ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Artikel  (2.231)
  • Springer  (2.231)
  • American Geophysical Union
  • Institute of Physics
  • MDPI Publishing
  • Molecular Diversity Preservation International
  • Public Library of Science (PLoS)
  • Wiley
  • 2020-2022
  • 2015-2019
  • 2010-2014  (2.231)
  • 1960-1964
  • 1940-1944
  • 2012  (2.231)
  • Applied Physics A  (696)
  • European Physical Journal C  (362)
  • 1434
  • 1699
  • Physik  (2.231)
  • Allgemeine Naturwissenschaft
  • Medizin
  • Werkstoffwissenschaften, Fertigungsverfahren, Fertigung
Sammlung
  • Artikel  (2.231)
Verlag/Herausgeber
  • Springer  (2.231)
  • American Geophysical Union
  • Institute of Physics
  • MDPI Publishing
  • Molecular Diversity Preservation International
  • +
Erscheinungszeitraum
  • 2020-2022
  • 2015-2019
  • 2010-2014  (2.231)
  • 1960-1964
  • 1940-1944
Jahr
Thema
  • 1
    Publikationsdatum: 2012-03-10
    Beschreibung:    In this report, we study crystallization and Raman spectral and transmission electron microscopy (TEM) changes in amorphous and nanocrystalline Si. Micro-Raman spectra combined with TEM show that considerable crystallization occurs in a-Si:H and a-Si(Al) (the structure of aluminum-diffused amorphous Si/Al/c-Si), but no additional crystallization was observed for nc-Si:H, after the exposure to a laser or accelerating electrons. Meanwhile, moving toward lower or higher energy for a-Si:H and nc-Si:H, by contrast, the Raman shift appeared for a-Si(Al) as if it were for single-crystalline Si, in which it remained constant at one energy, as the laser intensity increased or decreased. Content Type Journal Article Pages 1-6 DOI 10.1007/s00339-012-6781-1 Authors Jong H. Lyou, College of Science and Technology, Korea University, Chungnam, 339-700 South Korea Journal Applied Physics A: Materials Science & Processing Online ISSN 1432-0630 Print ISSN 0947-8396
    Print ISSN: 0947-8396
    Digitale ISSN: 1432-0630
    Thema: Technik allgemein , Physik
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    facet.materialart.
    Unbekannt
    Springer
    Publikationsdatum: 2012-03-10
    Beschreibung:    Nickel is an important sheath material for the fabrication of MgB 2 wires. However, the effects of Ni doping on the phase formation and superconducting properties of MgB 2 remain controversial. In this work, Ni powder is selected for doping in MgB 2 bulk in order to examine the corresponding changes. Combining with the DSC analysis and in-situ XRD results, we find indications that the Ni powder reacted with Mg and B, forming MgNi 2.5 B 2 at 600°C. The ternary compound began to decompose at a temperature above 800°C. The reactive phase, MgNi 2.5 B 2 , acted as an obstacle to the supercurrent flow, creating weak links among the MgB 2 grain boundaries. However, it is found that the added Ni formed a eutectic liquid phase with Mg at 506°C. The liquid phase helps the formation of MgB 2 at low temperature, which not only increases the density of the sample, but also improves the grain connectivity. Consequently, the presence of Ni in the MgB 2 sample is not necessarily a disadvantage; it depends on the desired application. Content Type Journal Article Pages 1-7 DOI 10.1007/s00339-012-6812-y Authors Qian Zhao, Tianjin Key Lab of Composite and Functional Materials, School of Materials Science & Engineering, Tianjin University, Tianjin, 300072 P.R. China Yongchang Liu, Tianjin Key Lab of Composite and Functional Materials, School of Materials Science & Engineering, Tianjin University, Tianjin, 300072 P.R. China Qi Cai, Tianjin Key Lab of Composite and Functional Materials, School of Materials Science & Engineering, Tianjin University, Tianjin, 300072 P.R. China Journal Applied Physics A: Materials Science & Processing Online ISSN 1432-0630 Print ISSN 0947-8396
    Print ISSN: 0947-8396
    Digitale ISSN: 1432-0630
    Thema: Technik allgemein , Physik
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2012-03-10
    Beschreibung:    We describe a novel ion-implantation method for fabricating a dichroic nanoparticle film by controlling the nucleation and growth of silver nanoparticles in fused silica. We first implant Sc and O ions into the silica substrate to create a high-index layer and modify the short- and intermediate-range order; this dual-implantation technique defines a sharper interface between the silica substrate and the nanoparticle layer. By modifying the short- and intermediate-range order in a thin layer of the silica matrix, Ag ions that are subsequently implanted are subject to altered diffusion and nucleation dynamics, yielding a bilayer structure comprising spatially separated regions of smaller and larger Ag nanoparticles. Depending on the implanted dose of Sc, the peak resonant wavelength in reflectivity can shift as much as 100 nm between front-side (implanted face) and back-side (non-implanted face) illumination. Implications for the optimization of bidirectional optical filters and optical cavities are discussed and compared to calculations of scattering efficiency based on Mie theory. Content Type Journal Article Pages 1-8 DOI 10.1007/s00339-012-6827-4 Authors R. H. Magruder, Department of Chemistry and Physics, Belmont University, Nashville, TN 37212, USA S. Robinson, Department of Chemistry and Physics, Belmont University, Nashville, TN 37212, USA C. Smith, Department of Chemistry and Physics, Belmont University, Nashville, TN 37212, USA A. Meldrum, Department of Physics, University of Alberta, Edmonton, AB T6G 2J1, Canada R. F. Haglund, Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235, USA Journal Applied Physics A: Materials Science & Processing Online ISSN 1432-0630 Print ISSN 0947-8396
    Print ISSN: 0947-8396
    Digitale ISSN: 1432-0630
    Thema: Technik allgemein , Physik
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2012-03-10
    Beschreibung:    Most previous studies have employed surface patterning to improve the performance of lubrication systems. However, few have experimentally analyzed improved effects on friction reduction in SiC mechanical seals by ultra-fast laser pulse texturing. This work applies surface texturing on a non-contact mechanical seal and analyzes the characteristics of the resultant surface morphology. A femtosecond laser system is employed to fabricate micro/nanostructures on the SiC mechanical seal, and generates microscale-depth stripes and induces nanostructures on the seal surface. This work examines the morphology and cross section of the SiC nanostructures that correspond to the different scanning speeds of the laser pulse. Results show that varying the scanning speed enables the application of nanostructures of different amplitudes and widths on the surface of the seal. The friction coefficient of the introduced SiC full-textured seal is about 20% smaller than that of a conventional SiC mechanical seal. Hence, femtosecond laser texturing is effective and enables direct fabrication of the surface micro/nanostructures of SiC seals. This technique also serves as a potential approach to lubricating applications. Content Type Journal Article Pages 1-6 DOI 10.1007/s00339-012-6822-9 Authors Chien-Yu Chen, Department of Materials Science and Engineering, National Cheng Kung University, No. 1, University Road, Tainan, 70101 Taiwan, R.O.C. Chung-Jen Chung, Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan, 70101 Taiwan, R.O.C. Bo-Hsiung Wu, Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan, 70101 Taiwan, R.O.C. Wang-Long Li, Department of Materials Science and Engineering, National Cheng Kung University, No. 1, University Road, Tainan, 70101 Taiwan, R.O.C. Chih-Wei Chien, Laser Application Technology Center, ITRI South, Industrial Technology, Research Institute, Tainan, 73445 Taiwan, R.O.C. Ping-Han Wu, Laser Application Technology Center, ITRI South, Industrial Technology, Research Institute, Tainan, 73445 Taiwan, R.O.C. Chung-Wei Cheng, Laser Application Technology Center, ITRI South, Industrial Technology, Research Institute, Tainan, 73445 Taiwan, R.O.C. Journal Applied Physics A: Materials Science & Processing Online ISSN 1432-0630 Print ISSN 0947-8396
    Print ISSN: 0947-8396
    Digitale ISSN: 1432-0630
    Thema: Technik allgemein , Physik
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2012-03-10
    Beschreibung:    Advanced applications of glass span the range from biomedical technology to special optical lenses to mobile phones and computers. Such advanced applications demand high-precision machining, which is like multiple single scratches occurring simultaneously on the glass surface. However, in spite of the wealth of literature on scratch deformation behavior of glass there is no significant information available on whether the nanomechanical properties are affected inside the scratch grooves. Therefore, nanoindentation experiments were deliberately conducted at a fixed load of 100 mN through the scratch grooves made at various applied normal loads (5–15 N) at a constant speed of 200 μm s −1 on polished soda–lime–silica (SLS) glass slides. The results showed that depending upon the applied normal load used to generate the scratch grooves, the nanohardness and Young’s modulus inside the scratch grooves decreased by about ∼30–60% from the corresponding data of the undamaged SLS glass due to the presence of sub-surface shear deformation and microcracking as observed by optical, scanning and field emission scanning electron microscopy. A model for microcracked brittle solids was utilized to explain these results. Content Type Journal Article Pages 1-6 DOI 10.1007/s00339-012-6828-3 Authors Payel Bandyopadhyay, CSIR—Central Glass and Ceramic Research Institute, Kolkata, 700032 India Arjun Dey, CSIR—Central Glass and Ceramic Research Institute, Kolkata, 700032 India Sudakshina Roy, CSIR—Central Glass and Ceramic Research Institute, Kolkata, 700032 India Nitai Dey, CSIR—Central Glass and Ceramic Research Institute, Kolkata, 700032 India Anoop Kumar Mukhopadhyay, CSIR—Central Glass and Ceramic Research Institute, Kolkata, 700032 India Journal Applied Physics A: Materials Science & Processing Online ISSN 1432-0630 Print ISSN 0947-8396
    Print ISSN: 0947-8396
    Digitale ISSN: 1432-0630
    Thema: Technik allgemein , Physik
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2012-03-10
    Beschreibung:    The introduction of porosity into ferroelectric ceramics has been of great interest in recent years. In particular, studies of porous lead-zirconate-titanate ceramic (PZT) have been made. In the research reported, samples of Ferroperm Pz27 with porosities of 20, 25 and 30% were studied. Very complete measurements were made of all of the physical properties relevant for ferroelectric applications including thermal conductivity and diffusivity, heat capacity, dielectric, pyroelectric, piezoelectric and elastic properties. Scanning electron micrographs indicated a change from 3-0 to 3-3 connectivity with increasing porosity. Although most of the physical properties are degraded by the presence of porosity, both piezoelectric and pyroelectric figures-of-merit are improved because of the markedly reduced relative permittivity. Porous ferroelectric ceramics are very promising materials for a number of applications. Content Type Journal Article Category Invited paper Pages 1-8 DOI 10.1007/s00339-012-6846-1 Authors Sidney B. Lang, Department of Chemical Engineering, Ben-Gurion University of the Negev, 84105 Beer Sheva, Israel Erling Ringgaard, Meggitt Sensing Systems, Hejreskovvej 18A, 3490 Kvistgård, Denmark Journal Applied Physics A: Materials Science & Processing Online ISSN 1432-0630 Print ISSN 0947-8396
    Print ISSN: 0947-8396
    Digitale ISSN: 1432-0630
    Thema: Technik allgemein , Physik
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2012-03-10
    Beschreibung:    CdS quantum dot (QD) sensitized TiO 2 nanorod array (NRA) film electrodes with different rod geometries were fabricated via a solvothermal route followed by a sequentialchemical bath deposition (S-CBD) process. By controlling the solution growth conditions, the rod geometries, especially the tip structures, of the TiO 2 NRAs were tuned. The results indicated that the vertically aligned hierarchical NRAs possessed conically shaped tip geometry, which was favorable for film electrodes due to the reduced reflectance, enhanced light harvesting, fast charge-carrier separation and transfer, suppression of carrier recombination, sufficient electrolyte penetration and subsequent efficient QD assembly. CdS QD sensitized TiO 2 NRA film electrodes with tapered tips exhibited an enhanced photoelectrochemical (PEC) performance, a photocurrent intensity of 5.13 mA/cm 2 at a potential of 0 V vs. saturated calomel electrode, an open-circuit potential of −0.68 V vs. saturated calomel electrode and an incident photon to current conversion efficiency (IPCE) of 22% in the visible-light region from 400 to 500 nm. The effects of rod geometry on the optical absorption, reflectance, hydrophilic properties and PEC performance of bare TiO 2 and CdS QD sensitized TiO 2 NRA film electrodes were investigated. The mechanism of charge-carrier generation and transfer in these CdS QD sensitized solar cells based on vertically aligned TiO 2 nanorods is discussed. Content Type Journal Article Pages 1-11 DOI 10.1007/s00339-012-6825-6 Authors Jing Zhou, State Key Laboratory of Silicon Materials & Department of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 P.R. China Bin Song, Department of Physics, Zhejiang University, Hangzhou, 310027 P.R. China Gaoling Zhao, State Key Laboratory of Silicon Materials & Department of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 P.R. China Weixia Dong, State Key Laboratory of Silicon Materials & Department of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 P.R. China Gaorong Han, State Key Laboratory of Silicon Materials & Department of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 P.R. China Journal Applied Physics A: Materials Science & Processing Online ISSN 1432-0630 Print ISSN 0947-8396
    Print ISSN: 0947-8396
    Digitale ISSN: 1432-0630
    Thema: Technik allgemein , Physik
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2012-03-10
    Beschreibung:    Previously we have reported the existence of small-amplitude charge pulses in crosslinked Polyethylene (XLPE) and epoxy resin with a mobility several orders of magnitude higher than that found for the incoherent charge transport relevant to the steady state current. Here the relationship of this phenomenon to mechanical relaxation in the material is investigated by using a series of epoxy resin nanocomposites based on a resin that has its flexibility increased above that of the fully cured glassy epoxy network by the addition of a suitable flexibilizing chemical. Differential Scanning Calorimetry (DSC) measurements show that the stiffness of the nanocomposite is progressively increased as the nanoparticle concentration increases. Pulsed Electro-Acoustic (PEA) measurements reveal that both positive and negative fast charge pulses exist in the unfilled epoxy at 45 and 70°C under a field of 10 kV/mm with mobility 5×10 −10 to 9×10 −10 m 2  V −1  s −1 , amplitude between 2×10 −5 and 3.6×10 −5 C m −2 and repetition rates between 8 and 12 s −1 . These values are reduced progressively as the nanoparticle concentration is increased from 0% in the unfilled epoxy. A  β -mode mechanical relaxation is identified in the loss modulus by Dynamical Mechanical Analysis (DMA), whose activation energy moves to higher values with increasing nanoparticle concentration. It is shown that the repetition rates of both positive and negative pulses have similar values and are correlated with the β -mode activation energy; a similar correlation is found for the activation energy of the mobility of positive pulses. The correlation of the activation energy of the mobility of negative pulses and that of the β -mode is weaker although both show a progressive increase with nanoparticle concentration. The modification of the fast charge pulse properties by the mechanical stiffness of the epoxy nanocomposite is discussed in terms of the theory presented previously for their formation and transport. Content Type Journal Article Category Invited paper Pages 1-13 DOI 10.1007/s00339-012-6845-2 Authors G. C. Montanari, LIMAT-DIE, University of Bologna, Bologna, Italy M. Xu, LIMAT-DIE, University of Bologna, Bologna, Italy D. Fabiani, LIMAT-DIE, University of Bologna, Bologna, Italy L. A. Dissado, Department of Engineering, University of Leicester, Leicester, UK Journal Applied Physics A: Materials Science & Processing Online ISSN 1432-0630 Print ISSN 0947-8396
    Print ISSN: 0947-8396
    Digitale ISSN: 1432-0630
    Thema: Technik allgemein , Physik
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    facet.materialart.
    Unbekannt
    Springer
    Publikationsdatum: 2012-03-10
    Beschreibung:    The electrocaloric effect (ECE) of poly (vinyledene fluoride–trifluoroethylene) (P(VDF–TrFE)) 55/45 mol% copolymers was directly measured, which confirms the results deduced from Maxwell relation. The adiabatic temperature change Δ T under a given electric field peaks at the ferroelectric–paraelectric (FE–PE) transition. Away from it, ECE becomes small. Δ T versus applied electric field can be described well by a modified Belov–Goryaga equation. The ECE in ferroelectric polymers, especially near FE–PE transition where larger ECE is observed, are analyzed under different boundary conditions employing phenomenological theory and constitutive equations. The secondary pyroelectricity is found to play a significant role which enhances ECE in ferroelectric polymers. Content Type Journal Article Category Invited paper Pages 1-8 DOI 10.1007/s00339-012-6830-9 Authors S. G. Lu, Materials Research Institute and Department of Electrical Engineering, The Pennsylvania State University, University Park, PA 16802, USA B. Rozic, Jozef Stefan Institute, 1000 Ljubljana, Slovenia Q. M. Zhang, Materials Research Institute and Department of Electrical Engineering, The Pennsylvania State University, University Park, PA 16802, USA Z. Kutnjak, Jozef Stefan Institute, 1000 Ljubljana, Slovenia R. Pirc, Jozef Stefan Institute, 1000 Ljubljana, Slovenia Journal Applied Physics A: Materials Science & Processing Online ISSN 1432-0630 Print ISSN 0947-8396
    Print ISSN: 0947-8396
    Digitale ISSN: 1432-0630
    Thema: Technik allgemein , Physik
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    facet.materialart.
    Unbekannt
    Springer
    Publikationsdatum: 2012-03-10
    Beschreibung:    Surface photovoltage is used to study the dynamics of photogenerated carriers which are transported through a highly interconnected three-dimensional network of indium phosphide nanowires. Through the nanowire network charge transport is possible over distances far in excess of the nanowire lengths. Surface photovoltage was measured within a region 10.5–14.5 mm from the focus of the illumination, which was chopped at a range of frequencies from 15 Hz to 30 kHz. Carrier dynamics were modeled by approximating the nanowire network as a thin film, then fitted to experiment suggesting diffusion of electrons and holes at approximately 75% of the bulk value in InP but with significantly reduced built-in fields, presumably due to screening by nanowire surfaces. Content Type Journal Article Pages 1-5 DOI 10.1007/s00339-012-6810-0 Authors Andrew J. Lohn, Baskin School of Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA Nobuhiko P. Kobayashi, Baskin School of Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA Journal Applied Physics A: Materials Science & Processing Online ISSN 1432-0630 Print ISSN 0947-8396
    Print ISSN: 0947-8396
    Digitale ISSN: 1432-0630
    Thema: Technik allgemein , Physik
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 11
    Publikationsdatum: 2012-03-10
    Beschreibung:    The motion of a massive test particle in a Schwarzschild spacetime surrounded by a perfect fluid with equation of state p 0 = wρ 0 is investigated. Deviations from geodesic motion are analyzed as a function of the parameter w , ranging from w =1, which corresponds to the case of massive free scalar fields, down into the so-called “phantom” energy, with w 〈−1. It is found that the interaction with the fluid leads to capture (escape) of the particle trajectory in the case 1+ w 〉0 (〈0), respectively. Based on this result, it is argued that inspection of the trajectories of test particles in the vicinity of a Schwarzschild black hole with matter around may offer a new means of gaining insights into the nature of cosmic matter. Content Type Journal Article Category Regular Article - Theoretical Physics Pages 1-4 DOI 10.1140/epjc/s10052-012-1913-5 Authors Donato Bini, CNR, Istituto per le Applicazioni del Calcolo “M. Picone”, 00185 Rome, Italy Andrea Geralico, ICRA, University of Rome “La Sapienza”, 00185 Rome, Italy Sauro Succi, CNR, Istituto per le Applicazioni del Calcolo “M. Picone”, 00185 Rome, Italy Journal The European Physical Journal C - Particles and Fields Online ISSN 1434-6052 Print ISSN 1434-6044 Journal Volume Volume 72 Journal Issue Volume 72, Number 3
    Print ISSN: 1434-6044
    Digitale ISSN: 1434-6052
    Thema: Physik
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 12
    Publikationsdatum: 2012-03-10
    Beschreibung:    A possibility of KLOE-2 experiment to measure the width and the π 0 γγ ∗ form factor F ( Q 2 ) at low invariant masses of the virtual photon in the space-like region is considered. This measurement is an important test of the strong interaction dynamics at low energies. The feasibility is estimated on the basis of a Monte-Carlo simulation. The expected accuracy for is at a per cent level, which is better than the current experimental world average and theory. The form factor will be measured for the first time at Q 2 ≤0.1 GeV 2 in the space-like region. The impact of these measurements on the accuracy of the pion-exchange contribution to the hadronic light-by-light scattering part of the anomalous magnetic moment of the muon is also discussed. Content Type Journal Article Category Regular Article - Theoretical Physics Pages 1-8 DOI 10.1140/epjc/s10052-012-1917-1 Authors D. Babusci, INFN, Laboratori Nazionali di Frascati, Frascati, 00044 Italy H. Czyż, Institute of Physics, University of Silesia, Katowice, 40007 Poland F. Gonnella, Dipartimento di Fisica, Università “Tor Vergata”, Roma, 00133 Italy S. Ivashyn, A.I. Akhiezer Institute for Theoretical Physics, NSC “Kharkiv Institute for Physics and Technology”, Kharkiv, 61108 Ukraine M. Mascolo, Dipartimento di Fisica, Università “Tor Vergata”, Roma, 00133 Italy R. Messi, Dipartimento di Fisica, Università “Tor Vergata”, Roma, 00133 Italy D. Moricciani, INFN, Sezione Roma “Tor Vergata”, Roma, 00133 Italy A. Nyffeler, Regional Centre for Accelerator-based Particle Physics, Harish-Chandra Research Institute, Chhatnag Road, Jhusi, Allahabad 211 019, India G. Venanzoni, INFN, Laboratori Nazionali di Frascati, Frascati, 00044 Italy KLOE-2 Collaboration Journal The European Physical Journal C - Particles and Fields Online ISSN 1434-6052 Print ISSN 1434-6044 Journal Volume Volume 72 Journal Issue Volume 72, Number 3
    Print ISSN: 1434-6044
    Digitale ISSN: 1434-6052
    Thema: Physik
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 13
    facet.materialart.
    Unbekannt
    Springer
    Publikationsdatum: 2012-03-10
    Beschreibung:    We evaluate all two-body decay modes of the gluino, in the Minimal Supersymmetric Standard Model with complex parameters (cMSSM). This constitutes an important step in the cascade decays of SUSY particles at the LHC. The evaluation is based on a full one-loop calculation of all two-body decay channels, also including hard QED and QCD radiation. The dependence of the gluino decay to a scalar quark and a quark on the relevant cMSSM parameters is analyzed numerically. We find sizable contributions to the decay widths and branching ratios. They are, roughly of , but can go up to ±10% or higher, where the pure SUSY QCD contributions alone can give an insufficient approximation to the full one-loop result. Therefore the full corrections are important for the correct interpretation of gluino decays at the LHC. The results will be implemented into the Fortran code FeynHiggs . Content Type Journal Article Category Regular Article - Theoretical Physics Pages 1-28 DOI 10.1140/epjc/s10052-012-1905-5 Authors S. Heinemeyer, Instituto de Física de Cantabria (CSIC-UC), Santander, Spain C. Schappacher, Institut für Theoretische Physik, Karlsruhe Institute of Technology, 76128 Karlsruhe, Germany Journal The European Physical Journal C - Particles and Fields Online ISSN 1434-6052 Print ISSN 1434-6044 Journal Volume Volume 72 Journal Issue Volume 72, Number 3
    Print ISSN: 1434-6044
    Digitale ISSN: 1434-6052
    Thema: Physik
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 14
    Publikationsdatum: 2012-03-10
    Beschreibung:    Deep-inelastic positron-proton scattering events at low photon virtuality, Q 2 , with a forward jet, produced at small angles with respect to the proton beam, are measured with the H1 detector at HERA. A subsample of events with an additional jet in the central region is also studied. For both samples, differential cross sections and normalised distributions are measured as a function of the azimuthal angle difference, Δ ϕ , between the forward jet and the scattered positron in bins of the rapidity distance, Y , between them. The data are compared to predictions of Monte Carlo generators based on different evolution approaches as well as to next-to-leading order calculations in order to test the sensitivity to QCD evolution mechanisms. Content Type Journal Article Category Regular Article - Experimental Physics Pages 1-12 DOI 10.1140/epjc/s10052-012-1910-8 Authors The H1 Collaboration F. D. Aaron, National Institute for Physics and Nuclear Engineering (NIPNE), Bucharest, Romania C. Alexa, National Institute for Physics and Nuclear Engineering (NIPNE), Bucharest, Romania V. Andreev, Lebedev Physical Institute, Moscow, Russia S. Backovic, Faculty of Science, University of Montenegro, Podgorica, Montenegro A. Baghdasaryan, Yerevan Physics Institute, Yerevan, Armenia S. Baghdasaryan, Yerevan Physics Institute, Yerevan, Armenia E. Barrelet, LPNHE, Université Pierre et Marie Curie Paris 6, Université Denis Diderot Paris 7, CNRS/IN2P3, Paris, France W. Bartel, DESY, Hamburg, Germany K. Begzsuren, Institute of Physics and Technology of the Mongolian Academy of Sciences, Ulaanbaatar, Mongolia A. Belousov, Lebedev Physical Institute, Moscow, Russia P. Belov, DESY, Hamburg, Germany J. C. Bizot, LAL, Université Paris-Sud, CNRS/IN2P3, Orsay, France V. Boudry, LLR, Ecole Polytechnique, CNRS/IN2P3, Palaiseau, France I. Bozovic-Jelisavcic, Vinca Institute of Nuclear Sciences, University of Belgrade, 1100 Belgrade, Serbia J. Bracinik, School of Physics and Astronomy, University of Birmingham, Birmingham, UK G. Brandt, DESY, Hamburg, Germany M. Brinkmann, DESY, Hamburg, Germany V. Brisson, LAL, Université Paris-Sud, CNRS/IN2P3, Orsay, France D. Britzger, DESY, Hamburg, Germany D. Bruncko, Institute of Experimental Physics, Slovak Academy of Sciences, Košice, Slovak Republic A. Bunyatyan, Max-Planck-Institut für Kernphysik, Heidelberg, Germany G. Buschhorn, Max-Planck-Institut für Physik, München, Germany L. Bystritskaya, Institute for Theoretical and Experimental Physics, Moscow, Russia A. J. Campbell, DESY, Hamburg, Germany K. B. Cantun Avila, Departamento de Fisica Aplicada, CINVESTAV, Mérida, Yucatán, Mexico F. Ceccopieri, Inter-University Institute for High Energies ULB-VUB, Brussels and Universiteit Antwerpen, Antwerpen, Belgium K. Cerny, Faculty of Mathematics and Physics, Charles University, Praha, Czech Republic V. Cerny, Institute of Experimental Physics, Slovak Academy of Sciences, Košice, Slovak Republic V. Chekelian, Max-Planck-Institut für Physik, München, Germany J. G. Contreras, Departamento de Fisica Aplicada, CINVESTAV, Mérida, Yucatán, Mexico J. A. Coughlan, Rutherford Appleton Laboratory, Chilton, Didcot, UK J. Cvach, Institute of Physics, Academy of Sciences of the Czech Republic, Praha, Czech Republic J. B. Dainton, Department of Physics, University of Liverpool, Liverpool, UK K. Daum, Fachbereich C, Universität Wuppertal, Wuppertal, Germany B. Delcourt, LAL, Université Paris-Sud, CNRS/IN2P3, Orsay, France J. Delvax, Inter-University Institute for High Energies ULB-VUB, Brussels and Universiteit Antwerpen, Antwerpen, Belgium E. A. De Wolf, Inter-University Institute for High Energies ULB-VUB, Brussels and Universiteit Antwerpen, Antwerpen, Belgium C. Diaconu, CPPM, Aix-Marseille Univ, CNRS/IN2P3, 13288 Marseille, France M. Dobre, Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany V. Dodonov, Max-Planck-Institut für Kernphysik, Heidelberg, Germany A. Dossanov, Max-Planck-Institut für Physik, München, Germany A. Dubak, Faculty of Science, University of Montenegro, Podgorica, Montenegro G. Eckerlin, DESY, Hamburg, Germany S. Egli, Paul Scherrer Institut, Villigen, Switzerland A. Eliseev, Lebedev Physical Institute, Moscow, Russia E. Elsen, DESY, Hamburg, Germany L. Favart, Inter-University Institute for High Energies ULB-VUB, Brussels and Universiteit Antwerpen, Antwerpen, Belgium A. Fedotov, Institute for Theoretical and Experimental Physics, Moscow, Russia R. Felst, DESY, Hamburg, Germany J. Feltesse, CEA, DSM/Irfu, CE-Saclay, Gif-sur-Yvette, France J. Ferencei, Institute of Experimental Physics, Slovak Academy of Sciences, Košice, Slovak Republic D.-J. Fischer, DESY, Hamburg, Germany M. Fleischer, DESY, Hamburg, Germany A. Fomenko, Lebedev Physical Institute, Moscow, Russia E. Gabathuler, Department of Physics, University of Liverpool, Liverpool, UK J. Gayler, DESY, Hamburg, Germany S. Ghazaryan, DESY, Hamburg, Germany A. Glazov, DESY, Hamburg, Germany L. Goerlich, Institute for Nuclear Physics, Cracow, Poland N. Gogitidze, Lebedev Physical Institute, Moscow, Russia M. Gouzevitch, DESY, Hamburg, Germany C. Grab, Institut für Teilchenphysik, ETH, Zürich, Switzerland A. Grebenyuk, DESY, Hamburg, Germany T. Greenshaw, Department of Physics, University of Liverpool, Liverpool, UK B. R. Grell, DESY, Hamburg, Germany G. Grindhammer, Max-Planck-Institut für Physik, München, Germany S. Habib, DESY, Hamburg, Germany D. Haidt, DESY, Hamburg, Germany C. Helebrant, DESY, Hamburg, Germany R. C. W. Henderson, Department of Physics, University of Lancaster, Lancaster, UK E. Hennekemper, Kirchhoff-Institut für Physik, Universität Heidelberg, Heidelberg, Germany H. Henschel, DESY, Zeuthen, Germany M. Herbst, Kirchhoff-Institut für Physik, Universität Heidelberg, Heidelberg, Germany G. Herrera, Departamento de Fisica, CINVESTAV IPN, México City, Mexico M. Hildebrandt, Paul Scherrer Institut, Villigen, Switzerland K. H. Hiller, DESY, Zeuthen, Germany D. Hoffmann, CPPM, Aix-Marseille Univ, CNRS/IN2P3, 13288 Marseille, France R. Horisberger, Paul Scherrer Institut, Villigen, Switzerland T. Hreus, Inter-University Institute for High Energies ULB-VUB, Brussels and Universiteit Antwerpen, Antwerpen, Belgium F. Huber, Physikalisches Institut, Universität Heidelberg, Heidelberg, Germany M. Jacquet, LAL, Université Paris-Sud, CNRS/IN2P3, Orsay, France X. Janssen, Inter-University Institute for High Energies ULB-VUB, Brussels and Universiteit Antwerpen, Antwerpen, Belgium L. Jönsson, Physics Department, University of Lund, Lund, Sweden H. Jung, DESY, Hamburg, Germany M. Kapichine, Joint Institute for Nuclear Research, Dubna, Russia I. R. Kenyon, School of Physics and Astronomy, University of Birmingham, Birmingham, UK C. Kiesling, Max-Planck-Institut für Physik, München, Germany M. Klein, Department of Physics, University of Liverpool, Liverpool, UK C. Kleinwort, DESY, Hamburg, Germany T. Kluge, Department of Physics, University of Liverpool, Liverpool, UK R. Kogler, DESY, Hamburg, Germany P. Kostka, DESY, Zeuthen, Germany M. Kraemer, DESY, Hamburg, Germany J. Kretzschmar, Department of Physics, University of Liverpool, Liverpool, UK K. Krüger, Kirchhoff-Institut für Physik, Universität Heidelberg, Heidelberg, Germany M. P. J. Landon, Queen Mary and Westfield College, London, UK W. Lange, DESY, Zeuthen, Germany G. Laštovička-Medin, Faculty of Science, University of Montenegro, Podgorica, Montenegro P. Laycock, Department of Physics, University of Liverpool, Liverpool, UK A. Lebedev, Lebedev Physical Institute, Moscow, Russia V. Lendermann, Kirchhoff-Institut für Physik, Universität Heidelberg, Heidelberg, Germany S. Levonian, DESY, Hamburg, Germany K. Lipka, DESY, Hamburg, Germany B. List, DESY, Hamburg, Germany J. List, DESY, Hamburg, Germany R. Lopez-Fernandez, Departamento de Fisica, CINVESTAV IPN, México City, Mexico V. Lubimov, Institute for Theoretical and Experimental Physics, Moscow, Russia A. Makankine, Joint Institute for Nuclear Research, Dubna, Russia E. Malinovski, Lebedev Physical Institute, Moscow, Russia P. Marage, Inter-University Institute for High Energies ULB-VUB, Brussels and Universiteit Antwerpen, Antwerpen, Belgium H.-U. Martyn, I. Physikalisches Institut der RWTH, Aachen, Germany S. J. Maxfield, Department of Physics, University of Liverpool, Liverpool, UK A. Mehta, Department of Physics, University of Liverpool, Liverpool, UK A. B. Meyer, DESY, Hamburg, Germany H. Meyer, Fachbereich C, Universität Wuppertal, Wuppertal, Germany J. Meyer, DESY, Hamburg, Germany S. Mikocki, Institute for Nuclear Physics, Cracow, Poland I. Milcewicz-Mika, Institute for Nuclear Physics, Cracow, Poland F. Moreau, LLR, Ecole Polytechnique, CNRS/IN2P3, Palaiseau, France A. Morozov, Joint Institute for Nuclear Research, Dubna, Russia J. V. Morris, Rutherford Appleton Laboratory, Chilton, Didcot, UK M. Mudrinic, Vinca Institute of Nuclear Sciences, University of Belgrade, 1100 Belgrade, Serbia K. Müller, Physik-Institut der Universität Zürich, Zürich, Switzerland Th. Naumann, DESY, Zeuthen, Germany P. R. Newman, School of Physics and Astronomy, University of Birmingham, Birmingham, UK C. Niebuhr, DESY, Hamburg, Germany D. Nikitin, Joint Institute for Nuclear Research, Dubna, Russia G. Nowak, Institute for Nuclear Physics, Cracow, Poland K. Nowak, DESY, Hamburg, Germany J. E. Olsson, DESY, Hamburg, Germany D. Ozerov, Institute for Theoretical and Experimental Physics, Moscow, Russia P. Pahl, DESY, Hamburg, Germany V. Palichik, Joint Institute for Nuclear Research, Dubna, Russia I. Panagoulias, DESY, Hamburg, Germany M. Pandurovic, Vinca Institute of Nuclear Sciences, University of Belgrade, 1100 Belgrade, Serbia Th. Papadopoulou, DESY, Hamburg, Germany C. Pascaud, LAL, Université Paris-Sud, CNRS/IN2P3, Orsay, France G. D. Patel, Department of Physics, University of Liverpool, Liverpool, UK E. Perez, CEA, DSM/Irfu, CE-Saclay, Gif-sur-Yvette, France A. Petrukhin, DESY, Hamburg, Germany I. Picuric, Faculty of Science, University of Montenegro, Podgorica, Montenegro S. Piec, DESY, Hamburg, Germany H. Pirumov, Physikalisches Institut, Universität Heidelberg, Heidelberg, Germany D. Pitzl, DESY, Hamburg, Germany R. Plačakytė, Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany B. Pokorny, Faculty of Mathematics and Physics, Charles University, Praha, Czech Republic R. Polifka, Faculty of Mathematics and Physics, Charles University, Praha, Czech Republic B. Povh, Max-Planck-Institut für Kernphysik, Heidelberg, Germany V. Radescu, Physikalisches Institut, Universität Heidelberg, Heidelberg, Germany N. Raicevic, Faculty of Science, University of Montenegro, Podgorica, Montenegro T. Ravdandorj, Institute of Physics and Technology of the Mongolian Academy of Sciences, Ulaanbaatar, Mongolia P. Reimer, Institute of Physics, Academy of Sciences of the Czech Republic, Praha, Czech Republic E. Rizvi, Queen Mary and Westfield College, London, UK P. Robmann, Physik-Institut der Universität Zürich, Zürich, Switzerland R. Roosen, Inter-University Institute for High Energies ULB-VUB, Brussels and Universiteit Antwerpen, Antwerpen, Belgium A. Rostovtsev, Institute for Theoretical and Experimental Physics, Moscow, Russia M. Rotaru, National Institute for Physics and Nuclear Engineering (NIPNE), Bucharest, Romania J. E. Ruiz Tabasco, Departamento de Fisica Aplicada, CINVESTAV, Mérida, Yucatán, Mexico S. Rusakov, Lebedev Physical Institute, Moscow, Russia D. Šálek, Faculty of Mathematics and Physics, Charles University, Praha, Czech Republic D. P. C. Sankey, Rutherford Appleton Laboratory, Chilton, Didcot, UK M. Sauter, Physikalisches Institut, Universität Heidelberg, Heidelberg, Germany E. Sauvan, CPPM, Aix-Marseille Univ, CNRS/IN2P3, 13288 Marseille, France S. Schmitt, DESY, Hamburg, Germany L. Schoeffel, CEA, DSM/Irfu, CE-Saclay, Gif-sur-Yvette, France A. Schöning, Physikalisches Institut, Universität Heidelberg, Heidelberg, Germany H.-C. Schultz-Coulon, Kirchhoff-Institut für Physik, Universität Heidelberg, Heidelberg, Germany F. Sefkow, DESY, Hamburg, Germany L. N. Shtarkov, Lebedev Physical Institute, Moscow, Russia S. Shushkevich, DESY, Hamburg, Germany T. Sloan, Department of Physics, University of Lancaster, Lancaster, UK I. Smiljanic, Vinca Institute of Nuclear Sciences, University of Belgrade, 1100 Belgrade, Serbia Y. Soloviev, Lebedev Physical Institute, Moscow, Russia P. Sopicki, Institute for Nuclear Physics, Cracow, Poland D. South, DESY, Hamburg, Germany V. Spaskov, Joint Institute for Nuclear Research, Dubna, Russia A. Specka, LLR, Ecole Polytechnique, CNRS/IN2P3, Palaiseau, France Z. Staykova, Inter-University Institute for High Energies ULB-VUB, Brussels and Universiteit Antwerpen, Antwerpen, Belgium M. Steder, DESY, Hamburg, Germany B. Stella, Dipartimento di Fisica, Università di Roma Tre and INFN Roma 3, Roma, Italy G. Stoicea, National Institute for Physics and Nuclear Engineering (NIPNE), Bucharest, Romania U. Straumann, Physik-Institut der Universität Zürich, Zürich, Switzerland T. Sykora, Faculty of Mathematics and Physics, Charles University, Praha, Czech Republic P. D. Thompson, School of Physics and Astronomy, University of Birmingham, Birmingham, UK T. H. Tran, LAL, Université Paris-Sud, CNRS/IN2P3, Orsay, France D. Traynor, Queen Mary and Westfield College, London, UK P. Truöl, Physik-Institut der Universität Zürich, Zürich, Switzerland I. Tsakov, Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria B. Tseepeldorj, Institute of Physics and Technology of the Mongolian Academy of Sciences, Ulaanbaatar, Mongolia J. Turnau, Institute for Nuclear Physics, Cracow, Poland A. Valkárová, Faculty of Mathematics and Physics, Charles University, Praha, Czech Republic C. Vallée, CPPM, Aix-Marseille Univ, CNRS/IN2P3, 13288 Marseille, France P. Van Mechelen, Inter-University Institute for High Energies ULB-VUB, Brussels and Universiteit Antwerpen, Antwerpen, Belgium Y. Vazdik, Lebedev Physical Institute, Moscow, Russia D. Wegener, Institut für Physik, TU Dortmund, Dortmund, Germany E. Wünsch, DESY, Hamburg, Germany J. Žáček, Faculty of Mathematics and Physics, Charles University, Praha, Czech Republic J. Zálešák, Institute of Physics, Academy of Sciences of the Czech Republic, Praha, Czech Republic Z. Zhang, LAL, Université Paris-Sud, CNRS/IN2P3, Orsay, France A. Zhokin, Institute for Theoretical and Experimental Physics, Moscow, Russia H. Zohrabyan, Yerevan Physics Institute, Yerevan, Armenia F. Zomer, LAL, Université Paris-Sud, CNRS/IN2P3, Orsay, France Journal The European Physical Journal C - Particles and Fields Online ISSN 1434-6052 Print ISSN 1434-6044 Journal Volume Volume 72 Journal Issue Volume 72, Number 3
    Print ISSN: 1434-6044
    Digitale ISSN: 1434-6052
    Thema: Physik
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 15
    facet.materialart.
