ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-09-02
    Description: In the above paper [1] , the first footnote should have indicated the following information: A. H. Abdi and C. Luong are joint first authors.
    Print ISSN: 0278-0062
    Electronic ISSN: 1558-254X
    Topics: Medicine , Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Institute of Electrical and Electronics Engineers (IEEE)
    Publication Date: 2017-09-02
    Description: The proposed spectral CT method solves the constrained one-step spectral CT reconstruction (cOSSCIR) optimization problem to estimate basis material maps while modeling the nonlinear X-ray detection process and enforcing convex constraints on the basis map images. In order to apply the optimization-based reconstruction approach to experimental data, the presented method empirically estimates the effective energy-window spectra using a calibration procedure. The amplitudes of the estimated spectra were further optimized as part of the reconstruction process to reduce ring artifacts. A validation approach was developed to select constraint parameters. The proposed spectral CT method was evaluated through simulations and experiments with a photon-counting detector. Basis material map images were successfully reconstructed using the presented empirical spectral modeling and cOSSCIR optimization approach. In simulations, the cOSSCIR approach accurately reconstructed the basis map images (<1% error). In experiments, the proposed method estimated the low-density polyethylene region of the basis maps with 0.5% error in the PMMA image and 4% error in the aluminum image. For the Teflon region, the experimental results demonstrated 8% and 31% error in the PMMA and aluminum basis material maps, respectively, compared with −24% and 126% error without estimation of the effective energy window spectra, with residual errors likely due to insufficient modeling of detector effects. The cOSSCIR algorithm estimated the material decomposition angle to within 1.3 degree error, where, for reference, the difference in angle between PMMA and muscle tissue is 2.1 degrees. The joint estimation of spectral-response scaling coefficients and basis material maps was found to reduce ring artifacts in both a phantom and tissue sp- cimen. The presented validation procedure demonstrated feasibility for the automated determination of algorithm constraint parameters.
    Print ISSN: 0278-0062
    Electronic ISSN: 1558-254X
    Topics: Medicine , Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Institute of Electrical and Electronics Engineers (IEEE)
    Publication Date: 2017-09-02
    Description: High-resolution, low-noise X-ray detectors based on CMOS active pixel sensor (APS) technology have demonstrated superior imaging performance for digital breast tomosynthesis (DBT). This paper presents a task-based model for a high-resolution medical imaging system to evaluate its ability to detect simulated microcalcifications and masses as lesions for breast cancer. A 3-D cascaded system analysis for a 50- $\mu \text{m}$ pixel pitch CMOS APS X-ray detector was integrated with an object task function, a medical imaging display model, and the human eye contrast sensitivity function to calculate the detectability index and area under the ROC curve (AUC). It was demonstrated that the display pixel pitch and zoom factor should be optimized to improve the AUC for detecting small microcalcifications. In addition, detector electronic noise of smaller than 300 e − and a high display maximum luminance (>1000 cd/cm $^{2})$ are desirable to distinguish microcalcifications of $150~\mu \text{m}$ in size. For low contrast mass detection, a medical imaging display with a minimum of 12-bit gray levels is recommended to realize accurate luminance levels. A wide projection angle range of greater than ±30° in combination with the image gray level magnification could improve the mass detectability especially when the anatomical background noise is high. On the other hand, a narrower projection angle range below ±20° can improve the small, high contrast object detection. Due to the low mass contrast and luminance, the ambient luminance should be controlled below 5 cd/ $\text{m}^{2}$ . Task-based modeling provides important firsthand imaging performance of the high-resolution CMOS-based medical imaging system that is still at early stage development for DBT. The modeling results could guide the prototype design and clinical studies in the future.
