ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (13,925)
  • Wiley  (13,925)
  • Global Change Biology  (3,260)
  • Ecosphere  (938)
  • 140099
  • 5833
  • Energy, Environment Protection, Nuclear Power Engineering  (13,925)
  • Mathematics
Collection
  • Articles  (13,925)
Publisher
  • Wiley  (13,925)
Years
Topic
  • Energy, Environment Protection, Nuclear Power Engineering  (13,925)
  • Mathematics
  • Geography  (9,817)
  • Biology  (9,817)
  • 1
    Publication Date: 2020-09-07
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-09-13
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-08-23
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-08-20
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-08-16
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-08-09
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-08-03
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-07-06
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-07-29
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-07-28
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2020-08-08
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2020-07-31
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2020-09-23
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2020-06-30
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2020-08-05
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
  • 17
    Publication Date: 2020-07-02
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2020-07-26
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
  • 20
    Publication Date: 2007-06-01
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2007-05-01
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2007-07-01
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
  • 24
    Publication Date: 2015-08-13
    Description: Extraction of oil and natural gas (hydrocarbons) from shale is increasing rapidly in North America, with documented impacts to native species and ecosystems. With shale oil and gas resources on nearly every continent, this development is set to become a major driver of global land-use change. It is increasingly critical to quantify spatial habitat loss driven by this development to implement effective mitigation strategies and develop habitat offsets. Habitat selection is a fundamental ecological process, influencing both individual fitness and population-level distribution on the landscape. Examinations of habitat selection provide a natural means for understanding spatial impacts. We examined the impact of natural gas development on habitat selection patterns of mule deer on their winter range in Colorado. We fit resource selection functions in a Bayesian hierarchical framework, with habitat availability defined using a movement-based modeling approach. Energy development drove considerable alterations to deer habitat selection patterns, with the most substantial impacts manifested as avoidance of well pads with active drilling to a distance of at least 800 m. Deer displayed more nuanced responses to other infrastructure, avoiding pads with active production and roads to a greater degree during the day than night. In aggregate, these responses equate to alteration of behavior by human development in over 50% of the critical winter range in our study area during the day and over 25% at night. Compared to other regions, the topographic and vegetative diversity in the study area appear to provide refugia that allow deer to behaviorally mediate some of the impacts of development. This study, and the methods we employed, provides a template for quantifying spatial take by industrial activities in natural areas and the results offer guidance for policy makers, mangers, and industry when attempting to mitigate habitat loss due to energy development.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2015-08-04
    Description: Although long-distance migratory songbirds are widely believed to be at risk from warming temperature trends, species capable of attempting more than one brood in a breeding season could benefit from extended breeding seasons in warmer springs. To evaluate local and global factors affecting population dynamics of the black-throated blue warbler ( Setophaga caerulescens ), a double-brooded long-distance migrant, we used Pradel models to analyze 25 years of mark-recapture data collected in New Hampshire, USA. We assessed the effects of spring temperature (local weather) and the El Niño Southern Oscillation index (a global climate cycle), as well as predator abundance, insect biomass, and local conspecific density on population growth in the subsequent year. Local and global climatic conditions affected warbler populations in different ways. We found that warbler population growth was lower following El Niño years (which have been linked to poor survival in the wintering grounds and low fledging weights in the breeding grounds) than La Niña years. At a local scale, populations increased following years with warm springs and abundant late-season food, but were unaffected by spring temperature following years when food was scarce. These results indicate that the warming temperature trends might have a positive effect on recruitment and population growth of black-throated blue warblers if food abundance is sustained in breeding areas. In contrast, potential intensification of future El Niño events could negatively impact vital rates and populations of this species. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2015-08-05
    Description: Ecotones are transition zones that form, in forests, where distinct forest types meet across a climatic gradient. In mountains, ecotones are compressed and act as potential harbingers of species shifts that accompany climate change. As the climate warms in New England, USA, high elevation boreal forests are expected to recede upslope, with northern hardwood species moving up behind. Yet recent empirical studies present conflicting findings on this dynamic, reporting both rapid upward ecotonal shifts and concurrent increases in boreal species within the region. These discrepancies may result from the limited spatial extent of observations. We developed a method to model and map the montane forest ecotone using Landsat imagery to observe change at scales not possible for plot-based studies, covering mountain peaks over 39,000 km 2 . Our results show that ecotones shifted downward or stayed stable on most mountains between 1991 and 2010, but also shifted upward in some cases (13-15% slopes). On average, upper ecotone boundaries moved down -1.5 m·yr −1 in the Green Mountains, VT, and -1.3 m·yr −1 in the White Mountains, NH. These changes agree with re-measured forest inventory data from Hubbard Brook Experimental Forest, NH and suggest that processes of boreal forest recovery from prior red spruce decline, or human landuse and disturbance, may swamp out any signal of climate-mediated migration in this ecosystem. This approach represents a powerful framework for evaluating similar ecotonal dynamics in other mountainous regions of the globe. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2015-08-05
    Description: In order to adequately monitor biodiversity trends through time and their responses to natural or anthropogenic impacts, researchers require long time series that are often unavailable. This general lack of datasets that are several decades or longer makes establishing a background or baseline of diversity metrics difficult – especially when attempting to understand species composition changes against a backdrop of climate and ecological variability. Here we present an analysis of a community of juvenile nearshore fishes based on nearly 8 decades of highly standardized Norwegian survey records. Using multivariate statistical techniques, we: a) characterize the change in taxonomic community composition through time, b) determine whether there has been an increase in warm water affinity species relative to their cold water affinity counterparts, and c) characterize the temporal change in the species’ functional trait assemblage. Our results strongly indicate a shift towards a novel fish assemblage between the late 1990s and 2000s. The context of changes within the most recent two decades are in stark contrast to those during the 60s and 70s, but similar to those during the previous warm period during the 30s and 40s. This novel assemblage is tightly linked to the warming temperatures in the region portrayed by the increased presence of warm water species and a higher incidence of pelagic, planktivorous species. The results indicate a clear influence of ocean temperature on the region's juvenile fish community that points to climate mediated effects on the species assemblages of an important fish nursery area. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2015-08-18
    Description: High Arctic landscapes are expansive and changing rapidly. However our understanding of their functional responses and potential to mitigate or enhance anthropogenic climate change is limited by few measurements. We collected eddy covariance measurements to quantify the net ecosystem exchange (NEE) of CO 2 with polar semidesert and meadow wetland landscapes at the highest-latitude location measured to date (82°N). We coupled these rare data with ground and satellite vegetation production measurements (Normalized Difference Vegetation Index; NDVI) to evaluate the effectiveness of upscaling local to regional NEE. During the growing season, the dry polar semidesert landscape was a near zero sink of atmospheric CO 2 (NEE: -0.3±13.5 g C m −2 ). A nearby meadow wetland accumulated over 300 times more carbon (NEE: -79.3±20.0 g C m −2 ) than the polar semidesert landscape, and was similar to meadow wetland NEE at much more southerly latitudes. Polar semidesert NEE was most influenced by moisture, with wetter surface soils resulting in greater soil respiration and CO 2 emissions. At the meadow wetland, soil heating enhanced plant growth, which in turn increased CO 2 uptake. Our upscaling assessment found that polar semidesert NDVI measured on site was low (mean: 0.120-0.157) and similar to satellite measurements (mean: 0.155-0.163). However, weak plant growth resulted in poor satellite NDVI-NEE relationships and created challenges for remotely-detecting changes in the cycling of carbon on the polar semidesert landscape. The meadow wetland appeared more suitable to assess plant production and NEE via remote-sensing, however high Arctic wetland extent is constrained by topography to small areas that may be difficult to resolve with large satellite pixels. We predict that until summer precipitation and humidity increases substantially, climate-related changes of dry high Arctic landscapes may be restricted by poor soil moisture retention, and therefore have some inertia against short-term changes in NEE. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2015-08-23
    Description: Urban areas are expanding rapidly in tropical regions, with potential to alter ecosystem dynamics. In particular, exotic grasses and atmospheric nitrogen (N) deposition simultaneously affect urbanized landscapes, with unknown effects on properties like soil carbon (C) storage. We hypothesized that: (H1.) Soil nitrate (NO 3 - ) is elevated nearer to the urban core, reflecting N deposition gradients. (H2.) Exotic grasslands have drier soils, elevated NO 3 - , and decreased soil C relative to secondary forests, with higher N promoting decomposer activity. (H3.) Exotic grasslands have greater seasonality in soil NO 3 - versus secondary forests, due to higher sensitivity of grassland soil moisture to rainfall. We predicted that NO 3 - would be related to dissolved organic C (DOC) production via changes in decomposer activity. We measured six paired grassland/secondary-forest sites along a tropical urban-to-rural gradient during three dominant seasons (hurricane, dry, and early wet). We found that: (1.) Soil NO 3 - was generally elevated near the urban core, with particularly clear spatial trends for grasslands. (2.) Exotic grasslands had lower soil C than secondary forests, which was related to elevated decomposer enzyme activities and soil respiration. Unexpectedly, soil NO 3 - was negatively related to enzyme activities, and was higher in forests than grasslands. (3.) Grasslands had greater soil NO 3 - seasonality versus forests, but this was not strongly linked to shifts in soil moisture or DOC. Our results suggest that exotic grasses in tropical regions are likely to drastically reduce soil C storage, but that N deposition may have an opposite effect via suppression of enzyme activities. However, soil NO 3 - accumulation here was higher in urban forests than grasslands, potentially due to an interplay of aboveground N interception and soil processes. Net urban effects on C storage across tropical landscapes will likely vary depending on rates of N deposition, the mosaic of land covers, and responses by local decomposer communities. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2015-08-25
    Description: Soils are subject to varying degrees of direct or indirect human disturbance, constituting a major global change driver. Factoring out natural from direct and indirect human influence is not always straightforward, but some human activities have clear impacts. These include land use change, land management, and land degradation (erosion, compaction, sealing and salinization). The intensity of land use also exerts a great impact on soils, and soils are also subject to indirect impacts arising from human activity, such as acid deposition (sulphur and nitrogen) and heavy metal pollution. In this critical review, we report the state-of-the-art understanding of these global change pressures on soils, identify knowledge gaps and research challenges, and highlight actions and policies to minimise adverse environmental impacts arising from these global change drivers. Soils are central to considerations of what constitutes sustainable intensification. Therefore, ensuring that vulnerable and high environmental value soils are considered when protecting important habitats and ecosystems, will help to reduce the pressure on land from global change drivers. To ensure that soils are protected as part of wider environmental efforts, a global soil resilience programme should be considered, to monitor, recover or sustain soil fertility and function, and to enhance the ecosystem services provided by soils. Soils cannot, and should not, be considered in isolation of the ecosystems that they underpin and vice versa. The role of soils in supporting ecosystems and natural capital needs greater recognition. The lasting legacy of the International Year of Soils in 2015 should be to put soils at the centre of policy supporting environmental protection and sustainable development. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2015-08-25
    Description: The response of soil organic carbon (SOC) pools to globally rising surface temperature crucially determines the feedback between climate change and the global carbon cycle. However, there is a lack of studies investigating the temperature sensitivity of decomposition for decadally cycling SOC which is the main component of total soil carbon stock and the most relevant to global change. We tackled this issue by using two decadally 13 C-labeled soils and a much improved measuring system in a long-term incubation experiment. Results indicated that the temperature sensitivity of decomposition for decadally-cycling SOC (〉 23 years in one soil and 〉 55 years in the other soil) was significantly greater than that for faster-cycling SOC (〈 23 or 55 years) or for the entire SOC stock. Moreover, decadally-cycling SOC contributed substantially (35-59%) to the total CO 2 loss during the 360-day incubation. Overall, these results indicate that the decomposition of decadally-cycling SOC is highly sensitive to temperature change, which will likely make this large SOC stock vulnerable to loss by global warming in the 21 st century and beyond. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2015-08-14
    Description: Human induced climate change is projected to increase ocean temperature and modify circulation patterns, with potential widespread implications for the transport and survival of planktonic larvae of marine organisms. Circulation affects the dispersal of larvae, whereas temperature impacts larval development and survival. However, the combined effect of changes in circulation and temperature on larval dispersal and survival has not been studied in a future climate scenario. Such understanding is crucial to predict future species distributions, anticipate ecosystem shifts, and design effective management strategies. We simulate contemporary (1990s) and future (2060s) dispersal of lobster larvae using an eddy-resolving ocean model in south-eastern Australia, a region of rapid ocean warming. Here we show that the effects of changes in circulation and temperature can counter each other: ocean warming favours the survival of lobster larvae, whereas a strengthened western boundary current diminishes the supply of larvae to the coast by restricting cross-current larval dispersal. Furthermore, we find that changes in circulation have a stronger effect on connectivity patterns of lobster larvae along south-eastern Australia than ocean warming in the future climate so that the supply of larvae to the coast reduces by ~ 4% and the settlement peak shifts poleward by ~270km in the model simulation. Thus ocean circulation may be one of the dominant factors contributing to the climate-induced expansion of species ranges. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2015-07-30