    Unbekannt
    Springer
    Publikationsdatum: 2012-03-10
    Beschreibung:    We analyze the effect of higher derivative corrections to the near horizon geometry of the extremal vanishing horizon (EVH) black hole solutions in four dimensions. We restrict ourselves to a Gauss–Bonnet correction with a dilation dependent coupling in an Einstein–Maxwell-dilaton theory. This action may represent the effective action as it arises in tree level heterotic string theory compactified to four dimensions or the K3 compactification of type II string theory. We show that EVH black holes, in this theory, develop an AdS 3 throat in their near horizon geometry. Content Type Journal Article Category Regular Article - Theoretical Physics Pages 1-6 DOI 10.1140/epjc/s10052-012-1911-7 Authors Hossein Yavartanoo, Department of Physics, Kyung Hee University, Seoul, 130-701 Korea Journal The European Physical Journal C - Particles and Fields Online ISSN 1434-6052 Print ISSN 1434-6044 Journal Volume Volume 72 Journal Issue Volume 72, Number 3
    Print ISSN: 1434-6044
    Digitale ISSN: 1434-6052
    Thema: Physik
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 16
    Publikationsdatum: 2012-02-25
    Beschreibung:    We show how the measurement of appropriately constructed particle-energy/momentum correlations allows access to the bulk viscosity of strongly interacting hadron matter in heavy-ion collisions. This measurement can be performed by the LHC and RHIC experiments in events with high-particle multiplicity, following up on existing estimates of the shear viscosity based on elliptic flow. Content Type Journal Article Category Regular Article - Theoretical Physics Pages 1-8 DOI 10.1140/epjc/s10052-012-1873-9 Authors Antonio Dobado, Departamento de Física Teórica I, Universidad Complutense, 28040 Madrid, Spain Felipe J. Llanes-Estrada, Departamento de Física Teórica I, Universidad Complutense, 28040 Madrid, Spain Juan M. Torres-Rincon, Departamento de Física Teórica I, Universidad Complutense, 28040 Madrid, Spain Journal The European Physical Journal C - Particles and Fields Online ISSN 1434-6052 Print ISSN 1434-6044 Journal Volume Volume 72 Journal Issue Volume 72, Number 2
    Print ISSN: 1434-6044
    Digitale ISSN: 1434-6052
    Thema: Physik
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 17
    facet.materialart.
    Unbekannt
    Springer
    Publikationsdatum: 2012-02-25
    Beschreibung:    Modified gravity scenarios where a change of regime appears at acceleration scales a 〈 a 0 have been proposed. Since for 1 M ⊙ systems the acceleration drops below a 0 at scales of around 7000 AU, a statistical survey of wide binaries with relative velocities and separations reaching 10 4 AU and beyond should prove useful to the above debate. We apply the proposed test to the best currently available data. Results show a constant upper limit to the relative velocities in wide binaries which is independent of separation for over three orders of magnitude, in analogy with galactic flat rotation curves in the same a 〈 a 0 acceleration regime. Our results are suggestive of a breakdown of Kepler’s third law beyond a ≈ a 0 scales, in accordance with generic predictions of modified gravity theories designed not to require any dark matter at galactic scales and beyond. Content Type Journal Article Category Regular Article - Theoretical Physics Pages 1-8 DOI 10.1140/epjc/s10052-012-1884-6 Authors X. Hernandez, Instituto de Astronomía, Universidad Nacional Autónoma de México, AP 70-264, México, Distrito Federal 04510, México M. A. Jiménez, Instituto de Astronomía, Universidad Nacional Autónoma de México, AP 70-264, México, Distrito Federal 04510, México C. Allen, Instituto de Astronomía, Universidad Nacional Autónoma de México, AP 70-264, México, Distrito Federal 04510, México Journal The European Physical Journal C - Particles and Fields Online ISSN 1434-6052 Print ISSN 1434-6044 Journal Volume Volume 72 Journal Issue Volume 72, Number 2
    Print ISSN: 1434-6044
    Digitale ISSN: 1434-6052
    Thema: Physik
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 18
    facet.materialart.
    Unbekannt
    Springer
    Publikationsdatum: 2012-02-25
    Beschreibung:    This work studies the resonant behavior of nanoscale magnetic materials. This behavior, henceforth referred to as magnetostatic resonance, occurs at frequencies where the permeability is negative and the particle is much smaller than the wavelength. A surface integral equation is formulated on the boundary of the particle to calculate the resonance frequencies and modes. Unique physical properties of these resonances such as scale invariance of resonance frequency and orthogonality properties of resonant modes are studied. A numerical technique is presented to calculate the magnetostatic resonance frequencies of an arbitrary shape. Possible applications of these phenomena are outlined. Content Type Journal Article Category Invited paper Pages 1-4 DOI 10.1007/s00339-012-6767-z Authors A. Kabiri, School of Engineering and Applied Sciences, Harvard University, Harvard, MA 02138, USA L. Talbi, Department of Electrical and Computer Engineering, University of Quebec, Quebec, Canada O. M. Ramahi, Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Ontario, Canada Journal Applied Physics A: Materials Science & Processing Online ISSN 1432-0630 Print ISSN 0947-8396
    Print ISSN: 0947-8396
    Digitale ISSN: 1432-0630
    Thema: Technik allgemein , Physik
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 19
    Publikationsdatum: 2012-02-25
    Beschreibung:    In holographic femtosecond laser processing, diffractive parallel pulses are distorted by phase discontinuities and mutual interference between the neighborhoods in the reconstructed image of a Fourier computer-generated hologram when the interval is smaller than the beam diameter. We investigated holographic fabrication on a glass surface using parallel pulses with different intervals. We found the closest parallel pulses with sufficient separation to avoid mutual interference in holographic femtosecond laser processing. The minimum interval was 2.8 times larger than the diffracted beam diameter. The experimental results were also supported by a computer simulation. Our findings will be very useful in the design of holographic laser processing systems. Content Type Journal Article Pages 1-6 DOI 10.1007/s00339-012-6801-1 Authors Yoshio Hayasaki, Center for Optical Research and Education, Utsunomiya University, 7-1-2 Yoto, Utsunomiya, 321-8585 Japan Maki Nishitani, Institute of Technology and Science, The University of Tokushima, 2-1 Minamijosanjima-cho, Tokushima, 770-8506 Japan Hidetomo Takahashi, Institute of Technology and Science, The University of Tokushima, 2-1 Minamijosanjima-cho, Tokushima, 770-8506 Japan Hirotsugu Yamamoto, Institute of Technology and Science, The University of Tokushima, 2-1 Minamijosanjima-cho, Tokushima, 770-8506 Japan Akihiro Takita, Center for Optical Research and Education, Utsunomiya University, 7-1-2 Yoto, Utsunomiya, 321-8585 Japan Daichi Suzuki, Center for Optical Research and Education, Utsunomiya University, 7-1-2 Yoto, Utsunomiya, 321-8585 Japan Satoshi Hasegawa, Center for Optical Research and Education, Utsunomiya University, 7-1-2 Yoto, Utsunomiya, 321-8585 Japan Journal Applied Physics A: Materials Science & Processing Online ISSN 1432-0630 Print ISSN 0947-8396
    Print ISSN: 0947-8396
    Digitale ISSN: 1432-0630
    Thema: Technik allgemein , Physik
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 20
    Publikationsdatum: 2012-02-25
    Beschreibung:    Ag:ZnO hybrid nanostructures were successfully prepared by a twice arc discharge method in liquid. The visible light photocatalytic activities were successfully demonstrated for the degradation of Rhodamine B (Rh. B), Methyl orange (MO), and Methylene blue (MB) as standard organic compounds under the irradiation of 90 W halogen light for 2 h. The Ag:ZnO nanostructures were characterized by X-Ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and ultraviolet-visible absorption spectroscopy (UV-Vis). The results revealed that the Ag:ZnO nanostructures extended the light absorption spectrum toward the visible region and significantly enhanced the Rh. B photodegradation under visible light irradiation. 3 mM Ag:ZnO nanostructures exhibited highest photocatalytic efficiency. It has been confirmed that the Ag:ZnO nanostructures could be excited by visible light ( E 〈3.3 eV). The significant enhancement in the Ag:ZnO nanostructures photocatalytic activity under visible light irradiation can be ascribed to the effect of physisorbed noble metal Ag by acting as electron traps in ZnO band gap. A mechanism for photocatalytic degradation of organic pollutant over Ag:ZnO photocatalyst was proposed based on our observations. Content Type Journal Article Pages 1-10 DOI 10.1007/s00339-012-6797-6 Authors Ali Akbar Ashkarran, Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, P.O. Box: 14665-678, Tehran, Iran Journal Applied Physics A: Materials Science & Processing Online ISSN 1432-0630 Print ISSN 0947-8396
    Print ISSN: 0947-8396
    Digitale ISSN: 1432-0630
    Thema: Technik allgemein , Physik
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 21
    Publikationsdatum: 2012-03-13
    Beschreibung:    We characterized the conduction mechanisms in thin sputtered films of three representative binary Me–O (Me=Ta, W, and Nb) systems as a function of oxygen content, by combining in situ chemical state and electronic band structure studies from X-ray photoemission with temperature-dependent transport measurements. Despite certain differences, these amorphous films all displayed Fermi glass behavior following an oxidation-induced transition from metallic to hopping conduction, down to a sub-percolation threshold. The electron localization estimated from the band structure was in good agreement with that from the transport measurements, and the two were used to construct phase diagrams of conduction in the degree of oxidation-conductivity coordinates, which should prove important in the design of resistive switching and other electronic devices. Content Type Journal Article Category Invited paper Pages 1-11 DOI 10.1007/s00339-012-6856-z Authors I. Goldfarb, Hewlett-Packard Laboratories, 1501 Page Mill Road, Palo Alto, CA 94304, USA F. Miao, Hewlett-Packard Laboratories, 1501 Page Mill Road, Palo Alto, CA 94304, USA J. Joshua Yang, Hewlett-Packard Laboratories, 1501 Page Mill Road, Palo Alto, CA 94304, USA W. Yi, Hewlett-Packard Laboratories, 1501 Page Mill Road, Palo Alto, CA 94304, USA J. P. Strachan, Hewlett-Packard Laboratories, 1501 Page Mill Road, Palo Alto, CA 94304, USA M.-X. Zhang, Hewlett-Packard Laboratories, 1501 Page Mill Road, Palo Alto, CA 94304, USA M. D. Pickett, Hewlett-Packard Laboratories, 1501 Page Mill Road, Palo Alto, CA 94304, USA G. Medeiros-Ribeiro, Hewlett-Packard Laboratories, 1501 Page Mill Road, Palo Alto, CA 94304, USA R. Stanley Williams, Hewlett-Packard Laboratories, 1501 Page Mill Road, Palo Alto, CA 94304, USA Journal Applied Physics A: Materials Science & Processing Online ISSN 1432-0630 Print ISSN 0947-8396
    Print ISSN: 0947-8396
    Digitale ISSN: 1432-0630
    Thema: Technik allgemein , Physik
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 22
    Publikationsdatum: 2012-03-14
    Beschreibung:    We provide a systematic study of charmless B s → PP , PV , VV decays ( P and V denote pseudoscalar and vector mesons, respectively) based on an approximate six-quark operator effective Hamiltonian from QCD. The calculation of the relevant hard-scattering kernels is carried out, the resulting transition form factors are consistent with the results of QCD sum-rule calculations. By taking into account important classes of power corrections involving “chirally enhanced” terms and the vertex corrections as well as weak annihilation contributions with non-trivial strong phase, we present predictions for the branching ratios and CP asymmetries of B s decays into PP, PV and VV final states, and also for the corresponding polarization observables in VV final states. It is found that the weak annihilation contributions with non-trivial strong phase have remarkable effects on the observables in the color-suppressed and penguin-dominated decay modes. In addition, we discuss the SU(3) flavor symmetry and show that the symmetry relations are generally respected. Content Type Journal Article Category Regular Article - Theoretical Physics Pages 1-18 DOI 10.1140/epjc/s10052-012-1914-4 Authors Fang Su, State Key Laboratory of Theoretical Physics, Kavli Institute for Theoretical Physics China, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing, 100190 China Yue-Liang Wu, State Key Laboratory of Theoretical Physics, Kavli Institute for Theoretical Physics China, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing, 100190 China Yi-Bo Yang, State Key Laboratory of Theoretical Physics, Kavli Institute for Theoretical Physics China, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing, 100190 China Ci Zhuang, State Key Laboratory of Theoretical Physics, Kavli Institute for Theoretical Physics China, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing, 100190 China Journal The European Physical Journal C - Particles and Fields Online ISSN 1434-6052 Print ISSN 1434-6044 Journal Volume Volume 72 Journal Issue Volume 72, Number 3
    Print ISSN: 1434-6044
    Digitale ISSN: 1434-6052
    Thema: Physik
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 23
    Publikationsdatum: 2012-03-15
    Beschreibung:    The role of defects in the room temperature ferromagnetism of the Co–ZnO based diluted magnetic semiconductor (DMS) was investigated by co-doping the DMS with Na. The structure characterizations indicate that both Na and Co ions enter into the ZnO lattice without the formation of secondary phase. The oxygen vacancy of ZnCoNaO increased while the carrier concentration decreased compared with that of ZnCoO, leading to the enhancement of the ferromagnetic property in the ZnCoNaO. The observed ferromagnetism introduced by Na ions is attributed to the exchange interaction via the electron trapped oxygen vacancies coupled with the magnetic Co ions. Content Type Journal Article Pages 1-5 DOI 10.1007/s00339-012-6824-7 Authors Hao Gu, State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 China Yinzhu Jiang, State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 China Yongbing Xu, York Laboratory of Spintronics and Nanodevices, Department of Electronics, The University of York, York, YO10 5DD UK Mi Yan, State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 China Journal Applied Physics A: Materials Science & Processing Online ISSN 1432-0630 Print ISSN 0947-8396
    Print ISSN: 0947-8396
    Digitale ISSN: 1432-0630
    Thema: Technik allgemein , Physik
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 24
    Publikationsdatum: 2012-03-15
    Beschreibung:    Ferro- or piezoelectrets are dielectric materials with two elastically very different macroscopic phases and electrically charged interfaces between them. One of the newer piezoelectret variants is a system of two fluoroethylenepropylene (FEP) films that are first laminated around a polytetrafluoroethylene (PTFE) template. Then, by removing the PTFE template, a two-layer FEP structure with open tubular channels is obtained. After electrical charging, the channels form easily deformable macroscopic electric dipoles whose changes under mechanical or electrical stress lead to significant direct or inverse piezoelectricity, respectively. Here, different PTFE templates are employed to generate channel geometries that vary in height or width. It is shown that the control of the channel geometry allows a direct adjustment of the resonance frequencies in the tubular-channel piezoelectrets. By combining several different channel widths in a single ferroelectret, it is possible to obtain multiple resonance peaks that may lead to a rather flat frequency-response region of the transducer material. A phenomenological relation between the resonance frequency and the geometrical parameters of a tubular channel is also presented. This relation may help to design piezoelectrets with a specific frequency response. Content Type Journal Article Pages 1-6 DOI 10.1007/s00339-012-6848-z Authors Ruy Alberto Pisani Altafim, Department of Electrical Engineering, Engineering School of São Carlos, University of São Paulo, São Carlos, SP, Brazil Ruy Alberto Corrêa Altafim, Department of Electrical Engineering, Engineering School of São Carlos, University of São Paulo, São Carlos, SP, Brazil Xunlin Qiu, Applied Condensed-Matter Physics, Institute of Physics and Astronomy, Faculty of Science, University of Potsdam, Potsdam, Germany Sebastian Raabe, Applied Condensed-Matter Physics, Institute of Physics and Astronomy, Faculty of Science, University of Potsdam, Potsdam, Germany Werner Wirges, Applied Condensed-Matter Physics, Institute of Physics and Astronomy, Faculty of Science, University of Potsdam, Potsdam, Germany Heitor Cury Basso, Department of Electrical Engineering, Engineering School of São Carlos, University of São Paulo, São Carlos, SP, Brazil Reimund Gerhard, Applied Condensed-Matter Physics, Institute of Physics and Astronomy, Faculty of Science, University of Potsdam, Potsdam, Germany Journal Applied Physics A: Materials Science & Processing Online ISSN 1432-0630 Print ISSN 0947-8396
    Print ISSN: 0947-8396
    Digitale ISSN: 1432-0630
    Thema: Technik allgemein , Physik
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 25
    facet.materialart.
    Unbekannt
    Springer
    Publikationsdatum: 2012-02-07
    Beschreibung:    The current 7 TeV run of the LHC experiment shall be able to probe gluino and squark masses up to values larger than 1 TeV. Assuming that hints for SUSY are found in the jets plus missing energy channel by the end of a 5 fb −1 run, we explore the flavour constraints on three models with a CMSSM-like spectrum: the CMSSM itself, a seesaw extension of the CMSSM, and Flavoured CMSSM. In particular, we focus on decays that might have been measured by the time the run is concluded, such as B s → μμ and μ → eγ . We also analyse constraints imposed by neutral meson bounds and electric dipole moments. The interplay between collider and flavour experiments is explored through the use of three benchmark scenarios, finding the flavour feedback useful in order to determine the model parameters and to test the consistency of the different models. Content Type Journal Article Category Regular Article - Theoretical Physics Pages 1-26 DOI 10.1140/epjc/s10052-012-1863-y Authors L. Calibbi, Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Föhringer Ring 6, 80805 München, Germany R. N. Hodgkinson, Departament de Física Teòrica and IFIC, Universtat de València-CSIC, 46100 Burjassot, Spain J. Jones Pérez, INFN, Laboratori Nazionali di Frascati, Via E. Fermi 40, 00044 Frascati, Italy A. Masiero, Dipartimento di Fisica, Università di Padova, via F. Marzolo 8, 35131 Padova, Italy O. Vives, Departament de Física Teòrica and IFIC, Universtat de València-CSIC, 46100 Burjassot, Spain Journal The European Physical Journal C - Particles and Fields Online ISSN 1434-6052 Print ISSN 1434-6044 Journal Volume Volume 72 Journal Issue Volume 72, Number 2
    Print ISSN: 1434-6044
    Digitale ISSN: 1434-6052
    Thema: Physik
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 26
    Publikationsdatum: 2012-02-07
    Beschreibung:    In this work, we have considered the power-law correction of entropy on the horizon. If the flat FRW Universe is filled with the n components fluid with interactions, the GSL of thermodynamics for apparent and event horizons have been investigated for equilibrium and non-equilibrium cases. If we consider a small perturbation around the de Sitter spacetime, the general conditions of the validity of GSL have been found. Also if a phantom dominated Universe has a pole-like type scale factor, the validity of GSL has also been analyzed. Further we have obtained constraints on the power-law parameter α in the phantom and quintessence dominated regimes. Finally we obtain conditions under which GSL breaks down in a cosmological background. Content Type Journal Article Category Regular Article - Theoretical Physics Pages 1-6 DOI 10.1140/epjc/s10052-012-1875-7 Authors Ujjal Debnath, Department of Mathematics, Bengal Engineering and Science University, Shibpur, Howrah, 711 103 India Surajit Chattopadhyay, Department of Computer Application (Mathematics Section), Pailan College of Management and Technology, Bengal Pailan Park, Kolkata, 700 104 India Ibrar Hussain, School of Electrical Engineering and Computer Science (SEECS), National University of Sciences and Technology (NUST), H-12, Islamabad, Pakistan Mubasher Jamil, Center for Advanced Mathematics and Physics (CAMP), National University of Sciences and Technology (NUST), H-12, Islamabad, Pakistan Ratbay Myrzakulov, Eurasian International Center for Theoretical Physics, Eurasian National University, Astana, 010008 Kazakhstan Journal The European Physical Journal C - Particles and Fields Online ISSN 1434-6052 Print ISSN 1434-6044 Journal Volume Volume 72 Journal Issue Volume 72, Number 2
    Print ISSN: 1434-6044
    Digitale ISSN: 1434-6052
    Thema: Physik
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 27
    Publikationsdatum: 2012-02-06
    Beschreibung:    The morphological manipulation, structural characterization, and optical properties of different CdSe nanocrystals were reported. Several different CdSe nanostructures, including nanowires, tetrapod crystals, and nanoparticles were grown by varying the volume ratio of triethylenetetraamine (TETA) and water (WA) in their mixed solution. By manipulating the growth driving force (i.e., the degree of supersaturation) and kinetics of the process (i.e., growth rate), the morphology and crystal structure of CdSe nanocrystals can be tailored. Growth driving force changed their morphology from nanowires to tetrapod structures and from the latter structure to nanoparticles. Moreover, kinetics of the process altered their crystal structure from wurtzite to zinc blende. The optical property of CdSe nanocrystals was investigated using UV-vis spectroscopy. The absorption edge of CdSe nanostructures showed a blue shift. CdSe nanocrystals prepared under optimized conditions showed good microstructural and optical properties for solar cell application. Content Type Journal Article Pages 1-6 DOI 10.1007/s00339-012-6789-6 Authors M. R. Mohammadi, Department of Materials Science and Engineering, Sharif University of Technology, Azadi Street, Tehran, Iran V. Zarghami, Department of Materials Science and Engineering, Sharif University of Technology, Azadi Street, Tehran, Iran D. J. Fray, Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge, UK Journal Applied Physics A: Materials Science & Processing Online ISSN 1432-0630 Print ISSN 0947-8396
    Print ISSN: 0947-8396
    Digitale ISSN: 1432-0630
    Thema: Technik allgemein , Physik
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 28
    Publikationsdatum: 2012-02-06
    Beschreibung:    Free-standing optoelectronic graphene–CdS–graphene oxide (G–CdS–GO) composite papers were prepared by vacuum-assisted self-assembly. G–CdS hybrids were first prepared by a hydrothermal method and GO acts as a dispersant which makes it easier to disperse them to form relatively stable aqueous suspensions for fabricating paper. Transmission electron microscopy shows that CdS quantum dots (QDs) with an average size of approximately 1–2 nm were distributed uniformly on the graphene sheets. Photoluminescence measurements for the as-prepared G–CdS–GO composite paper showed that the surface defect related emissions of attached CdS QDs decrease and blue shift obviously due to the change in particle size and the interaction of the surface of the CdS QDs with both the GO and the graphene sheets. The resulting paper holds great potential for applications in thin film solar cells, sensors, diodes, and so on. Content Type Journal Article Category Rapid communication Pages 1-6 DOI 10.1007/s00339-012-6774-0 Authors Yong-Feng Li, Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001 China Yan-Zhen Liu, Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001 China Wen-Zhong Shen, Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001 China Yong-Gang Yang, Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001 China Mao-Zhang Wang, Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001 China Yue-Fang Wen, Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058 China Journal Applied Physics A: Materials Science & Processing Online ISSN 1432-0630 Print ISSN 0947-8396
    Print ISSN: 0947-8396
    Digitale ISSN: 1432-0630
    Thema: Technik allgemein , Physik
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 29
    Publikationsdatum: 2012-02-13
    Beschreibung:    We report on double-differential inclusive cross-sections of the production of secondary protons, charged pions, and deuterons, in the interactions with a 5% λ int thick stationary aluminium target, of proton and pion beams with momentum from ±3 GeV/ c to ±15 GeV/ c . Results are given for secondary particles with production angles 20 ∘ 〈 θ 〈125 ∘ . Cross-sections on aluminium nuclei are compared with cross-sections on beryllium, carbon, copper, tin, tantalum and lead nuclei. Content Type Journal Article Category Regular Article - Experimental Physics Pages 1-75 DOI 10.1140/epjc/s10052-012-1882-8 Authors A. Bolshakova, Joint Institute for Nuclear Research, Dubna, Russia I. Boyko, Joint Institute for Nuclear Research, Dubna, Russia G. Chelkov, Joint Institute for Nuclear Research, Dubna, Russia D. Dedovitch, Joint Institute for Nuclear Research, Dubna, Russia A. Elagin, Joint Institute for Nuclear Research, Dubna, Russia D. Emelyanov, Joint Institute for Nuclear Research, Dubna, Russia M. Gostkin, Joint Institute for Nuclear Research, Dubna, Russia A. Guskov, Joint Institute for Nuclear Research, Dubna, Russia Z. Kroumchtein, Joint Institute for Nuclear Research, Dubna, Russia Yu. Nefedov, Joint Institute for Nuclear Research, Dubna, Russia K. Nikolaev, Joint Institute for Nuclear Research, Dubna, Russia A. Zhemchugov, Joint Institute for Nuclear Research, Dubna, Russia F. Dydak, CERN, Geneva, Switzerland J. Wotschack, CERN, Geneva, Switzerland A. De Min, Politecnico di Milano and INFN, Sezione di Milano-Bicocca, Milan, Italy V. Ammosov, Institute of High Energy Physics, Protvino, Russia V. Gapienko, Institute of High Energy Physics, Protvino, Russia V. Koreshev, Institute of High Energy Physics, Protvino, Russia A. Semak, Institute of High Energy Physics, Protvino, Russia Yu. Sviridov, Institute of High Energy Physics, Protvino, Russia E. Usenko, Institute of High Energy Physics, Protvino, Russia V. Zaets, Institute of High Energy Physics, Protvino, Russia Journal The European Physical Journal C - Particles and Fields Online ISSN 1434-6052 Print ISSN 1434-6044 Journal Volume Volume 72 Journal Issue Volume 72, Number 2
    Print ISSN: 1434-6044
    Digitale ISSN: 1434-6052
    Thema: Physik
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 30
    facet.materialart.
    Unbekannt
    Springer
    Publikationsdatum: 2012-02-18
    Beschreibung:    We establish an extended version of the Einstein–Maxwell-axion model by introducing into the Lagrangian cross-terms, which contain the gradient four-vector of the pseudoscalar (axion) field in convolution with the Maxwell tensor. The gradient model of the axion–photon coupling is applied to cosmology: we analyze the Bianchi-I type Universe with an initial magnetic field, electric field induced by the axion–photon interaction, cosmological constant and dark matter, which is described in terms of the pseudoscalar (axion) field. Analytical, qualitative and numerical results are presented in detail for two distinguished epochs: first, for the early Universe with magnetic field domination; second, for the stage of late-time accelerated expansion. Content Type Journal Article Category Regular Article - Theoretical Physics Pages 1-14 DOI 10.1140/epjc/s10052-012-1895-3 Authors A. B. Balakin, Kazan Federal University, Institute of Physics, Kremlevskaya str. 18, 420008 Kazan, Russia V. V. Bochkarev, Kazan Federal University, Institute of Physics, Kremlevskaya str. 18, 420008 Kazan, Russia N. O. Tarasova, Kazan Federal University, Institute of Physics, Kremlevskaya str. 18, 420008 Kazan, Russia Journal The European Physical Journal C - Particles and Fields Online ISSN 1434-6052 Print ISSN 1434-6044 Journal Volume Volume 72 Journal Issue Volume 72, Number 2
    Print ISSN: 1434-6044
    Digitale ISSN: 1434-6052
    Thema: Physik
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 31
    Publikationsdatum: 2012-02-18
    Beschreibung:    Grand Unified Theories often involve additional Abelian group factors, apart from the standard model hypercharge, that generally lead to loop-induced mixing gauge-kinetic terms. In this letter, we show that at the one-loop level this effect can be avoided in many cases by a suitable choice of basis in group space and present a general scheme for the construction of this basis. In supersymmetric theories, however, a residual mixing in the soft SUSY breaking gaugino mass terms may appear. We generalize the renormalization group equations for the gaugino mass terms to account for this effect. In a further calculation we also present the necessary adjustments in the renormalization group equations of the trilinear soft-breaking couplings and the soft-breaking scalar mass squares. Content Type Journal Article Category Regular Article - Theoretical Physics Pages 1-4 DOI 10.1140/epjc/s10052-012-1885-5 Authors Felix Braam, Physikalisches Institut, University of Freiburg, 79104 Freiburg, Germany Jürgen Reuter, Physikalisches Institut, University of Freiburg, 79104 Freiburg, Germany Journal The European Physical Journal C - Particles and Fields Online ISSN 1434-6052 Print ISSN 1434-6044 Journal Volume Volume 72 Journal Issue Volume 72, Number 2
    Print ISSN: 1434-6044
    Digitale ISSN: 1434-6052
    Thema: Physik
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 32
    facet.materialart.
    Unbekannt
    Springer
    Publikationsdatum: 2012-02-18
    Beschreibung:    We propose a measurement of leading neutrons spectra at LHC in order to extract inclusive π + p and π + π + cross-sections with high p T jets production. The cross-sections for these processes are simulated with the use of parton distributions in hadrons. In this work we estimate the possibility to extract parton distributions in the pion from the data on these cross-sections and also search for signatures of fundamental differences in the pion and proton structure. Content Type Journal Article Category Special Article - Tools for Experiment and Theory Pages 1-7 DOI 10.1140/epjc/s10052-012-1886-4 Authors V. A. Petrov, Institute for High Energy Physics, 142 281 Protvino, Russia R. A. Ryutin, Institute for High Energy Physics, 142 281 Protvino, Russia A. E. Sobol, Institute for High Energy Physics, 142 281 Protvino, Russia M. J. Murray, University of Kansas, Kansas City, KS, USA Journal The European Physical Journal C - Particles and Fields Online ISSN 1434-6052 Print ISSN 1434-6044 Journal Volume Volume 72 Journal Issue Volume 72, Number 2
    Print ISSN: 1434-6044
    Digitale ISSN: 1434-6052
    Thema: Physik
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 33
    facet.materialart.
    Unbekannt
    Springer
    Publikationsdatum: 2012-02-18
    Beschreibung:    The conformal invariance of the Hawking temperature, conjectured for the asymptotically flat and stationary black holes by Jacobson and Kang, is semiclassically evaluated for a simple particular case of symmetrical spherically and non-asymptotically flat black hole. By using the Bogoliubov coefficients, the metric euclideanization, the reflection coefficient and the gravitational anomaly, as methods of calculating the Hawking temperature, we find that it is invariant under a specific conformal transformation of the metric. We briefly discuss the results for each method. Content Type Journal Article Category Regular Article - Theoretical Physics Pages 1-9 DOI 10.1140/epjc/s10052-012-1891-7 Authors Glauber Tadaiesky Marques, ICIBE–LASIC, Universidade Federal Rural da Amazônia-Brazil, Av. Presidente Tancredo Neves 2501, CEP66077-901 Belém/PA, Brazil Manuel E. Rodrigues, Centro de Ciências Exatas, Departamento de Física, Universidade Federal do Espírito Santo, Av. Fernando Ferrari s/n, Campus de Goiabeiras, CEP29075-910 Vitória/ES, Brazil Journal The European Physical Journal C - Particles and Fields Online ISSN 1434-6052 Print ISSN 1434-6044 Journal Volume Volume 72 Journal Issue Volume 72, Number 2
    Print ISSN: 1434-6044
    Digitale ISSN: 1434-6052
    Thema: Physik
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 34
    Publikationsdatum: 2012-11-10
    Beschreibung:    Ultra-thin anodic aluminum oxide membranes were prepared and served as deposition masks for fabrication of uniformly sized Ag nanodots with different aspect ratios on glass substrates. The surface plasmon resonance (SPR) properties of the supported Ag nanodots were investigated and compared with the predictions of the generalized Maxwell–Garnett theory. By modeling the nanodots as spheroids without adjusting their real geometrical parameters input to the calculation, the resulting theoretical SPR wavelengths are in good agreement with measured extinction peaks. The discrepancy between the theoretical and experimental plasmon resonance peak maxima is within 10 nm for the nanodots with an aspect ratio of less than 1.5. Although this wavelength discrepancy becomes large as the aspect ratio is increased, it is kept at approximately 35 nm for the nanodots with an aspect ratio of 2.44. Content Type Journal Article Pages 1-6 DOI 10.1007/s00339-012-7404-6 Authors I-Chen Chen, Institute of Materials Science and Engineering, National Central University, Jhongli, 320 Taiwan Yen-Hsun Chen, Institute of Materials Science and Engineering, National Central University, Jhongli, 320 Taiwan Yu-Cian Wang, Institute of Materials Science and Engineering, National Central University, Jhongli, 320 Taiwan Meng-Hong Shih, Institute of Materials Science and Engineering, National Central University, Jhongli, 320 Taiwan Journal Applied Physics A: Materials Science & Processing Online ISSN 1432-0630 Print ISSN 0947-8396
    Print ISSN: 0947-8396
    Digitale ISSN: 1432-0630
    Thema: Technik allgemein , Physik
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 35
    Publikationsdatum: 2012-11-10
    Beschreibung:    Superluminal transmission of electromagnetic waves is usually observed in a narrow bandwidth range and the velocity outside this range is subluminal. In this paper, it is shown that the transmission coefficient for superluminal propagation through a periodic metamaterial structure satisfies a sum rule. The sum rule and its corresponding physical bound relate frequency regions with a phase velocity above an arbitrary threshold with the thickness of the slab. The theoretical results are illustrated with numerical examples. Content Type Journal Article Pages 1-7 DOI 10.1007/s00339-012-7407-3 Authors Mats Gustafsson, Department of Electrical and Information Technology, Lund University, Lund, Sweden Journal Applied Physics A: Materials Science & Processing Online ISSN 1432-0630 Print ISSN 0947-8396
    Print ISSN: 0947-8396
    Digitale ISSN: 1432-0630
    Thema: Technik allgemein , Physik
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 36
    Publikationsdatum: 2012-11-10
    Beschreibung:    Optical devices for the terahertz wave band are being developed now and require better designs. This paper proposes an artificial dielectric lens with metallic corrugated structures for the terahertz wave band. A periodic analysis model extracted from the full model by assuming periodicity confirms the phase delay, which produces the focusing effect. Full model analysis also confirms the focusing effect. The full model analysis also confirms that the focusing length is longer as the spacing of corrugated baffles is wider. The focusing length is longer the metallic groove width is wider. The focusing length is longer as the groove depth is shallower. The lens shape without grooves does not produce the focusing effect. The results of the full model analysis are qualitatively consistent with those of the periodic model ones. This implies that the design for an exact size lens is possible by using the periodic model. Content Type Journal Article Pages 1-6 DOI 10.1007/s00339-012-7394-4 Authors Takuya Konno, Department of Electrical and Electronic Engineering, Ibaraki University, 4-12-1 Nakanarusawa, Hitachi, Ibaraki 316-8511, Japan Takahiro Suzuki, Department of Electrical and Electronic Engineering, Ibaraki University, 4-12-1 Nakanarusawa, Hitachi, Ibaraki 316-8511, Japan John C. Young, Electrical and Computer Engineering, University of Kentucky, Lexington, KY 40506-0046, USA Mikio Saigusa, Department of Electrical and Electronic Engineering, Ibaraki University, 4-12-1 Nakanarusawa, Hitachi, Ibaraki 316-8511, Japan Keisuke Takano, Institute of Laser Engineering, Osaka University, 2-6 Yamadaoka, Suita, Osaka 565-0871, Japan Hideaki Kitahara, Institute of Laser Engineering, Osaka University, 2-6 Yamadaoka, Suita, Osaka 565-0871, Japan Masanori Hangyo, Institute of Laser Engineering, Osaka University, 2-6 Yamadaoka, Suita, Osaka 565-0871, Japan Takehito Suzuki, Department of Electrical and Electronic Engineering, Ibaraki University, 4-12-1 Nakanarusawa, Hitachi, Ibaraki 316-8511, Japan Journal Applied Physics A: Materials Science & Processing Online ISSN 1432-0630 Print ISSN 0947-8396
    Print ISSN: 0947-8396
    Digitale ISSN: 1432-0630
    Thema: Technik allgemein , Physik
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 37
    Publikationsdatum: 2012-11-10
    Beschreibung:    Carbon nanotubes (CNTs) have been produced by the tunneling of cobalt nanoparticles in carbon fibers that are derived from electrospun polyacrylonitrile (PAN) fibers. During annealing, the PAN fibers transform to a composite of cobalt nanodroplets and carbon fibers. Driven by the high chemical potential of wrinkled graphene platelets and amorphous carbon with respect to graphite, the cobalt nanodroplets are to tunnel in the carbon fibers. When cobalt nanodroplets have an elongated shape, carbon atoms dissolved in the droplets precipitate preferentially and completely at their lateral sides, producing perfect CNTs that form bulk structures. Content Type Journal Article Category Rapid communication Pages 1-3 DOI 10.1007/s00339-012-7398-0 Authors J. L. Li, School of Materials Science and Chemical Engineering, Hainan University, Haikou, 570228 China H. T. Ye, School of Engineering and Applied Science, Aston University, Birmingham, B4 7ET UK Journal Applied Physics A: Materials Science & Processing Online ISSN 1432-0630 Print ISSN 0947-8396
    Print ISSN: 0947-8396
    Digitale ISSN: 1432-0630
    Thema: Technik allgemein , Physik
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 38
    Publikationsdatum: 2012-11-10
    Beschreibung:    We investigate terahertz plasmon–polariton (PP) resonances for hetero-structures (AlGaN/GaN, SiGe/Si/SiGe, AlGaAs/GaAs, and InAlN/GaN) with a grating coupler in order to find the overall optimal structure showing the strongest absorption for terahertz detection (THz). We show by a parametric study (influence of geometric dimensions, electron concentration, temperature, etc.) that refined and intense resonances can be obtained at specific frequency. GaN based heterostructures present the higher PP resonances at room temperature. The roles of the finite thicknesses of lossy metal grating and a two-dimensional gas (2DEG) layer on observed absorption are also investigated. Absorption spectra for three kinds of heterogeneous charge density profiles (piecewise, linear, and parabolic) of 2DEG was investigated and compared for an AlGaAs/GaAs structure because some physical parameters such as the Fermi level pinning at the interface semiconductor/air are well established only for this heterostructure. We show that the PP resonance (amplitude and frequency position) is modulated by the charge concentration but also by the metallization biasing. Content Type Journal Article Pages 1-7 DOI 10.1007/s00339-012-7371-y Authors L. Cao, Institut d’Electronique Fondamentale, CNRS UMR 8622, Université Paris Sud, 91405 Orsay cedex, France A.-S. Grimault-Jacquin, Institut d’Electronique Fondamentale, CNRS UMR 8622, Université Paris Sud, 91405 Orsay cedex, France F. Aniel, Institut d’Electronique Fondamentale, CNRS UMR 8622, Université Paris Sud, 91405 Orsay cedex, France Journal Applied Physics A: Materials Science & Processing Online ISSN 1432-0630 Print ISSN 0947-8396
    Print ISSN: 0947-8396
    Digitale ISSN: 1432-0630
    Thema: Technik allgemein , Physik
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 39
    facet.materialart.
    Unbekannt
    Springer
    Publikationsdatum: 2012-11-10
    Beschreibung:    Dielectric elastomer actuators (DEAs) are flexible lightweight actuators that can generate strains of over 100 %. They are used in applications ranging from haptic feedback (mm-sized devices), to cm-scale soft robots, to meter-long blimps. DEAs consist of an electrode-elastomer-electrode stack, placed on a frame. Applying a voltage between the electrodes electrostatically compresses the elastomer, which deforms in-plane or out-of plane depending on design. Since the electrodes are bonded to the elastomer, they must reliably sustain repeated very large deformations while remaining conductive, and without significantly adding to the stiffness of the soft elastomer. The electrodes are required for electrostatic actuation, but also enable resistive and capacitive sensing of the strain, leading to self-sensing actuators. This review compares the different technologies used to make compliant electrodes for DEAs in terms of: impact on DEA device performance (speed, efficiency, maximum strain), manufacturability, miniaturization, the integration of self-sensing and self-switching, and compatibility with low-voltage operation. While graphite and carbon black have been the most widely used technique in research environments, alternative methods are emerging which combine compliance, conduction at over 100 % strain with better conductivity and/or ease of patternability, including microfabrication-based approaches for compliant metal thin-films, metal-polymer nano-composites, nanoparticle implantation, and reel-to-reel production of μm-scale patterned thin films on elastomers. Such electrodes are key to miniaturization, low-voltage operation, and widespread commercialization of DEAs. Content Type Journal Article Category Invited paper Pages 1-27 DOI 10.1007/s00339-012-7402-8 Authors Samuel Rosset, Ecole Polytechnique Fédérale de Lausanne (EPFL), Jaquet-Droz 1, 2002 Neuchâtel, Switzerland Herbert R. Shea, Ecole Polytechnique Fédérale de Lausanne (EPFL), Jaquet-Droz 1, 2002 Neuchâtel, Switzerland Journal Applied Physics A: Materials Science & Processing Online ISSN 1432-0630 Print ISSN 0947-8396
    Print ISSN: 0947-8396
    Digitale ISSN: 1432-0630
    Thema: Technik allgemein , Physik
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 40
    facet.materialart.
