ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (6,992)
  • 2015-2019  (6,992)
  • 1945-1949
  • Journal of Cellular Biochemistry  (1,561)
  • IEEE Transactions on Biomedical Engineering  (1,127)
  • 1402
  • 1831
  • Medicine  (6,992)
  • 1
    Publication Date: 2015-08-09
    Description: World Health Organization reports that methicillin-resistant Staphylococcus aureus (MRSA) is the origin of higher proportion of hospital acquired infections. In order to combat the effect of MRSA infection, an ideal drug should stimulate the allosteric exposure of active site, prompting penicillin binding proteins (PBP2a) to bind with that particular compound. Ceftaroline shows high binding affinity towards PBP2a and also confers resistance against degrading enzymes. Recently, two amino acid alterations in the allosteric site of PBP2a, asparagine (N) to lysine (K) at position 146 and glutamic acid (E) to lysine at position 150 are reported to confer resistance against ceftaroline resulting in the rise of ceftaroline-resistant MRSA strains. The present study focuses on the identification of potential ligands that can effectively bind with allosteric site of PBP2a, that leads to the access of active site and entry of a β-lactam antibiotic for effective inhibition. The results obtained from our study will be useful for designing effective compounds with potential therapeutic effects against ceftaroline resistant MRSA strains. This article is protected by copyright. All rights reserved
    Electronic ISSN: 0091-7419
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-08-09
    Description: The human protein kinase X gene (PRKX) and cAMP-dependent protein kinase (PKA) are both c-AMP-dependent serine/threonine protein kinases within the protein kinase AGC subgroup. Of all the protein kinases in this group, PRKX is the least studied. PRKX has been isolated from patients with chondrodysplasia punctate and is involved in numerous processes, including sexual differentiation and fertilization, normal kidney development, and autosomal dominant polycystic kidney disease (ADPKD), blood maturation, neural development and angiogenesis in vitro. Although the role of PRKX in development and disease has been reported recently, the underlying mechanism of PRKX activity is largely unknown. In addition, based on the expression pattern of PRKX and the extensive role of PKA in disease and development, PRKX might have additional crucial functions that have not been addressed in the literature. In this review, we summarize the characteristics and developmental functions of PRKX that have been reported by recent studies. In particular, we elucidate the structural and functional differences between PRKX and PKA, as well as the possible roles of PRKX in development and related diseases. Finally, we propose future studies that could lead to important discoveries of more PRKX functions and the underlying mechanisms involved. This article is protected by copyright. All rights reserved
    Electronic ISSN: 0091-7419
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-08-09
    Description: Several key transcription factors regulate cell growth, survival, and differentiation during neural crest and melanoblast development in the embryo, and these same pathways may be reactivated in tumors arising from the progenitors of these cells. The transcription factors PAX3 and FOXD3 have essential roles in melanoblasts and melanoma. In this study, we define a regulatory pathway where FOXD3 promotes the expression of PAX3. Both factors are expressed in melanoma cells and there is a positive correlation between the transcript levels of PAX3 and FOXD3. The PAX3 gene contains two FOX binding motifs within highly conserved enhancer regulatory elements that are essential for neural crest development. FOXD3 binds to both of these motifs in vitro but only one of these sites is preferentially utilized in melanoma cells. Overexpression of FOXD3 upregulates PAX3 levels while inhibition of FOXD3 function does not alter PAX3 protein levels, supporting that FOXD3 is sufficient but not necessary to drive PAX3 expression in melanoma cells. Here, we identify a molecular pathway where FOXD3 upregulates PAX3 expression and therefore contributes to melanoma progression. This article is protected by copyright. All rights reserved
    Electronic ISSN: 0091-7419
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-08-09
    Description: Metabolic networks are significantly altered in neoplastic cells. This altered metabolic program leads to increased glycolysis and lipogenesis and decreased dependence on oxidative phosphorylation and oxygen consumption. Despite their limited mitochondrial respiration, cancer cells, nonetheless, derive sufficient energy from alternative carbon sources and metabolic pathways to maintain cell proliferation. They do so, in part, by utilizing fatty acids, amino acids, ketone bodies and acetate, in addition to glucose. The alternative pathways used in the metabolism of these carbon sources provide opportunities for therapeutic manipulation. Acetate, in particular, has garnered increased attention in the context of cancer as both an epigenetic regulator of posttranslational protein modification, and as a carbon source for cancer cell biomass accumulation. However, to date, the data have not provided a clear understanding of the precise roles that protein acetylation and acetate oxidation play in carcinogenesis, cancer progression or treatment. This review highlights some of the major issues, discrepancies and opportunities associated with the manipulation of acetate metabolism and acetylation-based signaling in cancer development and treatment. This article is protected by copyright. All rights reserved
    Electronic ISSN: 0091-7419
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-08-15
    Description: Adipogenesis comprises a complex network of signaling pathways and transcriptional cascades; the GSK3β-C/EBPβ- srebf1a axis is a critical signaling pathway at early stages leading to the expression of PPARγ2, the master regulator of adipose differentiation. Previous work has demonstrated that retinoic acid inhibits adipogenesis affecting different signaling pathways. Here, we evaluated the anti-adipogenic effect of retinoic acid on the adipogenic transcriptional cascade, and the expression of adipogenic genes cebpb , srebf1a , srebf1c , pparg2 , and cebpa . Our results demonstrate that retinoic acid blocks adipose differentiation during commitment, returning cells to an apparent non-committed state, since they have to be newly induced to adipose conversion after the retinoid is removed from the culture medium. Retinoic acid down regulates the expression of the adipogenic genes, srebf1a, srebf1c , pparg2 , and cebpa . Retinoic acid did not down regulate the expression of cebpb , but it inhibited C/EBPβ phosphorylation at Thr188, a critical step for the progression of the adipogenic program. We also found that RA inhibition of adipogenesis did not increase the expression of dlk1 , the gene encoding for Pref1, a well-known anti-adipogenic transcription factor. This article is protected by copyright. All rights reserved
    Electronic ISSN: 0091-7419
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-07-30
    Description: ABSTRACT Platelets are important in hemostasis, but also detect particles and pathogens in the circulation. Phagocytic and endocytic activities of platelets are widely recognized, however, receptors and mechanisms involved remain poorly understood. We previously demonstrated that platelets internalize and store phospholipid microvesicles enriched in human tissue factor (TF + MVs) and that platelet-associated TF enhances thrombus formation at sites of vascular damage. Here we investigate the mechanisms implied in the interactions of TF + MVs with platelets and the effects of specific inhibitory strategies. Aggregometry and electron microscopy were used to assess platelet activation and TF + MVs uptake. Cytoskeletal assembly and activation of phosphoinositide 3-kinase (PI3K) and RhoA were analyzed by western blot and ELISA. Exposure of platelets to TF + MVs caused reversible platelet aggregation, actin polymerization and association of contractile proteins to the cytoskeleton being maximal at 1 min. The same kinetics were observed for activation of PI3K and translocation of RhoA to the cytoskeleton. Inhibitory strategies to block glycoprotein IIb-IIIa (GPIIb-IIIa), scavenger receptor CD36, serotonin transporter (SERT) and PI3K, fully prevented platelet aggregation by TF + MVs. Ultrastructural techniques revealed that uptake of TF + MVs was efficiently prevented by anti-CD36 and SERT inhibitor, but only moderately interfered by GPIIb-IIIa blockade. We conclude that internalization of TF + MVs by platelets occurs independently of receptors related to their main hemostatic function (GPIIb-IIIa), involves the scavenger receptor CD36, SERT and engages PI3-Kinase activation and cytoskeletal assembly. CD36 and SERT appear as potential therapeutic targets to interfere with the association of TF + MVs with platelets and possibly downregulate their prothrombotic phenotype. This article is protected by copyright. All rights reserved
    Electronic ISSN: 0091-7419
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-08-05
    Description: Human pancreatic and prostate cancers metastasize along nerve axons during perineural invasion. The extracellular matrix laminin class of proteins is an abundant component of both myelinated and non-myelinated nerves. Analysis of human pancreatic and prostate tissue revealed both perineural and endoneural invasion with Schwann cells surrounded or disrupted by tumor, respectively. Tumor and nerve cell co-culture conditions were used to determine if myelinating or non-myelinating Schwann cell (S16 and S16Y, respectively) phenotype was equally likely to promote integrin-dependent cancer cell invasion and migration on laminin. Conditioned medium from S16 cells increased tumor cell (DU145, PC3, and CFPAC1) invasion into laminin approximately 1.3 to 2.0 fold compared to fetal bovine serum (FBS) treated cells. Integrin function (e.g., ITGA6p formation) increased up to 1.5 fold in prostate (DU145, PC3, RWPE-1) and pancreatic (CFPAC1) cells, and invasion was dependent on ITGA6p formation and ITGB1 as determined by function-blocking antibodies. In contrast, conditioned medium isolated from S16Y cells (non-myelinating phenotype) decreased constitutive levels of ITGA6p in the tumor cells by 50% compared to untreated cells and decreased ITGA6p formation 3.0 fold compared to S16 treated cells. Flow cytometry and western blot analysis revealed loss of ITGA6p formation as reversible and independent of overall loss of ITGA6 expression. These results suggest that the myelinating phenotype of Schwann cells within the tumor microenvironment increased integrin-dependent tumor invasion on laminin. This article is protected by copyright. All rights reserved
    Electronic ISSN: 0091-7419
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-08-21
    Description: Objective: To develop a pipeline for realistic head models of nonhuman primates (NHPs) for simulations of noninvasive brain stimulation, and use these models together with empirical threshold measurements to demonstrate that the models capture individual anatomical variability. Methods: Based on structural MRI data, we created models of the electric field (E-field) induced by right unilateral (RUL) electroconvulsive therapy (ECT) in four rhesus macaques. Individual motor threshold (MT) was measured with transcranial electric stimulation (TES) administered through the RUL electrodes in the same subjects. Results: The interindividual anatomical differences resulted in 57% variation in median E-field strength in the brain at fixed stimulus current amplitude. Individualization of the stimulus current by MT reduced the E-field variation in the target motor area by 27%. There was significant correlation between the measured MT and the ratio of simulated electrode current and E-field strength ( $r^{2} = 0.95$ , $p = 0.026$ ). Exploratory analysis revealed significant correlations of this ratio with anatomical parameters including of the superior electrode-to-cortex distance, vertex-to-cortex distance, and brain volume ( $r^{2} > 0.96$ , $p 〈 0.02$ ). The neural activation threshold was estimated to be $0.45 pm 0.07$ V/cm for 0.2-ms stimulus pulse width. Conclusion: These results suggest that our individual-specific NHP E-field models appropriately capture individual anatomical variability relevant to the dosing of TES/ECT. These findings are exploratory due to the small number of subjects. Sign- ficance: This study can contribute insight in NHP studies of ECT and other brain stimulation interventions, help link the results to clinical studies, and ultimately lead to more rational brain stimulation dosing paradigms.
    Print ISSN: 0018-9294
    Electronic ISSN: 1558-2531
    Topics: Medicine , Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Institute of Electrical and Electronics Engineers (IEEE)
    Publication Date: 2015-08-21
    Print ISSN: 0018-9294
    Electronic ISSN: 1558-2531
    Topics: Medicine , Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-08-21
    Description: Ectopic electrical activity that originates in the peri-infarct region can give rise to potentially lethal re-entrant arrhythmias. The spatial variation in electrotonic loading that results from structural remodelling in the infarct border zone may increase the probability that focal activity will trigger electrical capture, but this has not previously been investigated systematically. This study uses in-silico experiments to examine the structural modulation of effective refractory period on ectopic beat capture. Informed by 3-D reconstructions of myocyte organization in the infarct border zone, a region of rapid tissue expansion is abstracted to an idealized representation. A novel metric is introduced that defines the local electrotonic loading as a function of passive tissue properties and boundary conditions. The effective refractory period correlates closely with local electrotonic loading, while the action potential duration, conduction, and upstroke velocity reduce in regions of increasing electrotonic load. In the presence of focal ectopic stimuli, spatial variation in effective refractory period can cause unidirectional conduction block providing a substrate for reentrant arrhythmias. Consequently, based on the observed results, a possible novel mechanism for arrhythmogenesis in the infarct border zone is proposed.
    Print ISSN: 0018-9294
    Electronic ISSN: 1558-2531
    Topics: Medicine , Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2015-08-21
    Description: Automatic processing and accurate diagnosis of pathological electrocardiogram (ECG) signals remains a challenge. As long-term ECG recordings continue to increase in prevalence, driven partly by the ease of remote monitoring technology usage, the need to automate ECG analysis continues to grow. In previous studies, a model-based ECG filtering approach to ECG data from healthy subjects has been applied to facilitate accurate online filtering and analysis of physiological signals. We propose an extension of this approach, which models not only normal and ventricular heartbeats, but also morphologies not previously encountered. A switching Kalman filter approach is introduced to enable the automatic selection of the most likely mode (beat type), while simultaneously filtering the signal using appropriate prior knowledge. Novelty detection is also made possible by incorporating a third mode for the detection of unknown (not previously observed) morphologies, and denoted as X-factor. This new approach is compared to state-of-the-art techniques for the ventricular heartbeat classification in the MIT-BIH arrhythmia and Incart databases. $F_1$ scores of $mathbf {98.3%}$ and $mathbf {99.5%}$ were found on each database, respectively, which are superior to other published algorithms’ results reported on the same databases. Only $mathbf {3%}$ of all the beats were discarded as X-factor, and the majority of these beats contained high levels of noise. The proposed technique demonstrates accurate beat classification in the presence of previously unseen (and unlearned) morphologies and noise, and provides an automated method for morphological analysis of arbitrary (unknown) ECG leads.
    Print ISSN: 0018-9294
    Electronic ISSN: 1558-2531
    Topics: Medicine , Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    facet.materialart.
    Unknown
    Institute of Electrical and Electronics Engineers (IEEE)
    Publication Date: 2015-08-21
    Description: Objective : A hybrid imaging technique, ultrasound-modulated luminescence tomography, that uses ultrasound to modulate diffusely propagating light has been shown to improve the spatial resolution of optical images. This paper investigates the underlying modulation mechanisms and the feasibility of applying this technique to improve spatial resolution in bioluminescence tomography. Methods : Ultrasound-modulated bioluminescence tomography was studied numerically to identify the effects of four factors (reduced optical scattering coefficient, optical absorption coefficient, refractive index, and luciferase concentration) on the depth of light modulation. In practice, an open source finite-element method tool for simulation of diffusely propagating light, near infrared fluorescence and spectral tomography, was modified to incorporate the effects of ultrasound modulation. The signal-to-noise ratios of detected modulated bioluminescent emissions are calculated using the optical and physical properties of a mouse model. Results : The modulation depth of the bioluminescent emission affected by the US induced variation of local concentration of the light emitting enzyme luciferase was at least two orders of magnitude greater than that caused by variations in the other factors. For surface radiances above approximately $10^7$ $hbox{photons}$ / $hbox{s}$ / $hbox{cm}^{2}$ / $hbox{sr,}$ the corresponding SNRs are detectable with the currently available detector technologies. Conclusion : The dominant effect in generation of ultrasound-modulated bioluminescence is ultrasound induced variation in luciferase concentration. The SNR analysis confirms the- feasibility of applying ultrasound-modulated bioluminescence tomography in preclinical imaging of mice. Significance : The simulation model developed suggests ultrasound-modulated bioluminescence tomography is a potential technique to improve the spatial resolution of bioluminescence tomography.
    Print ISSN: 0018-9294
    Electronic ISSN: 1558-2531
    Topics: Medicine , Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    Institute of Electrical and Electronics Engineers (IEEE)
    Publication Date: 2015-08-21
    Description: Mechanical ventilation of patients with acute respiratory distress syndrome (ARDS) is a necessary life support measure which may lead to ventilator-induced lung injury, a complication that can be reduced or ameliorated by using appropriate tidal volumes and positive end-expiratory pressures. However, the optimal mechanical ventilation parameters are almost certainly different for each patient, and will vary with time as the injury status of the lung changes. In order to optimize mechanical ventilation in an individual ARDS patient, therefore, it is necessary to track the manner in which injury status is reflected in the mechanical properties of the lungs. Accordingly, we developed an algorithm for assessing the time-dependent manner in which different lung regions open (recruit) and close (derecruit) as a function of the pressure waveform that is applied to the airways during mechanical ventilation. We used this algorithm to test the notion that variable ventilation provides the dynamic perturbations in lung volume necessary to accurately identify recruitment/derecruitment dynamics in the injured lung. We performed this test on synthetic pressure and flow data generated with established numerical models of lung function corresponding to both healthy mice and mice with lung injury. The data were generated by subjecting the models to a variety of mechanical ventilation regimens including variable ventilation. Our results support the hypothesis that variable ventilation can be used as a diagnostic tool to identify the injury status of the lung in ARDS.
