ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-11-08
    Description: Changes in soil organic carbon and nitrogen capacities of Salix cheilophila Schneid along a revegetation chronosequence in semi-arid degraded sandy land of the Gonghe Basin, Tibet Plateau Solid Earth, 5, 1045-1054, 2014 Author(s): Y. Yu and Z. Q. Jia The Gonghe Basin is a sandified and desertified region of China, but the distribution of soil organic carbon (SOC) and total nitrogen (TN) along the cultivation chronosequence across this ecologically fragile region is not well understood. This study was carried out to understand the effects of restoration with Salix cheilophila for different periods of time (6, 11, 16, 21 years) to test whether it enhanced C and N storage. Soil samples, in four replications from seven depth increments (0–10, 10–20, 20–30, 30–50, 50–100, 100–150 and 150–200 cm), were collected in each stand. Soil bulk density, SOC, TN, aboveground biomass and root biomass were measured. Results indicated that changes occurred in both the upper and deeper soil layers with an increase in revegetation time. The 0–200 cm soil showed that the 6-year stand gained 3.89 Mg C ha −1 and 1.00 Mg N ha −1 , which accounted for 40.82% of the original SOC and 11.06% of the TN of the 0-year stand. The 11-year stand gained 7.82 Mg C ha −1 and 1.98 Mg N ha −1 in the 0–200 cm soil layers, accounting for 58.06% of the SOC and 19.80% of the TN of the 0-year stand. The 16-year stand gained 11.32 Mg C ha −1 and 3.30 Mg N ha −1 in the 0–200 cm soil layers, accounting for 66.71% of the SOC and 21.98% of the TN of the 0-year stand. The 21-year stand gained 13.05 Mg C ha −1 and 5.45 Mg N ha −1 from the same soil depth, accounting for 69.79% of the SOC and 40.47% of the TN compared with the 0-year stand. The extent of these changes depended on soil depth and plantation age. The results demonstrated that, as stand age increased, the storage of SOC and TN increased. These results further indicated that restoration with S. cheilophila has positive impacts on the Gonghe Basin and has increased the capacity of SOC sequestration and N storage. The shrub's role as carbon sink is compatible with system management and persistence. The findings are significant for assessing C and N sequestration accurately in semi-arid degraded high, cold sandy regions in the future.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Copernicus
    Publication Date: 2014-12-16
    Description: Preface: Environmental benefits of biochar Solid Earth, 5, 1301-1303, 2014 Author(s): J. Paz-Ferreiro, A. Méndez, A. M. Tarquis, A. Cerdà, and G. Gascó
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-11-29
    Description: Interpretative modelling of a geological cross section from boreholes: sources of uncertainty and their quantification Solid Earth, 5, 1189-1203, 2014 Author(s): R. M. Lark, S. Thorpe, H. Kessler, and S. J. Mathers We conducted a designed experiment to quantify sources of uncertainty in geologists' interpretations of a geological cross section. A group of 28 geologists participated in the experiment. Each interpreted borehole record included up to three Palaeogene bedrock units, including the target unit for the experiment: the London Clay. The set of boreholes was divided into batches from which validation boreholes had been withheld; as a result, we obtained 129 point comparisons between the interpreted elevation of the base of the London Clay and its observed elevation in a borehole not used for that particular interpretation. Analysis of the results showed good general agreement between the observed and interpreted elevations, with no evidence of systematic bias. Between-site variation of the interpretation error was spatially correlated, and the variance appeared to be stationary. The between-geologist component of variance was smaller overall, and depended on the distance to the nearest borehole. There was also evidence that the between-geologist variance depends on the degree of experience of the individual. We used the statistical model of interpretation error to compute confidence intervals for any one interpretation of the base of the London Clay on the cross section, and to provide uncertainty measures for decision support in a hypothetical route-planning process. The statistical model could also be used to quantify error propagation in a full 3-D geological model produced from interpreted cross sections.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-12-03
    Description: Tunable diode laser measurements of hydrothermal/volcanic CO 2 and implications for the global CO 2 budget Solid Earth, 5, 1209-1221, 2014 Author(s): M. Pedone, A. Aiuppa, G. Giudice, F. Grassa, V. Francofonte, B. Bergsson, and E. Ilyinskaya Quantifying the CO 2 flux sustained by low-temperature fumarolic fields in hydrothermal/volcanic environments has remained a challenge, to date. Here, we explored the potential of a commercial infrared tunable laser unit for quantifying such fumarolic volcanic/hydrothermal CO 2 fluxes. Our field tests were conducted between April 2013 and March 2014 at Nea Kameni (Santorini, Greece), Hekla and Krýsuvík (Iceland) and Vulcano (Aeolian Islands, Italy). At these sites, the tunable laser was used to measure the path-integrated CO 2 mixing ratios along cross sections of the fumaroles' atmospheric plumes. By using a tomographic post-processing routine, we then obtained, for each manifestation, the contour maps of CO 2 mixing ratios in the plumes and, from their integration, the CO 2 fluxes. The calculated CO 2 fluxes range from low (5.7 ± 0.9 t d −1 ; Krýsuvík) to moderate (524 ± 108 t d −1 ; La Fossa crater, Vulcano). Overall, we suggest that the cumulative CO 2 contribution from weakly degassing volcanoes in the hydrothermal stage of activity may be significant at the global scale.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-03-11