    Unbekannt
    Springer
    Publikationsdatum: 2012-11-10
    Beschreibung:    Compact plasmonic structures made of gold nanoparticles chains are inserted on silicon optical waveguides. We show that silicon-on-insulator waveguide TE mode energy can be almost totally transferred in a 5 gold nanoparticles plasmonic chain, and that this short chain can also behave as a waveguide. Content Type Journal Article Pages 1-4 DOI 10.1007/s00339-012-7406-4 Authors M. Fevrier, Laboratoire IEF, UMR 8622, Univ. Paris-Sud, Orsay, 91405 France P. Gogol, Laboratoire IEF, UMR 8622, Univ. Paris-Sud, Orsay, 91405 France A. Aassime, Laboratoire IEF, UMR 8622, Univ. Paris-Sud, Orsay, 91405 France D. Bouville, Laboratoire IEF, UMR 8622, Univ. Paris-Sud, Orsay, 91405 France R. Megy, Laboratoire IEF, UMR 8622, Univ. Paris-Sud, Orsay, 91405 France B. Dagens, Laboratoire IEF, UMR 8622, Univ. Paris-Sud, Orsay, 91405 France Journal Applied Physics A: Materials Science & Processing Online ISSN 1432-0630 Print ISSN 0947-8396
    Print ISSN: 0947-8396
    Digitale ISSN: 1432-0630
    Thema: Technik allgemein , Physik
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 41
    Publikationsdatum: 2012-11-10
    Beschreibung:    Novel concepts of nonlinear-optical (NLO) photonic metamaterials (MMs) are proposed. They concern with greatly enhanced coherent NLO energy exchange between ordinary and backward waves (BWs) through the frequency-conversion processes. Two different classes of materials which support BWs are considered: crystals that support optical phonons with negative group velocity and MMs with specially engineered spatial dispersion. The possibility to replace plasmonic NLO MMs enabling magnetic response at optical frequencies, which are very challenging to engineer, by the ordinary readily available crystals, are discussed. The possibility to mimic extraordinary NLO frequency-conversion propagation processes attributed to negative-index MMs (NIMs) is shown in some of such crystals, if optical phonons with negative group velocity and a proper phase-matching geometry are implemented. Here, optical phonons are used as one of the coupled counterparts instead of backward electromagnetic waves (BEMWs). The appearance of BEMWs in metaslabs made of carbon nanotubes, the possibilities and extraordinary properties of BW second harmonic generation in such MMs is another option of nonmagnetic NIMs, which is described too. Among the applications of the proposed photonic materials is the possibility of creation of a family of unique BW photonic devices such as frequency doubling metamirror and Raman amplifiers with greatly improved efficiency. Content Type Journal Article Pages 1-6 DOI 10.1007/s00339-012-7390-8 Authors Alexander K. Popov, University of Wisconsin-Stevens Point, Stevens Point, WI 54481, USA Mikhail I. Shalaev, Siberian Federal University, 660041 Krasnoyarsk, Russian Federation Sergey A. Myslivets, Institute of Physics of Russian Academy of Sciences, 660036 Krasnoyarsk, Russian Federation Vitaly V. Slabko, Siberian Federal University, 660041 Krasnoyarsk, Russian Federation Igor S. Nefedov, SMARAD Center of Excellence, Aalto University, 00076 Aalto, Finland Journal Applied Physics A: Materials Science & Processing Online ISSN 1432-0630 Print ISSN 0947-8396
    Print ISSN: 0947-8396
    Digitale ISSN: 1432-0630
    Thema: Technik allgemein , Physik
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 42
    Publikationsdatum: 2012-11-10
    Beschreibung:    We show that the metal nanoparticle chains supporting localized surface plasmon resonance can behave as transmission Bragg gratings on a dielectric waveguide. An analytical model is developed to interpret the experimental results. Content Type Journal Article Pages 1-8 DOI 10.1007/s00339-012-7395-3 Authors M. Fevrier, Laboratoire IEF, UMR 8622, Univ Paris-Sud, Orsay, 91405 France P. Gogol, Laboratoire IEF, UMR 8622, Univ Paris-Sud, Orsay, 91405 France A. Aassime, Laboratoire IEF, UMR 8622, Univ Paris-Sud, Orsay, 91405 France R. Megy, Laboratoire IEF, UMR 8622, Univ Paris-Sud, Orsay, 91405 France D. Bouville, Laboratoire IEF, UMR 8622, Univ Paris-Sud, Orsay, 91405 France J. M. Lourtioz, Laboratoire IEF, UMR 8622, Univ Paris-Sud, Orsay, 91405 France B. Dagens, Laboratoire IEF, UMR 8622, Univ Paris-Sud, Orsay, 91405 France Journal Applied Physics A: Materials Science & Processing Online ISSN 1432-0630 Print ISSN 0947-8396
    Print ISSN: 0947-8396
    Digitale ISSN: 1432-0630
    Thema: Technik allgemein , Physik
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 43
    Publikationsdatum: 2012-11-10
    Beschreibung:    Modeling of ion-implanted boron redistribution in silicon crystals during low-temperature annealing with a small thermal budget has been carried out. It was shown that formation of “tails” in the low-concentration region of impurity profiles occurs due to the long-range migration of boron interstitials. Content Type Journal Article Pages 1-7 DOI 10.1007/s00339-012-7378-4 Authors O. I. Velichko, Department of Physics, Belorussian State University of Informatics and Radioelectronics, 6, P. Brovki Street, Minsk, 220013 Belarus A. P. Kavaliova, Department of Physics, Belorussian State University of Informatics and Radioelectronics, 6, P. Brovki Street, Minsk, 220013 Belarus Journal Applied Physics A: Materials Science & Processing Online ISSN 1432-0630 Print ISSN 0947-8396
    Print ISSN: 0947-8396
    Digitale ISSN: 1432-0630
    Thema: Technik allgemein , Physik
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 44
    facet.materialart.
    Unbekannt
    Springer
    Publikationsdatum: 2012-11-10
    Beschreibung:    In this paper, we consider a theory of gravity with a metric-dependent torsion namely the F ( R , T ) gravity, where R is the curvature scalar and T is the torsion scalar. We study the geometric root of such theory. In particular we give the derivation of the model from the geometrical point of view. Then we present the more general form of F ( R , T ) gravity with two arbitrary functions and give some of its particular cases. In particular, the usual F ( R ) and F ( T ) gravity theories are particular cases of the F ( R , T ) gravity. In the cosmological context, we find that our new gravitational theory can describe the accelerated expansion of the Universe. Content Type Journal Article Category Regular Article - Theoretical Physics Pages 1-9 DOI 10.1140/epjc/s10052-012-2203-y Authors Ratbay Myrzakulov, Eurasian International Center for Theoretical Physics and Department of General & Theoretical Physics, Eurasian National University, Astana, 010008 Kazakhstan Journal The European Physical Journal C - Particles and Fields Online ISSN 1434-6052 Print ISSN 1434-6044 Journal Volume Volume 72 Journal Issue Volume 72, Number 11
    Print ISSN: 1434-6044
    Digitale ISSN: 1434-6052
    Thema: Physik
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 45
    facet.materialart.
    Unbekannt
    Springer
    Publikationsdatum: 2012-11-12
    Beschreibung:    We have designed a flat graded index lens made from a metallic graded 2D photonic crystal. The gradient of index has been obtained by varying the filling factor of a flat slab of photonic crystal in the direction perpendicular to that of the propagation of the electromagnetic field. This gradient has been designed in such a way that the flat slab focuses a plane wave. With applications in the microwave range in view, we considered a photonic crystal which consists of copper strips. Content Type Journal Article Pages 1-4 DOI 10.1007/s00339-012-7386-4 Authors Fabian Gaufillet, Institut d’Électronique Fondamentale, UMR8622, Université Paris-Sud, Orsay, 91405 France Éric Akmansoy, Institut d’Électronique Fondamentale, UMR8622, Université Paris-Sud, Orsay, 91405 France Journal Applied Physics A: Materials Science & Processing Online ISSN 1432-0630 Print ISSN 0947-8396
    Print ISSN: 0947-8396
    Digitale ISSN: 1432-0630
    Thema: Technik allgemein , Physik
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 46
    Publikationsdatum: 2012-11-12
    Beschreibung:    This paper presents a method to improve the circular polarization of an Archimedean spiral antenna placed over a radial Artificial Magnetic Conductor (AMC). Results have been compared with the same radiating element over a more classical AMC reflector. A prototype of an Archimedean two-wire spiral antenna has been built to operate from 0.5 GHz to 6 GHz. Measurement results with this radial AMC give a relative bandwidth of 79 %, in which the broadside RHCP gain is improved. In this bandwidth the axial ratio of Archimedean spiral antenna placed over a radial AMC is less than 2 dB whereas it is higher than 3 dB with a classical cartesian shape of AMC reflector. Content Type Journal Article Pages 1-6 DOI 10.1007/s00339-012-7401-9 Authors M. Grelier, Institut Mines-Telecom, Telecom ParisTech—LTCI CNRS UMR 5141, 46 rue Barrault, 75634 Paris Cedex 13, France C. Djoma, Institut Mines-Telecom, Telecom ParisTech—LTCI CNRS UMR 5141, 46 rue Barrault, 75634 Paris Cedex 13, France M. Jousset, Thales Systèmes Aéroportés, 10 avenue de la 1ère DFL, 29238 Brest Cedex 3, France S. Mallégol, Thales Systèmes Aéroportés, 10 avenue de la 1ère DFL, 29238 Brest Cedex 3, France A. C. Lepage, Institut Mines-Telecom, Telecom ParisTech—LTCI CNRS UMR 5141, 46 rue Barrault, 75634 Paris Cedex 13, France X. Begaud, Institut Mines-Telecom, Telecom ParisTech—LTCI CNRS UMR 5141, 46 rue Barrault, 75634 Paris Cedex 13, France Journal Applied Physics A: Materials Science & Processing Online ISSN 1432-0630 Print ISSN 0947-8396
    Print ISSN: 0947-8396
    Digitale ISSN: 1432-0630
    Thema: Technik allgemein , Physik
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 47
    Publikationsdatum: 2012-11-14
    Beschreibung:    In this paper we study the electro-optical behavior and the application of indium–tin oxide (ITO) and aluminum-doped zinc oxide (AZO) bilayer thin films for silicon solar cells. ITO–AZO bilayer thin films were deposited on glass substrates using radio-frequency magnetron sputtering. The experimental results show that a decrease in the electrical resistivity of the ITO–AZO bilayer thin films has been achieved without significant degradation of optical properties. In the best case the resistivity of the bilayer films reached a minimum of 5.075×10 −4  Ω cm when the thickness of the AZO buffer layer was 12 nm. The ITO–AZO bilayer films were applied as the front electrodes of amorphous silicon solar cells and the short-circuit current density of the solar cells was considerably increased. Content Type Journal Article Category Rapid communication Pages 1-5 DOI 10.1007/s00339-012-7431-3 Authors Chao Wang, Henan Key Laboratory of Photovoltaic Materials, School of Physics and Electronics, Henan University, Kaifeng, 475004 P.R. China Yanli Mao, Henan Key Laboratory of Photovoltaic Materials, School of Physics and Electronics, Henan University, Kaifeng, 475004 P.R. China Xiangbo Zeng, Key Laboratory of Semiconductor Materials, Chinese Academy of Sciences, Beijing, 100083 P.R. China Journal Applied Physics A: Materials Science & Processing Online ISSN 1432-0630 Print ISSN 0947-8396
    Print ISSN: 0947-8396
    Digitale ISSN: 1432-0630
    Thema: Technik allgemein , Physik
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 48
    Publikationsdatum: 2012-11-14
    Beschreibung:    In this paper, the effect of coupling two kinds of metamaterial cells with a coil to achieve Magnetic Resonance Imaging (MRI) is investigated. Both an array of four spirals then a single spiral-shaped metamaterial are put on the top of the coil antenna. These metamaterial based resonant structures are designed to work at 63 MHz. They are intended to increase the sensitivity of the whole system and to improve the homogeneity of the RF magnetic field pattern. The spiral-shaped metamaterials added on the top of the antenna gave very promising numerical results. The calculated magnetic fields are homogeneous and their magnitudes are multiplied by factor of 4 up to 6. We are fabricating both structures using microfabrication techniques because of the small size of the structures. Content Type Journal Article Pages 1-5 DOI 10.1007/s00339-012-7408-2 Authors M. S. Khennouche, IEF, University of Paris Sud, 91405 Orsay cedex, France F. Gadot, IEF, University of Paris Sud, 91405 Orsay cedex, France B. Belier, IEF, University of Paris Sud, 91405 Orsay cedex, France A. de Lustrac, IEF, University of Paris Sud, 91405 Orsay cedex, France Journal Applied Physics A: Materials Science & Processing Online ISSN 1432-0630 Print ISSN 0947-8396
    Print ISSN: 0947-8396
    Digitale ISSN: 1432-0630
    Thema: Technik allgemein , Physik
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 49
    Publikationsdatum: 2012-09-24
    Beschreibung:    Formation of periodic subwavelength ripples on a metallic tungsten surface is investigated through a line-scribing method under the irradiation of 800 nm, 50 fs to 8 ps ultra-short laser pulses. The distinctive features of the induced ripple structures are described in detail with different laser parameters. Experimental measurements reveal that with gradual decrease of the laser fluence, the pulse duration or the scanning speed, the ripple period is inclined to reduce but the ripple depth tends to become pronounced. Theoretical analyses suggest that the transient dielectric function change of the tungsten surface mainly originates from the nonequilibrium distribution of electrons due to the d -band transitions. A sandwich-like physical model of air–plasma–target is proposed and the excitation of a surface plasmon polaritonic (SPP) wave is supposed to occur on the interface between the metallic target and the electron plasma layer. Formation of ripples can be eventually attributed to the laser–SPP interference. Theoretical interpretations are consistent with the experimental observations. Content Type Journal Article Pages 1-9 DOI 10.1007/s00339-012-7261-3 Authors Lu Xue, Key Laboratory of Optical Information Science and Technology, Education Ministry of China, Institute of Modern Optics, Nankai University, Tianjin, 300071 China Jianjun Yang, Key Laboratory of Optical Information Science and Technology, Education Ministry of China, Institute of Modern Optics, Nankai University, Tianjin, 300071 China Yang Yang, Key Laboratory of Optical Information Science and Technology, Education Ministry of China, Institute of Modern Optics, Nankai University, Tianjin, 300071 China Yishan Wang, State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Science, Xi’an, Shaanxi 710119, China Xiaonong Zhu, Key Laboratory of Optical Information Science and Technology, Education Ministry of China, Institute of Modern Optics, Nankai University, Tianjin, 300071 China Journal Applied Physics A: Materials Science & Processing Online ISSN 1432-0630 Print ISSN 0947-8396
    Print ISSN: 0947-8396
    Digitale ISSN: 1432-0630
    Thema: Technik allgemein , Physik
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 50
    facet.materialart.
    Unbekannt
    Springer
    Publikationsdatum: 2012-09-24
    Beschreibung:    A composite of graphene (GE) supported by rod-like Fe 3 O 4 nanocrystals has been fabricated by a simple one-step chemical route. X-ray diffraction and transmission electron microscopy results show that the Fe 3 O 4 nanorods with diameters in the range of 15–20 nm and lengths of 150–200 nm were firmly assembled on the GE nanosheet surface. Magnetic property investigation indicated that the Fe 3 O 4 /GE composites exhibit a ferromagnetic behavior and possess a saturation magnetization of 50.11 emu g −1 . Moreover, Fe 3 O 4 /GE composites showed a very high adsorption capacity of Congo red. Content Type Journal Article Category Rapid communication Pages 1-5 DOI 10.1007/s00339-012-7278-7 Authors Xiao-hua Jia, School of the Environment, Jiangsu University, Zhenjiang, Jiangsu 212013, China Hao-Jie Song, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China Chun-ying Min, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China Xue-Qiang Zhang, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China Journal Applied Physics A: Materials Science & Processing Online ISSN 1432-0630 Print ISSN 0947-8396
    Print ISSN: 0947-8396
    Digitale ISSN: 1432-0630
    Thema: Technik allgemein , Physik
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 51
    Publikationsdatum: 2012-09-24
    Beschreibung:    A contact transient electrothermal technique (CTET) is developed to characterize the thermal transport between one-dimensional conductive and nonconductive microscale wires that are in point contact. This technique is a significant advance from the transient electrothermal method that is used to characterize the thermophysical properties of individual one-dimensional micro-wires. A steady-state analytical solution and a transient numerical solution are used to independently determine the value for the thermal contact resistance between the wires at the contact point. The CTET technique is applied to measurement of the thermal contact resistance between crossed Pt wires (25.4 μm diameter) and the thermal contact resistance between a glass fiber (8.9 μm diameter) in contact with a Pt wire (25.4 μm diameter). For Pt wire contact, the thermal contact resistance increases from 8.94×10 4 to 7.05×10 5  K/W when the heating current changes from 20 to 50 mA. For the Pt/glass fiber contact, the thermal contact resistance is much larger (2.83×10 6  K/W), mainly due to the smaller area at the contact point. Content Type Journal Article Pages 1-10 DOI 10.1007/s00339-012-7177-y Authors Nathan Van Velson, Department of Mechanical Engineering, Iowa State University, 2010 Black Engineering Building, Ames, IA 50011, USA Xinwei Wang, Department of Mechanical Engineering, Iowa State University, 2010 Black Engineering Building, Ames, IA 50011, USA Journal Applied Physics A: Materials Science & Processing Online ISSN 1432-0630 Print ISSN 0947-8396
    Print ISSN: 0947-8396
    Digitale ISSN: 1432-0630
    Thema: Technik allgemein , Physik
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 52
    Publikationsdatum: 2012-09-24
    Beschreibung:    Optical conductivity of a zigzag carbon nanotube is investigated in the context of the Holstein model. Green’s function approach is applied to calculate the optical conductivity as a function of photon frequency, temperature, and electron–phonon coupling strength. Based on our results, optical conductivity decreases with electron–phonon coupling constant for both metallic and semiconducting carbon nanotubes. Our results show that temperature yields shortening the height of peaks of zigzag CNT optical absorption. Content Type Journal Article Pages 1-5 DOI 10.1007/s00339-012-7178-x Authors Hamed Rezania, Department of Physics, Razi University, Kermanshah, Iran Farid Taherkhani, Department of Chemistry, Razi University, Kermanshah, Iran Journal Applied Physics A: Materials Science & Processing Online ISSN 1432-0630 Print ISSN 0947-8396
    Print ISSN: 0947-8396
    Digitale ISSN: 1432-0630
    Thema: Technik allgemein , Physik
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 53
    Publikationsdatum: 2012-09-24
    Beschreibung:    The dielectric constant is an essential electrical parameter to the achievable voltage-induced deformation of the dielectric elastomer. This paper primarily focuses on the temperature dependence of the dielectric constant (within the range of 173 K to 373 K) for the most widely used acrylic dielectric elastomer (VHB 4910). First the dielectric constant was investigated experimentally with the broadband dielectric spectrometer (BDS). Results showed that the dielectric constant first increased with temperature up to a peak value and then dropped to a relative small value. Then by analyzing the fitted curves, the Cole–Cole dispersion equation was found better to characterize the rising process before the peak values than the Debye dispersion equation, while the decrease process afterward can be well described by the simple Debye model. Finally, a mathematical model of dielectric constant of VHB 4910 was obtained from the fitted results which can be used to further probe the electromechanical stability of the dielectric elastomers. Content Type Journal Article Pages 1-5 DOI 10.1007/s00339-012-7254-2 Authors Junjie Sheng, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi’an Jiaotong University, Xi’an, 710049 China Hualing Chen, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi’an Jiaotong University, Xi’an, 710049 China Bo Li, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi’an Jiaotong University, Xi’an, 710049 China Longfei Chang, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi’an Jiaotong University, Xi’an, 710049 China Journal Applied Physics A: Materials Science & Processing Online ISSN 1432-0630 Print ISSN 0947-8396
    Print ISSN: 0947-8396
    Digitale ISSN: 1432-0630
    Thema: Technik allgemein , Physik
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 54
    facet.materialart.
    Unbekannt
    Springer
    Publikationsdatum: 2012-09-24
    Beschreibung:    The s -wave kaon–antikaon ( ) scattering length is studied by lattice QCD using pion masses m π =330–466 MeV. Through wall sources without gauge fixing, we calculate four-point functions in the I =1 channel with the “Asqtad”-improved staggered fermion formulation, and observe an attractive signal, which is consistent with pioneering lattice studies on potential. Extrapolating the scattering length to the physical point, we obtain , where the first error is statistical and the second is systematic. These simulations are conducted with MILC gauge configurations at lattice spacing a ≈0.15 fm. Content Type Journal Article Category Regular Article - Theoretical Physics Pages 1-10 DOI 10.1140/epjc/s10052-012-2159-y Authors Ziwen Fu, Key Laboratory of Radiation Physics and Technology of Education Ministry, Sichuan University, Chengdu, 610064 P.R. China Journal The European Physical Journal C - Particles and Fields Online ISSN 1434-6052 Print ISSN 1434-6044 Journal Volume Volume 72 Journal Issue Volume 72, Number 9
    Print ISSN: 1434-6044
    Digitale ISSN: 1434-6052
    Thema: Physik
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 55
    Publikationsdatum: 2012-09-29
    Beschreibung:    Mn-doped ZnO nanowires have been fabricated through a high temperature vapor-solid deposition process. The low-temperature photoluminescence spectra of the samples show that there are multipeak emissions at the ultraviolet (UV) region (about 3.4–3.0 eV). The excitonic and phonon-assisted transitions in Mn-doped ZnO nanowires were investigated. The results show that there is an obvious oscillatory structure emission at the UV region under low temperature from 12–125 K. The oscillatory structure has an energy periodicity about 70 meV and the oscillatory structure is mainly attributed to longitudinal optical (LO) phonon replicas of free excitons (FX). The multipeak emissions at 12 K are attributed to a donor-bound exciton (DBX, 3.3617 eV), 1LO-phonon replicas of a free exciton (FX-1LO, 3.3105 eV), 2LO-phonon replicas of a free exciton (FX-2LO, 3.2396 eV), and 3LO-phonon replicas of a free exciton (FX-3LO, 3.1692 eV), respectively. The intensity of UV emission and the efficiency of emission from the Mn-doped ZnO nanowires are improved. Content Type Journal Article Category Rapid communication Pages 1-5 DOI 10.1007/s00339-012-7294-7 Authors Jun Zhang, Key Laboratory of Optoelectronic Information Techniques of Shandong, Institute Optoelectronic Information Science &Techniques, Yantai University, Yantai, 264005 P.R. China Feihong Jiang, Key Laboratory of Optoelectronic Information Techniques of Shandong, Institute Optoelectronic Information Science &Techniques, Yantai University, Yantai, 264005 P.R. China Shuanghong Ding, Key Laboratory of Optoelectronic Information Techniques of Shandong, Institute Optoelectronic Information Science &Techniques, Yantai University, Yantai, 264005 P.R. China Journal Applied Physics A: Materials Science & Processing Online ISSN 1432-0630 Print ISSN 0947-8396
    Print ISSN: 0947-8396
    Digitale ISSN: 1432-0630
    Thema: Technik allgemein , Physik
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 56
    Publikationsdatum: 2012-09-29
    Beschreibung:    Powdered layered double hydroxides (LDHs)—also known as hydrotalcite-like (HT)—compounds have been widely studied due to their applications as catalysts, anionic exchangers or host materials for inorganic or organic molecules. Assembling thin films of nano-sized LDHs onto flat solid substrates is an expanding area of research, with promising applications as sensors, corrosion-resistant coatings, components in optical and magnetic devices. The exploitation of LDHs as vehicles to carry dispersed metal nanoparticles onto a substrate is a new approach to obtain composite thin films with prospects for biomedical and optical applications. We report the deposition of thin films of Ag nanoparticles embedded in a Mg–Al layered double hydroxide matrix by pulsed laser deposition (PLD). The Ag-LDH powder was prepared by co-precipitation at supersaturation and pH = 10 using aqueous solutions of Mg and Al nitrates, Na hydroxide and carbonate, and AgNO 3 , having atomic ratios of Mg/Al = 3 and Ag/Al = 0.55. The target to be used in laser ablation experiments was a dry pressed pellet obtained from the prepared Ag-LDH powder. Three different wavelengths of a Nd:YAG laser (266, 532 and 1064 nm) working at a repetition rate of 10 Hz were used. X-Ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), and secondary ions mass spectrometry (SIMS) were used to investigate the structure, surface morphology and composition of the deposited films. Content Type Journal Article Pages 1-6 DOI 10.1007/s00339-012-7162-5 Authors A. Matei, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Str., 77125 Bucharest-Magurele, Romania R. Birjega, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Str., 77125 Bucharest-Magurele, Romania A. Vlad, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Str., 77125 Bucharest-Magurele, Romania C. Luculescu, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Str., 77125 Bucharest-Magurele, Romania G. Epurescu, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Str., 77125 Bucharest-Magurele, Romania F. Stokker-Cheregi, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Str., 77125 Bucharest-Magurele, Romania M. Dinescu, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Str., 77125 Bucharest-Magurele, Romania R. Zavoianu, Faculty of Chemistry, Department of Chemical Technology and Catalysis, University of Bucharest, 4-12 Regina Elisabeta Bd., Bucharest, Romania O. D. Pavel, Faculty of Chemistry, Department of Chemical Technology and Catalysis, University of Bucharest, 4-12 Regina Elisabeta Bd., Bucharest, Romania Journal Applied Physics A: Materials Science & Processing Online ISSN 1432-0630 Print ISSN 0947-8396
    Print ISSN: 0947-8396
    Digitale ISSN: 1432-0630
    Thema: Technik allgemein , Physik
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 57
    Publikationsdatum: 2012-09-29
    Beschreibung:    Recently, Kostelecky [V.A. Kostelecky, Phys. Lett. B 701 , 137 ( 2011 )] proposed that the spontaneous Lorentz invariance violation (sLIV) is related to Finsler geometry. Finsler spacetime is intrinsically anisotropic and naturally induces Lorentz invariance violation (LIV). In this paper, the electromagnetic field is investigated in locally Minkowski spacetime. The Lagrangian is presented explicitly for the electromagnetic field. It is compatible with the one in the standard model extension (SME). We show the Lorentz-violating Maxwell equations as well as the electromagnetic wave equation. The formal plane wave solution is obtained for the electromagnetic wave. The speed of light may depend on the direction of light and the lightcone may be enlarged or narrowed. The LIV effects could be viewed as influence from an anisotropic media on the electromagnetic wave. In addition, birefringence of light will not emerge at the leading order in this model. A constraint on the spacetime anisotropy is obtained from observations on gamma-ray bursts (GRBs). Content Type Journal Article Category Regular Article - Theoretical Physics Pages 1-7 DOI 10.1140/epjc/s10052-012-2165-0 Authors Zhe Chang, Institute of High Energy Physics, Chinese Academy of Sciences, 100049 Beijing, China Sai Wang, Institute of High Energy Physics, Chinese Academy of Sciences, 100049 Beijing, China Journal The European Physical Journal C - Particles and Fields Online ISSN 1434-6052 Print ISSN 1434-6044 Journal Volume Volume 72 Journal Issue Volume 72, Number 9
    Print ISSN: 1434-6044
    Digitale ISSN: 1434-6052
    Thema: Physik
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 58
    Publikationsdatum: 2012-10-01
    Beschreibung:    The possibility of printing two-dimensional micropatterns of biomolecule solutions is of great interest in many fields of research in biomedicine, from cell-growth and development studies to the investigation of the mechanisms of communication between cells. Although laser-induced forward transfer (LIFT) has been extensively used to print micrometric droplets of biological solutions, the fabrication of complex patterns depends on the feasibility of the technique to print micron-sized lines of aqueous solutions. In this study we investigate such a possibility through the analysis of the influence of droplet spacing of a water and glycerol solution on the morphology of the features printed by LIFT. We prove that it is indeed possible to print long and uniform continuous lines by controlling the overlap between adjacent droplets. We show how, depending on droplet spacing, several printed morphologies are generated, and we offer, in addition, a simple explanation of the observed behavior based on the jetting dynamics characteristic of the LIFT of liquids. Content Type Journal Article Pages 1-5 DOI 10.1007/s00339-012-7279-6 Authors A. Palla-Papavlu, Departament de Física Aplicada i Optica, Universitat de Barcelona (UB), Martí i Franquès 1, 08028 Barcelona, Spain C. Córdoba, Departament de Física Aplicada i Optica, Universitat de Barcelona (UB), Martí i Franquès 1, 08028 Barcelona, Spain A. Patrascioiu, Departament de Física Aplicada i Optica, Universitat de Barcelona (UB), Martí i Franquès 1, 08028 Barcelona, Spain J. M. Fernández-Pradas, Departament de Física Aplicada i Optica, Universitat de Barcelona (UB), Martí i Franquès 1, 08028 Barcelona, Spain J. L. Morenza, Departament de Física Aplicada i Optica, Universitat de Barcelona (UB), Martí i Franquès 1, 08028 Barcelona, Spain P. Serra, Departament de Física Aplicada i Optica, Universitat de Barcelona (UB), Martí i Franquès 1, 08028 Barcelona, Spain Journal Applied Physics A: Materials Science & Processing Online ISSN 1432-0630 Print ISSN 0947-8396
    Print ISSN: 0947-8396
    Digitale ISSN: 1432-0630
    Thema: Technik allgemein , Physik
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 59
    facet.materialart.
