ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (1,492)
  • 2015-2019  (1,492)
  • 2000-2004
  • 1955-1959
  • IEEE Transactions on Image Processing  (1,492)
  • 1412
  • Electrical Engineering, Measurement and Control Technology  (1,492)
  • 1
    facet.materialart.
    Unknown
    Institute of Electrical and Electronics Engineers (IEEE)
    Publication Date: 2018-04-07
    Description: Hashing, a widely studied solution to the approximate nearest neighbor search, aims to map data points in the high-dimensional Euclidean space to the low-dimensional Hamming space while preserving the similarity between original points. As directly learning binary codes can be NP-hard due to discrete constraints, a two-stage scheme, namely, “projection and quantization”, has already become a standard paradigm for learning similarity-preserving hash codes. However, most existing hashing methods typically separate these two stages and thus fail to investigate complementary effects of both stages. In this paper, we systematically study the relationship between “projection and quantization”, and propose a novel minimal reconstruction bias hashing (MRH) method to learn compact binary codes, in which the projection learning and quantization optimizing are jointly performed. By introducing a lower bound analysis, we design an effective ternary search algorithm to solve the corresponding optimization problem. Furthermore, we conduct some insightful discussions on the proposed MRH approach, including the theoretical proof, and computational complexity. Distinct from previous works, the MRH can adaptively adjust the projection dimensionality to balance the information loss between the projection and quantization. The proposed framework not only provides a unique perspective to view traditional hashing methods, but also evokes some other researches, e.g., guiding the design of the loss functions in deep networks. Extensive experiment results have shown that the proposed MRH significantly outperforms a variety of state-of-the-art methods over eight widely used benchmarks.
    Print ISSN: 1057-7149
    Electronic ISSN: 1941-0042
    Topics: Electrical Engineering, Measurement and Control Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Institute of Electrical and Electronics Engineers (IEEE)
    Publication Date: 2018-04-04
    Description: This paper presents a method leveraging coded motion information to obtain fast, high quality motion field estimation. The method is inspired by a recent trend followed by a number of top-performing optical flow estimation schemes that first estimate a sparse set of features between two frames, and then use an edge-preserving interpolation scheme (EPIC) to obtain a piecewise-smooth motion field that respects moving object boundaries. In order to skip the time-consuming estimation of features, we propose to directly derive motion seeds from decoded HEVC block motion; we call the resulting scheme “HEVC-EPIC”. We propose motion seed weighting strategies that account for the fact that some motion seeds are less reliable than others. Experiments on a large variety of challenging sequences and various bit-rates show that HEVC-EPIC runs significantly faster than EPIC flow, while producing motion fields that have a slightly lower average endpoint error. HEVC-EPIC opens the door of seamlessly integrating HEVC motion into video analysis and enhancement tasks. When employed as input to a framerate upsampling scheme, the average Y-PSNR of the interpolated frames using HEVC-EPIC motion slightly outperforms EPIC flow across the tested bit-rates, while running an order of magnitude faster.
    Print ISSN: 1057-7149
    Electronic ISSN: 1941-0042
    Topics: Electrical Engineering, Measurement and Control Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Institute of Electrical and Electronics Engineers (IEEE)
    Publication Date: 2018-04-04
    Description: Extracting the background from a video in the presence of various moving patterns is the focus of several background-initialization approaches. To model the scene background using rank-one matrices, this paper proposes a background-initialization technique that relies on the singular-value decomposition (SVD) of spatiotemporally extracted slices from the video tensor. The proposed method is referred to as spatiotemporal slice-based SVD (SS-SVD). To determine the SVD components that best model the background, a depth analysis of the computation of the left/right singular vectors and singular values is performed, and the relationship with tensor-tube fibers is determined. The analysis proves that a rank-1 matrix extracted from the first left and right singular vectors and singular value represents an efficient model of the scene background. The performance of the proposed SS-SVD method is evaluated using 93 complex video sequences of different challenges, and the method is compared with state-of-the-art tensor/matrix completion-based methods, statistical-based methods, search-based methods, and labeling-based methods. The results not only show better performance over most of the tested challenges, but also demonstrate the capability of the proposed technique to solve the background-initialization problem in a less computational time and with fewer frames.