    Description: The zooplankton of the northern California Current are typically characterized by an abundance of lipid-rich copepods that support rapid growth and survival of ecologically, commercially, and recreationally valued fish, birds, and mammals. Disruption of this food chain and reduced ecosystem productivity are often associated with climatic variability such as El Niño events. We examined the variability in timing, magnitude, and duration of positive temperature anomalies and changes in copepod species composition in the northern California Current in relation to ten tropical El Niño events. Measureable impacts on mesozooplankton of the northern California Current were observed during seven out of ten of these events. The occurrence of anomalously warm water and the response of the copepod community was rapid (lag of zero to two months) following the initiation of canonical Eastern Pacific events, but delayed (lag of two to eight months) following “Modoki” Central Pacific events. The variable lags in the timing of a physical and biological response led to impacts in the northern California Current peaking in winter during EP events and in the spring during CP events. The magnitude and duration of the temperature and copepod anomalies were strongly and positively related to the magnitude and duration of El Niño events, but were also sensitive to the phase of the lower-frequency Pacific Decadal Oscillation. When fisheries managers and biological oceanographers are faced with the prospect of a future El Niño event, prudent management and observation will require consideration of the background oceanographic conditions, the type of event, and both the magnitude and duration of the event when assessing the potential physical and biological impacts on the northern California Current. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2015-08-05
    Description: Time series of environmental measurements are essential for detecting, measuring and understanding changes in the Earth system and its biological communities. Observational series have accumulated over the past 2-5 decades from measurements across the world's estuaries, bays, lagoons, inland seas and shelf waters influenced by runoff. We synthesize information contained in these time series to develop a global view of changes occurring in marine systems influenced by connectivity to land. Our review is organized around four themes: (1) human activities as drivers of change; (2) variability of the climate system as a driver of change; (3) successes, disappointments and challenges of managing change at the sea-land interface; and (4) discoveries made from observations over time. Multidecadal time series reveal that many of the world's estuarine-coastal ecosystems are in a continuing state of change, and the pace of change is faster than we could have imagined a decade ago. Some have been transformed into novel ecosystems with habitats, biogeochemistry and biological communities outside the natural range of variability. Change takes many forms including linear and nonlinear trends, abrupt state changes, and oscillations. The challenge of managing change is daunting in the coastal zone where diverse human pressures are concentrated and intersect with different responses to climate variability over land and over ocean basins. The pace of change in estuarine-coastal ecosystems will likely accelerate as the human population and economies continue to grow and as global climate change accelerates. Wise stewardship of the resources upon which we depend is critically dependent upon a continuing flow of information from observations to measure, understand and anticipate future changes along the world's coastlines. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2015-06-05
    Description: Soil is the largest stock of carbon (C) in the terrestrial biosphere, so even slight changes in soil C stock may induce significant fluctuations in the atmospheric C dioxide (CO 2 ) concentration. Early coupled C-climate models predicted that positive C-climate feedback would be triggered due to the acceleration of C release to the atmosphere under future climate warming (Cox et al ., 2000). However, due to the omission of key microbial components and biogeochemical mechanisms in these models (Wieder et al ., 2013), these predictions remain controversial, because soil C dynamics is still highly uncertain among results simulated by 11 Earth system models (ESMs) involved in CMIP5 (Ciais et al ., 2013). This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2015-06-06
    Description: The influence of human activity on the biosphere is increasing. While direct damage (e.g. habitat destruction) is relatively well understood, many activities affect wildlife in less apparent ways. Here we investigate how anthropogenic noise impairs foraging, which has direct consequences for animal survival and reproductive success. Noise can disturb foraging via several mechanisms that may operate simultaneously, and thus their effects could not be disentangled hitherto. We developed a diagnostic framework that can be applied to identify the potential mechanisms of disturbance in any species capable of detecting the noise. We tested this framework using Daubenton's bats, which find prey by echolocation. We found that traffic noise reduced foraging efficiency in most bats. Unexpectedly, this effect was present even if the playback noise did not overlap in frequency with the prey echoes. Neither overlapping nor non-overlapping noise influenced the search effort required for a successful prey capture. Hence, noise did not mask prey echoes or reduce the attention of bats. Instead, noise acted as an aversive stimulus that caused avoidance response, thereby reducing foraging efficiency. We conclude that conservation policies may seriously underestimate numbers of species affected and the multilevel effects on animal fitness, if the mechanisms of disturbance are not considered. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2015-07-30
    Description: Understanding the responses of lake systems to past climate change and human activity is critical for assessing and predicting the fate of lake carbon (C) in the future. In this study we synthesized records of the sediment accumulation from 82 lakes and of C sequestration from 58 lakes with direct organic C measurements throughout China. We also identified the controlling factors of the long-term sediment and C accumulation dynamics in these lakes during the past 12 ka (1 ka = 1000 cal yr BP). Our results indicated an overall increasing trend of sediment and C accumulation since 12 ka, with an accumulation peak in the last couple of millennia for all lakes in China, corresponding to terrestrial organic matter input due to land use change. The Holocene lake sediment accumulation rate (SAR) and C accumulation rate (CAR) averaged (Mean ± SE) 0.47 ± 0.05 mm yr -1 and 7.7 ± 1.4 g C m -2 yr -1 in China, respectively, comparable to the previous estimates for boreal and temperate regions. The SAR for lakes in the East Plain of subtropical China (1.05 ± 0.28 mm yr -1 ) was higher than those in other regions ( P 〈 0.05). However, CAR did not vary significantly among regions. Overall, the variability and history of climate and anthropogenic interference regulated the temporal and spatial dynamics of sediment and C sequestration for lakes in China. We estimated the total amount of C burial in lakes of China as 8.0 ± 1.0 Pg C. This first estimation of total C storage and dynamics in lakes of China confirms the importance of lakes in land C budget in monsoon-influenced regions. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2015-08-09
    Description: There is concern that food insecurity will increase in southern Africa due to climate change. We quantified the response of maize yield to projected climate change and to three key management options – planting date, fertilizer use and cultivar choice – using the crop simulation model APSIM at two contrasting sites in Zimbabwe. Three climate periods up to 2100 were selected to cover both near- and long-term climates. Future climate data under two radiative forcing scenarios were generated from five Global Circulation Models. The temperature is projected to increase significantly in Zimbabwe by 2100 with no significant change in mean annual total rainfall. When planting before mid-December with a high fertilizer rate, the simulated average grain yield for all three maize cultivars declined by 13% for the periods 2010-2039 and 2040-2069, and by 20% for 2070-2099 compared with the baseline climate, under low radiative forcing. Larger declines in yield of up to 32% were predicted for 2070-2099 with high radiative forcing. Despite differences in annual rainfall, similar trends in yield changes were observed for the two sites studied, Hwedza and Makoni. The yield response to delay in planting was non-linear. Fertilizer increased yield significantly under both baseline and future climates. The response of maize to mineral nitrogen decreased with progressing climate change, implying a decrease in the optimal fertilizer rate in the future. Our results suggest that in the near future improved crop and soil fertility management will remain important for enhanced maize yield. Towards the end of the 21st Century, however, none of the farm management options tested in the study can avoid large yield losses in southern Africa due to climate change. There is a need to transform the current cropping systems of southern Africa to offset the negative impacts of climate change. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2015-08-11
    Description: Fresh waters make a disproportionately large contribution to greenhouse gas (GHG) emissions, with shallow lakes being particular hotspots. Given their global prevalence, how GHG fluxes from shallow lakes are altered by climate change may have profound implications for the global carbon cycle. Empirical evidence for the temperature dependence of the processes controlling GHG production in natural systems is largely based on the correlation between seasonal temperature variation and seasonal change in GHG fluxes. However, ecosystem-level GHG fluxes could be influenced by factors, which whilst varying seasonally with temperature are actually either indirectly related (e.g. primary producer biomass) or largely unrelated to temperature, for instance nutrient loading. Here, we present results from the longest running shallow-lake mesocosm experiment which demonstrate that nutrient concentrations override temperature as a control of both the total and individual GHG flux. Furthermore, testing for temperature treatment effects at low and high nutrient levels separately showed only one, rather weak, positive effect of temperature (CH 4 flux at high nutrients). In contrast, at low nutrients, the CO 2 efflux was lower in the elevated temperature treatments, with no significant effect on CH 4 or N 2 O fluxes. Further analysis identified possible indirect effects of temperature treatment. For example, at low nutrient levels increased macrophyte abundance was associated with significantly reduced fluxes of both CH 4 and CO 2 for both total annual flux and monthly observation data. As macrophyte abundance was positively related to temperature treatment, this suggests the possibility of indirect temperature effects, via macrophyte abundance, on CH 4 and CO 2 flux. These findings indicate that fluxes of GHGs from shallow lakes may be controlled more by factors indirectly related to temperature, in this case nutrient concentration and the abundance of primary producers. Thus, at ecosystem scale response to climate change may not follow predictions based on the temperature dependence of metabolic processes. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2015-09-13
    Description: The tropical coffee crop has been predicted to be threatened by future climate changes and global warming. However, the real biological effects of such changes remain unknown. Therefore, this work aims to link the physiological and biochemical responses of photosynthesis to elevated air [CO 2 ] and temperature in cultivated genotypes of Coffea arabica L. (cv. Icatu and IPR108) and C. canephora cv. Conilon CL153. Plants were grown for 1 year at 25/20ºC (day/night) and 380 or 700 μL CO 2 L -1 , then subjected to temperature increase (0.5ºC/day) to 42/34ºC. Leaf impacts related to stomatal traits, gas exchanges, C-isotope composition, fluorescence parameters, thylakoid electron transport and enzyme activities were assessed at 25/20ºC, 31/25ºC, 37/30ºC and 42/34ºC. The results showed that 1) both species were remarkably heat tolerant up to 37/30ºC, but at 42/34ºC a threshold for irreversible non-stomatal deleterious effects was reached. Impairments were greater in C. arabica (especially in Icatu) and under normal [CO 2 ]. Photosystems and thylakoid electron transport were shown to be quite heat tolerant, contrasting to the enzymes related to energy metabolism, including RuBisCO, which were the most sensitive components. 2) Significant stomatal trait modifications were promoted almost exclusively by temperature and were species dependent. Elevated [CO 2 ] 3) strongly mitigated the impact of temperature on both species, particularly at 42/34ºC, modifying the response to supra-optimal temperatures, 4) promoted higher water use efficiency under moderately higher temperature (31/25 ºC), and 5) did not provoke photosynthetic down-regulation. Instead, enhancements in [CO 2 ] strengthened photosynthetic photochemical efficiency, energy use and biochemical functioning at all temperatures.. Our novel findings demonstrate a relevant heat resilience of coffee species and that elevated [CO 2 ] remarkably mitigated the impact of heat on coffee physiology, therefore playing a key role in this crop sustainability under future climate change scenarios. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2015-09-15
    Description: Protected areas (PAs) are an essential tool for the conservation of biodiversity globally. Previous studies have focussed on the effectiveness of PAs and the design of optimal PA networks. However, not all PAs remain intact permanently; many PAs undergo downgrading, downsizing and/or degazettement (PADDD), a fact largely ignored until recently. The drivers of enacted PADDD events and the factors influencing its spatial occurrence are poorly understood, potentially undermining the efficacy of PAs and PA networks. Here we examine the spatial relationship between PADDD and economic, demographic, and structural variables, using a 110 year dataset of 342 enacted PADDD events across 44 countries in the tropics and sub tropics. We find that the probability of an enacted PADDD event increases with the size of the PA and through a synergistic interaction between PA size and local population densities. Our results are robust to the under-reporting of enacted PADDD events that occur among smaller PAs and in regions with lower population density. We find an economic motive for PADDD events, given that the opportunity costs associated with larger PAs are higher, on average, than smaller PAs. Our findings suggest a need for conservation practitioners to better consider PA characteristics, as well as the social, economic, and political context in which PAs are situated, to aid the creation of more efficient and sustainable PA networks. In particular, the dynamics of enacted PADDD events highlight the need to explicitly consider PA robustness as a core component of systematic conservation planning for PA networks. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2015-09-15
    Description: Assuming that co-distributed species are exposed to similar environmental conditions, ecological niche models (ENMs) of bird and plant species inhabiting tropical dry forests (TDFs) in Mexico were developed to evaluate future projections of their distribution for the years 2050 and 2070. We used ENM-based predictions and climatic data for two Global Climate Models, considering two Representative Concentration Pathway scenarios (RCP4.5 / RCP8.5). We also evaluated the effects of habitat loss and the importance of the Mexican system of Protected Areas (PAs) on the projected models for a more detailed prediction of TDFs and to identify hotspots that require conservation actions. We identified four major distributional areas: the main one located along the Pacific Coast (from Sonora to Chiapas, including the Cape and Bajío regions, and the Balsas river basin), and three isolated areas: the Yucatán peninsula, central Veracruz, and southern Tamaulipas. When considering the effect of habitat loss, a significant reduction (~61%) of the TDFs predicted area occurred, whereas climate change models suggested (in comparison to the present distribution model) an increase in area of 3.0-10.0% and 3.0-9.0% for 2050 and 2070, respectively. In future scenarios, TDFs will occupy areas above its current average elevational distribution that are outside of its present geographical range. Our findings show that TDFs may persist in Mexican territory until the middle of the XXI century; however, the challenges about long-term conservation are partially addressed (only 7% unaffected within the Mexican network of PAs) with the current Mexican PAs network. Based on our ENM approach, we suggests that a combination of models of species inhabiting present TDFs and taking into account change scenarios represent an invaluable tool in order to create new PAs and ecological corridors, as a response to the increasing levels of habitat destruction and the effects of climate change on this ecosystem. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2015-09-15