    Unbekannt
    Springer
    Publikationsdatum: 2012-10-13
    Beschreibung:    The quark condensate is calculated within the world-line effective-action formalism, by using for the Wilson loop an ansatz provided by the stochastic vacuum model. Starting with the relation between the quark and the gluon condensates in the heavy-quark limit, we diminish the current quark mass down to the value of the inverse vacuum correlation length, finding in this way a 64 % decrease in the absolute value of the quark condensate. In particular, we find that the conventional formula for the heavy-quark condensate cannot be applied to the c -quark, and that the corrections to this formula can reach 23 % even in the case of the b -quark. We also demonstrate that, for an exponential parametrization of the two-point correlation function of gluonic field strengths, the quark condensate does not depend on the non-confining non-perturbative interactions of the stochastic background Yang–Mills fields. Content Type Journal Article Category Regular Article - Theoretical Physics Pages 1-7 DOI 10.1140/epjc/s10052-012-2179-7 Authors Dmitri Antonov, Departamento de Física and Centro de Física das Interacções Fundamentais, Instituto Superior Técnico, UT Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal José Emílio F. T. Ribeiro, Departamento de Física and Centro de Física das Interacções Fundamentais, Instituto Superior Técnico, UT Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal Journal The European Physical Journal C - Particles and Fields Online ISSN 1434-6052 Print ISSN 1434-6044 Journal Volume Volume 72 Journal Issue Volume 72, Number 10
    Print ISSN: 1434-6044
    Digitale ISSN: 1434-6052
    Thema: Physik
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 60
    Publikationsdatum: 2012-10-13
    Beschreibung:    A measurement of the integrated luminosity at the ep collider HERA is presented, exploiting the elastic QED Compton process ep → eγp . The electron and the photon are detected in the backward calorimeter of the H1 experiment. The integrated luminosity of the data recorded in 2003 to 2007 is determined with a precision of 2.3 %. The measurement is found to be compatible with the corresponding result obtained using the Bethe–Heitler process. Content Type Journal Article Category Regular Article - Experimental Physics Pages 1-13 DOI 10.1140/epjc/s10052-012-2163-2 Authors The H1 Collaboration F. D. Aaron, National Institute for Physics and Nuclear Engineering (NIPNE), Bucharest, Romania C. Alexa, National Institute for Physics and Nuclear Engineering (NIPNE), Bucharest, Romania V. Andreev, Lebedev Physical Institute, Moscow, Russia S. Backovic, Faculty of Science, University of Montenegro, Podgorica, Montenegro A. Baghdasaryan, Yerevan Physics Institute, Yerevan, Armenia S. Baghdasaryan, Yerevan Physics Institute, Yerevan, Armenia E. Barrelet, LPNHE, Université Pierre et Marie Curie Paris 6, Université Denis Diderot Paris 7, CNRS/IN2P3, Paris, France W. Bartel, DESY, Hamburg, Germany K. Begzsuren, Institute of Physics and Technology of the Mongolian Academy of Sciences, Ulaanbaatar, Mongolia A. Belousov, Lebedev Physical Institute, Moscow, Russia P. Belov, DESY, Hamburg, Germany J. C. Bizot, LAL, Université Paris-Sud, CNRS/IN2P3, Orsay, France V. Boudry, LLR, Ecole Polytechnique, CNRS/IN2P3, Palaiseau, France I. Bozovic-Jelisavcic, Vinca Institute of Nuclear Sciences, University of Belgrade, 1100 Belgrade, Serbia J. Bracinik, School of Physics and Astronomy, University of Birmingham, Birmingham, UK G. Brandt, DESY, Hamburg, Germany M. Brinkmann, DESY, Hamburg, Germany V. Brisson, LAL, Université Paris-Sud, CNRS/IN2P3, Orsay, France D. Britzger, DESY, Hamburg, Germany D. Bruncko, Institute of Experimental Physics, Slovak Academy of Sciences, Košice, Slovak Republic A. Bunyatyan, Max-Planck-Institut für Kernphysik, Heidelberg, Germany A. Bylinkin, Institute for Theoretical and Experimental Physics, Moscow, Russia L. Bystritskaya, Institute for Theoretical and Experimental Physics, Moscow, Russia A. J. Campbell, DESY, Hamburg, Germany K. B. Cantun Avila, Departamento de Fisica Aplicada, CINVESTAV, Mérida, Yucatán, México F. Ceccopieri, Inter-University Institute for High Energies ULB-VUB, Brussels and Universiteit Antwerpen, Antwerpen, Belgium K. Cerny, Faculty of Mathematics and Physics, Charles University, Praha, Czech Republic V. Cerny, Institute of Experimental Physics, Slovak Academy of Sciences, Košice, Slovak Republic V. Chekelian, Max-Planck-Institut für Physik, München, Germany J. G. Contreras, Departamento de Fisica Aplicada, CINVESTAV, Mérida, Yucatán, México J. A. Coughlan, STFC, Rutherford Appleton Laboratory, Didcot, Oxfordshire, UK J. Cvach, Institute of Physics, Academy of Sciences of the Czech Republic, Praha, Czech Republic J. B. Dainton, Department of Physics, University of Liverpool, Liverpool, UK K. Daum, Fachbereich C, Universität Wuppertal, Wuppertal, Germany B. Delcourt, LAL, Université Paris-Sud, CNRS/IN2P3, Orsay, France J. Delvax, Inter-University Institute for High Energies ULB-VUB, Brussels and Universiteit Antwerpen, Antwerpen, Belgium E. A. De Wolf, Inter-University Institute for High Energies ULB-VUB, Brussels and Universiteit Antwerpen, Antwerpen, Belgium C. Diaconu, CPPM, Aix-Marseille Univ., CNRS/IN2P3, 13288 Marseille, France M. Dobre, Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany V. Dodonov, Max-Planck-Institut für Kernphysik, Heidelberg, Germany A. Dossanov, Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany A. Dubak, Faculty of Science, University of Montenegro, Podgorica, Montenegro G. Eckerlin, DESY, Hamburg, Germany S. Egli, Paul Scherrer Institut, Villigen, Switzerland A. Eliseev, Lebedev Physical Institute, Moscow, Russia E. Elsen, DESY, Hamburg, Germany L. Favart, Inter-University Institute for High Energies ULB-VUB, Brussels and Universiteit Antwerpen, Antwerpen, Belgium A. Fedotov, Institute for Theoretical and Experimental Physics, Moscow, Russia R. Felst, DESY, Hamburg, Germany J. Feltesse, CEA, DSM/Irfu, CE-Saclay, Gif-sur-Yvette, France J. Ferencei, Institute of Experimental Physics, Slovak Academy of Sciences, Košice, Slovak Republic D.-J. Fischer, DESY, Hamburg, Germany M. Fleischer, DESY, Hamburg, Germany A. Fomenko, Lebedev Physical Institute, Moscow, Russia E. Gabathuler, Department of Physics, University of Liverpool, Liverpool, UK J. Gayler, DESY, Hamburg, Germany S. Ghazaryan, DESY, Hamburg, Germany A. Glazov, DESY, Hamburg, Germany L. Goerlich, Institute for Nuclear Physics, Cracow, Poland N. Gogitidze, Lebedev Physical Institute, Moscow, Russia M. Gouzevitch, DESY, Hamburg, Germany C. Grab, Institut für Teilchenphysik, ETH, Zürich, Switzerland A. Grebenyuk, DESY, Hamburg, Germany T. Greenshaw, Department of Physics, University of Liverpool, Liverpool, UK G. Grindhammer, Max-Planck-Institut für Physik, München, Germany S. Habib, DESY, Hamburg, Germany D. Haidt, DESY, Hamburg, Germany R. C. W. Henderson, Department of Physics, University of Lancaster, Lancaster, UK E. Hennekemper, Kirchhoff-Institut für Physik, Universität Heidelberg, Heidelberg, Germany H. Henschel, DESY, Zeuthen, Germany M. Herbst, Kirchhoff-Institut für Physik, Universität Heidelberg, Heidelberg, Germany G. Herrera, Departamento de Fisica, CINVESTAV IPN, México City, México M. Hildebrandt, Paul Scherrer Institut, Villigen, Switzerland K. H. Hiller, DESY, Zeuthen, Germany D. Hoffmann, CPPM, Aix-Marseille Univ., CNRS/IN2P3, 13288 Marseille, France R. Horisberger, Paul Scherrer Institut, Villigen, Switzerland T. Hreus, Inter-University Institute for High Energies ULB-VUB, Brussels and Universiteit Antwerpen, Antwerpen, Belgium F. Huber, Physikalisches Institut, Universität Heidelberg, Heidelberg, Germany M. Jacquet, LAL, Université Paris-Sud, CNRS/IN2P3, Orsay, France X. Janssen, Inter-University Institute for High Energies ULB-VUB, Brussels and Universiteit Antwerpen, Antwerpen, Belgium L. Jönsson, Physics Department, University of Lund, Lund, Sweden H. Jung, DESY, Hamburg, Germany M. Kapichine, Joint Institute for Nuclear Research, Dubna, Russia I. R. Kenyon, School of Physics and Astronomy, University of Birmingham, Birmingham, UK C. Kiesling, Max-Planck-Institut für Physik, München, Germany M. Klein, Department of Physics, University of Liverpool, Liverpool, UK C. Kleinwort, DESY, Hamburg, Germany T. Kluge, Department of Physics, University of Liverpool, Liverpool, UK R. Kogler, Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany P. Kostka, DESY, Zeuthen, Germany M. Krämer, DESY, Hamburg, Germany J. Kretzschmar, Department of Physics, University of Liverpool, Liverpool, UK K. Krüger, Kirchhoff-Institut für Physik, Universität Heidelberg, Heidelberg, Germany M. P. J. Landon, School of Physics and Astronomy, Queen Mary, University of London, London, UK W. Lange, DESY, Zeuthen, Germany G. Laštovička-Medin, Faculty of Science, University of Montenegro, Podgorica, Montenegro P. Laycock, Department of Physics, University of Liverpool, Liverpool, UK A. Lebedev, Lebedev Physical Institute, Moscow, Russia V. Lendermann, Kirchhoff-Institut für Physik, Universität Heidelberg, Heidelberg, Germany S. Levonian, DESY, Hamburg, Germany K. Lipka, DESY, Hamburg, Germany B. List, DESY, Hamburg, Germany J. List, DESY, Hamburg, Germany B. Lobodzinski, DESY, Hamburg, Germany R. Lopez-Fernandez, Departamento de Fisica, CINVESTAV IPN, México City, México V. Lubimov, Institute for Theoretical and Experimental Physics, Moscow, Russia E. Malinovski, Lebedev Physical Institute, Moscow, Russia H.-U. Martyn, I. Physikalisches Institut der RWTH, Aachen, Germany S. J. Maxfield, Department of Physics, University of Liverpool, Liverpool, UK A. Mehta, Department of Physics, University of Liverpool, Liverpool, UK A. B. Meyer, DESY, Hamburg, Germany H. Meyer, Fachbereich C, Universität Wuppertal, Wuppertal, Germany J. Meyer, DESY, Hamburg, Germany S. Mikocki, Institute for Nuclear Physics, Cracow, Poland I. Milcewicz-Mika, Institute for Nuclear Physics, Cracow, Poland F. Moreau, LLR, Ecole Polytechnique, CNRS/IN2P3, Palaiseau, France A. Morozov, Joint Institute for Nuclear Research, Dubna, Russia J. V. Morris, STFC, Rutherford Appleton Laboratory, Didcot, Oxfordshire, UK K. Müller, Physik-Institut der Universität Zürich, Zürich, Switzerland Th. Naumann, DESY, Zeuthen, Germany P. R. Newman, School of Physics and Astronomy, University of Birmingham, Birmingham, UK C. Niebuhr, DESY, Hamburg, Germany D. Nikitin, Joint Institute for Nuclear Research, Dubna, Russia G. Nowak, Institute for Nuclear Physics, Cracow, Poland K. Nowak, Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany J. E. Olsson, DESY, Hamburg, Germany D. Ozerov, DESY, Hamburg, Germany P. Pahl, DESY, Hamburg, Germany V. Palichik, Joint Institute for Nuclear Research, Dubna, Russia I. Panagoulias, DESY, Hamburg, Germany M. Pandurovic, Vinca Institute of Nuclear Sciences, University of Belgrade, 1100 Belgrade, Serbia Th. Papadopoulou, DESY, Hamburg, Germany C. Pascaud, LAL, Université Paris-Sud, CNRS/IN2P3, Orsay, France G. D. Patel, Department of Physics, University of Liverpool, Liverpool, UK E. Perez, CEA, DSM/Irfu, CE-Saclay, Gif-sur-Yvette, France A. Petrukhin, DESY, Hamburg, Germany I. Picuric, Faculty of Science, University of Montenegro, Podgorica, Montenegro H. Pirumov, Physikalisches Institut, Universität Heidelberg, Heidelberg, Germany D. Pitzl, DESY, Hamburg, Germany R. Plačakytė, DESY, Hamburg, Germany B. Pokorny, Faculty of Mathematics and Physics, Charles University, Praha, Czech Republic R. Polifka, Faculty of Mathematics and Physics, Charles University, Praha, Czech Republic B. Povh, Max-Planck-Institut für Kernphysik, Heidelberg, Germany V. Radescu, DESY, Hamburg, Germany N. Raicevic, Faculty of Science, University of Montenegro, Podgorica, Montenegro T. Ravdandorj, Institute of Physics and Technology of the Mongolian Academy of Sciences, Ulaanbaatar, Mongolia P. Reimer, Institute of Physics, Academy of Sciences of the Czech Republic, Praha, Czech Republic E. Rizvi, School of Physics and Astronomy, Queen Mary, University of London, London, UK P. Robmann, Physik-Institut der Universität Zürich, Zürich, Switzerland R. Roosen, Inter-University Institute for High Energies ULB-VUB, Brussels and Universiteit Antwerpen, Antwerpen, Belgium A. Rostovtsev, Institute for Theoretical and Experimental Physics, Moscow, Russia M. Rotaru, National Institute for Physics and Nuclear Engineering (NIPNE), Bucharest, Romania J. E. Ruiz Tabasco, Departamento de Fisica Aplicada, CINVESTAV, Mérida, Yucatán, México S. Rusakov, Lebedev Physical Institute, Moscow, Russia D. Šálek, Faculty of Mathematics and Physics, Charles University, Praha, Czech Republic D. P. C. Sankey, STFC, Rutherford Appleton Laboratory, Didcot, Oxfordshire, UK M. Sauter, Physikalisches Institut, Universität Heidelberg, Heidelberg, Germany E. Sauvan, CPPM, Aix-Marseille Univ., CNRS/IN2P3, 13288 Marseille, France S. Schmitt, DESY, Hamburg, Germany L. Schoeffel, CEA, DSM/Irfu, CE-Saclay, Gif-sur-Yvette, France A. Schöning, Physikalisches Institut, Universität Heidelberg, Heidelberg, Germany H.-C. Schultz-Coulon, Kirchhoff-Institut für Physik, Universität Heidelberg, Heidelberg, Germany F. Sefkow, DESY, Hamburg, Germany L. N. Shtarkov, Lebedev Physical Institute, Moscow, Russia S. Shushkevich, DESY, Hamburg, Germany T. Sloan, Department of Physics, University of Lancaster, Lancaster, UK Y. Soloviev, DESY, Hamburg, Germany P. Sopicki, Institute for Nuclear Physics, Cracow, Poland D. South, DESY, Hamburg, Germany V. Spaskov, Joint Institute for Nuclear Research, Dubna, Russia A. Specka, LLR, Ecole Polytechnique, CNRS/IN2P3, Palaiseau, France Z. Staykova, Inter-University Institute for High Energies ULB-VUB, Brussels and Universiteit Antwerpen, Antwerpen, Belgium M. Steder, DESY, Hamburg, Germany B. Stella, Dipartimento di Fisica, Università di Roma Tre and INFN Roma 3, Roma, Italy G. Stoicea, National Institute for Physics and Nuclear Engineering (NIPNE), Bucharest, Romania U. Straumann, Physik-Institut der Universität Zürich, Zürich, Switzerland T. Sykora, Faculty of Mathematics and Physics, Charles University, Praha, Czech Republic P. D. Thompson, School of Physics and Astronomy, University of Birmingham, Birmingham, UK T. H. Tran, LAL, Université Paris-Sud, CNRS/IN2P3, Orsay, France D. Traynor, School of Physics and Astronomy, Queen Mary, University of London, London, UK P. Truöl, Physik-Institut der Universität Zürich, Zürich, Switzerland I. Tsakov, Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria B. Tseepeldorj, Institute of Physics and Technology of the Mongolian Academy of Sciences, Ulaanbaatar, Mongolia J. Turnau, Institute for Nuclear Physics, Cracow, Poland A. Valkárová, Faculty of Mathematics and Physics, Charles University, Praha, Czech Republic C. Vallée, CPPM, Aix-Marseille Univ., CNRS/IN2P3, 13288 Marseille, France P. Van Mechelen, Inter-University Institute for High Energies ULB-VUB, Brussels and Universiteit Antwerpen, Antwerpen, Belgium Y. Vazdik, Lebedev Physical Institute, Moscow, Russia D. Wegener, Institut für Physik, TU Dortmund, Dortmund, Germany E. Wünsch, DESY, Hamburg, Germany J. Žáček, Faculty of Mathematics and Physics, Charles University, Praha, Czech Republic J. Zálešák, Institute of Physics, Academy of Sciences of the Czech Republic, Praha, Czech Republic Z. Zhang, LAL, Université Paris-Sud, CNRS/IN2P3, Orsay, France A. Zhokin, Institute for Theoretical and Experimental Physics, Moscow, Russia R. Žlebčík, Faculty of Mathematics and Physics, Charles University, Praha, Czech Republic H. Zohrabyan, Yerevan Physics Institute, Yerevan, Armenia F. Zomer, LAL, Université Paris-Sud, CNRS/IN2P3, Orsay, France Journal The European Physical Journal C - Particles and Fields Online ISSN 1434-6052 Print ISSN 1434-6044 Journal Volume Volume 72 Journal Issue Volume 72, Number 10
    Print ISSN: 1434-6044
    Digitale ISSN: 1434-6052
    Thema: Physik
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 61
    Publikationsdatum: 2012-10-13
    Beschreibung:    A combination of the inclusive diffractive cross section measurements made by the H1 and ZEUS Collaborations at HERA is presented. The analysis uses samples of diffractive deep inelastic ep scattering data at a centre-of-mass energy where leading protons are detected by dedicated spectrometers. Correlations of systematic uncertainties are taken into account, resulting in an improved precision of the cross section measurement which reaches 6 % for the most precise points. The combined data cover the range 2.5〈 Q 2 〈200 GeV 2 in photon virtuality, in proton fractional momentum loss, 0.09〈| t |〈0.55 GeV 2 in squared four-momentum transfer at the proton vertex and 0.0018〈 β 〈0.816 in , where x is the Bjorken scaling variable. Content Type Journal Article Category Regular Article - Experimental Physics Pages 1-17 DOI 10.1140/epjc/s10052-012-2175-y Authors The H1 and ZEUS Collaborations F. D. Aaron, National Institute for Physics and Nuclear Engineering (NIPNE), Bucharest, Romania H. Abramowicz, Raymond and Beverly Sackler Faculty of Exact Sciences, School of Physics, Tel Aviv University, Tel Aviv, Israel I. Abt, Max-Planck-Institut für Physik, Munich, Germany L. Adamczyk, Faculty of Physics and Applied Computer Science, AGH-University of Science and Technology, Krakow, Poland M. Adamus, National Centre for Nuclear Research, Warsaw, Poland R. Aggarwal, Department of Physics, Panjab University, Chandigarh, India C. Alexa, National Institute for Physics and Nuclear Engineering (NIPNE), Bucharest, Romania V. Andreev, Lebedev Physical Institute, Moscow, Russia S. Antonelli, University and INFN Bologna, Bologna, Italy P. Antonioli, INFN Bologna, Bologna, Italy A. Antonov, Moscow Engineering Physics Institute, Moscow, Russia M. Arneodo, Università del Piemonte Orientale, Novara, and INFN, Torino, Italy O. Arslan, Physikalisches Institut der Universität Bonn, Bonn, Germany V. Aushev, Institute for Nuclear Research, National Academy of Sciences, Kyiv, Ukraine Y. Aushev, Department of Nuclear Physics, National Taras Shevchenko University of Kyiv, Kyiv, Ukraine O. Bachynska, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany S. Backovic, Faculty of Science, University of Montenegro, Podgorica, Montenegro A. Baghdasaryan, Yerevan Physics Institute, Yerevan, Armenia S. Baghdasaryan, Yerevan Physics Institute, Yerevan, Armenia A. Bamberger, Fakultät für Physik der Universität Freiburg i.Br., Freiburg i.Br., Germany A. N. Barakbaev, Institute of Physics and Technology of Ministry of Education and Science of Kazakhstan, Almaty, Kazakhstan G. Barbagli, INFN Florence, Florence, Italy G. Bari, INFN Bologna, Bologna, Italy F. Barreiro, Departamento de Física Teórica, Universidad Autónoma de Madrid, Madrid, Spain E. Barrelet, LPNHE, Université Pierre et Marie Curie Paris 6, Université Denis Diderot Paris 7, CNRS/IN2P3, Paris, France W. Bartel, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany N. Bartosik, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany D. Bartsch, Physikalisches Institut der Universität Bonn, Bonn, Germany M. Basile, University and INFN Bologna, Bologna, Italy K. Begzsuren, Institute of Physics and Technology of the Mongolian Academy of Sciences, Ulaanbaatar, Mongolia O. Behnke, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany J. Behr, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany U. Behrens, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany L. Bellagamba, INFN Bologna, Bologna, Italy A. Belousov, Lebedev Physical Institute, Moscow, Russia P. Belov, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany A. Bertolin, INFN Padova, Padova, Italy S. Bhadra, Department of Physics, York University, Toronto, Ontario M3J 1P3, Canada M. Bindi, University and INFN Bologna, Bologna, Italy J. C. Bizot, LAL, Université Paris-Sud, CNRS/IN2P3, Orsay, France C. Blohm, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany V. Bokhonov, Institute for Nuclear Research, National Academy of Sciences, Kyiv, Ukraine K. Bondarenko, Department of Nuclear Physics, National Taras Shevchenko University of Kyiv, Kyiv, Ukraine E. G. Boos, Institute of Physics and Technology of Ministry of Education and Science of Kazakhstan, Almaty, Kazakhstan K. Borras, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany D. Boscherini, INFN Bologna, Bologna, Italy D. Bot, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany V. Boudry, LLR, Ecole Polytechnique, CNRS/IN2P3, Palaiseau, France I. Bozovic-Jelisavcic, Vinca Institute of Nuclear Sciences, University of Belgrade, 1100 Belgrade, Serbia T. Bołd, Faculty of Physics and Applied Computer Science, AGH-University of Science and Technology, Krakow, Poland N. Brümmer, Physics Department, Ohio State University, Columbus, OH 43210, USA J. Bracinik, School of Physics and Astronomy, University of Birmingham, Birmingham, UK G. Brandt, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany M. Brinkmann, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany V. Brisson, LAL, Université Paris-Sud, CNRS/IN2P3, Orsay, France D. Britzger, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany I. Brock, Physikalisches Institut der Universität Bonn, Bonn, Germany E. Brownson, Department of Physics, University of Wisconsin, Madison, WI 53706, USA R. Brugnera, Dipartimento di Fisica dell’ Università and INFN, Padova, Italy D. Bruncko, Institute of Experimental Physics, Slovak Academy of Sciences, Košice, Slovak Republic A. Bruni, INFN Bologna, Bologna, Italy G. Bruni, INFN Bologna, Bologna, Italy B. Brzozowska, Faculty of Physics, University of Warsaw, Warsaw, Poland A. Bunyatyan, Max-Planck-Institut für Kernphysik, Heidelberg, Germany P. J. Bussey, School of Physics and Astronomy, University of Glasgow, Glasgow, UK A. Bylinkin, Institute for Theoretical and Experimental Physics, Moscow, Russia B. Bylsma, Physics Department, Ohio State University, Columbus, OH 43210, USA L. Bystritskaya, Institute for Theoretical and Experimental Physics, Moscow, Russia A. Caldwell, Max-Planck-Institut für Physik, Munich, Germany A. J. Campbell, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany K. B. Cantun Avila, Departamento de Fisica Aplicada, CINVESTAV, Mérida, Yucatán, México M. Capua, Physics Department and INFN, Calabria University, Cosenza, Italy R. Carlin, Dipartimento di Fisica dell’ Università and INFN, Padova, Italy C. D. Catterall, Department of Physics, York University, Toronto, Ontario M3J 1P3, Canada F. Ceccopieri, Inter-University Institute for High Energies ULB-VUB, Brussels, Belgium K. Cerny, Faculty of Mathematics and Physics of Charles University, Praha, Czech Republic V. Cerny, Institute of Experimental Physics, Slovak Academy of Sciences, Košice, Slovak Republic S. Chekanov, Argonne National Laboratory, Argonne, IL 60439-4815, USA V. Chekelian, Max-Planck-Institut für Physik, Munich, Germany J. Chwastowski, The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Cracow, Poland J. Ciborowski, Faculty of Physics, University of Warsaw, Warsaw, Poland R. Ciesielski, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany L. Cifarelli, University and INFN Bologna, Bologna, Italy F. Cindolo, INFN Bologna, Bologna, Italy A. Contin, University and INFN Bologna, Bologna, Italy J. G. Contreras, Departamento de Fisica Aplicada, CINVESTAV, Mérida, Yucatán, México A. M. Cooper-Sarkar, Department of Physics, University of Oxford, Oxford, UK N. Coppola, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany M. Corradi, INFN Bologna, Bologna, Italy F. Corriveau, Department of Physics, McGill University, Montréal, Québec H3A 2T8, Canada M. Costa, Università di Torino and INFN, Torino, Italy J. A. Coughlan, STFC, Rutherford Appleton Laboratory, Didcot, Oxfordshire, UK J. Cvach, Institute of Physics of the Academy of Sciences of the Czech Republic, Praha, Czech Republic G. D’Agostini, Dipartimento di Fisica, Università’La Sapienza’ and INFN, Rome, Italy J. B. Dainton, Department of Physics, University of Liverpool, Liverpool, UK F. Dal Corso, INFN Padova, Padova, Italy K. Daum, Fachbereich C, Universität Wuppertal, Wuppertal, Germany B. Delcourt, LAL, Université Paris-Sud, CNRS/IN2P3, Orsay, France J. Delvax, Inter-University Institute for High Energies ULB-VUB, Brussels, Belgium R. K. Dementiev, Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia M. Derrick, Argonne National Laboratory, Argonne, IL 60439-4815, USA R. C. E. Devenish, Department of Physics, University of Oxford, Oxford, UK S. De Pasquale, University and INFN Bologna, Bologna, Italy E. A. De Wolf, Inter-University Institute for High Energies ULB-VUB, Brussels, Belgium J. del Peso, Departamento de Física Teórica, Universidad Autónoma de Madrid, Madrid, Spain C. Diaconu, CPPM, Aix-Marseille Univ, CNRS/IN2P3, 13288 Marseille, France M. Dobre, Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany D. Dobur, Fakultät für Physik der Universität Freiburg i.Br., Freiburg i.Br., Germany V. Dodonov, Max-Planck-Institut für Kernphysik, Heidelberg, Germany B. A. Dolgoshein, Moscow Engineering Physics Institute, Moscow, Russia G. Dolinska, Department of Nuclear Physics, National Taras Shevchenko University of Kyiv, Kyiv, Ukraine A. Dossanov, Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany A. T. Doyle, School of Physics and Astronomy, University of Glasgow, Glasgow, UK V. Drugakov, Deutsches Elektronen-Synchrotron DESY, Zeuthen, Germany A. Dubak, Faculty of Science, University of Montenegro, Podgorica, Montenegro L. S. Durkin, Physics Department, Ohio State University, Columbus, OH 43210, USA S. Dusini, INFN Padova, Padova, Italy G. Eckerlin, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany S. Egli, Paul Scherrer Institut, Villigen, Switzerland Y. Eisenberg, Department of Particle Physics and Astrophysics, Weizmann Institute, Rehovot, Israel A. Eliseev, Lebedev Physical Institute, Moscow, Russia E. Elsen, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany P. F. Ermolov, Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia A. Eskreys, The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Cracow, Poland S. Fang, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany L. Favart, Inter-University Institute for High Energies ULB-VUB, Brussels, Belgium S. Fazio, Physics Department and INFN, Calabria University, Cosenza, Italy A. Fedotov, Institute for Theoretical and Experimental Physics, Moscow, Russia R. Felst, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany J. Feltesse, CEA, DSM/Irfu, CE-Saclay, Gif-sur-Yvette, France J. Ferencei, Institute of Experimental Physics, Slovak Academy of Sciences, Košice, Slovak Republic J. Ferrando, School of Physics and Astronomy, University of Glasgow, Glasgow, UK M. I. Ferrero, Università di Torino and INFN, Torino, Italy J. Figiel, The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Cracow, Poland D.-J. Fischer, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany M. Fleischer, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany A. Fomenko, Lebedev Physical Institute, Moscow, Russia M. Forrest, School of Physics and Astronomy, University of Glasgow, Glasgow, UK B. Foster, Department of Physics, University of Oxford, Oxford, UK E. Gabathuler, Department of Physics, University of Liverpool, Liverpool, UK G. Gach, Faculty of Physics and Applied Computer Science, AGH-University of Science and Technology, Krakow, Poland A. Galas, The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Cracow, Poland E. Gallo, INFN Florence, Florence, Italy A. Garfagnini, Dipartimento di Fisica dell’ Università and INFN, Padova, Italy J. Gayler, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany A. Geiser, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany S. Ghazaryan, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany I. Gialas, Department of Engineering in Management and Finance, Univ. of the Aegean, Chios, Greece A. Gizhko, Department of Nuclear Physics, National Taras Shevchenko University of Kyiv, Kyiv, Ukraine L. K. Gladilin, Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia D. Gladkov, Moscow Engineering Physics Institute, Moscow, Russia C. Glasman, Departamento de Física Teórica, Universidad Autónoma de Madrid, Madrid, Spain A. Glazov, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany L. Goerlich, The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Cracow, Poland N. Gogitidze, Lebedev Physical Institute, Moscow, Russia O. Gogota, Department of Nuclear Physics, National Taras Shevchenko University of Kyiv, Kyiv, Ukraine Y. A. Golubkov, Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia P. Göttlicher, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany M. Gouzevitch, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany C. Grab, Institut für Teilchenphysik, ETH, Zurich, Switzerland I. Grabowska-Bołd, Faculty of Physics and Applied Computer Science, AGH-University of Science and Technology, Krakow, Poland A. Grebenyuk, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany J. Grebenyuk, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany T. Greenshaw, Department of Physics, University of Liverpool, Liverpool, UK I. Gregor, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany G. Grigorescu, NIKHEF and University of Amsterdam, Amsterdam, Netherlands G. Grindhammer, Max-Planck-Institut für Physik, Munich, Germany G. Grzelak, Faculty of Physics, University of Warsaw, Warsaw, Poland O. Gueta, Raymond and Beverly Sackler Faculty of Exact Sciences, School of Physics, Tel Aviv University, Tel Aviv, Israel M. Guzik, Faculty of Physics and Applied Computer Science, AGH-University of Science and Technology, Krakow, Poland C. Gwenlan, Department of Physics, University of Oxford, Oxford, UK A. Hüttmann, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany T. Haas, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany S. Habib, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany D. Haidt, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany W. Hain, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany R. Hamatsu, Department of Physics, Tokyo Metropolitan University, Tokyo, Japan J. C. Hart, STFC, Rutherford Appleton Laboratory, Didcot, Oxfordshire, UK H. Hartmann, Physikalisches Institut der Universität Bonn, Bonn, Germany G. Hartner, Department of Physics, York University, Toronto, Ontario M3J 1P3, Canada R. C. W. Henderson, Department of Physics, University of Lancaster, Lancaster, UK E. Hennekemper, Kirchhoff-Institut für Physik, Universität Heidelberg, Heidelberg, Germany H. Henschel, Deutsches Elektronen-Synchrotron DESY, Zeuthen, Germany M. Herbst, Kirchhoff-Institut für Physik, Universität Heidelberg, Heidelberg, Germany G. Herrera, Departamento de Fisica, CINVESTAV IPN, México City, México M. Hildebrandt, Paul Scherrer Institut, Villigen, Switzerland E. Hilger, Physikalisches Institut der Universität Bonn, Bonn, Germany K. H. Hiller, Deutsches Elektronen-Synchrotron DESY, Zeuthen, Germany J. Hladký, Institute of Physics of the Academy of Sciences of the Czech Republic, Praha, Czech Republic D. Hochman, Department of Particle Physics and Astrophysics, Weizmann Institute, Rehovot, Israel D. Hoffmann, CPPM, Aix-Marseille Univ, CNRS/IN2P3, 13288 Marseille, France R. Hori, Department of Physics, University of Tokyo, Tokyo, Japan R. Horisberger, Paul Scherrer Institut, Villigen, Switzerland T. Hreus, Inter-University Institute for High Energies ULB-VUB, Brussels, Belgium F. Huber, Physikalisches Institut, Universität Heidelberg, Heidelberg, Germany Z. A. Ibrahim, Jabatan Fizik, Universiti Malaya, 50603 Kuala Lumpur, Malaysia Y. Iga, Polytechnic University, Tokyo, Japan R. Ingbir, Raymond and Beverly Sackler Faculty of Exact Sciences, School of Physics, Tel Aviv University, Tel Aviv, Israel M. Ishitsuka, Department of Physics, Tokyo Institute of Technology, Tokyo, Japan M. Jacquet, LAL, Université Paris-Sud, CNRS/IN2P3, Orsay, France H.-P. Jakob, Physikalisches Institut der Universität Bonn, Bonn, Germany X. Janssen, Inter-University Institute for High Energies ULB-VUB, Brussels, Belgium F. Januschek, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany T. W. Jones, Physics and Astronomy Department, University College London, London, UK L. Jönsson, Physics Department, University of Lund, Lund, Sweden M. Jüngst, Physikalisches Institut der Universität Bonn, Bonn, Germany H. Jung, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany I. Kadenko, Department of Nuclear Physics, National Taras Shevchenko University of Kyiv, Kyiv, Ukraine B. Kahle, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany S. Kananov, Raymond and Beverly Sackler Faculty of Exact Sciences, School of Physics, Tel Aviv University, Tel Aviv, Israel T. Kanno, Department of Physics, Tokyo Institute of Technology, Tokyo, Japan M. Kapichine, Joint Institute for Nuclear Research, Dubna, Russia U. Karshon, Department of Particle Physics and Astrophysics, Weizmann Institute, Rehovot, Israel F. Karstens, Fakultät für Physik der Universität Freiburg i.Br., Freiburg i.Br., Germany I. I. Katkov, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany P. Kaur, Department of Physics, Panjab University, Chandigarh, India M. Kaur, Department of Physics, Panjab University, Chandigarh, India I. R. Kenyon, School of Physics and Astronomy, University of Birmingham, Birmingham, UK A. Keramidas, NIKHEF and University of Amsterdam, Amsterdam, Netherlands L. A. Khein, Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia C. Kiesling, Max-Planck-Institut für Physik, Munich, Germany J. Y. Kim, Institute for Universe and Elementary Particles, Chonnam National University, Kwangju, South Korea D. Kisielewska, Faculty of Physics and Applied Computer Science, AGH-University of Science and Technology, Krakow, Poland S. Kitamura, Department of Physics, Tokyo Metropolitan University, Tokyo, Japan R. Klanner, Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany M. Klein, Department of Physics, University of Liverpool, Liverpool, UK U. Klein, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany C. Kleinwort, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany E. Koffeman, NIKHEF and University of Amsterdam, Amsterdam, Netherlands R. Kogler, Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany N. Kondrashova, Department of Nuclear Physics, National Taras Shevchenko University of Kyiv, Kyiv, Ukraine O. Kononenko, Department of Nuclear Physics, National Taras Shevchenko University of Kyiv, Kyiv, Ukraine P. Kooijman, NIKHEF and University of Amsterdam, Amsterdam, Netherlands I. Korol, Department of Nuclear Physics, National Taras Shevchenko University of Kyiv, Kyiv, Ukraine I. A. Korzhavina, Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia P. Kostka, Deutsches Elektronen-Synchrotron DESY, Zeuthen, Germany A. Kotański, Department of Physics, Jagellonian University, Cracow, Poland U. Kötz, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany H. Kowalski, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany M. Krämer, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany J. Kretzschmar, Department of Physics, University of Liverpool, Liverpool, UK K. Krüger, Kirchhoff-Institut für Physik, Universität Heidelberg, Heidelberg, Germany O. Kuprash, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany M. Kuze, Department of Physics, Tokyo Institute of Technology, Tokyo, Japan M. P. J. Landon, School of Physics and Astronomy, Queen Mary, University of London, London, UK W. Lange, Deutsches Elektronen-Synchrotron DESY, Zeuthen, Germany G. Laštovička-Medin, Faculty of Science, University of Montenegro, Podgorica, Montenegro P. Laycock, Department of Physics, University of Liverpool, Liverpool, UK A. Lebedev, Lebedev Physical Institute, Moscow, Russia A. Lee, Physics Department, Ohio State University, Columbus, OH 43210, USA V. Lendermann, Kirchhoff-Institut für Physik, Universität Heidelberg, Heidelberg, Germany B. B. Levchenko, Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia S. Levonian, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany A. Levy, Raymond and Beverly Sackler Faculty of Exact Sciences, School of Physics, Tel Aviv University, Tel Aviv, Israel V. Libov, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany S. Limentani, Dipartimento di Fisica dell’ Università and INFN, Padova, Italy T. Y. Ling, Physics Department, Ohio State University, Columbus, OH 43210, USA K. Lipka, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany M. Lisovyi, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany B. List, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany J. List, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany E. Lobodzinska, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany B. Lobodzinski, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany W. Lohmann, Deutsches Elektronen-Synchrotron DESY, Zeuthen, Germany B. Löhr, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany E. Lohrmann, Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany K. R. Long, High Energy Nuclear Physics Group, Imperial College London, London, UK A. Longhin, INFN Padova, Padova, Italy D. Lontkovskyi, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany R. Lopez-Fernandez, Departamento de Fisica, CINVESTAV IPN, México City, México V. Lubimov, Institute for Theoretical and Experimental Physics, Moscow, Russia O. Y. Lukina, Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia J. Maeda, Department of Physics, Tokyo Institute of Technology, Tokyo, Japan S. Magill, Argonne National Laboratory, Argonne, IL 60439-4815, USA I. Makarenko, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany E. Malinovski, Lebedev Physical Institute, Moscow, Russia J. Malka, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany R. Mankel, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany A. Margotti, INFN Bologna, Bologna, Italy G. Marini, Dipartimento di Fisica, Università’La Sapienza’ and INFN, Rome, Italy J. F. Martin, Department of Physics, University of Toronto, Toronto, Ontario M5S 1A7, Canada H.-U. Martyn, I. Physikalisches Institut der RWTH, Aachen, Germany A. Mastroberardino, Physics Department and INFN, Calabria University, Cosenza, Italy M. C. K. Mattingly, Andrews University, Berrien Springs, MI 49104-0380, USA S. J. Maxfield, Department of Physics, University of Liverpool, Liverpool, UK A. Mehta, Department of Physics, University of Liverpool, Liverpool, UK I.-A. Melzer-Pellmann, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany S. Mergelmeyer, Physikalisches Institut der Universität Bonn, Bonn, Germany A. B. Meyer, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany H. Meyer, Fachbereich C, Universität Wuppertal, Wuppertal, Germany J. Meyer, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany S. Miglioranzi, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany S. Mikocki, The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Cracow, Poland I. Milcewicz-Mika, The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Cracow, Poland F. Mohamad Idris, Jabatan Fizik, Universiti Malaya, 50603 Kuala Lumpur, Malaysia V. Monaco, Università di Torino and INFN, Torino, Italy A. Montanari, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany F. Moreau, LLR, Ecole Polytechnique, CNRS/IN2P3, Palaiseau, France A. Morozov, Joint Institute for Nuclear Research, Dubna, Russia J. V. Morris, STFC, Rutherford Appleton Laboratory, Didcot, Oxfordshire, UK J. D. Morris, H.H. Wills Physics Laboratory, University of Bristol, Bristol, UK K. Mujkic, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany K. Müller, Physik-Institut der Universität Zürich, Zurich, Switzerland B. Musgrave, Argonne National Laboratory, Argonne, IL 60439-4815, USA K. Nagano, Institute of Particle and Nuclear Studies, KEK, Tsukuba, Japan T. Namsoo, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany R. Nania, INFN Bologna, Bologna, Italy T. Naumann, Deutsches Elektronen-Synchrotron DESY, Zeuthen, Germany P. R. Newman, School of Physics and Astronomy, University of Birmingham, Birmingham, UK C. Niebuhr, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany A. Nigro, Dipartimento di Fisica, Università’La Sapienza’ and INFN, Rome, Italy D. Nikitin, Joint Institute for Nuclear Research, Dubna, Russia Y. Ning, Nevis Laboratories, Columbia University, Irvington on Hudson, NY 10027, USA T. Nobe, Department of Physics, Tokyo Institute of Technology, Tokyo, Japan D. Notz, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany G. Nowak, The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Cracow, Poland K. Nowak, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany R. J. Nowak, Faculty of Physics, University of Warsaw, Warsaw, Poland A. E. Nuncio-Quiroz, Physikalisches Institut der Universität Bonn, Bonn, Germany B. Y. Oh, Department of Physics, Pennsylvania State University, University Park, PA 16802, USA N. Okazaki, Department of Physics, University of Tokyo, Tokyo, Japan K. Olkiewicz, The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Cracow, Poland J. E. Olsson, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany Y. Onishchuk, Department of Nuclear Physics, National Taras Shevchenko University of Kyiv, Kyiv, Ukraine D. Ozerov, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany P. Pahl, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany V. Palichik, Joint Institute for Nuclear Research, Dubna, Russia M. Pandurovic, Vinca Institute of Nuclear Sciences, University of Belgrade, 1100 Belgrade, Serbia K. Papageorgiu, Department of Engineering in Management and Finance, Univ. of the Aegean, Chios, Greece A. Parenti, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany C. Pascaud, LAL, Université Paris-Sud, CNRS/IN2P3, Orsay, France G. D. Patel, Department of Physics, University of Liverpool, Liverpool, UK E. Paul, Physikalisches Institut der Universität Bonn, Bonn, Germany J. M. Pawlak, Faculty of Physics, University of Warsaw, Warsaw, Poland B. Pawlik, The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Cracow, Poland P. G. Pelfer, University and INFN Florence, Florence, Italy A. Pellegrino, NIKHEF and University of Amsterdam, Amsterdam, Netherlands E. Perez, CEA, DSM/Irfu, CE-Saclay, Gif-sur-Yvette, France W. Perlański, Faculty of Physics, University of Warsaw, Warsaw, Poland H. Perrey, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany A. Petrukhin, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany I. Picuric, Faculty of Science, University of Montenegro, Podgorica, Montenegro K. Piotrzkowski, Institut de Physique Nucléaire, Université Catholique de Louvain, Louvain-la-Neuve, Belgium H. Pirumov, Physikalisches Institut, Universität Heidelberg, Heidelberg, Germany D. Pitzl, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany R. Plačakytė, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany P. Pluciński, National Centre for Nuclear Research, Warsaw, Poland B. Pokorny, Faculty of Mathematics and Physics of Charles University, Praha, Czech Republic N. S. Pokrovskiy, Institute of Physics and Technology of Ministry of Education and Science of Kazakhstan, Almaty, Kazakhstan R. Polifka, Faculty of Mathematics and Physics of Charles University, Praha, Czech Republic A. Polini, INFN Bologna, Bologna, Italy B. Povh, Max-Planck-Institut für Kernphysik, Heidelberg, Germany A. S. Proskuryakov, Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia M. Przybycień, Faculty of Physics and Applied Computer Science, AGH-University of Science and Technology, Krakow, Poland V. Radescu, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany N. Raicevic, Faculty of Science, University of Montenegro, Podgorica, Montenegro A. Raval, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany T. Ravdandorj, Institute of Physics and Technology of the Mongolian Academy of Sciences, Ulaanbaatar, Mongolia D. D. Reeder, Department of Physics, University of Wisconsin, Madison, WI 53706, USA P. Reimer, Institute of Physics of the Academy of Sciences of the Czech Republic, Praha, Czech Republic B. Reisert, Max-Planck-Institut für Physik, Munich, Germany Z. Ren, Nevis Laboratories, Columbia University, Irvington on Hudson, NY 10027, USA J. Repond, Argonne National Laboratory, Argonne, IL 60439-4815, USA Y. D. Ri, Department of Physics, Tokyo Metropolitan University, Tokyo, Japan E. Rizvi, School of Physics and Astronomy, Queen Mary, University of London, London, UK A. Robertson, Department of Physics, University of Oxford, Oxford, UK P. Robmann, Physik-Institut der Universität Zürich, Zurich, Switzerland P. Roloff, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany R. Roosen, Inter-University Institute for High Energies ULB-VUB, Brussels, Belgium A. Rostovtsev, Institute for Theoretical and Experimental Physics, Moscow, Russia M. Rotaru, National Institute for Physics and Nuclear Engineering (NIPNE), Bucharest, Romania I. Rubinsky, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany J. E. Ruiz Tabasco, Departamento de Fisica Aplicada, CINVESTAV, Mérida, Yucatán, México S. Rusakov, Lebedev Physical Institute, Moscow, Russia M. Ruspa, Università del Piemonte Orientale, Novara, and INFN, Torino, Italy R. Sacchi, Università di Torino and INFN, Torino, Italy D. Šálek, Faculty of Mathematics and Physics of Charles University, Praha, Czech Republic U. Samson, Physikalisches Institut der Universität Bonn, Bonn, Germany D. P. C. Sankey, STFC, Rutherford Appleton Laboratory, Didcot, Oxfordshire, UK G. Sartorelli, University and INFN Bologna, Bologna, Italy M. Sauter, Physikalisches Institut, Universität Heidelberg, Heidelberg, Germany E. Sauvan, CPPM, Aix-Marseille Univ, CNRS/IN2P3, 13288 Marseille, France A. A. Savin, Department of Physics, University of Wisconsin, Madison, WI 53706, USA D. H. Saxon, School of Physics and Astronomy, University of Glasgow, Glasgow, UK M. Schioppa, Physics Department and INFN, Calabria University, Cosenza, Italy S. Schlenstedt, Deutsches Elektronen-Synchrotron DESY, Zeuthen, Germany P. Schleper, Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany W. B. Schmidke, Max-Planck-Institut für Physik, Munich, Germany S. Schmitt, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany U. Schneekloth, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany L. Schoeffel, CEA, DSM/Irfu, CE-Saclay, Gif-sur-Yvette, France V. Schönberg, Physikalisches Institut der Universität Bonn, Bonn, Germany A. Schöning, Physikalisches Institut, Universität Heidelberg, Heidelberg, Germany T. Schörner-Sadenius, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany H.-C. Schultz-Coulon, Kirchhoff-Institut für Physik, Universität Heidelberg, Heidelberg, Germany J. Schwartz, Department of Physics, McGill University, Montréal, Québec H3A 2T8, Canada F. Sciulli, Nevis Laboratories, Columbia University, Irvington on Hudson, NY 10027, USA F. Sefkow, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany L. M. Shcheglova, Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia R. Shehzadi, Physikalisches Institut der Universität Bonn, Bonn, Germany S. Shimizu, Department of Physics, University of Tokyo, Tokyo, Japan L. N. Shtarkov, Lebedev Physical Institute, Moscow, Russia S. Shushkevich, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany I. Singh, Department of Physics, Panjab University, Chandigarh, India I. O. Skillicorn, School of Physics and Astronomy, University of Glasgow, Glasgow, UK W. Słomiński, Department of Physics, Jagellonian University, Cracow, Poland T. Sloan, Department of Physics, University of Lancaster, Lancaster, UK W. H. Smith, Department of Physics, University of Wisconsin, Madison, WI 53706, USA V. Sola, Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany A. Solano, Università di Torino and INFN, Torino, Italy Y. Soloviev, Fakultät für Physik der Universität Freiburg i.Br., Freiburg i.Br., Germany D. Son, Center for High Energy Physics, Kyungpook National University, Daegu, South Korea P. Sopicki, The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Cracow, Poland V. Sosnovtsev, Moscow Engineering Physics Institute, Moscow, Russia D. South, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany V. Spaskov, Joint Institute for Nuclear Research, Dubna, Russia A. Specka, LLR, Ecole Polytechnique, CNRS/IN2P3, Palaiseau, France A. Spiridonov, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany H. Stadie, Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany L. Stanco, INFN Padova, Padova, Italy Z. Staykova, Inter-University Institute for High Energies ULB-VUB, Brussels, Belgium M. Steder, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany N. Stefaniuk, Department of Nuclear Physics, National Taras Shevchenko University of Kyiv, Kyiv, Ukraine B. Stella, Dipartimento di Fisica, Università di Roma Tre and INFN Roma 3, Rome, Italy A. Stern, Raymond and Beverly Sackler Faculty of Exact Sciences, School of Physics, Tel Aviv University, Tel Aviv, Israel T. P. Stewart, Department of Physics, University of Toronto, Toronto, Ontario M5S 1A7, Canada A. Stifutkin, Moscow Engineering Physics Institute, Moscow, Russia G. Stoicea, National Institute for Physics and Nuclear Engineering (NIPNE), Bucharest, Romania P. Stopa, The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Cracow, Poland U. Straumann, Physik-Institut der Universität Zürich, Zurich, Switzerland S. Suchkov, Moscow Engineering Physics Institute, Moscow, Russia G. Susinno, Physics Department and INFN, Calabria University, Cosenza, Italy L. Suszycki, Faculty of Physics and Applied Computer Science, AGH-University of Science and Technology, Krakow, Poland T. Sykora, Inter-University Institute for High Energies ULB-VUB, Brussels, Belgium J. Sztuk-Dambietz, Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany J. Szuba, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany D. Szuba, Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany A. D. Tapper, High Energy Nuclear Physics Group, Imperial College London, London, UK E. Tassi, Physics Department and INFN, Calabria University, Cosenza, Italy J. Terrón, Departamento de Física Teórica, Universidad Autónoma de Madrid, Madrid, Spain T. Theedt, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany P. D. Thompson, School of Physics and Astronomy, University of Birmingham, Birmingham, UK H. Tiecke, NIKHEF and University of Amsterdam, Amsterdam, Netherlands K. Tokushuku, Institute of Particle and Nuclear Studies, KEK, Tsukuba, Japan J. Tomaszewska, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany T. H. Tran, LAL, Université Paris-Sud, CNRS/IN2P3, Orsay, France D. Traynor, School of Physics and Astronomy, Queen Mary, University of London, London, UK P. Truöl, Physik-Institut der Universität Zürich, Zurich, Switzerland V. Trusov, Department of Nuclear Physics, National Taras Shevchenko University of Kyiv, Kyiv, Ukraine I. Tsakov, Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria B. Tseepeldorj, Institute of Physics and Technology of the Mongolian Academy of Sciences, Ulaanbaatar, Mongolia T. Tsurugai, Faculty of General Education, Meiji Gakuin University, Yokohama, Japan M. Turcato, Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany O. Turkot, Department of Nuclear Physics, National Taras Shevchenko University of Kyiv, Kyiv, Ukraine J. Turnau, The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Cracow, Poland T. Tymieniecka, National Centre for Nuclear Research, Warsaw, Poland M. Vázquez, NIKHEF and University of Amsterdam, Amsterdam, Netherlands A. Valkárová, Faculty of Mathematics and Physics of Charles University, Praha, Czech Republic C. Vallée, CPPM, Aix-Marseille Univ, CNRS/IN2P3, 13288 Marseille, France P. Van Mechelen, Inter-University Institute for High Energies ULB-VUB, Brussels, Belgium Y. Vazdik, Lebedev Physical Institute, Moscow, Russia A. Verbytskyi, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany O. Viazlo, Department of Nuclear Physics, National Taras Shevchenko University of Kyiv, Kyiv, Ukraine N. N. Vlasov, Fakultät für Physik der Universität Freiburg i.Br., Freiburg i.Br., Germany R. Walczak, Department of Physics, University of Oxford, Oxford, UK W. A. T. Wan Abdullah, Jabatan Fizik, Universiti Malaya, 50603 Kuala Lumpur, Malaysia D. Wegener, Institut für Physik, TU Dortmund, Dortmund, Germany J. J. Whitmore, Department of Physics, Pennsylvania State University, University Park, PA 16802, USA K. Wichmann, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany L. Wiggers, NIKHEF and University of Amsterdam, Amsterdam, Netherlands M. Wing, Physics and Astronomy Department, University College London, London, UK M. Wlasenko, Physikalisches Institut der Universität Bonn, Bonn, Germany G. Wolf, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany H. Wolfe, Department of Physics, University of Wisconsin, Madison, WI 53706, USA K. Wrona, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany E. Wünsch, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany A. G. Yagües-Molina, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany S. Yamada, Institute of Particle and Nuclear Studies, KEK, Tsukuba, Japan Y. Yamazaki, Institute of Particle and Nuclear Studies, KEK, Tsukuba, Japan R. Yoshida, Argonne National Laboratory, Argonne, IL 60439-4815, USA C. Youngman, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany O. Zabiegalov, Department of Nuclear Physics, National Taras Shevchenko University of Kyiv, Kyiv, Ukraine J. Žáček, Faculty of Mathematics and Physics of Charles University, Praha, Czech Republic J. Zálešák, Institute of Physics of the Academy of Sciences of the Czech Republic, Praha, Czech Republic L. Zawiejski, The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Cracow, Poland O. Zenaiev, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany W. Zeuner, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany Z. Zhang, LAL, Université Paris-Sud, CNRS/IN2P3, Orsay, France B. O. Zhautykov, Institute of Physics and Technology of Ministry of Education and Science of Kazakhstan, Almaty, Kazakhstan N. Zhmak, Institute for Nuclear Research, National Academy of Sciences, Kyiv, Ukraine A. Zhokin, Institute for Theoretical and Experimental Physics, Moscow, Russia A. Zichichi, University and INFN Bologna, Bologna, Italy R. Žlebčík, Faculty of Mathematics and Physics of Charles University, Praha, Czech Republic H. Zohrabyan, Yerevan Physics Institute, Yerevan, Armenia Z. Zolkapli, Jabatan Fizik, Universiti Malaya, 50603 Kuala Lumpur, Malaysia F. Zomer, LAL, Université Paris-Sud, CNRS/IN2P3, Orsay, France D. S. Zotkin, Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia A. F. Żarnecki, Faculty of Physics, University of Warsaw, Warsaw, Poland Journal The European Physical Journal C - Particles and Fields Online ISSN 1434-6052 Print ISSN 1434-6044 Journal Volume Volume 72 Journal Issue Volume 72, Number 10
    Print ISSN: 1434-6044
    Digitale ISSN: 1434-6052
    Thema: Physik
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 62
    facet.materialart.
