CD79b and IgM in spleen of flounder were up-regulated, respectively (〈em〉p〈/em〉 〈 0.05). And the FCM results showed that the percentages of IL-2Rβ+ leukocytes in PBLs were significantly increased post Keyhole limpet hemocyanin (KLH) injection, which peaked 23.9 ± 0.9% at 9〈sup〉th〈/sup〉 day (〈em〉p〈/em〉 〈 0.05). To our knowledge, those results first reported that the characteristics of IL-2R and IL-2R + molecules were expressed on both B and T lymphocytes in fish. At the same time, this study lays a foundation for further exploring the interaction between IL-2 and IL-2R to promote cell proliferation and carrying out biological functions.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 1050-4648
    Electronic ISSN: 1095-9947
    Topics: Biology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Medicine
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2019
    Description: 〈p〉Publication date: October 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Fish & Shellfish Immunology, Volume 93〈/p〉 〈p〉Author(s): Ebru Yilmaz〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉The present study investigated the effects of dietary anthocyanin on the growth performance, haematological, non-specific immune, and spleen gene expression responses of Nile tilapia, 〈em〉Oreochromis niloticus〈/em〉. Five experimental groups of fish with mean weights of 8.24 ± 0.64 g were used in the study; four of these were fed with diets incorporating anthocyanin (20 mg kg -〈sup〉1〈/sup〉, 40 mg kg〈sup〉−1〈/sup〉, 80 mg kg〈sup〉−1〈/sup〉 and 160 mg kg〈sup〉−1〈/sup〉), while the fifth was a control group without dietary anthocyanin. Growth performance and haematological parameters of tilapia were not affected by anthocyanin-supplemented diets (p 〉 0.05). Dietary anthocyanin significantly increased respiratory burst activity, phagocytic activity, phagocytic index, lysozyme activity, myeloperoxidase activity, serum total superoxide dismutase (T.SOD) activity, and serum catalase (CAT) activity (p 〈 0.05). The total immunoglobulin level was highest in the 80 mg kg〈sup〉−1〈/sup〉 group compared with the other groups (p 〈 0.05). In addition, with the anthocyanin-containing diets, the gene levels of interleukin 1, beta (〈em〉IL-1β〈/em〉), interleukin 8 (〈em〉IL-8〈/em〉), tumor necrosis factor (〈em〉TNF-α〈/em〉), heat shock protein 70 (〈em〉HSP70〈/em〉), and interferon gamma (〈em〉IFN-γ〈/em〉) were increased in the fish spleen, and the gene levels of 〈em〉CAT〈/em〉, 〈em〉GPx〈/em〉, and 〈em〉SOD〈/em〉 were also increased in fish liver (p 〈 0.05). At the end of the experiment, the fish were subjected to ammonia stress. The groups fed with 20 and 40 mg kg〈sup〉−1〈/sup〉 anthocyanin exhibited higher survival rates than the other groups. In summary, feeding Nile tilapia with anthocyanin-containing diets caused increases in the innate immune parameters, gene expression responses, and the survival rate of the fish subjected to ammonia stress.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 1050-4648
    Electronic ISSN: 1095-9947
    Topics: Biology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Medicine
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2019
    Description: 〈p〉Publication date: October 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Fish & Shellfish Immunology, Volume 93〈/p〉 〈p〉Author(s): Yan-Lin Guo, Lin Feng, Wei-Dan Jiang, Pei Wu, Yang Liu, Sheng-Yao Kuang, Ling Tang, Wu-Neng Tang, Xiao-Qiu Zhou〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Iron is an important mineral element for fish. In this study, we investigated the influences of dietary iron deficiency on intestinal immune function as well as underlying signaling of on-growing grass carp (〈em〉Ctenopharyngodon idella〈/em〉). Fish were fed with six graded level of dietary iron for sixty days, and a fourteen days’ challenge test under infection of 〈em〉Aeromonas hydrophila〈/em〉 thereafter. Results showed that compared with optimal iron level, iron deficiency increased enteritis morbidity, decreased lysozyme (LZ) and acid phosphatase (ACP) activities, complement 3 (C3), C4 and immunoglobulin M (IgM) concentrations and down-regulated mRNA levels of hepcidin, liver expressed antimicrobial peptide 2A (LEAP-2A), LEAP-2B, Mucin2, β-defensin-1, anti-inflammatory cytokines transforming growth factor β1 (TGF-β1), TGF-β2, interleukin 4/13A (IL-4/13A), IL-4/13B, IL-10, IL-11 and IL-15, inhibitor of κBα (IκBα), target of rapamycin (TOR) and ribosomal protein S6 kinase 1 (S6K1), whereas up-regulated mRNA levels of pro-inflammatory cytokines IL-1β, interferon γ2 (IFN-γ2), IL-8, IL-12p35, IL-12p40 and IL-17D, nuclear factor kappa B (NF-κB) p65, IκB kinases α (IKKα), IKKβ and eIF4E-binding protein (4E-BP) in intestine of on-growing grass carp, indicating that iron deficiency impaired intestinal immune function of fish under infection of 〈em〉A. hydrophila〈/em〉. Besides, iron excess also increased enteritis morbidity and impaired immune function of fish under infection of 〈em〉A. hydrophila〈/em〉. In addition, the effect of ferrous fumarate on intestinal immune function of on-growing grass carp is more efficient than ferrous sulfate. Finally, based on ability against enteritis, LZ activities in mid intestine and distal intestine, we recommended adding 83.37, 86.71 and 85.39 mg iron/kg into diet, respectively.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 1050-4648
    Electronic ISSN: 1095-9947
    Topics: Biology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Medicine
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2019
    Description: 〈p〉Publication date: October 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Fish & Shellfish Immunology, Volume 93〈/p〉 〈p〉Author(s): Luqing Pan, Xin Zhang, Liubing Yang, Shanshan Pan〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Hemocyanin, a multifunctional oxygen-carrying protein, has critical effects on immune defense in crustaceans. To explore the role of hemocyanin in anti-pathogen mechanism, effects of 〈em〉Vibrio harveyi〈/em〉 (〈em〉V. harvey〈/em〉) and 〈em〉Staphyloccocus aureus〈/em〉 (〈em〉S. aureus〈/em〉) on hemocyanin synthesis and innate immune responses were investigated in 〈em〉Litopenaeus vannamei〈/em〉 (〈em〉L. vannamei〈/em〉) during infection 〈em〉in vivo〈/em〉. Results showed that 10〈sup〉5〈/sup〉 and 10〈sup〉6〈/sup〉 cells mL〈sup〉−1〈/sup〉 〈em〉V. harveyi〈/em〉 and 10〈sup〉6〈/sup〉 cells mL〈sup〉−1〈/sup〉 〈em〉S. aureus〈/em〉 significantly affected plasma hemocyanin concentration, hepatopancreas hemocyanin mRNA and subunits expressions, plasma phenol oxidase (PO), hemocyanin-derived PO (Hd-PO), antibacterial, and bacteriolytic activities during the experiment under bacterial stress, while these parameters did not change remarkably in control group. The concentration of hemocyanin in plasma fluctuated, with a minimum at 12 h and a maximum at 24 h. Moreover, the expression of hemocyanin mRNA peaked at 12 h, while the level of hemocyanin p75 and p77 subunits reached maximum at 24 h. Besides, plasma PO and Hd-PO activities peaked at 24 h, and antimicrobial and bacteriolytic activities peaked at 12 h and 24 h, respectively. In addition, 10〈sup〉5〈/sup〉 cells mL〈sup〉−1〈/sup〉 〈em〉S. aureus〈/em〉 had no significant effect on the synthesis of hemocyanin and prophenoloxidase activating (pro-PO) system, but significantly increased antimicrobial activity at 12 h and bacteriolytic activity at 24 h. Therefore, these results suggest that the hemocyanin synthesis was initiated after invasion of pathogen, and the newly synthesized hemocyanin, acted as an immune molecule, can exerts PO activity to regulate the immune defense in 〈em〉L. vannamei in vivo〈/em〉.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 1050-4648
    Electronic ISSN: 1095-9947
    Topics: Biology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Medicine
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2019
    Description: 〈p〉Publication date: Available online 16 August 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Seminars in Cell & Developmental Biology〈/p〉 〈p〉Author(s): Dominic Julian, Ethan W. Hollingsworth, Katherine Julian, Jaime Imitola〈/p〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Human central nervous system (CNS) regeneration is considered the holy grail of neuroscience research, and is one of the most pressing and difficult questions in biology and science. Despite more than 20 years of work in the field of neural stem cells (NSCs), the area remains in its infancy as our understanding of the fundamental mechanisms that can be leveraged to improve CNS regeneration in neurological diseases is still growing. Here, we focus on the recent lessons from lower organism CNS regeneration genetics and how such findings are starting to illuminate our understanding of NSC signaling pathways in humans. These findings will allow us to improve upon our knowledge of endogenous NSC function, the utility of exogenous NSCs, and the limitations of NSCs as therapeutic vehicles for providing relief from devastating human neurological diseases. We also discuss the limitations of activating NSC signaling for CNS repair in humans, especially the potential for tumor formation. Finally, we will review the recent advances in new culture techniques, including patient-derived cells and cerebral organoids to model the genetic regulation of signaling pathways controlling the function of NSCs during injury and disease states.〈/p〉〈/div〉
    Print ISSN: 1084-9521
    Electronic ISSN: 1096-3634
    Topics: Biology , Medicine
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2019
    Description: 〈p〉Publication date: Available online 16 August 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biomaterials〈/p〉 〈p〉Author(s): Jiang Wu, Anqi Chen, Yajiao Zhou, Sen Zheng, Yao Yang, Ying An, Ke Xu, Huacheng He, Jianming Kang, Jittima Amie Luckanagul, Ming Xian, Jian Xiao, Qian Wang〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Hydrogen sulfide (H〈sub〉2〈/sub〉S), as a gaseous messenger, exhibits potential therapeutic effects in biological and clinical applications. Herein, an 〈em〉in situ〈/em〉 forming biomimetic hyaluronic acid (HA) hydrogel was used as a matrix to dope a pH-controllable H〈sub〉2〈/sub〉S donor, JK1, to form a novel HA-JK1 hybrid system. This HA-JK1 hydrogel was designed as an ideal delivery scaffold for JK1 with pH-dependent prolonged H〈sub〉2〈/sub〉S releasing profile. 〈em〉In vitro〈/em〉 study suggested that JK1 could induce the polarization of M2 phenotype indicating a higher pro-healing efficiency of macrophages. The 〈em〉in vivo〈/em〉 studies on dermal wounds showed that the HA-JK1 hybrid hydrogel significantly accelerated the wound regeneration process through enhanced re-epithelialization, collagen deposition, angiogenesis and cell proliferation. Furthermore, the 〈em〉in vivo〈/em〉 results also demonstrated a higher level of M2 polarization in HA-JK1 treated group with reduced inflammation and improved wound remodeling effects, which was consistent with the 〈em〉in vitro〈/em〉 results. These observations could be considered as a key to the efficient wound treatment. Therefore, we suggest that HA-JK1 can be used as a novel wound dressing material toward cutaneous wound model 〈em〉in vivo〈/em〉. This system should significantly enhance wound regeneration through the release of H〈sub〉2〈/sub〉S that induces the expression of M2 macrophage phenotype.〈/p〉〈/div〉 〈/div〉 〈h5〉Graphical abstract〈/h5〉 〈div〉〈p〉〈figure〉〈img src="https://ars.els-cdn.com/content/image/1-s2.0-S0142961219304971-fx1.jpg" width="363" alt="Image 1" title="Image 1"〉〈/figure〉〈/p〉〈/div〉
    Print ISSN: 0142-9612
    Electronic ISSN: 1878-5905
    Topics: Biology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Medicine
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2019
    Description: 〈p〉Publication date: Available online 13 August 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biomaterials〈/p〉 〈p〉Author(s): Ian A. Marozas, Kristi S. Anseth, Justin J. Cooper-White〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Cells are capable of sensing the differences in elastic and viscous properties (i.e., the ‘viscoelasticity’) of their tissue microenvironment and responding accordingly by changing their transcriptional activity and modifying their behaviors. When designing viscoelastic materials to mimic the mechanical properties of native tissue niches, it is important to consider the timescales over which cells probe their microenvironment, as the response of a viscoelastic material to an imposed stress or strain is timescale dependent. Although the timescale of cellular mechano-sensing is currently unknown, hydrogel substrates with tunable viscoelastic spectra can allow one to probe the cellular response to timescale dependent mechanical properties. Here, we report on a cytocompatible and viscoelastic hydrogel culture system with reversible boronate ester cross-links, formed from pendant boronic acid and vicinal diol moieties, where the equilibrium kinetics of esterification were leveraged to tune the viscoelastic spectrum. We found that viscoelasticity increased as a function of the boronic acid and vicinal diol concentration, and also increased with decreasing cross-linker concentration, where the maximal loss tangent achieved with this system was 0.55 at 0.1 rad s〈sup〉−1〈/sup〉. Additionally, we found that the 〈em〉cis〈/em〉-vicinal diols configuration altered the viscoelastic spectra, where a tan δ peak occurred at ∼1 rad s〈sup〉−1〈/sup〉 for hydrogels functionalized with boronic acid, while an additional peak formed at ≥10 rad s〈sup〉−1〈/sup〉 for hydrogels functionalized with both boronic acid and 〈em〉cis-vic〈/em〉-diols. In experiments with NIH-3T3 fibroblasts cultured on these hydrogels, the projected cell area and nuclear area, focal adhesion tension, and subcellular localization of YAP/TAZ were all found to be lower for cells cultured on the viscoelastic hydrogels compared to elastic hydrogels with a similar storage modulus. Despite these differences, there was not a statistically significant relationship between the frequency dependent viscoelastic material properties characterized in this study and cellular morphologies, focal adhesion tension, or the subcellular localization of YAP. While these results demonstrate that mechanotransduction pathways are affected by viscoelasticity, they also suggest that these mechanotransduction pathways are not particularly sensitive to the frequency dependent viscoelastic material properties from 0.1 to 10 rad s〈sup〉−1〈/sup〉.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 0142-9612