    Description: Avian communities of arid ecosystems may be particularly vulnerable to global climate change due to the magnitude of projected change for desert regions and the inherent challenges for species residing in resource limited ecosystems. How arid-zone birds will be affected by rapid increases in air temperature and increased drought frequency and severity is poorly understood because avian responses to climate change have primarily been studied in the relatively mesic northern temperate regions. We studied the effects of increasing air temperature and aridity on a Burrowing Owl ( Athene cunicularia ) population in the southwestern USA from 1998-2013. Over 16 years, the breeding population declined 98.1%, from 52 pairs to 1 pair, and nest success and fledgling output also declined significantly. These trends were strongly associated with the combined effects of decreased precipitation and increased air temperature. Arrival on the breeding grounds, pair formation, nest initiation, and hatch dates all showed significant delays ranging from 9.4 to 25.1 days over 9 years, which have negative effects on reproduction. Adult and juvenile body mass decreased significantly over time, with a loss of 7.9% mass in adult males and 10.9% mass in adult females over 16 years, and a loss of 20.0% mass in nestlings over 8 years. Taken together, these population and reproductive trends have serious implications for local population persistence. The southwestern USA has been identified as a climate change hotspot, with projections of warmer temperatures, less winter precipitation, and an increase in frequency and severity of extreme events including drought and heat waves. An increasingly warm and dry climate may contribute to this species’ decline, and may already be a driving force of their apparent decline in the desert southwest. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2015-09-15
    Description: Cities are growing rapidly, thereby expected to cause a large-scale global biotic homogenization. Evidence for the homogenization hypothesis is mostly derived from plants and birds, whereas arthropods have so far been neglected. Here, I tested the homogenization hypothesis with three insect indicator groups, namely true bugs, leafhoppers, and beetles. In particular, I was interested whether insect species community composition differs between urban and rural areas, whether they are more similar between cities than between rural areas, and whether the found pattern is explained by true species turnover, species diversity gradients and geographic distance, by non-native or specialist species, respectively. I analysed insect species communities sampled on birch trees in a total of six Swiss cities and six rural areas nearby. In all indicator groups urban and rural community composition was significantly dissimilar due to native species turnover. Further, for bug and leafhopper communities I found evidence for large-scale homogenization due to urbanization, which was driven by reduced species turnover of specialist species in cities. Species turnover of beetle communities was similar between cities and rural areas. Interestingly, when specialist species of beetles were excluded from the analyses, cities were more dissimilar than rural areas, suggesting biotic differentiation of beetle communities in cities. Non-native species did not affect species turnover of the insect groups. However, given non-native arthropod species are increasing rapidly their homogenizing effect might be detected more often in future. Overall, the results show that urbanization has a negative large-scale impact on the diversity specialist species of the investigated insect groups. Specific measures in cities targeted at increasing the persistence of specialist species typical for the respective biogeographic region could help to stop the loss of biodiversity. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2015-09-15
    Description: Warming and eutrophication are two of the most important global change stressors for natural ecosystems, but their interaction is poorly understood. We used a dynamic model of complex, size-structured food webs to assess interactive effects on diversity and network structure. We found antagonistic impacts: warming increases diversity in eutrophic systems and decreases it in oligotrophic systems. These effects interact with the community size structure: communities of similarly-sized species such as parasitoid-host systems are stabilized by warming and destabilized by eutrophication, whereas the diversity of size-structured predator-prey networks decreases strongly with warming, but decreases only weakly with eutrophication. Non-random extinction risks for generalists and specialists lead to higher connectance in networks without size structure and lower connectance in size-structured communities. Overall, our results unravel interactive impacts of warming and eutrophication and suggest that size structure may serve as an important proxy for predicting the community sensitivity to these global change stressors. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2015-09-15
    Description: Plastic marine debris pollution is rapidly becoming one of the critical environmental concerns facing wildlife in the 21st century. Here we present a risk analysis for plastic ingestion by sea turtles on a global scale. We combined global marine plastic distributions based on ocean drifter data with sea turtle habitat maps to predict exposure levels to plastic pollution. Empirical data from necropsies of deceased animals were then utilised to assess the consequence of exposure to plastics. We modelled the risk (probability of debris ingestion) by incorporating exposure to debris and consequence of exposure, and included life history stage, species of sea turtle and date of stranding observation as possible additional explanatory factors. Life history stage is the best predictor of debris ingestion, but the best-fit model also incorporates encounter rates within a limited distance from stranding location, marine debris predictions specific to the date of the stranding study and turtle species. There is no difference in ingestion rates between stranded turtles vs. those caught as bycatch from fishing activity, suggesting that stranded animals are not a biased representation of debris ingestion rates in the background population. Oceanic life-stage sea turtles are at the highest risk of debris ingestion, and olive ridley turtles are the most at-risk species. The regions of highest risk to global sea turtle populations are off of the east coasts of the USA, Australia and South Africa; the east Indian Ocean, and Southeast Asia. Model results can be used to predict the number of sea turtles globally at risk of debris ingestion. Based on currently available data, initial calculations indicate that up to 52% of sea turtles may have ingested debris.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2015-09-20
    Description: Global rice agriculture will be increasingly challenged by water scarcity, while at the same time changes in demand (e.g. changes in diets or increasing demand for biofuels) will feed back on agricultural practices. These factors are changing traditional cropping patterns from double-rice to the introduction of upland crops in the dry season. For a comprehensive assessment of greenhouse gas (GHG) balances, we measured methane (CH 4 ) / nitrous oxide (N 2 O) emissions and agronomic parameters over 2.5 years in double-rice cropping (R-R) and paddy rice rotations diversified with either maize (R-M) or aerobic rice (R-A) in upland cultivation. Introduction of upland crops in the dry season reduced irrigation water use and CH 4 emissions by 66-81% and 95-99%, respectively. Moreover, for practices including upland crops, CH 4 emissions in the subsequent wet season with paddy rice were reduced by 54-60%. Although annual N 2 O emissions increased twice- to threefold in the diversified systems, the strong reduction of CH 4 led to a significantly lower (p〈0.05) annual GWP (CH 4 +N 2 O) as compared to the traditional double-rice cropping system. Measurements of soil organic carbon (SOC) contents before and three years after introduction of upland crop rotations indicated a SOC loss for the R-M system, while for the other systems SOC stocks were unaffected. This trend for R-M systems needs to be followed since it has significant consequences not only for the GWP balance but also with regard to soil fertility. Economic assessment showed a similar gross profit span for R-M and R-R, while gross profits for R-A were reduced as a consequence of lower productivity. Nevertheless, regarding a future increase of water scarcity it can be expected that mixed lowland-upland systems will expand in SE Asia as water requirements were cut by more than half in both rotation systems with upland crops. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2015-09-23
    Description: Agricultural systems are being challenged to decrease water use and increase production while climate becomes more variable and the world's population grows. Low water use efficiency is traditionally characterized by high water use relative to low grain production and usually occurs under dry conditions. However, when a cropping system fails to take advantage of available water during wet conditions, this is also an inefficiency and is often detrimental to the environment. Here we provide a systems-level definition of water use efficiency (sWUE) that addresses both production and environmental quality goals through incorporating all major system water losses (evapotranspiration, drainage, and runoff). We extensively calibrated and tested the Agricultural Production Systems sIMulator (APSIM) using six years of continuous crop and soil measurements in corn- and soybean-based cropping systems in central Iowa, USA. We then used the model to determine water use, loss, and grain production in each system and calculated sWUE in years that experienced drought, flood, or historically average precipitation. Systems water use efficiency was found to be greatest during years with average precipitation. Simulation analysis using 28 years of historical precipitation data, plus the same dataset with ± 15% variation in daily precipitation, showed that in this region 430 mm of seasonal (planting to harvesting) rainfall resulted in the optimum sWUE for corn, and 317 mm for soybean. Above these precipitation levels, the corn and soybean yields did not increase further, but the water loss from the system via runoff and drainage increased substantially, leading to a high likelihood of soil, nutrient, and pesticide movement from the field to waterways. As the Midwestern US is predicted to experience more frequent drought and flood, inefficiency of cropping systems water use will also increase. This work provides a framework to concurrently evaluate production and environmental performance of cropping systems. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2015-09-23
    Description: The Southern Ocean ecosystem is undergoing rapid physical and biological changes that are likely to have profound implications for higher-order predators. Here we compare the long-term, historical responses of Southern Ocean predators to climate change. We examine palaeoecological evidence for changes in the abundance and distribution of seabirds and marine mammals, and place these into context with palaeoclimate records in order to identify key environmental drivers associated with population changes. Our synthesis revealed two key factors underlying Southern Ocean predator population changes; 1) the availability of ice-free ground for breeding, and 2) access to productive foraging grounds. The processes of glaciation and sea ice fluctuation were key; the distributions and abundances of elephant seals, snow petrels, gentoo, chinstrap and Adélie penguins all responded strongly to the emergence of new breeding habitat coincident with deglaciation and reductions in sea ice. Access to productive foraging grounds was another limiting factor, with snow petrels, king and emperor penguins all affected by reduced prey availability in the past. Several species were isolated in glacial refugia and there is evidence that refuge populations were supported by polynyas. While the underlying drivers of population change were similar across most Southern Ocean predators, the individual responses of species to environmental change varied because of species specific factors such as dispersal ability and environmental sensitivity. Such interspecific differences are likely to affect the future climate change responses of Southern Ocean marine predators and should be considered in conservation plans. Comparative palaeoecological studies are a valuable source of long-term data on species’ responses to environmental change that can provide important insights into future climate change responses. This synthesis highlights the importance of protecting productive foraging grounds proximate to breeding locations, as well as the potential role of polynyas as future Southern Ocean refugia. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2015-09-26
    Description: Human activities are causing rapid environmental change at a global scale. Urbanization is responsible for some of the most extreme human-altered habitats and is a known driver of evolutionary change, but evidence and understanding of these processes is limited. Here, we investigate the potential underlying mechanisms contributing to the contemporary evolution of migration behaviour in the Eurasian blackcap ( Sylvia atricapilla ). Blackcaps from central Europe have been wintering in urban areas of Britain with increasing frequency over the past 60 years, rather than migrating south to the Mediterranean. It has been hypothesized that the popularization of providing supplementary foods for wild birds within Britain may have influenced this marked migratory change, but quantifying the selective forces shaping evolutionary changes remains challenging. Using a long-term national scale data set, we examine both the spatial distribution and interannual variation in blackcap wintering behaviour in Britain in relation to supplementary food availability and local climate. Over a 12-year period, we show that blackcaps are becoming increasingly associated with the provision of supplementary foods in British gardens, and that the reliability of bird food supplies is influencing their winter distribution at a national scale. In addition, local climatic temperatures and broader scale weather variation are also important determinants of blackcap wintering patterns once they arrive in Britain. Based on our findings, we conclude that a synergistic effect of increased availability of feeding resources, in the form of garden bird food, coupled with climatic amelioration, has enabled a successful new wintering population to become established in Britain. As global biodiversity is threatened by human-induced environmental change, this study presents new and timely evidence of the role human activities can play in shaping evolutionary trajectories.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2015-09-26
    Description: Managed adaptation could reduce the risks of climate change to the world's ecosystems, but there have been surprisingly few practical evaluations of the options available. For example, riparian woodland is advocated widely as shade to reduce warming in temperate streams, but few studies have considered collateral effects on species composition or ecosystem functions. Here, we use cross sectional analyses at two scales (region and within streams) to investigate whether four types of riparian management, including those proposed to reduce potential climate change impacts, might also affect the composition, functional character, dynamics and energetic resourcing of macroinvertebrates in upland Welsh streams (UK). Riparian land use across the region had only small effects on invertebrate taxonomic composition, while stable isotope data showed how energetic resources assimilated by macroinvertebrates in all functional guilds were split roughly 50:50 between terrestrial and aquatic origins irrespective of riparian management. Nevertheless, streams draining the most extensive deciduous woodland had the greatest stocks of coarse particulate matter (CPOM) and greater numbers of “shredding” detritivores. Stream-scale investigations showed that macroinvertebrate biomass in deciduous woodland streams was around twice that in moorland streams, and lowest of all in streams draining non-native conifers. The unexpected absence of contrasting terrestrial signals in the isotopic data implies that factors other than local land use affect the relative incorporation of allochthonous subsidies into riverine food webs. Nevertheless, our results reveal how planting deciduous riparian trees along temperate headwaters as an adaptation to climate change can modify macroinvertebrate function, increase biomass and potentially enhance resilience by increasing basal resources where cover is extensive (〉60m riparian width). We advocate greater urgency in efforts to understand the ecosystem consequences of climate change adaptation in order to guide future actions. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2015-11-22