    Description: New insights on the occurrence of peperites and sedimentary deposits within the silicic volcanic sequences of the Paraná Magmatic Province, Brazil Solid Earth, 5, 121-130, 2014 Author(s): A. C. F. Luchetti, A. J. R. Nardy, F. B. Machado, J. E. O. Madeira, and J. M. Arnosio The PMP (Paraná Magmatic Province) is characterized by lava flows of the Early Cretaceous Serra Geral Formation which covers about 75% of the Paraná Basin (southern and southeastern Brazil), composed of a thick (up to 1600 m) volcanic sequence formed by a succession of petrographically and geochemically distinct units of basic and silicic composition. The whole package must have been emplaced during approximately 3 million years of nearly uninterrupted activity. A few aeolian sandstone layers, indicating arid environmental conditions (the Botucatu Formation), are interlayered in the lower basalts. Above the basalts, the Palmas and Chapecó Members are composed of silicic volcanic rocks (quartz latites, dacites, rhyodacites and rhyolites) and basalts. This paper presents new evidence of sedimentation episodes separating silicic volcanic events, expressed by the occurrence of sedimentary deposits. Interaction between the volcanic bodies and the coeval unconsolidated sediments formed peperites. The sediments were observed between basaltic lava flows and silicic rocks or interlayered in the Palmas-type rocks, between the Chapecó-type rocks and overlying basaltic flows, between silicic bodies of the Palmas and Chapecó types, and interlayered within Palmas-type units. The observed structures indicate that the sediments were still wet and unconsolidated, or weakly consolidated, at the time of volcanism, which, coupled with the sediment features, reflect environmental conditions that are different from those characterizing the Botucatu arid conditions.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-03-13
    Description: Thermal shock and splash effects on burned gypseous soils from the Ebro Basin (NE Spain) Solid Earth, 5, 131-140, 2014 Author(s): J. León, M. Seeger, D. Badía, P. Peters, and M. T. Echeverría Fire is a natural factor of landscape evolution in Mediterranean ecosystems. The middle Ebro Valley has extreme aridity, which results in a low plant cover and high soil erodibility, especially on gypseous substrates. The aim of this research is to analyze the effects of moderate heating on physical and chemical soil properties, mineralogical composition and susceptibility to splash erosion. Topsoil samples (15 cm depth) were taken in the Remolinos mountain slopes (Ebro Valley, NE Spain) from two soil types: Leptic Gypsisol (LP) in a convex slope and Haplic Gypsisol (GY) in a concave slope. To assess the heating effects on the mineralogy we burned the soils at 105 and 205 °C in an oven and to assess the splash effects we used a rainfall simulator under laboratory conditions using undisturbed topsoil subsamples (0–5 cm depth of Ah horizon). LP soil has lower soil organic matter (SOM) and soil aggregate stability (SAS) and higher gypsum content than GY soil. Gypsum and dolomite are the main minerals (〉80%) in the LP soil, while gypsum, dolomite, calcite and quartz have similar proportions in GY soil. Clay minerals (kaolinite and illite) are scarce in both soils. Heating at 105 °C has no effect on soil mineralogy. However, heating to 205 °C transforms gypsum to bassanite, increases significantly the soil salinity (EC) in both soil units (LP and GY) and decreases pH only in GY soil. Despite differences in the content of organic matter and structural stability, both soils show no significant differences (P 〈 0.01) in the splash erosion rates. The size of pores is reduced by heating, as derived from variations in soil water retention capacity.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-03-13
    Description: Seismic visibility of a deep subduction channel – insights from numerical simulation of high-frequency seismic waves emitted from intermediate depth earthquakes Solid Earth, 5, 141-159, 2014 Author(s): W. Friederich, L. Lambrecht, B. Stöckhert, S. Wassmann, and C. Moos Return flow in a deep subduction channel (DSC) has been proposed to explain rapid exhumation of high pressure–low temperature metamorphic rocks, entirely based on the fossil rock record. Supported by thermo-mechanical models, the DSC is envisioned as a thin layer on top of the subducted plate reaching down to minimum depths of about 150 km. We perform numerical simulations of high-frequency seismic wave propagation (1–5 Hz) to explore potential seismological evidence for the in situ existence of a DSC. Motivated by field