    Unbekannt
    Springer
    Publikationsdatum: 2012-10-07
    Beschreibung:    Based on local density approximation and Hubbard-U corrections (LDA+U), we study the influence of Coulomb interaction for Tb 4f states on the optical properties of the recently discovered superconductor, such as TbOFeAs. Within the incorporation of onsite Hubbard effect in TbOFeAs, we discuss the electronic structure, as well as the optical spectra and we compared them to LDA calculations. For non-magnetic (NM) configuration, the electronic structure exhibits high density of states, N ( E F ) in the proximity of Fermi level. With and without the electronic correlation effects, we carried out the calculations for the optical properties such as the optical conductivity, joint density of states (JDOS), optical absorption, the electron energy loss function and reflectivity of TbOFeAs in a large photon energy scale of 30 eV. Despite the absence of a Mott insulator transition, we infer that the electronic correlation effects are prominent in the recently discovered superconductor, like TbOFeAs. We also predict the in-plane anisotropy of plasma frequency that has been evaluated recently in the other ReOFeAs systems. Content Type Journal Article Pages 1-8 DOI 10.1007/s00339-012-7286-7 Authors A. Laref, Department of Physics and Astronomy, College of Science, King Saud University, Riyadh, 11145 King Saudi Arabia Journal Applied Physics A: Materials Science & Processing Online ISSN 1432-0630 Print ISSN 0947-8396
    Print ISSN: 0947-8396
    Digitale ISSN: 1432-0630
    Thema: Technik allgemein , Physik
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 63
    Publikationsdatum: 2012-10-07
    Beschreibung:    While the emergence of pottery manufacturing is a wide-spread historical occurrence, and one that has garnered the attention of archaeologists for decades, we know very little about how these ancient vessels were created. Through the application of radiographic scanning and computed tomography this paper provides insights into the manufacturing techniques used by the earliest potters in North America. While x-rays have been used to investigate ceramic manufacturing techniques for decades, this paper provides a reassessment of radiography in light of advances in both computed tomography and reconstructive software. Content Type Journal Article Pages 1-11 DOI 10.1007/s00339-012-7287-6 Authors Matthew Sanger, The American Museum of Natural History, New York, NY, USA James Thostenson, The American Museum of Natural History, New York, NY, USA Morgan Hill, The American Museum of Natural History, New York, NY, USA Hannah Cain, Columbia University, New York, NY, USA Journal Applied Physics A: Materials Science & Processing Online ISSN 1432-0630 Print ISSN 0947-8396
    Print ISSN: 0947-8396
    Digitale ISSN: 1432-0630
    Thema: Technik allgemein , Physik
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 64
    Publikationsdatum: 2012-10-08
    Beschreibung:    A thorough microscopic investigation by SR XRF and micro-PIXE brings insight into the probable techniques used in the manufacture of thirteen Dacian gold bracelets, one of the most spectacular archaeological finds ever on the territory of Romania. Content Type Journal Article Pages 1-8 DOI 10.1007/s00339-012-7306-7 Authors Bogdan Constantinescu, Horia Hulubei National Institute of Physics and Nuclear Engineering Bucharest, str. Atomiştilor 407, Măgurele, Ilfov 077125, Romania Angela Vasilescu, Horia Hulubei National Institute of Physics and Nuclear Engineering Bucharest, str. Atomiştilor 407, Măgurele, Ilfov 077125, Romania Martin Radtke, Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter Strasse 11, 12489 Berlin, Germany Uwe Reinholz, Laboratoire du Centre de Recherche et de Restauration des Musées de France, Palais du Louvre (CNRS-LC2RMF UMR 171), 14 Quai F. Mitterand, 75001 Paris, France Claire Pacheco, Laboratoire du Centre de Recherche et de Restauration des Musées de France, Palais du Louvre (CNRS-LC2RMF UMR 171), 14 Quai F. Mitterand, 75001 Paris, France Laurent Pichon, Laboratoire du Centre de Recherche et de Restauration des Musées de France, Palais du Louvre (CNRS-LC2RMF UMR 171), 14 Quai F. Mitterand, 75001 Paris, France Ernest Oberländer-Târnoveanu, National History Museum of Romania (MNIR), calea Victoriei 12, Bucharest, sector 3, 030026 Romania Journal Applied Physics A: Materials Science & Processing Online ISSN 1432-0630 Print ISSN 0947-8396
    Print ISSN: 0947-8396
    Digitale ISSN: 1432-0630
    Thema: Technik allgemein , Physik
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 65
    facet.materialart.
    Unbekannt
    Springer
    Publikationsdatum: 2012-10-08
    Beschreibung: Erratum to: Direct laser printing of thin-film polyaniline devices Content Type Journal Article Category Erratum Pages 1-1 DOI 10.1007/s00339-012-7307-6 Authors M. Kandyla, Physics Department, National Technical University of Athens, 9 Iroon Polytechniou Street, Zografou, Athens, 15780 Greece C. Pandis, Physics Department, National Technical University of Athens, 9 Iroon Polytechniou Street, Zografou, Athens, 15780 Greece S. Chatzandroulis, Institute of Microelectronics, NCSR Demokritos, Agia Paraksevi, Athens, 15310 Greece P. Pissis, Physics Department, National Technical University of Athens, 9 Iroon Polytechniou Street, Zografou, Athens, 15780 Greece I. Zergioti, Physics Department, National Technical University of Athens, 9 Iroon Polytechniou Street, Zografou, Athens, 15780 Greece Journal Applied Physics A: Materials Science & Processing Online ISSN 1432-0630 Print ISSN 0947-8396
    Print ISSN: 0947-8396
    Digitale ISSN: 1432-0630
    Thema: Technik allgemein , Physik
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 66
    Publikationsdatum: 2012-09-22
    Beschreibung:    A facile, green method was explored for the organic-inorganic complex coating with superhydrophobic and transparent property on glass matrix. The glass surface was firstly treated with polyethylene glycol (PEG) and SiO 2 organic-inorganic solution and then modified with a layer of 1,1,1,3,3,3-Hexamethyldisilazane (HMDS). The glass samples were characterized by scanning electron microscopy (SEM), water contact angle (CA) measurement, and UV–Vis spectrophotometry. The results showed that the optical transmission over the visible range up to 89 % (in reference to 100 % transmission defined by bare glass substrate), and the water CA of the film reached 168 ∘ . Superhydrophobic coatings with excellent optical transmittance will have potential applications in our daily life. Content Type Journal Article Pages 1-5 DOI 10.1007/s00339-012-7176-z Authors Ye Zhang, School of Chemistry and Chemical Engineering, Anhui University, Hefei, 230039 P.R. China Jialin Li, School of Chemistry and Chemical Engineering, Anhui University, Hefei, 230039 P.R. China Fangzhi Huang, School of Chemistry and Chemical Engineering, Anhui University, Hefei, 230039 P.R. China Shikuo Li, School of Chemistry and Chemical Engineering, Anhui University, Hefei, 230039 P.R. China Yuhua Shen, School of Chemistry and Chemical Engineering, Anhui University, Hefei, 230039 P.R. China Anjian Xie, School of Chemistry and Chemical Engineering, Anhui University, Hefei, 230039 P.R. China Wei Duan, School of Chemistry and Chemical Engineering, Anhui University, Hefei, 230039 P.R. China Fang Wang, School of Chemistry and Chemical Engineering, Anhui University, Hefei, 230039 P.R. China Journal Applied Physics A: Materials Science & Processing Online ISSN 1432-0630 Print ISSN 0947-8396
    Print ISSN: 0947-8396
    Digitale ISSN: 1432-0630
    Thema: Technik allgemein , Physik
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 67
    Publikationsdatum: 2012-09-22
    Beschreibung:    The corrosion of iron-based archaeomaterials in anoxic environments leads mainly to Fe(II) compounds, like the hydroxychloride β -Fe 2 (OH) 3 Cl, chukanovite Fe 2 (OH) 2 CO 3 or siderite FeCO 3 . The understanding of the mechanisms then necessarily implies a thorough investigation of the chemical, mechanical and morphological characteristics of the Fe(II)-based layer that develops between the metal surface and the environment. In the peculiar case of Fe(II) compounds, generally very reactive towards O 2 , the main concern is to prevent any transformation by air during the analysis. The EBSD technique is adapted on a scanning electron microscope (SEM) where the samples are analysed under vacuum and consequently sheltered from air. Different options offered by EBSD for phase characterisation and microstructural study were tested for the first time on the rust layers of two archaeological iron nails. Results were confronted to those obtained by micro-Raman spectroscopy, which was used as reference method. Magnetite, Fe(II) hydroxychloride β -Fe 2 (OH) 3 Cl and siderite were analysed successfully but improvements have to be brought for the study of other compounds such as iron oxyhydroxides and chukanovite. The choice of experimental parameters in our approach as well as the potentialities and limits of the technique for this kind of application are discussed. Content Type Journal Article Pages 1-10 DOI 10.1007/s00339-012-7174-1 Authors Ilanith Azoulay, Laboratoire des Sciences de l’Ingénieur pour l’Environnement, FRE 3474 CNRS—Université de La Rochelle, Bât. Marie Curie, Avenue Michel Crépeau, 17042 La Rochelle cedex 01, France Egle Conforto, Laboratoire des Sciences de l’Ingénieur pour l’Environnement, FRE 3474 CNRS—Université de La Rochelle, Bât. Marie Curie, Avenue Michel Crépeau, 17042 La Rochelle cedex 01, France Philippe Refait, Laboratoire des Sciences de l’Ingénieur pour l’Environnement, FRE 3474 CNRS—Université de La Rochelle, Bât. Marie Curie, Avenue Michel Crépeau, 17042 La Rochelle cedex 01, France Céline Rémazeilles, Laboratoire des Sciences de l’Ingénieur pour l’Environnement, FRE 3474 CNRS—Université de La Rochelle, Bât. Marie Curie, Avenue Michel Crépeau, 17042 La Rochelle cedex 01, France Journal Applied Physics A: Materials Science & Processing Online ISSN 1432-0630 Print ISSN 0947-8396
    Print ISSN: 0947-8396
    Digitale ISSN: 1432-0630
    Thema: Technik allgemein , Physik
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 68
    facet.materialart.
    Unbekannt
    Springer
    Publikationsdatum: 2012-09-22
    Beschreibung:    The pMSSM provides a broad perspective on SUSY phenomenology. In this paper we generate two new, very large, sets of pMSSM models with sparticle masses extending up to 4 TeV, where the lightest supersymmetric particle (LSP) is either a neutralino or gravitino. The existence of a gravitino LSP necessitates a detailed study of its cosmological effects and we find that Big Bang Nucleosynthesis places strong constraints on this scenario. Both sets are subjected to a global set of theoretical, observational and experimental constraints resulting in a sample of ∼225k viable models for each LSP type. The characteristics of these two model sets are briefly compared. We confront the neutralino LSP model set with searches for SUSY at the 7 TeV LHC using both the missing (MET) and non-missing E T ATLAS analyses. In the MET case, we employ Monte Carlo estimates of the ratios of the SM backgrounds at 7 and 8 TeV to rescale the 7 TeV data-driven ATLAS backgrounds to 8 TeV. This allows us to determine the pMSSM parameter space coverage for this collision energy. We find that an integrated luminosity of ∼5–20 fb −1 at 8 TeV would yield a substantial increase in this coverage compared to that at 7 TeV and can probe roughly half of the model set. If the pMSSM is not discovered during the 8 TeV run, then our model set will be essentially void of gluinos and lightest first and second generation squarks that are ≲700–800 GeV, which is much less than the analogous mSUGRA bound. Finally, we demonstrate that non-MET SUSY searches continue to play an important role in exploring the pMSSM parameter space. These two pMSSM model sets can be used as the basis for investigations for years to come. Content Type Journal Article Category Regular Article - Theoretical Physics Pages 1-26 DOI 10.1140/epjc/s10052-012-2156-1 Authors Matthew W. Cahill-Rowley, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd, Menlo Park, CA 94025, USA JoAnne L. Hewett, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd, Menlo Park, CA 94025, USA Stefan Hoeche, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd, Menlo Park, CA 94025, USA Ahmed Ismail, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd, Menlo Park, CA 94025, USA Thomas G. Rizzo, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd, Menlo Park, CA 94025, USA Journal The European Physical Journal C - Particles and Fields Online ISSN 1434-6052 Print ISSN 1434-6044 Journal Volume Volume 72 Journal Issue Volume 72, Number 9
    Print ISSN: 1434-6044
    Digitale ISSN: 1434-6052
    Thema: Physik
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 69
    facet.materialart.
    Unbekannt
    Springer
    Publikationsdatum: 2012-09-22
    Beschreibung:    In the context of strongly coupled Electroweak Symmetry Breaking, composite light scalar singlet and composite triplet of heavy vectors may arise from an unspecified strong dynamics and the interactions among themselves and with the Standard Model gauge bosons and fermions can be described by a SU (2) L × SU (2) R / SU (2) L + R effective chiral Lagrangian. In this framework, the production of the V + V − and V 0 V 0 final states at the LHC by gluon fusion mechanism is studied in the region of parameter space consistent with the unitarity constraints in the elastic channel of longitudinal gauge boson scattering and in the inelastic scattering of two longitudinal Standard Model gauge bosons into Standard Model fermions pairs. The expected rates of same-sign di-lepton and tri-lepton events from the decay of the V 0 V 0 final state are computed and their corresponding backgrounds are estimated. It is of remarkable relevance that the V 0 V 0 final state can only be produced at the LHC via a gluon fusion mechanism since this state is absent in the Drell–Yan process. It is also found that the V + V − final-state production cross section via gluon fusion mechanism is comparable with the V + V − Drell–Yan production cross section. The comparison of the V 0 V 0 and V + V − total cross sections will be crucial for distinguishing the different models since the vector pair production is sensitive to many couplings. This will also be useful to determine if the heavy vectors are only composite vectors or are gauge vectors of a spontaneously broken gauge symmetry. Content Type Journal Article Category Regular Article - Theoretical Physics Pages 1-10 DOI 10.1140/epjc/s10052-012-2154-3 Authors A. E. Cárcamo Hernández, Universidad Técnica Federico Santa María and Centro Científico-Tecnológico de Valparaíso, Casilla 110-V, Valparaíso, Chile Journal The European Physical Journal C - Particles and Fields Online ISSN 1434-6052 Print ISSN 1434-6044 Journal Volume Volume 72 Journal Issue Volume 72, Number 9
    Print ISSN: 1434-6044
    Digitale ISSN: 1434-6052
    Thema: Physik
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 70
    Publikationsdatum: 2012-09-22
    Beschreibung:    A search for a fermiophobic Higgs boson using diphoton events produced in proton-proton collisions at a centre-of-mass energy of is performed using data corresponding to an integrated luminosity of 4.9 fb −1 collected by the ATLAS experiment at the Large Hadron Collider. A specific benchmark model is considered where all the fermion couplings to the Higgs boson are set to zero and the bosonic couplings are kept at the Standard Model values (fermiophobic Higgs model). The largest excess with respect to the background-only hypothesis is found at 125.5 GeV, with a local significance of 2.9 standard deviations, which reduces to 1.6 standard deviations when taking into account the look-elsewhere effect. The data exclude the fermiophobic Higgs model in the ranges 110.0–118.0 GeV and 119.5–121.0 GeV at 95 % confidence level. Content Type Journal Article Category Letter Pages 1-18 DOI 10.1140/epjc/s10052-012-2157-0 Authors The ATLAS Collaboration, CERN, 1211 Geneva 23, Switzerland G. Aad, Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg i.Br., Germany B. Abbott, Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, OK, United States of America J. Abdallah, Institut de Física d’Altes Energies and Departament de Física de la Universitat Autònoma de Barcelona and ICREA, Barcelona, Spain S. Abdel Khalek, LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France A. A. Abdelalim, Section de Physique, Université de Genève, Geneva, Switzerland O. Abdinov, Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan B. Abi, Department of Physics, Oklahoma State University, Stillwater, OK, United States of America M. Abolins, Department of Physics and Astronomy, Michigan State University, East, Lansing, MI, United States of America O. S. AbouZeid, Department of Physics, University of Toronto, Toronto, ON, Canada H. Abramowicz, Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel H. Abreu, DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat a l’Energie Atomique), Gif-sur-Yvette, France E. Acerbi, INFN Sezione di Milano, Milano, Italy B. S. Acharya, INFN Gruppo Collegato di Udine, Udine, Italy L. Adamczyk, AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow, Poland D. L. Adams, Physics Department, Brookhaven National Laboratory, Upton, NY, United States of America T. N. Addy, Department of Physics, Hampton University, Hampton, VA, United States of America J. Adelman, Department of Physics, Yale University, New Haven, CT, United States of America S. Adomeit, Fakultät für Physik, Ludwig-Maximilians-Universität München, München, Germany P. Adragna, School of Physics and Astronomy, Queen Mary University of London, London, United Kingdom T. Adye, Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom S. Aefsky, Department of Physics, Brandeis University, Waltham, MA, United States of America J. A. Aguilar-Saavedra, Departamento de Fisica Teorica y del Cosmos and CAFPE, Universidad de Granada, Granada, Spain M. Aharrouche, Institut für Physik, Universität Mainz, Mainz, Germany S. P. Ahlen, Department of Physics, Boston University, Boston, MA, United States of America F. Ahles, Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg i.Br., Germany A. Ahmad, Departments of Physics & Astronomy and Chemistry, Stony Brook University, Stony Brook, NY, United States of America M. Ahsan, Physics Department, University of Texas at Dallas, Richardson, TX, United States of America G. Aielli, INFN Sezione di Roma Tor Vergata, Roma, Italy T. Akdogan, Department of Physics, Bogazici University, Istanbul, Turkey T. P. A. Åkesson, Fysiska institutionen, Lunds universitet, Lund, Sweden G. Akimoto, International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan A. V. Akimov, P.N. Lebedev Institute of Physics, Academy of Sciences, Moscow, Russia A. Akiyama, Graduate School of Science, Kobe University, Kobe, Japan M. S. Alam, University at Albany, Albany, NY, United States of America M. A. Alam, Department of Physics, Royal Holloway University of London, Surrey, United Kingdom J. Albert, Department of Physics and Astronomy, University of Victoria, Victoria, BC, Canada S. Albrand, Laboratoire de Physique Subatomique et de Cosmologie, Université Joseph Fourier and CNRS/IN2P3 and Institut National Polytechnique de Grenoble, Grenoble, France M. Aleksa, CERN, Geneva, Switzerland I. N. Aleksandrov, Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia F. Alessandria, INFN Sezione di Milano, Milano, Italy C. Alexa, National Institute of Physics and Nuclear Engineering, Bucharest, Romania G. Alexander, Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel G. Alexandre, Section de Physique, Université de Genève, Geneva, Switzerland T. Alexopoulos, Physics Department, National Technical University of Athens, Zografou, Greece M. Alhroob, INFN Gruppo Collegato di Udine, Udine, Italy M. Aliev, Department of Physics, Humboldt University, Berlin, Germany G. Alimonti, INFN Sezione di Milano, Milano, Italy J. Alison, Department of Physics, University of Pennsylvania, Philadelphia, PA, United States of America B. M. M. Allbrooke, School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom P. P. Allport, Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom S. E. Allwood-Spiers, SUPA - School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom J. Almond, School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom A. Aloisio, INFN Sezione di Napoli, Napoli, Italy R. Alon, Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel A. Alonso, Fysiska institutionen, Lunds universitet, Lund, Sweden B. Alvarez Gonzalez, Department of Physics and Astronomy, Michigan State University, East, Lansing, MI, United States of America M. G. Alviggi, INFN Sezione di Napoli, Napoli, Italy K. Amako, KEK, High Energy Accelerator Research Organization, Tsukuba, Japan C. Amelung, Department of Physics, Brandeis University, Waltham, MA, United States of America V. V. Ammosov, State Research Center Institute for High Energy Physics, Protvino, Russia A. Amorim, Laboratorio de Instrumentacao e Fisica Experimental de Particulas - LIP, Lisboa, Portugal N. Amram, Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel C. Anastopoulos, CERN, Geneva, Switzerland L. S. Ancu, Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland N. Andari, LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France T. Andeen, Nevis Laboratory, Columbia University, Irvington, NY, United States of America C. F. Anders, Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany G. Anders, Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany K. J. Anderson, Enrico Fermi Institute, University of Chicago, Chicago, IL, United States of America A. Andreazza, INFN Sezione di Milano, Milano, Italy V. Andrei, Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany X. S. Anduaga, Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina P. Anger, Institut für Kern- und Teilchenphysik, Technical University Dresden, Dresden, Germany A. Angerami, Nevis Laboratory, Columbia University, Irvington, NY, United States of America F. Anghinolfi, CERN, Geneva, Switzerland A. Anisenkov, Budker Institute of Nuclear Physics, SB RAS, Novosibirsk, Russia N. Anjos, Laboratorio de Instrumentacao e Fisica Experimental de Particulas - LIP, Lisboa, Portugal A. Annovi, INFN Laboratori Nazionali di Frascati, Frascati, Italy A. Antonaki, Physics Department, University of Athens, Athens, Greece M. Antonelli, INFN Laboratori Nazionali di Frascati, Frascati, Italy A. Antonov, Moscow Engineering and Physics Institute (MEPhI), Moscow, Russia J. Antos, Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic F. Anulli, INFN Sezione di Roma I, Roma, Italy S. Aoun, CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France L. Aperio Bella, LAPP, CNRS/IN2P3 and Université de Savoie, Annecy-le-Vieux, France R. Apolle, Department of Physics, Oxford University, Oxford, United Kingdom G. Arabidze, Department of Physics and Astronomy, Michigan State University, East, Lansing, MI, United States of America I. Aracena, SLAC National Accelerator Laboratory, Stanford, CA, United States of America Y. Arai, KEK, High Energy Accelerator Research Organization, Tsukuba, Japan A. T. H. Arce, Department of Physics, Duke University, Durham, NC, United States of America S. Arfaoui, Departments of Physics & Astronomy and Chemistry, Stony Brook University, Stony Brook, NY, United States of America J-F. Arguin, Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, CA, United States of America E. Arik, Department of Physics, Bogazici University, Istanbul, Turkey M. Arik, Department of Physics, Bogazici University, Istanbul, Turkey A. J. Armbruster, Department of Physics, The University of Michigan, Ann Arbor, MI, United States of America O. Arnaez, Institut für Physik, Universität Mainz, Mainz, Germany V. Arnal, Departamento de Fisica Teorica C-15, Universidad Autonoma de Madrid, Madrid, Spain C. Arnault, LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France A. Artamonov, Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia G. Artoni, INFN Sezione di Roma I, Roma, Italy D. Arutinov, Physikalisches Institut, University of Bonn, Bonn, Germany S. Asai, International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan R. Asfandiyarov, Department of Physics, University of Wisconsin, Madison, WI, United States of America S. Ask, Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom B. Åsman, Department of Physics, Stockholm University, Stockholm, Sweden L. Asquith, High Energy Physics Division, Argonne National Laboratory, Argonne, IL, United States of America K. Assamagan, Physics Department, Brookhaven National Laboratory, Upton, NY, United States of America A. Astbury, Department of Physics and Astronomy, University of Victoria, Victoria, BC, Canada B. Aubert, LAPP, CNRS/IN2P3 and Université de Savoie, Annecy-le-Vieux, France E. Auge, LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France K. Augsten, Czech Technical University in Prague, Praha, Czech Republic M. Aurousseau, Department of Physics, University of Johannesburg, Johannesburg, South Africa G. Avolio, Department of Physics and Astronomy, University of California Irvine, Irvine, CA, United States of America R. Avramidou, Physics Department, National Technical University of Athens, Zografou, Greece D. Axen, Department of Physics, University of British Columbia, Vancouver, BC, Canada G. Azuelos, Group of Particle Physics, University of Montreal, Montreal, QC, Canada Y. Azuma, International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan M. A. Baak, CERN, Geneva, Switzerland G. Baccaglioni, INFN Sezione di Milano, Milano, Italy C. Bacci, INFN Sezione di Roma Tre, Roma, Italy A. M. Bach, Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, CA, United States of America H. Bachacou, DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat a l’Energie Atomique), Gif-sur-Yvette, France K. Bachas, CERN, Geneva, Switzerland M. Backes, Section de Physique, Université de Genève, Geneva, Switzerland M. Backhaus, Physikalisches Institut, University of Bonn, Bonn, Germany E. Badescu, National Institute of Physics and Nuclear Engineering, Bucharest, Romania P. Bagnaia, INFN Sezione di Roma I, Roma, Italy S. Bahinipati, Department of Physics, University of Alberta, Edmonton, AB, Canada Y. Bai, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China D. C. Bailey, Department of Physics, University of Toronto, Toronto, ON, Canada T. Bain, Department of Physics, University of Toronto, Toronto, ON, Canada J. T. Baines, Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom O. K. Baker, Department of Physics, Yale University, New Haven, CT, United States of America M. D. Baker, Physics Department, Brookhaven National Laboratory, Upton, NY, United States of America S. Baker, Department of Physics and Astronomy, University College London, London, United Kingdom E. Banas, The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland P. Banerjee, Group of Particle Physics, University of Montreal, Montreal, QC, Canada Sw. Banerjee, Department of Physics, University of Wisconsin, Madison, WI, United States of America D. Banfi, CERN, Geneva, Switzerland A. Bangert, School of Physics, University of Sydney, Sydney, Australia V. Bansal, Department of Physics and Astronomy, University of Victoria, Victoria, BC, Canada H. S. Bansil, School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom L. Barak, Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel S. P. Baranov, P.N. Lebedev Institute of Physics, Academy of Sciences, Moscow, Russia A. Barbaro Galtieri, Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, CA, United States of America T. Barber, Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg i.Br., Germany E. L. Barberio, School of Physics, University of Melbourne, Victoria, Australia D. Barberis, INFN Sezione di Genova, Genova, Italy M. Barbero, Physikalisches Institut, University of Bonn, Bonn, Germany D. Y. Bardin, Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia T. Barillari, Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München, Germany M. Barisonzi, Fachbereich C Physik, Bergische Universität Wuppertal, Wuppertal, Germany T. Barklow, SLAC National Accelerator Laboratory, Stanford, CA, United States of America N. Barlow, Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom B. M. Barnett, Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom R. M. Barnett, Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, CA, United States of America A. Baroncelli, INFN Sezione di Roma Tre, Roma, Italy G. Barone, Section de Physique, Université de Genève, Geneva, Switzerland A. J. Barr, Department of Physics, Oxford University, Oxford, United Kingdom F. Barreiro, Departamento de Fisica Teorica C-15, Universidad Autonoma de Madrid, Madrid, Spain J. Barreiro Guimarães da Costa, Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge, MA, United States of America P. Barrillon, LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France R. Bartoldus, SLAC National Accelerator Laboratory, Stanford, CA, United States of America A. E. Barton, Physics Department, Lancaster University, Lancaster, United Kingdom V. Bartsch, Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom R. L. Bates, SUPA - School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom L. Batkova, Faculty of Mathematics, Physics & Informatics, Comenius University, Bratislava, Slovak Republic J. R. Batley, Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom A. Battaglia, Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland M. Battistin, CERN, Geneva, Switzerland F. Bauer, DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat a l’Energie Atomique), Gif-sur-Yvette, France H. S. Bawa, SLAC National Accelerator Laboratory, Stanford, CA, United States of America S. Beale, Fakultät für Physik, Ludwig-Maximilians-Universität München, München, Germany T. Beau, Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France P. H. Beauchemin, Science and Technology Center, Tufts University, Medford, MA, United States of America R. Beccherle, INFN Sezione di Genova, Genova, Italy P. Bechtle, Physikalisches Institut, University of Bonn, Bonn, Germany H. P. Beck, Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland A. K. Becker, Fachbereich C Physik, Bergische Universität Wuppertal, Wuppertal, Germany S. Becker, Fakultät für Physik, Ludwig-Maximilians-Universität München, München, Germany M. Beckingham, Department of Physics, University of Washington, Seattle, WA, United States of America K. H. Becks, Fachbereich C Physik, Bergische Universität Wuppertal, Wuppertal, Germany A. J. Beddall, Department of Physics Engineering, Gaziantep University, Gaziantep, Turkey A. Beddall, Department of Physics Engineering, Gaziantep University, Gaziantep, Turkey S. Bedikian, Department of Physics, Yale University, New Haven, CT, United States of America V. A. Bednyakov, Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia C. P. Bee, CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France M. Begel, Physics Department, Brookhaven National Laboratory, Upton, NY, United States of America S. Behar Harpaz, Department of Physics, Technion: Israel Institute of Technology, Haifa, Israel M. Beimforde, Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München, Germany C. Belanger-Champagne, Department of Physics, McGill University, Montreal, QC, Canada P. J. Bell, Section de Physique, Université de Genève, Geneva, Switzerland W. H. Bell, Section de Physique, Université de Genève, Geneva, Switzerland G. Bella, Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel L. Bellagamba, INFN Sezione di Bologna, Bologna, Italy F. Bellina, CERN, Geneva, Switzerland M. Bellomo, CERN, Geneva, Switzerland A. Belloni, Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge, MA, United States of America O. Beloborodova, Budker Institute of Nuclear Physics, SB RAS, Novosibirsk, Russia K. Belotskiy, Moscow Engineering and Physics Institute (MEPhI), Moscow, Russia O. Beltramello, CERN, Geneva, Switzerland O. Benary, Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel D. Benchekroun, Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies - Université Hassan II, Casablanca, Morocco K. Bendtz, Department of Physics, Stockholm University, Stockholm, Sweden N. Benekos, Department of Physics, University of Illinois, Urbana, IL, United States of America Y. Benhammou, Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel E. Benhar Noccioli, Section de Physique, Université de Genève, Geneva, Switzerland J. A. Benitez Garcia, Department of Physics and Astronomy, York University, Toronto, ON, Canada D. P. Benjamin, Department of Physics, Duke University, Durham, NC, United States of America M. Benoit, LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France J. R. Bensinger, Department of Physics, Brandeis University, Waltham, MA, United States of America K. Benslama, Physics Department, University of Regina, Regina, SK, Canada S. Bentvelsen, Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, Netherlands D. Berge, CERN, Geneva, Switzerland E. Bergeaas Kuutmann, DESY, Hamburg and Zeuthen, Germany N. Berger, LAPP, CNRS/IN2P3 and Université de Savoie, Annecy-le-Vieux, France F. Berghaus, Department of Physics and Astronomy, University of Victoria, Victoria, BC, Canada E. Berglund, Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, Netherlands J. Beringer, Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, CA, United States of America P. Bernat, Department of Physics and Astronomy, University College London, London, United Kingdom R. Bernhard, Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg i.Br., Germany C. Bernius, Physics Department, Brookhaven National Laboratory, Upton, NY, United States of America T. Berry, Department of Physics, Royal Holloway University of London, Surrey, United Kingdom C. Bertella, CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France A. Bertin, INFN Sezione di Bologna, Bologna, Italy F. Bertolucci, INFN Sezione di Pisa, Pisa, Italy M. I. Besana, INFN Sezione di Milano, Milano, Italy G. J. Besjes, Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands N. Besson, DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat a l’Energie Atomique), Gif-sur-Yvette, France S. Bethke, Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München, Germany W. Bhimji, SUPA - School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom R. M. Bianchi, CERN, Geneva, Switzerland M. Bianco, INFN Sezione di Lecce, Lecce, Italy O. Biebel, Fakultät für Physik, Ludwig-Maximilians-Universität München, München, Germany S. P. Bieniek, Department of Physics and Astronomy, University College London, London, United Kingdom K. Bierwagen, II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany J. Biesiada, Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, CA, United States of America M. Biglietti, INFN Sezione di Roma Tre, Roma, Italy H. Bilokon, INFN Laboratori Nazionali di Frascati, Frascati, Italy M. Bindi, INFN Sezione di Bologna, Bologna, Italy S. Binet, LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France A. Bingul, Department of Physics Engineering, Gaziantep University, Gaziantep, Turkey C. Bini, INFN Sezione di Roma I, Roma, Italy C. Biscarat, Domaine scientifique de la Doua, Centre de Calcul CNRS/IN2P3, Villeurbanne Cedex, France U. Bitenc, Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg i.Br., Germany K. M. Black, Department of Physics, Boston University, Boston, MA, United States of America R. E. Blair, High Energy Physics Division, Argonne National Laboratory, Argonne, IL, United States of America J.-B. Blanchard, DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat a l’Energie Atomique), Gif-sur-Yvette, France G. Blanchot, CERN, Geneva, Switzerland T. Blazek, Faculty of Mathematics, Physics & Informatics, Comenius University, Bratislava, Slovak Republic C. Blocker, Department of Physics, Brandeis University, Waltham, MA, United States of America J. Blocki, The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland A. Blondel, Section de Physique, Université de Genève, Geneva, Switzerland W. Blum, Institut für Physik, Universität Mainz, Mainz, Germany U. Blumenschein, II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany G. J. Bobbink, Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, Netherlands V. B. Bobrovnikov, Budker Institute of Nuclear Physics, SB RAS, Novosibirsk, Russia S. S. Bocchetta, Fysiska institutionen, Lunds universitet, Lund, Sweden A. Bocci, Department of Physics, Duke University, Durham, NC, United States of America C. R. Boddy, Department of Physics, Oxford University, Oxford, United Kingdom M. Boehler, DESY, Hamburg and Zeuthen, Germany J. Boek, Fachbereich C Physik, Bergische Universität Wuppertal, Wuppertal, Germany N. Boelaert, Niels Bohr Institute, University of Copenhagen, Kobenhavn, Denmark J. A. Bogaerts, CERN, Geneva, Switzerland A. Bogdanchikov, Budker Institute of Nuclear Physics, SB RAS, Novosibirsk, Russia A. Bogouch, B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Republic of Belarus C. Bohm, Department of Physics, Stockholm University, Stockholm, Sweden J. Bohm, Institute of Physics, Academy of Sciences of the Czech Republic, Praha, Czech Republic V. Boisvert, Department of Physics, Royal Holloway University of London, Surrey, United Kingdom T. Bold, AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow, Poland V. Boldea, National Institute of Physics and Nuclear Engineering, Bucharest, Romania N. M. Bolnet, DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat a l’Energie Atomique), Gif-sur-Yvette, France M. Bomben, Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France M. Bona, School of Physics and Astronomy, Queen Mary University of London, London, United Kingdom M. Bondioli, Department of Physics and Astronomy, University of California Irvine, Irvine, CA, United States of America M. Boonekamp, DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat a l’Energie Atomique), Gif-sur-Yvette, France C. N. Booth, Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom S. Bordoni, Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France C. Borer, Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland A. Borisov, State Research Center Institute for High Energy Physics, Protvino, Russia G. Borissov, Physics Department, Lancaster University, Lancaster, United Kingdom I. Borjanovic, Institute of Physics, University of Belgrade, Belgrade, Serbia M. Borri, School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom S. Borroni, Department of Physics, The University of Michigan, Ann Arbor, MI, United States of America V. Bortolotto, INFN Sezione di Roma Tre, Roma, Italy K. Bos, Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, Netherlands D. Boscherini, INFN Sezione di Bologna, Bologna, Italy M. Bosman, Institut de Física d’Altes Energies and Departament de Física de la Universitat Autònoma de Barcelona and ICREA, Barcelona, Spain H. Boterenbrood, Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, Netherlands D. Botterill, Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom J. Bouchami, Group of Particle Physics, University of Montreal, Montreal, QC, Canada J. Boudreau, Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA, United States of America E. V. Bouhova-Thacker, Physics Department, Lancaster University, Lancaster, United Kingdom D. Boumediene, Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3, Aubiere Cedex, France C. Bourdarios, LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France N. Bousson, CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France A. Boveia, Enrico Fermi Institute, University of Chicago, Chicago, IL, United States of America J. Boyd, CERN, Geneva, Switzerland I. R. Boyko, Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia I. Bozovic-Jelisavcic, Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia J. Bracinik, School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom P. Branchini, INFN Sezione di Roma Tre, Roma, Italy A. Brandt, Department of Physics, The University of Texas at Arlington, Arlington, TX, United States of America G. Brandt, Department of Physics, Oxford University, Oxford, United Kingdom O. Brandt, II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany U. Bratzler, Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan B. Brau, Department of Physics, University of Massachusetts, Amherst, MA, United States of America J. E. Brau, Center for High Energy Physics, University of Oregon, Eugene, OR, United States of America H. M. Braun, Fachbereich C Physik, Bergische Universität Wuppertal, Wuppertal, Germany B. Brelier, Department of Physics, University of Toronto, Toronto, ON, Canada J. Bremer, CERN, Geneva, Switzerland K. Brendlinger, Department of Physics, University of Pennsylvania, Philadelphia, PA, United States of America R. Brenner, Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden S. Bressler, Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel D. Britton, SUPA - School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom F. M. Brochu, Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom I. Brock, Physikalisches Institut, University of Bonn, Bonn, Germany R. Brock, Department of Physics and Astronomy, Michigan State University, East, Lansing, MI, United States of America E. Brodet, Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel F. Broggi, INFN Sezione di Milano, Milano, Italy C. Bromberg, Department of Physics and Astronomy, Michigan State University, East, Lansing, MI, United States of America J. Bronner, Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München, Germany G. Brooijmans, Nevis Laboratory, Columbia University, Irvington, NY, United States of America T. Brooks, Department of Physics, Royal Holloway University of London, Surrey, United Kingdom W. K. Brooks, Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile G. Brown, School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom H. Brown, Department of Physics, The University of Texas at Arlington, Arlington, TX, United States of America P. A. Bruckman de Renstrom, The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland D. Bruncko, Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic R. Bruneliere, Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg i.Br., Germany S. Brunet, Department of Physics, Indiana University, Bloomington, IN, United States of America A. Bruni, INFN Sezione di Bologna, Bologna, Italy G. Bruni, INFN Sezione di Bologna, Bologna, Italy M. Bruschi, INFN Sezione di Bologna, Bologna, Italy T. Buanes, Department for Physics and Technology, University of Bergen, Bergen, Norway Q. Buat, Laboratoire de Physique Subatomique et de Cosmologie, Université Joseph Fourier and CNRS/IN2P3 and Institut National Polytechnique de Grenoble, Grenoble, France F. Bucci, Section de Physique, Université de Genève, Geneva, Switzerland J. Buchanan, Department of Physics, Oxford University, Oxford, United Kingdom P. Buchholz, Fachbereich Physik, Universität Siegen, Siegen, Germany R. M. Buckingham, Department of Physics, Oxford