    Electronic ISSN: 1878-5905
    Topics: Biology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Medicine
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2019
    Description: 〈p〉Publication date: November 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biomaterials, Volume 222〈/p〉 〈p〉Author(s): Yi Hu, Ting Liu, Jingxia Li, Fengyi Mai, Jiawei Li, Yan Chen, Yanyun Jing, Xin Dong, Li Lin, Junyi He, Yan Xu, Changliang Shan, Jianlei Hao, Zhinan Yin, Tianfeng Chen, Yangzhe Wu〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Immune cell therapy presents a paradigm for the treatment of malignant tumors. Human Vγ9Vδ2 T cells, a subset of peripheral γδ T cells, have been shown to have promising anti-tumor activity. However, new methodology on how to achieve a stronger anti-tumor activity of Vγ9Vδ2 T cells is under continuous investigation. In this work, we used selenium nanoparticles (SeNPs) to strengthen the anti-tumor cytotoxicity of Vγ9Vδ2 T cells. We found SeNPs pretreated γδ T cells had significantly stronger cancer killing and tumor growth inhibition efficacy when compared with γδ T cells alone. Simultaneously, SeNPs pretreatment could significantly upregulate the expression of cytotoxicity related molecules including NKG2D, CD16, and IFN-γ, meanwhile, downregulate PD-1 expression of γδ T cells. Importantly, we observed that SeNPs promoted tubulin acetylation modification in γδ T cells through interaction between microtubule network and lysosomes since the latter is the primary resident station of SeNPs shown by confocal visualization. In conclusion, SeNPs could significantly potentiate anti-tumor cytotoxicity of Vγ9Vδ2 T cells, and both cytotoxicity related molecules and tubulin acetylation were involved in fine-tuning γδ T cell toxicity against cancer cells. Our present work demonstrated a new strategy for further enhancing anti-tumor cytotoxicity of human Vγ9Vδ2 T cells by using SeNPs-based nanotechnology, not gene modification, implicating SeNPs-based nanotechnology had a promising clinical perspective in the γδ T cell immunotherapy for malignant tumors.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 0142-9612
    Electronic ISSN: 1878-5905
    Topics: Biology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Medicine
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2019
    Description: 〈p〉Publication date: November 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biomaterials, Volume 222〈/p〉 〈p〉Author(s): Ji Young Park, Jiyou Han, Hyo Sung Jung, Gyunggyu Lee, Hyo Jin Kim, Gun-Sik Cho, Han-Jin Park, Choongseong Han, Jong Seung Kim, Jong-Hoon Kim〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Hepatocytes derived from human pluripotent stem cells (hPSCs) are promising candidates for cell therapy and drug discovery. However, it remains challenging to efficiently purify hepatocytes from undesired cell types after differentiation and to accurately monitor grafted cells after transplantation. Indocyanine Green (ICG), an FDA-approved, near-infrared (NIR) dye, has been used for various clinical purposes and is exclusively taken up by hepatocytes. However, ICG has a long emission wavelength (λ〈sub〉em〈/sub〉 〉 800 nm) that is beyond the detection range of fluorescence-activated cell sorting (FACS) systems. Moreover, it is easily eliminated from hepatocytes, hindering its application for NIR imaging. Here, we designed and synthesized two different probes based on the properties of ICG; 1) hepatocyte purifying agent (〈strong〉HPA,〈/strong〉 λ〈sub〉em〈/sub〉 = 562 nm) for 〈em〉in vitro〈/em〉 sorting and 2) hepatocyte imaging agent (〈strong〉HIA,〈/strong〉 λ〈sub〉em〈/sub〉 = 817 nm) for efficient 〈em〉in vivo〈/em〉 NIR imaging. We obtained highly enriched populations of hPSC-derived hepatocytes (hPSC-Heps) from various hPSC lines using HPA probe-based FACS purification. In addition, HIA labelling and NIR imaging allowed the direct visualization and tracking of grafted hPSC-Heps in animals with liver injuries. These results demonstrated that these two probes could be used as powerful tools with hPSC-Heps in both cell replacement therapy and drug screening.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 0142-9612
    Electronic ISSN: 1878-5905
    Topics: Biology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Medicine
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2019
    Description: 〈p〉Publication date: Available online 8 August 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Seminars in Cell & Developmental Biology〈/p〉 〈p〉Author(s): Ho Him Wong, Sumana Sanyal〈/p〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Autophagy is an evolutionarily conserved process central to host metabolism. Among its major functions are conservation of energy during starvation, recycling organelles, and turnover of long-lived proteins. Besides, autophagy plays a critical role in removing intracellular pathogens and very likely represents a primordial intrinsic cellular defence mechanism. More recent findings indicate that it has not only retained its ability to degrade intracellular pathogens, but also functions to augment and fine tune antiviral immune responses. Interestingly, viruses have also co-evolved strategies to manipulate this pathway and use it to their advantage. Particularly intriguing is infection-dependent activation of autophagy with positive stranded (+)RNA virus infections, which benefit from the pathway without succumbing to lysosomal degradation. In this review we summarise recent data on viral manipulation of autophagy, with a particular emphasis on +RNA viruses and highlight key unanswered questions in the field that we believe merit further attention.〈/p〉〈/div〉
    Print ISSN: 1084-9521
    Electronic ISSN: 1096-3634
    Topics: Biology , Medicine
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2019
    Description: 〈p〉Publication date: Available online 8 August 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Seminars in Cell & Developmental Biology〈/p〉 〈p〉Author(s): Srikanta Dash, Yucel Aydin, Tong Wu〈/p〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉The molecular mechanism(s) how liver damage during the chronic hepatitis C virus (HCV) infection evolve into cirrhosis and hepatocellular carcinoma (HCC) is unclear. HCV infects hepatocyte, the major cell types in the liver. During infection, large amounts of viral proteins and RNA replication intermediates accumulate in the endoplasmic reticulum (ER) of the infected hepatocyte, which creates a substantial amount of stress response. Infected hepatocyte activates a different type of stress adaptive mechanisms such as unfolded protein response (UPR), antioxidant response (AR), and the integrated stress response (ISR) to promote virus-host cell survival. The hepatic stress is also amplified by another layer of innate and inflammatory response associated with cellular sensing of virus infection through the production of interferon (IFN) and inflammatory cytokines. The interplay between various types of cellular stress signal leads to different forms of cell death such as apoptosis, necrosis, and autophagy depending on the intensity of the stress and nature of the adaptive cellular response. How do the adaptive cellular responses decode such death programs that promote host-microbe survival leading to the establishment of chronic liver disease? In this review, we discuss how the adaptive cellular response through the Nrf2 pathway that promotes virus and cell survival. Furthermore, we provide a glimpse of novel stress-induced Nrf2 mediated compensatory autophagy mechanisms in virus-cell survival that degrade tumor suppressor gene and activation of oncogenic signaling during HCV infection. Based on these facts, we hypothesize that the balance between hepatic stress, inflammation and different types of cell death determines liver disease progression outcomes. We propose that a more nuanced understanding of virus-host interactions under excessive cellular stress may provide an answer to the fundamental questions why some individuals with chronic HCV infection remain at risk of developing cirrhosis, cancer and some do not.〈/p〉〈/div〉
    Print ISSN: 1084-9521
    Electronic ISSN: 1096-3634
    Topics: Biology , Medicine
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2019
    Description: 〈p〉Publication date: November 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biomaterials, Volume 221〈/p〉 〈p〉Author(s): Dian R. Arifin, Mangesh Kulkarni, Deepak Kadayakkara, Jeff W.M. Bulte〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Clinical trials that have used encapsulated islet cell therapy have been few and overall disappointing. This is due in part to the lack of suitable methods to monitor the integrity vs. rupture of transplanted microcapsules over time. Fluorocapsules were synthesized by embedding emulsions of perfluoro-15-crown-5-ether (PFC), a bioinert compound detectable by 〈sup〉19〈/sup〉F MRI, into dual-alginate layer, Ba〈sup〉2+〈/sup〉-gelled alginate microcapsules. Fluorocapsules were spherical with an apparent smooth surface and an average diameter of 428 ± 52 μm. After transplantation into mice, the 〈sup〉19〈/sup〉F MRI signal of capsules remained stable for up to 90 days, corresponding to the total number of intact fluorocapsules. When single-alginate layer capsules were ruptured with alginate lyase, the 〈sup〉19〈/sup〉F MRI signal dissipated within 4 days. For fluoroencapsulated luciferase-expressing mouse βTC6 insulinoma cells implanted into autoimmune NOD/ShiLtJ mice and subjected to alginate-lyase induced capsule rupture 〈em〉in vivo〈/em〉, the 〈sup〉19〈/sup〉F MRI signal decreased sharply over time along with a decrease in bioluminescence imaging signal used as a measure of cell viability 〈em〉in vivo〈/em〉. These results indicate that maintenance of capsule integrity is essential for preserving transplanted cell survival, where a decrease in 〈sup〉19〈/sup〉F MRI signal may serve as a predictive imaging surrogate biomarker for impending failure of encapsulated islet cell therapy.〈/p〉〈/div〉 〈/div〉 〈h5〉Graphical abstract〈/h5〉 〈div〉〈p〉Caption: When weak implanted immunoprotective fluorocapsules are ruptured in vivo, the 〈sup〉19〈/sup〉F MRI signal disappears rapidly. In contrast, the signal of strong, intact fluorocapsules remains unchanged. This dissipation of 〈sup〉19〈/sup〉F MRI signal may be used as a surrogate imaging biomarker for loss of immunoprotection and impending failure of encapsulated cell therapy.〈figure〉〈img src="https://ars.els-cdn.com/content/image/1-s2.0-S0142961219305095-egi10491Q07482.jpg" width="255" alt="Image 1049107482" title="Image 1049107482"〉〈/figure〉〈/p〉〈/div〉
    Print ISSN: 0142-9612
    Electronic ISSN: 1878-5905
    Topics: Biology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Medicine
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2019
    Description: 〈p〉Publication date: October 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Fish & Shellfish Immunology, Volume 93〈/p〉 〈p〉Author(s): Fangyi Chen, Kejian Wang〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Mud crabs, 〈em〉Scylla paramamosain〈/em〉, are one of the most economical and nutritious crab species in China and South Asia. Inconsistent with the high development of commercial mud crab aquaculture, effective immunological methods to prevent frequently-occurring diseases have not yet been developed. Thus, high mortalities often occur throughout the different developmental stages of this species resulting in large economic losses. In recent years, numerous attempts have been made to use various advanced biological technologies to understand the innate immunity of 〈em〉S. paramamosain〈/em〉 as well as to characterize specific immune components. This review summarizes these research advances regarding cellular and humoral responses of the mud crab during pathogen infection, highlighting hemocytes and gills defense, pattern recognition, immune-related signaling pathways (Toll, IMD, JAK/STAT, and prophenoloxidase (proPO) cascades), immune effectors (antimicrobial peptides), production of reactive oxygen species and the antioxidant system. Diseases affecting the development of mud crab aquaculture and potential disease control strategies are discussed.〈/p〉〈/div〉 〈/div〉 〈h5〉Graphical abstract〈/h5〉 〈div〉〈p〉〈figure〉〈img src="https://ars.els-cdn.com/content/image/1-s2.0-S1050464819307867-fx1.jpg" width="354" alt="Image 1" title="Image 1"〉〈/figure〉〈/p〉〈/div〉