observations, for modeling purposes we assume a simple block-in-matrix (BIM) structure with eclogitic blocks floating in a serpentinite matrix. Homogenization calculations for BIM structures demonstrate that effective seismic velocities in such composites are lower than in the surrounding oceanic crust and mantle, with nearly constant values along the entire length of the DSC. Synthetic seismograms for receivers at the surface computed for intermediate depth earthquakes in the subducted oceanic crust for models with and without DSC turn out to be markedly influenced by its presence or absence. While for both models P and S waveforms are dominated by delayed high-amplitude guided waves, models with DSC exhibit a very different pattern of seismic arrivals compared to models without DSC. The main reason for the difference is the greater length and width of the low-velocity channel when a DSC is present. Seismic velocity heterogeneity within the DSC or oceanic crust is of minor importance. The characteristic patterns allow for definition of typical signatures by which models with and without DSC may be discriminated. The signatures stably recur in slightly modified form for earthquakes at different depths inside subducted oceanic crust. Available seismological data from intermediate depth earthquakes recorded in the forearc of the Hellenic subduction zone exhibit similar multi-arrival waveforms as observed in the synthetic seismograms for models with DSC. According to our results, observation of intermediate depth earthquakes along a profile across the forearc may allow to test the hypothesis of a DSC and to identify situations where such processes could be active today.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-01-25
    Description: The permeability and elastic moduli of tuff from Campi Flegrei, Italy: implications for ground deformation modelling Solid Earth, 5, 25-44, 2014 Author(s): M. J. Heap, P. Baud, P. G. Meredith, S. Vinciguerra, and T. Reuschlé The accuracy of ground deformation modelling at active volcanoes is a principal requirement in volcanic hazard mitigation. However, the reliability of such models relies on the accuracy of the rock physical property (permeability and elastic moduli) input parameters. Unfortunately, laboratory-derived values on representative rocks are usually rare. To this end we have performed a systematic laboratory study on the influence of pressure and temperature on the permeability and elastic moduli of samples from the two most widespread lithified pyroclastic deposits at the Campi Flegrei volcanic district, Italy. Our data show that the water permeability of Neapolitan Yellow Tuff and a tuff from the Campanian Ignimbrite differ by about 1.5 orders of magnitude. As pressure (depth) increases beyond the critical point for inelastic pore collapse (at an effective pressure of 10–15 MPa, or a depth of about 750 m), permeability and porosity decrease significantly, and ultrasonic wave velocities and dynamic elastic moduli increase significantly. Increasing the thermal stressing temperature increases the permeability and decreases the ultrasonic wave velocities and dynamic elastic moduli of the Neapolitan Yellow Tuff; whereas the tuff from the Campanian Ignimbrite remains unaffected. This difference is due to the presence of thermally unstable zeolites within the Neapolitan Yellow Tuff. For both rocks we also find, under the same pressure conditions, that the dynamic (calculated from ultrasonic wave velocities) and static (calculated from triaxial stress-strain data) elastic moduli differ significantly. The choice of elastic moduli in ground deformation modelling is therefore an important consideration. While we urge that these new laboratory data should be considered in routine ground deformation modelling, we highlight the challenges for ground deformation modelling based on the heterogeneous nature (vertically and laterally) of the rocks that comprise the caldera at Campi Flegrei.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-02-21
    Description: Review of some significant claimed irregularities in Scandinavian postglacial uplift on timescales of tens to thousands of years – earthquakes in Denmark? Solid Earth, 5, 109-118, 2014 Author(s): S. Gregersen and P. H. Voss The postglacial uplift and surrounding subsidence in Scandinavia is well described as close to regular, and the phenomenon is similar on timescales of tens, hundreds and thousands of years studied via geodesy, seismology and geology. Searches for irregularities in the form of earthquakes claimed in the scientific literature have disclosed many earthquakes right after the Ice Age, 9000 yr ago, and some later cases for further evaluation. In a previous report, the present authors have mentioned doubts about the validity of some of the most significant claimed irregularities. In the present paper, a review is made of these significant claimed irregularities in the south-western flank of the Scandinavian postglacial uplift and subsidence via literature studies of geodetic and geological claims of earthquakes as well as discussions in the field. Geodetic observations exist for all of Scandinavia that describe the phenomenon on a scale of 10s–100s of years. Earthquake observations in seismology are of relevance in the same timescales. Geological studies of dated shore lines describe the postglacial vertical earth-surface motion in a quite different timescale of 100s–1000s of years. There is a need for integration of these observations geographically. This is happening in the various timescales in the DynaQlim project. The review finds the claims unlikely to be earthquakes concerning the following: (1) geodynamical motion in the Copenhagen area, (2) a palaeo-earthquake in Læsø and (3) the recently proposed water level discrepancy in the southern part of Denmark. The assessment is less certain, but falls to improbable when concerning (4) proposed palaeo-earthquakes by Hallandsåsen in south-western Sweden.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-02-14