    Print ISSN: 1057-7149
    Electronic ISSN: 1941-0042
    Topics: Electrical Engineering, Measurement and Control Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Institute of Electrical and Electronics Engineers (IEEE)
    Publication Date: 2018-03-31
    Description: Non-blind image deconvolution is an ill-posed problem. The presence of noise and band-limited blur kernels makes the solution of this problem non-unique. Existing deconvolution techniques produce a residual between the sharp image and the estimation that is highly correlated with the sharp image, the kernel, and the noise. In most cases, different restoration models must be constructed for different blur kernels and different levels of noise, resulting in low computational efficiency or highly redundant model parameters. Here we aim to develop a single model that handles different types of kernels and different levels of noise: general non-blind deconvolution. Specifically, we propose a very deep convolutional neural network that predicts the residual between a pre-deconvolved image and the sharp image rather than the sharp image. The residual learning strategy makes it easier to train a single model for different kernels and different levels of noise, encouraging high effectiveness and efficiency. Quantitative evaluations demonstrate the practical applicability of the proposed model for different blur kernels. The model also shows the state-of-the-art performance on synthesized blurry images.
    Print ISSN: 1057-7149
    Electronic ISSN: 1941-0042
    Topics: Electrical Engineering, Measurement and Control Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Institute of Electrical and Electronics Engineers (IEEE)
    Publication Date: 2018-03-31
    Description: Removing the undesired reflections in images taken through the glass is of broad application to various image processing and computer vision tasks. Existing single image-based solutions heavily rely on scene priors such as separable sparse gradients caused by different levels of blur, and they are fragile when such priors are not observed. In this paper, we notice that strong reflections usually dominant a limited region in the whole image, and propose a region-aware reflection removal approach by automatically detecting and heterogeneously processing regions with and without reflections. We integrate content and gradient priors to jointly achieve missing contents restoration, as well as background and reflection separation, in a unified optimization framework. Extensive validation using 50 sets of real data shows that the proposed method outperforms state-of-the-art on both quantitative metrics and visual qualities.
    Print ISSN: 1057-7149
    Electronic ISSN: 1941-0042
    Topics: Electrical Engineering, Measurement and Control Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Institute of Electrical and Electronics Engineers (IEEE)
    Publication Date: 2018-03-31
    Description: Unlike image blending algorithms, video blending algorithms have been little studied. In this paper, we investigate six popular blending algorithms—feather blending, multi-band blending, modified Poisson blending, mean value coordinate blending, multi-spline blending, and convolution pyramid blending. We consider their application to blending realtime panoramic videos, a key problem in various virtual reality tasks. To evaluate the performances and suitabilities of the six algorithms for this problem, we have created a video benchmark with several videos captured under various conditions. We analyze the time and memory needed by the above six algorithms, for both CPU and GPU implementations (where readily parallelizable). The visual quality provided by these algorithms is also evaluated both objectively and subjectively. The video benchmark and algorithm implementations are publicly available. 1 1 http://cg.cs.tsinghua.edu.cn/blending/
    Print ISSN: 1057-7149
    Electronic ISSN: 1941-0042
    Topics: Electrical Engineering, Measurement and Control Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Institute of Electrical and Electronics Engineers (IEEE)
    Publication Date: 2018-03-31
    Description: Feature extraction is a very important step for polarimetric synthetic aperture radar (PolSAR) image classification. Many dimensionality reduction (DR) methods have been employed to extract features for supervised PolSAR image classification. However, these DR-based feature extraction methods only consider each single pixel independently and thus fail to take into account the spatial relationship of the neighboring pixels, so their performance may not be satisfactory. To address this issue, we introduce a novel tensor local discriminant embedding (TLDE) method for feature extraction for supervised PolSAR image classification. The proposed method combines the spatial and polarimetric information of each pixel by characterizing the pixel with the patch centered at this pixel. Then each pixel is represented as a third-order tensor of which the first two modes indicate the spatial information of the patch (i.e., the row and the column of the patch) and the third mode denotes the polarimetric information of the patch. Based on the label information of samples and the redundance of the spatial and polarimetric information, a supervised tensor-based DR technique, called TLDE, is introduced to find three projections which project each pixel, that is, the third-order tensor into the low-dimensional feature. Finally, classification is completed based on the extracted features using the nearest neighbor classifier and the support vector machine classifier. The proposed method is evaluated on two real PolSAR data sets and the simulated PolSAR data sets with various number of looks. The experimental results demonstrate that the proposed method not only improves the classification accuracy greatly but also alleviates the influence of speckle noise on classification.