    Description: Evidence for the theory of biotic resistance is equivocal, with experiments often finding a negative relationship between invasion success and native species richness, and large-scale comparative studies finding a positive relationship. Biotic resistance derives from local species interactions, yet global and regional studies often analyze data at coarse spatial grains. In addition, differences in competitive environments across regions may confound tests of biotic resistance based solely on native species richness of the invaded community. Using global and regional datasets for fishes in river and stream reaches, we ask two questions: 1) does a negative relationship exist between native and non-native species richness and 2) do non-native species originate from higher diversity systems. A negative relationship between native and non-native species richness in local assemblages was found at the global scale, while regional patterns revealed the opposite trend. At both spatial scales, however, nearly all non-native species originated from river basins with higher native species richness than the basin of the invaded community. Together, these findings imply that coevolved ecological interactions in species-rich systems inhibit establishment of generalist non-native species from less diverse communities. Consideration of both the ecological and evolutionary aspects of community assembly is critical to understanding invasion patterns. Distinct evolutionary histories in different regions strongly influence invasion of intact communities that are relatively un-impacted by human actions, and may explain the conflicting relationship between native and non-native species richness found at different spatial scales. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2015-11-22
    Description: The functional biogeography of tropical forests is expressed in foliar chemicals that are key physiologically-based predictors of plant adaptation to changing environmental conditions including climate. However, understanding the degree to which environmental filters sort the canopy chemical characteristics of forest canopies remains a challenge. Here we report on the elevation and soil-type dependence of forest canopy chemistry among 75 compositionally and environmentally distinct forests in nine regions, with a total of 7819 individual trees representing 3246 species collected, identified and assayed for foliar traits. We assessed whether there are consistent relationships between canopy chemical traits and both elevation and soil type, and evaluated the general role of phylogeny in mediating of patterns of canopy traits within and across communities. Chemical trait variation and partitioning suggested a general model based on four inter-connected findings. First, geographic variation at the soil Order level, expressing broad changes in fertility, underpins major shifts in foliar phosphorus (P) and calcium (Ca). Second, elevation-dependent shifts in average community leaf dry mass per area (LMA), chlorophyll, and carbon allocation (including non-structural carbohydrates) are most strongly correlated with changes in foliar Ca. Third, chemical diversity within communities is driven by differences between species rather than by plasticity within species. Finally, elevation- and soil-dependent changes in N, LMA and leaf carbon allocation are mediated by canopy compositional turnover, whereas foliar P and Ca are driven more by changes in site conditions than by phylogeny. Our findings have broad implications for understanding the global ecology of humid tropical forests, and their functional responses to changing climate. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2015-08-28
    Description: Elevated atmospheric CO 2 concentrations increase plant productivity and affect soil microbial communities, with possible consequences for the turnover rate of soil carbon (C) pools and feedbacks to the atmosphere. In a previous analysis (van Groenigen et al., 2014), we used experimental data to inform a one-pool model, and showed that elevated CO 2 increases the decomposition rate of soil organic C, negating the storage potential of soil. However, a two-pool soil model can potentially explain patterns of soil C dynamics without invoking effects of CO 2 on decomposition rates. To address this issue, we refit our data to a two-pool soil C model. We found that CO 2 enrichment increases decomposition rates of both fast and slow C pools. In addition, elevated CO 2 decreased the carbon use efficiency of soil microbes (CUE), thereby further reducing soil C storage. These findings are consistent with numerous empirical studies and corroborate the results from our previous analysis. To facilitate understanding of C dynamics, we suggest that empirical and theoretical studies incorporate multiple soil C pools with potentially variable decomposition rates. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2015-08-28
    Description: Coherent timing of agricultural expansion, fertilizer application, atmospheric nutrient deposition, and accelerated global warming is expected to promote synchronous fertilization of regional surface waters and coherent development of algal blooms and lake eutrophication. While broad-scale cyanobacterial expansion is evident in global meta-analyses, little is known of whether lakes in discrete catchments within a common lake district also exhibit coherent water quality degradation through anthropogenic forcing. Consequently, the primary goal of this study was to determine whether agricultural development since ca. 1900, accelerated use of fertilizer since 1960, atmospheric deposition of reactive N, or regional climate warming has resulted in coherent patterns of eutrophication of surface waters in southern Alberta, Canada. Unexpectedly, analysis of sedimentary pigments as an index of changes in total algal abundance since ca. 1850 revealed that while total algal abundance (as β-carotene, pheophytin a ) increased in nine of 10 lakes over 150 years, the onset of eutrophication varied by a century and was asynchronous across basins. Similarly, analysis of temporal sequences with least squares regression revealed that the relative abundance of cyanobacteria (echinenone) either decreased or did not change significantly in eight of the lakes since ca. 1850, whereas purple sulphur bacteria (as okenone) increased significantly in seven study sites. These patterns are consistent with the catchment filter hypothesis which posits that lakes exhibit unique responses to common forcing associated with the influx of mass as water, nutrients, or particles. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2015-05-31
    Description: Plants are often genetically specialized as ecotypes attuned to local environmental conditions. When conditions change, the optimal environment may be physically displaced from the local population, unless dispersal or in situ evolution keep pace, resulting in a phenomenon called adaptational lag. Using a 30 year old reciprocal transplant study across a 475 km latitudinal gradient, we tested the adaptational lag hypothesis by measuring both short-term (tiller population growth rates) and long-term (17 year survival) fitness components of Eriophorum vaginatum ecotypes in Alaska, where climate change may have already displaced the optimum. Analyzing the transplant study as a climate transfer experiment, we showed that the climate optimum for plant performance was displaced ca. 140 km north of home sites, although plants were not generally declining in size at home sites. Adaptational lag is expected to be widespread globally for long-lived, ecotypically specialized plants, with disruptive consequences for communities and ecosystems. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2015-05-31
    Description: Intraspecific variation in phenotypic plasticity is a critical determinant of plant species capacity to cope with climate change. A long-standing hypothesis states that greater levels of environmental variability will select for genotypes with greater phenotypic plasticity. However, few studies have examined how genotypes of woody species originating from contrasting environments respond to multiple climate change factors. Here, we investigated the main and interactive effects of elevated [CO 2 ] (C E ) and elevated temperature (T E ) on growth and physiology of Coastal (warmer, less variable temperature environment) and Upland (cooler, more variable temperature environment) genotypes of an Australian woody species Telopea speciosissima . Both genotypes were positively responsive to C E (35% and 29% increase in whole-plant dry mass and leaf area, respectively), but only the Coastal genotype exhibited positive growth responses to T E . We found that the Coastal genotype exhibited greater growth response to T E (47% and 85% increase in whole-plant dry mass and leaf area, respectively) when compared with the Upland genotype (no change in dry mass or leaf area). No intraspecific variation in physiological plasticity was detected under C E or T E , and the interactive effects of C E and T E on intraspecific variation in phenotypic plasticity were also largely absent. Overall, T E was a more effective climate factor than C E in exposing genotypic variation in our woody species. Our results contradict the paradigm that genotypes from more variable climates will exhibit greater phenotypic plasticity in future climate regimes. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2015-05-31
    Description: In their recent Letter Olalla-Tárraga et al. (2015; hereafter ‘OT&al’) applied phylogenetic path analysis to investigate the determinants of range size in terrestrial mammals. They concurred with Di Marco & Santini (2015; hereafter ‘DM&S’) in identifying the predictive importance of human pressure, but disagreed that this role prevails over biological traits, criticizing some conceptual and methodological aspects of DM&S. OT&al found that climatic niche is the primary predictor of range size, while human pressure and biological traits were of secondary importance. Here we discuss that the two studies are not directly comparable, and we address the criticisms to DM&S. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2015-05-31
    Description: In a recent letter, Thomsen and Wernberg (2015) reanalyzed data compiled for our recent paper (Lyons et al. 2014). In that paper, we examined the effects of macroalgal blooms and macroalgal mats on seven important measures of community structure and ecosystem functioning, and explored several ecological and methodological factors that might explain some of the variation in the observed effects. Thomsen and Wernberg (2015) reanalyzed two small subsets of the data, focusing on experimental studies examining effects of blooms/mats on invertebrate abundance. Their analyses revealed two interesting patterns. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2015-05-31
    Description: Global warming will jeopardize the persistence and genetic diversity of many species. Assisted colonization, or the movement of species beyond their current range boundary, is a conservation strategy proposed for species with limited dispersal abilities or adaptive potential. However, species that rely on photoperiodic and thermal cues for development may experience conflicting signals if transported across latitudes. Relocating multiple, distinct populations may remedy this quandary by expanding genetic variation and promoting evolutionary responses in the receiving habitat - a strategy known as assisted gene flow. In order to better inform these policies, we planted seeds from latitudinally distinct populations of the annual legume, Chamaecrista fasciculata , in a potential future colonization site north of its current range boundary. Plants were exposed to ambient or elevated temperatures via infrared heating. We monitored several life history traits and estimated patterns of natural selection in order to determine the adaptive value of plastic responses. To assess the feasibility of assisted gene flow between phenologically distinct populations, we counted flowers each day and estimated the degree of temporal isolation between populations. Increased temperatures advanced each successive phenological trait more than the last, resulting in a compressed life cycle for all but the southern-most population. Warming altered patterns of selection on flowering onset and vegetative biomass. Population performance was dependent on latitude of origin, with the northern-most population performing best under ambient conditions and the southern-most performing most poorly, even under elevated temperatures. Among-population differences in flowering phenology limited the potential for genetic exchange among the northern and southern-most populations. All plastic responses to warming were neutral or adaptive, however photoperiodic constraints will likely necessitate evolutionary responses for long-term persistence, especially when involving populations from disparate latitudes. With strategic planning, our results suggest that assisted colonization and assisted gene flow may be feasible options for preservation. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2015-05-31
    Description: Species of Alexandrium produce potent neurotoxins termed paralytic shellfish toxins and are expanding their ranges worldwide, concurrent with increases in sea surface temperature. The metabolism of molluscs is temperature dependent, and increases in ocean temperature may influence both the abundance and distribution of Alexandrium and the dynamics of toxin uptake and depuration in shellfish. Here, we conducted a large-scale study of the effect of temperature on the uptake and depuration of paralytic shellfish toxins in three commercial oysters ( Saccostrea glomerata and diploid and triploid Crassostrea gigas, n  = 252 per species/ploidy level). Oysters were acclimated to two constant temperatures, reflecting current and predicted climate scenarios (22 and 27 °C), and fed a diet including the paralytic shellfish toxin-producing species Alexandrium minutum . While the oysters fed on A. minutum in similar quantities, concentrations of the toxin analogue GTX1,4 were significantly lower in warm-acclimated S. glomerata and diploid C. gigas after 12 days. Following exposure to A. minutum , toxicity of triploid C. gigas was not affected by temperature. Generally, detoxification rates were reduced in warm-acclimated oysters. The routine metabolism of the oysters was not affected by the toxins, but a significant effect was found at a cellular level in diploid C. gigas . The increasing incidences of Alexandrium blooms worldwide are a challenge for shellfish food safety regulation. Our findings indicate that rising ocean temperatures may reduce paralytic shellfish toxin accumulation in two of the three oyster types; however, they may persist for longer periods in oyster tissue.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2015-05-31
    Description: Organic matter (OM) plays a major role in both terrestrial and oceanic biogeochemical cycles. The amount of carbon stored in these systems is far greater than that of carbon dioxide (CO 2 ) in the atmosphere, and annual fluxes of CO 2 from these pools to the atmosphere exceed those from fossil fuel combustion. Understanding the processes that determine the fate of detrital material is important for predicting the effects that climate change will have on feedbacks to the global carbon cycle. However, Earth System Models (ESMs) typically utilize very simple formulations of processes affecting the mineralization and storage of detrital OM. Recent changes in our view of the nature of this material and the factors controlling its transformation have yet to find their way into models. In this review, we highlight the current understanding of the role and cycling of detrital OM in terrestrial and marine systems and examine how this pool of material is represented in ESMs. We include a discussion of the different mineralization pathways available as organic matter moves from soils, through inland waters to coastal systems and ultimately into open ocean environments. We argue that there is strong commonality between aspects of OM transformation in both terrestrial and marine systems, and that our respective scientific communities would benefit from closer collaboration. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2015-05-24