    Print ISSN: 0018-9294
    Electronic ISSN: 1558-2531
    Topics: Medicine , Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    facet.materialart.
    Unknown
    Institute of Electrical and Electronics Engineers (IEEE)
    Publication Date: 2015-08-21
    Description: Goal: Many brain–computer interface (BCI) classification techniques rely on a large number of labeled brain responses to create efficient classifiers. A large database representing all of the possible variability in the signal is impossible to obtain in a short period of time, and prolonged calibration times prevent efficient BCI use. We propose to improve BCIs based on the detection of event-related potentials (ERPs) in two ways. Methods: First, we increase the size of the training database by considering additional deformed trials. The creation of the additional deformed trials is based on the addition of Gaussian noise, and on the variability of the ERP latencies. Second, we exploit the variability of the ERP latencies by combining decisions across multiple deformed trials. These new methods are evaluated on data from 16 healthy subjects participating in a rapid serial visual presentation task. Results: The results show a significant increase in the performance of single-trial detection with the addition of artificial trials, and the combination of decisions obtained from altered trials. When the number of trials to train a classifier is low, the proposed approach allows us improve performance from an AUC of $0.533pm 0.080$ to $0.905pm 0.053$ . This improvement represents approximately an 80% reduction in classification error. Conclusion: These results demonstrate that artificially increasing the training dataset leads to improved single-trial detection. Significance: Calibration sessions can be shortened for BCIs based on ERP detection.
    Print ISSN: 0018-9294
    Electronic ISSN: 1558-2531
    Topics: Medicine , Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2015-08-21
    Description: Goal: The existing ISFET-based DNA sequencing detects hydrogen ions released during the polymerization of DNA strands on microbeads, which are scattered into microwell array above the ISFET sensor with unknown distribution. However, false pH detection happens at empty microwells due to crosstalk from neighboring microbeads. In this paper, a dual-mode CMOS ISFET sensor is proposed to have accurate pH detection toward DNA sequencing. Methods: Dual-mode sensing, optical and chemical modes, is realized by integrating a CMOS image sensor (CIS) with ISFET pH sensor, and is fabricated in a standard 0.18-μm CIS process. With accurate determination of microbead physical locations with CIS pixel by contact imaging, the dual-mode sensor can correlate local pH for one DNA slice at one location-determined microbead, which can result in improved pH detection accuracy. Moreover, toward a high-throughput DNA sequencing, a correlated-double-sampling readout that supports large array for both modes is deployed to reduce pixel-to-pixel nonuniformity such as threshold voltage mismatch. Results: The proposed CMOS dual-mode sensor is experimentally examined to show a well correlated pH map and optical image for microbeads with a pH sensitivity of 26.2 mV/pH, a fixed pattern noise (FPN) reduction from 4% to 0.3%, and a readout speed of 1200 frames/s. Conclusion: A dual-mode CMOS ISFET sensor with suppressed FPN for accurate large-arrayed pH sensing is proposed and demonstrated with state-of-the-art measured results toward accurate and high-throughput DNA sequencing. Significance: The developed dual-mode CMOS ISFET sensor has great potential for future personal genome diagnostics with high accuracy and low cost.
    Print ISSN: 0018-9294
    Electronic ISSN: 1558-2531
    Topics: Medicine , Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2015-08-21
    Description: Goal : Visual feedback can be used during gait rehabilitation to improve the efficacy of training. We presented a paradigm called visual feedback distortion; the visual representation of step length was manipulated during treadmill walking. Our prior work demonstrated that an implicit distortion of visual feedback of step length entails an unintentional adaptive process in the subjects’ spatial gait pattern. Here, we investigated whether the implicit visual feedback distortion, versus conscious correction, promotes efficient locomotor adaptation that relates to greater retention of a task. Methods: Thirteen healthy subjects were studied under two conditions: (1) we implicitly distorted the visual representation of their gait symmetry over 14 min, and (2) with help of visual feedback, subjects were told to walk on the treadmill with the intent of attaining the gait asymmetry observed during the first implicit trial. After adaptation, the visual feedback was removed while subjects continued walking normally. Over this 6-min period, retention of preserved asymmetric pattern was assessed. Results: We found that there was a greater retention rate during the implicit distortion trial than that of the visually guided conscious modulation trial. Conclusion: This study highlights the important role of implicit learning in the context of gait rehabilitation by demonstrating that training with implicit visual feedback distortion may produce longer lasting effects. Significance: This suggests that using visual feedback distortion could improve the effectiveness of treadmill rehabilitation processes by influencing the retention of motor skills.
    Print ISSN: 0018-9294
    Electronic ISSN: 1558-2531
    Topics: Medicine , Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2015-08-21
    Description: This paper explores the development of biomechanical models for evaluating a new class of passive mechanical implants for orthopedic surgery. The proposed implants take the form of passive engineered mechanisms, and will be used to improve the functional attachment of muscles to tendons and bone by modifying the transmission of forces and movement inside the body. Specifically, we present how two types of implantable mechanisms may be modeled in the open-source biomechanical software OpenSim. The first implant, which is proposed for hand tendon-transfer surgery, differentially distributes the forces and movement from one muscle across multiple tendons. The second implant, which is proposed for knee-replacement surgery, scales up the forces applied to the knee joint by the quadriceps muscle. This paper's key innovation is that such mechanisms have never been considered before in biomechanical simulation modeling and in surgery. When compared with joint function enabled by the current surgical practice of using sutures to make the attachment, biomechanical simulations show that the surgery with 1) the differential mechanism (tendon network) implant improves the fingers’ ability to passively adapt to an object's shape significantly during grasping tasks (2.74× as measured by the extent of finger flexion) for the same muscle force, and 2) the force-scaling implant increases knee-joint torque by 84% for the same muscle force. The critical significance of this study is to provide a methodology for the design and inclusion of the implants into biomechanical models and validating the improvement in joint function they enable when compared with current surgical practice.
    Print ISSN: 0018-9294
    Electronic ISSN: 1558-2531
    Topics: Medicine , Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2015-08-21
    Description: The impact of pulse repetition rate (PRR) in modulating electroporation (EP) induced by nanosecond pulsed electric fields (nsPEFs) in mammalian cells was approached here by performing both biological and numerical analysis. Plasma membrane permeabilization and viability of Jurkat cells were analyzed after exposure to 500, 1.3 MV/m, 40 ns PEFs with variable PRR (2–30 Hz). A finite-element model was used to investigate EP dynamics in a single cell under the same pulsing conditions, by looking at the time course of transmembrane voltage and pore density on the ns time scale. The biological observations showed an increased EP and reduced viability of the exposed cells at lower PRR in the considered range. The numerical analysis resulted in different dynamics of plasma membrane response when ns pulses were delivered with different PRR, consistently with a phenomenon of electrodesensitization recently hypothesized by another research group.
    Print ISSN: 0018-9294
    Electronic ISSN: 1558-2531
    Topics: Medicine , Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2015-08-21
    Description: Gastroscopy plays an important role in the diagnosis of gastric disease. In this paper, we develop an image panoramic system to assist endoscopists in improving lesion surveillance and reducing many of the tedious operations associated with gastroscopy. The constructed panoramic view has two categories: 1) the local view broadens the endoscopist's field of view in real time. Combining with the original gastroscopic video, this mosaicking view enables the endoscopist to diagnose the lesion comprehensively; 2) the global view constructs a large-area panoramic scene of the internal gastric surface, which can be used for intraoperative surgical navigation and postoperative scene review. Due to the irregular texture and inconsistent reflection of the gastric internal surface, common registration methods cannot accurately stitch this surface. Thereby, a six degree of freedom position tracking endoscope is devised to accommodate for the accumulated mosaicking error and provide efficient mosaicking results. For the global view, a dual-cube constraint model and a Bundle Adjustment algorithm are incorporated to deal with the mosaicking error caused by the irregular inflation and nonrigid deformation of the stomach. Moreover, texture blending and frame selection schemes are developed to make the mosaicking results feasible in real-clinical applications. The experimental results demonstrate that our system performs with a speed of 7.12 frames/s in a standard computer environment, and the mosaicking mean error is 0.43 mm for local panoramic view and 3.71 mm for global panoramic view.
    Print ISSN: 0018-9294
    Electronic ISSN: 1558-2531
    Topics: Medicine , Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    Institute of Electrical and Electronics Engineers (IEEE)
    Publication Date: 2015-08-21
    Description: In this paper, we present a smart capsule for location-specific drug release in the gastrointestinal tract. Once activated through a magnetic proximity fuse, the capsule opens up and releases its powdered payload in a location specified by an implanted miniature magnetic marker or an externally worn larger magnet. The capsule (9 mm × 26 mm) comprises of two compartments: one contains a charged capacitor and a reed switch, while the second one houses the drug reservoir capped by a taut nylon thread intertwined with a nichrome wire. The nichrome wire is connected to the capacitor through the reed switch. The capacitor is charged to 2.7 V before ingestion and once within the proximity of the permanent magnet; the reed switch closes, discharging the capacitor through the nichrome wire, melting the nylon thread, detaching the cap, and emptying the drug reservoir.
    Print ISSN: 0018-9294
    Electronic ISSN: 1558-2531
    Topics: Medicine , Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    facet.materialart.
    Unknown
    Institute of Electrical and Electronics Engineers (IEEE)
    Publication Date: 2015-08-21
    Description: Goal: The purpose of this paper was to evaluate a nitinol tine fixation design for a transcatheter pacemaker in order to determine if the tines could be easily deployed and safely removed from the myocardium, enable low, stable pacing thresholds, and minimize the potential for dislodgment. Methods: The penetration properties of 13 human hearts were compared to the deployment and fixation energy of the tines to determine if the tines could be easily deployed and removed from the myocardium. The safety factor for dislodgement was calculated by comparing the kinetic energy of the device to the fixation energy of the tines. The fixation stability was tested in 113 chronic implants across 89 animals via pacing threshold measurements or evidence of dislodgement at necropsy. Results: Based on the tine fixation and tissue energy analysis, the tines can easily penetrate the heart. The tines can be safely removed from the myocardium based on the increased tine surface area during retraction. There were no dislodgements observed in the animals and the mean pacing threshold at implant was 0.59 +/− 0.21 V and at termination was 0.65 +/− 0.36 V. The safety factor for dislodgement was determined to be 15X during simulated exercise conditions. Conclusion: The nitinol tine fixation design enabled the implant of a self-contained pacemaker within the right ventricle and was effective in meeting the design requirements. Significance: This fixation technology provides a novel solution to enable the attachment of a transcatheter pacemaker directly within the heart.
    Print ISSN: 0018-9294
    Electronic ISSN: 1558-2531
    Topics: Medicine , Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2015-08-15
    Description: Profilin (Pfn1) regulates cytoskeletal reorganization and migration, but its role in osteoblasts is not known. BMPs (bone morphogenetic proteins) aree a multifunctional cytokine involved in osteoblastic differentiation and promote bone regeneration and repair. Although several molecules are known to modulate BMP signaling, mechanisms that determine the levels of BMP action in osteoblastic function are still incompletely understood. We therefore examine the expression of Pfn1 in osteoblasts and its role in BMP-induced differentiation in osteoblasts. In osteoblastic MC3T3-E1(MC) cells, Pfn1 mRNA is expressed constitutively and its expression levels are declined during the culture in a time dependent manner in contrast to the increase in alkaline phosphatase activity revealing that Pfn1 expression is down regulated along with differentiation. To test the effects of osteoblastic differentiation on Pfn1expression further, MC cells are treated with BMP. BMP treatment suppresses the levels of Pfn1 mRNA. This suppressive effect of BMP is time dependent and further down regulation of Pfn1 mRNA levels is observed when the BMP treatment is continued for a longer period of time. Pfn1mRNA knock down (KD) by siRNAs enhances BMP-induced increase in alkaline phosphatase (Alp) activity in MC cells. To analyze the regulatory mechanism, Alp mRNA levels are examined and Pfn1 KD enhances the BMP-induced increase in the levels of Alp mRNA expression. Furthermore, Pfn1 KD enhances BMP-induced transcriptional expression of luciferase reporter activity via BMP response element in osteoblasts. These data indicate that Pfn1 is a novel target of BMP and suppresses BMP-induced differentiation of osteoblasts at least in part via transcriptional event. This article is protected by copyright. All rights reserved
    Electronic ISSN: 0091-7419
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2015-08-05
    Description: One of the major features of neurodegenerative disease is the selective vulnerability of different neuronal populations that are affected in a progressive and often stereotyped manner. Despite the susceptible neuronal population varies between diseases, oxidative stress is implicated as the major pathogenic process in all of them. Natural Extract of Castanea sativa Mill . bark (ENC), recently characterized in its phenolic composition, acts as antioxidant and cardioprotective agent. Its neuroprotettive properties, however, have never been investigated. The aim of this study was to assess neuroprotection of ENC in in vitro models of oxidative-stress-mediate injury. Human neuroblastoma SH-SY5Y cells treated with glutamate (50 mM for 24h) or hydrogen peroxide (25 µM for 1h followed by 24 with medium) were used. The results showed that the addition of ENC (1-50 µg/ml) to cell medium before the neuronal damage provided neuroprotection in both experimental models used, while its addition after the injury was ineffective. In conclusion, the present results suggest that ENC could be a valuable support as dietary supplement, combining beneficial preventive neuroprotettive effects with a high antioxidant activity. This article is protected by copyright. All rights reserved
    Electronic ISSN: 0091-7419
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2015-08-05
    Description: PKR-like ER-resident kinase (PERK) phosphorylates eukaryotic translation initiation factor 2 alpha (eIF2α) under endoplasmic reticulum (ER) stress; this results in repression of general translation and induction of specific gene expression, such as activating transcription factor 4 (ATF4). We previously showed that, upon ER stress, transducin (beta)-like 2 (TBL2) was an ER-localized transmembrane protein and interacted with PERK and that TBL2 was involved in ATF4 expression and cell survival. Here, we show that TBL2 is able to associate with ATF4 mRNA and regulate its translation. The RNA-immunoprecipitation analysis using several TBL2 deletion mutants revealed that the WD40 domain was essential for association with ATF4 mRNA. Importantly, suppression of TBL2 by knockdown or overexpression of the TBL2 mutant with a defective WD40 domain diminished ATF4 induction at the translational level. Thus, our findings indicate that, under ER stress, TBL2 participates in ATF4 translation through its association with the mRNA. This article is protected by copyright. All rights reserved
    Electronic ISSN: 0091-7419
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2015-08-05
    Description: Toll-like receptor 2 (TLR2)-mediated signaling cascades and gene regulation are mainly involved in diseases such as immunity and inflammation. In this study microarray analysis was performed using bone marrow-derived macrophages (BMDM) and Raw 264.7 cells to identify novel proteins involved in the TLR2-mediated cellular response. We found that pleckstrin homology-like domain family, member 1 (PHLDA1) is a novel gene up-regulated by TLR2 stimulation and determined the unique signaling pathway for its expression. Treatment with TLR2 agonist Pam 3 CSK 4 increased mRNA, protein, and fluorescence staining of PHLDA1. Induction of PHLDA1 by TLR2 stimulation disappeared from TLR2 KO mice-derived BMDM. Among janus kinase (JAK) family members, JAK2 was involved in TLR2-stimulated PHLDA1 expression. Signal transducer and activator of transcription 3 (STAT3) also participated in PHLDA1 expression downstream of the JAK2. Interestingly, ERK1/2 was an intermediate between JAK2 and STAT3. In silico analysis revealed the presence of highly conserved γ-activated sites within mouse PHLDA1 promoter and confirmed the JAK2-STAT3 pathway is important to Pam 3 CSK 4 -induced PHLDA1 transcription. These findings suggest that the JAK2-ERK1/2-STAT3 pathway is an important signaling pathway for PHLDA1 expression and that these proteins may play a critical role in eliciting TLR2-mediated immune and inflammatory response. This article is protected by copyright. All rights reserved
    Electronic ISSN: 0091-7419
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2015-08-05
    Description: Autophagy is a catabolic cellular mechanism involving lysosomal degradation of unwanted cellular components. Interaction between Beclin-1 and Bcl-2 proteins is known to play a critical role in the initiation of autophagy. We report that malignantly transformed lung epithelial cells are resistant to autophagy, and express lower basal levels of autophagic proteins Beclin-1 and LC3-II as compared to non-tumorigenic cells. Additionally, increased levels of nitric oxide (NO) and Bcl-2 were observed in transformed cells. NO was found to negatively regulate autophagy initiation and autophagic flux by nitrosylating Bcl-2 and stabilizing its interaction with Beclin-1, resulting in inhibition of Beclin-1 activity. An increase in the apoptotic initiator caspase-9 and the apoptosis and autophagy-associated kinase p38/MAPK in both cell types indicated possible autophagy-apoptosis crosstalk. Pre-treatments with ABT-737 (Bcl-2 inhibitor) and aminoguanidine (NO inhibitor), and transfection with a non-nitrosylable Bcl-2 cysteine double-mutant plasmid resulted in increased autophagic flux (LC3-II/p62 upregulation) corresponding with decreased S -nitrocysteine expression, thus corroborating the regulatory role of Bcl-2 S -nitrosylation in autophagy. In conclusion, our study reveals a novel mechanism of autophagy resistance via post-translational modification of Bcl-2 protein by NO, which may be critical in driving cellular tumorigenesis. This article is protected by copyright. All rights reserved
    Electronic ISSN: 0091-7419
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2015-06-07
    Description: Although the mechanism which regulates transcription in the 5'-UTR of the mu opioid receptor (MOR) gene (OPRM1) in lymphocytes has been well studied, a question remains as to whether there is post-transcriptional regulation of MOR gene OPRM1 gene in lymphocytes. In this study, we describe both the role played by miRNAs and the impact of SIVmac239 infection on post-transcriptional regulation of MOR gene OPRM1 gene in CEM x174 cells. Our results show that miR-16 is able to bind the target site in the range of 8699-8719 nt from the stop coden in MOR gene MOR-1 mRNA 3'-UTR and suppress the expression of MOR OPRM1 gene. Mutation of this target site reduces the effect of miR-16. Morphine (1 µM) inhibites the expression of miR-16, and this effect is reversed by the antagonist naloxone. Thus, morphine may up-regulate MOR receptor level by both stimulating MOR OPRM1 gene transcription and stabilizing its mRNA. SIVmac239 infection results in an apparent elevation of miR-16 and gradual reduction of MOR OPRM1 gene expression. The inverse correlation of elevated miR-16 and reduced MOR OPRM1 gene expression under viral loading confirmed the effect of SIVmac239 on post-transcriptional regulation of MOR OPRM1 gene in lymphocytes. We conclude that miR-16 is a primary factor in post-transcriptional regulation of MOR OPRM1 gene. SIVmac239 upregulates miR-16 levels and consequently suppresses MOR OPRM1 gene expression. This finding will be helpful for full understanding of the regulatory mechanism of MOR OPRM1 gene in lymphocytes, as well as the synergistic mechanism of HIV infection and morphine addiction in the pathogenesis of AIDS.