    Print ISSN: 1050-4648
    Electronic ISSN: 1095-9947
    Topics: Biology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Medicine
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2019
    Description: 〈p〉Publication date: October 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Fish & Shellfish Immunology, Volume 93〈/p〉 〈p〉Author(s): Ai-Guo Huang, Xiao-Ping Tan, Shen-Ye Qu, Gao-Xue Wang, Bin Zhu〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉White spot syndrome virus (WSSV) is a serious epidemic pathogen of crustaceans and cause severe economic losses to aquaculture. However, no commercial drugs presently available to control WSSV infection. Genipin (GN) is a bioactive compound extracted from the fruit of 〈em〉Gardenia jasminoides〈/em〉 and exhibits potential antiviral activity. In the study, the antiviral activity of GN against WSSV was investigated in crayfish 〈em〉Procambarus clarkii〈/em〉 and in shrimp 〈em〉Litopenaeus vannamei〈/em〉. 〈em〉In vitro〈/em〉 antiviral test showed that GN could inhibit WSSV replication in crayfish and in shrimp, and the highest inhibition on WSSV was over 99% when treatment with 50 mg/kg of GN for 24 h. 〈em〉In vivo〈/em〉 antiviral test proved that GN could be used to treat and prevent WSSV infection. GN could also effectively protect crayfish from WSSV infection by reducing the mortality rate of WSSV-infected crayfish. Moreover, GN attenuated the WSSV-induced oxidative stress and inflammatory by upregulation the expression of antioxidant-related genes and downregulation the expression of inflammatory-related genes, respectively. Mechanically, GN inhibited WSSV replication at least via decreasing 〈em〉STAT〈/em〉 (〈em〉signal transducer and activator of transcription〈/em〉) gene expression to block WSSV immediate-early gene 〈em〉ie1〈/em〉 transcription. Additionally, the inhibition of 〈em〉BI-1〈/em〉 (〈em〉Bax inhibitor-1〈/em〉) gene expression also played an important role in the suppression of WSSV infection. In conclusion, GN represented a potential therapeutic and preventive agent to block WSSV infection.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 1050-4648
    Electronic ISSN: 1095-9947
    Topics: Biology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Medicine
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2019
    Description: 〈p〉Publication date: October 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Fish & Shellfish Immunology, Volume 93〈/p〉 〈p〉Author(s): Zhiying He, Fan Mao, Yue Lin, Jun Li, Xiangyu Zhang, Yuehuan Zhang, Zhiming Xiang, Zohaib Noor, Yang Zhang, Ziniu Yu〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Phagocytosis is one of the fundamental cellular immune defense parameter that helps in the elimination of the invading pathogens in both vertebrates and invertebrates, which require plenty of energy for functioning. In the present study, we identified the critical energy regulator AMP-activated protein kinase (AMPK) in 〈em〉Crassostrea hongkongensis〈/em〉 which is composed of three subunits, named 〈em〉Ch〈/em〉AMPK-α, 〈em〉Ch〈/em〉AMPK-β, and 〈em〉Ch〈/em〉AMPK-γ, and then analyzed the function of AMPK in regulating hemocyte phagocytosis. All the three 〈em〉Ch〈/em〉AMPK subunits mRNA were detected to be expressed at various embryological stages, and also constitutively expressed in multiple tissues with high expression in gill and mantle. The phylogenetic tree showed that the three subunits of AMPK were correspondingly clustered with its orthologue branches. Furthermore Western Blot analysis revealed that the AMPK pharmacological inhibitors Compound C could effectively down-regulate the Thr〈sup〉172〈/sup〉 phosphorylation level of AMPK-α, and the hemocyte phagocytosis was inhibited by Compound C (CC), which indicate its existence in the oyster. Our results showed that treatment of AMPK inhibitors significantly attenuated the capacity of hemocytes phagocytosis. Moreover, Compound C could also change the organization of actin cytoskeleton in the oyster hemocytes, demonstrating the crucial role of AMPK signaling in control of phagocytosis.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 1050-4648
    Electronic ISSN: 1095-9947
    Topics: Biology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Medicine
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2019
    Description: 〈p〉Publication date: October 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Fish & Shellfish Immunology, Volume 93〈/p〉 〈p〉Author(s): Jian He, Tao-Lin Xie, Xiao Li, Yang Yu, Zhi-Peng Zhan, Shao-Ping Weng, Chang-Jun Guo, Jian-Guo He〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Mandarin fish (〈em〉Siniperca chuatsi〈/em〉) is a universally farmed fish species in China and has a large farming scale and economic value. With the high-density cultural mode in mandarin fish, viral diseases, such as infectious spleen and kidney necrosis virus (ISKNV) and 〈em〉Siniperca chuatsi〈/em〉 rhabdovirus (SCRV), have increased loss, which has seriously restricted the development of aquaculture. Y-Box binding protein 1 (YB-1) is a member of cold shock protein family that regulates multiple cellular processes. The roles of mammalian YB-1 protein in environmental stress and innate immunity have been studied well, but its roles in teleost fishes remain unknown. In the present study, the characteristic of 〈em〉S. chuatsi〈/em〉 YB-1 (〈em〉sc〈/em〉YB-1) and its roles in cold stress and virus infection were investigated. The 〈em〉sc〈/em〉YB-1 obtained an 1541 bp cDNA that contains a 903 bp open reading frame encoding a protein of 300 amino acids. Tissue distribution results showed that the 〈em〉sc〈/em〉YB-1 is a ubiquitously expressed gene found among tissues from mandarin fish. Overexpression of 〈em〉sc〈/em〉YB-1 can increase the expression levels of cold shock-responsive genes, such as 〈em〉scHsc70a〈/em〉, 〈em〉scHsc70b〈/em〉, and 〈em〉scp53〈/em〉. Furthermore, the role of 〈em〉sc〈/em〉YB-1 in innate immunity was also investigated in mandarin fish fry (MFF-1) cells. The expression level of 〈em〉sc〈/em〉YB-1 was significant change in response to poly (I:C), poly (dG:dC), PMA, ISKNV, or SCRV stimulation. The overexpression of 〈em〉sc〈/em〉YB-1 can significantly increase the expression levels of NF-κB-responsive genes, including 〈em〉scIL-8, scTNF-α〈/em〉, and 〈em〉scIFN-h.〈/em〉 The NF-κB-luciferase report assay results showed that the relative expression of luciferin was significantly increased in the cells overexpressed with 〈em〉sc〈/em〉YB-1 compared with those in cells overexpressed with control plasmid. These results indicate that 〈em〉sc〈/em〉YB-1 can induce the NF-κB signaling pathway in MFF-1 cells. Overexpressed 〈em〉sc〈/em〉YB-1 can downregulate the expression of ISKNV viral major capsid protein (〈em〉mcp〈/em〉) gene but upregulates the expression of SCRV 〈em〉mcp〈/em〉 gene. Moreover, knockdown of 〈em〉sc〈/em〉YB-1 using siRNA can upregulate the expression of ISKNV 〈em〉mcp〈/em〉 gene but downregulates the expression of SCRV 〈em〉mcp〈/em〉 gene. These results indicate that 〈em〉sc〈/em〉YB-1 suppresses ISKNV infection while enhancing SCRV infection. The above observations suggest that 〈em〉sc〈/em〉YB-1 is involved in cold stress and virus infection. Our study will provide an insight into the roles of teleost fish YB-1 protein in stress response and innate immunity.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 1050-4648
    Electronic ISSN: 1095-9947
    Topics: Biology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Medicine
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2019
    Description: 〈p〉Publication date: October 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Fish & Shellfish Immunology, Volume 93〈/p〉 〈p〉Author(s): Hien Van Doan, Seyed Hossein Hoseinifar, Korawan Sringarm, Sanchai Jaturasitha, Bundit Yuangsoi, Mahmoud A.O. Dawood, Maria Ángeles Esteban, Einar Ringø, Caterina Faggio〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉The present study aimed to assess the possible effects of Assam tea (〈em〉Camellia sinensis〈/em〉) extract (ATE) on growth performances, immune responses, and disease resistance of Nile tilapia, 〈em〉Oreochromis niloticus〈/em〉 against 〈em〉Streptococcus agalactiae〈/em〉. Five levels of ATE were supplemented into the based diet at 0, 1, 2, 4, and 8 g kg〈sup〉−1〈/sup〉 feed of Nile tilapia fingerlings (10.9 ± 0.04 g initial weight) in triplicate. After four and eight weeks of feeding, fish were sampled to determine the effects of the tea supplements upon their growth performance, as well as serum and mucosal immune responses. A disease challenge using 〈em〉S. agalactiae〈/em〉 was conducted at the end of the feeding trial. Fish fed ATE revealed significantly improved serum lysozyme, peroxidase, alternative complement (ACH50), phagocytosis, and respiratory burst activities compared to the basal control fed fish (〈em〉P〈/em〉 〈 0.05). The mucus lysozyme and peroxidase activities were ameliorated through ATE supplementation in the tilapia diets. Supplementation of ATE significantly (〈em〉P〈/em〉 〈 0.05) enhanced final body weight, weight gain, and specific growth rate; while a decreased feed conversion ratio was revealed at 2 g kg〈sup〉−1〈/sup〉 inclusion level, after four and eight weeks. Challenge test showed that the relative percent survival (RSP) of fish in each treatment was 33.33%, 60.00%, 83.33%, 76.68%, and 66.68% in groups fed 0, 1, 2, 4, and 8 g kg〈sup〉−1〈/sup〉, respectively. In summary, diets supplemented with ATE especially at 2 g kg〈sup〉−1〈/sup〉 increased the humoral and mucosal immunity, enhanced growth performance, and offered higher resistance against 〈em〉S. agalactiae〈/em〉 infection in Nile tilapia.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 1050-4648
    Electronic ISSN: 1095-9947
    Topics: Biology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Medicine
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2019
    Description: 〈p〉Publication date: October 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Fish & Shellfish Immunology, Volume 93〈/p〉 〈p〉Author(s): Jiquan Zhang, Yujie Liu, Yongzhao Zhou, Wenzheng Wang, Naike Su, Yuying Sun〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Trehalose, a nonreducing disaccharide, is present in a wide variety of organisms and plays a key role in many organisms under different stress conditions. In the study, the full-length cDNA sequence encoding trehalose-6-phosphate synthase (EcTPS) was obtained from 〈em〉Exopalaemon carinicauda〈/em〉. The complete nucleotide sequence of 〈em〉EcTPS〈/em〉 contained a 2532 bp open reading frame (ORF) encoding a putative protein of 843 amino acids. The domain architecture of the deduced EcTPS contained a glycol_transf_20 domain and a trehalose_PPase domain. 〈em〉EcTPS〈/em〉 mRNA was predominantly expressed in the hepatopancreas. The expression of 〈em〉EcTPS〈/em〉 in the prawns challenged with 〈em〉Vibrio parahaemolyticus〈/em〉 and 〈em〉Aeromonas hydrophila〈/em〉 changed in a time-dependent manner. The function of 〈em〉EcTPS〈/em〉 was also studied by double-strand RNA interference. The results showed that the knock-down of 〈em〉EcTPS〈/em〉 increased the mortality of the 〈em〉Vibrio〈/em〉-challenged group and 〈em〉Aeromonas〈/em〉-challenged group compared with the control group. The present study provides some new insight into the immune function of the trehalose-6-phosphate synthase in prawns.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 1050-4648
    Electronic ISSN: 1095-9947
    Topics: Biology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Medicine
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2019
    Description: 〈p〉Publication date: October 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Fish & Shellfish Immunology, Volume 93〈/p〉 〈p〉Author(s): Rui Jia, Zhengyan Gu, Qin He, Jinliang Du, Liping Cao, Galina Jeney, Pao Xu, Guojun Yin〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Radix Bupleuri extract (RBE) is one of the most popular oriental herbal medicines, which has anti-oxidative and anti-inflammatory properties. However, its protective effects and underlying molecular mechanisms on oxidative damage in tilapia are still unclear. The aims of the study were to explore the anti-oxidative, anti-inflammatory and hepatoprotective effects of RBE against oxidative damage, and to elucidate underlying molecular mechanisms in fish. Tilapia received diet containing three doses of RBE (0, 1 and 3 g/kg diet) for 60 days, and then were given an intraperitoneal injection of H〈sub〉2〈/sub〉O〈sub〉2〈/sub〉 or saline. Before injection, RBE treatments improved growth performance and partial anti-oxidative capacity in tilapia. After oxidative damage, RBE pretreatments were able to signally reduce the higher serum aminotransferases, alkaline phosphatase (AKP) and liver necrosis. In serum and liver, the abnormal lipid peroxidation level and antioxidant status induced by H〈sub〉2〈/sub〉O〈sub〉2〈/sub〉 injection were restored by RBE treatments. Furthermore, RBE treatments activated erythroid 2-related factor 2 (Nrf2) signaling pathway, which promoted the gene expression of heme oxygenase 1 (HO-1), NAD(P) H:quinone oxidoreductase 1 (NQO-1), glutathione-S-transferase (GST) and catalase (CAT). Meanwhile, RBE treatments reduced inflammatory response by inhibiting TLRs-MyD88-NF-κB signaling pathway, accompanied by the lower interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α) and IL-8 mRNA levels. In addition, RBE treatments upregulated complement (C3) gene expression and downregulated heat shock protein (HSP70) gene expression. In conclusion, the current study suggested that RBE pretreatments protected against H〈sub〉2〈/sub〉O〈sub〉2〈/sub〉-induced oxidative damage in tilapia. The beneficial activity of RBE may be due to the modulation of Nrf2/ARE and TLRs-Myd88-NF-κB signaling pathway.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 1050-4648