    Print ISSN: 0278-0062
    Electronic ISSN: 1558-254X
    Topics: Medicine , Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Institute of Electrical and Electronics Engineers (IEEE)
    Publication Date: 2017-09-02
    Description: Contrast-enhanced digital mammography (CEDM) is an alternative to conventional X-ray mammography for imaging dense breasts. However, conventional approaches to CEDM require a double exposure of the patient, implying higher dose, and risk of incorrect image registration due to motion artifacts. A novel approach is presented, based on hyperspectral imaging, where a detector combining positional and high-resolution spectral information (in this case based on Cadmium Telluride) is used. This allows simultaneous acquisition of the two images required for CEDM. The approach was tested on a custom breast-equivalent phantom containing iodinated contrast agent (Niopam 150®). Two algorithms were used to obtain images of the contrast agent distribution: K-edge subtraction (KES), providing images of the distribution of the contrast agent with the background structures removed, and a dual-energy (DE) algorithm, providing an iodine-equivalent image and a water-equivalent image. The high energy resolution of the detector allowed the selection of two close-by energies, maximising the signal in KES images, and enhancing the visibility of details with the low surface concentration of contrast agent. DE performed consistently better than KES in terms of contrast-to-noise ratio of the details; moreover, it allowed a correct reconstruction of the surface concentration of the contrast agent in the iodine image. Comparison with CEDM with a conventional detector proved the superior performance of hyperspectral CEDM in terms of the image quality/dose tradeoff.
    Print ISSN: 0278-0062
    Electronic ISSN: 1558-254X
    Topics: Medicine , Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Institute of Electrical and Electronics Engineers (IEEE)
    Publication Date: 2017-09-02
    Description: Prediction of treatment responses from available data is key to optimizing personalized treatment. Retinal diseases are treated over long periods and patients’ response patterns differ substantially, ranging from a complete response to a recurrence of the disease and need for re-treatment at different intervals. Linking observable variables in high-dimensional observations to outcome is challenging. In this paper, we present and evaluate two different data-driven machine learning approaches operating in a high-dimensional feature space: sparse logistic regression and random forests-based extra trees (ET). Both identify spatio-temporal signatures based on retinal thickness features measured in longitudinal spectral-domain optical coherence tomography (OCT) imaging data and predict individual patient outcome using these quantitative characteristics. We demonstrate on a data set of monthly SD-OCT scans of 155 patients with central retinal vein occlusion (CRVO) and 92 patients with branch retinal vein occlusion (BRVO) followed over one year that we can predict from initial three observations if the treated disease will recur within the covered interval. ET predicts the outcome on fivefold cross-validation with an area under the receiver operating characteristic curve (AuC) of 0.83 for BRVO and 0.76 for CRVO. Logistic regression achieved an AuC of 0.78 and 0.79, respectively. At the same time, the methods identified stable predictive signatures in the longitudinal imaging data that are the basis for accurate prediction. Furthermore, our results show that taking spatio-temporal features into account improves accuracy compared with features extracted at a single time-point. Our results demonstrate the feasibility of mining longitudinal data for predictive signatures, and building predictive models based on observed data.
    Print ISSN: 0278-0062
    Electronic ISSN: 1558-254X
    Topics: Medicine , Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Institute of Electrical and Electronics Engineers (IEEE)
    Publication Date: 2017-09-02
    Description: It is essential for physicians to obtain the accurate venous tree from abdominal CT angiography (CTA) series in order to carry out the preoperative planning and intraoperative navigation for hepatic surgery. In this process, one of the important tasks is to separate the given liver venous mask into its hepatic and portal parts. In this paper, we present a novel method for liver venous tree separation. The proposed method first concentrates on extracting potential vessel intersection points between hepatic and portal venous systems. Then, the proposed method focuses on modeling the vessel intersection neigh-borhoods with a robust twin-line random sample consensus (RANSAC) shape detector. Finally, the proposed method conducts the venous tree separation based on the results of the twin-line RANSAC as well as physical constraints posed by Murray’s Law. We test our method on 22 clinical CTA series and demonstrate its effectiveness.