    Electronic ISSN: 0091-7419
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2015-06-07
    Description: Structural stability of Oldenlandia affinis cyclotide, kalata B1 of native (1NB1) and two mutants 2F2I ([P20D, V21K] kB1) and 2F2J ([W19K, P20N, V21K] kB1) was investigated. Single model analysis showed high number of intra-molecular interactions followed by more proportion of beta sheet contents in [P20D, V21K] kB1 as compared to that of native and the other mutant of kalata B1. Further, the modern conformational sampling approach, an alternate to classical molecular dynamics was introduced, which revealed that the [P20D, V21K] kB1 was identified as structurally stable one, substantiated by various structural events viz., root mean square deviation, root mean square fluctuation and angular deviation by Ramachandran plot. Moreover, the statistically validated contours of polar surface area, hydrogen bond distribution and the distance of disulfide bridges also supported the priority of [P20D, V21K] kB1 with respect to stability. From this work, it is proposed that the [P20D, V21K] kB1 (2F2I) could be the best template for scaffolding peptide based drug design.
    Electronic ISSN: 0091-7419
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2015-06-07
    Description: Inhibition of metabolic features which distinguish cancer cells from their non-malignant counterparts is a promising approach to cancer treatment. Energy support for drug extrusion in multidrug resistance (MDR) is a potential target for metabolic inhibition. Two major sources of ATP-based metabolic energy are partial (glycolysis) and complete (mitochondrial oxidative phosphorylation) oxidation of metabolic fuels. In cancer cells, the balance between them tends to be shifted towards glycolysis; this shift is considered to be characteristic of the cancer metabolic phenotype. Numerous earlier studies, conducted with cells cultured in a monolayer (2-D model), suggested inhibition of glycolytic ATP production as an efficient tool to suppress MDR in cancer cells. Yet, more recent work challenged the appropriateness of the 2-D model for such studies and suggested that a more clinically relevant approach would utilize a more advanced cellular model such as a 3-D model. Here we show that the transition from the 2-D model (cultured monolayer) to a 3-D model (cultured spheroids) introduces essential changes into the concept of energetic suppression of MDR. The 3-D cell organization leads to the formation of a discrete cell subpopulation (not formed in the 2-D model) with elevated MDR transport capacity. This subpopulation has a specific metabolic phenotype (mixed glycolytic/oxidative MDR support) different from that of cells cultured in the 2-D model. Finally, the shift to the oxidative phenotype becomes greater when the spheroids are grown under conditions of lactic acidosis that are typical for solid tumors. The potential clinical significance of these findings is discussed.
    Electronic ISSN: 0091-7419
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2015-06-07
    Description: We investigated the effects of exogenous sodium pyruvate (SP) on adipocyte differentiation, lipid accumulation, and the mRNA expression levels of adipogenesis-related genes in 3T3-L1 pre-adipocytes. Differentiation of pre-adipocytes was induced by MDI (3-isobutyl-1-methylxanthine: IBMX, dexamethasone: DEX, and insulin), in the presence or absence of SP. Adipogenesis was stimulated by SP in a concentration-dependent manner. SP also induced the expression of genes encoding aP2, GLUT4, and adiponectin, but had no effect on cell proliferation. Exogenous glucose did not promote adipogenesis or lipid accumulation. 2-deoxy-D-glucose inhibited adipogenesis initiated by MDI, but failed to influence the effects of SP on adipogenesis, whereas 3-bromopyruvate inhibited adipogenesis regardless of whether SP was present. The pro-adipogenic properties of SP were limited to the early events of adipogenesis. To determine whether SP mimics the adipogenic action of dexamethasone or insulin, we examined the effects of SP on adipogenesis with combinations of IBMX, DEX, and insulin. SP did not improve incomplete lipid accumulation observed in cells grown under IBMX-, DEX-, or insulin-free conditions. Insulin-stimulated ERK1/2 phosphorylation was diminished by SP, while phosphorylation of Akt was increased, correlating with increased glucose uptake in response to insulin. We also observed that SP stimulated immediate early expression of C/EBPβ and C/EBPδ. The PPARγ antagonist GW9662 inhibited adipogenesis. Our findings highlight the adipogenic function of exogenous SP by stimulating early events of adipogenesis.
    Electronic ISSN: 0091-7419
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2015-06-07
    Description: Diabetic nephropathy is characterized by inordinate secretion of extracellular matrix (ECM) proteins from mesangial cells (MCs), which is tightly associated with excessive activation of TGF-β signaling. The forkhead transcription factor O1 (FoxO1) protects mesangial cells from hyperglycemia-induced oxidative stress, which may be involved in ameliorating the redundant secretion of ECM proteins under high glucose conditions. Here we reported that high glucose elevated the level of p-Akt to attenuate endogenous FoxO1 bioactivities in MCs, accompanied with decreases in the mRNA expressions of catalase (CAT) and superoxide dismutase 2 (SOD2). Meanwhile, the expression of major ECM proteins-FN and Col I- increased under high glucose condition, in consistent with the activation of TGF-β/Smad signaling. By contrast, overexpression of nucleus-localized FoxO1 (insensitive to Akt phosphorylation) directly up-regulated the expressions of anti-oxidative enzymes, accompanied with inactivation of TGF-β/Smad3 pathway, as well as decreases of extracellular matrix proteins. Moreover, similar to those MCs overexpressed of nucleus-localized FoxO1 in high glucose conditions, MCs with down-regulation of FoxO1 by small interference-RNA under normal glucose conditions showed increased FN level and activated TGF-β/Smad3 pathway. Our findings link the anti-oxidative activity of FoxO1 and the TGF-β-induced secretion of ECM proteins, indicating the novel role of FoxO1 in protecting MCs under high glucose conditions.
    Electronic ISSN: 0091-7419
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2015-08-09
    Description: The effect of targeted expression of an anabolic isoform of basic fibroblast growth factor (FGF2) in osteoblastic lineage on tibial fracture healing was assessed in mice. Closed fracture of the tibiae was performed in Col3.6-18kDa Fgf2 -IRES-GFPsaph mice in which a 3.6 kb fragment of type I collagen promoter (Col3.6) drives the expression of only the 18kD isoform of FGF2 (18kDa Fgf2/ LMW) with green fluorescent protein-sapphire (GFPsaph) as well as Vector mice (Col3.6-IRES-GFPsaph, Vector) that did not harbor the FGF2 transgene. Radiographic, micro-CT, DEXA and histologic analysis of fracture healing of tibiae harvested at 3, 10 and 20 days showed a smaller fracture callus but accelerated fracture healing in LMWTg compared with Vector mice. At post fracture day 3, FGF receptor 3 and Sox 9 mRNA were significantly increased in LMWTg compared with Vector. Accelerated fracture healing was associated with higher FGF receptor 1, platelet derived growth factors B, C and D, type X collagen, vascular endothelial cell growth factor, matrix metalloproteinase 9, tartrate resistant acid phosphatase, cathepsin K, runt-related transcription factor-2, Osterix and Osteocalcin and lower Sox9, and type 2 collagen expression at 10 days post fracture. We postulate that overexpression of LMW FGF2 accelerated the fracture healing process due to its effects on factors that are important in chondrocyte and osteoblast differentiation and vascular invasion. This article is protected by copyright. All rights reserved
    Electronic ISSN: 0091-7419
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2015-08-12
    Description: TCERG1 was characterized previously as a repressor of the transcription factor C/EBPα through a mechanism that involved relocalization of TCERG1 from nuclear speckles to pericentromeric regions. The inhibitory activity as well as the relocalization activity has been demonstrated to lie in the amino terminal half of the protein, which contains several discrete motifs including an imperfect glutamine-alanine (QA) repeat. In the present study, we showed that deletion of this domain completely abrogated the ability of TCERG1 to inhibit the growth arrest activity of C/EBPα. Moreover, the QA repeat deletion mutant of TCERG1 lost the ability to be relocalized from nuclear speckles to pericentromeric regions, and caused an increase in the average size of individual speckles. We also showed that deletion of the QA repeat abrogated the complex formation between TCERG1 and C/EBPα. Examination of mutants with varying numbers of QA repeats indicated that a minimal number of repeats are required for inhibitory activity as well as relocalization ability. These data contribute to our overall understanding of how TCERG1 can have gene-specific effects in addition to its more general roles in coordinating transcription elongation and splicing. This article is protected by copyright. All rights reserved
    Electronic ISSN: 0091-7419
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    facet.materialart.
    Unknown
    Wiley
    Publication Date: 2015-08-15
    Electronic ISSN: 0091-7419
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2015-09-13
    Description: G-protein-coupled receptor 30 (GPR30) is an estrogen receptor that initiates several rapid, non-genomic signaling events triggered by E2. GPR30 has recently been identified in C2C12 cells; however, little is known about the intracelular distribution and its role in C2C12 myoblasts and myotubes. By western blotting and immunohistochemistry, we evidenced expression of GPR30. While in C2C12 myoblasts the receptor was present in nucleus, mitochondria and endoplasmic reticulum, in C2C12 myotubes it was additionally found in cytoplasm. Using trypan blue uptake assay to determine cellular death and fluorescent microscopy to evaluate picnotic nuclei and mitochondrial distribution, we demonstated that treatment of C2C12 myoblasts with G1 (GPR30 agonist) did not protect the cells against apoptosis induced by H 2 O 2 as E2. However, when G15 (GPR30 antagonist) was used, E2 could not prevent the damage caused by the oxidative stress. Further, some of the molecular mechanisms involved were investigated by wertern blot assays. Thus, E2 was able to induce AKT phosphorylation in apoptotic conditions and ERK phosphorylation in proliferating C2C12 cells but not when the cultures were incubated with G15. Additionally, using G15 antagonist we have found that GPR30 participates in the myogenin expression and creatine kinase activity stimulated by E2 in the first steps of C2C12 differentiation. Althogether these findings provide evidences showing that GPR30 is expressed in diverse intracellular compartments in undifferentiated and differentiated C2C12 cells and mediates E2 actions. This article is protected by copyright. All rights reserved
    Electronic ISSN: 0091-7419
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2015-09-13
    Description: Chd5 is an essential factor for neuronal differentiation and spermatogenesis, and known as a tumor suppressor. H3K27me3 and H3K4un are modifications recognized by Chd5; however, it remains unclear how Chd5 remodels chromatin structure. We completely disrupted the Chd5 locus using the CRISPR-Cas9 system to generate a 52 kbp long deletion, and analyzed Chd5 function in mouse embryonic stem cells. Our findings show that Chd5 represses murine endogenous retrovirus-L (MuERV-L/MERVL), an endogenous retrovirus-derived retrotransposon, by regulating H3K27me3 and H3.1/H3.2 function. This article is protected by copyright. All rights reserved
    Electronic ISSN: 0091-7419
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2015-09-15
    Description: Previous studies have shown that promyelocytic leukemia zinc finger (PLZF), chemokine (C-X-C motif) receptor 4 (CXCR4) and mir146a were associated with the self-renewal of mouse spermatogonial stem cells (SSCs); however, there is little information on their effects on the fate of livestock SSCs. Here, we have identified a regulatory pathway in dairy goat mGSCs, involving PLZF, mir146a and the SDF-1 receptor CXCR4. PLZF overexpression downregulated mir146a and simultaneously upregulated the expression of CXCR4 protein, whereas PLZF knockdown (siPLZF) induced the specifically opposite effects. The in vitro assays demonstrated that PLZF specifically interacts with and suppresses the mir146a promoter, and mir146a targets CXCR4 to impede its translation. The levels of ERK1/2 phosphorylation in the mGSCs overexpressed CXCR4 and PLZF were upregulated, respectively, whereas mir146a expression was decreased and CXCR4 protein was increased. Mir146a overexpression and siPLZF impaired mGSC proliferation and differentiation, however, Mir146a knockdown induced the opposite effects. The effects of PLZF and mir146a were mediated regulation by mir146a and CXCR4, respectively. Overexpression of CXCR4 or addition of CXCL12 in cultures of dairy goat mGSCs resulted in the upregulation of their signaling, and the phosphorylation of ERK1/2 was increased. Collectively, these findings indicate that PLZF is an important transcription factor in the regulation of the expression of CXCR4 to promote dairy goat mGSC proliferation by targeting mir146a. This article is protected by copyright. All rights reserved
    Electronic ISSN: 0091-7419
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2015-09-15
    Description: Bacterial lipopolysaccharide (LPS) is the most important contributing factor in pathogenesis of bacterial infection in male accessory glands; and it has shown to inhibit testicular steroidogenesis and induce apoptosis. The present study demonstrates that LPS causes mitochondrial dysfunction via suppression of sirtuin 4 (SIRT4); which in turn affects Leydig cell function by modulating steroidogenesis and apoptosis. LC-540 Leydig cells treated with LPS (10µg/ml) showed impaired steroidogenesis and increased cellular apoptosis. The mRNA and protein expression of SIRT4 were decreased in LPS treated cells when compared to controls. The obtained data suggest that the c-Jun N-terminal kinase (JNK) activation suppresses SIRT4 expression in LPS treated Leydig cells. Furthermore, the overexpression of SIRT4 prevented LPS induced impaired steroidogenesis and cellular apoptosis by improving mitochondrial function. These findings provide valuable information that SIRT4 regulates LPS mediated Leydig cell dysfunction. This article is protected by copyright. All rights reserved
    Electronic ISSN: 0091-7419
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2015-09-15
    Description: Ketamine, a dissociative anesthetic, is misused and abused worldwide as an illegal recreational drug. In addition to its neuropathic toxicity, ketamine abuse has numerous effects, including renal failure; however, the underlying mechanism is poorly understood. The process called epithelial phenotypic changes (EPCs) causes the loss of cell-cell adhesion and cell polarity in renal diseases, as well as the acquisition of migratory and invasive properties. Madin-Darby canine kidney cells, an in vitro cell model, were subjected to experimental manipulation to investigate whether ketamine could promote EPCs. Our data showed that ketamine dramatically decreased transepithelial electrical resistance and increased paracellular permeability and junction disruption, which were coupled to decreased levels of apical junctional proteins (ZO-1, Occludin and E-cadherin). Consistent with the downregulation of epithelial markers, the mesenchymal markers N-cadherin, Fibronectin and Vimentin were markedly upregulated following ketamine stimulation. Of the E-cadherin repressor complexes tested, the mRNA levels of Snail, Slug, Twist, and ZEB1 were elevated. Moreover, ketamine significantly enhanced migration and invasion. Ketamine-mediated changes were at least partly caused by the inhibition of GSK-3β activity through Ser-9 phosphorylation by the PI3K/Akt pathway. Inhibiting PI3K/Akt with LY294002 reactivated GSK-3β and suppressed ketamine-enhanced permeability, EPCs and motility. These findings were recapitulated by the inactivation of GSK-3β using the inhibitor 3F8. Taken together, these results provide evidence that ketamine induces renal distal tubular EPCs through the downregulation of several junction proteins, the upregulation of mesenchymal markers, the activation of Akt, and the inactivation of GSK-3β. This article is protected by copyright. All rights reserved
    Electronic ISSN: 0091-7419
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2015-09-15
    Description: CCN2/connective tissue growth factor (CTGF) is a multifunctional molecule that promotes harmonized development and regeneration of cartilage through its matricellular interaction with a variety of extracellular biomolecules. Thus, deficiency in CCN2 supply profoundly affects a variety of cellular activities including basic metabolism. A previous study showed that the expression of a number of ribosomal protein genes was markedly enhanced in Ccn2 -null chondrocytes. Therefore, in this study, we analyzed the impact of CCN2 on amino acid and protein metabolism in chondrocytes. Comparative metabolome analysis of the amino acids in Ccn2 -null and wild type mouse chondrocytes revealed stable decreases in the cellular levels of all of the essential amino acids. Unexpectedly, uptake of such amino acids was rather enhanced in Ccn2 -null chondrocytes, and the addition of exogenous CCN2 to human chondrocytic cells resulted in decreased amino acid uptake. However, as expected, amino acid consumption by protein synthesis was also accelerated in Ccn2 -null chondrocytes. Furthermore, we newly found that expression of 2 genes encoding 2 glycolytic enzymes, as well as the previously reported Eno 1 gene, was repressed in those cells. Considering the impaired glycolysis and retained mitochondrial membrane potential in Ccn2 -null chondrocytes, these findings suggest that Ccn2 deficiency induces amino acid shortage in chondrocytes by accelerated amino acid consumption through protein synthesis and acquisition of aerobic energy. Interestingly, CCN2 was found to capture such free amino acids in vitro . Under physiological conditions, CCN2 may be regulating the levels of free amino acids in the extracellular matrix of cartilage. This article is protected by copyright. All rights reserved
    Electronic ISSN: 0091-7419
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2015-09-15