    Description: The production of pyrogenic carbon (PyC; a continuum of organic carbon (C) ranging from partially charred biomass and charcoal to soot) is a widely acknowledged C sink, with the latest estimates indicating that ~50% of the PyC produced by vegetation fires potentially sequester C over centuries. Nevertheless, the quantitative importance of PyC in the global C balance remains contentious and therefore PyC is rarely considered in global C cycle and climate studies. Here we examine the robustness of existing evidence and identify the main research gaps in the production, fluxes and fate of PyC from vegetation fires. Much of the previous work on PyC production has focused on selected components of total PyC generated in vegetation fires, likely leading to underestimates. We suggest that global PyC production could be in the range of 114-379 Tg C yr −1 , i.e. ~0.2-0.6% of the annual terrestrial net primary production. According to our estimations, atmospheric emissions of soot/black C might be a smaller fraction of total PyC (〈2%) than previously reported. Research on the fate of PyC in the environment has mainly focused on its degradation pathways, and its accumulation and resilience either in situ (surface soils) or in ultimate sinks (marine sediments). Off-site transport, transformation and PyC storage in intermediate pools are often overlooked, which could explain the fate of a substantial fraction of the PyC mobilized annually. We propose new research directions addressing gaps in the global PyC cycle to fully understand the importance of the products of burning in global C cycle dynamics. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2015-05-24
    Description: Although the influence of nitrogen (N) addition on grassland plant communities has been widely studied, it is still unclear whether observed patterns and underlying mechanisms are constant across biomes. In this systematic review, we use meta-analysis and meta-regression to investigate the influence of N addition (here referring mostly to fertilisation) upon the biodiversity of temperate mountain grasslands (including montane, subalpine and alpine zones). Forty-two studies met our criteria of inclusion, resulting in 134 measures of effect size. The main general responses of mountain grasslands to N addition were increases in phytomass and reductions in plant species richness, as observed in lowland grasslands. More specifically, the analysis reveals that negative effects on species richness were exacerbated by dose (ha −1 year −1 ) and duration of N application (years) in an additive manner. Thus, sustained application of low to moderate levels of N over time had effects similar to short term application of high N doses. The climatic context also played an important role: the overall effects of N addition on plant species richness and diversity (Shannon index) were less pronounced in mountain grasslands experiencing cool rather than warm summers. Furthermore, the relative negative effect of N addition on species richness was more pronounced in managed communities, and was strongly negatively related to N-induced increases in phytomass, i.e. the greater the phytomass response to N addition, the greater the decline in richness. Altogether, this review not only establishes that plant biodiversity of mountain grasslands is negatively affected by N addition, it also demonstrates that several local management and abiotic factors interact with N addition to drive plant community changes. This synthesis yields essential information for a more sustainable management of mountain grasslands, emphasizing the importance of preserving and restoring grasslands with both low agricultural N application and limited exposure to N atmospheric deposition. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2016-07-10
    Description: Habitat degradation not only disrupts habitat-forming species, but alters the sensory landscape within which most species must balance behavioural activities against predation risk. Rapidly developing a cautious behavioural phenotype, a condition known as neophobia, is advantageous when entering a novel risky habitat. Many aquatic organisms rely on damage-released conspecific cues (i.e. alarm cues) as an indicator of impending danger and use them to assess general risk and develop neophobia. This study tested whether settlement-stage damselfish associated with degraded coral reef habitats were able to use alarm cues as an indicator of risk and, in turn, develop a neophobic response at the end of their larval phase. Our results indicate that fish in live coral habitats that were exposed to alarm cues developed neophobia, and, in situ , were found to be more cautious, more closely associated with their coral shelters and survived four-times better than non-neophobic control fish. In contrast, fish that settled onto degraded coral habitats did not exhibit neophobia and consequently suffered much greater mortality on the reef, regardless of their history of exposure to alarm cues. Our results show that habitat degradation alters the efficacy of alarm cues with phenotypic and survival consequences for newly settled recruits.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2016-07-16
    Description: Fleas (Insecta: Siphonaptera) are hematophagous ectoparasites that feed on vertebrate hosts. Fleas can reduce the fitness of hosts by interfering with immune responses, disrupting adaptive behaviors, and transmitting pathogens. The negative effects of fleas on hosts are usually most pronounced when fleas attain high densities. In lab studies, fleas desiccate and die under dry conditions, suggesting that populations of fleas will tend to decline when precipitation is scarce under natural conditions. To test this hypothesis, we compared precipitation vs. parasitism of black-tailed prairie dogs ( Cynomys ludovicianus ) by fleas at a single colony during May and June of 13 consecutive years (1976–1988) at Wind Cave National Park, South Dakota, USA. The number of fleas on prairie dogs decreased with increasing precipitation during both the prior growing season (April through August of the prior year) and the just-completed winter–spring (January through April of current year). Due to the reduction in available moisture and palatable forage in dry years, herbivorous prairie dogs might have been food-limited, with weakened behavioral and immunological defenses against fleas. In support of this hypothesis, adult prairie dogs of low mass harbored more fleas than heavier adults. Our results have implications for the spread of plague, an introduced bacterial disease, transmitted by fleas, that devastates prairie dog colonies and, in doing so, can transform grassland ecosystems.
    Electronic ISSN: 2150-8925
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2016-07-16
    Description: Foundation species provide many important ecosystem functions including the provision of habitat for diverse communities, but their degradation and mortality has the potential to compromise these roles. Corals are widely recognized foundation species that create reef habitats that are hotspots for biodiversity. However, the impact of global reef degradation on overall patterns of biodiversity remains difficult to predict because of our limited knowledge of mechanistic relationships between reef structure and community composition. We examined the resilience of invertebrate abundance and biodiversity on reefs following a recent coral mass mortality event on the Caribbean coast of Panama. First, we surveyed mobile invertebrate communities at both healthy and degraded reef sites and found that dead coral habitats support invertebrate assemblages that can be more diverse and abundant than live coral habitats and that coral habitat (whether live or dead) in turn supports higher diversity and abundance than structurally simple sand areas without coral. Second, we experimentally tested mechanisms of reef habitat suitability for invertebrate colonization by manipulating coral mortality and structural complexity. We found that the abundance and species richness of mobile invertebrates were significantly affected by substrate complexity rather than whether coral was live or dead. However, we detected shifts in species identity between live and dead coral. Moreover, the sensitivity of the community to reef structural complexity indicates that the ability of degraded coral reefs to sustain invertebrate assemblages is unlikely to persist if declines in reef complexity outpace recovery of living corals to the reef. Our findings suggest that the biodiversity-sustaining function of reefs has the potential to persist following coral disturbance at the scale of entire reefs and that some metrics of community structure are therefore resilient to events of foundation species mortality.
    Electronic ISSN: 2150-8925
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2016-07-20
    Description: We remeasured a classic chronosequence study in the subalpine zone of the Alaska Range to evaluate how plant community attributes have changed across a set of different-aged terraces over a 54-yr period (1958–2012). Our work focused on whether the tempo and trajectory of successional development described in the original study have changed over this period during which summer temperatures warmed by approximately 2°C. Our work revealed a rapid increase in the distribution, stature, and abundance of balsam poplar trees that was unanticipated in the original successional model alongside evidence that established late-successional plant communities have changed relatively little over the same time period. The spatial distribution of poplar expansion was both directional and highly variable, with greater expansion occurring in sites that were young surfaces in 1958, or else were disturbed during the intervening period. We present evidence that early successional environments in this region may be particularly susceptible to rapid alteration stimulated by climate warming that has allowed tree establishment and growth in subalpine areas. Sparsely vegetated sites allow for invasion or expansion of some species to be quickly realized because there is less resistance from competition with established vegetation, including mosses that insulate and paludify the soil. We suggest that established vegetation communities may have physical characteristics (such as cold and/or acidic soil profiles) that are inimical to the establishment of balsam poplar and may also be a source of competitive inertia, conferring a measure of resistance to directional changes in the landscape mosaic. However, when an early successional species has traits that allow it to persist and fundamentally alter the vegetation mosaic over time, as is the case with balsam poplar, it may serve as the leading edge of compositional changes with profound consequences. Our results highlight the capacity of a single species to catalyze the changes that may eventually lead to the altering of an entire landscape mosaic.
    Electronic ISSN: 2150-8925
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2016-07-21
    Description: Despite covering only approximately 138,000 km 2 , mangroves are globally important carbon sinks with carbon density values 3-4 times that of terrestrial forests. A key challenge in evaluating the carbon benefits from mangrove forest conservation is the lack of rigorous spatially resolved estimates of mangrove sediment carbon stocks; most mangrove carbon is stored belowground. Previous work has focused on detailed estimations of carbon stores over relatively small areas, which has obvious limitations in terms of generality and scope of application. Most studies have focused only on quantifying the top 1m of belowground carbon (BGC). Carbon stored at depths beyond 1m, and the effects of mangrove species, location and environmental context on these stores, is poorly studied. This study investigated these variables at two sites (Gazi and Vanga in the south of Kenya) and used the data to produce a country-specific BGC predictive model for Kenya and map BGC store estimates throughout Kenya at spatial scales relevant for climate change research, forest management and REDD+ (Reduced Emissions from Deforestation and Degradation). The results revealed that mangrove species was the most reliable predictor of BGC; Rhizophora muronata had the highest mean BGC with 1485.5t C ha −1 . Applying the species-based predictive model to a base map of species distribution in Kenya for the year 2010 with a 2.5m 2 resolution, produced an estimate of 69.41 Mt C (± 9.15 95% C.I.) for BGC in Kenyan mangroves. When applied to a 1992 mangrove distribution map, the BGC estimate was 75.65 Mt C (± 12.21 95% C.I.); an 8.3% loss in BGC stores between 1992 and 2010 in Kenya. The country level mangrove map provides a valuable tool for assessing carbon stocks and visualising the distribution of BGC. Estimates at the 2.5m 2 resolution provide sufficient detail for highlighting and prioritising areas for mangrove conservation and restoration. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2016-07-23
    Description: In light of daunting global sustainability challenges such as climate change, biodiversity loss and food security, improving our understanding of the complex dynamics of the Earth system is crucial. However, large knowledge gaps related to the effects of land management persist, in particular those human-induced changes in terrestrial ecosystems that do not result in land cover conversions. Here we review the current state of knowledge of ten common land management activities for their biogeochemical and biophysical impacts, the level of process-understanding and data availability. Our review shows that ca. one tenth of the ice free land surface is under intense human management, half under medium and one fifth under extensive management. Based on our review, we cluster these ten management activities into three groups: (1) management activities for which datasets are available, and for which a good knowledge base exists (cropland harvest and irrigation); (2) management activities for which sufficient knowledge on biogeochemical and biophysical effects exists but robust global datasets are lacking (forest harvest, tree species selection, grazing and mowing harvest, N-fertilization); and (3) land management practices with severe data gaps concomitant with an unsatisfactory level of process understanding (crop species selection, artificial wetland drainage, tillage and fire management and crop residue management, an element of crop harvest). Although we identify multiple impediments to progress, we conclude that the current status of process understanding and data availability is sufficient to advance with incorporating management in e.g. Earth System or Dynamic Vegetation models in order to provide a systematic assessment of their role in the Earth system. This review contributes to a strategic prioritization of research efforts across multiple disciplines, including land system research, ecological research and Earth system modelling. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2016-07-27
    Description: Herbivory is thought to be nutritionally inefficient relative to carnivory and omnivory, but herbivory evolved from carnivory in many terrestrial and aquatic lineages, suggesting that there are advantages of eating plants. Herbivory has been well-studied in both terrestrial and aquatic systems, and there is abundant information on feedbacks between herbivores and plants, coevolution of plant and herbivore defenses, mechanisms for mediating nutrient limitation, effects of nutrient limitation on herbivore life history, and, more recently, the origins of the herbivorous diet. Researchers have sufficiently defined the ecological context and evolutionary origins of the herbivorous diet, and these main areas of research have laid the groundwork for studying herbivory as an adaptation. However, we have yet to synthesize this information in a way that allows us to establish a framework of testable adaptive hypotheses. To understand the adaptive significance of this diet transition, we review the current literature and use evidence from these works as support for five hypotheses on the evolution of herbivory from carnivory: (1) intake efficiency—herbivores use part of their food source as habitat, thus minimizing the energy/time spent searching for food and avoiding predators; (2) suboptimal habitat—herbivory allows organisms to invade and establish populations in habitats that have high primary production but low abundance of animal prey; (3) heterotroph facilitation—herbivory is adaptive because herbivores consume microbes associated with producers; (4) lipid allocation—herbivory is adaptive because producers are rich in fatty acids, which fuel reproduction and storage; and (5) disease avoidance—herbivory minimizes animal-facilitated disease transmission. Due to the extensive literature, we have limited this review to discussing herbivory in freshwater systems. To our knowledge, no prior work has compiled a comprehensive list of conditions that favor an herbivorous diet in nature. With backgrounds in both theoretical and experimental ecology, the incorporation of these hypotheses to the current literature will provide information about diet evolution, where it is currently lacking.