    Electronic ISSN: 1095-9947
    Topics: Biology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Medicine
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2019
    Description: 〈p〉Publication date: October 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Fish & Shellfish Immunology, Volume 93〈/p〉 〈p〉Author(s): Ye Zhao, Hui Liu, Qing Wang, Bingjun Li, Hongxia Zhang, Yongrui Pi〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉The gut microbiota is essential for health and physiological functions in the host organism. However, the toxicological evaluation of environmental pollutants on the gut microbiota is still insufficient. In the present study, the juvenile sea cucumber 〈em〉Apostichopus japonicus〈/em〉 was exposed for 14 days to Benzo[〈em〉a〈/em〉]pyrene (BaP), which is a model polycyclic aromatic hydrocarbon (PAH), at four different concentrations (0, 0.5, 5, and 25 μg/L). We analyzed the intestinal microbial community of 〈em〉A. japonicas〈/em〉 using 16S rRNA gene amplicon sequencing. Our results demonstrate that BaP exposure caused alterations to the microbiome community composition in sea cucumbers. At the phylum level, 〈em〉Planctomycetes〈/em〉 were significantly more abundant in BaP exposure groups at 14 d compared with the control group, and the abundance of 〈em〉Proteobacteria〈/em〉 and 〈em〉Bacteroidetes〈/em〉 increased while the abundance of 〈em〉Firmicutes〈/em〉 decreased following BaP exposure. At the genus level, multiple beneficial and autochthonous genera declined in the BaP treatment groups compared to the control, including 〈em〉Lactococcus〈/em〉, 〈em〉Bacillus〈/em〉, 〈em〉Lactobacillus〈/em〉, 〈em〉Enterococcus〈/em〉, 〈em〉Leuconostoc〈/em〉 and 〈em〉Weissella〈/em〉; however, a bloom of alkane-degrading bacteria was found in BaP-exposed guts and included 〈em〉Lutibacter〈/em〉, 〈em〉Pseudoalteromonas〈/em〉, 〈em〉Polaribacter〈/em〉, 〈em〉Rhodopirellula〈/em〉 and 〈em〉Blastopirellula〈/em〉. Furthermore, histological morphology, enzymatic activity and gene expression analysis revealed that BaP exposure also negatively impacted gut structure and function and presented as inflammation or atrophy, oxidative stress and immune suppression in sea cucumber intestines. Collectively, these findings provide insights into the toxic effects of BaP exposure on 〈em〉A. japonicas〈/em〉 associated with intestinal microbiota and health.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 1050-4648
    Electronic ISSN: 1095-9947
    Topics: Biology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Medicine
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2019
    Description: 〈p〉Publication date: October 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Fish & Shellfish Immunology, Volume 93〈/p〉 〈p〉Author(s): Mengting Luo, Linwei Yang, Zi-ang Wang, Hongliang Zuo, Shaoping Weng, Jianguo He, Xiaopeng Xu〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉C-type lectins (CTLs) are a group of lectins with at least one carbohydrate recognition domain (CRD), the binding of which to carbohydrates requires the presence of calcium ions. CTLs generally function as pattern recognition receptors (PRRs), essentially participating in innate immunity. In the current study, a novel CTL termed LvCTL5 was identified from Pacific white shrimp 〈em〉Litopenaeus vannamei〈/em〉, which shared sequence identities with other crustacean CTLs. LvCTL5 was highly expressed in hepatopancreas and could be activated by infection with bacteria, virus and fungi. The recombinant LvCTL5 protein purified from 〈em〉E. coli〈/em〉 showed microbiostatic and agglutination activities against bacteria and fungi 〈em〉in vitro〈/em〉. Silencing of LvCTL5 〈em〉in vivo〈/em〉 could significantly affect expression of a series of immune effector genes and down-regulate the phagocytic activity of hemocytes. Compared with controls, the LvCTL5-silenced shrimp were highly susceptible to 〈em〉Vibrio parahaemolyticus〈/em〉 and white spot syndrome virus (WSSV) infections. These suggest that LvCTL5 has microbiostatic and immune regulatory activities and is implicated in antiviral and antibacterial responses.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 1050-4648
    Electronic ISSN: 1095-9947
    Topics: Biology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Medicine
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2019
    Description: 〈p〉Publication date: October 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Fish & Shellfish Immunology, Volume 93〈/p〉 〈p〉Author(s): Yi Tang, Yujia Sun, Lingmin Zhao, Xiaojin Xu, Lixing Huang, Yingxue Qin, Yongquan Su, Ganfeng Yi, Qingpi Yan〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Large yellow croaker (〈em〉Larimichthys crocea〈/em〉) is an economical important farmed fish in China. “Visceral White Spot Disease” caused by 〈em〉Pseudomonas plecoglossicida〈/em〉 is a disease with a high mortality rate in cage-cultured 〈em〉L. crocea〈/em〉 in recent years and resulted in heavy economy lossess. The dual RNA-seq results of previous study showed that the expression of 〈em〉clpV〈/em〉 gene in 〈em〉P. plecoglossicida〈/em〉 was significantly up-regulated during infection. RNAi significantly reduced the expression of 〈em〉clpV〈/em〉 in 〈em〉P. plecoglossicida〈/em〉 with maximum silencing efficiency of 96.1%. Compared with the wild type strain, infection of 〈em〉clpV〈/em〉-RNAi strain resulted in a delayed onset time and a 25% reduction in mortality of 〈em〉L. crocea〈/em〉, as well as lessening the symptoms of the spleen. The results of dual RNA-seq of 〈em〉L. crocea〈/em〉 infected by 〈em〉clpV〈/em〉-RNAi strain of 〈em〉P. plecoglossicida〈/em〉 changed considerably, compared with the counterpart infected with the wild strain. The KEGG enrichment analysis showed that Cytokine-cytokine receptor interaction, Toll-like receptor signaling pathway, C-type lectin receptor signaling pathway and MAPK signaling pathway of 〈em〉L. crocea〈/em〉 were most affected by the silence of 〈em〉clpV〈/em〉 in 〈em〉P. plecoglossicida〈/em〉. RNAi of 〈em〉clpV〈/em〉 resulted in the downregulation of genes in flagella assembly pathway and a weaker immune response of host.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 1050-4648
    Electronic ISSN: 1095-9947
    Topics: Biology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Medicine
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2019
    Description: 〈p〉Publication date: October 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Fish & Shellfish Immunology, Volume 93〈/p〉 〈p〉Author(s): Hao Chen, Minxiao Wang, Huan Zhang, Hao Wang, Zhao Lv, Li Zhou, Zhaoshan Zhong, Chao Lian, Lei Cao, Chaolun Li〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉As domain species in seep and vent ecosystem, Bathymodioline mussels has been regarded as a model organism in investigating deep sea chemosymbiosis. However, mechanisms underlying their symbiosis with chemosynthetic bacteria, especially how the host recognizes symbionts, have remained largely unsolved. In the present study, a modified pull-down assay was conducted using enriched symbiotic methane-oxidation bacteria as bait and gill proteins of 〈em〉Bathymodiolus platifrons〈/em〉 as a target to isolate pattern recognition receptors involved in the immune recognition of symbionts. As a result, a total of 47 proteins including BpLRR-1 were identified from the pull-down assay. It was found that complete cDNA sequence of BpLRR-1 contained an open reading frame of 1479 bp and could encode a protein of 492 amino acid residues with no signal peptide or transmembrane region but eight LRR motif and two EFh motif. The binding patterns of BpLRR-1 against microbial associated molecular patterns were subsequently investigated by surface plasmon resonance analysis and LPS pull-down assay. Consequently, BpLRR-1 was found with high binding affinity with LPS and suggested as a key molecule in recognizing symbionts. Besides, transcripts of BpLRR-1 were found decreased significantly during symbiont depletion assay yet increased rigorously during symbionts or nonsymbiotic 〈em〉Vibrio alginolyticus〈/em〉 challenge, further demonstrating its participation in the chemosynthetic symbiosis. Collectively, these results suggest that BpLRR-1 could serve as an intracellular recognition receptor for the endosymbionts, providing new hints for understanding the immune recognition in symbiosis of 〈em〉B. platifrons〈/em〉.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 1050-4648
    Electronic ISSN: 1095-9947
    Topics: Biology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Medicine
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2019
    Description: 〈p〉Publication date: Available online 31 July 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Seminars in Cell & Developmental Biology〈/p〉 〈p〉Author(s): Prashanta Silwal, Yi Sak Kim, Joyoti Basu, Eun-Kyeong Jo〈/p〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Xenophagy is a selective form of autophagy targeting intracellular pathogens for lysosomal degradation. Accordingly, bacteria have evolved multiple strategies to evade or minimize autophagy and xenophagy to survive and replicate in host cells. MicroRNAs (miRNAs) are small non-coding RNA molecules that play key roles in host cells by modulating immune and inflammatory responses during infection. Accumulating evidence shows that miRNAs influence the outcome of bacterial infection by regulating canonical autophagy and xenophagy responses in host cells. Despite recent advances, we are only just beginning to understand the role miRNAs play in autophagy processes and how it affects the outcome of host–pathogen interactions in various bacterial infections. In this review, we focus on how 〈em〉Mycobacteria〈/em〉, 〈em〉Listeria〈/em〉, and 〈em〉Helicobacter〈/em〉 evade host protective immune responses using miRNA-dependent mechanisms to suppress autophagy. These efforts include recent insights into the crosstalk between miRNAs and autophagy pathways, and how these interactions may be targeted in the search for new therapeutics against bacterial infections.〈/p〉〈/div〉
    Print ISSN: 1084-9521
    Electronic ISSN: 1096-3634
    Topics: Biology , Medicine
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2019
    Description: 〈p〉Publication date: November 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Fish & Shellfish Immunology, Volume 94〈/p〉 〈p〉Author(s): Yuan Luo, Yun-Ni Zhang, Han Zhang, Hong-Bo Lv, Mei-Ling Zhang, Li-Qiao Chen, Zhen-Yu Du〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Peroxisome proliferator-activated receptor α (PPARα) plays critical physiological roles in energy metabolism, antioxidation and immunity of mammals, however, these functions have not been fully understood in fish. In the present study, Nile tilapia (〈em〉Oreochromis niloticus〈/em〉) were fed with fenofibrate, an agonist of PPARα, for six weeks, and subsequently challenged with 〈em〉Aeromonas hydrophila〈/em〉. The results showed that PPARα was efficiently activated by fenofibrate through increasing mRNA and protein expressions and protein dephosphorylation. PPARα activation increased significantly mitochondrial fatty acid β-oxidation efficiency, the copy number of mitochondrial DNA and expression of monoamine oxidase (MAO), a marker gene of mitochondria. Meanwhile, PPARα activation also increased significantly the expression of NADH dehydrogenase [ubiquinone] 1α subcomplex subunit 9 (NDUFA9, complex I) and mitochondrial cytochrome 〈em〉c〈/em〉 oxidase 1 (MTCO1, complex IV). The fenofibrate-fed fish had higher survival rate when exposed to 〈em〉A. hydrophila〈/em〉. Moreover, the fenofibrate-fed fish also had higher activities of immune and antioxidative enzymes, and gene expressions of anti-inflammatory cytokines, while had lower expressions of pro-inflammatory cytokine genes. Taken together, PPARα activation improved the ability of Nile tilapia to resist 〈em〉A. hydrophila〈/em〉, mainly through enhancing mitochondrial fatty acids β-oxidation, immune and antioxidant capacities, as well as inhibiting inflammation. This is the first study showing the regulatory effects of PPARα activation on immune functions through increasing mitochondria-mediated energy supply in fish.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 1050-4648
    Electronic ISSN: 1095-9947
    Topics: Biology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Medicine
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2019