    Description: ABSTRACT Some cord blood banks freeze entire pieces of UC (mixed cord, MC) which after post-thaw yields mixed heterogeneous populations of mesenchymal stem cells (MSCs) from all its microanatomical compartments. Freezing of such entire tissues results in sub-optimal post-thaw cell recovery because of poor cryoprotectant diffusion and intracellular ice-formation, heat and water transport issues and damage to intercellular junctions. To develop a simple method of harvesting pure homogeneous MSCs for cord blood banks we compared the post-thaw behavior of three groups of frozen UC tissues (i) freshly harvested WJ without cell separation, (ii) MSCs isolated from WJ (WJSC) and (iii) MC. WJ and WJSC produced high post-thaw cell survival rates (93.52 ± 6.12% to 90.83 ± 4.51%) and epithelioid monolayers within 24h in primary culture whereas post-thaw MC explants showed slow growth with mixed epithelioid and fibroblastic cell outgrowths after several days. Viability and proliferation rates of post-thawed WJ and hWJSC were significantly greater than MC. Post-thaw WJ and WJSC produced significantly greater CD24 + and CD108 + fluorescence intensities and significantly lower CD40 + contaminants. Post-thaw WJ and WJSC produced significantly lesser annexin-V-positive and sub-G1 cells and greater degrees of osteogenic and chondrogenic differentiation compared to MC. qRT-PCR analysis of post-thaw MC showed significant decreases in anti-apoptotic gene expression (SURVIVIN, BCL2) and increases in pro-apoptotic (BAX) and cell cycle regulator genes (P53, P21, ROCK 1) compared to WJ and WJSC. We conclude that freezing of fresh WJ is a simple and reliable method of generating large numbers of clinically utilizable MSCs for cell-based therapies. This article is protected by copyright. All rights reserved
    Electronic ISSN: 0091-7419
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2015-09-16
    Description: The Wnt ligands are a family of secreted signaling proteins which play key roles in a number of cellular processes under physiological and pathological conditions. Wnts bind to their membrane receptors and initiate a signaling cascade which leads to the nuclear localization and transcriptional activity of β-catenin. The development of purified recombinant Wnt ligands has greatly aided in our understanding of Wnt signaling and its functions in development and disease. In the current study, we identified non-Wnt related signaling activities which were present in commercially available preparations of recombinant Wnt3a. Specifically, we found that treatment of cultured fibroblasts with recombinant Wnt3a induced immediate activation of TGF-β and BMP signaling and this activity appeared to be independent of the Wnt ligand itself. Therefore, while purified recombinant Wnt ligands continue to be a useful tool for studying this signaling pathway, one must exercise a degree of caution when analyzing the results of experiments that utilize purified recombinant Wnt ligands. This article is protected by copyright. All rights reserved
    Electronic ISSN: 0091-7419
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2015-09-18
    Description: CIZ/NMP4 (Cas interacting zinc finger protein, Nmp4, Zfp384) is a transcription factor that is known to regulate matrix related-proteins. To explore the possible pathophysiological role of CIZ/NMP4 in arthritis, we examined CIZ/NMP4 expression in articular cartilage in arthritis model. CIZ/NMP4 was expressed in the articular chondrocytes of mice at low levels while its expression was enhanced when arthritis was induced. Arthritis induction increased clinical score in wild type mice. In contrast, CIZ/NMP4 deficiency suppressed such rise in the levels of arthritis score and swelling of soft tissue. CIZ/NMP4 deficiency also reduced invasion of inflammatory cells in joint tissue. Quantitative PCR analyses of mRNA from joints revealed that arthritis-induced increase in expressions of IL-1β was suppressed by CIZ/NMP4 deficiency. CIZ/NMP4 bound to IL-1β promoter and activated its transcription. The increase in CIZ/NMP4 in arthritis was also associated with enhancement in bone resorption and cartilage matrix degradation. In fact, RANKL, a signaling molecule prerequisite for osteoclastogenesis and, MMP-3, a clinical marker for arthritis were increased in joints upon arthritis induction. In contrast, CIZ/NMP4 deficiency suppressed the arthritis-induced increase in bone resorption, expression of RANKL and MMP-3 mRNA. Thus, CIZ/NMP4 plays a role in the development of arthritis at least in part through regulation of key molecules related to the arthritis. This article is protected by copyright. All rights reserved
    Electronic ISSN: 0091-7419
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    facet.materialart.
    Unknown
    Institute of Electrical and Electronics Engineers (IEEE)
    Publication Date: 2015-09-18
    Description: Presents a listing of the handling editors for this issue of the publication.
    Print ISSN: 0018-9294
    Electronic ISSN: 1558-2531
    Topics: Medicine , Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2015-09-18
    Description: Presents corrections to the article, ???Learning to detect vocal hyperfunction from ambulatory neck-surface acceleration features: Initial results for vocal fold nodules,??? (Ghassemi, M., et al), IEEE Trans. Biomed. Eng., vol. 61, no. 6, pp. 1668???1675, Jun. 2014.
    Print ISSN: 0018-9294
    Electronic ISSN: 1558-2531
    Topics: Medicine , Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2015-11-22
    Description: ABSTRACT Immune responses are outcomes of complex molecular machinery which occur inside the cells. Unravelling the cellular mechanisms induced by immune stimulating molecules such as glycans and determining their structure-function relationship are therefore important factors to be assessed. With this viewpoint, the present study identifies the functional receptor binding unit of a well characterized heteroglycan and also delineates the cellular and molecular processes that are induced upon heteroglycan binding to specific cell surface receptors in immune cells. The heteroglycan was acid hydrolysed and it was revealed that 10-30 kDa fractions served as the functional receptor binding unit of the molecule. Increasing the size of 10-30 kDa heteroglycan showed prominent immune activity. The whole soluble heteroglycan was also conjugated with hyperbranched dendrimers so as to generate a particulate form of the molecule. Dectin-1 and TLR2 were identified as the major receptors in macrophages that bind to particulate as well as soluble form of the heteroglycan and subsequently caused downstream signaling molecules such as NF-κβ and MAPK to get activated. High levels of 1L-1β and IL-10 mRNA were observed in particulate heteroglycan treated macrophages, signifying that increasing the size and availability of the heteroglycan to its specific receptors is pertinent to its biological functioning. Upregulated expression of PKC and iNOS were also noted in particulate heteroglycan treated RAW 264.7 cells than the soluble forms. Taken together, our results indicate that biological functions of immunomodulatory heteroglycan are dependent on their size and molecular weight. This article is protected by copyright. All rights reserved
    Electronic ISSN: 0091-7419
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2015-11-22
    Description: Polyphenols are a class of natural compounds whose potential as antioxidant, anti-inflammatory and anti-angiogenesis has been reported in many pathological conditions. Red raspberry extract, rich in polyphenols, has been reported to exert anti-inflammatory effects and prevent cell proliferation in distinct animal models. However, the signalling pathways involved remain unknown. Herein, we used human microvascular endothelial cells (HMVECs) to determine the influence of red raspberry phenolic compound extract concentrations, ranging from 10-250 µg gallic acid equivalents (GAE)/mL, on endothelium viability (MTS assay), proliferation (BrdU incorporation), migration (injury assay) and capillary-like structures formation (Matrigel assay). Protein expression in cell lysates was determined by Western blot analysis. We showed that red raspberry extracts reduced cell viability (GI 50  = 87,64 ± 6,59 µg GAE/mL) and proliferation in a dose-dependent manner. A significant abrogation of cells ability to migrate to injured areas, even at low concentrations, was observed by injury assay. Cell assembly into capillary-like structures on Matrigel also decreased in a dose dependent-manner for higher extract concentrations, as well as the number of branching points per unit of area. Protein expression analysis showed a dose-dependent decrease in Phospho-VEGFR2 expression, implying abrogation of VEGF signalling activity. We also showed for the first time that red raspberry phenolic compounds induce the rearrangement of filamentous actin cytoskeleton, with an isotropy increase found for higher testing concentrations. Taken together, our findings corroborate the anti-angiogenic potential of red raspberry phenolic compounds and provide new insights into their mode of action upon endothelium. This article is protected by copyright. All rights reserved
    Electronic ISSN: 0091-7419
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2015-11-22
    Description: Evodiamine (Evo), extracted from the Chinese herbal medicine Evodia rutaecarpa, has cytotoxic effects on different types of human cancer cells. However, its effects on drug resistance and their molecular mechanism and therapeutic target in colorectal cancer are not well understood. In the present study, we observed that Evo inhibited cell growth and induced apoptosis in adose-and time-dependent mannner in HCT-116/L-OHP cells. Moreover, Evo treatment reduced Rhodamine 123 accumulation and ATPase activity in HCT-116/L-OHP cells, indicating that Evo decreased the efflux function in HCT-116/L-OHP cells. Interestingly, phosphorylation of NF-κB pathway, particularly p50/p65, was also inhibited by Evo treatment. Furthermore the effect of Evo in reversing drug resistance and suppressing phosphorylation of NF-κB pathway were attenuated after treatment with the NF-κB activator (LPS). Additionally, Evo inhibited the tumor growth in a colorectal MDR cancer xenograft model and down regulated p-NF-κB level in vivo . Our study provided the first direct evidence that Evo can attenuate multidrug resistance by blocking p-NF-κB signaling pathway in human colorectal cancer. Evo could be a potential candidate for cancer chemotherapy. This article is protected by copyright. All rights reserved
    Electronic ISSN: 0091-7419
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2015-11-22
    Description: Regulation of placental nutrient transport significantly affects fetal development and may modify intrauterine growth restriction (IUGR) and fetal programming. We hypothesized that placental nutrient transporters are differentially affected both by utero-placental insufficiency and prenatal surgical stress. Pregnant rats underwent bilateral uterine artery and vein ligation (LIG), sham operation (SOP) or no operation (controls, C) on gestational day E19. Placentas were obtained by caesarean section 4 h (LIG, n = 20 placentas; SOP, n = 24; C, n = 12), 24 h (LIG, n = 28; SOP, n = 20; C, n = 12) and 72 h (LIG, n = 20; SOP, n = 20; C, n = 24) after surgery. Gene and protein expression of placental nutrient transporters for fatty acids (h-FABP, CD36), amino acids (SNAT1, SNAT2) and glucose (GLUT-1, Connexin 26) were examined by qRT-PCR, western blot and immunohistochemistry. Interestingly, the mean protein expression of h-FABP was doubled in placentas of LIG and SOP animals 4, 24 (SOP significant) and 72 h (SOP significant) after surgery. CD36 protein was significantly increased in LIG after 72 h. SNAT1 and SNAT2 protein and gene expressions were significantly reduced in LIG and SOP after 24 h. Further significantly reduced proteins were GLUT-1 in LIG (4 h, 72 h) and SOP (24 h), and Connexin 26 in LIG (72 h). In conclusion, placental nutrient transporters are differentially affected both by reduced blood flow and stress, probably modifying the already disturbed intrauterine milieu and contributing to IUGR and fetal programming. Increased fatty acid transport capacity may affect energy metabolism and could be a compensatory reaction with positive effects on brain development. This article is protected by copyright. All rights reserved
    Electronic ISSN: 0091-7419
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2015-11-19
    Description: Previously, we reported that brain-derived neurotrophic factor (BDNF) enhances periodontal tissue regeneration by inducing periodontal ligament cell proliferation in vivo . In addition, the down growth of gingival epithelial cells, which comprises a major obstacle to the regeneration was not observed. However, the underlying molecular mechanism is still unclear. Therefore, this study aimed to investigate the effect of BDNF on cell proliferation and apoptosis in human periodontal ligament cells (HPL cells) and human gingival epithelial cells (OBA9 cells) and to explore the molecular mechanism in vitro . HPL cells dominantly expressed a BDNF receptor, TrkB, and BDNF increased cell proliferation and ERK phosphorylation. However, its proliferative effect was diminished by a MEK1/2 inhibitor (U0126) and TrkB siRNA transfection. Otherwise, OBA9 cells showed a higher expression level of p75, which is a pan-neurotrophin receptor, than that of HPL cells. BDNF facilitated not cell proliferation but cell apoptosis and JNK phosphorylation in OBA9 cells. A JNK inhibitor (SP600125) and p75 siRNA transfection attenuated the BDNF-induced cell apoptosis. Moreover, OBA9 cells pretreated with SP600125 or p75 siRNA showed cell proliferation by BDNF stimulation, though it was reduced by U0126 and TrkB siRNA. Interestingly, overexpression of p75 in HPL cells up-regulated cell apoptosis and JNK phosphorylation by BDNF treatment. These results indicated that TrkB-ERK signaling regulates BDNF-induced cell proliferation, whereas p75-JNK signaling plays roles in cell apoptotic and cytostatic effect of BDNF. Overall, BDNF activates periodontal ligament cells proliferation and inhibits the gingival epithelial cells growth via the distinct pathway. This article is protected by copyright. All rights reserved
    Electronic ISSN: 0091-7419
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2015-11-22
    Description: DMSO is used to treat many diseases/symptoms. The molecular basis of the pharmacological actions of DMSO has been unclear. We hypothesized that DMSO exerts some of these actions by enhancing TGF-β activity. Here we show that DMSO enhances TGF-β activity by ∼3-4-fold in Mv1Lu and NMuMG cells expressing Smad-dependent luciferase reporters. In Mv1Lu cells, DMSO enhances TGF-β-stimulated expression of P-Smad2 and PAI-1. It increases cell-surface expression of TGF-β receptors (TβR-I and/or TβR-II) by ∼3-4-fold without altering their cellular levels as determined by 125 I-labeled TGF-β-cross-linking/Western blot analysis, suggesting the presence of large intracellular pools in these cells. Sucrose density gradient ultracentrifugation/Western blot analysis reveals that DMSO induces recruitment of TβR-II (but not TβR-I) from its intracellular pool to plasma-membrane microdomains. It induces more recruitment of TβR-II to non-lipid raft microdomains than to lipid rafts/caveolae. Mv1Lu cells transiently transfected with TβR-II-HA plasmid were treated with DMSO and analyzed by indirect immunofluoresence staining using anti-HA antibody. In these cells, TβR-II-HA is present as a vesicle-like network in the cytoplasm as well as in the plasma membrane. DMSO causes depletion of TβR-II-HA-containing vesicles from the cytoplasm and co-localization of TβR-II-HA and cveolin-1 at the plasma membrane. These results suggest that DMSO, a fusogenic substance, enhances TGF-β activity presumably by inducing fusion of cytoplasmic vesicles (containing TβR-II) and the plasma membrane, resulting in increased localization of TβR-II to non-lipid raft microdomains where canonical signaling occurs. Fusogenic activity of DMSO may play a pivotal role in its pharmacological actions involving membrane proteins with large cytoplasmic pools. This article is protected by copyright. All rights reserved
    Electronic ISSN: 0091-7419
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2015-08-27
    Description: The recently discovered MCPIP1 (monocyte chemoattractant protein-induced protein 1), a multidomain protein encoded by the MCPIP1 ( ZC3H12A) gene, has been described as a new differentiation factor, a ribonuclease, and a deubiquitination-supporting factor. However, its role in cancer is poorly recognized. Our recent analysis of microarrays data showed a lack of expression of the MCPIP1 transcript in primary neuroblastoma – the most common extracranial solid tumour in children. Additionally, enforced expression of the MCPIP1 gene in BE(2)-C cells caused a significant decrease in neuroblastoma proliferation and viability. Aim of the present study was to further investigate the role of MCPIP1 in neuroblastoma, using expression DNA microarrays and microRNA microarrays. Transient transfections of BE(2)-C cells were used for overexpression of either wild type of MCPIP1 (MCPIP1-wt), or its RN-ase defective mutant (MCPIP1-ΔPIN). We have analyzed changes of transcriptome and next, we have used qRT-PCR to verify mRNA levels of selected genes responding to MCPIP1 overexpression. Additionally, protein levels were determined for some of the selected genes. The choline transporter, CTL1, encoded by the SLC44A1 gene, was significantly repressed at the specific mRNA and protein levels and most importantly this translated into a decreased choline transport in MCPIP1-overexpressing cells. Then, we have found microRNA-3613-3p as the mostly altered in the pools of cells over-expressing the wild type MCPIP1. Next, we analyzed the predicted targets of the miR-3613-3p and validated them using qRT-PCR and western blot. These results indicate that the expression of miR-3613-3p might be regulated by MCPIP1 by cleavage of its precursor form. This article is protected by copyright. All rights reserved
    Electronic ISSN: 0091-7419
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2015-08-29
    Description: ABSTRACT Transplantation of hepatocytes is a promising therapy for end-stage liver disease, but the availability of functional cells currently precludes its clinical application. We now report a simple transient reprogramming approach to convert fibroblasts into hepatic-like cells. Human skin fibroblasts were treated with fish egg extracts to become the transiently-remodeled cells (TRCs). After infected with retroviral EGFP, they were directly injected into the fetal monkey liver, where they underwent in situ differentiation in the hepatic niche. The hepatic-like cells were functional as shown by the synthesis of hepatic markers in vivo , including albumin, cytokeratin-18, and hepatic serum antigen. Similarly, when implanted in the mouse liver, the TRCs were differentiated into hepatic-like cells that synthesize albumin and CK18 and became completely integrated into the liver parenchyma. The potency of TRCs was mechanistically related to the activation of several signal pathways, which reactivate endogenous genes related to cell potency. This study demonstrates the feasibility of a simple and inexpensive epigenetic remodeling approach to convert human fibroblasts into therapeutic hepatic-like cells for the treatment of end-stage liver disease. This article is protected by copyright. All rights reserved
    Electronic ISSN: 0091-7419
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    facet.materialart.