    Description: Use of phytoremediation and biochar to remediate heavy metal polluted soils: a review Solid Earth, 5, 65-75, 2014 Author(s): J. Paz-Ferreiro, H. Lu, S. Fu, A. Méndez, and G. Gascó Anthropogenic activities are resulting in an increase of the use and extraction of heavy metals. Heavy metals cannot be degraded and hence accumulate in the environment, having the potential to contaminate the food chain. This pollution threatens soil quality, plant survival and human health. The remediation of heavy metals deserves attention, but it is impaired by the cost of these processes. Phytoremediation and biochar are two sound environmental technologies which could be at the forefront to mitigate soil pollution. This review provides an overview of the state of the art of the scientific research on phytoremediation and biochar application to remediate heavy-metal-contaminated soils. Research to date has attempted only in a limited number of occasions to combine both techniques, however we discuss the potential advantages of combining both, and the potential mechanisms involved in the interaction between phytoremediators and biochar. We identified specific research needs to ensure a sustainable use of phytoremediation and biochar as remediation tools.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2014-03-29
    Description: Editorial Note A case of plagiarism: "Modelling of the wave fields by the modification of the matrix method in anisotropic media" published in Solid Earth Discuss., 6, 1–19, 2014 Solid Earth, 5, 161-161, 2014 Author(s): F. Storti No abstract available.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2014-04-01
    Description: Corrigendum to "3-D reflection seismic imaging of the Hontomín structure in the Basque–Cantabrian Basin (Spain)" published in Solid Earth, 4, 481–496, 2013 Solid Earth, 5, 181-181, 2014 Author(s): J. Alcalde, D. Martí, C. Juhlin, A. Malehmir, D. Sopher, E. Saura, I. Marzán, P. Ayarza, A. Calahorrano, A. Pérez-Estaún, and R. Carbonell No abstract available.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2014-04-01
    Description: Lithospheric-scale structures in New Guinea and their control on the location of gold and copper deposits Solid Earth, 5, 163-179, 2014 Author(s): L. T. White, M. P. Morse, and G. S. Lister The locations of major gold and copper deposits on the island of New Guinea are considered by many to be controlled by a series of transfer faults that strike N–S to NE–SW, perpendicular to the long axis of the island. The premise is that these faults dilate perpendicular to the regional stress field, forming conduits for metalliferous gases and fluids to drop out of solution. However, the data on which this idea was first proposed were often not presented or, when the data were presented, were of poor quality or low resolution. We therefore present a review of the existing structural interpretations and compare these with several recently published geophysical data sets to determine if the mineralization controlling transfer faults could be observed. These data were used to produce a new lineament map of New Guinea. A comparison of the lineaments with the location of major gold and copper deposits indicates there is a link between the arc-normal structures and mineralization. However, it is only those deposits that are less than 4.5 million years old that could be associated with these structures. Gravity and seismic tomography data indicate that some of these structures could penetrate deep levels of the lithosphere, providing some support to the earlier idea that the arc-normal structures act as conduits for the younger mineral deposits of New Guinea. The gravity data can also be used to infer the location of igneous intrusions at depth, which could have brought metal-bearing fluids and gases closer to the Earth's surface. These regions might be of interest for future exploration campaigns, particularly those areas that are crosscut by deep, vertical faults. However, new exploration models are needed to explain the location of the deposits that are older than 5 Ma.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2014-04-02