    Description: 〈p〉Publication date: November 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Fish & Shellfish Immunology, Volume 94〈/p〉 〈p〉Author(s): Ivon F. Maha, Xiao Xie, Suming Zhou, Youbin Yu, Xiao Liu, Aysha Zahid, Yuhua Lei, Rongrong Ma, Fei Yin, Dong Qian〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉 〈p〉The yellow drum 〈em〉Nibea albiflora〈/em〉 is less susceptible to 〈em〉Cryptocaryon irritans〈/em〉 infection than is the case with other marine fishes such as 〈em〉Larimichthys crocea〈/em〉, 〈em〉Lateolabrax japonicus,〈/em〉 and 〈em〉Pagrus major〈/em〉. To investigate further their resistance mechanism, we infected the 〈em〉N. albiflora〈/em〉 with the 〈em〉C. irritans〈/em〉 at a median lethal concentration of 2050 theronts/g fish. The skins of the infected and the uninfected fishes were sampled at 24 h and 72 h followed by an extensive analysis of metabolism. The study results revealed that there were 2694 potential metabolites. At 24 h post-infection, 12 metabolites were up-regulated and 17 were down-regulated whereas at 72 h post-infection, 22 metabolites were up-regulated and 26 were down-regulated. Pathway enrichment analysis shows that the differential enriched pathways were higher at 24 h with 22 categories and 58 subcategories (49 up, 9 down) than at 72 h whereby the differential enriched pathways were 6 categories and 8 subcategories (4 up, 4 down). In addition, the principal component analysis (PCA) plot shows that at 24 h the metabolites composition of infected group were separately clustered to uninfected group while at 72 h the metabolites composition in infected group were much closer to uninfected group. This indicated that 〈em〉C. irritans〈/em〉 caused strong metabolic stress on the 〈em〉N. albiflora〈/em〉 at 24 h and restoration of the dysregulated metabolic state took place at 72 h of infection. Also, at 72 h post infection a total of 17 compounds were identified as potential biomarkers.〈/p〉 〈p〉Furthermore, out of 2694 primary metabolites detected, 23 metabolites could be clearly identified and semi quantified with a known identification number and assigned into 66 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Most of the enriched KEGG pathways were mainly from metabolic pathway classes, including the metabolic pathway, biosynthesis of secondary metabolites, taurine and hypotaurine metabolism, purine metabolism, linoleic acid metabolism, phenylalanine, tyrosine and tryptophan biosynthesis. Others were glyoxylate and dicarboxylate metabolism, glutathione metabolism, and alanine, aspartate, and glutamate metabolism. Moreover, out of the identified metabolites, only 6 metabolites were statistically differentially expressed, namely, L -glutamate (up-regulated) at 24 h was important for energy and precursor for other glutathiones and instruments of preventing oxidative injury; 15-hydroxy- eicosatetraenoic acid (15-HETE), (S)-(−)-2-Hydroxyisocaproic acid, and adenine (up-regulated) at 72 h were important for anti-inflammatory and immune responses during infection; others were delta-valerolactam and betaine which were down-regulated compared to uninfected group at 72 h, might be related to immure responses including stimulation of immune system such as production of antibodies.〈/p〉 〈p〉Our results therefore further advance our understanding on the immunological regulation of 〈em〉N. albiflora〈/em〉 during immune response against infections as they indicated a strong relationship between skin metabolome and 〈em〉C. irritans〈/em〉 infection.〈/p〉 〈/div〉 〈/div〉
    Print ISSN: 1050-4648
    Electronic ISSN: 1095-9947
    Topics: Biology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Medicine
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2019
    Description: 〈p〉Publication date: November 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biomaterials, Volume 222〈/p〉 〈p〉Author(s): Dhruvkumar Soni, Aditya N. Bade, Nagsen Gautam, Jonathan Herskovitz, Ibrahim M. Ibrahim, Nathan Smith, Melinda S. Wojtkiewicz, Bhagya Laxmi Dyavar Shetty, Yazen Alnouti, JoEllyn McMillan, Howard E. Gendelman, Benson J. Edagwa〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉While antiretroviral therapy (ART) has revolutionized treatment and prevention of human immunodeficiency virus type one (HIV-1) infection, regimen adherence, viral mutations, drug toxicities and access stigma and fatigue are treatment limitations. These have led to new opportunities for the development of long acting (LA) ART including implantable devices and chemical drug modifications. Herein, medicinal and formulation chemistry were used to develop LA prodrug nanoformulations of emtricitabine (FTC). A potent lipophilic FTC phosphoramidate prodrug (M2FTC) was synthesized then encapsulated into a poloxamer surfactant (NM2FTC). These modifications extended the biology, apparent drug half-life and antiretroviral activities of the formulations. NM2FTC demonstrated a 〉30-fold increase in macrophage and CD4+ T cell drug uptake with efficient conversion to triphosphates (FTC-TP). Intracellular FTC-TP protected macrophages against an HIV-1 challenge for 30 days. A single intramuscular injection of NM2FTC, at 45 mg/kg native drug equivalents, into Sprague Dawley rats resulted in sustained prodrug levels in blood, liver, spleen and lymph nodes and FTC-TP in lymph node and spleen cells at one month. In contrast, native FTC-TPs was present for one day. These results are an advance in the transformation of FTC into a LA agent.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 0142-9612
    Electronic ISSN: 1878-5905
    Topics: Biology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Medicine
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2019
    Description: 〈p〉Publication date: October 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Fish & Shellfish Immunology, Volume 93〈/p〉 〈p〉Author(s): Hye-Jin Go, Chan-Hee Kim, Ji Been Park, Tae Young Kim, Tae Kwan Lee, Hye Young Oh, Nam Gyu Park〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Fish skin mucus is considered to act as the first line of defense against waterborne pathogens and to be potential source of novel antimicrobial components. Here we report the purification and characterization of a novel hepcidin type 2-like antimicrobial peptide (〈em〉Tp〈/em〉HAMP2) from the skin mucus of the pufferfish 〈em〉Takifugu pardalis〈/em〉. The purified 〈em〉Tp〈/em〉HAMP2 comprised of 23 amino acids (AAs) with eight Cys residues that form four intramolecular disulfide bonds. The 〈em〉Tp〈/em〉HAMP2 gene shared overall structural characteristics with all known hepcidins, which have a tripartite exon-intron gene organization and three structural signatures in the precursor protein. Phylogenetically, 〈em〉Tp〈/em〉HAMP2 was classified as HAMP2 class in acanthopterygian fish. Interestingly, the AA sequence of 〈em〉Tp〈/em〉HAMP2 did not contain a proprotein cleavage site (RXXR motif) that conserved in most hepcidins and showed a highly positive charged (RKR-) short N-terminus and Val〈sup〉18〈/sup〉 and Gly〈sup〉22〈/sup〉 residues, which are distinctive structures compared to other known active hepcidins. Recombinant 〈em〉Tp〈/em〉HAMP2 identical to the native form exhibited a broad spectrum and potent antimicrobial activity against tested gram-positive and -negative bacteria. Expression of 〈em〉Tp〈/em〉HAMP2 mRNA was predominant in the liver and was upregulated in the liver, the spleen, the intestine, and the skin of 〈em〉T. pardalis〈/em〉 post immune challenge. Thus, our findings suggests that 〈em〉Tp〈/em〉HAMP2 might be of importance in the framework of discovering the fish hepcidins, especially type 2s, and provide noteworthy insight into its gene structure and expression and in the innate immunity as well as the mucosal immunity in regard to hepcidins’ evolutionary history in fish species.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 1050-4648
    Electronic ISSN: 1095-9947
    Topics: Biology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Medicine
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2019
    Description: 〈p〉Publication date: October 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Fish & Shellfish Immunology, Volume 93〈/p〉 〈p〉Author(s): Chen Li, Yepin Yu, Xin Zhang, Jingguang Wei, Qiwei Qin〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Autophagy is an evolutionarily conserved, multi-step lysosomal degradation process used to maintain cell survival and homeostasis. A series of autophagy-related genes (Atgs) are involved in the autophagic pathway. In mammals, a growing number of studies have attributed functions to some Atgs that are distinct from their classical role in autophagosome biogenesis, such as resistance to pathogens. However, little is known about the functions of fish Atgs. In this study, we cloned and characterized an 〈em〉atg12〈/em〉 homolog from orange spotted grouper (〈em〉Epinephelus coioides〈/em〉) (〈em〉Ecatg12〈/em〉). 〈em〉Ecatg12〈/em〉 encodes a 117 amino acid protein that shares 94.0% and 76.8% identity with gourami (〈em〉Anabas_testudineus〈/em〉) and humans (〈em〉Homo sapiens〈/em〉), respectively. The transcription level of 〈em〉Ecatg12〈/em〉 was lower in cells infected with Singapore grouper iridovirus (SGIV) than in non-infected cells. Fluorescence microscopy revealed that EcAtg12 localized in the cytoplasm and nucleus in grouper spleen cells. Overexpression of EcAtg12 significantly increased the replication of SGIV, as evidenced by increased severity of the cytopathic effect, transcription levels of viral genes, levels of viral proteins, and progeny virus yield. Further studies showed that EcAtg12 overexpression decreased the expression levels of interferon (IFN) related molecules and pro-inflammatory factors and inhibited the promoter activity of IFN-3, interferon-stimulated response element, and nuclear factor-κB. Together, these results demonstrate that EcAtg12 plays crucial roles in SGIV replication by downregulating antiviral immune responses.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 1050-4648
    Electronic ISSN: 1095-9947
    Topics: Biology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Medicine
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2019
    Description: 〈p〉Publication date: Available online 12 August 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biomaterials〈/p〉 〈p〉Author(s): Mans Broekgaarden, Sriram Anbil, Anne-Laure Bulin, Girgis Obaid, Zhiming Mai, Yan Baglo, Imran Rizvi, Tayyaba Hasan〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉The complex interplay between cancer cells and their microenvironment remains a major challenge in the design and optimization of treatment strategies for pancreatic ductal adenocarcinoma (PDAC). Recent investigations have demonstrated that mechanistically distinct combination therapies hold promise for treatment of PDAC, but effective clinical translation requires more accurate models that account for the abundant tumor-stroma and its influence on cancer growth, metabolism and treatment insensitivity. In this study, a modular 3D culture model that comprised PDAC cells and patient-derived cancer-associated fibroblasts (CAFs) was developed to assess the effects of PDAC-CAF interactions on treatment efficacies. Using newly-developed high-throughput imaging and image analysis tools, it was found that CAFs imparted a notable and statistically significant resistance to oxaliplatin chemotherapy and benzoporphyrin derivative-mediated photodynamic therapy, which associated with increased levels of basal oxidative metabolism. Increased treatment resistance and redox states were similarly observed in an orthotopic xenograft model of PDAC in which cancer cells and CAFs were co-implanted in mice. Combination therapies of oxaliplatin and PDT with the mitochondrial complex I inhibitor metformin overcame CAF-induced treatment resistance. The findings underscore that heterotypic microtumor culture models recapitulate metabolic alterations stemming from tumor-stroma interactions. The presented infrastructure can be adapted with disease-specific cell types and is compatible with patient-derived tissues to enable personalized screening and optimization of new metabolism-targeted treatment regimens for pancreatic cancer.〈/p〉〈/div〉 〈/div〉 〈h5〉Graphical abstract〈/h5〉 〈div〉〈p〉〈figure〉〈img src="https://ars.els-cdn.com/content/image/1-s2.0-S0142961219305204-fx1.jpg" width="497" alt="Image 1" title="Image 1"〉〈/figure〉〈/p〉〈/div〉
    Print ISSN: 0142-9612
    Electronic ISSN: 1878-5905
    Topics: Biology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Medicine
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2019
    Description: 〈p〉Publication date: November 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biomaterials, Volume 222〈/p〉 〈p〉Author(s): Jiahui Peng, Juan Chen, Fang Xie, Wei Bao, Hongyan Xu, Hongxia Wang, Yuhong Xu, Zixiu Du〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉We have constructed Herceptin-conjugated, paclitaxel (PTX) loaded, PCL-PEG worm-like nanocrystal micelles (PTX@PCL-PEG-Herceptin) for the combinatorial therapy of HER2-positive breast cancer that exploit the specific targeting of Herceptin to HER2-positive breast cancer cells. Firstly, amphiphilic PCL〈sub〉2000〈/sub〉-MPEG〈sub〉2000〈/sub〉 and PCL〈sub〉5000〈/sub〉-PEG〈sub〉2000〈/sub〉-CHO were selected as the optimized matrix to wrap PTX that self-assembled into worm-like micelles with internal nanocrystal structures (PTX@PCL-PEG). Then the aldehydes of PCL〈sub〉5000〈/sub〉-PEG〈sub〉2000〈/sub〉-CHO exposed on the outside surface of PTX@PCL-PEG were utilized to react with the primary amines of Herceptin and formed stable, carbon-nitrogen single linkers (–C–N–) between the antibodies and nanoparticles. This study shows PTX@PCL-PEG-Herceptin remained relatively stable in the circulation and in the tumor microenvironment, and rapidly targeted and entered into the HER2-overexpressing tumor cells while sparing normal tissues from the toxic effects. PTX@PCL-PEG-Herceptin shrank the tumors and prolonged survival time in a SKBR-3-tumor-xenograft, nude mice model more effectively than TAXOL®, PTX@PCL-PEG, Herceptin+TAXOL® and Herceptin+PTX@PCL-PEG. Mechanistic studies showed that PTX@PCL-PEG-Herceptin entered into the HER2-positive tumor cells through the caveolin-mediated pathway. The conjugated Herceptin greatly enhanced the binding ability of the nanoparticle to the targeted SKBR-3 cells. This novel strategy provides a rational and simple antibody-conjugated-nanoparticle platform for the clinical application of combinatorial anticancer treatment.〈/p〉〈/div〉 〈/div〉 〈h5〉Graphical abstract〈/h5〉 〈div〉〈p〉〈figure〉〈img src="https://ars.els-cdn.com/content/image/1-s2.0-S0142961219305198-fx1.jpg" width="500" alt="Image 1" title="Image 1"〉〈/figure〉〈/p〉〈/div〉