    Unknown
    Institute of Electrical and Electronics Engineers (IEEE)
    Publication Date: 2015-10-27
    Description: Fabricated vessel-mimetic microtubes are essential for delivering sufficient nutrient to engineered composite tissues. In this paper, vascular-like microtubes are engineered by automated assembly of donut-shaped micromodules that embed fibroblast cells. A microrobotic system is set up with dual manipulators of 30-nm positioning resolution under an optical microscope. The system assembles the micromodules by repeated single-step pick-up motions. This process is specifically designed to avoid human interference and ensure high reproducibility for automation. We optimized the single-step motion by calibrating the key parameters (the micromodule dimensions) in a force analysis. The optimal motion achieved a 98% pick-up success rate. The automated repetitive single-step assembly is achieved by an algorithm that acquires the 3-D location and tracks the micromanipulator without being affected by low contrast. The accuracy of the acquired 3-D location was experimentally determined as approximately 1 pixel (2 μm under 4× magnification), and the tracking under different observation conditions is proved effective. Finally, we automatically assembled microtubes at 6 micromodules/min, sufficiently fast for fabricating macroscopic vessel-mimetic substitutes in biological applications.
    Print ISSN: 0018-9294
    Electronic ISSN: 1558-2531
    Topics: Medicine , Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2015-10-27
    Description: Goal: This study tests and validates a new method to remove power line interference from monopolar EMGs detected by multichannel systems: the filtered virtual reference (FVR). FVR is an adaptation of the virtual reference (VR) method, which consists in referencing signals detected by each electrode in a grid to their spatial average. Signals may however be distorted with the VR approach, in particular when the skin region where the detection system is positioned does not cover the entire muscle. Methods: Simulated and experimental EMGs were used to compare the performance of FVR and VR in terms of interference reduction and distortion of monopolar signals referred to a remote reference. Results : Simulated data revealed the monopolar EMG signals processed with FVR were significantly less distorted than those filtered by VR. These results were similarly observed for experimental signals. Moreover, FVR method outperformed VR in removing power line interference when it was distributed unevenly across the signals of the grid. Conclusion: Key results demonstrated that FVR improves the VR method as it reduces interference while preserving the information content of monopolar signals. Significance: Although the actual distribution of motor unit action potential is represented in monopolar EMGs, collecting high quality monopolar signals is challenging. This study presents a possible solution to this issue; FVR provides undistorted monopolar signals with negligible interference and is insensitive to muscle architecture. It is therefore relevant for EMG applications benefiting from a clean monopolar detection (e.g., decomposition, control of prosthetic devices, motor unit number estimation).
    Print ISSN: 0018-9294
    Electronic ISSN: 1558-2531
    Topics: Medicine , Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2015-10-27
    Description: This study concentrates on finite-element-method (FEM)-based electroencephalography (EEG) forward simulation in which the electric potential evoked by neural activity in the brain is to be calculated at the surface of the head. The main advantage of the FEM is that it allows realistic modeling of tissue conductivity inhomogeneity. However, it is not straightforward to apply the classical model of a dipolar source with the FEM, due to its strong singularity and the resulting irregularity. The focus of this study is on comparing different methods to cope with this problem. In particular, we evaluate the accuracy of Whitney (Raviart–Thomas)-type dipole-like source currents compared to two reference dipole modeling methods: the St. Venant and partial integration approach. Common to all these methods is that they enable direct approximation of the potential field utilizing linear basis functions. In the present context, Whitney elements are particularly interesting, as they provide a simple means to model a divergence-conforming primary current vector field satisfying the square integrability condition. Our results show that a Whitney-type source model can provide simulation accuracy comparable to the present reference methods. It can lead to superior accuracy under optimized conditions with respect to both source location and orientation in a tetrahedral mesh. For random source orientations, the St. Venant approach turns out to be the method of choice over the interpolated version of the Whitney model. The overall moderate differences obtained suggest that practical aspects, such as the focality, should be prioritized when choosing a source model.
    Print ISSN: 0018-9294
    Electronic ISSN: 1558-2531
    Topics: Medicine , Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    facet.materialart.
    Unknown
    Institute of Electrical and Electronics Engineers (IEEE)
    Publication Date: 2015-10-27
    Description: This paper presents a wearable vital signs monitor at the ear. The monitor measures the electrocardiogram (ECG), ballistocardiogram (BCG), and photoplethysmogram (PPG) to obtain pre-ejection period (PEP), stroke volume (SV), cardiac output (CO), and pulse transit time (PTT). The ear is demonstrated as a natural anchoring point for the integrated sensing of physiological signals. All three signals measured can be used to obtain heart rate (HR). Combining the ECG and BCG allows for the estimation of the PEP, while combining the BCG and PPG allows for the measurement of PTT. Additionally, the J-wave amplitude of the BCG is correlated with the SV and, when combined with HR, yields CO. Results from a clinical human study on 13 subjects demonstrate this proof-of-concept device.
    Print ISSN: 0018-9294
    Electronic ISSN: 1558-2531
    Topics: Medicine , Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2015-10-28
    Description: Despite progression in diagnosis and treatment, prostate cancer (PCa) still represents the main cause of cancer-related mortality and morbidity in men. Although radiation therapy offers clinical benefit over other therapeutic modalities, the success of this therapeutic modality is commonly hampered by the resistance of advanced tumors. So far, the mechanisms governing tumor resistance to radiotherapy are not discussed in detail. Here, we demonstrate for the first time PCa radio-resistance as a consequence of elevated expression of Hepatoma Up-Regulated Protein (HURP). In PCa cells, HURP expression suppresses γ- irradiation- induced apoptosis. γ- irradiation-induced apoptosis of PCa cells is associated with expression of E2F1, p53, p21 proteins together with the phosphorylation of apoptosis signal-regulating kinase1 (ASK1), c-jun-N-terminal kinase (JNK) and Ataxia-telangiectasia mutated (ATM) and histone family member X (H2AX). Whereas, the induction of HURP expression is able to suppress γ- irradiation- induced effects on E2F1, p53, p21, ATM, ASK1, JNK and ATM, and H2AX. Also, inhibition of γ- irradiation- induced- cytochrome c release, cleavage of caspase-9, caspase-3, PARP, and reactive oxygen species (ROS) were noted in PCa cells induced for HURP expression. The observed radio-resistance of PCa is thought to be the consequence of HURP-mediated destabilization of p53 and ATM proteins that are essential for γ-irradiation-induced apoptosis. Thus, based on our findings, PCa resistance to radiation therapy results from the deregulation of ASK1/ JNK; ATM/ H2AX; ATM/p53 and checkpoint kinase 2 (Chk2)/ E2F-1 in response to the elevated expression of HURP. This article is protected by copyright. All rights reserved
    Electronic ISSN: 0091-7419
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2015-10-28
    Description: The endo/lysosomal system in cells provides membranous platforms to assemble specific signaling complexes and to terminate signal transduction, thus, is essential for physiological signaling. Endocytic organelles can significantly extend signaling of activated cell surface receptors, and may additionally provide distinct locations for the generation of specific signaling outputs. Failures of regulation at different levels of endocytosis, recycling, degradation as well as aberrations in specific endo/lysosomal signaling pathways, such as mTORC1, might lead to different diseases including cancer. Therefore, a better understanding of spatio-temporal compartmentalization of sub-cellular signaling might provide an opportunity to interfere with aberrant signal transduction in pathological processes by novel combinatorial therapeutic approaches. This article is protected by copyright. All rights reserved
    Electronic ISSN: 0091-7419
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2015-05-29
    Description: Several gap junction connexins have been shown to be essential for appropriate placental development and function. It is known that the expression and distribution of connexins change in response to environmental oxygen levels. The placenta develops under various oxygen levels, beginning at a low oxygen tension of approximately 2% and increasing to a tension of 8% after the onset of the uteroplacental circulation. Moreover, it has been shown that during preeclampsia placentas are subjected to chronic hypoxia. Therefore, we investigated oxygen sensitivity of placental connexins 43 and 46. Using the trophoblast cell line Jar we demonstrated that the expression of connexin43 increased during acute hypoxia but decreased during chronic hypoxia. Chronic hypoxia resulted in the translocation of connexin43 from the membrane to the cytoplasm and in a reduction in its communication properties. In contrast, the expression of connexin46 was down-regulated during chronic hypoxia and was translocated from perinuclear areas to the cell membrane. Hypoxia-inducible factor (HIF) knockdown showed that the translocation of connexin43 but not that of connexin46 was HIF-2α dependent and was mediated by phosphoinositide 3-kinase. The upregulation of connexin43 in combination with the down-regulation of connexin46 was confirmed in placental explants cultivated under low oxygen and in placentas with early-onset preeclampsia. Taken together, in Jar cells placental connexins 43 and 46 are regulated during periods of low oxygen in opposite manners. The oxygen sensing of connexins in the trophoblast may play a role in physiological and pathophysiological oxygen conditions and thus may contribute to preeclampsia. This article is protected by copyright. All rights reserved
    Electronic ISSN: 0091-7419
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2015-05-27
    Description: Bone morphogenetic protein (BMP) and canonical Wnts are representative developmental signals that enhance osteoblast differentiation and bone formation. Previously, we demonstrated that epidermal growth factor (EGF) inhibits BMP2-induced osteoblast differentiation by inducing Smurf1 expression. However, the regulatory role of EGF in Wnt/β-catenin-induced osteoblast differentiation has not been elucidated. In this study, we investigated the effect of EGF on Wnt/β-catenin signaling-induced osteoblast differentiation using the C2C12 cell line. EGF significantly suppressed the expression of osteoblast marker genes, which were induced by Wnt3a and a GSK-3β inhibitor. EGF increased the expression levels of Smurf1 mRNA and protein. Smurf1 knockdown rescued Wnt/β-catenin-induced osteogenic marker gene expression in the presence of EGF. EGF treatment or Smurf1 overexpression did not affect β-catenin mRNA expression levels, but reduced β-catenin protein levels and TOP-Flash activity. EGF and Smurf1 promoted β-catenin ubiquitination. Co-immunoprecipitation and GST pull-down assays showed that Smurf1 associates with β-catenin. These results suggest that EGF/Smurf1 inhibits Wnt/β-catenin-induced osteogenic differentiation and that Smurf1 downregulates Wnt/β-catenin signaling by enhancing proteasomal degradation of β-catenin. This article is protected by copyright. All rights reserved
    Electronic ISSN: 0091-7419
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2015-05-27
    Description: Patient-specific human induced-pluripotent stem cells (hiPSCs) represent important cell sources to treat patients with acquired blood disorders. To realize the therapeutic potential of hiPSCs, it is crucial to understand signals that direct hiPSC differentiation to a hematopoietic lineage fate. Our previous study demonstrated that CD34 + CD31 + cells derived from human pluripotent stem cells (hPSCs) contain progenitors that give rise to hematopoietic cells and endothelial cells. Here, we established a serum-free and feeder-free system to induce the differentiation of hPSC-derived CD34 + CD31 + progenitor cells to erythroid cells. We show that extracellular matrix (ECM) proteins promote the differentiation of CD34 + CD31 + progenitor cells into CD235a + erythroid cells through CD41 + CD235a + megakaryocyte-erythroid progenitors (MEP). Erythropoietin (EPO) is a predominant factor for CD34 + CD31 + progenitor differentiation to erythroid cells, whereas transforming growth factor beta (TGF-β) inhibits the development of CD34 + CD31 + progenitor cells. Apoptosis of progenitor cells is induced by TGF-β in early erythroid differentiation. Suppression of TGF-β signaling by SB431542 at early stage of CD34 + CD31 + progenitor differentiation induces the erythroid cell generation. Together, these findings suggest that TGF-β suppression and EPO stimulation promote erythropoiesis of CD34 + CD31 + progenitor cells derived from hPSCs. This article is protected by copyright. All rights reserved
    Electronic ISSN: 0091-7419
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2015-05-27
    Description: The microRNA-155 (miR155) regulates various functions of cells. Dysfunction or injury of endothelial cells (ECs) plays an important role in the pathogenesis of various vascular diseases. In this study, we investigated the role and potential mechanisms of miR155 in human brain microvessel endothelial cells (HBMECs) under physiological and pathological conditions. We detected the effects of miR155 silencing on ROS production, NO generation, apoptosis and functions of HBMECs at basal and in response to oxidized low density lipoprotein (ox-LDL). Western blot and q-PCR were used for analyzing the gene expression of epidermal growth factor receptor (EGFR)/ extracellular regulated protein kinases (ERK)/ p38 mitogen-activated protein kinase (p38 MAPK), phosphatidylinositol-3-kinase (PI3K) and serine/threonine kinase(Akt), activated caspase-3 and intercellular adhesion molecule-1 (ICAM-1). Results showed that under both basal and challenge situations: 1) Silencing of miR155 decreased apoptosis and reactive oxygen species (ROS) production of HBMECs, whereas, promoted nitric oxide (NO) generation. 2) Silencing of miR155 increased the proliferation, migration and tube formation ability of HBMECs, while decreased cell adhesion ability. 3) Gene expression analyses showed that EGFR/ ERK/ p38 MAPK and PI3K/Akt were increased and that activated caspase-3 and ICAM-1 mRNA were decreased after knockdown of miR155. In conclusion, knockdown of miR155 could modulate ROS production, NO generation, apoptosis and function of HBMECs via regulating diverse gene expression, such as caspase-3, ICAM-1 and EGFR/ERK/p38 MAPK and PI3K/Akt pathways. This article is protected by copyright. All rights reserved
    Electronic ISSN: 0091-7419
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2015-05-28
    Description: This study was designed to investigate the influence of mesenchymal stem cells (MSCs) on osteoblast (OB) differentiation. Rat bone marrow MSCs were cultured either in growth medium that maintained a MSC phenotype or in osteogenic medium that induced differentiation into OBs. Then, cells were grown in two different culture conditions: indirect co-culture of MSCs and OBs and OBs cultured in MSC-conditioned medium. As a control culture condition, OBs were grown in osteogenic medium without the influence of MSCs. We evaluated cell proliferation, the gene expression of key bone markers, alkaline phosphatase (ALP) activity, bone sialoprotein (BSP) expression, and extracellular matrix mineralization. The results showed that, regardless of whether OBs were indirectly co-cultured with MSCs or cultured in MSC-conditioned medium, MSCs repressed OB differentiation, as evidenced by the downregulation of all evaluated bone marker genes, decreased ALP activity, inhibition of BSP protein expression, and reduced extracellular matrix mineralization. Taken together, these results indicate that despite the key role of both MSCs and OBs in the osteogenic process, the repressive effect of MSCs on OB differentiation in an osteogenic environment may represent a barrier to the strategy of using them together in cell-based therapies to induce bone repair. This article is protected by copyright. All rights reserved