    Print ISSN: 1057-7149
    Electronic ISSN: 1941-0042
    Topics: Electrical Engineering, Measurement and Control Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Institute of Electrical and Electronics Engineers (IEEE)
    Publication Date: 2018-03-31
    Description: In this paper, we propose two novel regularization models in patch-wise and pixel-wise, respectively, which are efficient to reconstruct high-resolution (HR) face image from low-resolution (LR) input. Unlike the conventional patch-based models which depend on the assumption of local geometry consistency in LR and HR spaces, the proposed method directly regularizes the relationship between the target patch and corresponding training set in the HR space. It avoids dealing with the tough problem of preserving local geometry in various resolutions. Taking advantage of kernel function in efficiently describing intrinsic features, we further conduct the patch-based reconstruction model in the high-dimensional kernel space for capturing nonlinear characteristics. Meanwhile, a pixel-based model is proposed to regularize the relationship of pixels in the local neighborhood, which can be employed to enhance the fuzzy details in the target HR face image. It privileges the reconstruction of pixels along the dominant orientation of structure, which is useful for preserving high-frequency information on complex edges. Finally, we combine the two reconstruction models into a unified framework. The output HR face image can be finally optimized by performing an iterative procedure. Experimental results demonstrate that the proposed face hallucination method produces superior performance than the state-of-the-art methods.
    Print ISSN: 1057-7149
    Electronic ISSN: 1941-0042
    Topics: Electrical Engineering, Measurement and Control Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Institute of Electrical and Electronics Engineers (IEEE)
    Publication Date: 2018-03-31
    Description: Most of existing image denoising methods learn image priors from either an external data or the noisy image itself to remove noise. However, priors learned from an external data may not be adaptive to the image to be denoised, while priors learned from the given noisy image may not be accurate due to the interference of corrupted noise. Meanwhile, the noise in real-world noisy images is very complex, which is hard to be described by simple distributions such as Gaussian distribution, making real-world noisy image denoising a very challenging problem. We propose to exploit the information in both external data and the given noisy image, and develop an external prior guided internal prior learning method for real-world noisy image denoising. We first learn external priors from an independent set of clean natural images. With the aid of learned external priors, we then learn internal priors from the given noisy image to refine the prior model. The external and internal priors are formulated as a set of orthogonal dictionaries to efficiently reconstruct the desired image. Extensive experiments are performed on several real-world noisy image datasets. The proposed method demonstrates highly competitive denoising performance, outperforming state-of-the-art denoising methods including those designed for real-world noisy images.
    Print ISSN: 1057-7149
    Electronic ISSN: 1941-0042
    Topics: Electrical Engineering, Measurement and Control Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    Institute of Electrical and Electronics Engineers (IEEE)
    Publication Date: 2018-03-31
    Description: Human motion capture data has been widely used in many areas, but it involves a complex capture process and the captured data inevitably contains missing data due to the occlusions caused by the actor’s body or clothing. Motion recovery, which aims to recover the underlying complete motion sequence from its degraded observation, still remains as a challenging task due to the nonlinear structure and kinematics property embedded in motion data. Low-rank matrix completion-based methods have shown promising performance in short-time-missing motion recovery problems. However, low-rank matrix completion, which is designed for linear data, lacks the theoretic guarantee when applied to the recovery of nonlinear motion data. To overcome this drawback, we propose a tailored nonlinear matrix completion model for human motion recovery. Within the model, we first learn a combined low-rank kernel via multiple kernel learning. By exploiting the learned kernel, we embed the motion data into a high dimensional Hilbert space where motion data is of desirable low-rank and we then use the low-rank matrix completion to recover motions. In addition, we add two kinematic constraints to the proposed model to preserve the kinematics property of human motion. Extensive experiment results and comparisons with five other state-of-the-art methods demonstrate the advantage of the proposed method.
    Print ISSN: 1057-7149
    Electronic ISSN: 1941-0042
    Topics: Electrical Engineering, Measurement and Control Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...