University, Oxford, United Kingdom A. G. Buckley, SUPA - School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom S. I. Buda, National Institute of Physics and Nuclear Engineering, Bucharest, Romania I. A. Budagov, Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia B. Budick, Department of Physics, New York University, New York, NY, United States of America V. Büscher, Institut für Physik, Universität Mainz, Mainz, Germany L. Bugge, Department of Physics, University of Oslo, Oslo, Norway O. Bulekov, Moscow Engineering and Physics Institute (MEPhI), Moscow, Russia A. C. Bundock, Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom M. Bunse, Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany T. Buran, Department of Physics, University of Oslo, Oslo, Norway H. Burckhart, CERN, Geneva, Switzerland S. Burdin, Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom T. Burgess, Department for Physics and Technology, University of Bergen, Bergen, Norway S. Burke, Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom E. Busato, Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3, Aubiere Cedex, France P. Bussey, SUPA - School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom C. P. Buszello, Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden B. Butler, SLAC National Accelerator Laboratory, Stanford, CA, United States of America J. M. Butler, Department of Physics, Boston University, Boston, MA, United States of America C. M. Buttar, SUPA - School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom J. M. Butterworth, Department of Physics and Astronomy, University College London, London, United Kingdom W. Buttinger, Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom S. Cabrera Urbán, Instituto de Física Corpuscular (IFIC) and Departamento de Física Atómica, Molecular y Nuclear and Departamento de Ingeniería Electrónica and Instituto de Microelectrónica de Barcelona (IMB-CNM), University of Valencia and CSIC, Valencia, Spain D. Caforio, INFN Sezione di Bologna, Bologna, Italy O. Cakir, Department of Physics, Ankara University, Ankara, Turkey P. Calafiura, Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, CA, United States of America G. Calderini, Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France P. Calfayan, Fakultät für Physik, Ludwig-Maximilians-Universität München, München, Germany R. Calkins, Department of Physics, Northern Illinois University, DeKalb, IL, United States of America L. P. Caloba, Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro, Brazil R. Caloi, INFN Sezione di Roma I, Roma, Italy D. Calvet, Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3, Aubiere Cedex, France S. Calvet, Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3, Aubiere Cedex, France R. Camacho Toro, Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3, Aubiere Cedex, France P. Camarri, INFN Sezione di Roma Tor Vergata, Roma, Italy D. Cameron, Department of Physics, University of Oslo, Oslo, Norway L. M. Caminada, Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, CA, United States of America S. Campana, CERN, Geneva, Switzerland M. Campanelli, Department of Physics and Astronomy, University College London, London, United Kingdom V. Canale, INFN Sezione di Napoli, Napoli, Italy F. Canelli, Enrico Fermi Institute, University of Chicago, Chicago, IL, United States of America A. Canepa, TRIUMF, Vancouver, BC, Canada J. Cantero, Departamento de Fisica Teorica C-15, Universidad Autonoma de Madrid, Madrid, Spain R. Cantrill, Department of Physics, Royal Holloway University of London, Surrey, United Kingdom L. Capasso, INFN Sezione di Napoli, Napoli, Italy M. D. M. Capeans Garrido, CERN, Geneva, Switzerland I. Caprini, National Institute of Physics and Nuclear Engineering, Bucharest, Romania M. Caprini, National Institute of Physics and Nuclear Engineering, Bucharest, Romania D. Capriotti, Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München, Germany M. Capua, INFN Gruppo Collegato di Cosenza, Cosenza, Italy R. Caputo, Institut für Physik, Universität Mainz, Mainz, Germany R. Cardarelli, INFN Sezione di Roma Tor Vergata, Roma, Italy T. Carli, CERN, Geneva, Switzerland G. Carlino, INFN Sezione di Napoli, Napoli, Italy L. Carminati, INFN Sezione di Milano, Milano, Italy B. Caron, Department of Physics, McGill University, Montreal, QC, Canada S. Caron, Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands E. Carquin, Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile G. D. Carrillo Montoya, Department of Physics, University of Wisconsin, Madison, WI, United States of America A. A. Carter, School of Physics and Astronomy, Queen Mary University of London, London, United Kingdom J. R. Carter, Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom J. Carvalho, Laboratorio de Instrumentacao e Fisica Experimental de Particulas - LIP, Lisboa, Portugal D. Casadei, Department of Physics, New York University, New York, NY, United States of America M. P. Casado, Institut de Física d’Altes Energies and Departament de Física de la Universitat Autònoma de Barcelona and ICREA, Barcelona, Spain M. Cascella, INFN Sezione di Pisa, Pisa, Italy C. Caso, INFN Sezione di Genova, Genova, Italy A. M. Castaneda Hernandez, Department of Physics, University of Wisconsin, Madison, WI, United States of America E. Castaneda-Miranda, Department of Physics, University of Wisconsin, Madison, WI, United States of America V. Castillo Gimenez, Instituto de Física Corpuscular (IFIC) and Departamento de Física Atómica, Molecular y Nuclear and Departamento de Ingeniería Electrónica and Instituto de Microelectrónica de Barcelona (IMB-CNM), University of Valencia and CSIC, Valencia, Spain N. F. Castro, Laboratorio de Instrumentacao e Fisica Experimental de Particulas - LIP, Lisboa, Portugal G. Cataldi, INFN Sezione di Lecce, Lecce, Italy P. Catastini, Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge, MA, United States of America A. Catinaccio, CERN, Geneva, Switzerland J. R. Catmore, CERN, Geneva, Switzerland A. Cattai, CERN, Geneva, Switzerland G. Cattani, INFN Sezione di Roma Tor Vergata, Roma, Italy S. Caughron, Department of Physics and Astronomy, Michigan State University, East, Lansing, MI, United States of America P. Cavalleri, Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France D. Cavalli, INFN Sezione di Milano, Milano, Italy M. Cavalli-Sforza, Institut de Física d’Altes Energies and Departament de Física de la Universitat Autònoma de Barcelona and ICREA, Barcelona, Spain V. Cavasinni, INFN Sezione di Pisa, Pisa, Italy F. Ceradini, INFN Sezione di Roma Tre, Roma, Italy A. S. Cerqueira, Federal University of Juiz de Fora (UFJF), Juiz de Fora, Brazil A. Cerri, CERN, Geneva, Switzerland L. Cerrito, School of Physics and Astronomy, Queen Mary University of London, London, United Kingdom F. Cerutti, INFN Laboratori Nazionali di Frascati, Frascati, Italy S. A. Cetin, Division of Physics, Dogus University, Istanbul, Turkey A. Chafaq, Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies - Université Hassan II, Casablanca, Morocco D. Chakraborty, Department of Physics, Northern Illinois University, DeKalb, IL, United States of America I. Chalupkova, Faculty of Mathematics and Physics, Charles University in Prague, Praha, Czech Republic K. Chan, Department of Physics, University of Alberta, Edmonton, AB, Canada B. Chapleau, Department of Physics, McGill University, Montreal, QC, Canada J. D. Chapman, Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom J. W. Chapman, Department of Physics, The University of Michigan, Ann Arbor, MI, United States of America E. Chareyre, Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France D. G. Charlton, School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom V. Chavda, School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom C. A. Chavez Barajas, CERN, Geneva, Switzerland S. Cheatham, Department of Physics, McGill University, Montreal, QC, Canada S. Chekanov, High Energy Physics Division, Argonne National Laboratory, Argonne, IL, United States of America S. V. Chekulaev, TRIUMF, Vancouver, BC, Canada G. A. Chelkov, Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia M. A. Chelstowska, Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands C. Chen, Department of Physics and Astronomy, Iowa State University, Ames, IA, United States of America H. Chen, Physics Department, Brookhaven National Laboratory, Upton, NY, United States of America S. Chen, Department of Physics, Nanjing University, Jiangsu, China X. Chen, Department of Physics, University of Wisconsin, Madison, WI, United States of America A. Cheplakov, Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia R. Cherkaoui El Moursli, Faculté des sciences, Université Mohammed V-Agdal, Rabat, Morocco V. Chernyatin, Physics Department, Brookhaven National Laboratory, Upton, NY, United States of America E. Cheu, Department of Physics, University of Arizona, Tucson, AZ, United States of America S. L. Cheung, Department of Physics, University of Toronto, Toronto, ON, Canada L. Chevalier, DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat a l’Energie Atomique), Gif-sur-Yvette, France G. Chiefari, INFN Sezione di Napoli, Napoli, Italy L. Chikovani, E. Andronikashvili Institute of Physics, Tbilisi State University, Tbilisi, Georgia J. T. Childers, CERN, Geneva, Switzerland A. Chilingarov, Physics Department, Lancaster University, Lancaster, United Kingdom G. Chiodini, INFN Sezione di Lecce, Lecce, Italy A. S. Chisholm, School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom R. T. Chislett, Department of Physics and Astronomy, University College London, London, United Kingdom M. V. Chizhov, Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia G. Choudalakis, Enrico Fermi Institute, University of Chicago, Chicago, IL, United States of America S. Chouridou, Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz, CA, United States of America I. A. Christidi, Department of Physics and Astronomy, University College London, London, United Kingdom A. Christov, Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg i.Br., Germany D. Chromek-Burckhart, CERN, Geneva, Switzerland M. L. Chu, Institute of Physics, Academia Sinica, Taipei, Taiwan J. Chudoba, Institute of Physics, Academy of Sciences of the Czech Republic, Praha, Czech Republic G. Ciapetti, INFN Sezione di Roma I, Roma, Italy A. K. Ciftci, Department of Physics, Ankara University, Ankara, Turkey R. Ciftci, Department of Physics, Ankara University, Ankara, Turkey D. Cinca, Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3, Aubiere Cedex, France V. Cindro, Department of Physics, Jožef Stefan Institute and University of Ljubljana, Ljubljana, Slovenia C. Ciocca, INFN Sezione di Bologna, Bologna, Italy A. Ciocio, Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, CA, United States of America M. Cirilli, Department of Physics, The University of Michigan, Ann Arbor, MI, United States of America P. Cirkovic, Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia M. Citterio, INFN Sezione di Milano, Milano, Italy M. Ciubancan, National Institute of Physics and Nuclear Engineering, Bucharest, Romania A. Clark, Section de Physique, Université de Genève, Geneva, Switzerland P. J. Clark, SUPA - School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom W. Cleland, Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA, United States of America J. C. Clemens, CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France B. Clement, Laboratoire de Physique Subatomique et de Cosmologie, Université Joseph Fourier and CNRS/IN2P3 and Institut National Polytechnique de Grenoble, Grenoble, France C. Clement, Department of Physics, Stockholm University, Stockholm, Sweden Y. Coadou, CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France M. Cobal, INFN Gruppo Collegato di Udine, Udine, Italy A. Coccaro, Department of Physics, University of Washington, Seattle, WA, United States of America J. Cochran, Department of Physics and Astronomy, Iowa State University, Ames, IA, United States of America J. G. Cogan, SLAC National Accelerator Laboratory, Stanford, CA, United States of America J. Coggeshall, Department of Physics, University of Illinois, Urbana, IL, United States of America E. Cogneras, Domaine scientifique de la Doua, Centre de Calcul CNRS/IN2P3, Villeurbanne Cedex, France J. Colas, LAPP, CNRS/IN2P3 and Université de Savoie, Annecy-le-Vieux, France A. P. Colijn, Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, Netherlands N. J. Collins, School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom C. Collins-Tooth, SUPA - School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom J. Collot, Laboratoire de Physique Subatomique et de Cosmologie, Université Joseph Fourier and CNRS/IN2P3 and Institut National Polytechnique de Grenoble, Grenoble, France T. Colombo, INFN Sezione di Pavia, Pavia, Italy G. Colon, Department of Physics, University of Massachusetts, Amherst, MA, United States of America P. Conde Muiño, Laboratorio de Instrumentacao e Fisica Experimental de Particulas - LIP, Lisboa, Portugal E. Coniavitis, Department of Physics, Oxford University, Oxford, United Kingdom M. C. Conidi, Institut de Física d’Altes Energies and Departament de Física de la Universitat Autònoma de Barcelona and ICREA, Barcelona, Spain S. M. Consonni, INFN Sezione di Milano, Milano, Italy V. Consorti, Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg i.Br., Germany S. Constantinescu, National Institute of Physics and Nuclear Engineering, Bucharest, Romania C. Conta, INFN Sezione di Pavia, Pavia, Italy G. Conti, Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge, MA, United States of America F. Conventi, INFN Sezione di Napoli, Napoli, Italy M. Cooke, Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, CA, United States of America B. D. Cooper, Department of Physics and Astronomy, University College London, London, United Kingdom A. M. Cooper-Sarkar, Department of Physics, Oxford University, Oxford, United Kingdom K. Copic, Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, CA, United States of America T. Cornelissen, Fachbereich C Physik, Bergische Universität Wuppertal, Wuppertal, Germany M. Corradi, INFN Sezione di Bologna, Bologna, Italy F. Corriveau, Department of Physics, McGill University, Montreal, QC, Canada A. Cortes-Gonzalez, Department of Physics, University of Illinois, Urbana, IL, United States of America G. Cortiana, Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München, Germany G. Costa, INFN Sezione di Milano, Milano, Italy M. J. Costa, Instituto de Física Corpuscular (IFIC) and Departamento de Física Atómica, Molecular y Nuclear and Departamento de Ingeniería Electrónica and Instituto de Microelectrónica de Barcelona (IMB-CNM), University of Valencia and CSIC, Valencia, Spain D. Costanzo, Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom T. Costin, Enrico Fermi Institute, University of Chicago, Chicago, IL, United States of America D. Côté, CERN, Geneva, Switzerland L. Courneyea, Department of Physics and Astronomy, University of Victoria, Victoria, BC, Canada G. Cowan, Department of Physics, Royal Holloway University of London, Surrey, United Kingdom C. Cowden, Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom B. E. Cox, School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom K. Cranmer, Department of Physics, New York University, New York, NY, United States of America F. Crescioli, INFN Sezione di Pisa, Pisa, Italy M. Cristinziani, Physikalisches Institut, University of Bonn, Bonn, Germany G. Crosetti, INFN Gruppo Collegato di Cosenza, Cosenza, Italy R. Crupi, INFN Sezione di Lecce, Lecce, Italy S. Crépé-Renaudin, Laboratoire de Physique Subatomique et de Cosmologie, Université Joseph Fourier and CNRS/IN2P3 and Institut National Polytechnique de Grenoble, Grenoble, France C.-M. Cuciuc, National Institute of Physics and Nuclear Engineering, Bucharest, Romania C. Cuenca Almenar, Department of Physics, Yale University, New Haven, CT, United States of America T. Cuhadar Donszelmann, Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom M. Curatolo, INFN Laboratori Nazionali di Frascati, Frascati, Italy C. J. Curtis, School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom C. Cuthbert, School of Physics, University of Sydney, Sydney, Australia P. Cwetanski, Department of Physics, Indiana University, Bloomington, IN, United States of America H. Czirr, Fachbereich Physik, Universität Siegen, Siegen, Germany P. Czodrowski, Institut für Kern- und Teilchenphysik, Technical University Dresden, Dresden, Germany Z. Czyczula, Department of Physics, Yale University, New Haven, CT, United States of America S. D’Auria, SUPA - School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom M. D’Onofrio, Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom A. D’Orazio, INFN Sezione di Roma I, Roma, Italy M. J. Da Cunha Sargedas De Sousa, Laboratorio de Instrumentacao e Fisica Experimental de Particulas - LIP, Lisboa, Portugal C. Da Via, School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom W. Dabrowski, AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow, Poland A. Dafinca, Department of Physics, Oxford University, Oxford, United Kingdom T. Dai, Department of Physics, The University of Michigan, Ann Arbor, MI, United States of America C. Dallapiccola, Department of Physics, University of Massachusetts, Amherst, MA, United States of America M. Dam, Niels Bohr Institute, University of Copenhagen, Kobenhavn, Denmark M. Dameri, INFN Sezione di Genova, Genova, Italy D. S. Damiani, Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz, CA, United States of America H. O. Danielsson, CERN, Geneva, Switzerland V. Dao, Section de Physique, Université de Genève, Geneva, Switzerland G. Darbo, INFN Sezione di Genova, Genova, Italy G. L. Darlea, University Politehnica Bucharest, Bucharest, Romania W. Davey, Physikalisches Institut, University of Bonn, Bonn, Germany T. Davidek, Faculty of Mathematics and Physics, Charles University in Prague, Praha, Czech Republic N. Davidson, School of Physics, University of Melbourne, Victoria, Australia R. Davidson, Physics Department, Lancaster University, Lancaster, United Kingdom E. Davies, Department of Physics, Oxford University, Oxford, United Kingdom M. Davies, Group of Particle Physics, University of Montreal, Montreal, QC, Canada A. R. Davison, Department of Physics and Astronomy, University College London, London, United Kingdom Y. Davygora, Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany E. Dawe, Department of Physics, Simon Fraser University, Burnaby, BC, Canada I. Dawson, Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom R. K. Daya-Ishmukhametova, Department of Physics, Brandeis University, Waltham, MA, United States of America K. De, Department of Physics, The University of Texas at Arlington, Arlington, TX, United States of America R. de Asmundis, INFN Sezione di Napoli, Napoli, Italy S. De Castro, INFN Sezione di Bologna, Bologna, Italy S. De Cecco, Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France J. de Graat, Fakultät für Physik, Ludwig-Maximilians-Universität München, München, Germany N. De Groot, Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands P. de Jong, Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, Netherlands C. De La Taille, LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France H. De la Torre, Departamento de Fisica Teorica C-15, Universidad Autonoma de Madrid, Madrid, Spain F. De Lorenzi, Department of Physics and Astronomy, Iowa State University, Ames, IA, United States of America L. de Mora, Physics Department, Lancaster University, Lancaster, United Kingdom L. De Nooij, Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, Netherlands D. De Pedis, INFN Sezione di Roma I, Roma, Italy A. De Salvo, INFN Sezione di Roma I, Roma, Italy U. De Sanctis, INFN Gruppo Collegato di Udine, Udine, Italy A. De Santo, Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom J. B. De Vivie De Regie, LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France G. De Zorzi, INFN Sezione di Roma I, Roma, Italy W. J. Dearnaley, Physics Department, Lancaster University, Lancaster, United Kingdom R. Debbe, Physics Department, Brookhaven National Laboratory, Upton, NY, United States of America C. Debenedetti, SUPA - School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom B. Dechenaux, Laboratoire de Physique Subatomique et de Cosmologie, Université Joseph Fourier and CNRS/IN2P3 and Institut National Polytechnique de Grenoble, Grenoble, France D. V. Dedovich, Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia J. Degenhardt, Department of Physics, University of Pennsylvania, Philadelphia, PA, United States of America C. Del Papa, INFN Gruppo Collegato di Udine, Udine, Italy J. Del Peso, Departamento de Fisica Teorica C-15, Universidad Autonoma de Madrid, Madrid, Spain T. Del Prete, INFN Sezione di Pisa, Pisa, Italy T. Delemontex, Laboratoire de Physique Subatomique et de Cosmologie, Université Joseph Fourier and CNRS/IN2P3 and Institut National Polytechnique de Grenoble, Grenoble, France M. Deliyergiyev, Department of Physics, Jožef Stefan Institute and University of Ljubljana, Ljubljana, Slovenia A. Dell’Acqua, CERN, Geneva, Switzerland L. Dell’Asta, Department of Physics, Boston University, Boston, MA, United States of America M. Della Pietra, INFN Sezione di Napoli, Napoli, Italy D. della Volpe, INFN Sezione di Napoli, Napoli, Italy M. Delmastro, LAPP, CNRS/IN2P3 and Université de Savoie, Annecy-le-Vieux, France P. A. Delsart, Laboratoire de Physique Subatomique et de Cosmologie, Université Joseph Fourier and CNRS/IN2P3 and Institut National Polytechnique de Grenoble, Grenoble, France C. Deluca, Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, Netherlands S. Demers, Department of Physics, Yale University, New Haven, CT, United States of America M. Demichev, Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia B. Demirkoz, Institut de Física d’Altes Energies and Departament de Física de la Universitat Autònoma de Barcelona and ICREA, Barcelona, Spain J. Deng, Department of Physics and Astronomy, University of California Irvine, Irvine, CA, United States of America S. P. Denisov, State Research Center Institute for High Energy Physics, Protvino, Russia D. Derendarz, The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland J. E. Derkaoui, Faculté des Sciences, Université Mohamed Premier and LPTPM, Oujda, Morocco F. Derue, Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France P. Dervan, Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom K. Desch, Physikalisches Institut, University of Bonn, Bonn, Germany E. Devetak, Departments of Physics & Astronomy and Chemistry, Stony Brook University, Stony Brook, NY, United States of America P. O. Deviveiros, Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, Netherlands A. Dewhurst, Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom B. DeWilde, Departments of Physics & Astronomy and Chemistry, Stony Brook University, Stony Brook, NY, United States of America S. Dhaliwal, Department of Physics, University of Toronto, Toronto, ON, Canada R. Dhullipudi, Physics Department, Brookhaven National Laboratory, Upton, NY, United States of America A. Di Ciaccio, INFN Sezione di Roma Tor Vergata, Roma, Italy L. Di Ciaccio, LAPP, CNRS/IN2P3 and Université de Savoie, Annecy-le-Vieux, France A. Di Girolamo, CERN, Geneva, Switzerland B. Di Girolamo, CERN, Geneva, Switzerland S. Di Luise, INFN Sezione di Roma Tre, Roma, Italy A. Di Mattia, Department of Physics, University of Wisconsin, Madison, WI, United States of America B. Di Micco, CERN, Geneva, Switzerland R. Di Nardo, INFN Laboratori Nazionali di Frascati, Frascati, Italy A. Di Simone, INFN Sezione di Roma Tor Vergata, Roma, Italy R. Di Sipio, INFN Sezione di Bologna, Bologna, Italy M. A. Diaz, Departamento de Física, Pontificia Universidad Católica de Chile, Santiago, Chile E. B. Diehl, Department of Physics, The University of Michigan, Ann Arbor, MI, United States of America J. Dietrich, DESY, Hamburg and Zeuthen, Germany T. A. Dietzsch, Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany S. Diglio, School of Physics, University of Melbourne, Victoria, Australia K. Dindar Yagci, Physics Department, Southern Methodist University, Dallas, TX, United States of America J. Dingfelder, Physikalisches Institut, University of Bonn, Bonn, Germany C. Dionisi, INFN Sezione di Roma I, Roma, Italy P. Dita, National Institute of Physics and Nuclear Engineering, Bucharest, Romania S. Dita, National Institute of Physics and Nuclear Engineering, Bucharest, Romania F. Dittus, CERN, Geneva, Switzerland F. Djama, CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France T. Djobava, High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia M. A. B. do Vale, Federal University of Sao Joao del Rei (UFSJ), Sao Joao del Rei, Brazil A. Do Valle Wemans, Laboratorio de Instrumentacao e Fisica Experimental de Particulas - LIP, Lisboa, Portugal T. K. O. Doan, LAPP, CNRS/IN2P3 and Université de Savoie, Annecy-le-Vieux, France M. Dobbs, Department of Physics, McGill University, Montreal, QC, Canada R. Dobinson, CERN, Geneva, Switzerland D. Dobos, CERN, Geneva, Switzerland E. Dobson, CERN, Geneva, Switzerland J. Dodd, Nevis Laboratory, Columbia University, Irvington, NY, United States of America C. Doglioni, Section de Physique, Université de Genève, Geneva, Switzerland T.
    Print ISSN: 1434-6044
    Digitale ISSN: 1434-6052
    Thema: Physik
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 71
    Publikationsdatum: 2012-09-22
    Beschreibung:    We have analyzed the ablation depth yield of fused silica irradiated with shaped pulse trains with a separation of 500 fs and increasing or decreasing intensity envelopes. This temporal separation value is extracted from previous studies on ablation dynamics upon irradiation with transform-limited 100 fs laser pulses. The use of decreasing intensity pulse trains leads to a strong increase of the induced ablation depth when compared to the behavior, at the same pulse fluence, of intensity increasing pulse trains. In addition, we have studied the material response under stretched (500 fs, FWHM) and transform-limited (100 fs, FWHM) pulses, for which avalanche or multiphoton ionization respectively dominates the carrier generation process. The comparison of the corresponding evolution of the ablated depth vs. fluence suggests that the use of pulse trains with decreasing intensity at high fluences should lead to enhanced single exposure ablation depths, beyond the limits corresponding to MPI- or AI-alone dominated processes. Content Type Journal Article Pages 1-5 DOI 10.1007/s00339-012-7238-2 Authors J. Hernandez-Rueda, Laser Processing Group, Instituto de Óptica, C.S.I.C., Serrano 121, 28006 Madrid, Spain J. Siegel, Laser Processing Group, Instituto de Óptica, C.S.I.C., Serrano 121, 28006 Madrid, Spain D. Puerto, Laser Processing Group, Instituto de Óptica, C.S.I.C., Serrano 121, 28006 Madrid, Spain M. Galvan-Sosa, Laser Processing Group, Instituto de Óptica, C.S.I.C., Serrano 121, 28006 Madrid, Spain W. Gawelda, Laser Processing Group, Instituto de Óptica, C.S.I.C., Serrano 121, 28006 Madrid, Spain J. Solis, Laser Processing Group, Instituto de Óptica, C.S.I.C., Serrano 121, 28006 Madrid, Spain Journal Applied Physics A: Materials Science & Processing Online ISSN 1432-0630 Print ISSN 0947-8396
    Print ISSN: 0947-8396
    Digitale ISSN: 1432-0630
    Thema: Technik allgemein , Physik
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 72
    facet.materialart.
    Unbekannt
    Springer
    Publikationsdatum: 2012-09-22
    Beschreibung:    Structurally tuned multiferroic state is demonstrated for BiFeO 3 -based compounds. The electric and magnetic orders are strongly affected by the coexistence of R3c and Cm phases, i.e., by structural softness through monoclinicity, which leads the multiferroism to be driven by the same cation. The Cm phase enhances the ferroelectric and magnetic responses through Bi/Ba–O and Fe/Ti–O bonds by influencing structural distortions and ion valence. We also show the strong correlations between ferroic orders, structural arrangements, and tuning of the ion valence in the perovskite B site. Content Type Journal Article Pages 1-5 DOI 10.1007/s00339-012-7258-y Authors R. A. M. Gotardo, Departamento de Física, Universidade Estadual de Maringá, Av. Colombo, 5790, Maringá, Paraná 87020-900, Brazil L. F. Cótica, Departamento de Física, Universidade Estadual de Maringá, Av. Colombo, 5790, Maringá, Paraná 87020-900, Brazil I. A. Santos, Departamento de Física, Universidade Estadual de Maringá, Av. Colombo, 5790, Maringá, Paraná 87020-900, Brazil M. Olzon-Dyonisio, Departamento de Física, Universidade Federal de São Carlos, Rod. Washington Luiz, Km 235, São Carlos, São Paulo 13565-345, Brazil S. D. Souza, Departamento de Física, Universidade Federal de São Carlos, Rod. Washington Luiz, Km 235, São Carlos, São Paulo 13565-345, Brazil D. Garcia, Departamento de Física, Universidade Federal de São Carlos, Rod. Washington Luiz, Km 235, São Carlos, São Paulo 13565-345, Brazil J. A. Eiras, Departamento de Física, Universidade Federal de São Carlos, Rod. Washington Luiz, Km 235, São Carlos, São Paulo 13565-345, Brazil A. A. Coelho, Departamento de Física Aplicada, Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, Barão Geraldo, Campinas, São Paulo 13083-970, Brazil Journal Applied Physics A: Materials Science & Processing Online ISSN 1432-0630 Print ISSN 0947-8396
    Print ISSN: 0947-8396
    Digitale ISSN: 1432-0630
    Thema: Technik allgemein , Physik
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 73
    Publikationsdatum: 2012-09-22
    Beschreibung:    We have investigated the magnetization structure and magnetization curves of individual rectangularity shaped permalloy particles using scanning X-ray microscopy in the ultrasoft X-ray regime. Magnetic contrast originates from X-ray magnetic circular dichroism and from the transverse magnetooptical Kerr effect. We studied magnetization curves in dependence on the field direction for particles of different shapes and sizes. Adjacent particles cause a significant dipole interaction. Asymmetric magnetization loops indicate the presence of non-linear magnetooptical effects. Content Type Journal Article Pages 1-5 DOI 10.1007/s00339-012-7257-z Authors S. A. Nepijko, Institute of Physics, University of Mainz, Staudingerweg 7, 55128 Mainz, Germany O. V. Pylypenko, Sumy State University, Rimsky-Korsakov Str. 2, 40007 Sumy, C.I.S., Ukraine L. V. Odnodvorets, Sumy State University, Rimsky-Korsakov Str. 2, 40007 Sumy, C.I.S., Ukraine E. Kisker, Institute of Applied Physics, University of Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany H. J. Elmers, Institute of Physics, University of Mainz, Staudingerweg 7, 55128 Mainz, Germany G. Schönhense, Institute of Physics, University of Mainz, Staudingerweg 7, 55128 Mainz, Germany Journal Applied Physics A: Materials Science & Processing Online ISSN 1432-0630 Print ISSN 0947-8396
    Print ISSN: 0947-8396
    Digitale ISSN: 1432-0630
    Thema: Technik allgemein , Physik
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 74
    Publikationsdatum: 2012-09-22
    Beschreibung:    A series of [Fe 65 Co 35 –O/SiO 2 ] n multilayer thin films with different SiO 2 separate layer thicknesses ( t =0–3 nm) and fixed Fe 65 Co 35 –O layer thickness (5.4 nm) have been fabricated on (100) silicon and glass substrates by reactive magnetron co-sputtering. Microstructure analysis and magnetic measurement results show that Fe 65 Co 35 –O grain size and magnetic properties can be adjusted by varying the thickness of SiO 2 layers. All films reveal an evident in-plane uniaxial magnetic anisotropy (IPUMA) when the thickness of SiO 2 monolayer changes from t =0 to 3 nm. The hard axis coercivity ( H ch ) reveals a minimum of 9 Oe at t =1 nm while the easy axis coercivity ( H ce ) exhibits a minimum of 16 Oe at t =2 nm. For t =1 nm and 2 nm, the IPUMA fields ( H k ) are 95 and 207 Oe, the saturation magnetizations ( M s ) are 1.8 and 1.6 T, the real part of the complex permeabilities (below 3.0 GHz) are more than 217 and 104, and the ferromagnetic resonance frequencies ( f r ) are 3.6 and 5.2 GHz, respectively. Content Type Journal Article Pages 1-6 DOI 10.1007/s00339-012-7259-x Authors Y. Wang, Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen, 361005 P.R. China H. Geng, Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen, 361005 P.R. China J. B. Wang, Key Laboratory for Magnetism and Magnetic Materials of MOE, Lanzhou University, Lanzhou, 730000 P.R. China S. Nie, Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen, 361005 P.R. China L. S. Wang, Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen, 361005 P.R. China Y. Chen, Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen, 361005 P.R. China D. L. Peng, Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen, 361005 P.R. China Journal Applied Physics A: Materials Science & Processing Online ISSN 1432-0630 Print ISSN 0947-8396
    Print ISSN: 0947-8396
    Digitale ISSN: 1432-0630
    Thema: Technik allgemein , Physik
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 75
    Publikationsdatum: 2012-10-11
    Beschreibung:    We present O ( α s ) results on the decays of polarized W ± and Z bosons into massive quark pairs. The NLO QCD corrections to the polarized decay functions are given up to the second order in the quark mass expansion. We find a surprisingly strong dependence of the NLO polarized decay functions on finite quark mass effects even at the relatively large mass scale of the W ± and Z bosons. As a main application we consider the decay t → b + W + involving the helicity fractions ρ mm of the W + boson followed by the polarized decay for which we determine the O ( α s ) polar angle decay distribution. We also discuss NLO polarization effects in the production/decay process . Content Type Journal Article Category Regular Article - Theoretical Physics Pages 1-10 DOI 10.1140/epjc/s10052-012-2177-9 Authors S. Groote, Loodus- ja Tehnoloogiateaduskond, Füüsika Instituut, Tartu Ülikool, Tähe 4, 51010 Tartu, Estonia J. G. Körner, Institut für Physik, Johannes Gutenberg-Universität, Staudinger Weg 7, 55099 Mainz, Germany P. Tuvike, Loodus- ja Tehnoloogiateaduskond, Füüsika Instituut, Tartu Ülikool, Tähe 4, 51010 Tartu, Estonia Journal The European Physical Journal C - Particles and Fields Online ISSN 1434-6052 Print ISSN 1434-6044 Journal Volume Volume 72 Journal Issue Volume 72, Number 10
    Print ISSN: 1434-6044
    Digitale ISSN: 1434-6052
    Thema: Physik
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 76
    Publikationsdatum: 2012-10-11
    Beschreibung:    Transformation acoustics is employed to design an acoustic bending waveguide. A two-dimensional square area with anisotropic and homogeneous material properties is transformed into a fan-shaped area with anisotropic and inhomogeneous material properties to rotate the direction of beam propagation. An alternating layered structure is considered to approximate a medium with anisotropic material properties. From the calculation results, the transformation medium can be realized by an alternating layered structure consisting of water and fluid with negative mass density. We propose that an acoustic metamaterial composed of three layers in water background can be designed to replace negative mass density fluid. The effective mass density and bulk modulus of the system that is composed of the acoustic metamaterial and water are dependent on the incident frequency and the geometric size of the acoustic metamaterial. We tune the geometric size of the acoustic metamaterial to approach the corresponding mass density distribution of the negative mass density fluid at a specific frequency. Thereby, the acoustic bending waveguide designed by using transformation acoustics can be achieved by the acoustic metamaterials. Content Type Journal Article Pages 1-11 DOI 10.1007/s00339-012-7296-5 Authors Liang-Yu Wu, Department of Mechanical Engineering, National Cheng Kung University, 1 Ta-Hsueh Road, Tainan, 70101 Taiwan Tzeh-Yi Chiang, Department of Mechanical Engineering, National Cheng Kung University, 1 Ta-Hsueh Road, Tainan, 70101 Taiwan Chia-Nien Tsai, Department of Mechanical Engineering, National Cheng Kung University, 1 Ta-Hsueh Road, Tainan, 70101 Taiwan Mei-Ling Wu, Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-Sen University, 70 Lien-Hai Road, Kaohsiung, 80424 Taiwan Lien-Wen Chen, Department of Mechanical Engineering, National Cheng Kung University, 1 Ta-Hsueh Road, Tainan, 70101 Taiwan Journal Applied Physics A: Materials Science & Processing Online ISSN 1432-0630 Print ISSN 0947-8396
    Print ISSN: 0947-8396
    Digitale ISSN: 1432-0630
    Thema: Technik allgemein , Physik
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 77
    facet.materialart.
    Unbekannt
    Springer
    Publikationsdatum: 2012-09-24
    Beschreibung:    The eutectic alloy of BiInSn was ablated in water by UV pulsed radiation. Electron microscopy of the ablated material shows spherical particles that fall into three size regimes: those with diameters of ∼0.5 μm, crystalline and amorphous particles with dimensions of ∼30 nm, and amorphous particles that are approximately 1 nm across. The 30-nm amorphous particles are homogeneous, while there are two types of 30-nm crystalline particles, those that separate into three phases and those that are homogeneous. The existence of different characteristic sizes is explained by two mechanisms: phase explosion and Rayleigh instability of the ejected melt. Content Type Journal Article Pages 1-5 DOI 10.1007/s00339-012-7244-4 Authors O. R. Musaev, Department of Physics and Astronomy, University of Missouri Kansas City, 5100 Rockhill Rd., Kansas City, MO 64110, USA E. Sutter, Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA J. M. Wrobel, Department of Physics and Astronomy, University of Missouri Kansas City, 5100 Rockhill Rd., Kansas City, MO 64110, USA M. B. Kruger, Department of Physics and Astronomy, University of Missouri Kansas City, 5100 Rockhill Rd., Kansas City, MO 64110, USA Journal Applied Physics A: Materials Science & Processing Online ISSN 1432-0630 Print ISSN 0947-8396
    Print ISSN: 0947-8396
    Digitale ISSN: 1432-0630
    Thema: Technik allgemein , Physik
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 78
    Publikationsdatum: 2012-09-24
    Beschreibung:    We report the evidence of a core–shell structure in the antiferromagnetic La 0.2 Ce 0.8 CrO 3 nanoparticles by using a combination of neutron diffraction, polarized neutron small angle scattering (SANSPOL), and dc magnetization techniques. The neutron diffraction study establishes that the present nanoparticles are antiferromagnetic in nature. The magnetic scattering in the SANSPOL study arises from the shell part of the nanoparticles due to the disordered surface spins. The analysis of the SANSPOL data shows that these nanoparticles have a mean core diameter of 12.3±1.1 nm, and a shell thickness of 2.8±0.4 nm, giving a core–shell structure with an antiferromagnetic core, and a shell with a net magnetic moment under an applied magnetic field. Content Type Journal Article Pages 1-6 DOI 10.1007/s00339-012-7262-2 Authors P. K. Manna, Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai, 400085 India S. M. Yusuf, Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai, 400085 India M. D. Mukadam, Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai, 400085 India J. Kohlbrecher, Laboratory for Neutron Scattering, ETH Zurich and Paul Scherrer Institut, 5232 Villigen-PSI, Switzerland Journal Applied Physics A: Materials Science & Processing Online ISSN 1432-0630 Print ISSN 0947-8396
    Print ISSN: 0947-8396
    Digitale ISSN: 1432-0630
    Thema: Technik allgemein , Physik
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 79
    facet.materialart.
    Unbekannt
    Springer
    Publikationsdatum: 2012-09-24
    Beschreibung:    Epitaxial (Co,Fe) nitride films were prepared on TiN buffered Si(001) substrates by dual-target reactive co-sputtering method. With lower Co content, thin films mainly consist of (Co x Fe 1− x ) 4 N phase. With higher Co content, STEM EELS found no N signal in the thin film, and, combined with XRD results, shows that fcc Co is the main phase of the thin films instead of Co 4 N. The N 2 atmosphere is helpful to induce the fcc Co phase formation during dual-target reactive co-sputtering deposition. For the films with less Co content, the RT magnetization measurements show similar magnetic properties as epitaxial Fe 4 N(001) films, while increasing the Co content, the resulting fcc Co thin films show biaxial anisotropy with the [110] in-plane easy axis. Content Type Journal Article Pages 1-6 DOI 10.1007/s00339-012-7251-5 Authors H. Xiang, Department of Materials Science and Engineering, University of Wisconsin–Madison, Madison, WI 53706, USA F.-Y. Shi, Department of Materials Science and Engineering, University of Wisconsin–Madison, Madison, WI 53706, USA M. S. Rzchowski, Department of Physics, University of Wisconsin–Madison, Madison, WI 53706, USA P. M. Voyles, Department of Materials Science and Engineering, University of Wisconsin–Madison, Madison, WI 53706, USA Y. A. Chang, Department of Materials Science and Engineering, University of Wisconsin–Madison, Madison, WI 53706, USA Journal Applied Physics A: Materials Science & Processing Online ISSN 1432-0630 Print ISSN 0947-8396
    Print ISSN: 0947-8396
    Digitale ISSN: 1432-0630
    Thema: Technik allgemein , Physik
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 80
    Publikationsdatum: 2012-09-24
    Beschreibung:    The photo-thermal deflection technique (PTD) is used to study the transport properties such as non-radiative lifetime of minority carriers ( τ nr ), electronic diffusivity ( D ) and surface recombination velocity ( S ) in bulk silicon (Si) and gallium antimonide (GaSb) semiconductors. A generalized one-dimensional theoretical model has been also developed, and the coincidence between experimental curves giving the normalized amplitude and phase variations versus square root modulation frequency and the corresponding theoretical curves makes possible to deduce the electronic parameters cited above. Content Type Journal Article Pages 1-6 DOI 10.1007/s00339-012-7242-6 Authors S. Ilahi, Unité de Recherche de Caractérisation Photo-thermique et Modélisation, Institut Préparatoire aux Etudes d’Ingénieurs de Nabeul (IPEIN), Université de Carthage, Merazka, Nabeul, 8000 Tunisie F. Saadalah, Unité de Recherche de Caractérisation Photo-thermique et Modélisation, Institut Préparatoire aux Etudes d’Ingénieurs de Nabeul (IPEIN), Université de Carthage, Merazka, Nabeul, 8000 Tunisie N. Yacoubi, Unité de Recherche de Caractérisation Photo-thermique et Modélisation, Institut Préparatoire aux Etudes d’Ingénieurs de Nabeul (IPEIN), Université de Carthage, Merazka, Nabeul, 8000 Tunisie Journal Applied Physics A: Materials Science & Processing Online ISSN 1432-0630 Print ISSN 0947-8396
    Print ISSN: 0947-8396
    Digitale ISSN: 1432-0630
    Thema: Technik allgemein , Physik
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 81
    facet.materialart.