    Print ISSN: 0142-9612
    Electronic ISSN: 1878-5905
    Topics: Biology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Medicine
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2019
    Description: 〈p〉Publication date: October 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Fish & Shellfish Immunology, Volume 93〈/p〉 〈p〉Author(s): Lijun Xu, Luqing Pan, Xin Zhang, Cun Wei〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Shrimps like other arthropods rely on innate immune system, and may have some form of adaptive immunity in defending against pathogens. Phagocytosis is one of the oldest cellular processes, serving as a development process, a feeding mechanism and especially as a key defense reaction in innate immunity of all multicellular organisms. It is confirmed that crustacean hyperglycemic hormone (CHH) is one of the most important neuropeptides produced by Neuro-endocrine Immune (NEI) regulatory network, which undertakes important roles in various biological processes, especially in immune function and stress response. In this study, the recombinant 〈em〉Litopenaeus vannamei〈/em〉 CHH (rLvCHH) was obtained from a bacterial expression system and the intracellular signaling pathways involved in the mechanism of phagocytosis after rLvCHH injection was investigated. The results showed that the contents of adenylyl cyclase (AC), phospholipase C (PLC) and calmodulin (CaM) in hemocytes were increased significantly after rLvCHH injection. Furthermore, the mRNA expression levels of NF-kB family members (relish and dorsal) and phagocytosis-related proteins in hemocytes were basically overexpressed after rLvCHH stimulation, while the expression level of NF-kB repressing factor (NKRF) gene was down-regulated significantly. Eventually, the total hemocyte count and phagocytic activity of hemocyte were dramatically enhanced within 3 h. Collectively, these results indicate that shrimps 〈em〉L. vannamei〈/em〉 could carry out a simple but ‘smart’ NEI regulation through the action of neuroendocrine factors, which could couple with their receptors and trigger the downstream signaling pathways during the phagocytic responses of hemocytes.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 1050-4648
    Electronic ISSN: 1095-9947
    Topics: Biology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Medicine
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2019
    Description: 〈p〉Publication date: November 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biomaterials, Volume 221〈/p〉 〈p〉Author(s): Tong Chen, Dong Cen, Zhaohui Ren, Yifan Wang, Xiujun Cai, Jie Huang, Lucy Di Silvio, Xiang Li, Gaorong Han〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉An unpredicted side effect of photothermal therapy (PTT) is agitated by hyperthermia which results in damage to healthy tissue. Developing PTT platforms, enabling effective tumor ablation under mild irradiation conditions, is of wide interest, but challenging. Here, we investigated bismuth crystals embedded silica (Bi@SiO〈sub〉2〈/sub〉) nanoparticles, loaded with an autophagy inhibitor (chloroquine, CQ). It was found that SiO〈sub〉2〈/sub〉 effectively prevented the oxidization of Bi nanocrystals in the physiological environment and could serve as a scatter layer to improve NIR absorption, enabling a high photothermal conversion efficiency (~43%) and excellent photostability. Furthermore, the findings indicated that CQ molecules, delivered intracellularly by the particles, significantly weakened the degradation of autolysosomes by lysosome within the tumor cells, thus inducing suppression effect to autophagy and resistance to photothermia. Both in vitro and in vivo anti-tumor effects were consequently promoted owing to the combined effects enabled by Bi@SiO〈sub〉2〈/sub〉-CQ nanoparticles under mild NIR irradiation conditions. This study demonstrates a potential new PTT platform with superior therapeutic efficacy.〈/p〉〈/div〉 〈/div〉 〈h5〉Graphical abstract〈/h5〉 〈div〉〈p〉〈figure〉〈img src="https://ars.els-cdn.com/content/image/1-s2.0-S0142961219305186-fx1.jpg" width="292" alt="Image 1" title="Image 1"〉〈/figure〉〈/p〉〈/div〉
    Print ISSN: 0142-9612
    Electronic ISSN: 1878-5905
    Topics: Biology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Medicine
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2019
    Description: 〈p〉Publication date: November 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biomaterials, Volume 221〈/p〉 〈p〉Author(s): Kwang-Soo Kim, Jun-Hyeok Han, Jung-Hoon Park, Hyung-Keun Kim, Seung Hee Choi, Gyeong Ryeong Kim, Haengseok Song, Hee Jung An, Dong Keun Han, Wooram Park, Kyung-Soon Park〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Recently, natural killer (NK)-based immunotherapy has attracted attention as a next-generation cell-based cancer treatment strategy due to its mild side effects and excellent therapeutic efficacy. Here, we describe multifunctional nanoparticles (MF-NPs) capable of genetically manipulating NK cells and tracking them 〈em〉in vivo〈/em〉 through non-invasive magnetic resonance (MR) and fluorescence optical imaging. The MF-NPs were synthesized with a core-shell structure by conjugation of a cationic polymer labeled with a near-infrared (NIR) fluorescent molecule, with the aid of a polydopamine (PDA) coating layer. When administered to NKs, the MF-NPs exhibited excellent cytocompatibility, efficiently delivered genetic materials into the immune cells, and induced target protein expression. In particular, the MF-NPs could induce the expression of EGFR targeting chimeric antigen receptors (EGFR-CARs) on the NK cell surface, which improved the cells’ anti-cancer cytotoxic effect both 〈em〉in vitro〈/em〉 and 〈em〉in vivo〈/em〉. Finally, when NK cells labeled with MF-NPs were injected into live mice, MF-NP–labeled NK cells could be successfully imaged using fluorescence and MR imaging devices. Our findings indicate that MF-NPs have great potential for application of NK cells, as well as other types of cell therapies involving genetic engineering and 〈em〉in vivo〈/em〉 monitoring of cell trafficking.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 0142-9612
    Electronic ISSN: 1878-5905
    Topics: Biology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Medicine
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2019
    Description: 〈p〉Publication date: October 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Fish & Shellfish Immunology, Volume 93〈/p〉 〈p〉Author(s): Maxime Boutier, Yuan Gao, Owen Donohoe, Alain Vanderplasschen〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Aquaculture is one of the world's most important and fastest growing food production sectors, with an average annual growth of 5.8% during the period 2001–2016. Common carp (〈em〉Cyprinus carpio〈/em〉) is one of the main aquatic species produced for human consumption and is the world's third most produced finfish. Koi carp, on the other hand, are grown as a popular ornamental fish. In the late 1990s, both of these sectors were threatened by the emergence of a deadly disease caused by cyprinid herpesvirus 3 (CyHV-3; initially called koi herpesvirus or KHV). Since then, several research groups have focused their work on developing methods to fight this disease. Despite increasing knowledge about the pathobiology of this virus, there are currently no efficient and cost-effective therapeutic methods available to fight this disease. Facing the lack of efficient treatments, safe and efficacious prophylactic methods such as the use of vaccines represent the most promising approach to the control of this virus. The common carp production sector is not a heavily industrialized production sector and the fish produced have low individual value. Therefore, development of vaccine methods adapted to mass vaccination are more suitable. Multiple vaccine candidates against CyHV-3 have been developed and studied, including DNA, bacterial vector, inactivated, conventional attenuated and recombinant attenuated vaccines. However, there is currently only one vaccine commercially available in limited regions. The present review aims to summarize and evaluate the knowledge acquired from the study of these vaccines against CyHV-3 and provide discussion on future prospects.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 1050-4648
    Electronic ISSN: 1095-9947
    Topics: Biology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Medicine
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2019
    Description: 〈p〉Publication date: October 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Fish & Shellfish Immunology, Volume 93〈/p〉 〈p〉Author(s): Yilong Wang, Baojie Wang, Xuqing Shao, Jianchun Shao, Mei Liu, Mengqiang Wang, Lei Wang〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Rearing density and disease management are considered as pivotal factors determining shrimp farm productivity and profitability. To systematically investigate the potential mechanisms for density-related differences between disease susceptibility and rearing densities, we conducted comparative transcriptome analysis of the molecular differences between hepatopancreas and intestine of 〈em〉Litopenaeus vannamei〈/em〉 under two different rearing densities (800- and 400- shrimp/m〈sup〉3〈/sup〉) for 15 d and further analyzed the differences in immune response to 〈em〉Vibrio parahaemolyticus〈/em〉 E1 (VPE1) raised under two density conditions. Totally 45 different expression genes (DEGs) were identified in the hepatopancreas under two different rearing densities, the DEGs were grouped into four processes or pathways related to animal immune system. Then, exposure to the VPE1 resulted in 639 DEGs, involved into fourteen immune related processes or pathways. In the intestine, seventeen processes or pathways related to the immune system were identified among the 5470 DEGs under two different rearing densities. 279 DEGs were identified post VPE1 challenge, classified into five processes or pathways associated with the immune system. Meanwhile, the results of growth performance, histopathology and the activities of antioxidant enzymes in the hepatopancreas and intestines of shrimp showed that high density decreased weight gain rate (63.20 ± 1.67% and 18.73 ± 3.35% in the high and low rearing density groups, respectively), severely destroyed the histopathology and inhibited the antioxidant enzymes activities. This study demonstrated that rearing density in 〈em〉L. vannamei〈/em〉 significantly impacts susceptibility to the VPE1, via altered transcriptional challenge responses, and thus higher mortality due to disease.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 1050-4648
    Electronic ISSN: 1095-9947
    Topics: Biology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Medicine
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2019
    Description: 〈p〉Publication date: October 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Fish & Shellfish Immunology, Volume 93〈/p〉 〈p〉Author(s): Youliang Rao, Jianfei Ji, Zhiwei Liao, Hang Su, Jianguo Su〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉TANK-binding kinase 1 (TBK1) is an important kinase that regulates the activation of interferon regulatory factor 3/7 (IRF3/7) to induce type I interferon (IFN–I) production in antiviral immune responses. However, in long-term virus-host crosstalk, viruses have evolved elaborate strategies to evade host immune defense mechanisms. In the present study, we found that grass carp (〈em〉Ctenopharyngodon idella〈/em〉) reovirus (GCRV) hijacks TBK1 to escape IRF7-IFN-Is signaling activation. In brief, GCRV inhibited TBK1 activation by restaining K63-linked ubiquitination of TBK1 and promoting its K48-linked ubiquitination. This regulation resulted in that under low titer of GCRV infection, TBK1 overexpression specifically supressed promoter activity and phosphorylation of IRF7 and induction of downstream IFN1and IFN3. qRT-PCR data uncovered that TBK1 negatively regulated IRF7, IFN1 and IFN3 transcription levels under low viral titer infection. Along with enhancement of GCRV titers, TBK1 swiched its function to up-regulate IRF7, IFN1 and IFN3 mRNA levels. Accordingly, TBK1 promoted GCRV replication at low infected titer, but inhibited GCRV replication at high infected titer. All these results revealed a viral evasion strategy that GCRV utilizes TBK1 to block cellular IFN responses at low titers or early stages in fish species, which will lay a foundation for further researching on host-virus interactions and developing novel antiviral strategies in lower vertebrates.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 1050-4648