    Description: The ring-shaped thermal field of Stefanos crater, Nisyros Island: a conceptual model Solid Earth, 5, 183-198, 2014 Author(s): M. Pantaleo and T. R. Walter Fumarole fields related to hydrothermal processes release the heat of the underground through permeable pathways. Thermal changes, therefore, are likely to depend also on the size and permeability variation of these pathways. There may be different explanations for the observed permeability changes, such as fault control, lithology, weathering/alteration, heterogeneous sediment accumulation/erosion and physical changes of the fluids (e.g., temperature and viscosity). A common difficulty, however, in surface temperature field studies at active volcanoes is that the parameters controlling the ascending routes of fluids are poorly constrained in general. Here we analyze the crater of Stefanos, Nisyros (Greece), and highlight complexities in the spatial pattern of the fumarole field related to permeability conditions. We combine high-resolution infrared mosaics and grain-size analysis of soils, aiming to elaborate parameters controlling the appearance of the fumarole field. We find a ring-shaped thermal field located within the explosion crater, which we interpret to reflect near-surface contrasts of the soil granulometry and volcanotectonic history at depth. We develop a conceptual model of how the ring-shaped thermal field formed at the Stefanos crater and similarly at other volcanic edifices, highlighting the importance of local permeability contrast that may increase or decrease the thermal fluid flux.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2014-10-03
    Description: Asymmetry of high-velocity lower crust on the South Atlantic rifted margins and implications for the interplay of magmatism and tectonics in continental breakup Solid Earth, 5, 1011-1026, 2014 Author(s): K. Becker, D. Franke, R. Trumbull, M. Schnabel, I. Heyde, B. Schreckenberger, H. Koopmann, K. Bauer, W. Jokat, and C. M. Krawczyk High-velocity lower crust (HVLC) and seaward-dipping reflector (SDR) sequences are typical features of volcanic rifted margins. However, the nature and origin of HVLC is under discussion. Here we provide a comprehensive analysis of deep crustal structures in the southern segment of the South Atlantic and an assessment of HVLC along the margins. Two new seismic refraction lines off South America fill a gap in the data coverage and together with five existing velocity models allow for a detailed investigation of the lower crustal properties on both margins. An important finding is the major asymmetry in volumes of HVLC on the conjugate margins. The seismic refraction lines across the South African margin reveal cross-sectional areas of HVLC 4 times larger than at the South American margin, a finding that is opposite to the asymmetric distribution of the flood basalts in the Paraná–Etendeka Large Igneous Province. Also, the position of the HVLC with respect to the SDR sequences varies consistently along both margins. Close to the Falkland–Agulhas Fracture Zone in the south, a small body of HVLC is not accompanied by SDRs. In the central portion of both margins, the HVLC is below the inner SDR wedges while in the northern area, closer to the Rio Grande Rise-Walvis Ridge, large volumes of HVLC extend far seaward of the inner SDRs. This challenges the concept of a simple extrusive/intrusive relationship between SDR sequences and HVLC, and it provides evidence for formation of the HVLC at different times during the rifting and breakup process. We suggest that the drastically different HVLC volumes are caused by asymmetric rifting in a simple-shear-dominated extension.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2014-11-01
    Description: Focal mechanism and depth of the 1956 Amorgos twin earthquakes from waveform matching of analogue seismograms Solid Earth, 5, 1027-1044, 2014 Author(s): A. Brüstle, W. Friederich, T. Meier, and C. Gross Historic analogue seismograms of the large 1956 Amorgos twin earthquakes which occurred in the volcanic arc of the Hellenic subduction zone (HSZ) were collected, digitized and reanalyzed to obtain refined estimates of their depth and focal mechanism. In total, 80 records of the events from 29 European stations were collected and, if possible, digitized. In addition, bulletins were searched for instrument parameters required to calculate transfer functions for instrument correction. A grid search based on matching the digitized historic waveforms to complete synthetic seismograms was then carried out to infer optimal estimates for depth and focal mechanism. Owing to incomplete or unreliable information on instrument parameters and frequently occurring technical problems during recording, such as writing needles jumping off mechanical recording systems, much less seismograms than collected proved suitable for waveform matching. For the first earthquake, only seven seismograms from three different stations at Stuttgart (STU), Göttingen (GTT) and Copenhagen (COP) could be used. Nevertheless, the waveform matching grid search yields two stable misfit minima for source depths of 25 and 50 km. Compatible fault plane solutions are either of normal faulting or thrusting type. A separate analysis of 42 impulsive first-motion polarities taken from the International Seismological Summary (ISS bulletin) excludes the thrusting mechanism and clearly favors a normal faulting solution with at least one of the potential fault planes striking in SW–NE direction. This finding is consistent with the local structure and microseismic