    Electronic ISSN: 2150-8925
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2016-07-29
    Description: The Allee effect is a theoretical model predicting low growth rates and the possible extinction of small populations. Historically, studies of the Allee effect have focused on demography. As a result, underlying processes other than the direct effect of population density on fitness components are not generally taken into account. There has been heated debate about the potential of genetic processes to drive small populations to extinction, but recent studies have shown that such processes clearly impact small populations over short time scales, and some may generate Allee effects. However, as opposed to the ecological Allee effect, which is underpinned by cooperative interactions between individuals, genetically driven Allee effects require a change in genetic structure to link the decline in population size with a decrease in fitness components. We therefore define the genetic Allee effect as a two-step process whereby a decrease in population size leads to a change in population genetic structure and, in turn, to a decrease in individual fitness. We describe potential underlying mechanisms and review the evidence for this original type of component Allee effect, using published examples from both plants and animals. The possibility of considering demogenetic feedback in light of genetic Allee effects clarifies the analysis and interpretation of demographic and genetic processes, and the interplay between them, in small populations.
    Electronic ISSN: 2150-8925
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2016-07-29
    Description: Species compositional shifts have important consequences to biodiversity and ecosystem function and services to humanity. In boreal forests, compositional shifts from late-successional conifers to early-successional conifers and deciduous broadleaves have been postulated based on increased fire frequency associated with climate change truncating stand age-dependent succession. However, little is known about how climate change has affected forest composition in the background between successive catastrophic fires in boreal forests. Using 1797 permanent sample plots from western boreal forests of Canada measured from 1958 to 2013, we show that after accounting for stand age-dependent succession, the relative abundances of early-successional deciduous broadleaves and early-successional conifers have increased at the expense of late-successional conifers with climate change. These background compositional shifts are persistent temporally, consistent across all forest stand ages and pervasive spatially across the region. Rising atmospheric CO 2 promoted early-successional conifers and deciduous broadleaves, and warming increased early-successional conifers at the expense of late-successional conifers, but compositional shifts were not associated with climate moisture index. Our results emphasize the importance of climate change on background compositional shifts in the boreal forest and suggest further compositional shifts as rising CO 2 and warming will continue in the 21st century.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2016-07-30
    Description: A cross-site analysis was conducted on seven diverse, forested watersheds in the northeastern U.S. to evaluate hydrological responses (evapotranspiration, soil moisture, seasonal and annual streamflow, and water stress) to projections of future climate. We used output from four Atmosphere-Ocean General Circulation Models (AOGCMs) (CCSM4, HadGEM2-CC, MIROC5, and MRI-CGCM3) included in Phase 5 of the Coupled Model Intercomparison Project, coupled with two Representative Concentration Pathways (RCP 8.5 and 4.5). The coarse resolution AOGCMs outputs were statistically downscaled using an asynchronous regional regression model to provide finer resolution future climate projections as inputs to the deterministic dynamic ecosystem model PnET-BGC. Simulation results indicated that projected warmer temperatures and longer growing seasons in the northeastern U.S. are anticipated to increase evapotranspiration across all sites, although invoking CO 2 effects on vegetation (growth enhancement and increases in water use efficiency (WUE)) diminish this response. The model showed enhanced evapotranspiration resulted in drier growing season conditions across all sites and all scenarios in the future. Spruce-fir conifer forests have a lower optimum temperature for photosynthesis, making them more susceptible to temperature stress than more tolerant hardwood species, potentially giving hardwoods a competitive advantage in the future. However, some hardwood forests are projected to experience seasonal water stress, despite anticipated increases in precipitation, due to the higher temperatures, earlier loss of snowpacks, longer growing seasons and associated water deficits. Considering future CO 2 effects on WUE in the model alleviated water stress across all sites. Modeled streamflow responses were highly variable, with some sites showing significant increases in annual water yield, while others showed decreases. This variability in streamflow responses poses a challenge to water resource management in the northeastern U.S. Our analyses suggest that dominant vegetation type and soil type are important attributes in determining future hydrologic responses to climate change. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2016-07-31
    Description: Understanding uncertainties in land cover projections is critical to investigating land-based climate mitigation policies, assessing the potential of climate adaptation strategies, and quantifying the impacts of land cover change on the climate system. Here we identify and quantify uncertainties in global and European land cover projections over a diverse range of model types and scenarios, extending the analysis beyond the agro-economic models included in previous comparisons. The results from 75 simulations over 18 models are analysed and show a large range in land cover area projections, with the highest variability occurring in future cropland areas. We demonstrate systematic differences in land cover areas associated with the characteristics of the modelling approach, which is at least as great as the differences attributed to the scenario variations. The results lead us to conclude that a higher degree of uncertainty exists in land use projections than currently included in climate or earth system projections. To account for land use uncertainty, it is recommended to use a diverse set of models and approaches when assessing the potential impacts of land cover change on future climate. Additionally, further work is needed to better understand the assumptions driving land use model results and reveal the causes of uncertainty in more depth, to help reduce model uncertainty and improve the projections of land cover. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2016-07-31
    Description: Understanding the evolutionary consequences of the Green Revolution, particularly in wild populations, is an important frontier in contemporary biology. Because human impacts have occurred at varying magnitudes or time periods depending on the study ecosystem, evolutionary histories may vary considerably among populations. Paleogenetics in conjunction with paleolimnology enable us to associate microevolutionary dynamics with detailed information on environmental change. We used this approach to reconstruct changes in the temporal population genetic structure of the keystone zooplankton grazer, Daphnia pulicaria , using dormant eggs extracted from sediments in two Minnesota lakes (South Center, Hill). The extent of agriculture and human population density in the catchment of these lakes has differed markedly since European settlement in the late 19 th century, and is reflected in their environmental histories reconstructed here. The reconstructed environments of these two lakes differed strongly in terms of environmental stability and their associated patterns of Daphnia population structure. We detected long periods of stability in population structure and environmental conditions in South Center Lake that were followed by a dramatic temporal shift in population genetic structure after the onset of European settlement and industrialized agriculture in its watershed. In particular, we noted a 24.3-fold increase in phosphorus (P) flux between pre-European and modern sediment P accumulation rates (AR) in this lake. In contrast, no such shifts were detected in Hill Lake, where the watershed was not as impacted by European settlement and rates of change were less directional with a much smaller increase of sediment P AR (2.3-fold). We identify direct and indirect effects of eutrophication proxies on genetic structure in these lake populations, and demonstrate the power of using this approach in understanding the consequences of anthropogenic environmental change on natural populations throughout historic time periods. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    facet.materialart.
    Unknown
    Wiley
    In: Ecosphere
    Publication Date: 2016-08-02
    Description: Orbicella annularis and O. faveolata , found in the Florida Keys, are major framework-building corals. Kemp et al. (Volume 7, Issue 6, Article e01373) found that inshore populations of these corals were severely impacted by a 2010 cold weather anomaly that caused local mortality on several local reefs. Photo credit: Dustin Kemp.
    Electronic ISSN: 2150-8925
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2016-08-03
    Description: The interaction between predators and their prey is a key factor driving population dynamics and shaping wildlife communities. Most predators will scavenge in addition to killing their own prey, which alters predation effects and implies that one cannot treat these as independent processes. However, the relative importance of predation vs. scavenging and the mechanisms driving variation of such are relatively unstudied in ecological research on predator–prey relationships. Foraging decisions in facultative predators are likely to respond to environmental conditions (e.g., seasonality) and inter- or intraspecific interactions (e.g., prey availability, presence of top predators, scavenging competition). Using data on 41 GPS-collared wolverines ( Gulo gulo ) during 2401 monitoring days, in four study sites in Scandinavia, we studied variation in diet and feeding strategies (predation vs. scavenging), along a gradient of environmental productivity, seasonality, density, and body mass of their main prey, semidomestic reindeer ( Rangifer tarandus ). The most important factor affecting the relative extent of predation and scavenging was mean prey body mass. Predation was more pronounced in summer, when vulnerable reindeer calves are abundant, and individual kill rates were negatively related to local reindeer body mass. This relationship was absent in winter. The probability of scavenging was higher in winter and increased with decreasing local reindeer body mass, likely as a response to increased carrion supply. Wolverine feeding strategy was further influenced by predictable anthropogenic food resources (e.g., slaughter remains from hunted ungulates) and the presence of a top predator, Eurasian lynx ( Lynx lynx ), which provided a continuous carrion supply promoting scavenging. Our results suggest that wolverine feeding strategies are flexible and strongly influenced by seasonally dependent responses to prey body condition in combination with carrion supply. This study demonstrates that large-scale environmental variation can result in contrasting predator feeding strategies, strongly affecting trophic interactions and potentially shaping the dynamics of ecological communities.
    Electronic ISSN: 2150-8925
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2016-08-03
    Description: The sustainability of using irrigation to produce food depends not only on the availability of sufficient water, but also on the soils ‘response’ to irrigation. Stocks of carbon (C) and nitrogen (N) are key components of soil organic matter (SOM), which is important for sustainable agricultural production. While there is some information about the effects of irrigation on soil C stocks in cropping systems, there is a paucity of such studies in pastoral food production systems. For this study, we sampled soils from 34 paired, irrigated and unirrigated pasture sites across New Zealand (NZ) and analysed these for total C and N. On average, irrigated pastures had significantly ( P 〈0.05) less soil carbon (C) and nitrogen (N) than adjacent unirrigated pastures, with differences of 6.99 t C ha −1 and 0.58 t N ha −1 in the uppermost 0.3 m. Differences in C and N tended to occur throughout the soil profile, so the cumulative differences increased with depth, and the proportion of the soil C lost from deeper horizons was large. There were no relationships between differences in soil C and N stocks and the length of time under irrigation. This study suggests SOM will decrease when pastures under a temperate climate are irrigated. On this basis, increasing the area of temperate pasture land under irrigation would result in more CO 2 in the atmosphere, and may directly and indirectly increase N leaching to groundwater. Given the large and increasing area of land being irrigated both in NZ and on a global scale, there is an urgent need to determine whether the results found in this study are also applicable in other regions and under different land management systems (e.g. arable). This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2016-08-03
    Description: From 1890 to 2015, anthropogenic carbon dioxide emissions have increased atmospheric CO 2 concentrations from 270 mol mol −1 to 400 mol mol −1 . The effect of increased carbon emissions on plant growth and reproduction has been the subject of study of Free Air CO 2 Enrichment (FACE) experiments. These experiments have found a) an increase in internal CO 2 partial pressure (c i ) alongside acclimation of photosynthetic capacity, b) variable decreases in stomatal conductance, and c) that increases in yield do not increase commensurate with CO 2 concentrations. Our data set, which includes a 115 year long selection of grasses collected in New Mexico since 1892 is consistent with an increased c i as a response to historical CO 2 increase in the atmosphere; with invasive species showing the largest increase. Comparison with Palmer Drought Sensitivity index (PDSI) for New Mexico indicates a moderate correlation with Δ 13 C (r 2 = 0.32, p 〈 0.01) before 1950, with no correlation (r 2 = 0.00, p = 0.91) after 1950. These results indicate that increased c i may have conferred some drought resistance to these grasses through increased availability of CO 2 in the event of reduced stomatal conductance in response to short term water shortage. Comparison with C 3 trees from arid environments ( Pinus longaeva and Pinus edulis in the US Southwest) as well as from wetter environments ( Bromus and Poa grasses in New Mexico) suggest differing responses based on environment; arid environments in New Mexico see increased intrinsic water use efficiency (WUE) in response to historic elevated CO 2 while wetter environments see increased c i . The present study suggests that a) the observed increases in c i in FACE experiments are consistent with historical CO 2 increases and b) the CO 2 increase influences plant sensitivity to water shortage, through either increased WUE or c i in arid and wet environments, respectively. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2016-08-03
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2016-08-05
    Description: Models predicting ecosystem carbon dioxide (CO 2 ) exchange under future climate change rely on relatively few real-world tests of their assumptions and outputs. Here we demonstrate a rapid and cost-effective method to estimate CO 2 exchange from intact vegetation patches under varying atmospheric CO 2 concentrations . We find that net ecosystem CO 2 uptake (NEE) in a boreal forest rose linearly by 4.7 ± 0.2% of the current ambient rate for every 10 ppm CO 2 increase, with no detectable influence of foliar biomass, season or nitrogen (N) fertilization. The lack of any clear short-term NEE response to fertilization in such an N-limited system is inconsistent with the instantaneous down-regulation of photosynthesis formalized in many global models. Incorporating an alternative mechanism with considerable empirical support – diversion of excess carbon to storage compounds – into an existing earth system model brings the model output into closer agreement with our field measurements. A global simulation incorporating this modified model reduces a long-standing mismatch between the modeled and observed seasonal amplitude of atmospheric CO 2 . Wider application of this chamber approach would provide critical data needed to further improve modeled projections of biosphere-atmosphere CO 2 exchange in a changing climate. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2016-07-12
    Description: Each year, two or three species that had been considered to be extinct are rediscovered. Uncertainty about whether or not a species is extinct is common, because rare and highly threatened species are difficult to detect. Biological traits such as body size and range size are expected to be associated with extinction. However, these traits, together with the intensity of search effort, might influence the probability of detection and extinction differently. This makes statistical analysis of extinction and rediscovery challenging. Here we use a variant of survival analysis known as cure rate modelling to differentiate factors that influence rediscovery from those that influence extinction. We analyse a global dataset of 99 mammals that have been categorised as extinct or possibly extinct. We estimate the probability that each of these mammals is still extant, and thus estimate the proportion of missing (presumed extinct) mammals that are incorrectly assigned extinction. We find that body mass and population density are predictors of extinction, and body mass and search effort predict rediscovery. In mammals, extinction rate increases with body mass and population density, and these traits act synergistically to greatly elevate extinction rate in large species that also occurred in formerly dense populations. However, when they remain extant, larger-bodied missing species are rediscovered sooner than smaller species. Greater search effort increases the probability of rediscovery in larger species of missing mammals, but has a minimal effect on small species, which take longer to be rediscovered, if extant. By separating the effects of species characteristics on extinction and detection, and using models with the assumption that a proportion of missing species will never be rediscovered, our new approach provides estimates of extinction probability in species with few observation records and scant ecological information. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2016-07-13
    Description: State indicators, e.g., mean size and trophic level of the fish assemblage, can provide important insights into the effects of fishing on ecosystems and the resource potential of the fishery. On coral reefs, few studies have examined the relative effects of fishing and other drivers, such as habitat, on these indicators. In light of habitat heterogeneity and increasing habitat degradation, this lack of understanding limits the usefulness of indicators for monitoring the effect of fishery management actions. Identifying thresholds or nonlinearities in relationships between fishing pressure and state indicators has been suggested as a basis for biomass-based targets to support management efforts in low research capacity contexts. Using data collected in Seychelles, we examined the relative influences of fishable biomass (proxy for fishing pressure) and the benthic habitat on fisheries-independent indicators characterizing attributes of the fish community important for fisheries production. We characterized the driver–indicator relationships, and compared local-scale relationships for Seychelles with large-scale relationships published for the Indian Ocean. We found that both habitat and fishing pressure influenced indicators, but habitat effects were particularly strong. This knowledge provides managers with the capacity to implement a diverse array of complementary management actions targeting these drivers. A number of the Seychelles scale driver–indicator relationships were linear, suggesting gradual changes in indicators in response to changes to drivers. This contrasted with relationships published for the Indian Ocean, which were characterized by thresholds below which exploitation is likely to have significant detrimental effects on the functioning of important ecosystem processes. These scale-specific differences are likely driven by the narrower range of fishing pressures found in Seychelles. Importantly, it indicates that, although biomass-based targets derived from large-scale relationships may provide a useful starting point for setting management targets, the local context must be considered.