    Electronic ISSN: 0091-7419
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2015-05-27
    Description: Osteoarthritis (OA) is a widespread chronic joint disease characterized by articular cartilage destruction and accompanied by pain and disability. In this study, we found that the expression of Insulin-like Growth Factor II (IGF-II) was reduced in articular cartilage in human OA patients as well as in the murine experimental OA model of destabilization of the medial meniscus (DMM). In primary human articular chondrocytes, ectopic expression of lentiviral IGF-II inhibited pro-inflammatory cytokine IL-1β-induced NF-κB activation as well as catabolic gene expression. Interestingly, IGF-II did not significantly alter the phosphorylation states of ERK1/2 or Akt, which are kinases typically activated by IGF-I. Instead, it induced the activity of phospholipase C (PLC) and a PLC inhibitor blocked the inhibitory activity of IGF-II against IL-1β, suggesting that this activity is mediated through PLC. Furthermore, IGF-II increased cartilage matrix levels and decreased MMP13 protein expression in explanted human OA cartilage cultures in vitro . In the in vivo DMM model, intraarticular injection of lentiviral IGF-II led to enhanced cartilage matrix levels and decreased MMP13 protein expression, as well as reduced osteophyte formation and subchondral bone sclerosis. Therefore, our results suggest that IGF-II can promote cartilage integrity and halt knee joint destruction in OA. This article is protected by copyright. All rights reserved
    Electronic ISSN: 0091-7419
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2015-05-27
    Description: ABSTRACT Adipose tissue-derived mesenchymal stem cells (Ad-MSC) and platelet derivatives have been used alone or in combination to achieve regeneration of injured tissues. We have tested the effect of platelet-rich plasma (PRP) on Ad-MSC and adipocyte function. PRP increased Ad-MSC viability, proliferation rate and G1- S cell cycle progression, by at least 7-, 2-, and 2.2-fold, respectively, and reduced caspase 3 cleavage. Higher PRP concentrations or PRPs derived from individuals with higher platelet counts were more effective in increasing Ad-MSC growth. PRP also accelerated cell migration by at least 1.5-fold. However, PRP did not significantly affect mature adipocyte viability, differentiation and expression levels of PPAR-γ and AP-2 mRNAs, while it increased leptin production by 3.5-fold. Interestingly, PRP treatment of mature adipocytes also enhanced the release of Interleukin (IL)-6, IL-8, IL-10, Interferon-γ and Vascular Endothelial Growth Factor. Thus, data are consistent with a stimulatory effect of platelet derivatives on Ad-MSC growth and motility. Moreover, PRP did not reduce mature adipocyte survival and increased the release of pro-angiogenic factors, which may facilitate tissue regeneration processes. This article is protected by copyright. All rights reserved
    Electronic ISSN: 0091-7419
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2015-05-28
    Description: Undecylenic acid (UDA), a naturally occurring 11-carbon unsaturated fatty acid has been used for several years as an economical antifungal agent and a nutritional supplement. Recently, the potential usefulness of UDA as a neuroprotective drug has been suggested based on the ability of this agent to inhibit μ-calpain activity. In order to verify neuroprotective potential of UDA, we tested protective efficacy of this compound against cell damage evoked by pro-apoptotic factors (staurosporine and doxorubicin) and oxidative stress (hydrogen peroxide) in human neuroblastoma SH-SY5Y cells. We showed that UDA partially protected SH-SY5Y cells against the staurosporine- and doxorubicin-evoked cell death, however, this effect was not connected with its influence on caspase-3 activity. UDA decreased the St-induced changes in mitochondrial and cytosolic AIF level, whereas in Dox-model it affected only the cytosolic AIF content. Moreover, UDA (1-40 μM) decreased the hydrogen peroxide-induced cell damage which was connected with attenuation of hydrogen peroxide-mediated necrotic (PI staining, ADP/ATP ratio) and apoptotic (mitochondrial membrane potential, caspase-3 activation, AIF translocation) changes. Finally, we demonstrated that an inhibitor of PI3-K/Akt (LY294002) but not MAPK/ERK1/2 (U0126) pathway blocked the protection mediated by UDA in all tested models of SH-SY5Y cell injury. These in vitro data point to UDA as potentially effective neuroprotectant the utility of which should be further validated in animal studies. This article is protected by copyright. All rights reserved
    Electronic ISSN: 0091-7419
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2015-05-29
    Description: Mesenchymal stem cells (MSCs) are population of adult stem cells and attractive candidates for cartilage repair due to their chondrogenic potential. Purinergic compounds (purinergic receptors and ecto-enzymes metabolizing nucleotides), together with nucleotides/nucleosides present in the extracellular environment, are known to play a key role in controlling the stem cells biological potential to proliferate and differentiate. Despite the available literature pointing to the importance of purinergic signalling in controlling the fate of mesenchymal stem cells, the research results linking nucleotides and ecto-nucleotidases with MSCs chondrogenic differentiation are indigent. Therefore, the aim of presented study was the characterization of the ecto-nucleotides hydrolysis profile and ecto-enzymes expression in human umbilical cord-derived mesenchymal stem cells and chondrogenically induced MSCs. We described substantial changes of ecto-nucleotides metabolism and ecto-enzymes expression profiles resulting from chondrogenic differentiation of human umbilical cord-derived mesenchymal stem cells. The increased rate of ADP hydrolysis, measured by ecto-nucleotidases activity, plays a pivotal role in the regulation of cartilage formation and resorption. Despite the increased level of NTPDase1 and NTPDase3 mRNA expression in chondrogenically induced MSCs, their activity toward3 remains quite low. Supported by the literature data, we hypothesize that structure-function relationships in chondrogenic lineage dictate the direction of nucleotides metabolism. In early neocartilage tissue, the beneficial role of ATP in improving biomechanical properties of cartilage, does not necessitate the high rate of enzymatic ATP degradation. This article is protected by copyright. All rights reserved
    Electronic ISSN: 0091-7419
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2015-06-13
    Description: Autophagy is a cellular process to recycle nutrients and has been implicated in cancer treatment. Oral squamous cell carcinoma (OSCC) is the most common oral cancer which ranks 3% of cancers in men and 2% in women. In this study, immunohistochemical staining of OSCC tumor specimens from human subjects and an athymic mouse model demonstrated high levels of autophagy markers LC3-II and ATG5 expression. Further, we identified high levels LC3-II expression in OSCC tumor cell lines (SCC-1, SCC-12 & SCC-14a) compared to normal human epithelial (RWPE-1) cells. OSCC cells express high levels of RANK ligand (RANKL); however a functional role in autophagy is unknown. Interestingly, RANKL stimulation significantly increased autophagosome related gene expressions such as LC3, ATG5, BECN1 and PI3KC3 mRNA expression in OSCC cells. Further, western blot analysis of total cell lysates demonstrated a dose-dependent increase in LC3-II and ATG5 expression in RANKL stimulated cells. In addition, RANKL increased expression of LC3-I and LC3-II, essential for autophagosome formation. Confocal microscopy analysis of LC3-II and localization with lysosome further confirms autophagosome formation in response to RANKL treatment in OSCC cells. Collectively, our results indicate a novel function of RANKL to induce autophagosome formation, and could be a potential therapeutic target to control OSCC tumor progression. This article is protected by copyright. All rights reserved
    Electronic ISSN: 0091-7419
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2015-06-13
    Description: The aspartate-histidine-histidine-cysteine (DHHC) protein family shares a 50-amino acid cysteine-rich domain with a conserved DHHC signature motif. DHHC proteins play a critical role in several biological processes. Several DHHC family members have been implicated in neuronal differentiation and synaptic plasticity. And disruptions to their function can lead to disease in the nervous system. Here, we investigate the role of Zdhhc15b, a DHHC family member, in neurodevelopment in zebrafish. Whole-mount in situ hybridization (WISH) revealed that zdhhc15b , an ortholog to human ZDHHC15, is abundant in zebrafish ( Danio rerio ) forebrain, especially in the diencephalon. Downregulation of zdhhc15b resulted in a smaller diencephalon and a reduction in mature dopaminergic neurons (DA neurons). In the meanshile, mutant zdhhc15b zebrafish was associated with poor learning behavior as detected by T-maze testing. The expression of zdhhc15b was upregulated during DA neuronal differentiation whereas knock-down of zdhhc15b diminished DA neuronal differentiation. Tyrosine hydroxylase (TH) immunofluorescence of cultured DA neurons in vitro also showed that DA neurons were immature following zdhhc15b knock-down. Consistent with the decreased number of DA neurons following knock-down of zdhhc15b , the expression of fate determination-related transcription factors such as nurr1, foxA2 , and lmx1a were also reduced in morphant zebrafish. Our results reveal that zdhhc15b controls DA neuronal fate decisions by regulating differentiation but not progenitor cell proliferation or DA neuronal survival. This article is protected by copyright. All rights reserved
    Electronic ISSN: 0091-7419
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    facet.materialart.
    Unknown
    Institute of Electrical and Electronics Engineers (IEEE)
    Publication Date: 2016-07-19
    Print ISSN: 0018-9294
    Electronic ISSN: 1558-2531
    Topics: Medicine , Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    facet.materialart.
    Unknown
    Institute of Electrical and Electronics Engineers (IEEE)
    Publication Date: 2016-07-19
    Description: Objective: We present the framework for wearable joint rehabilitation assessment following musculoskeletal injury. We propose a multimodal sensing (i.e., contact based and airborne measurement of joint acoustic emission) system for at-home monitoring. Methods: We used three types of microphones—electret, MEMS, and piezoelectric film microphones—to obtain joint sounds in healthy collegiate athletes during unloaded flexion/extension, and we evaluated the robustness of each microphone's measurements via: 1) signal quality and 2) within-day consistency. Results: First, air microphones acquired higher quality signals than contact microphones (signal-to-noise-and-interference ratio of 11.7 and 12.4 dB for electret and MEMS, respectively, versus 8.4 dB for piezoelectric). Furthermore, air microphones measured similar acoustic signatures on the skin and 5 cm off the skin (∼4.5× smaller amplitude). Second, the main acoustic event during repetitive motions occurred at consistent joint angles (intra-class correlation coefficient ICC(1, 1) = 0.94 and ICC(1, k) = 0.99). Additionally, we found that this angular location was similar between right and left legs, with asymmetry observed in only a few individuals. Conclusion: We recommend using air microphones for wearable joint sound sensing; for practical implementation of contact microphones in a wearable device, interface noise must be reduced. Importantly, we show that airborne signals can be measured consistently and that healthy left and right knees often produce a similar pattern in acoustic emissions. Significance: These proposed methods have the potential for enabling knee joint acoustics measurement outside the clinic/lab and permitting long-term monitoring of knee health for patients rehabilitating an acute knee joint injury.
    Print ISSN: 0018-9294
    Electronic ISSN: 1558-2531
    Topics: Medicine , Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    facet.materialart.
    Unknown
    Institute of Electrical and Electronics Engineers (IEEE)
    Publication Date: 2016-07-19
    Description: As telehealth applications emerge, the need for accurate and reliable biosignal quality indices has increased. One typical modality used in remote patient monitoring is the electrocardiogram (ECG), which is inherently susceptible to several different noise sources, including environmental (e.g., powerline interference), experimental (e.g., movement artifacts), and physiological (e.g., muscle and breathing artifacts). Accurate measurement of ECG quality can allow for automated decision support systems to make intelligent decisions about patient conditions. This is particularly true for in-home monitoring applications, where the patient is mobile and the ECG signal can be severely corrupted by movement artifacts. In this paper, we propose an innovative ECG quality index based on the so-called modulation spectral signal representation. The representation quantifies the rate of change of ECG spectral components, which are shown to be different from the rate of change of typical ECG noise sources. The proposed modulation spectral-based quality index, MS-QI, was tested on 1) synthetic ECG signals corrupted by varying levels of noise, 2) single-lead recorded data using the Hexoskin garment during three activity levels (sitting, walking, running), 3) 12-lead recorded data using conventional ECG machines (Computing in Cardiology 2011 dataset), and 4) two-lead ambulatory ECG recorded from arrhythmia patients (MIT-BIH Arrhythmia Database). Experimental results showed the proposed index outperforming two conventional benchmark quality measures, particularly in the scenarios involving recorded data in real-world environments.
    Print ISSN: 0018-9294
    Electronic ISSN: 1558-2531
    Topics: Medicine , Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    facet.materialart.
    Unknown
    Institute of Electrical and Electronics Engineers (IEEE)
    Publication Date: 2016-07-19
    Description: Platelet-rich plasma (PRP) is a volume of autologous plasma that has a higher platelet concentration above baseline. It has already been approved as a new therapeutic modality and investigated in clinics, such as bone repair and regeneration, and oral surgery, with low cost-effectiveness ratio. At present, PRP is mostly prepared using a centrifuge. However, this method has several shortcomings, such as long preparation time (30 min), complexity in operation, and contamination of red blood cells (RBCs). In this paper, a new PRP preparation approach was proposed and tested. Ultrasound waves (4.5 MHz) generated from piezoelectric ceramics can establish standing waves inside a syringe filled with the whole blood. Subsequently, RBCs would accumulate at the locations of pressure nodes in response to acoustic radiation force, and the formed clusters would have a high speed of sedimentation. It is found that the PRP prepared by the proposed device can achieve higher platelet concentration and less RBCs contamination than a commercial centrifugal device, but similar growth factor (i.e., PDGF-ββ). In addition, the sedimentation process under centrifugation and sonication was simulated using the Mason–Weaver equation and compared with each other to illustrate the differences between these two technologies and to optimize the design in the future. Altogether, ultrasound method is an effective method of PRP preparation with comparable outcomes as the commercially available centrifugal products.
    Print ISSN: 0018-9294
    Electronic ISSN: 1558-2531
    Topics: Medicine , Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    facet.materialart.