    Unbekannt
    Springer
    Publikationsdatum: 2012-09-24
    Beschreibung:    The magnetic properties of polycrystalline Yb 1− x Pr x FeO 3 (0≤ x ≤0.9) are systematically investigated. A cusp in the zero-field-cooled dc magnetization and a frequency-dependent peak in the ac susceptibility reveal the glassy behaviors in this system. Interestingly, for YbFeO 3 , the freezing temperature T f is just in the narrow spin-reorientation region of single-crystal YbFeO 3 reported previously. The frequency-dependent peak in the real part of the ac susceptibility can be described by critical slowing down of spin dynamics. The fit to this critical slowing down law yields the values τ 0 =2.79×10 −7  s and zv =2.61. The value of τ 0 is in good agreement with values found in cluster-glass systems. Anomalous thermal hysteresis in the field-cooled magnetization is found in all samples, with a crossover point between the field-cooled cooling and field-cooled warming curves. These anomalous thermal hysteresis behaviors are explained by the competing interaction between the iron-ion subsystem and rare-earth-ion subsystem. Content Type Journal Article Pages 1-6 DOI 10.1007/s00339-012-7221-y Authors Shujuan Yuan, Department of Physics, Shanghai University, Shanghai, 200444 China Fenfen Chang, Department of Physics, Shanghai University, Shanghai, 200444 China Yiming Cao, Department of Physics, Shanghai University, Shanghai, 200444 China Xinyan Wang, Department of Physics, Shanghai University, Shanghai, 200444 China Baojuan Kang, Department of Physics, Shanghai University, Shanghai, 200444 China Jincang Zhang, Department of Physics, Shanghai University, Shanghai, 200444 China Shixun Cao, Department of Physics, Shanghai University, Shanghai, 200444 China Journal Applied Physics A: Materials Science & Processing Online ISSN 1432-0630 Print ISSN 0947-8396
    Print ISSN: 0947-8396
    Digitale ISSN: 1432-0630
    Thema: Technik allgemein , Physik
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 82
    Publikationsdatum: 2012-09-24
    Beschreibung:    Femtosecond laser material processing as micromachining and nanoparticles fabrication require a careful control of the fluences deposited on the samples. In many cases, best results are obtained by using fluences slightly above the Laser Ablation Threshold (LAT), therefore its accurate determination is an important requirement. LAT can be obtained by measuring the intensity of the acoustic signal generated during the ablation process as a function of the laser fluence. In this work femtosecond laser ablation thresholds of commercially polished stainless steel plates, white high impact polystyrene, frosted glass, antique rag papers and silicon oxynitride thin films were determined by using laser ablation induced photoacoustics (LAIP). Results were compared with similar data previously obtained by using a nanosecond Nd:YAG laser. Content Type Journal Article Pages 1-5 DOI 10.1007/s00339-012-7230-x Authors Daniel J. O. Orzi, Centro de Investigaciones Ópticas, CONICET La Plata-CIC, CC 3, CP 1897 Gonnet, Buenos Aires, Argentina Fernando C. Alvira, Centro de Investigaciones Ópticas, CONICET La Plata-CIC, CC 3, CP 1897 Gonnet, Buenos Aires, Argentina Gabriel M. Bilmes, Centro de Investigaciones Ópticas, CONICET La Plata-CIC, CC 3, CP 1897 Gonnet, Buenos Aires, Argentina Journal Applied Physics A: Materials Science & Processing Online ISSN 1432-0630 Print ISSN 0947-8396
    Print ISSN: 0947-8396
    Digitale ISSN: 1432-0630
    Thema: Technik allgemein , Physik
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 83
    Publikationsdatum: 2012-09-24
    Beschreibung:    In this paper, we prepared TiO 2 nanostructures by a hydrothermal method and investigated the influence of the ion and the effect of long alkyl chains of sodium dodecyl sulfate on the crystal phases of TiO 2 by experiments and theoretical calculations. The results indicate that the absorption of the H+HSO 4 fragment on rutile (110) is more stable than that of the 2H+SO 4 fragment and more favorable to the formation of anatase. The absorption and steric effects of sodium dodecyl sulfate on the surfaces of TiO 2 grains also have an important influence on the formation of mixed crystals by changing the speed and the way of octahedral TiO 6 units combining. Based on the above facts, we revised the original reaction scheme for crystalline titania formation by previous authors. Content Type Journal Article Category Rapid communication Pages 1-6 DOI 10.1007/s00339-012-7265-z Authors Chaohong Liu, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100 P.R. China Xin Wang, Institute of Material Science and Engineering, Ocean University of China, Qingdao, 266100 P.R. China Journal Applied Physics A: Materials Science & Processing Online ISSN 1432-0630 Print ISSN 0947-8396
    Print ISSN: 0947-8396
    Digitale ISSN: 1432-0630
    Thema: Technik allgemein , Physik
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 84
    Publikationsdatum: 2012-09-24
    Beschreibung:    A measurement of the underlying event (UE) activity in proton–proton collisions at a center-of-mass energy of 7 TeV is performed using Drell–Yan events in a data sample corresponding to an integrated luminosity of 2.2 fb −1 , collected by the CMS experiment at the LHC. The activity measured in the muonic final state ( ) is corrected to the particle level and compared with the predictions of various Monte Carlo generators and hadronization models. The dependence of the UE activity on the dimuon invariant mass is well described by pythia and herwig ++ tunes derived from the leading jet/track approach, illustrating the universality of the UE activity. The UE activity is observed to be independent of the dimuon invariant mass in the region above 40 GeV/ c 2 , while a slow increase is observed with increasing transverse momentum of the dimuon system. The dependence of the UE activity on the transverse momentum of the dimuon system is accurately described by madgraph , which simulates multiple hard emissions. Content Type Journal Article Category Regular Article - Experimental Physics Pages 1-24 DOI 10.1140/epjc/s10052-012-2080-4 Authors The CMS Collaboration, CERN, Geneva, Switzerland S. Chatrchyan, Yerevan Physics Institute, Yerevan, Armenia V. Khachatryan, Yerevan Physics Institute, Yerevan, Armenia A. M. Sirunyan, Yerevan Physics Institute, Yerevan, Armenia A. Tumasyan, Yerevan Physics Institute, Yerevan, Armenia W. Adam, Institut für Hochenergiephysik der OeAW, Wien, Austria T. Bergauer, Institut für Hochenergiephysik der OeAW, Wien, Austria M. Dragicevic, Institut für Hochenergiephysik der OeAW, Wien, Austria J. Erö, Institut für Hochenergiephysik der OeAW, Wien, Austria C. Fabjan, Institut für Hochenergiephysik der OeAW, Wien, Austria M. Friedl, Institut für Hochenergiephysik der OeAW, Wien, Austria R. Frühwirth, Institut für Hochenergiephysik der OeAW, Wien, Austria V. M. Ghete, Institut für Hochenergiephysik der OeAW, Wien, Austria J. Hammer, Institut für Hochenergiephysik der OeAW, Wien, Austria M. Hoch, Institut für Hochenergiephysik der OeAW, Wien, Austria N. Hörmann, Institut für Hochenergiephysik der OeAW, Wien, Austria J. Hrubec, Institut für Hochenergiephysik der OeAW, Wien, Austria M. Jeitler, Institut für Hochenergiephysik der OeAW, Wien, Austria W. Kiesenhofer, Institut für Hochenergiephysik der OeAW, Wien, Austria M. Krammer, Institut für Hochenergiephysik der OeAW, Wien, Austria D. Liko, Institut für Hochenergiephysik der OeAW, Wien, Austria I. Mikulec, Institut für Hochenergiephysik der OeAW, Wien, Austria M. Pernicka, Institut für Hochenergiephysik der OeAW, Wien, Austria B. Rahbaran, Institut für Hochenergiephysik der OeAW, Wien, Austria C. Rohringer, Institut für Hochenergiephysik der OeAW, Wien, Austria H. Rohringer, Institut für Hochenergiephysik der OeAW, Wien, Austria R. Schöfbeck, Institut für Hochenergiephysik der OeAW, Wien, Austria J. Strauss, Institut für Hochenergiephysik der OeAW, Wien, Austria A. Taurok, Institut für Hochenergiephysik der OeAW, Wien, Austria F. Teischinger, Institut für Hochenergiephysik der OeAW, Wien, Austria P. Wagner, Institut für Hochenergiephysik der OeAW, Wien, Austria W. Waltenberger, Institut für Hochenergiephysik der OeAW, Wien, Austria G. Walzel, Institut für Hochenergiephysik der OeAW, Wien, Austria E. Widl, Institut für Hochenergiephysik der OeAW, Wien, Austria C.-E. Wulz, Institut für Hochenergiephysik der OeAW, Wien, Austria V. Mossolov, National Centre for Particle and High Energy Physics, Minsk, Belarus N. Shumeiko, National Centre for Particle and High Energy Physics, Minsk, Belarus J. Suarez Gonzalez, National Centre for Particle and High Energy Physics, Minsk, Belarus S. Bansal, Universiteit Antwerpen, Antwerpen, Belgium L. Benucci, Universiteit Antwerpen, Antwerpen, Belgium T. Cornelis, Universiteit Antwerpen, Antwerpen, Belgium E. A. De Wolf, Universiteit Antwerpen, Antwerpen, Belgium X. Janssen, Universiteit Antwerpen, Antwerpen, Belgium S. Luyckx, Universiteit Antwerpen, Antwerpen, Belgium T. Maes, Universiteit Antwerpen, Antwerpen, Belgium L. Mucibello, Universiteit Antwerpen, Antwerpen, Belgium S. Ochesanu, Universiteit Antwerpen, Antwerpen, Belgium B. Roland, Universiteit Antwerpen, Antwerpen, Belgium R. Rougny, Universiteit Antwerpen, Antwerpen, Belgium M. Selvaggi, Universiteit Antwerpen, Antwerpen, Belgium H. Van Haevermaet, Universiteit Antwerpen, Antwerpen, Belgium P. Van Mechelen, Universiteit Antwerpen, Antwerpen, Belgium N. Van Remortel, Universiteit Antwerpen, Antwerpen, Belgium A. Van Spilbeeck, Universiteit Antwerpen, Antwerpen, Belgium F. Blekman, Vrije Universiteit Brussel, Brussel, Belgium S. Blyweert, Vrije Universiteit Brussel, Brussel, Belgium J. D’Hondt, Vrije Universiteit Brussel, Brussel, Belgium R. Gonzalez Suarez, Vrije Universiteit Brussel, Brussel, Belgium A. Kalogeropoulos, Vrije Universiteit Brussel, Brussel, Belgium M. Maes, Vrije Universiteit Brussel, Brussel, Belgium A. Olbrechts, Vrije Universiteit Brussel, Brussel, Belgium W. Van Doninck, Vrije Universiteit Brussel, Brussel, Belgium P. Van Mulders, Vrije Universiteit Brussel, Brussel, Belgium G. P. Van Onsem, Vrije Universiteit Brussel, Brussel, Belgium I. Villella, Vrije Universiteit Brussel, Brussel, Belgium O. Charaf, Université Libre de Bruxelles, Bruxelles, Belgium B. Clerbaux, Université Libre de Bruxelles, Bruxelles, Belgium G. De Lentdecker, Université Libre de Bruxelles, Bruxelles, Belgium V. Dero, Université Libre de Bruxelles, Bruxelles, Belgium A. P. R. Gay, Université Libre de Bruxelles, Bruxelles, Belgium G. H. Hammad, Université Libre de Bruxelles, Bruxelles, Belgium T. Hreus, Université Libre de Bruxelles, Bruxelles, Belgium A. Léonard, Université Libre de Bruxelles, Bruxelles, Belgium P. E. Marage, Université Libre de Bruxelles, Bruxelles, Belgium L. Thomas, Université Libre de Bruxelles, Bruxelles, Belgium C. Vander Velde, Université Libre de Bruxelles, Bruxelles, Belgium P. Vanlaer, Université Libre de Bruxelles, Bruxelles, Belgium J. Wickens, Université Libre de Bruxelles, Bruxelles, Belgium V. Adler, Ghent University, Ghent, Belgium K. Beernaert, Ghent University, Ghent, Belgium A. Cimmino, Ghent University, Ghent, Belgium S. Costantini, Ghent University, Ghent, Belgium G. Garcia, Ghent University, Ghent, Belgium M. Grunewald, Ghent University, Ghent, Belgium B. Klein, Ghent University, Ghent, Belgium J. Lellouch, Ghent University, Ghent, Belgium A. Marinov, Ghent University, Ghent, Belgium J. Mccartin, Ghent University, Ghent, Belgium A. A. Ocampo Rios, Ghent University, Ghent, Belgium D. Ryckbosch, Ghent University, Ghent, Belgium N. Strobbe, Ghent University, Ghent, Belgium F. Thyssen, Ghent University, Ghent, Belgium M. Tytgat, Ghent University, Ghent, Belgium L. Vanelderen, Ghent University, Ghent, Belgium P. Verwilligen, Ghent University, Ghent, Belgium S. Walsh, Ghent University, Ghent, Belgium E. Yazgan, Ghent University, Ghent, Belgium N. Zaganidis, Ghent University, Ghent, Belgium S. Basegmez, Université Catholique de Louvain, Louvain-la-Neuve, Belgium G. Bruno, Université Catholique de Louvain, Louvain-la-Neuve, Belgium L. Ceard, Université Catholique de Louvain, Louvain-la-Neuve, Belgium J. De Favereau De Jeneret, Université Catholique de Louvain, Louvain-la-Neuve, Belgium C. Delaere, Université Catholique de Louvain, Louvain-la-Neuve, Belgium T. du Pree, Université Catholique de Louvain, Louvain-la-Neuve, Belgium D. Favart, Université Catholique de Louvain, Louvain-la-Neuve, Belgium L. Forthomme, Université Catholique de Louvain, Louvain-la-Neuve, Belgium A. Giammanco, Université Catholique de Louvain, Louvain-la-Neuve, Belgium G. Grégoire, Université Catholique de Louvain, Louvain-la-Neuve, Belgium J. Hollar, Université Catholique de Louvain, Louvain-la-Neuve, Belgium V. Lemaitre, Université Catholique de Louvain, Louvain-la-Neuve, Belgium J. Liao, Université Catholique de Louvain, Louvain-la-Neuve, Belgium O. Militaru, Université Catholique de Louvain, Louvain-la-Neuve, Belgium C. Nuttens, Université Catholique de Louvain, Louvain-la-Neuve, Belgium D. Pagano, Université Catholique de Louvain, Louvain-la-Neuve, Belgium A. Pin, Université Catholique de Louvain, Louvain-la-Neuve, Belgium K. Piotrzkowski, Université Catholique de Louvain, Louvain-la-Neuve, Belgium N. Schul, Université Catholique de Louvain, Louvain-la-Neuve, Belgium N. Beliy, Université de Mons, Mons, Belgium T. Caebergs, Université de Mons, Mons, Belgium E. Daubie, Université de Mons, Mons, Belgium G. A. Alves, Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil D. De Jesus Damiao, Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil T. Martins, Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil M. E. Pol, Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil M. H. G. Souza, Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil W. L. Aldá Júnior, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil W. Carvalho, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil A. Custódio, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil E. M. Da Costa, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil C. De Oliveira Martins, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil S. Fonseca De Souza, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil D. Matos Figueiredo, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil L. Mundim, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil H. Nogima, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil V. Oguri, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil W. L. Prado Da Silva, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil A. Santoro, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil S. M. Silva Do Amaral, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil L. Soares Jorge, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil A. Sznajder, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil T. S. Anjos, Instituto de Fisica Teorica, Universidade Estadual Paulista, Sao Paulo, Brazil C. A. Bernardes, Instituto de Fisica Teorica, Universidade Estadual Paulista, Sao Paulo, Brazil F. A. Dias, Instituto de Fisica Teorica, Universidade Estadual Paulista, Sao Paulo, Brazil T. R. Fernandez Perez Tomei, Instituto de Fisica Teorica, Universidade Estadual Paulista, Sao Paulo, Brazil E. M. Gregores, Instituto de Fisica Teorica, Universidade Estadual Paulista, Sao Paulo, Brazil C. Lagana, Instituto de Fisica Teorica, Universidade Estadual Paulista, Sao Paulo, Brazil F. Marinho, Instituto de Fisica Teorica, Universidade Estadual Paulista, Sao Paulo, Brazil P. G. Mercadante, Instituto de Fisica Teorica, Universidade Estadual Paulista, Sao Paulo, Brazil S. F. Novaes, Instituto de Fisica Teorica, Universidade Estadual Paulista, Sao Paulo, Brazil Sandra S. Padula, Instituto de Fisica Teorica, Universidade Estadual Paulista, Sao Paulo, Brazil V. Genchev, Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria P. Iaydjiev, Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria S. Piperov, Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria M. Rodozov, Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria S. Stoykova, Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria G. Sultanov, Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria V. Tcholakov, Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria R. Trayanov, Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria M. Vutova, Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria A. Dimitrov, University of Sofia, Sofia, Bulgaria R. Hadjiiska, University of Sofia, Sofia, Bulgaria A. Karadzhinova, University of Sofia, Sofia, Bulgaria V. Kozhuharov, University of Sofia, Sofia, Bulgaria L. Litov, University of Sofia, Sofia, Bulgaria B. Pavlov, University of Sofia, Sofia, Bulgaria P. Petkov, University of Sofia, Sofia, Bulgaria J. G. Bian, Institute of High Energy Physics, Beijing, China G. M. Chen, Institute of High Energy Physics, Beijing, China H. S. Chen, Institute of High Energy Physics, Beijing, China C. H. Jiang, Institute of High Energy Physics, Beijing, China D. Liang, Institute of High Energy Physics, Beijing, China S. Liang, Institute of High Energy Physics, Beijing, China X. Meng, Institute of High Energy Physics, Beijing, China J. Tao, Institute of High Energy Physics, Beijing, China J. Wang, Institute of High Energy Physics, Beijing, China J. Wang, Institute of High Energy Physics, Beijing, China X. Wang, Institute of High Energy Physics, Beijing, China Z. Wang, Institute of High Energy Physics, Beijing, China H. Xiao, Institute of High Energy Physics, Beijing, China M. Xu, Institute of High Energy Physics, Beijing, China J. Zang, Institute of High Energy Physics, Beijing, China Z. Zhang, Institute of High Energy Physics, Beijing, China C. Asawatangtrakuldee, State Key Lab. of Nucl. Phys. and Tech., Peking University, Beijing, China Y. Ban, State Key Lab. of Nucl. Phys. and Tech., Peking University, Beijing, China S. Guo, State Key Lab. of Nucl. Phys. and Tech., Peking University, Beijing, China Y. Guo, State Key Lab. of Nucl. Phys. and Tech., Peking University, Beijing, China W. Li, State Key Lab. of Nucl. Phys. and Tech., Peking University, Beijing, China S. Liu, State Key Lab. of Nucl. Phys. and Tech., Peking University, Beijing, China Y. Mao, State Key Lab. of Nucl. Phys. and Tech., Peking University, Beijing, China S. J. Qian, State Key Lab. of Nucl. Phys. and Tech., Peking University, Beijing, China H. Teng, State Key Lab. of Nucl. Phys. and Tech., Peking University, Beijing, China S. Wang, State Key Lab. of Nucl. Phys. and Tech., Peking University, Beijing, China B. Zhu, State Key Lab. of Nucl. Phys. and Tech., Peking University, Beijing, China W. Zou, State Key Lab. of Nucl. Phys. and Tech., Peking University, Beijing, China A. Cabrera, Universidad de Los Andes, Bogota, Colombia B. Gomez Moreno, Universidad de Los Andes, Bogota, Colombia A. F. Osorio Oliveros, Universidad de Los Andes, Bogota, Colombia J. C. Sanabria, Universidad de Los Andes, Bogota, Colombia N. Godinovic, Technical University of Split, Split, Croatia D. Lelas, Technical University of Split, Split, Croatia R. Plestina, Technical University of Split, Split, Croatia D. Polic, Technical University of Split, Split, Croatia I. Puljak, Technical University of Split, Split, Croatia Z. Antunovic, University of Split, Split, Croatia M. Dzelalija, University of Split, Split, Croatia M. Kovac, University of Split, Split, Croatia V. Brigljevic, Institute Rudjer Boskovic, Zagreb, Croatia S. Duric, Institute Rudjer Boskovic, Zagreb, Croatia K. Kadija, Institute Rudjer Boskovic, Zagreb, Croatia J. Luetic, Institute Rudjer Boskovic, Zagreb, Croatia S. Morovic, Institute Rudjer Boskovic, Zagreb, Croatia A. Attikis, University of Cyprus, Nicosia, Cyprus M. Galanti, University of Cyprus, Nicosia, Cyprus J. Mousa, University of Cyprus, Nicosia, Cyprus C. Nicolaou, University of Cyprus, Nicosia, Cyprus F. Ptochos, University of Cyprus, Nicosia, Cyprus P. A. Razis, University of Cyprus, Nicosia, Cyprus M. Finger, Charles University, Prague, Czech Republic M. Finger Jr., Charles University, Prague, Czech Republic Y. Assran, Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt A. Ellithi Kamel, Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt S. Khalil, Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt M. A. Mahmoud, Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt A. Radi, Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt A. Hektor, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia M. Kadastik, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia M. Müntel, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia M. Raidal, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia L. Rebane, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia A. Tiko, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia V. Azzolini, Department of Physics, University of Helsinki, Helsinki, Finland P. Eerola, Department of Physics, University of Helsinki, Helsinki, Finland G. Fedi, Department of Physics, University of Helsinki, Helsinki, Finland M. Voutilainen, Department of Physics, University of Helsinki, Helsinki, Finland S. Czellar, Helsinki Institute of Physics, Helsinki, Finland J. Härkönen, Helsinki Institute of Physics, Helsinki, Finland A. Heikkinen, Helsinki Institute of Physics, Helsinki, Finland V. Karimäki, Helsinki Institute of Physics, Helsinki, Finland R. Kinnunen, Helsinki Institute of Physics, Helsinki, Finland M. J. Kortelainen, Helsinki Institute of Physics, Helsinki, Finland T. Lampén, Helsinki Institute of Physics, Helsinki, Finland K. Lassila-Perini, Helsinki Institute of Physics, Helsinki, Finland S. Lehti, Helsinki Institute of Physics, Helsinki, Finland T. Lindén, Helsinki Institute of Physics, Helsinki, Finland P. Luukka, Helsinki Institute of Physics, Helsinki, Finland T. Mäenpää, Helsinki Institute of Physics, Helsinki, Finland T. Peltola, Helsinki Institute of Physics, Helsinki, Finland E. Tuominen, Helsinki Institute of Physics, Helsinki, Finland J. Tuominiemi, Helsinki Institute of Physics, Helsinki, Finland E. Tuovinen, Helsinki Institute of Physics, Helsinki, Finland D. Ungaro, Helsinki Institute of Physics, Helsinki, Finland L. Wendland, Helsinki Institute of Physics, Helsinki, Finland K. Banzuzi, Lappeenranta University of Technology, Lappeenranta, Finland A. Korpela, Lappeenranta University of Technology, Lappeenranta, Finland T. Tuuva, Lappeenranta University of Technology, Lappeenranta, Finland D. Sillou, Laboratoire d’Annecy-le-Vieux de Physique des Particules, IN2P3-CNRS, Annecy-le-Vieux, France M. Besancon, DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France S. Choudhury, DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France M. Dejardin, DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France D. Denegri, DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France B. Fabbro, DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France J. L. Faure, DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France F. Ferri, DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France S. Ganjour, DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France A. Givernaud, DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France P. Gras, DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France G. Hamel de Monchenault, DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France P. Jarry, DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France E. Locci, DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France J. Malcles, DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France M. Marionneau, DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France L. Millischer, DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France J. Rander, DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France A. Rosowsky, DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France I. Shreyber, DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France M. Titov, DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France S. Baffioni, Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France F. Beaudette, Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France L. Benhabib, Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France L. Bianchini, Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France M. Bluj, Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France C. Broutin, Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France P. Busson, Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France C. Charlot, Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France N. Daci, Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France T. Dahms, Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France L. Dobrzynski, Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France S. Elgammal, Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France R. Granier de Cassagnac, Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France M. Haguenauer, Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France P. Miné, Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France C. Mironov, Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France C. Ochando, Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France P. Paganini, Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France D. Sabes, Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France R. Salerno, Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France Y. Sirois, Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France C. Thiebaux, Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France C. Veelken, Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France A. Zabi, Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France J.-L. Agram, Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France J. Andrea, Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France D. Bloch, Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France D. Bodin, Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France J.-M. Brom, Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France M. Cardaci, Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France E. C. Chabert, Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France C. Collard, Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France E. Conte, Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France F. Drouhin, Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France C. Ferro, Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France J.-C. Fontaine, Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France D. Gelé, Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France U. Goerlach, Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France S. Greder, Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France P. Juillot, Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France M. Karim, Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France A.-C. Le Bihan, Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France P. Van Hove, Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France F. Fassi, Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules (IN2P3), Villeurbanne, France D. Mercier, Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules (IN2P3), Villeurbanne, France C. Baty, Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France S. Beauceron, Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France N. Beaupere, Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France M. Bedjidian, Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France O. Bondu, Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France G. Boudoul, Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France D. Boumediene, Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France H. Brun, Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France J. Chasserat, Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France R. Chierici, Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France D. Contardo, Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France P. Depasse, Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France H. El Mamouni, Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France A. Falkiewicz, Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France J. Fay, Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France S. Gascon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France M. Gouzevitch, Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France B. Ille, Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France T. Kurca, Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France T. Le Grand, Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France M. Lethuillier, Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France L. Mirabito, Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France S. Perries, Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France V. Sordini, Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France S. Tosi, Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France Y. Tschudi, Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France P. Verdier, Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France S. Viret, Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France D. Lomidze, Institute of High Energy Physics and Informatization, Tbilisi State University, Tbilisi, Georgia G. Anagnostou, RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany S. Beranek, RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany M. Edelhoff, RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany L. Feld, RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany N. Heracleous, RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany O. Hindrichs, RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany R. Jussen, RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany K. Klein, RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany J. Merz, RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany A. Ostapchuk, RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany A. Perieanu, RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany F. Raupach, RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany J. Sammet, RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany S. Schael, RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany D. Sprenger, RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany H. Weber, RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany B. Wittmer, RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany V. Zhukov, RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany M. Ata, RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany J. Caudron, RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany E. Dietz-Laursonn, RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany M. Erdmann, RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany A. Güth, RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany T. Hebbeker, RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany C. Heidemann, RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany K. Hoepfner, RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany T. Klimkovich, RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany D. Klingebiel, RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany P. Kreuzer, RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany D. Lanske, RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany J. Lingemann, RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany C. Magass, RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany M. Merschmeyer, RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany A. Meyer, RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany M. Olschewski, RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany P. Papacz, RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany H. Pieta, RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany H. Reithler, RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany S. A. Schmitz, RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany L. Sonnenschein, RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany J. Steggemann, RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany D. Teyssier, RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany M. Weber, RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany M. Bontenackels, RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany V. Cherepanov, RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany M. Davids, RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany G. Flügge, RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany H. Geenen, RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany M. Geisler, RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany W. Haj Ahmad, RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany F. Hoehle, RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany B. Kargoll, RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany T. Kress, RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany Y. Kuessel, RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany A. Linn, RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany A. Nowack, RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany L. Perchalla, RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany O. Pooth, RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany J. Rennefeld, RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany P. Sauerland, RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany A. Stahl, RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany M. H. Zoeller, RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany M. Aldaya Martin, Deutsches Elektronen-Synchrotron, Hamburg, Germany W. Behrenhoff, Deutsches Elektronen-Synchrotron, Hamburg, Germany U. Behrens, Deutsches Elektronen-Synchrotron, Hamburg, Germany M. Bergholz, Deutsches Elektronen-Synchrotron, Hamburg, Germany A. Bethani, Deutsches Elektronen-Synchrotron, Hamburg, Germany K. Borras, Deutsches Elektronen-Synchrotron, Hamburg, Germany A. Cakir, Deutsches Elektronen-Synchrotron, Hamburg, Germany A. Campbell, Deutsches Elektronen-Synchrotron, Hamburg, Germany E. Castro, Deutsches Elektronen-Synchrotron, Hamburg, Germany D. Dammann, Deutsches Elektronen-Synchrotron, Hamburg, Germany G. Eckerlin, Deutsches Elektronen-Synchrotron, Hamburg, Germany D. Eckstein, Deutsches Elektronen-Synchrotron, Hamburg, Germany A. Flossdorf, Deutsches Elektronen-Synchrotron, Hamburg, Germany G. Flucke, Deutsches Elektronen-Synchrotron, Hamburg, Germany A. Geiser, Deutsches Elektronen-Synchrotron, Hamburg, Germany J. Hauk, Deutsches Elektronen-Synchrotron, Hamburg, Germany H. Jung, Deutsches Elektronen-Synchrotron, Hamburg, Germany M. Kasemann, Deutsches Elektronen-Synchrotron, Hamburg, Germany P. Katsas, Deutsches Elektronen-Synchrotron, Hamburg, Germany C. Kleinwort, Deutsches Elektronen-Synchrotron, Hamburg, Germany H. Kluge, Deutsches Elektronen-Synchrotron, Hamburg, Germany A. Knutsson, Deutsches Elektronen-Synchrotron, Hamburg, Germany M. Krämer, Deutsches Elektronen-Synchrotron, Hamburg, Germany D. Krücker, Deutsches Elektronen-Synchrotron, Hamburg, Germany E. Kuznetsova, Deutsches Elektronen-Synchrotron, Hamburg, Germany W. Lange, Deutsches Elektronen-Synchrotron, Hamburg, Germany W. Lohmann, Deutsches Elektronen-Synchrotron, Hamburg, Germany B. Lutz, Deutsches Elektronen-Synchrotron, Hamburg, Germany R. Mankel, Deutsches Elektronen-Synchrotron, Hamburg, Germany I. Marfin, Deutsches Elektronen-Synchrotron, Hamburg, Germany M. Marienfeld, Deutsches Elektronen-Synchrotron, Hamburg, Germany I.-A. Melzer-Pellmann, Deutsches Elektronen-Synchrotron, Hamburg, Germany A. B. Meyer, Deutsches Elektronen-Synchrotron, Hamburg, Germany J. Mnich, Deutsches Elektronen-Synchrotron, Hamburg, Germany A. Mussgiller, Deutsches Elektronen-Synchrotron, Hamburg, Germany S. Naumann-Emme, Deutsches Elektronen-Synchrotron, Hamburg, Germany J. Olzem, Deutsches Elektronen-Synchrotron, Hamburg, Germany A. Petrukhin, Deutsches Elektronen-Synchrotron, Hamburg, Germany D. Pitzl, Deutsches Elektronen-Synchrotron, Hamburg, Germany A. Raspereza, Deutsches Elektronen-Synchrotron, Hamburg, Germany P. M. Ribeiro Cipriano, Deutsches Elektronen-Synchrotron, Hamburg, Germany M. Rosin, Deutsches Elektronen-Synchrotron, Hamburg, Germany J. Salfeld-Nebgen, Deutsches Elektronen-Synchrotron, Hamburg, Germany R. Schmidt, Deutsches Elektronen-Synchrotron, Hamburg, Germany T. Schoerner-Sadenius, Deutsches Elektronen-Synchrotron, Hamburg, Germany N. Sen, Deutsches Elektronen-Synchrotron, Hamburg, Germany A. Spiridonov, Deutsches Elektronen-Synchrotron, Hamburg, Germany M. Stein, Deutsches Elektronen-Synchrotron, Hamburg, Germany J. Tomaszewska, Deutsches Elektronen-Synchrotron, Hamburg, Germany R. Walsh, Deutsches Elektronen-Synchrotron, Hamburg, Germany C. Wissing, Deutsches Elektronen-Synchrotron, Hamburg, Germany C. Autermann, University of Hamburg, Hamburg, Germany V. Blobel, University of Hamburg, Hamburg, Germany S. Bobrovskyi, University of Hamburg, Hamburg, Germany J. Draeger, University of Hamburg, Hamburg, Germany H. Enderle, University of Hamburg, Hamburg, Germany J. Erfle, University of Hamburg, Hamburg, Germany U. Gebbert, University of Hamburg, Hamburg, Germany M. Görner, University of Hamburg, Hamburg, Germany T. Hermanns, University of Hamburg, Hamburg, Germany K. Kaschube, University of Hamburg, Hamburg, Germany G. Kaussen, University of Hamburg, Hamburg, Germany H. Kirschenmann, University of Hamburg, Hamburg, Germany R. Klanner, University of Hamburg, Hamburg, Germany J. Lange, University of Hamburg, Hamburg, Germany B. Mura, University of Hamburg, Hamburg, Germany F. Nowak, University of Hamburg, Hamburg, Germany N. Pietsch, University of Hamburg, Hamburg, Germany C. Sander, University of Hamburg, Hamburg, Germany H. Schettler, University of Hamburg, Hamburg, Germany P. Schleper, University of Hamburg, Hamburg, Germany E. Schlieckau, University of Hamburg, Hamburg, Germany M. Schröder, University of Hamburg, Hamburg, Germany T. Schum, University of Hamburg, Hamburg, Germany H. Stadie, University of Hamburg, Hamburg, Germany G. Steinbrück, University of Hamburg, Hamburg, Germany J. Thomsen, University of Hamburg, Hamburg, Germany C. Barth, Institut für Experimentelle Kernphysik, Karlsruhe, Germany J. Berger, Institut für Experimentelle Kernphysik, Karlsruhe, Germany T. Chwalek, Institut für Experimentelle Kernphysik, Karlsruhe, Germany W. De Boer, Institut für Experimentelle Kernphysik, Karlsruhe, Germany A. Dierlamm, Institut für Experimentelle Kernphysik, Karlsruhe, Germany G. Dirkes, Institut für Experimentelle Kernphysik, Karlsruhe, Germany M. Feindt, Institut für Experimentelle Kernphysik, Karlsruhe, Germany J. Gruschke, Institut für Experimentelle Kernphysik, Karlsruhe, Germany M. Guthoff, Institut für Experimentelle Kernphysik, Karlsruhe, Germany C. Hackstein, Institut für Experimentelle Kernphysik, Karlsruhe, Germany F. Hartmann, Institut für Experimentelle Kernphysik, Karlsruhe, Germany M. Heinrich, Institut für Experimentelle Kernphysik, Karlsruhe, Germany H. Held, Institut für Experimentelle Kernphysik, Karlsruhe, Germany K. H. Hoffmann, Institut für Experimentelle Kernphysik, Karlsruhe, Germany S. Honc, Institut für Experimentelle Kernphysik, Karlsruhe, Germany I. Katkov, Institut für Experimentelle Kernphysik, Karlsruhe, Germany J. R. Komaragiri, Institut für Experimentelle Kernphysik, Karlsruhe, Germany T. Kuhr, Institut für Experimentelle Kernphysik, Karlsruhe, Germany D. Martschei, Institut für Experimentelle Kernphysik, Karlsruhe, Germany S. Mueller, Institut für Experimentelle Kernphysik, Karlsruhe, Germany Th. Müller, Institut für Experimentelle Kernphysik, Karlsruhe, Germany M. Niegel, Institut für Experimentelle Kernphysik, Karlsruhe, Germany O. Oberst, Institut für Experimentelle Kernphysik, Karlsruhe, Germany A. Oehler, Institut für Experimentelle Kernphysik, Karlsruhe, Germany J. Ott, Institut für Experimentelle Kernphysik, Karlsruhe, Germany T. Peiffer, Institut für Experimentelle Kernphysik, Karlsruhe, Germany G. Quast, Institut für Experimentelle Kernphysik, Karlsruhe, Germany K. Rabbertz, Institut für Experimentelle Kernphysik, Karlsruhe, Germany F. Ratnikov, Institut für Experimentelle Kernphysik, Karlsruhe, Germany N. Ratnikova, Institut für Experimentelle Kernphysik, Karlsruhe, Germany M. Renz, Institut für Experimentelle Kernphysik, Karlsruhe, Germany S. Röcker, Institut für Experimentelle Kernphysik, Karlsruhe, Germany C. Saout, Institut für Experimentelle Kernphysik, Karlsruhe, Germany A. Scheurer, Institut für Experimentelle Kernphysik, Karlsruhe, Germany P. Schieferdecker, Institut für Experimentelle Kernphysik, Karlsruhe, Germany F.