activity of the Santorini–Amorgos graben. Since crustal thickness in the Amorgos area is generally less than 30 km, a source depth of 25 km appears to be more realistic. The second earthquake exhibits a conspicuously high ratio of body wave to surface wave amplitudes suggesting an intermediate-depth event located in the Hellenic Wadati–Benioff zone. This hypothesis is supported by a focal mechanism analysis based on first-motion polarities, which indicates a mechanism very different from that of the first event. A waveform matching grid search done to support the intermediate-depth hypothesis proved not to be fruitful because the body wave phases are overlain by strong surface wave coda of the first event inhibiting a waveform match. However, body to surface wave amplitude ratios of a modern intermediate-depth event with an epicenter close to the island of Milos observed at stations of the German Regional Seismic Network (GRSN) exhibit a pattern similar to the one observed for the second event with high values in a frequency band between 0.05 Hz and 0.3 Hz. In contrast, a shallow event with an epicenter in western Crete and nearly identical source mechanism and magnitude, shows very low ratios of body and surface wave amplitude up to 0.17 Hz and higher ratios only beyond that frequency. Based on this comparison with a modern event, we estimate the source depth of the second event to be greater than 100 km. The proximity in time and space of the two events suggests a triggering of the second, potentially deep event by the shallow first one.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2014-08-27
    Description: Coffee husk mulch on soil erosion and runoff: experiences under rainfall simulation experiment Solid Earth, 5, 851-862, 2014 Author(s): H. Moreno-Ramón, S. J. Quizembe, and S. Ibáñez-Asensio The high erosion rates found in the agriculture land make valuable the use of mulches to control the soil and water losses. Coffee husk ( Coffea canephora var. robusta ) can be one of those mulches. This paper evaluates how to apply the mulch in order to obtain the best effectiveness. An experimental factorial design 4 × 3 × 2 with two replicates was designed in a greenhouse with a total number of 48 cases. All the samples were deposited in trays of 0.51 m 2 and applied a simulated rain of 122 mm h −1 during 21 min. The factors examined were the following: four soil classes; three treatments – buried (B), surface (S) and non-residue (C) – and the presence (WC) or absence (WOC) of the soil surface crusting. The coffee husk residue (S and B treatments) reduced runoff by 10.2 and 46% respectively, soil losses by 78.3 and 88.7% and sediment concentration by 77 and 84.4%. The infiltration rate increased on average by 104 and 167%, and time to runoff by 1.58 and 2.07 min respectively. Coffee husk is an efficient mulch to reduce the soil and water losses, although it could not completely cushion the influence of crust.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2014-08-27
    Description: Exploring the shallow structure of the San Ramón thrust fault in Santiago, Chile (~33.5° S), using active seismic and electric methods Solid Earth, 5, 837-849, 2014 Author(s): D. Díaz, A. Maksymowicz, G. Vargas, E. Vera, E. Contreras-Reyes, and S. Rebolledo The crustal-scale west-vergent San Ramón thrust fault system, which lies at the foot of the main Andean Cordillera in central Chile, is a geologically active structure with manifestations of late Quaternary complex surface rupture on fault segments along the eastern border of the city of Santiago. From the comparison of geophysical and geological observations, we assessed the subsurface structural pattern that affects the sedimentary cover and rock-substratum topography across fault scarps, which is critical for evaluating structural models and associated seismic hazard along the related faults. We performed seismic profiles with an average length of 250 m, using an array of 24 geophones (Geode), with 25 shots per profile, to produce high-resolution seismic tomography to aid in interpreting impedance changes associated with the deformed sedimentary cover. The recorded travel-time refractions and reflections were jointly inverted by using a 2-D tomographic approach, which resulted in variations across the scarp axis in both the velocities and the reflections that are interpreted as the sedimentary cover-rock substratum topography. Seismic anisotropy observed from tomographic profiles is consistent with sediment deformation triggered by west-vergent thrust tectonics along the fault. Electrical soundings crossing two fault scarps were used to construct subsurface resistivity tomographic profiles, which reveal systematic differences between lower resistivity values in the hanging wall with respect to the footwall of the geological structure, and clearly show well-defined east-dipping resistivity boundaries. These boundaries can be interpreted in terms of structurally driven fluid content change between the hanging wall and the footwall of the San Ramón fault. The overall results are consistent with a west-vergent thrust structure dipping ~55° E in the subsurface beneath the piedmont sediments, with local complexities likely associated with variations in fault surface rupture propagation, fault splays and fault segment transfer zones.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2014-08-28