    Unknown
    Institute of Electrical and Electronics Engineers (IEEE)
    Publication Date: 2016-07-19
    Description: A new wireless sensor was designed, fabricated, and applied for in situ monitoring of tensile force at a wound site. The sensor was comprised of a thin strip of magnetoelastic material with its two ends connected to suture threads for securing the sensor across a wound repair site. Since the sensor was remotely interrogated by applying an ac magnetic field and capturing the resulting magnetic field, it did not require direct wire connections to an external device or internal battery for long-term use. Due to its magnetoelastic property, the application of a tensile force changed the magnetic permeability of the sensor, altering the amplitude of the measured magnetic field. This study presents two sensor designs: one for high and one for low-force ranges. A sensor was fabricated by directly adhering the magnetoelastic strip to the suture. This sensor showed good sensitivity at low force, but its response saturated at about 1.5 N. To monitor high tensile force, the magnetoelastic strip was attached to a metal strip for load sharing. The suture thread was attached to the both ends of the metal strip so only a fraction of the applied force was directed to the sensor, allowing it to exhibit good sensitivity even at 44.5 N. The sensor was applied to two ex vivo models: a sutured section of porcine skin and a whitetail deer Achilles tendon. The results demonstrate the potential for in vivo force monitoring at a wound repair site.
    Print ISSN: 0018-9294
    Electronic ISSN: 1558-2531
    Topics: Medicine , Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2016-07-19
    Description: This study presents a precise way to detect the third ( $S_{3}$ ) heart sound, which is recognized as an important indication of heart failure, based on nonlinear single decomposition and time–frequency localization. The detection of the $S_{3}$ is obscured due to its significantly low energy and frequency. Even more, the detected $S_{3}$ may be misunderstood as an abnormal second heart sound with a fixed split, which was not addressed in the literature. To detect such $S_{3}$ , the Hilbert vibration decomposition method is applied to decompose the heart sound into a certain number of subcomponents while intactly preserving the phase information. Thus, the time information of all of the decomposed components are unchanged, which further expedites the identification and localization of any module/section of a signal properly. Next, the proposed localization step is applied to the decomposed subcomponents by using smoothed pseudo Wigner–Ville distribution followed by the reassignment method. Finally, based on the positional information, the $S_{3}$ is distinguished and confirmed by measuring time delays between the $S_{2}$ and $S_{3}$ . In total, 82 sets of cardiac cycles collected from different databases including Texas Heart Institute database are examined for evaluation of the proposed method. The result analysis shows that the proposed method can detect the $S_{3}$ correctly, even when the - ormalized temporal energy of $S_{3}$ is larger than 0.16, and the frequency of those is larger than 34 Hz. In a performance analysis, the proposed method demonstrates that the accuracy rate of $S_{3}$ detection is as high as 93.9%, which is significantly higher compared with the other methods. Such findings prove the robustness of the proposed idea for detecting substantially low-energized $S_{3}$ .
    Print ISSN: 0018-9294
    Electronic ISSN: 1558-2531
    Topics: Medicine , Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    facet.materialart.
    Unknown
    Institute of Electrical and Electronics Engineers (IEEE)
    Publication Date: 2016-07-19
    Description: Electromagnetic (EM) tracking systems are highly susceptible to field distortion. The interference can cause measurement errors up to a few centimeters in clinical environments, which limits the reliability of these systems. Unless corrected for, this measurement error imperils the success of clinical procedures. It is therefore fundamental to dynamically calibrate EM tracking systems and compensate for measurement error caused by field distorting objects commonly present in clinical environments. We propose to combine a motion model with observations of redundant EM sensors and compensate for field distortions in real time. We employ a simultaneous localization and mapping technique to accurately estimate the pose of the tracked instrument while creating the field distortion map. We conducted experiments with six degrees-of-freedom motions in the presence of field distorting objects in research and clinical environments. We applied our approach to improve the EM tracking accuracy and compared our results to a conventional sensor fusion technique. Using our approach, the maximum tracking error was reduced by 67% for position measurements and by 64% for orientation measurements. Currently, clinical applications of EM trackers are hampered by the adverse distortion effects. Our approach introduces a novel method for dynamic field distortion compensation, independent from preoperative calibrations or external tracking devices, and enables reliable EM navigation for potential applications.
    Print ISSN: 0018-9294
    Electronic ISSN: 1558-2531
    Topics: Medicine , Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    facet.materialart.
    Unknown
    Institute of Electrical and Electronics Engineers (IEEE)
    Publication Date: 2016-07-19
    Description: A feasibility study on a new technique capable of monitoring localized sweat rate is explored in this paper. Wearable devices commonly used in clinical practice for sweat sampling (i.e., Macroducts) were positioned on the body of an athlete whose sweat rate was then monitored during cycling sessions. The position at which the sweat fills the Macroduct was indicated by a contrasting marker and captured via a series of time-stamped photos or a video recording of the device during an exercise period. Given that the time of each captured image/frame is known (either through time stamp on photos or the constant frame rate of the video capture), it was, therefore, possible to estimate the sweat flow rate through a simple calibration model. The importance of gathering such valuable information is described, together with the results from a number of exercise trials to investigate the viability of this approach.
    Print ISSN: 0018-9294
    Electronic ISSN: 1558-2531
    Topics: Medicine , Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2016-07-19
    Description: Objective: A novel high-precision approach [lifetime-decomposition measurement (LTDM)] for the assessment of the glomerular filtration rate (GFR) based on clearance measurements of exogenous filtration marker. Methods: The time-correlated single photon counting (TCSPC) acquisition in combination with a new decomposition method allows the separation of signal and background from transcutaneous measurements of GFR. Results: The performance of LTDM is compared versus the commercially available NIC-kidney patch-based system for transcutaneous GFR measurement. Measurements are performed in awake Sprague Dawley (SD) rats. Using the standard concentration required for the NIC-kidney system [7-mg/100-g body weight (b.w.) FITC-Sinistrin] as reference, the mean difference (bias) of the elimination curves GFR between LTDM and NIC-kidney was 4.8%. On the same animal and same day, the capability of LTDM to measure GFR with a FITC-Sinistrin dose reduced by a factor of 200 (35-μg/100-g b.w.) was tested as well. The mean differences (half lives with low dose using LTDM compared with those using first, the NIC-Kidney system and its standard concentration, and second, LTDM with the same concentration as for the NIC-Kidney system) were 3.4% and 4.5%, respectively. Conclusion: We demonstrate that with the LTDM strategy substantial reductions in marker concentrations are possible at the same level of accuracy. Significance: LTDM aims to resolve the issue of the currently necessary large doses of fluorescence tracer required for transcutaneous GFR measurement. Due to substantially less influences from autofluorescence and artifacts, the proposed method outperforms other existing techniques for accurate percutaneous organ function measurement.
    Print ISSN: 0018-9294
    Electronic ISSN: 1558-2531
    Topics: Medicine , Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2016-07-19
    Description: Classic brain–machine interface (BMI) approaches decode neural signals from the brain responsible for achieving specific motor movements, which subsequently command prosthetic devices. Brain activities adaptively change during the control of the neuroprosthesis in BMIs, where the alteration of the preferred direction and the modulation of the gain depth are observed. The static neural tuning models have been limited by fixed codes, resulting in a decay of decoding performance over the course of the movement and subsequent instability in motor performance. To achieve stable performance, we propose a dual sequential Monte Carlo adaptive point process method, which models and decodes the gradually changing modulation depth of individual neuron over the course of a movement. We use multichannel neural spike trains from the primary motor cortex of a monkey trained to perform a target pursuit task using a joystick. Our results show that our computational approach successfully tracks the neural modulation depth over time with better goodness-of-fit than classic static neural tuning models, resulting in smaller errors between the true kinematics and the estimations in both simulated and real data. Our novel decoding approach suggests that the brain may employ such strategies to achieve stable motor output, i.e., plastic neural tuning is a feature of neural systems. BMI users may benefit from this adaptive algorithm to achieve more complex and controlled movement outcomes.
    Print ISSN: 0018-9294
    Electronic ISSN: 1558-2531
    Topics: Medicine , Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    facet.materialart.
    Unknown
    Institute of Electrical and Electronics Engineers (IEEE)
    Publication Date: 2016-07-19
    Print ISSN: 0018-9294
    Electronic ISSN: 1558-2531
    Topics: Medicine , Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    facet.materialart.
    Unknown
    Institute of Electrical and Electronics Engineers (IEEE)
    Publication Date: 2016-07-19
    Print ISSN: 0018-9294
    Electronic ISSN: 1558-2531
    Topics: Medicine , Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2016-07-21
    Description: Photodynamic therapy (PDT) is a non-thermal technique for inducing tumour damage following administration of a light-activated photosensitizing drug (PS). In a previous work we found that PDT induces cytoskeleton changes in HB4a-Ras cells (human mammary breast carcinoma HB4a cells transfected with the RAS oncogene). In the present work we have studied the migratory and invasive features and the expression of proteins related to these processes on HB4a-Ras cells after 3 successive cycles of PDT using different PSs: 5-aminolevulinic acid (ALA), Verteporfin (Verte), m -tetrahydroxyphenylchlorin ( m -THPC) and Merocyanine 540 (MC). A slight (1.25- to -2 fold) degree of resistance was acquired in cell populations subjected to the three successive PDT treatments. However, complete cell killing was achieved after a light dose increase. Regardless of the PS employed, all the PDT-treated populations had shorter stress fibres than the untreated control HB4a-Ras cells, and the number of dorsal stress fibres was decreased in the PDT-treated populations. E-Cadherin distribution, which was already aberrant in HB4a-Ras cells, became even more diffuse in the PDT-treated populations, though its expression was increased in some of them. The strong migratory and invasive ability of HB4a-Ras cells in vitro was impaired in all the PDT-treated populations, with a behaviour that was similar to the parental non-tumoral HB4a cells. MMP-2 and MMP-9 metalloproteinase activities were also impaired in the PDT-treated populations. The evidence presented herein suggests that the cells surviving PDT would be less metastatic than the initial population. These findings encourage the use of PDT in combination with other treatments such as intraoperative or post-surgery therapeutic procedures. This article is protected by copyright. All rights reserved
    Electronic ISSN: 0091-7419
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    facet.materialart.
    Unknown
    Institute of Electrical and Electronics Engineers (IEEE)
    Publication Date: 2016-07-22
    Description: Objective: This work evaluates current 3-D image registration tools on clinically acquired abdominal computed tomography (CT) scans. Methods: Thirteen abdominal organs were manually labeled on a set of 100 CT images, and the 100 labeled images (i.e., atlases) were pairwise registered based on intensity information with six registration tools (FSL, ANTS-CC, ANTS-QUICK-MI, IRTK, NIFTYREG, and DEEDS). The Dice similarity coefficient (DSC), mean surface distance, and Hausdorff distance were calculated on the registered organs individually. Permutation tests and indifference-zone ranking were performed to examine the statistical and practical significance, respectively. Results: The results suggest that DEEDS yielded the best registration performance. However, due to the overall low DSC values, and substantial portion of low-performing outliers, great care must be taken when image registration is used for local interpretation of abdominal CT. Conclusion: There is substantial room for improvement in image registration for abdominal CT. Significance: All data and source code are available so that innovations in registration can be directly compared with the current generation of tools without excessive duplication of effort.
    Print ISSN: 0018-9294
    Electronic ISSN: 1558-2531
    Topics: Medicine , Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    facet.materialart.
    Unknown
    Institute of Electrical and Electronics Engineers (IEEE)
    Publication Date: 2016-07-22
    Description: Goal : In K-edge tomographic imaging with photon counting detectors, the energy window width of photon counting detectors significantly affects the signal-to-noise ratio (SNR) of measured intensity data and the contrast-to-noise ratio (CNR) of reconstructed images. In this paper, we present an optimization method to determine an optimal window width around a K-edge for optimal SNR and CNR. Methods : An objective function is designed to describe SNR of the projection data based on the Poisson distribution of detected X-ray photons. Then, a univariate optimization method is applied to obtain an X-ray energy window width. Results : Numerical simulations are performed to evaluate the proposed method, and the results show that the optimal energy window width obtained from the proposed method produces not only optimal SNR data in the projection domain but also optimal CNR values in the image domain. Conclusion : The proposed method in the projection domain can determine an optimal energy window width for X-ray photon counting imaging, and achieve optimality in both projection and image domains. Significance : Our study provides a practical way to determine the optimal energy window width of photon counting detectors, which helps improve contrast resolution for X-ray K-edge tomographic imaging.
    Print ISSN: 0018-9294
    Electronic ISSN: 1558-2531
    Topics: Medicine , Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    facet.materialart.
    Unknown
    Institute of Electrical and Electronics Engineers (IEEE)
    Publication Date: 2016-07-22
    Description: Objective: The propagation of electrophysiological activity measured by multichannel devices could have significant clinical implications. Gastric slow waves normally propagate along longitudinal paths that are evident in recordings of serosal potentials and transcutaneous magnetic fields. We employed a realistic model of gastric slow wave activity to simulate the transabdominal magnetogastrogram (MGG) recorded in a multichannel biomagnetometer and to determine characteristics of electrophysiological propagation from MGG measurements. Methods: Using MGG simulations of slow wave sources in a realistic abdomen (both superficial and deep sources) and in a horizontally-layered volume conductor, we compared two analytic methods (second-order blind identification, SOBI and surface current density, SCD) that allow quantitative characterization of slow wave propagation. We also evaluated the performance of the methods with simulated experimental noise. The methods were also validated in an experimental animal model. Results: Mean square errors in position estimates were within 2 cm of the correct position, and average propagation velocities within 2 mm/s of the actual velocities. SOBI propagation analysis outperformed the SCD method for dipoles in the superficial and horizontal layer models with and without additive noise. The SCD method gave better estimates for deep sources, but did not handle additive noise as well as SOBI. Conclusion: SOBI-MGG and SCD-MGG were used to quantify slow wave propagation in a realistic abdomen model of gastric electrical activity. Significance: These methods could be generalized to any propagating electrophysiological activity detected by multichannel sensor arrays.
    Print ISSN: 0018-9294
    Electronic ISSN: 1558-2531
    Topics: Medicine , Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2016-07-22
    Description:   Goal : This study aims at a systematic assessment of five computational models of a birdcage coil for magnetic resonance imaging (MRI) with respect to accuracy and computational cost. Methods : The models were implemented using the same geometrical model and numerical algorithm, but different driving methods (i.e., coil “defeaturing”). The defeatured models were labeled as: specific ( S2 ), generic ( G32 , G16 ), and hybrid ( H16, $hbox{H16}_{{rm fr}text{-}{rm forced}}$ ). The accuracy of the models was evaluated using the “symmetric mean absolute percentage error” (“SMAPE”), by comparison with measurements in terms of frequency response, as well as electric ( $|{vec E}|$ ) and magnetic ( $| {vec B} |$ ) field magnitude. Results : All the models computed the $| {vec B} |$ within 35% of the measurements, only the S2 , G32, and H16 were able to accurately model the $|{vec E}|$ inside the phantom with a maximum SMAPE of 16%. Outside the phantom, only the S2 showed a SMAPE lower than 11%. Conclusions : Results showed that assessing the accuracy of $| {vec B} |$ based only on comparison along the central longitudinal line of the coil can be misleading. Generic or hybrid coils — when properly modeling the currents along the rings/rungs — were sufficient to accur- tely reproduce the fields inside a phantom while a specific model was needed to accurately model $|{vec E}|$ in the space between coil and phantom. Significance : Computational modeling of birdcage body coils is extensively used in the evaluation of radiofrequency-induced heating during MRI. Experimental validation of numerical models is needed to determine if a model is an accurate representation of a physical coil.
    Print ISSN: 0018-9294
    Electronic ISSN: 1558-2531
    Topics: Medicine , Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    facet.materialart.
    Unknown
    Institute of Electrical and Electronics Engineers (IEEE)
    Publication Date: 2016-07-22
    Description: Objective: The objective of this research was to develop a bioimpedance platform for monitoring fluid volume in residual limbs of people with trans-tibial limb loss using prostheses. Methods: A customized multifrequency current stimulus profile was sent to thin flat electrodes positioned on the thigh and distal residual limb. The applied current signal and sensed voltage signals from four pairs of electrodes located on the anterior and posterior surfaces were demodulated into resistive and reactive components. An established electrical model (Cole) and segmental limb geometry model were used to convert results to extracellular and intracellular fluid volumes. Bench tests and testing on amputee participants were conducted to optimize the stimulus profile and electrode design and layout. Results: The proximal current injection electrode needed to be at least 25 cm from the proximal voltage sensing electrode. A thin layer of hydrogel needed to be present during testing to ensure good electrical coupling. Using a burst duration of 2.0 ms, intermission interval of 100 μs, and sampling delay of 10 μs at each of 24 frequencies except 5 kHz, which required a 200-μs sampling delay, the system achieved a sampling rate of 19.7 Hz. Conclusion: The designed bioimpedance platform allowed system settings and electrode layouts and positions to be optimized for amputee limb fluid volume measurement. Significance: The system will be useful toward identifying and ranking prosthetic design features and participant characteristics that impact residual limb fluid volume.