-P. Schilling, Institut für Experimentelle Kernphysik, Karlsruhe, Germany M. Schmanau, Institut für Experimentelle Kernphysik, Karlsruhe, Germany G. Schott, Institut für Experimentelle Kernphysik, Karlsruhe, Germany H. J. Simonis, Institut für Experimentelle Kernphysik, Karlsruhe, Germany F. M. Stober, Institut für Experimentelle Kernphysik, Karlsruhe, Germany D. Troendle, Institut für Experimentelle Kernphysik, Karlsruhe, Germany J. Wagner-Kuhr, Institut für Experimentelle Kernphysik, Karlsruhe, Germany T. Weiler, Institut für Experimentelle Kernphysik, Karlsruhe, Germany M. Zeise, Institut für Experimentelle Kernphysik, Karlsruhe, Germany E. B. Ziebarth, Institut für Experimentelle Kernphysik, Karlsruhe, Germany G. Daskalakis, Institute of Nuclear Physics “Demokritos”, Aghia Paraskevi, Greece T. Geralis, Institute of Nuclear Physics “Demokritos”, Aghia Paraskevi, Greece S. Kesisoglou, Institute of Nuclear Physics “Demokritos”, Aghia Paraskevi, Greece A. Kyriakis, Institute of Nuclear Physics “Demokritos”, Aghia Paraskevi, Greece D. Loukas, Institute of Nuclear Physics “Demokritos”, Aghia Paraskevi, Greece I. Manolakos, Institute of Nuclear Physics “Demokritos”, Aghia Paraskevi, Greece A. Markou, Institute of Nuclear Physics “Demokritos”, Aghia Paraskevi, Greece C. Markou, Institute of Nuclear Physics “Demokritos”, Aghia Paraskevi, Greece C. Mavrommatis, Institute of Nuclear Physics “Demokritos”, Aghia Paraskevi, Greece E. Ntomari, Institute of Nuclear Physics “Demokritos”, Aghia Paraskevi, Greece L. Gouskos, University of Athens, Athens, Greece T. J. Mertzimekis, University of Athens, Athens, Greece A. Panagiotou, University of Athens, Athens, Greece N. Saoulidou, University of Athens, Athens, Greece E. Stiliaris, University of Athens, Athens, Greece I. Evangelou, University of Ioánnina, Ioánnina, Greece C. Foudas, University of Ioánnina, Ioánnina, Greece P. Kokkas, University of Ioánnina, Ioánnina, Greece N. Manthos, University of Ioánnina, Ioánnina, Greece I. Papadopoulos, University of Ioánnina, Ioánnina, Greece V. Patras, University of Ioánnina, Ioánnina, Greece F. A. Triantis, University of Ioánnina, Ioánnina, Greece A. Aranyi, KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary G. Bencze, KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary L. Boldizsar, KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary C. Hajdu, KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary P. Hidas, KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary D. Horvath, KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary A. Kapusi, KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary K. Krajczar, KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary F. Sikler, KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary G. Vesztergombi, KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary N. Beni, Institute of Nuclear Research ATOMKI, Debrecen, Hungary J. Molnar, Institute of Nuclear Research ATOMKI, Debrecen, Hungary J. Palinkas, Institute of Nuclear Research ATOMKI, Debrecen, Hungary Z. Szillasi, Institute of Nuclear Research ATOMKI, Debrecen, Hungary V. Veszpremi, Institute of Nuclear Research ATOMKI, Debrecen, Hungary J. Karancsi, University of Debrecen, Debrecen, Hungary P. Raics, University of Debrecen, Debrecen, Hungary Z. L. Trocsanyi, University of Debrecen, Debrecen, Hungary B. Ujvari, University of Debrecen, Debrecen, Hungary S. B. Beri, Panjab University, Chandigarh, India V. Bhatnagar, Panjab University, Chandigarh, India N. Dhingra, Panjab University, Chandigarh, India R. Gupta, Panjab University, Chandigarh, India M. Jindal, Panjab University, Chandigarh, India M. Kaur, Panjab University, Chandigarh, India J. M. Kohli, Panjab University, Chandigarh, India M. Z. Mehta, Panjab University, Chandigarh, India N. Nishu, Panjab University, Chandigarh, India L. K. Saini, Panjab University, Chandigarh, India A. Sharma, Panjab University, Chandigarh, India A. P. Singh, Panjab University, Chandigarh, India J. Singh, Panjab University, Chandigarh, India S. P. Singh, Panjab University, Chandigarh, India S. Ahuja, University of Delhi, Delhi, India B. C. Choudhary, University of Delhi, Delhi, India A. Kumar, University of Delhi, Delhi, India A. Kumar, University of Delhi, Delhi, India S. Malhotra, University of Delhi, Delhi, India M. Naimuddin, University of Delhi, Delhi, India K. Ranjan, University of Delhi, Delhi, India V. Sharma, University of Delhi, Delhi, India R. K. Shivpuri, University of Delhi, Delhi, India S. Banerjee, Saha Institute of Nuclear Physics, Kolkata, India S. Bhattacharya, Saha Institute of Nuclear Physics, Kolkata, India S. Dutta, Saha Institute of Nuclear Physics, Kolkata, India B. Gomber, Saha Institute of Nuclear Physics, Kolkata, India Sa. Jain, Saha Institute of Nuclear Physics, Kolkata, India Sh. Jain, Saha Institute of Nuclear Physics, Kolkata, India R. Khurana, Saha Institute of Nuclear Physics, Kolkata, India S. Sarkar, Saha Institute of Nuclear Physics, Kolkata, India R. K. Choudhury, Bhabha Atomic Research Centre, Mumbai, India D. Dutta, Bhabha Atomic Research Centre, Mumbai, India S. Kailas, Bhabha Atomic Research Centre, Mumbai, India V. Kumar, Bhabha Atomic Research Centre, Mumbai, India A. K. Mohanty, Bhabha Atomic Research Centre, Mumbai, India L. M. Pant, Bhabha Atomic Research Centre, Mumbai, India P. Shukla, Bhabha Atomic Research Centre, Mumbai, India T. Aziz, Tata Institute of Fundamental Research - EHEP, Mumbai, India S. Ganguly, Tata Institute of Fundamental Research - EHEP, Mumbai, India M. Guchait, Tata Institute of Fundamental Research - EHEP, Mumbai, India A. Gurtu, Tata Institute of Fundamental Research - EHEP, Mumbai, India M. Maity, Tata Institute of Fundamental Research - EHEP, Mumbai, India G. Majumder, Tata Institute of Fundamental Research - EHEP, Mumbai, India K. Mazumdar, Tata Institute of Fundamental Research - EHEP, Mumbai, India G. B. Mohanty, Tata Institute of Fundamental Research - EHEP, Mumbai, India B. Parida, Tata Institute of Fundamental Research - EHEP, Mumbai, India A. Saha, Tata Institute of Fundamental Research - EHEP, Mumbai, India K. Sudhakar, Tata Institute of Fundamental Research - EHEP, Mumbai, India N. Wickramage, Tata Institute of Fundamental Research - EHEP, Mumbai, India S. Banerjee, Tata Institute of Fundamental Research - HECR, Mumbai, India S. Dugad, Tata Institute of Fundamental Research - HECR, Mumbai, India N. K. Mondal, Tata Institute of Fundamental Research - HECR, Mumbai, India H. Arfaei, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran H. Bakhshiansohi, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran S. M. Etesami, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran A. Fahim, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran M. Hashemi, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran H. Hesari, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran A. Jafari, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran M. Khakzad, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran A. Mohammadi, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran M. Mohammadi Najafabadi, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran S. Paktinat Mehdiabadi, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran B. Safarzadeh, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran M. Zeinali, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran M. Abbrescia, INFN Sezione di Bari, Bari, Italy L. Barbone, INFN Sezione di Bari, Bari, Italy C. Calabria, INFN Sezione di Bari, Bari, Italy S. S. Chhibra, INFN Sezione di Bari, Bari, Italy A. Colaleo, INFN Sezione di Bari, Bari, Italy D. Creanza, INFN Sezione di Bari, Bari, Italy N. De Filippis, INFN Sezione di Bari, Bari, Italy M. De Palma, INFN Sezione di Bari, Bari, Italy L. Fiore, INFN Sezione di Bari, Bari, Italy G. Iaselli, INFN Sezione di Bari, Bari, Italy L. Lusito, INFN Sezione di Bari, Bari, Italy G. Maggi, INFN Sezione di Bari, Bari, Italy M. Maggi, INFN Sezione di Bari, Bari, Italy N. Manna, INFN Sezione di Bari, Bari, Italy B. Marangelli, INFN Sezione di Bari, Bari, Italy S. My, INFN Sezione di Bari, Bari, Italy S. Nuzzo, INFN Sezione di Bari, Bari, Italy N. Pacifico, INFN Sezione di Bari, Bari, Italy A. Pompili, INFN Sezione di Bari, Bari, Italy G. Pugliese, INFN Sezione di Bari, Bari, Italy F. Romano, INFN Sezione di Bari, Bari, Italy G. Selvaggi, INFN Sezione di Bari, Bari, Italy L. Silvestris, INFN Sezione di Bari, Bari, Italy G. Singh, INFN Sezione di Bari, Bari, Italy S. Tupputi, INFN Sezione di Bari, Bari, Italy G. Zito, INFN Sezione di Bari, Bari, Italy G. Abbiendi, INFN Sezione di Bologna, Bologna, Italy A. C. Benvenuti, INFN Sezione di Bologna, Bologna, Italy D. Bonacorsi, INFN Sezione di Bologna, Bologna, Italy S. Braibant-Giacomelli, INFN Sezione di Bologna, Bologna, Italy L. Brigliadori, INFN Sezione di Bologna, Bologna, Italy P. Capiluppi, INFN Sezione di Bologna, Bologna, Italy A. Castro, INFN Sezione di Bologna, Bologna, Italy F. R. Cavallo, INFN Sezione di Bologna, Bologna, Italy M. Cuffiani, INFN Sezione di Bologna, Bologna, Italy G. M. Dallavalle, INFN Sezione di Bologna, Bologna, Italy F. Fabbri, INFN Sezione di Bologna, Bologna, Italy A. Fanfani, INFN Sezione di Bologna, Bologna, Italy D. Fasanella, INFN Sezione di Bologna, Bologna, Italy P. Giacomelli, INFN Sezione di Bologna, Bologna, Italy C. Grandi, INFN Sezione di Bologna, Bologna, Italy S. Marcellini, INFN Sezione di Bologna, Bologna, Italy G. Masetti, INFN Sezione di Bologna, Bologna, Italy M. Meneghelli, INFN Sezione di Bologna, Bologna, Italy A. Montanari, INFN Sezione di Bologna, Bologna, Italy F. L. Navarria, INFN Sezione di Bologna, Bologna, Italy F. Odorici, INFN Sezione di Bologna, Bologna, Italy A. Perrotta, INFN Sezione di Bologna, Bologna, Italy F. Primavera, INFN Sezione di Bologna, Bologna, Italy A. M. Rossi, INFN Sezione di Bologna, Bologna, Italy T. Rovelli, INFN Sezione di Bologna, Bologna, Italy G. Siroli, INFN Sezione di Bologna, Bologna, Italy R. Travaglini, INFN Sezione di Bologna, Bologna, Italy S. Albergo, INFN Sezione di Catania, Catania, Italy G. Cappello, INFN Sezione di Catania, Catania, Italy M. Chiorboli, INFN Sezione di Catania, Catania, Italy S. Costa, INFN Sezione di Catania, Catania, Italy R. Potenza, INFN Sezione di Catania, Catania, Italy A. Tricomi, INFN Sezione di Catania, Catania, Italy C. Tuve, INFN Sezione di Catania, Catania, Italy G. Barbagli, INFN Sezione di Firenze, Firenze, Italy V. Ciulli, INFN Sezione di Firenze, Firenze, Italy C. Civinini, INFN Sezione di Firenze, Firenze, Italy R. D’Alessandro, INFN Sezione di Firenze, Firenze, Italy E. Focardi, INFN Sezione di Firenze, Firenze, Italy S. Frosali, INFN Sezione di Firenze, Firenze, Italy E. Gallo, INFN Sezione di Firenze, Firenze, Italy S. Gonzi, INFN Sezione di Firenze, Firenze, Italy M. Meschini, INFN Sezione di Firenze, Firenze, Italy S. Paoletti, INFN Sezione di Firenze, Firenze, Italy G. Sguazzoni, INFN Sezione di Firenze, Firenze, Italy A. Tropiano, INFN Sezione di Firenze, Firenze, Italy L. Benussi, INFN Laboratori Nazionali di Frascati, Frascati, Italy S. Bianco, INFN Laboratori Nazionali di Frascati, Frascati, Italy S. Colafranceschi, INFN Laboratori Nazionali di Frascati, Frascati, Italy F. Fabbri, INFN Laboratori Nazionali di Frascati, Frascati, Italy D. Piccolo, INFN Laboratori Nazionali di Frascati, Frascati, Italy P. Fabbricatore, INFN Sezione di Genova, Genova, Italy R. Musenich, INFN Sezione di Genova, Genova, Italy A. Benaglia, INFN Sezione di Milano-Bicocca, Milano, Italy F. De Guio, INFN Sezione di Milano-Bicocca, Milano, Italy L. Di Matteo, INFN Sezione di Milano-Bicocca, Milano, Italy S. Fiorendi, INFN Sezione di Milano-Bicocca, Milano, Italy S. Gennai, INFN Sezione di Milano-Bicocca, Milano, Italy A. Ghezzi, INFN Sezione di Milano-Bicocca, Milano, Italy S. Malvezzi, INFN Sezione di Milano-Bicocca, Milano, Italy R. A. Manzoni, INFN Sezione di Milano-Bicocca, Milano, Italy A. Martelli, INFN Sezione di Milano-Bicocca, Milano, Italy A. Massironi, INFN Sezione di Milano-Bicocca, Milano, Italy D. Menasce, INFN Sezione di Milano-Bicocca, Milano, Italy L. Moroni, INFN Sezione di Milano-Bicocca, Milano, Italy M. Paganoni, INFN Sezione di Milano-Bicocca, Milano, Italy D. Pedrini, INFN Sezione di Milano-Bicocca, Milano, Italy S. Ragazzi, INFN Sezione di Milano-Bicocca, Milano, Italy N. Redaelli, INFN Sezione di Milano-Bicocca, Milano, Italy S. Sala, INFN Sezione di Milano-Bicocca, Milano, Italy T. Tabarelli de Fatis, INFN Sezione di Milano-Bicocca, Milano, Italy S. Buontempo, INFN Sezione di Napoli, Napoli, Italy C. A. Carrillo Montoya, INFN Sezione di Napoli, Napoli, Italy N. Cavallo, INFN Sezione di Napoli, Napoli, Italy A. De Cosa, INFN Sezione di Napoli, Napoli, Italy O. Dogangun, INFN Sezione di Napoli, Napoli, Italy F. Fabozzi, INFN Sezione di Napoli, Napoli, Italy A. O. M. Iorio, INFN Sezione di Napoli, Napoli, Italy L. Lista, INFN Sezione di Napoli, Napoli, Italy M. Merola, INFN Sezione di Napoli, Napoli, Italy P. Paolucci, INFN Sezione di Napoli, Napoli, Italy P. Azzi, INFN Sezione di Padova, Padova, Italy N. Bacchetta, INFN Sezione di Padova, Padova, Italy P. Bellan, INFN Sezione di Padova, Padova, Italy D. Bisello, INFN Sezione di Padova, Padova, Italy A. Branca, INFN Sezione di Padova, Padova, Italy R. Carlin, INFN Sezione di Padova, Padova, Italy P. Checchia, INFN Sezione di Padova, Padova, Italy T. Dorigo, INFN Sezione di Padova, Padova, Italy U. Dosselli, INFN Sezione di Padova, Padova, Italy F. Gasparini, INFN Sezione di Padova, Padova, Italy U. Gasparini, INFN Sezione di Padova, Padova, Italy A. Gozzelino, INFN Sezione di Padova, Padova, Italy K. Kanishchev, INFN Sezione di Padova, Padova, Italy S. Lacaprara, INFN Sezione di Padova, Padova, Italy I. Lazzizzera, INFN Sezione di Padova, Padova, Italy M. Margoni, INFN Sezione di Padova, Padova, Italy M. Mazzucato, INFN Sezione di Padova, Padova, Italy A. T. Meneguzzo, INFN Sezione di Padova, Padova, Italy M. Nespolo, INFN Sezione di Padova, Padova, Italy L. Perrozzi, INFN Sezione di Padova, Padova, Italy N. Pozzobon, INFN Sezione di Padova, Padova, Italy P. Ronchese, INFN Sezione di Padova, Padova, Italy F. Simonetto, INFN Sezione di Padova, Padova, Italy E. Torassa, INFN Sezione di Padova, Padova, Italy M. Tosi, INFN Sezione di Padova, Padova, Italy A. Triossi, INFN Sezione di Padova, Padova, Italy S. Vanini, INFN Sezione di Padova, Padova, Italy P. Zotto, INFN Sezione di Padova, Padova, Italy G. Zumerle, INFN Sezione di Padova, Padova, Italy P. Baesso, INFN Sezione di Pavia, Pavia, Italy U. Berzano, INFN Sezione di Pavia, Pavia, Italy S. P. Ratti, INFN Sezione di Pavia, Pavia, Italy C. Riccardi, INFN Sezione di Pavia, Pavia, Italy P. Torre, INFN Sezione di Pavia, Pavia, Italy P. Vitulo, INFN Sezione di Pavia, Pavia, Italy C. Viviani, INFN Sezione di Pavia, Pavia, Italy M. Biasini, INFN Sezione di Perugia, Perugia, Italy G. M. Bilei, INFN Sezione di Perugia, Perugia, Italy B. Caponeri, INFN Sezione di Perugia, Perugia, Italy L. Fanò, INFN Sezione di Perugia, Perugia, Italy P. Lariccia, INFN Sezione di Perugia, Perugia, Italy A. Lucaroni, INFN Sezione di Perugia, Perugia, Italy G. Mantovani, INFN Sezione di Perugia, Perugia, Italy M. Menichelli, INFN Sezione di Perugia, Perugia, Italy A. Nappi, INFN Sezione di Perugia, Perugia, Italy F. Romeo, INFN Sezione di Perugia, Perugia, Italy A. Santocchia, INFN Sezione di Perugia, Perugia, Italy S. Taroni, INFN Sezione di Perugia, Perugia, Italy M. Valdata, INFN Sezione di Perugia, Perugia, Italy P. Azzurri, INFN Sezione di Pisa, Pisa, Italy G. Bagliesi, INFN Sezione di Pisa, Pisa, Italy T. Boccali, INFN Sezione di Pisa, Pisa, Italy G. Broccolo, INFN Sezione di Pisa, Pisa, Italy R. Castaldi, INFN Sezione di Pisa, Pisa, Italy R. T. D’Agnolo, INFN Sezione di Pisa, Pisa, Italy R. Dell’Orso, INFN Sezione di Pisa, Pisa, Italy F. Fiori, INFN Sezione di Pisa, Pisa, Italy L. Foà, INFN Sezione di Pisa, Pisa, Italy A. Giassi, INFN Sezione di Pisa, Pisa, Italy A. Kraan, INFN Sezione di Pisa, Pisa, Italy F. Ligabue, INFN Sezione di Pisa, Pisa, Italy T. Lomtadze, INFN Sezione di Pisa, Pisa, Italy L. Martini, INFN Sezione di Pisa, Pisa, Italy A. Messineo, INFN Sezione di Pisa, Pisa, Italy F. Palla, INFN Sezione di Pisa, Pisa, Italy F. Palmonari, INFN Sezione di Pisa, Pisa, Italy A. Rizzi, INFN Sezione di
    Print ISSN: 1434-6044
    Digitale ISSN: 1434-6052
    Thema: Physik
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 85
    Publikationsdatum: 2012-09-29
    Beschreibung:    Electrospinning is a simple and versatile fiber synthesis technique in which a high-voltage electric field is applied to a stream of polymer melt or polymer solution, resulting in the formation of continuous micro/nanofibers. Halloysite nanotubes (HNT) have been found to achieve improved structural and mechanical properties when embedded into various polymer matrices. This research work focuses on blending poly( ε -caprolactone) (PCL) (9 and 15 wt%/v) and poly(lactic acid) (PLA) (fixed at 8 wt%/v) solutions with HNT at two different concentrations 1 and 2 wt%/v. Both unmodified HNT and HNT modified with 3-aminopropyltriethoxysilane (ASP) were utilized in this study. Fiber properties have been shown to be strongly related to the solution viscosity and electrical conductivity. The addition of HNT increased the solution viscosity, thus resulting in the production of uniform fibers. For both PCL concentrations, the average fiber diameter increased with the increasing of HNT concentration. The average fiber diameters with HNT-ASP were reduced considerably in comparison to those with unmodified HNT when using 15 wt%/v PCL. Slightly better dispersion was obtained for PLA: PCL composites embedded with HNT-ASP compared to unmodified HNT. Furthermore, the addition of HNT-ASP to the polymeric blends resulted in a moderate decrease in the degree of crystallinity, as well as slight reductions of glass transition temperature of PCL, the crystallization temperature and melting temperature of PLA within composite materials. The infrared spectra of composites confirmed the successful embedding of HNT-ASP into PLA: PCL nanofibers relative to unmodified HNT due to the premodification using ASP to reduce the agglomeration behavior. This study provides a new material system that could be potentially used in drug delivery, and may facilitate good control of the drug release process. Content Type Journal Article Pages 1-10 DOI 10.1007/s00339-012-7233-7 Authors Hazim J. Haroosh, Department of Chemical Engineering, Curtin University, Perth, WA 6845, Australia Yu Dong, Department of Mechanical Engineering, Curtin University, Perth, WA 6845, Australia Deeptangshu S. Chaudhary, Department of Chemical Engineering, Curtin University, Perth, WA 6845, Australia Gordon D. Ingram, Department of Chemical Engineering, Curtin University, Perth, WA 6845, Australia Shin-ichi Yusa, Department of Materials Science and Chemistry, University of Hyogo, Himeji, Hyogo, 671-2280 Japan Journal Applied Physics A: Materials Science & Processing Online ISSN 1432-0630 Print ISSN 0947-8396
    Print ISSN: 0947-8396
    Digitale ISSN: 1432-0630
    Thema: Technik allgemein , Physik
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 86
    Publikationsdatum: 2012-09-29
    Beschreibung:    Size dependence of transition enthalpy observed in ferroelectric PbTiO 3 nanoparticles has been shown to result from volume averaging or the surface dilution effect rather than size induced reduction of spontaneous polarization at the first-order phase transition temperature. The PbTiO 3 nanoparticles are suggested to be composed of a cubic surface layer with size independent thickness and a ferroelectric core having nonzero and size independent spontaneous polarization at the transition point. Based on a surface layer model, thickness of the cubic surface layer at the Curie temperature is estimated to be around 5–8 nm for PbTiO 3 nanoparticles from the literature-reported transition enthalpy data. The present analyses indicate that the size effect in ferroelectrics is possibly a surface related extrinsic effect. Content Type Journal Article Pages 1-5 DOI 10.1007/s00339-012-7274-y Authors Wenhui Ma, Department of Physics, Shantou University, Shantou, Guangdong 515063, People’s Republic of China Journal Applied Physics A: Materials Science & Processing Online ISSN 1432-0630 Print ISSN 0947-8396
    Print ISSN: 0947-8396
    Digitale ISSN: 1432-0630
    Thema: Technik allgemein , Physik
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 87
    facet.materialart.
    Unbekannt
    Springer
    Publikationsdatum: 2012-09-29
    Beschreibung:    Femtosecond laser pulses can be absorbed by materials with larger energy band gap than the single photon energy through non-linear processes occurring in very small volumes. Thus, femtosecond lasers are exceptional tools for the modification of these materials with high resolution. This work is focused in the study of craters produced on the surface of a soda-lime glass after irradiation with a laser delivering 450 fs pulses at 1027-nm wavelength. The ablation with different energies and number of pulses is analyzed. Scanning electron microscopy and confocal microscopy are used to characterize the morphology of the ablation craters. The results show that micrometric resolution can be achieved with a focusing lens of 0.25 NA and pulse energies of few microjoules. The dependence of the laser fluence threshold on the number of pulses reveals the existence of an incubation effect. The trend for low number of pulses suggests a 4-photon ionization process. Content Type Journal Article Pages 1-5 DOI 10.1007/s00339-012-7280-0 Authors J. M. Fernández-Pradas, Departament de Física Aplicada i Òptica, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain D. Comas, Departament de Física Aplicada i Òptica, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain J. L. Morenza, Departament de Física Aplicada i Òptica, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain P. Serra, Departament de Física Aplicada i Òptica, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain Journal Applied Physics A: Materials Science & Processing Online ISSN 1432-0630 Print ISSN 0947-8396
    Print ISSN: 0947-8396
    Digitale ISSN: 1432-0630
    Thema: Technik allgemein , Physik
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 88
    Publikationsdatum: 2012-10-01
    Beschreibung:    0.852[Bi 1/2 (Na 1− x Li x ) 1/2 ]TiO 3 –0.110(Bi 1/2 K 1/2 )TiO 3 –0.038Ba 0.85 Ca 0.15 Ti 0.90 Zr 0.10 O 3 (BNLT–BKT–BCTZ- x ) new ternary piezoelectric ceramics were fabricated by the conventional solid-state method, and their piezoelectric properties as a function of the Li content were mainly investigated. A stable solid solution with a single perovskite structure has been formed, and the depolarization temperature ( T d ) of these ceramics was identified by using the temperature dependence of the dielectric loss. The T d value of these ceramics gradually decreases, while the T m value increases with increasing the Li content. The dielectric constant increases and the dielectric loss decreases with increasing the Li content, and an enhanced piezoelectric behavior of d 33 ∼223 pC/N and k p ∼35.2 % has been demonstrated in these ceramics with x =0.06. Content Type Journal Article Category Rapid communication Pages 1-5 DOI 10.1007/s00339-012-7297-4 Authors Jiagang Wu, Department of Materials Science, Sichuan University, Chengdu, 610064 P.R. China Sha Qiao, Department of Materials Science, Sichuan University, Chengdu, 610064 P.R. China Jianguo Zhu, Department of Materials Science, Sichuan University, Chengdu, 610064 P.R. China Dingquan Xiao, Department of Materials Science, Sichuan University, Chengdu, 610064 P.R. China Journal Applied Physics A: Materials Science & Processing Online ISSN 1432-0630 Print ISSN 0947-8396
    Print ISSN: 0947-8396
    Digitale ISSN: 1432-0630
    Thema: Technik allgemein , Physik
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 89
    Publikationsdatum: 2012-10-01
    Beschreibung:    Polymer matrix nanocomposites filled with metallic and alloy nanoparticles add functionality in various applications such as optical devices and in the energy sector. However, matrix coupling agents or nanoparticle ligands may be unwanted additives, potentially inhibiting the resulting nanocomposite to be processed by injection molding. The generation of stabilizer-free Au, Ag, and AuAg alloy nanoparticle acrylate composites is achieved by picosecond-pulsed laser ablation of the respective metal target in the liquid monomer. Complementary to laser ablation of the solid alloy, we have alloyed nanoparticles by post-irradiation of Au and Ag colloids in the liquid monomer. The optical properties of the colloidal nanoparticles are successfully transferred to the solid poly(methyl methacrylate) matrix and characterized by their plasmon resonance that can be easily tuned between 400 and 600 nm by laser alloying in the liquid monomer. Content Type Journal Article Pages 1-8 DOI 10.1007/s00339-012-7264-0 Authors Ana Menéndez-Manjón, Laser Zentrum Hannover e.V., Hollerithallee 8, Hannover, 30419 Germany Andreas Schwenke, Laser Zentrum Hannover e.V., Hollerithallee 8, Hannover, 30419 Germany Timo Steinke, Deutsches Institut für Kautschuktechnologie e.V., Eupener Straße 33, Hannover, 30519 Germany Matthias Meyer, Deutsches Institut für Kautschuktechnologie e.V., Eupener Straße 33, Hannover, 30519 Germany Ulrich Giese, Deutsches Institut für Kautschuktechnologie e.V., Eupener Straße 33, Hannover, 30519 Germany Philipp Wagener, Technical Chemistry, University of Duisburg-Essen and Center for Nanointegration Duisburg-Essen (CeNiDE), Duisburg, Germany Stephan Barcikowski, Technical Chemistry, University of Duisburg-Essen and Center for Nanointegration Duisburg-Essen (CeNiDE), Duisburg, Germany Journal Applied Physics A: Materials Science & Processing Online ISSN 1432-0630 Print ISSN 0947-8396
    Print ISSN: 0947-8396
    Digitale ISSN: 1432-0630
    Thema: Technik allgemein , Physik
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 90
    Publikationsdatum: 2012-10-01
    Beschreibung:    The crystalline structure, surface morphology, electrical, and optical properties of thin films of nanocomposites consisting of silver nanoparticles embedded in poly( p -xylylene) matrix prepared by low-temperature vapor deposition polymerization were studied. Depending on the filler content, the average size of silver nanoparticles varied from 2 to 5 nm for nanocomposites with 2 and 12 vol.% of silver, correspondingly. The optical adsorption in the visible region due to surface plasmon resonance also exhibited a clear correlation from silver content, revealing a red shift of the adsorption peak with the increase of the metal concentration. The temperature dependences of the dc resistance of pure p -xylylene condensate and p -xylylene–silver cocondensates during polymerization as well as temperature dependences of the formed poly( p -xylylene)–silver nanocomposites were examined. The observed variation of the temperature dependences of electrical resistance as a function of silver concentration are attributed to different conduction mechanisms and correlated with the structure of the composites. The wide-angle X-ray scattering and AFM measurements consistently show a strong effect of silver content on the nanocomposite structure. The evolution of the size of silver nanoparticles by thermal annealing was demonstrated. Content Type Journal Article Pages 1-10 DOI 10.1007/s00339-012-7220-z Authors Dmitry R. Streltsov, Enikolopov Institute of Synthetic Polymeric Materials of the Russian Academy of Sciences, Moscow, Russia Karen A. Mailyan, Institute for Theoretical and Applied Electromagnetics of the Russian Academy of Sciences, Moscow, Russia Alexey V. Gusev, Institute for Theoretical and Applied Electromagnetics of the Russian Academy of Sciences, Moscow, Russia Ilya A. Ryzhikov, Institute for Theoretical and Applied Electromagnetics of the Russian Academy of Sciences, Moscow, Russia Natalia A. Erina, Bruker-Nano Inc., Santa Barbara, CA, USA Chanmin Su, Bruker-Nano Inc., Santa Barbara, CA, USA Andrey V. Pebalk, National Research Centre “Kurchatov Institute”, Moscow, Russia Sergei A. Ozerin, Enikolopov Institute of Synthetic Polymeric Materials of the Russian Academy of Sciences, Moscow, Russia Sergei N. Chvalun, Enikolopov Institute of Synthetic Polymeric Materials of the Russian Academy of Sciences, Moscow, Russia Journal Applied Physics A: Materials Science & Processing Online ISSN 1432-0630 Print ISSN 0947-8396
    Print ISSN: 0947-8396
    Digitale ISSN: 1432-0630
    Thema: Technik allgemein , Physik
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 91
    Publikationsdatum: 2012-10-01
    Beschreibung:    Microscopic mechanisms and optimization of metal nanoparticle size distribution control using femtosecond laser pulse trains are studied by molecular dynamics simulations combined with the two-temperature model. Various pulse train designs, including subpulse numbers, separations, and energy distributions are compared, which demonstrate that the minimal mean nanoparticle sizes are achieved at the maximal subpulse numbers with uniform energy distributions. Femtosecond laser pulse trains significantly alter the film thermodynamical properties, adjust the film phase change mechanisms, and hence control the nanoparticle size distributions. As subpulse numbers and separations increase, alternation of film thermodynamical properties suppresses phase explosion, favors critical point phase separation, and significantly reduces mean nanoparticle size distributions. Correspondingly, the relative ratio of two phase change mechanisms causes two distinct nanoparticle size control regimes, where phase explosion leads to strong nanoparticle size control, and increasing ratio of critical point phase separation leads to gentle nanoparticles size control. Content Type Journal Article Pages 1-10 DOI 10.1007/s00339-012-7269-8 Authors Xin Li, NanoManufacturing Fundamental Research Joint Laboratory of National Science Foundation of China, School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081 People’s Republic of China Lan Jiang, NanoManufacturing Fundamental Research Joint Laboratory of National Science Foundation of China, School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081 People’s Republic of China Journal Applied Physics A: Materials Science & Processing Online ISSN 1432-0630 Print ISSN 0947-8396
    Print ISSN: 0947-8396
    Digitale ISSN: 1432-0630
    Thema: Technik allgemein , Physik
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 92
    facet.materialart.
    Unbekannt
    Springer
    Publikationsdatum: 2012-10-01
    Beschreibung:    In this work, we report an approach to fabricate molecular junctions based on metal oxide thin films with nanoscale cracks. The growth of the cracked oxide films is systematically investigated, which reveals that the crack width can be tuned by varying the dopants and/or the heating rate. Current-voltage measurements show that the as-fabricated molecular junction exhibits stable and reproducible electrical switching performance. The ON state junction obeys the Ohmic conduction, while the OFF state follows the space-charge-limited transport. The switching mechanism is shown to be governed by a charge trapping/detrapping process taken place in the organic active layer. Content Type Journal Article Pages 1-7 DOI 10.1007/s00339-012-7284-9 Authors J. C. Li, Vacuum and Fluid Engineering Research Center, Northeastern University, Shenyang, 110819 China X. Gong, Vacuum and Fluid Engineering Research Center, Northeastern University, Shenyang, 110819 China D. Wang, Vacuum and Fluid Engineering Research Center, Northeastern University, Shenyang, 110819 China D. C. Ba, Vacuum and Fluid Engineering Research Center, Northeastern University, Shenyang, 110819 China Journal Applied Physics A: Materials Science & Processing Online ISSN 1432-0630 Print ISSN 0947-8396
    Print ISSN: 0947-8396
    Digitale ISSN: 1432-0630
    Thema: Technik allgemein , Physik
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 93
    Publikationsdatum: 2012-10-01
    Beschreibung:    Transport characteristics of relativistic electrons through graphene-based d -wave superconducting double barrier junction and ferromagnet/ d -wave superconductor/normal metal double junction have been investigated based on the Dirac–Bogoliubov–de Gennes equation. We have first presented the results of superconducting double barrier junction. In the subgap regime, both the crossed Andreev and nonlocal tunneling conductance all oscillate with the bias voltage due to the formation of Andreev bound states in the normal metal region. Moreover, the critical voltage beyond which the crossed Andreev conductance becomes to zero decreases with increasing value of superconducting pair potential  α . In the presence of the ferromagnetism, the MR through graphene-based ferromagnet/ d -wave superconductor/normal metal double junction has been investigated. It is shown that the MR increases from exchange splitting h 0 =0 to h 0 = E F (Fermi energy), and then it goes down. At h 0 = E F , MR reaches its maximum 100. In contrast to the case of a single superconducting barrier, Andreev bound states also manifest itself in the zero bias MR , which result in a series of peaks except the maximum one at h 0 = E F . Besides, the resonance peak of the MR can appear at certain bias voltage and structure parameter. Those phenomena mean that the coherent transmission can be tuned by superconducting pair potential, structure parameter, and external bias voltage, which benefits the spin-polarized electron device based on the graphene materials. Content Type Journal Article Pages 1-10 DOI 10.1007/s00339-012-7275-x Authors Chunxu Bai, School of Physics, Anyang Normal University, Anyang, 455000 China Ke-Wei Wei, School of Physics, Anyang Normal University, Anyang, 455000 China Gui Yang, School of Physics, Anyang Normal University, Anyang, 455000 China Yanling Yang, School of Physics, Anyang Normal University, Anyang, 455000 China Journal Applied Physics A: Materials Science & Processing Online ISSN 1432-0630 Print ISSN 0947-8396
    Print ISSN: 0947-8396
    Digitale ISSN: 1432-0630
    Thema: Technik allgemein , Physik
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 94
    Publikationsdatum: 2012-10-01
    Beschreibung:    In order to understand the behavior of the different dye-sensitized solar cell (DSC) components, an in-situ analysis should give fundamental help but it is impossible to be performed without compromising the integrity of the cell. Our recently proposed novel microfluidic approach for the fabrication of DSCs is based on a reversible sealing of the two transparent electrodes and it allows the easy assembling and disassembling of the cell, making possible an analysis of the components over time. The aim of this work is not to investigate the different degradation mechanisms of a standard DSC: we want to show that, by using a microfluidic architecture, it is possible to perform a non-destructive analysis and to monitor the photoanode and the counter electrode properties during their lifetime. Morphological (field emission scanning electron microscopy), wetting (contact angle), optical (UV-visible spectroscopy) and electrical (current–voltage and electrochemical impedance spectroscopy measurements under standard AM1.5G illumination) characterizations have been performed over a period of three weeks. The results show how the variation of the wetting and morphological properties at the counter electrode and of the dye absorbance at the photoanode are strongly related to the decrease of the cell performances as evidenced by electrical characterization, thus demonstrating the effectiveness of the use of our structure in this kind of studies. Content Type Journal Article Pages 1-7 DOI 10.1007/s00339-012-7268-9 Authors A. Sacco, Center for Space Human Robotics @PoliTo, Istituto Italiano di Tecnologia, Corso Trento 21, Torino, 10129 Italy A. Lamberti, Center for Space Human Robotics @PoliTo, Istituto Italiano di Tecnologia, Corso Trento 21, Torino, 10129 Italy D. Pugliese, Center for Space Human Robotics @PoliTo, Istituto Italiano di Tecnologia, Corso Trento 21, Torino, 10129 Italy A. Chiodoni, Center for Space Human Robotics @PoliTo, Istituto Italiano di Tecnologia, Corso Trento 21, Torino, 10129 Italy N. Shahzad, Center for Space Human Robotics @PoliTo, Istituto Italiano di Tecnologia, Corso Trento 21, Torino, 10129 Italy S. Bianco, Center for Space Human Robotics @PoliTo, Istituto Italiano di Tecnologia, Corso Trento 21, Torino, 10129 Italy M. Quaglio, Center for Space Human Robotics @PoliTo, Istituto Italiano di Tecnologia, Corso Trento 21, Torino, 10129 Italy R. Gazia, Center for Space Human Robotics @PoliTo, Istituto Italiano di Tecnologia, Corso Trento 21, Torino, 10129 Italy E. Tresso, Center for Space Human Robotics @PoliTo, Istituto Italiano di Tecnologia, Corso Trento 21, Torino, 10129 Italy C. F. Pirri, Center for Space Human Robotics @PoliTo, Istituto Italiano di Tecnologia, Corso Trento 21, Torino, 10129 Italy Journal Applied Physics A: Materials Science & Processing Online ISSN 1432-0630 Print ISSN 0947-8396
    Print ISSN: 0947-8396
    Digitale ISSN: 1432-0630
    Thema: Technik allgemein , Physik
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 95
    Publikationsdatum: 2012-10-04
    Beschreibung:    The vertical movement of a 40 nm thin Au film on a silicon substrate during intense nanosecond (ns) laser irradiation is determined on the nm vertical and ns time scales using an optimized Michelson interferometer. The balanced setup with two detectors uses the inverse interference signal and accounts for transient reflectivity changes during irradiation. We show that a change in phase shift upon reflection must be taken into account to gain quantitative results. Three distinct fluence regimes can be distinguished, characterized by transient reflectivity behavior, dewetting processes and film detachment. Maximum displacement velocities are determined to be 0.6 m/s and 1.9 m/s below and above the melting threshold of the metal, respectively. Flight velocities of detaching liquid films are found to be between 30 and 70 m/s for many nanoseconds. Content Type Journal Article Pages 1-7 DOI 10.1007/s00339-012-7235-5 Authors F. Kneier, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany T. Geldhauser, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany E. Scheer, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany P. Leiderer, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany J. Boneberg, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany Journal Applied Physics A: Materials Science & Processing Online ISSN 1432-0630 Print ISSN 0947-8396
    Print ISSN: 0947-8396
    Digitale ISSN: 1432-0630
    Thema: Technik allgemein , Physik
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 96
    facet.materialart.
    Unbekannt
    Springer
    Publikationsdatum: 2012-08-02
    Beschreibung:    Electromechanical interaction determines the structural reliability of electronic interconnects. Using the nanoindentation technique, the effect of alternating electric current on the indentation deformation of copper strips was studied for the indentation load in a range of 100 to 1600 μN at room temperature. During the test, an alternating electric current of the electric current density in a range of 1.25 to 4.88 kA/cm 2 was passed through the copper strips. The indentation results showed that the reduced contact modulus decreased linearly with increasing the electric current density. The indentation hardness decreased with increasing the indentation deformation, demonstrating the normal indentation size effect. Using the model of strain gradient plasticity, we found that the strain gradient underneath the indentation decreased slightly with increasing the electric current density for the same indentation depth. Content Type Journal Article Pages 1-7 DOI 10.1007/s00339-012-7078-0 Authors Guangfeng Zhao, Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA Fuqian Yang, Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA Journal Applied Physics A: Materials Science & Processing Online ISSN 1432-0630 Print ISSN 0947-8396
    Print ISSN: 0947-8396
    Digitale ISSN: 1432-0630
    Thema: Technik allgemein , Physik
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 97
    facet.materialart.
    Unbekannt
    Springer
    Publikationsdatum: 2012-08-20
    Beschreibung:    We review the formulation of the Minimal Flavour Violation (MFV) hypothesis in the quark sector, as well as some “variations on a theme” based on smaller flavour symmetry groups and/or less minimal breaking terms. We also review how these hypotheses can be tested in B decays and by means of other flavour-physics observables. The phenomenological consequences of MFV are discussed both in general terms, employing a general effective theory approach, and in the specific context of the Minimal Supersymmetric extension of the SM. Content Type Journal Article Category Regular Article - Theoretical Physics Pages 1-14 DOI 10.1140/epjc/s10052-012-2103-1 Authors Gino Isidori, Laboratori Nazionali di Frascati, INFN, Via E. Fermi 40, 00044 Frascati, Italy David M. Straub, Scuola Normale Superiore and INFN, Piazza dei Cavalieri 7, 56126 Pisa, Italy Journal The European Physical Journal C - Particles and Fields Online ISSN 1434-6052 Print ISSN 1434-6044 Journal Volume Volume 72 Journal Issue Volume 72, Number 8
    Print ISSN: 1434-6044
    Digitale ISSN: 1434-6052
    Thema: Physik
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 98
    Publikationsdatum: 2012-08-20
    Beschreibung:    Present experimental data do not exclude fast oscillation of the neutron n to its degenerate twin from a hypothetical parallel sector, the so called mirror neutron n ′. We show that this effect brings about remarkable modifications of the ultrahigh-energy cosmic ray spectrum testable by the present Pierre Auger Observatory (PAO) and Telescope Array (TA) detector, and the future JEM-EUSO experiment. In particular, the baryon non-conservation during UHECR propagation at large cosmological distances shifts the beginning of the GZK cutoff to lower energies, while in the presence of mirror sources it may enhance the spectrum at E 〉100 EeV. As a consequence, one can expect a significant reduction of the diffuse cosmogenic neutrino flux. Content Type Journal Article Category Letter Pages 1-7 DOI 10.1140/epjc/s10052-012-2111-1 Authors Zurab Berezhiani, Dipartimento di Fisica, Università dell’Aquila, Via Vetoio, 67100 Coppito, L’Aquila, Italy Askhat Gazizov, DESY Zeuthen, Platanenallee 6, 15738 Zeuthen, Germany Journal The European Physical Journal C - Particles and Fields Online ISSN 1434-6052 Print ISSN 1434-6044 Journal Volume Volume 72 Journal Issue Volume 72, Number 8
    Print ISSN: 1434-6044
    Digitale ISSN: 1434-6052
    Thema: Physik
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 99
    facet.materialart.
    Unbekannt
    Springer
    Publikationsdatum: 2012-08-23
    Beschreibung:    As is well known, a varying effective gravitational “constant” is one of the common features of most modified gravity theories. Of course, as a modified gravity theory, f ( T ) theory is not an exception. Noting that the observational constraint on the varying gravitational “constant” is very tight, in the present work we try to constrain f ( T ) theories with the varying gravitational “constant”. We find that the allowed model parameter n or β has been significantly shrunk to a very narrow range around zero. In fact, the results improve the previous constraints by an order of magnitude. Content Type Journal Article Category Regular Article - Theoretical Physics Pages 1-7 DOI 10.1140/epjc/s10052-012-2117-8 Authors Hao Wei, School of Physics, Beijing Institute of Technology, Beijing, 100081 China Hao-Yu Qi, School of Physics, Beijing Institute of Technology, Beijing, 100081 China Xiao-Peng Ma, School of Physics, Beijing Institute of Technology, Beijing, 100081 China Journal The European Physical Journal C - Particles and Fields Online ISSN 1434-6052 Print ISSN 1434-6044 Journal Volume Volume 72 Journal Issue Volume 72, Number 8
    Print ISSN: 1434-6044
    Digitale ISSN: 1434-6052
    Thema: Physik
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 100
    Publikationsdatum: 2012-08-23
    Beschreibung:    Flavour physics has a long tradition of paving the way for direct discoveries of new particles and interactions. Results over the last decade have placed stringent bounds on the parameter space of physics beyond the Standard Model. Early results from the LHC, and its dedicated flavour factory LHCb, have further tightened these constraints and reiterate the ongoing relevance of flavour studies. The experimental status of flavour observables in the charm and beauty sectors is reviewed in measurements of CP violation, neutral meson mixing, and measurements of rare decays. Content Type Journal Article Category Regular Article - Experimental Physics Pages 1-15 DOI 10.1140/epjc/s10052-012-2107-x Authors M. Gersabeck, CERN, 1211 Geneva, Switzerland V. V. Gligorov, CERN, 1211 Geneva, Switzerland N. Serra, University of Zuerich, 8006 Zuerich, Switzerland Journal The European Physical Journal C - Particles and Fields Online ISSN 1434-6052 Print ISSN 1434-6044 Journal Volume Volume 72 Journal Issue Volume 72, Number 8
    Print ISSN: 1434-6044
    Digitale ISSN: 1434-6052
    Thema: Physik
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...