    Description: Evidence of magma activation beneath the Harrat Lunayyir basaltic field (Saudi Arabia) from attenuation tomography Solid Earth, 5, 873-882, 2014 Author(s): I. Koulakov, S. El Khrepy, N. Al-Arifi, I. Sychev, and P. Kuznetsov We present a seismic attenuation model for the crust beneath the Cenozoic basaltic field of Harrat Lunayyir (western Saudi Arabia), where a strong seismic swarm occurred in 2009. The tomography inversion uses the envelope shape of the S wave seismograms from over 300 strong events ( M 〈 3.5). The resulting attenuation structures appear to be consistent with the distribution of seismic velocities. The obtained 3-D attenuation model distinguishes the low-attenuation zones down to 5 km depth corresponding to the rigid basaltic cover. At greater depths, we detect a high-attenuation anomaly coinciding with the main seismicity cluster. We propose that this zone corresponds to the upper part of the conduit area ascending from deeper magma sources. According to the distributions of local events, fluids and melts from this conduit appear to reach a depth of ∼2 km, but were not able to reach the surface and cause the eruption in 2009.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2014-08-28
    Description: Velocity structure and the role of fluids in the West Bohemia Seismic Zone Solid Earth, 5, 863-872, 2014 Author(s): C. Alexandrakis, M. Calò, F. Bouchaala, and V. Vavryčuk In this study, we apply the double-difference tomography to investigate the detailed 3-D structure within and around the Nový Kostel Seismic Zone, an area in the Czech Republic known for frequent occurrences of earthquake swarms. We use data from the 2008 swarm since it has already been analysed in terms of earthquake focal mechanisms, principal faults, tectonic stress and foci migration. We selected about 500 microearthquakes recorded at 22 local seismic stations of the West Bohemia seismic monitoring network (WEBNET). Applying double-difference tomography, combined with weighted average model (WAM) post-processing to correct for parameter dependence effects, we produce and interpret 3-D models of the Vp-to-Vs ratio (Vp/Vs) in and around the focal zone. The modelled Vp/Vs ratio shows several distinct structures, namely an area of high Vp/Vs ratio correlating with the foci of the microearthquakes, and a layer of low values directly above it. These structures may reflect changes in lithology and/or fluid concentration. The overlaying low Vp/Vs ratio layer coincides with the base of the Fichtelgebirge (Smrčiny) granitic intrusion. It is possible that the base of the layer acts as a fluid trap and an upper limit to the seismicity, resulting in observed periodic swarms.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2014-08-28
    Description: Transport processes at quartz–water interfaces: constraints from hydrothermal grooving experiments Solid Earth, 5, 883-899, 2014 Author(s): K. Klevakina, J. Renner, N. Doltsinis, and W. Adeagbo We performed hydrothermal annealing experiments on quartzite samples at temperatures of 392 to 568 °C and fluid pressures of 63 to 399 MPa for up to 120 h, during which hydrothermal grooves developed on the free surfaces of the samples. An analysis of surface topology and groove characteristics with an atomic force microscope revealed a range of surface features associated with the simultaneous and successive operation of several processes partly depending on crystal orientation during the various stages of an experiment. Initially, dissolution at the quartzite-sample surface occurs to saturate the fluid in the capsule with SiO 2 . Subsequently, grooving controlled by diffusion processes takes place parallel to dissolution and precipitation due to local differences in solubility. Finally, quench products develop on grain surfaces during the termination of experiments. The average groove-root angle amounts to about 160°, varying systematically with misorientation between neighboring grains and depending slightly on temperature and run duration. The grooving is thermally activated, i.e., groove depth ranging from 5 nm to several micrometers for the entire suite of experiments generally increases with temperature and/or run time. We use Mullins' classical theories to constrain kinetic parameters for the transport processes controlling the grooving. In the light of previous measurements of various diffusion coefficients in the system SiO 2 –H 2 O, interface diffusion of Si is identified as the most plausible rate-controlling process. Grooving could potentially proceed faster by diffusion through the liquid if the fluid were not convecting in the capsule. Characteristic times of healing of microfractures in hydrous environments constrained from these kinetic parameters are consistent with the order of magnitude of timescales over which postseismic healing occurs in situ according to geophysical surveys and recurrence intervals of earthquakes.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2014-09-26