    Electronic ISSN: 1095-9947
    Topics: Biology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Medicine
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2019
    Description: 〈p〉Publication date: October 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Fish & Shellfish Immunology, Volume 93〈/p〉 〈p〉Author(s): Dongyan Guan, Huiwen Sun, Xiao Meng, Jiting Wang, Wenju Wan, Haojun Han, Zhen Wang, Yang Li〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉A feeding trial was conducted to evaluate the effects of different molar mass chitooligosaccharides (1000 Da, 3000 Da and 8000 Da) on growth, antioxidant capacity, non-specific immune response, and resistance to 〈em〉Aeromonas hydrophila〈/em〉 in GIFT tilapia (〈em〉Oreochromis niloticus〈/em〉). A total of 600 fish were divided into four treatments with five replicates of thirty fish per tank. The results showed that the supplementation of 1000 Da and 3000 Da COS significantly improved the growth performance and feed utilization in GIFT tilapia. The trend of decreasing total cholesterol, triglyceride, ALT, and ACP activity was observed in fish fed diet supplemented COS. The supplementation of 1000 Da and 3000 Da COS significantly improved the serum TAC activity, and decreased the serum MDA and catalase activities (〈em〉P〈/em〉 〈 0.05). The lysozyme activity of blood, liver, and gills in fish fed diets supplemented with 1000 Da and 3000 Da COS was significantly higher than that of fish fed control diet after 56 days of feeding (〈em〉P〈/em〉 〈 0.05). The phagocytic activity and phagocytic index of fish fed diets supplemented with 1000 Da and 3000 Da COS were significantly higher than those of fish fed control diet. Post-challenge test showed that fish mortality in 1000 Da, 3000 Da, and 8000 Da COS groups were significantly lower than that of fish in control group (〈em〉P〈/em〉 〈 0.05). In conclusion, the present study indicated that dietary 1000 Da and 3000 Da COS supplementation could enhance more performance and immune response of GIFT tilapia than 8000 Da COS.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 1050-4648
    Electronic ISSN: 1095-9947
    Topics: Biology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Medicine
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2019
    Description: 〈p〉Publication date: October 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Fish & Shellfish Immunology, Volume 93〈/p〉 〈p〉Author(s): Ke Ji, Hualiang Liang, Mingchun Ren, Xianping Ge, Bo Liu, Bingwen Xi, Liangkun Pan, Heng Yu〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Dietary administration of tryptophan has been proved improving growth performance of fish. An 8-week feeding trial was conducted to investigate the effects of dietary tryptophan level on antioxidant capacity and immune response through Nrf2 and TOR signaling pathway. The results showed that, 0.08% tryptophan level significantly increased plasma aspartate aminotransferase (AST), while immunoglobulin M (IgM) and alkaline phosphatase (ALP) were strikingly increased by 0.40% level. The level of plasma complement component 3 (C3), alanine aminotransferase (ALT) and albumin (ALB) were independent of tryptophan supplementation. Total superoxide dismutase (T-SOD), catalase (CAT), total antioxidant capacity (T-AOC) and glutathione (GSH) activity were increased with increasing dietary tryptophan level until 0.40% and then decreased, while the level of malondialdehyde (MDA) showed a reverse trend. 0.19% and 0.28% tryptophan level significantly improved the glutathione peroxidase 1 (GPx-1) activity. Compared with 0.08% dietary tryptophan level, 0.40% level significantly improved nuclear factor erythroid 2-related factor 2 (Nrf2), GPx, manganese superoxide dismutase (Mn-SOD), CAT and transforming growth factor-β (TGF-β) mRNA level, while Kelch-like ECH-associated protein 1 (Keap1) and interleukin 1β (IL-1β) mRNA level were significantly decreased. The relative expression of copper zinc superoxide dismutase (Cu/Zn-SOD), heme oxygenase-1 (HO-1), target of rapamycin (TOR), phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K), protein kinase B (Akt) and interleukin 10 (IL-10) were significantly improved by 0.28% diet, while the mRNA level of tumor necrosis factor-α (TNF-α) and nuclear factor-kappa B (NF-κB) were increased by 0.08% diet. Interleukin 8 (IL-8) mRNA level was not significantly affected by dietary tryptophan. Based on MDA and T-SOD value, the optimal dietary tryptophan level of juvenile blunt snout bream was determined to be 0.33% (1.03% of dietary protein) and 0.36% (1.13% of dietary protein), respectively, using quadratic regression analysis.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 1050-4648
    Electronic ISSN: 1095-9947
    Topics: Biology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Medicine
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2019
    Description: 〈p〉Publication date: November 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biomaterials, Volume 220〈/p〉 〈p〉Author(s): Yidan Wang, Shaoze Song, Tong Lu, Yu Cheng, Yilin Song, Siyu Wang, Fengping Tan, Jiao Li, Nan Li〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Multifunctional nanoplatforms with flexible architectures and tumor microenvironment response are highly anticipated within the field of thermoradiotherapy. Herein, the multifunctional nanoplatforms for thermoradiotherapy have been successfully constructed by the embedding of tungsten disulfide quantum dots (WS〈sub〉2〈/sub〉 QDs) into mesoporous polydopamine nanosponges (MPDA NSs), followed by integration with manganese dioxide (MnO〈sub〉2〈/sub〉). MPDA-WS〈sub〉2〈/sub〉@MnO〈sub〉2〈/sub〉, the resultant nanoplatforms, exhibit radiosensitization enhanced behavior and a capacity for responsive oxygen self-supplementation. The ingenious mesoporous structure of MPDA NSs serves as reservoir for the assembly of WS〈sub〉2〈/sub〉 QDs to form MPDA-WS〈sub〉2〈/sub〉 nanoparticles (NPs), in which WS〈sub〉2〈/sub〉 QDs provide the radiation enhancement effect, whereas the MPDA NSs framework endows the MPDA-WS〈sub〉2〈/sub〉@MnO〈sub〉2〈/sub〉 with an excellent photothermal capability. Additionally, the integration of the MnO〈sub〉2〈/sub〉 component works to decompose the tumor-overexpressed H〈sub〉2〈/sub〉O〈sub〉2〈/sub〉 and alleviate tumor hypoxia subsequently, which has been demonstrated to enhance radiotherapy performance considerably. Meanwhile, the prepared MPDA-WS〈sub〉2〈/sub〉@MnO〈sub〉2〈/sub〉 nanoplatforms have been evaluated as trimodality contrast agents for computed tomography (CT), multispectral optoacoustic tomography (MSOT), and tumor microenvironment-responsive T〈sub〉1〈/sub〉-weighted magnetic resonance (MR) imaging that have the potential for real-time guidance and monitoring during cancer therapy. More importantly, when subjected to near infrared (NIR) laser irradiation and X-ray exposure, the tumor is found to be inhibited significantly through the process of combined thermoradiotherapy. The design concepts of embedding WS〈sub〉2〈/sub〉 QDs into MPDA NSs and oxygen self-supplementing hold great potential for multimodal imaging-guided thermoradiotherapy of hypoxic cancer.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 0142-9612
    Electronic ISSN: 1878-5905
    Topics: Biology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Medicine
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2019
    Description: 〈p〉Publication date: November 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biomaterials, Volume 220〈/p〉 〈p〉Author(s): Michelle Maurer, Mark S. Gresnigt, Antonia Last, Tony Wollny, Florian Berlinghof, Rebecca Pospich, Zoltan Cseresnyes, Anna Medyukhina, Katja Graf, Marko Gröger, Martin Raasch, Fatina Siwczak, Sandor Nietzsche, Ilse D. Jacobsen, Marc Thilo Figge, Bernhard Hube, Otmar Huber, Alexander S. Mosig〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Alterations of the microbial composition in the gut and the concomitant dysregulation of the mucosal immune response are associated with the pathogenesis of opportunistic infections, chronic inflammation, and inflammatory bowel disease. To create a platform for the investigation of the underlying mechanisms, we established a three-dimensional microphysiological model of the human intestine. This model resembles organotypic microanatomical structures and includes tissue resident innate immune cells exhibiting features of mucosal macrophages and dendritic cells. The model displays the physiological immune tolerance of the intestinal lumen to microbial-associated molecular patterns and can, therefore, be colonised with living microorganisms. Functional studies on microbial interaction between probiotic 〈em〉Lactobacillus rhamnosus〈/em〉 and the opportunistic pathogen 〈em〉Candida albicans〈/em〉 show that pre-colonization of the intestinal lumen of the model by 〈em〉L. rhamnosus〈/em〉 reduces 〈em〉C. albicans〈/em〉-induced tissue damage, lowers its translocation, and limits fungal burden. We demonstrate that microbial interactions can be efficiently investigated using the 〈em〉in vitro〈/em〉 model creating a more physiological and immunocompetent microenvironment. The intestinal model allows a detailed characterisation of the immune response, microbial pathogenicity mechanisms, and quantification of cellular dysfunction attributed to alterations in the microbial composition.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 0142-9612
    Electronic ISSN: 1878-5905
    Topics: Biology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Medicine
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2019
    Description: 〈p〉Publication date: October 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Fish & Shellfish Immunology, Volume 93〈/p〉 〈p〉Author(s): Changle Qi, Xiaodan Wang, Fenglu Han, Yongyi Jia, Zhideng Lin, Chunling Wang, Jianting Lu, Lu Yang, Xinyue Wang, Erchao Li, Jian G. Qin, Liqiao Chen〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉To investigate the effects of arginine (Arg) on the growth, antioxidant capacity, immunity and disease resistance of juvenile Chinese mitten crab, three diets containing Arg levels at 1.72% (control), 2.73% and 3.72% were formulated and fed to Chinese mitten crab (0.22 ± 0.03 g) for eight weeks. The weight gain, ecdysterone and growth hormone in the serum, relative expression of insulin-like growth factor 2 in the hepatopancreas significantly increased in crabs fed the 2.73% and 3.72% Arg diets. The protein and lipid contents significantly increased in crabs fed the 3.72% Arg diet. The feed conversion ratios in crabs fed the diets with Arg additions were lower than in the control. Arg supplementation also enhanced the antioxidative capacity by increasing the activities of superoxide dismutase, catalase and the relative expression of Kelch-like ECH-associated protein 1 gene in the hepatopancreas, which subsequently decreased malondialdehyde content in the hepatopancreas. Besides, Arg also decreased nitric oxide content in the serum and the activity of nitric oxide synthetase in the hepatopancreas. The relative mRNA levels of crustin, relish, lysozyme and cryptocyanin genes were significantly upregulated by Arg supplementation. The activities of acid phosphatase and alkaline phosphatase in the serum significantly increased in crabs fed the 3.72% Arg diet than those in the control. Similarly, the relative mRNA levels of crustin, cryptocyanin and proPO genes were significantly upregulated in crabs fed the 2.73% Arg diet after lipopolysaccharide challenge, and in crabs fed the 3.72% Arg diet after the Poly (I:C) challenge. The crabs fed the 2.73% and 3.72% Arg diets had higher survival rate after bacterial infection than those fed the control diet. This study indicates that the addition of Arg to the diet at 2.7–3.7% can improve the growth, survival, antioxidant capacity, immunity and disease resistance in juvenile Chinese mitten crab.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 1050-4648
    Electronic ISSN: 1095-9947
    Topics: Biology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Medicine
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2019
    Description: 〈p〉Publication date: November 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biomaterials, Volume 221〈/p〉 〈p〉Author(s): Baoxiang Tian, Xili Ding, Yang Song, Weicong Chen, Jiaqi Liang, Li Yang, Yubo Fan, Song Li, Yue Zhou〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉The stiffness change of the vessel wall is involved in many pathological processes of the blood vessel. However, how stiffness changes regulate vascular cell phenotype is not well understood. In this study, we investigated the effects of matrix stiffness on the phenotype and functions of vascular smooth muscle cells (SMCs). SMCs were cultured on the matrices with the stiffness between 1 and 100 kPa. The expression of contractile markers calponin-1 (CNN1) and smoothelin (SMTN) increased with stiffness; in contrast, the expression of synthetic markers osteopontin (OPN) and epiregulin (EREG) were the highest on the soft surface (1 kPa). In addition, matrix metalloproteinase 2 (MMP-2) was significantly upregulated on 1-kPa surface. Consistently, the stiffness of atherosclerotic lesions in human arteries decreased by up to 10 folds compared to normal area (〉40 kPa), which was accompanied by a decrease of CNN1 expression and collagen content and an increase of OPN and MMP-2 in the area of lipid deposition. Furthermore, the phosphorylation of Smad2/3 increased with matrix stiffness; when TGF-β signaling pathway was inhibited, the stiffness effects on the SMCs were reversed. Our findings suggest that matrix stiffness regulates SMC phenotype and matrix remodeling through TGF-β signal pathway. This study unravels a mechanobiological mechanism in vascular remodeling, and will help us develop strategies for vascular tissue engineering, disease modeling and therapies.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 0142-9612