    Print ISSN: 0018-9294
    Electronic ISSN: 1558-2531
    Topics: Medicine , Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    facet.materialart.
    Unknown
    Institute of Electrical and Electronics Engineers (IEEE)
    Publication Date: 2016-07-22
    Description: Surface electromyography (sEMG) has been the predominant method for sensing electrical activity for a number of applications involving muscle–computer interfaces, including myoelectric control of prostheses and rehabilitation robots. Ultrasound imaging for sensing mechanical deformation of functional muscle compartments can overcome several limitations of sEMG, including the inability to differentiate between deep contiguous muscle compartments, low signal-to-noise ratio, and lack of a robust graded signal. The objective of this study was to evaluate the feasibility of real-time graded control using a computationally efficient method to differentiate between complex hand motions based on ultrasound imaging of forearm muscles. Dynamic ultrasound images of the forearm muscles were obtained from six able-bodied volunteers and analyzed to map muscle activity based on the deformation of the contracting muscles during different hand motions. Each participant performed 15 different hand motions, including digit flexion, different grips (i.e., power grasp and pinch grip), and grips in combination with wrist pronation. During the training phase, we generated a database of activity patterns corresponding to different hand motions for each participant. During the testing phase, novel activity patterns were classified using a nearest neighbor classification algorithm based on that database. The average classification accuracy was 91%. Real-time image-based control of a virtual hand showed an average classification accuracy of 92%. Our results demonstrate the feasibility of using ultrasound imaging as a robust muscle–computer interface. Potential clinical applications include control of multiarticulated prosthetic hands, stroke rehabilitation, and fundamental investigations of motor control and biomechanics.
    Print ISSN: 0018-9294
    Electronic ISSN: 1558-2531
    Topics: Medicine , Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2016-07-22
    Description: We have been developing an automated cardiovascular drug infusion system for simultaneous control of arterial pressure (AP), cardiac output (CO), and left atrial pressure (P LA ) in decompensated heart failure (HF). In our prototype system, CO and P LA were measured invasively through thoracotomy. Furthermore, the control logic inevitably required use of inotropes to improve hemodynamics, which was not in line with clinical HF guidelines. The goal of this study was to solve these problems and develop a clinically feasible system. We integrated to the system minimally invasive monitors of CO and pulmonary capillary wedge pressure (PCWP, surrogates for P LA ) that we developed recently. We also redesigned the control logic to reduce the use of inotrope. We applied the newly developed system to nine dogs with decompensated HF. Once activated, our system started to control the infusion of vasodilator and diuretics in all the animals. Inotrope was not infused in three animals, and infused at minimal doses in six animals that were intolerant of vasodilator infusion alone. Within 50 min, our system controlled AP, CO, and PCWP to their respective targets accurately. Pulmonary artery catheterization confirmed optimization of hemodynamics (AP, from 98 ± 4 to 74 ± 11 mmHg; CO, from 2.2 ± 0.5 to 2.9 ± 0.3 L·min −1 ·m −2 ; PCWP, from 27.0 ± 6.6 to 13.8 ± 3.0 mmHg). In a minimally invasive setting while reducing the use of inotrope, our system succeeded in automatically optimizing the overall hemodynamics in canine models of HF. The present results pave the way for clinical application of our automated drug infusion system.
    Print ISSN: 0018-9294
    Electronic ISSN: 1558-2531
    Topics: Medicine , Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2016-07-22
    Description: Image registration is a key problem in a variety of applications, such as computer vision, medical image processing, pattern recognition, etc., while the application of registration is limited by time consumption and the accuracy in the case of large pose differences. Aimed at these two kinds of problems, we propose a fast rotation-free feature-based rigid registration method based on our proposed accelerated-NSIFT and GMM registration-based parallel optimization (PO-GMMREG). Our method is accelerated by using the GPU/CUDA programming and preserving only the location information without constructing the descriptor of each interest point, while its robustness to missing correspondences and outliers is improved by converting the interest point matching to Gaussian mixture model alignment. The accuracy in the case of large pose differences is settled by our proposed PO-GMMREG algorithm by constructing a set of initial transformations. Experimental results demonstrate that our proposed algorithm can fast rigidly register 3-D medical images and is reliable for aligning 3-D scans even when they exhibit a poor initialization.
    Print ISSN: 0018-9294
    Electronic ISSN: 1558-2531
    Topics: Medicine , Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2016-07-28
    Description: ABSTRACT Mechanotransduction is a key process by which cells perceive extracellular mechanical cues / intercellular physical interactions and transform them into intracellular biochemical signals. This physiological process is crucial during bone development and bone remodeling throughout childhood and adult life, whereas several aberrations during this process have emerged as a distinct pathogenic molecular entity in bone maladies and tumor formation. The present review focuses on recent advances regarding the mechanobiology of osteosarcoma, the most common type of bone cancer. Special emphasis is given on the mechano-responsive signal transduction pathways underlying osteosarcoma pathology and on specific mechanosensitive molecules engaged in osteosarcoma development. This article is protected by copyright. All rights reserved
    Electronic ISSN: 0091-7419
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2016-07-28
    Description: ABSTRACT Protandim and 6-gingerol, two potent nutraceuticals, have been shown to decrease free radicals production through enhancing endogenous antioxidant enzymes. In this study, we evaluated the effects of these products on the expression of different factors involved in osteoarthritis (OA) process. Human OA chondrocytes were treated with 1 ng/ml IL-1β in the presence or absence of protandim (0-10 μg/ml) or 6-gingerol (0-10 μM). OA was induced surgically in mice by destabilization of the medial meniscus (DMM). The animals were treated weekly with an intraarticular injection of 10 μl of vehicle or protandim (10 μg/ml) for 8 weeks. Sham-operated mice served as controls. In vitro , we demonstrated that protandim and 6-gingerol preserve cell viability and mitochondrial metabolism and prevented 4-hydroxynonenal (HNE)-induced cell mortality. They activated Nrf2 transcription factor, abolished IL-1β-induced NO, PGE 2 , MMP-13, and HNE production as well as IL-β − induced GSTA4-4 down-regulation. Nrf2 overexpression reduced IL-1β-induced HNE and MMP-13 as well as IL-1β-induced GSTA4-4 down-regulation. Nrf2 knockdown following siRNA transfection abolished protandim protection against oxidative stress and catabolism. The activation of MAPK and NF-κB by IL-1β was not affected by 6-gingerol. In vivo , we observed that Nrf2 and GSTA4-4 expression was significantly lower in OA cartilage from humans and mice compared to normal controls. Interestingly, protandim administration reduced OA score in DMM mice. Altogether, our data indicate that protandim and 6-gingerol are essential in preserving cartilage and abolishing a number of factors known to be involved in OA pathogenesis. This article is protected by copyright. All rights reserved
    Electronic ISSN: 0091-7419
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2016-07-28
    Description: ABSTRACT Epithelial morphogenesis in the mammary gland proceeds as a consequence of complex cell behaviors including apoptotic cell death and epithelial-mesenchymal transition (EMT); the extracellular matrix (ECM) protein laminin is crucially involved. Syntaxins mediate intracellular vesicular fusion, yet certain plasmalemmal members have been shown to possess latent extracellular functions. In this study, the extracellular subpopulation of syntaxin-4, extruded in response to the induction of differentiation or apoptosis in mammary epithelial cells, was detected. Using a tetracycline-repressive transcriptional system and clonal mammary epithelial cells, SCp2, we found that the expression of cell surface syntaxin-4 elicits EMT-like cell behaviors. Intriguingly, these cells did not up-regulate key transcription factors associated with the canonical EMT such as snail, slug , or twist , and repressed translation of E-cadherin. Concurrently, the cells completely evaded the cellular aggregation/rounding triggered by a potent EMT blocker laminin-111. We found that the recombinant form of syntaxin-4 not only bound to laminin but also latched onto the glycosaminoglycan (GAG) side chains of syndecan-1, a laminin receptor that mediates epithelial morphogenesis. Thus, temporal extracellular extrusion of syntaxin-4 emerged as a novel regulatory element for laminin-induced mammary epithelial cell behaviors. This article is protected by copyright. All rights reserved
    Electronic ISSN: 0091-7419
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2016-07-28
    Description: Glial cell line-derived neurotrophic factor (GDNF) is known to mediate multiple biological activities such as promotion of cell motility and proliferation, and morphogenesis. However, little is known about its effects on periodontal ligament (PDL) cells. Recently, we reported that GDNF expression is increased in wounded rat PDL tissue and human PDL cells (HPDLCs) treated with proinflammatory cytokines. Here, we investigated the associated expression of GDNF and the proinflammatory cytokine interleukin-1 beta (IL-1β) in wounded PDL tissue, and whether HPDLCs secrete GDNF which affects neurocytic differentiation. Rat PDL cells near the wounded area showed intense immunoreactions against an anti-GDNF antibody, where immunoreactivity was also increased against an anti-IL-1β antibody. Compared with untreated cells, HPDLCs treated with IL-1β or tumor necrosis factor-alpha showed an increase in the secretion of GDNF protein. Conditioned medium of IL-1β-treated HPDLCs (IL-1β-CM) increased neurite outgrowth of PC12 rat adrenal pheochromocytoma cells. The expression levels of two neural regeneration-associated genes, growth-associated protein-43 (Gap-43) and small proline-rich repeat protein 1A (Sprr1A), were also upregulated in IL-1β-CM-treated PC12 cells. These stimulatory effects of IL-1β-CM were significantly inhibited by a neutralizing antibody against GDNF. In addition, U0126, a MEK inhibitor, inhibited GDNF-induced neurite outgrowth of PC12 cells. These findings suggest that an increase of GDNF in wounded PDL tissue might play an important role in neural regeneration probably via the MEK/ERK signaling pathway. This article is protected by copyright. All rights reserved
    Electronic ISSN: 0091-7419
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2016-08-03
    Description: Herpes simplex viruses can cause uncommon systemic complications as acute liver failure or urinary tract dysfunctions. Diphenyl diselenide, (PhSe) 2 , a classical studied organic selenium compound, has a novel antiviral action against HSV-2 infection and well-known antioxidant and anti-inflammatory properties. This study aimed to investigate if (PhSe) 2 reduces oxidative stress and systemic toxicity caused by HSV-2 infection in mice. Adult BALB/c mice were pre-treated with (PhSe) 2 (5 mg kg −1 /day, intragastric, i.g.) during 5 days; at day 6 mice were infected with HSV-2 (10 µl-10 5 PFU/ml −1 ) and post-treated with (PhSe) 2 for more 5 days. At day 11, they were killed and samples of liver and kidney were obtained to determine: reactive species (RS); malondialdehyde (MDA) and non-protein thiols (NPSH) levels; the activities of antioxidant enzymes, superoxide dismutase (SOD) and catalase (CAT). The activities of adenosine deaminase (ADA), Na + /K + -ATPase (liver and kidney); alanine aminotransferase (ALT), aspartate aminotransferase (AST) and the levels of urea (plasma) were determined as markers of hepatic and renal toxicity. The results revealed that (PhSe) 2 treatment was effective against the increase of renal and hepatic oxidative stress in infected mice and also normalized hepatic and renal ADA activity. It recovered the activity of Na + /K + - and was not effective against the increase in urea levels in infected mice. Different from (PhSe) 2 , acyclovir (positive control), caused an increase in ADA activity and a decrease in hepatic CAT activity. Considering the interest of alternative therapies to treat HSV-2 infections and secondary complications, (PhSe) 2 become a notable candidate. This article is protected by copyright. All rights reserved
    Electronic ISSN: 0091-7419
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2016-08-03
    Description: Diclofenac is the most commonly used phenylacetic acid derivative non-steroidal anti-inflammatory drug (NSAID) that demonstrates significant analgesic, antipyretic, and anti-inflammatory effects. Several epidemiological studies have demonstrated anti-proliferative activity of NSAIDs and examined their apoptotic induction effects in different cancer cell lines. However, the precise molecular mechanisms by which these pharmacological agents induce apoptosis and exert anti-carcinogenic properties are not well known. Here, we have observed that diclofenac treatment induces proteasome malfunction and promotes accumulation of different critical proteasome substrates, including few pro-apoptotic proteins in cells. Exposure of diclofenac consequently elevates aggregation of various ubiquitylated misfolded proteins. Finally, we have shown that diclofenac treatment promotes apoptosis in cells, which could be because of mitochondrial membrane depolarization and cytochrome c release into cytosol. This study suggests possible beneficial insights of NSAIDs-induced apoptosis that may improve our existing knowledge in anti-proliferative interspecific strategies development. This article is protected by copyright. All rights reserved
    Electronic ISSN: 0091-7419
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2016-07-13
    Description: Apolipoprotein A-I (ApoA-I) is a key component of High Density Lipoproteins which possess anti-atherosclerotic and anti-inflammatory properties. Insulin is a crucial mediator of the glucose and lipid metabolism that has been implicated in atherosclerotic and inflammatory processes. Important mediators of insulin signaling such as Liver X Receptors (LXRs) and Forkhead Box A2 (FOXA2) are known to regulate apoA-I expression in liver. Forkhead Box O1 (FOXO1) is a well-known target of insulin signaling and a key mediator of oxidative stress response. Low doses of insulin were shown to activate apoA-I expression in human hepatoma HepG2 cells. However, the detailed mechanisms for these processes are still unknown. We studied the possible involvement of FOXO1, FOXA2, LXRα and LXRβ transcription factors in the insulin-mediated regulation of apoA-I expression. Treatment of HepG2 cells with high doses of insulin (48 hours, 100 nM) suppresses apoA-I gene expression. siRNAs against FOXO1, FOXA2, LXRβ or LXRα abrogated this effect. FOXO1 forms a complex with LXRβ and insulin treatment impairs FOXO1/LXRβ complex binding to hepatic enhancer and triggers its nuclear export. Insulin as well as LXR ligand TO901317 enhance the interaction between FOXA2, LXRα and hepatic enhancer. These data suggest that high doses of insulin downregulate apoA-I gene expression in HepG2 cells through redistribution of FOXO1/LXRβ complex, FOXA2 and LXRα on hepatic enhancer of apoA-I gene. This article is protected by copyright. All rights reserved
    Electronic ISSN: 0091-7419
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2016-07-13
    Description: ABSTRACT Chronic inflammation and metabolic reprogramming have been proposed as hallmarks of cancer development. Currently, many of the functional clues between these two phenomena are studied under the integrative view of functional stroma-epithelia interaction. It has been proposed that stromal cells, due to their abundance and avidity for glucose, are able to modify the metabolic behavior of an entire solid tumor”. In the present study, using a mammary stromal cell line derived from healthy tissue subjected to long-term culture in low (5 mM) or high (25 mM) glucose, we found that the hyperglycemic condition favors the establishment of a pro-inflammatory and pro-oxidant environment characterized by the induction of the COX-2/PGE2 axis. In this condition, epithelial migration was stimulated. Moreover, we also found that stromal-derived PGE2, acting as a stimulator of IL-1 epithelial expression was one of the factors that promote the acquisition of motile properties by epithelial cells and the maintenance of a COX-2/PGE2-dependent inflammatory condition. Overall, our work provides experimental evidence that glucose stimulates a tumor inflammatory environment that, as a result of a functional cross-talk between stroma and epithelia, may be responsible for tumor progression. This article is protected by copyright. All rights reserved
    Electronic ISSN: 0091-7419
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    facet.materialart.
    Unknown
    Institute of Electrical and Electronics Engineers (IEEE)
    Publication Date: 2016-07-19
    Description: Glaucoma is a neurological disorder leading to blindness initially through the loss of retinal ganglion cells, followed by loss of neurons higher in the visual system. Some work has been undertaken to develop prostheses for glaucoma patients targeting tissues along the visual pathway, including the lateral geniculate nucleus (LGN) of the thalamus, but especially the visual cortex. This review makes the case for a visual prosthesis that targets the LGN. The compact nature and orderly structure of this nucleus make it a potentially better target to restore vision than the visual cortex. Existing research for the development of a thalamic visual prosthesis will be discussed along with the gaps that need to be addressed before such a technology could be applied clinically, as well as the challenge posed by the loss of LGN neurons as glaucoma progresses.
    Print ISSN: 0018-9294
    Electronic ISSN: 1558-2531
    Topics: Medicine , Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...