    Electronic ISSN: 2150-8925
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2016-07-15
    Description: Livestock grazing activities potentially alter ecosystem carbon (C) and nitrogen (N) cycles in grassland ecosystems. Despite the fact that numerous individual studies and a few meta-analyses had been conducted, how grazing, especially its intensity, affects belowground C and N cycling in grasslands remains unclear. In this study, we performed a comprehensive meta-analysis of 115 published studies to examine the responses of 19 variables associated with belowground C and N cycling to livestock grazing in global grasslands. Our results showed that, on average, grazing significantly decreased belowground C and N pools in grassland ecosystems, with the largest decreases in microbial biomass C and N (21.62 and 24.40%, respectively). In contrast, belowground fluxes, including soil respiration, soil net N mineralization and soil N nitrification increased by 4.25%, 34.67 and 25.87%, respectively in grazed grasslands compared to ungrazed ones. More importantly, grazing intensity significantly affected the magnitude (even direction) of changes in the majority of the assessed belowground C and N pools and fluxes, and C:N ratio as well as soil moisture. Specifically,light grazing contributed to soil C and N sequestration whereas moderate and heavy grazing significantly increased C and N losses. In addition, soil depth, livestock type and climatic conditions influenced the responses of selected variables to livestock grazing to some degree. Our findings highlight the importance of the effects of grazing intensity on belowground C and N cycling, which may need to be incorporated into regional and global models for predicting effects of human disturbance on global grasslands and assessing the climate- biosphere feedbacks. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2016-07-15
    Description: Salinity intrusion caused by land subsidence resulting from increasing groundwater abstraction, decreasing river sediment loads and increasing sea level because of climate change has caused widespread soil salinization in coastal ecosystems. Soil salinization may greatly alter nitrogen (N) cycling in coastal ecosystems. However, a comprehensive understanding of the effects of soil salinization on ecosystem N pools, cycling processes and fluxes is not available for coastal ecosystems. Therefore, we compiled data from 551 observations from 21 peer-reviewed papers and conducted a meta-analysis of experimental soil salinization effects on 19 variables related to N pools, cycling processes and fluxes in coastal ecosystems. Our results showed that the effects of soil salinization varied across different ecosystem types and salinity levels. Soil salinization increased plant N content (18%), soil NH 4 + (12%) and soil total N (210%), although it decreased soil NO 3 - (2%) and soil microbial biomass N (74%). Increasing soil salinity stimulated soil N 2 O fluxes as well as hydrological NH 4 + and NO 2 - fluxes more than three-fold, although it decreased the hydrological dissolved organic nitrogen (DON) flux (59%). Soil salinization also increased the net N mineralization by 70%, although salinization effects were not observed on the net nitrification, denitrification and dissimilatory nitrate reduction to ammonium in this meta-analysis. Overall, this meta-analysis improves our understanding of the responses of ecosystem N cycling to soil salinization, identifies knowledge gaps and highlights the urgent need for studies on the effects of soil salinization on coastal agro-ecosystem and microbial N immobilization. Additional increases in knowledge are critical for designing sustainable adaptation measures to the predicted intrusion of salinity intrusion so that the productivity of coastal agro-ecosystems can be maintained or improved and the N losses and pollution of the natural environment can be minimized. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2016-07-15
    Description: Can species shift their distributions fast enough to track changes in climate? We used abundance data from the 1950s and the 2000s in Wisconsin to measure shifts in the distribution and abundance of 78 forest-understory plant species over the last half-century and compare these shifts to changes in climate. We estimated temporal shifts in the geographic distribution of each species using vectors to connect abundance-weighted centroids from the 1950s and 2000s. These shifts in distribution reflect colonization, extirpation, and changes in abundance within sites, separately quantified here. We then applied climate analog analyses to compute vectors representing the climate change that each species experienced. Species shifted mostly to the northwest (mean: 49 ± 29 km) primarily reflecting processes of colonization and changes in local abundance. Analog climates for these species shifted even further to the northwest, however, exceeding species’ shifts by an average of 90 ± 40 km. Most species thus failed to match recent rates of climate change. These lags decline in species that have colonized more sites and those with broader site occupancy, larger seed mass, and higher habitat fidelity. Thus, species’ traits appear to affect their responses to climate change, but relationships are weak. As climate change accelerates, these lags will likely increase, potentially threatening the persistence of species lacking the capacity to disperse to new sites or locally adapt. However, species with greater lags have not yet declined more in abundance. The extent of these threats will likely depend on how other drivers of ecological change and interactions among species affect their responses to climate change. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2016-07-19
    Description: Over the last decade, western North America has experienced the largest mountain pine beetle ( Dendroctonus ponderosae Hopkins) outbreak in recorded history, and Rocky Mountain forests have been severely impacted. Although bark beetles are indigenous to North American forests, climate change has facilitated the beetle's expansion into previously unsuitable habitats. We used three correlative niche models (maximum entropy [MaxEnt], boosted regression trees, and generalized linear models) to estimate (1) the current potential distribution of the beetle in the U.S. Rocky Mountain region, (2) how this distribution has changed since historical outbreaks in the 1960s and 1970s, and (3) how the distribution may be expected to change under future climate scenarios. Additionally, we evaluated the temporal transferability of the niche models by forecasting historical models and testing the model predictions using temporally independent outbreak data from the current outbreak. Our results indicated that there has been a significant expansion of climatically suitable habitat over the past 50 yr and that much of this expansion corresponds with an upward shift in elevation across the study area. Furthermore, our models indicated that drought was a more prominent driver of current outbreak than temperature, which suggests a change in the climatic signature between historical and current outbreaks. Projections under future conditions suggest that there will be a large reduction in climatically suitable habitat for the beetle and that high-elevation forests will continue to become more susceptible to outbreak. While all three models generated reasonable predictions, the generalized linear model correctly predicted a higher percentage of current outbreak localities when trained on historical data. Our findings suggest that researchers aiming to reduce omission error in estimates of future species responses may have greater predictive success with simpler, generalized models.
    Electronic ISSN: 2150-8925
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2016-07-19
    Description: Community assembly processes do not only influence community structure, but can also affect ecosystem processes. To understand the effect of initial community development on ecosystem processes, we studied natural fungal community dynamics during initial wood decay. We hypothesize that fungal community assembly dynamics are driven by strong priority effects of early-arriving species, which lead to predictable successional patterns and wood decay rates. Alternatively, equivalent colonization success of randomly arriving spores has the potential to drive stochastic community composition and wood decay rates over time. To test these competing hypotheses, we explored the changes in fungal community composition in logs of two tree species (one coniferous and one broadleaf) during the early stages of wood decomposition in a common garden approach. Initial communities were characterized by endophytic fungi, which were highly diverse and variable among logs. Over the first year of decomposition, there was little evidence for priority effects, as early colonizers displaced the endophytic species, and diversity fell as logs were dominated by a few fungal species. During this period, the composition of colonizing fungi was related to the decomposition rates of sapwood. During the second year of decomposition, fungal community composition shifted drastically and the successional dynamics varied considerably between tree species. Variation in fungal community composition among coniferous ( Larix kaempferi ) logs increased, and there remained no evidence for any priority effects as community composition became stochastic. In contrast, early colonizers still dominated many of the deciduous ( Quercus rubra ) logs, with a temporally consistent impact on community composition. For both tree species, wood decay rates levelled off and the relationship with fungal community composition disappeared. Our results indicate that priority effects are relatively minimal in naturally occurring fungal community assembly processes. Instead, fungal successional dynamics are governed predominantly by combative abilities of colonizing fungi, and factors that shape fungal communities over time can differ considerably between tree species. Our results indicate that an increased focus of competitive strength among species, rather than priority effects, may be key to predict community assembly and the ecosystem process they provide.
    Electronic ISSN: 2150-8925
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2016-07-19
    Description: Theory suggests that in a new habitat, initial levels of genetic or species diversity can influence subsequent community assembly. Nevertheless, empirical investigations of these diversity effects in newly created habitats remain rare at both the genetic and species level, especially for animal systems. To test this theory, we conducted a field experiment in which initial stocking diversity (both intra- and interspecific) of freshwater zooplankton in newly constructed pools was manipulated in a 2 × 2 fully factorial design. Zooplankton communities were sampled every 2 weeks from May to August in 2011 and 2012, and once in May of 2013 and 2014. Estimates of overland dispersal were measured in 2012. Despite theoretical predictions, we found no difference in taxonomic richness among stocking treatments after 4 yr. A total of 24 species was recorded in the experimental pool metacommunity, with average cumulative taxonomic richness ranging from 6.1 to 7.6 species per pool. Using dispersal traps, we found that dispersal of zooplankton was rapid, with eight taxa dispersing within 7 d; we found no difference in the number of dispersed propagules based on number of neighboring source pools. Despite theoretical predictions regarding diversity and community assembly, our study suggests that initial diversity may have no effect on early successional community species richness.
    Electronic ISSN: 2150-8925
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2016-07-21
    Description: We analyzed land-cover and forest vegetation data from nearly 25,000 permanent plots distributed across 50 national parks in the eastern United States, along with the matrix around each park, to examine structural characteristics of park forests in relation to their surrounding landscape. Over 2000 of these plots are part of the National Park Service (NPS) Inventory and Monitoring Program (I&M), and the remaining 22,500+ plots are part of the US Forest Service (USFS) Forest Inventory and Analysis (FIA) Program. This is the first study to compare forest structure in protected lands with the surrounding forest matrix over such a large area of the United States and is only possible because of the 10+ years of data that are now publicly available from USFS-FIA and NPS I&M. Results of this study indicate that park forests, where logging is largely prohibited, preserve areas of regionally significant older forest habitat. Park forests consistently had greater proportions of late-successional forest, greater live tree basal area, greater densities of live and dead large trees, and considerably larger volume of coarse woody debris. Park forests also had lower tree growth and mortality rates than matrix forests, suggesting different forest dynamics between park and matrix forests. The divergent patterns we observed between matrix and park forests were similar to those reported in studies that compared managed and old-growth forests, although the differences in our study were less pronounced. With the majority of park forests in second growth, eastern parks may be a more realistic baseline to compare with the more intensively managed matrix forests. We recommend that park managers allow natural disturbance and the development of older structure to continue in park forests. In addition, long-term maintenance of regional biodiversity will likely require increases in older forest structure in the matrix. As the NPS moves into its next century of land preservation, we encourage managers to consider parks important components of a larger regional effort to preserve biodiversity and ecosystem processes in eastern US forests. The data collected by NPS I&M programs will continue to provide important information and guidance toward these regional conservation efforts.