    Electronic ISSN: 1878-5905
    Topics: Biology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Medicine
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2019
    Description: 〈p〉Publication date: October 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biomaterials, Volume 219〈/p〉 〈p〉Author(s): Liewei Wen, Wenzheng Ding, Sihua Yang, Da Xing〈/p〉
    Print ISSN: 0142-9612
    Electronic ISSN: 1878-5905
    Topics: Biology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Medicine
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2019
    Description: 〈p〉Publication date: November 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biomaterials, Volume 220〈/p〉 〈p〉Author(s): Ali Shokoohmand, Jiongyu Ren, Jeremy Baldwin, Anthony Atack, Abbas Shafiee, Christina Theodoropoulos, Marie-Luise Wille, Phong A. Tran, Laura J. Bray, Deborah Smith, Naven Chetty, Pamela M. Pollock, Dietmar W. Hutmacher, Judith A. Clements, Elizabeth D. Williams, Nathalie Bock〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Representative 〈em〉in vitro〈/em〉 models that mimic the native bone tumor microenvironment are warranted to support the development of more successful treatments for bone metastases. Here, we have developed a primary cell 3D model consisting of a human osteoblast-derived tissue-engineered construct (hOTEC) indirectly co-cultured with patient-derived prostate cancer xenografts (PDXs), in order to study molecular interactions in a patient-derived microenvironment context. The engineered biomimetic microenvironment had high mineralization and embedded osteocytes, and supported a high degree of cancer cell osteomimicry at the gene, protein and mineralization levels when co-cultured with prostate cancer PDXs from a lymph node metastasis (LuCaP35) and bone metastasis (BM18) from patients with primary prostate cancer. This fully patient-derived model is a promising tool for the assessment of new molecular mechanisms and as a personalized pre-clinical platform for therapy testing for patients with prostate cancer bone metastases.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 0142-9612
    Electronic ISSN: 1878-5905
    Topics: Biology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Medicine
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2019
    Description: 〈p〉Publication date: October 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biomaterials, Volume 219〈/p〉 〈p〉Author(s): Shengyong Ng, Wai Jin Tan, Michelle Mi Xue Pek, Min-Han Tan, Motoichi Kurisawa〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Patient-derived tumor organoids offer potentially useful models of cancer tissue physiology. Yet, conventional organoid cultures utilize generic matrices that are difficult to tailor for various unique tumor microenvironments. Here, we employ synthetic, enzymatically crosslinked hydrogels to define mechanical and biochemical properties hypothesized to be relevant for maintaining these organoids. We show that a single extracellular matrix component, gelatin, suffices to support colorectal cancer patient-derived xenograft (CRC-PDX) organoid survival, and that high matrix stiffness synergizes with hypoxia to increase organoid growth and metabolism in a majority of CRC-PDX lines tested. Moreover, we demonstrate that defined gelatin-based hydrogels support CRC-PDX tumor growth 〈em〉in vivo〈/em〉 and organoid sensitivity to various CRC therapeutic drugs 〈em〉in vitro〈/em〉 in a largely comparable fashion to a conventional reconstituted basement membrane matrix. Based on our findings, we propose that enzymatically crosslinked hydrogels potentially provide a platform for designing mechanically and biochemically defined matrices for various types of patient-derived tumor organoids.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 0142-9612
    Electronic ISSN: 1878-5905
    Topics: Biology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Medicine
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    facet.materialart.
    Unknown
    Elsevier
    Publication Date: 2019
    Description: 〈p〉Publication date: Available online 19 August 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Seminars in Cell & Developmental Biology〈/p〉 〈p〉Author(s): Johannes Manjrekar, Hiral Shah〈/p〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Epigenetic mechanisms of inheritance have come to occupy a prominent place in our understanding of living systems, primarily eukaryotes. There has been considerable and lively discussion of the possible evolutionary significance of transgenerational epigenetic inheritance. One particular type of epigenetic inheritance that has not figured much in general discussions is that based on conformational changes in proteins, where proteins with altered conformations can act as templates to propagate their own structure. An increasing number of such proteins – prions and prion-like – are being discovered. Phenotypes due to the structurally altered proteins are transmitted along with their structures. This review discusses the properties and implications of “classical” amyloid-forming prions, as well as the broader class of proteins with intrinsically disordered domains, which are proving to have fascinating properties that appear to play important roles in cell organisation and function, especially during stress responses.〈/p〉〈/div〉
    Print ISSN: 1084-9521
    Electronic ISSN: 1096-3634
    Topics: Biology , Medicine
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2019
    Description: 〈p〉Publication date: October 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Fish & Shellfish Immunology, Volume 93〈/p〉 〈p〉Author(s): Kamila Oliveira Santos, João Costa-Filho, Jade Riet, Kérolin Luana Spagnol, Bruna Félix Nornberg, Mateus Tavares Kütter, Marcelo Borges Tesser, Luis Fernando Marins〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉 〈p〉Although aquaculture is among the fastest growing food production sectors in the world, one of the bottlenecks for the continuity of its expansion is the dependence of animal protein on commercial feed formulations. Vegetable proteins are an alternative due to the low cost and high availability. However, this protein source is accompanied by a series of antinutritional and pro-inflammatory compounds, including phytate. Phytases can be added in feed for phytate degradation and increase nutrient availability. However, the use of purified phytases significantly increases the production costs. An interesting alternative is to use probiotics genetically modified as bioreactors for phytase production. In the present study, a strain of 〈em〉Bacillus subtilis〈/em〉 secreting a fungal phytase was used to evaluate the effect of a feed with high content of soybean meal on zebrafish (〈em〉Danio rerio〈/em〉). We analysed the condition factor (K) of fish, and the expression of genes related to the immune system, inflammatory response and oxidative.〈/p〉 〈p〉stress. The results obtained demonstrate that the transgenic probiotic was efficient in improving the fish condition factor, stimulating the immune system, reducing the inflammatory response and oxidative stress. Thus, probiotics acting as phytase bioreactors can be considered an interesting tool for the adaptation of commercial species to feed of lower cost.〈/p〉 〈/div〉 〈/div〉
    Print ISSN: 1050-4648
    Electronic ISSN: 1095-9947
    Topics: Biology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Medicine
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2019
    Description: 〈p〉Publication date: Available online 17 August 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biomaterials〈/p〉 〈p〉Author(s): Eiji Saito, Robert Kuo, Kevin R. Kramer, Nishant Gohel, David A. Giles, Bethany B. Moore, Stephen D. Miller, Lonnie D. Shea〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Current therapeutic options for autoimmune diseases, such as multiple sclerosis (MS), often require lifelong treatment with immunosuppressive drugs, yet strategies for antigen specific immunomodulation are emerging. Biodegradable particles loaded with disease specific antigen, either alone or with immunomodulators, have been reported to ameliorate disease. Herein, we hypothesized that the carrier could impact polarization of the immune cells that associate with particles and the subsequent disease progression. Single injection of three polymeric carriers, 50:50 poly (DL-lactide-co-glycolide) (PLG) with two molecular weights (Low, High) and poly (DL-lactide) (PLA), loaded with the disease specific antigen, proteolipid protein (PLP〈sub〉139-151〈/sub〉), were investigated for the ability to attenuate clinical scores in experimental autoimmune encephalomyelitis (EAE), a mouse model of MS. At a low particle dose, mice treated with PLA-based particles had significantly lower clinical scores at the chronic stage of the disease over 200 days post immunization, while neither PLG-based particles nor OVA control particles reduced the clinical scores. Compared to PLG-based particles, PLA-based particles were largely associated with Kupffer cells and liver sinusoidal endothelial cells, which had a reduced co-stimulatory molecule expression that correlated with a reduction of CD4〈sup〉+〈/sup〉 T-cell populations in the central nervous system. Delivery of PLA-based particles encapsulated with higher levels of PLP〈sub〉139-151〈/sub〉 at a reduced dose were able to completely ameliorate EAE over 200 days along with inhibition of Th1 and Th17 polarization. Collectively, our study demonstrates that the carrier properties and antigen loading determine phenotypes of immune cells in the peripheral organs, influencing the amelioration of both acute and chronic stages of autoimmunity.〈/p〉〈/div〉 〈/div〉 〈h5〉Graphical abstract〈/h5〉 〈div〉〈p〉〈figure〉〈img src="https://ars.els-cdn.com/content/image/1-s2.0-S0142961219305319-fx1.jpg" width="492" alt="Image 1" title="Image 1"〉〈/figure〉〈/p〉〈/div〉
    Print ISSN: 0142-9612
    Electronic ISSN: 1878-5905
    Topics: Biology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Medicine
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2019
    Description: 〈p〉Publication date: November 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Biomaterials, Volume 222〈/p〉 〈p〉Author(s): Charlotte Piard, Anjana Jeyaram, Yi Liu, John Caccamese, Steven M. Jay, Yu Chen, John Fisher〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Vascularization is a crucial process during the growth and development of bone 〈sup〉1〈/sup〉, yet it remains one of the main challenges in the reconstruction of large bone defects. The use of in vitro coculture of human umbilical vein endothelial cells (HUVECs) and human mesenchymal stem cells (hMSCs) has been one of the most explored options. Both cell types secrete specific growth factors that are mutually beneficial, and studies suggested that cell-cell communication and paracrine secretion could be affected by a number of factors. However, little is known about the effect of cell patterning and the distance between cell populations on their crosstalk. In the present study, we showed that the separation and distance between ECs and MSCs populations affects angiogenesis by modulating cell-cell communication. HUVECs grown farther apart from MSCs (˃400 μm) presented characteristics of an early stage of angiogenesis (migration/proliferation). Results showed an increase in the up-regulation of VEGF, FGF-2, and ITGA3 (integrins) but a smaller fold change in the expression of VE-Cadherin and Ang-1. HUVECs were also still highly proliferative. On the contrary, HUVECs incubated closer (≤200 μm) to MSCs, showed signs of stabilization, mainly an increase in Ang-1 and VE-cadherin expression, as well as tighter monolayers. Conditioned media collected from HUVECs and MSCs grown ≤200 μm apart preferentially promoted tube formation, a later stage of angiogenesis, due in part to a significant increase in Ang-1 paracrine secretion. In addition, in groups in which fibers were printed farther apart (400 μm), cells produced EVs with a significantly increase cargo. Finally, in vivo experiment results showed an increase in blood vessels density and new bone thickness after 12 weeks of implantation in rat cranial defect, further suggesting the higher efficiency of indirect ECs/MSCs contact in prompting the release of paracrine signals that stimulate the angiogenesis of local tissues, and enhanced subsequent bone regeneration.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 0142-9612
    Electronic ISSN: 1878-5905
    Topics: Biology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Medicine
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...