    Print ISSN: 0278-0062
    Electronic ISSN: 1558-254X
    Topics: Medicine , Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Institute of Electrical and Electronics Engineers (IEEE)
    Publication Date: 2017-09-02
    Description: Angle-closure glaucoma is a major cause of irreversible visual impairment and can be identified by measuring the anterior chamber angle (ACA) of the eye. The ACA can be viewed clearly through anterior segment optical coherence tomography (AS-OCT), but the imaging characteristics and the shapes and locations of major ocular structures can vary significantly among different AS-OCT modalities, thus complicating image analysis. To address this problem, we propose a data-driven approach for automatic AS-OCT structure segmentation, measurement, and screening. Our technique first estimates initial markers in the eye through label transfer from a hand-labeled exemplar data set, whose images are collected over different patients and AS-OCT modalities. These initial markers are then refined by using a graph-based smoothing method that is guided by AS-OCT structural information. These markers facilitate segmentation of major clinical structures, which are used to recover standard clinical parameters. These parameters can be used not only to support clinicians in making anatomical assessments, but also to serve as features for detecting anterior angle closure in automatic glaucoma screening algorithms. Experiments on Visante AS-OCT and Cirrus high-definition-OCT data sets demonstrate the effectiveness of our approach.
    Print ISSN: 0278-0062
    Electronic ISSN: 1558-254X
    Topics: Medicine , Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Institute of Electrical and Electronics Engineers (IEEE)
    Publication Date: 2017-09-02
    Description: Presents the table of contents for this issue of the publication.
    Print ISSN: 0278-0062
    Electronic ISSN: 1558-254X
    Topics: Medicine , Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Institute of Electrical and Electronics Engineers (IEEE)
    Publication Date: 2017-09-02
    Description: The objective of electrical impedance tomographic reconstruction is to identify the distribution of tissue conductivity from electrical boundary conditions. This is an ill-posed inverse problem usually solved under the finite-element method framework. In previous studies, standard sparse regularization was used for difference electrical impedance tomography to achieve a sparse solution. However, regarding elementwise sparsity, standard sparse regularization interferes with the smoothness of conductivity distribution between neighboring elements and is sensitive to noise. As an effect, the reconstructed images are spiky and depict a lack of smoothness. Such unexpected artifacts are not realistic and may lead to misinterpretation in clinical applications. To eliminate such artifacts, we present a novel sparse regularization method that uses spectral graph wavelet transforms. Single-scale or multiscale graph wavelet transforms are employed to introduce local smoothness on different scales into the reconstructed images. The proposed approach relies on viewing finite-element meshes as undirected graphs and applying wavelet transforms derived from spectral graph theory. Reconstruction results from simulations, a phantom experiment, and patient data suggest that our algorithm is more robust to noise and produces more reliable images.
    Print ISSN: 0278-0062
    Electronic ISSN: 1558-254X
    Topics: Medicine , Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    Institute of Electrical and Electronics Engineers (IEEE)
    Publication Date: 2017-09-02
    Description: Automatic skin lesion segmentation in dermoscopic images is a challenging task due to the low contrast between lesion and the surrounding skin, the irregular and fuzzy lesion borders, the existence of various artifacts, and various imaging acquisition conditions. In this paper, we present a fully automatic method for skin lesion segmentation by leveraging 19-layer deep convolutional neural networks that is trained end-to-end and does not rely on prior knowledge of the data. We propose a set of strategies to ensure effective and efficient learning with limited training data. Furthermore, we design a novel loss function based on Jaccard distance to eliminate the need of sample re-weighting, a typical procedure when using cross entropy as the loss function for image segmentation due to the strong imbalance between the number of foreground and background pixels. We evaluated the effectiveness, efficiency, as well as the generalization capability of the proposed framework on two publicly available databases. One is from ISBI 2016 skin lesion analysis towards melanoma detection challenge, and the other is the PH2 database. Experimental results showed that the proposed method outperformed other state-of-the-art algorithms on these two databases. Our method is general enough and only needs minimum pre- and post-processing, which allows its adoption in a variety of medical image segmentation tasks.
    Print ISSN: 0278-0062
    Electronic ISSN: 1558-254X
    Topics: Medicine , Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...