    Electronic ISSN: 2150-8925
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2016-07-21
    Description: Humans are altering global environment at an unprecedented rate through changes in biodiversity, climate, nitrogen cycle, and land-use. In order to address their effects on ecosystem functioning, experiments most frequently explore one driver at a time and control as many confounding factors as possible. Yet, which driver exerts the largest influence on ecosystem functioning and whether their relative importance changes among systems remain unclear. We analyzed experiments in the Patagonian steppe that evaluated the aboveground net primary production (ANPP) response to manipulated gradients of species richness, precipitation, temperature, nitrogen fertilization (N) and grazing intensity. We compared the effect on ANPP relative to ambient conditions considering intensity and direction of manipulations for each driver. The ranking of responses to drivers with comparable manipulation intensity was: biodiversity〉grazing〉precipitation〉N. For a similar intensity of manipulation, the effect of biodiversity loss was 4.0, 3.6, and 1.5, times larger than N deposition, decreased precipitation, and increased grazing intensity. We interpreted our results considering two hypotheses. First, the response of ANPP to changes in precipitation and biodiversity is saturating, so we expected larger effects when the driver was reduced, relative to ambient conditions, than when it was increased. Experimental manipulations that reduced ambient levels had larger effects than those that increased them. Second, the sensitivity of ANPP to each driver is inversely related to the natural variability of the driver. In Patagonia, the ranking of natural variability of drivers is: precipitation〉grazing〉temperature〉biodiversity〉N. So, in general, the ecosystem was most sensitive to drivers that varied the least. Comparable results from Cedar Creek (MN) support both hypotheses and suggest that sensitivity to drivers varies among ecosystem types. Given the importance of understanding ecosystem sensitivity to predict global-change impacts, it is necessary to design new experiments located in regions with contrasting natural variability and that include the full range of drivers. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2016-07-21
    Description: Evapotranspiration, defined as the total flux of water from the land surface to the atmosphere, is a major component of the hydrologic cycle and surface energy balance. Although evapotranspiration is expected to intensify with increasing temperatures, long-term, regional trends in evapotranspiration remain uncertain due to spatially and temporally limited direct measurements. In this study, we utilize an emergent relation between the land surface and atmospheric boundary layer to infer daily evapotranspiration from historical meteorological data collected at 236 weather stations across the U.S. Our results suggest a statistically significant ( α = 0.05) decrease in evapotranspiration of approximately 6% from 1961 to 2014, with a significant ( α = 0.05) sharp decline of 13% from 1998 to 2014. We attribute the decrease in evapotranspiration mostly to declines in surface conductance, but also to offsetting changes in longwave radiation, wind speed, and incoming solar radiation. Using an established stomatal conductance model, we explain the changes in inferred surface conductance as a response to increases in carbon dioxide and, more recently, to an abrupt decrease in atmospheric humidity. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2016-07-21
    Description: Forest ecosystems across western North America will likely see shifts in both tree species dominance and composition over the rest of this century in response to climate change. Our objective in this paper is to identify which ecological regions might expect the greatest changes to occur. We used the process-based growth model 3-PG, to provide estimates of tree species responses to changes in environmental conditions and to evaluate the extent that species are resilient to shifts in climate over the rest of this century. We assessed the vulnerability of 20 tree species in western North America using the Canadian global circulation model under three different emission scenarios. We provided detailed projections of species shifts by including soil maps that account for the spatial variation in soil water availability and soil fertility as well as by utilizing annual climate projections of monthly changes in air temperature, precipitation, solar radiation, vapor pressure deficit and frost at a spatial resolution of 1 km. Projected suitable areas for tree species were compared to their current ranges based on observations at 〉40,000 field survey plots. Tree species were classified as vulnerable if environmental conditions projected in the future appear outside that of their current distribution ≥70% of the time. We added a migration constraint that limits species dispersal to 〈200 m year −1 to provide more realistic projections on species distributions. Based on these combinations of constraints, we predicted the greatest changes in the distribution of dominant tree species to occur within the Northwest Forested Mountains and the highest number of tree species stressed will likely be in the North American Deserts. Projected climatic changes appear especially unfavorable for species in the subalpine zone, where major shifts in composition may lead to the emergence of new forest types. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2016-07-21
    Description: To predict forest response to long-term climate change with high confidence requires that dynamic global vegetation models (DGVMs) be successfully tested against ecosystem response to short-term variations in environmental drivers, including regular seasonal patterns. Here, we used an integrated dataset from four forests in the Brasil flux network, spanning a range of dry season intensities and lengths, to determine how well four state-of-the-art models (IBIS, ED2, JULES, and CLM3.5) simulated the seasonality of carbon exchanges in Amazonian tropical forests. We found that most DGVMs poorly represented the annual cycle of gross primary productivity ( GPP ), of photosynthetic capacity ( Pc ), and of other fluxes and pools. Models simulated consistent dry season declines in GPP in the equatorial Amazon (Manaus K34, Santarem K67, and Caxiuanã CAX); a contrast to observed GPP increases. Model simulated dry season GPP reductions were driven by an external environmental factor, “soil water stress” and consequently by a constant or decreasing photosynthetic infrastructure ( Pc) , while observed dry-season GPP resulted from a combination of internal biological (leaf-flush and abscission and increased Pc ) and environmental (incoming radiation) causes. Moreover, we found models generally overestimated observed seasonal net ecosystem exchange ( NEE ) and respiration ( Re ) at equatorial locations. In contrast, a southern Amazon forest (Jarú RJA) exhibited dry season declines in GPP and Re consistent with most DGVMs simulations. While water-limitation was represented in models and the primary driver of seasonal photosynthesis in southern Amazonia, changes in internal biophysical processes, light harvesting adaptations (e.g. variations in leaf area index (LAI) and increasing leaf-level assimilation rate related to leaf demography), and allocation lags between leaf and wood, dominated equatorial Amazon carbon flux dynamics and were deficient or absent from current model formulations. Correctly simulating flux seasonality at tropical forests requires a greater understanding and the incorporation of internal biophysical mechanisms in future model developments. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2016-07-22
    Description: Temperature is highly variable across space and time at multiple scales, shapes landscape pattern, and dictates ecological processes. While our knowledge of ecological phenomena is vast relative to many landscape metrics, thermal patterns which shape landscape mosaics are largely unknown. To address this disconnect, we investigated the thermal landscape by measuring black bulb temperature ( T bb ) at intervals as small as 15 min across 3 yr in a mixed-grass shrub vegetation community. We found that the thermal landscape was highly heterogeneous displaying a prevalence for thermal extremes (i.e., T bb  〉 50°C) and that T bb was driven by the synergism of environmental, terrain, and vegetation factors. Specifically, variation of T bb on the landscape was best predicted by the inclusion of ambient temperature ( T air ), solar radiation ( S rad ), low woody cover, and tall woody cover as variables. Moreover, models of single vegetation parameters (i.e., bare ground, low woody, or tall woody cover) each had greater relative importance than those containing a single terrain variable (i.e., slope or aspect) based on AIC, providing evidence that vegetation is a key driver of T bb on the landscape. Within the thermally heterogeneous landscape, tall woody cover moderated T bb by 10°C more than bare ground, herbaceous, or low woody cover during peak diurnal heating (14:00), and was the only cover type that remained 〈50°C on average. Given that tall woody cover comprises only about 7% of the landscape in our study, these findings have direct conservation implications for species inhabiting shrub communities, specifically that the distribution of tall woody cover is a spatially limited but key predictor of potential thermal refugia on the landscape. Our findings also demonstrate that local interactions between vegetation and temperature can create thermal patterns that shape dynamic landscape mosaics across space and time. Furthermore, we show that structural heterogeneity can maximize thermal complexity across landscapes which can provide greater potential thermal options for organisms. However, our modeled climate projections suggest that far greater thermal extremes will be possible across increasingly larger swaths of the landscape in the future, making assessments and quantifications of thermal landscapes increasingly critical.
    Electronic ISSN: 2150-8925
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2016-07-26
    Description: Current terrestrial ecosystem models are usually driven with global average annual atmospheric carbon dioxide (CO 2 ) concentration data at the global scale. However, high-precision CO 2 measurement from eddy flux towers showed that seasonal, spatial surface atmospheric CO 2 concentration differences were as large as 35 ppmv and the site-level tests indicated that the CO 2 variation exhibited different effects on plant photosynthesis. Here we used a process-based ecosystem model driven with two spatially and temporally explicit CO 2 data sets to analyze the atmospheric CO 2 fertilization effects on the global carbon dynamics of terrestrial ecosystems from 2003 to 2010. Our results demonstrated that CO 2 seasonal variation had a negative effect on plant carbon assimilation, while CO 2 spatial variation exhibited a positive impact. When both CO 2 seasonal and spatial effects were considered, global gross primary production and net ecosystem production were 1.7 Pg C·yr −1 and 0.08 Pg C·yr −1 higher than the simulation using uniformly distributed CO 2 data set and the difference was significant in tropical and temperate evergreen broadleaf forest regions. This study suggests that the CO 2 observation network should be expanded so that the realistic CO 2 variation can be incorporated into the land surface models to adequately account for CO 2 fertilization effects on global terrestrial ecosystem carbon dynamics.
    Electronic ISSN: 2150-8925
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2016-07-27
    Description: Freshwater wetlands are particularly vulnerable to climate change. Specifically, changes in temperature, precipitation, and evapotranspiration (i.e., climate drivers) are likely to alter flooding regimes of wetlands and affect the vital rates, abundance, and distributions of wetland-dependent species. Amphibians may be among the most climate-sensitive wetland-dependent groups, as many species rely on shallow or intermittently flooded wetland habitats for breeding. Here, we integrated multiple years of high-resolution gridded climate and amphibian monitoring data from Grand Teton and Yellowstone National Parks to explicitly model how variations in climate drivers and habitat conditions affect the occurrence and breeding dynamics (i.e., annual extinction and colonization rates) of amphibians. Our results showed that models incorporating climate drivers outperformed models of amphibian breeding dynamics that were exclusively habitat based. Moreover, climate-driven variation in extinction rates, but not colonization rates, disproportionately influenced amphibian occupancy in monitored wetlands. Long-term monitoring from national parks coupled with high-resolution climate data sets will be crucial to describing population dynamics and characterizing the sensitivity of amphibians and other wetland-dependent species to climate change. Further, long-term monitoring of wetlands in national parks will help reduce uncertainty surrounding wetland resources and strengthen opportunities to make informed, science-based decisions that have far-reaching benefits.
    Electronic ISSN: 2150-8925
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2016-07-28
    Description: Little is known regarding the fire history of high-latitude coastal temperate rain forests in the Pacific Northwest (PNW) of North America. While reconstructing historical fire regimes typically requires dendrochronological records from fire-scarred trees or stratigraphically preserved lake sediment data, this type of information is virtually non-existent in this region. To describe the long-term fire history of a site on the central coast of British Columbia, Canada, we radiocarbon-dated 52 pieces of charcoal. Charcoal ages ranged from 12,670 to 70 yr BP. Fires occurred regularly since 12,670 yr BP, with the exception of a distinct fire-free period at 7500–5500 yr BP. Time since fire (TSF) estimates from soil charcoal and fire-scarred trees ranged from 12,670 to 100 yr BP (median = 327 yr), and 70% of the sites examined had burned within the past 1000 yr. An increase in fire frequency in the late Holocene is consistent with the widely held hypothesis that anthropogenic fires were common across the PNW. We evaluate TSF distributions and discuss the difficulties in assigning actual fire dates from charcoal fragments with large inbuilt ages in a coastal temperate rain forest setting. We determine that a comprehensive approach using soil charcoal and fire scar analyses is necessary to reconstruct general trends in fire activity throughout the Holocene in this region.
    Electronic ISSN: 2150-8925
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2016-07-29
    Description: Macroscale studies of ecological phenomena are increasingly common because stressors such as climate and land-use change operate at large spatial and temporal scales. Cross-scale interactions (CSIs), where ecological processes operating at one spatial or temporal scale interact with processes operating at another scale, have been documented in a variety of ecosystems and contribute to complex system dynamics. However, studies investigating CSIs are often dependent on compiling multiple data sets from different sources to create multithematic, multiscaled data sets, which results in structurally complex, and sometimes incomplete data sets. The statistical power to detect CSIs needs to be evaluated because of their importance and the challenge of quantifying CSIs using data sets with complex structures and missing observations. We studied this problem using a spatially hierarchical model that measures CSIs between regional agriculture and its effects on the relationship between lake nutrients and lake productivity. We used an existing large multithematic, multiscaled database, LAke multiscaled GeOSpatial, and temporal database (LAGOS), to parameterize the power analysis simulations. We found that the power to detect CSIs was more strongly related to the number of regions in the study rather than the number of lakes nested within each region. CSI power analyses will not only help ecologists design large-scale studies aimed at detecting CSIs, but will also focus attention on CSI effect sizes and the degree to which they are ecologically relevant and detectable with large data sets.
    Electronic ISSN: 2150-8925
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...