    Description: Simulation of seismic waves at the earth's crust (brittle–ductile transition) based on the Burgers model Solid Earth, 5, 1001-1010, 2014 Author(s): J. M. Carcione, F. Poletto, B. Farina, and A. Craglietto The earth's crust presents two dissimilar rheological behaviors depending on the in situ stress-temperature conditions. The upper, cooler part is brittle, while deeper zones are ductile. Seismic waves may reveal the presence of the transition but a proper characterization is required. We first obtain a stress–strain relation, including the effects of shear seismic attenuation and ductility due to shear deformations and plastic flow. The anelastic behavior is based on the Burgers mechanical model to describe the effects of seismic attenuation and steady-state creep flow. The shear Lamé constant of the brittle and ductile media depends on the in situ stress and temperature through the shear viscosity, which is obtained by the Arrhenius equation and the octahedral stress criterion. The P and S wave velocities decrease as depth and temperature increase due to the geothermal gradient, an effect which is more pronounced for shear waves. We then obtain the P−S and SH equations of motion recast in the velocity-stress formulation, including memory variables to avoid the computation of time convolutions. The equations correspond to isotropic anelastic and inhomogeneous media and are solved by a direct grid method based on the Runge–Kutta time stepping technique and the Fourier pseudospectral method. The algorithm is tested with success against known analytical solutions for different shear viscosities. A realistic example illustrates the computation of surface and reverse-VSP synthetic seismograms in the presence of an abrupt brittle–ductile transition.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2014-11-26
    Description: 3-D geomechanical–numerical model of the contemporary crustal stress state in the Alberta Basin (Canada) Solid Earth, 5, 1123-1149, 2014 Author(s): K. Reiter and O. Heidbach In the context of examining the potential usage of safe and sustainable geothermal energy in the Alberta Basin, whether in deep sediments or crystalline rock, the understanding of the in situ stress state is crucial. It is a key challenge to estimate the 3-D stress state at an arbitrarily chosen point in the crust, based on sparsely distributed in situ stress data. To address this challenge, we present a large-scale 3-D geomechanical–numerical model (700 km × 1200 km × 80 km) from a large portion of the Alberta Basin, to provide a 3-D continuous quantification of the contemporary stress orientations and stress magnitudes. To calibrate the model, we use a large database of in situ stress orientation (321 S Hmax ) as well as stress magnitude data (981 S V , 1720 S hmin and 2 (+11) S Hmax ) from the Alberta Basin. To find the best-fit model, we vary the material properties and primarily the displacement boundary conditions of the model. This study focusses in detail on the statistical calibration procedure, because of the large amount of available data, the diversity of data types, and the importance of the order of data tests. The best-fit model provides the total 3-D stress tensor for nearly the whole Alberta Basin, and allows estimation of stress orientation and stress magnitudes in advance of any well. First-order implications for the well design and configuration of enhanced geothermal systems are revealed. Systematic deviations of the modelled stress from the in situ data are found for stress orientations in the Peace River and the Bow Island Arch as well as for leak-off test magnitudes.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2014-11-27
    Description: Wave-equation-based travel-time seismic tomography – Part 2: Application to the 1992 Landers earthquake ( M w 7.3) area Solid Earth, 5, 1169-1188, 2014 Author(s): P. Tong, D. Zhao, D. Yang, X. Yang, J. Chen, and Q. Liu High-resolution 3-D P and S wave crustal velocity and Poisson's ratio models of the 1992 Landers earthquake ( M w 7.3) area are determined iteratively by a wave-equation-based travel-time seismic tomography (WETST) technique. The details of data selection, synthetic arrival-time determination, and trade-off analysis of damping and smoothing parameters are presented to show the performance of this new tomographic inversion method. A total of 78 523 P wave and 46 999 S wave high-quality arrival-time data from 2041 local earthquakes recorded by 275 stations during the period of 1992–2013 are used to obtain the final tomographic models, which cost around 10 000 CPU hours. Checkerboard resolution tests are conducted to verify the reliability of inversion results for the chosen seismic data and the wave-equation-based travel-time seismic tomography method. Significant structural heterogeneities are revealed in the crust of the 1992 Landers earthquake area which may be closely related to the local seismic activities. Strong variations of velocity and Poisson's ratio exist in the source regions of the Landers and three other nearby strong earthquakes. Most seismicity occurs in areas with high-velocity and low Poisson's ratio, which may be associated with the seismogenic layer. Pronounced low-velocity anomalies revealed in the lower crust along the Elsinore, the San Jacinto, and the San Andreas faults may reflect the existence of fluids in the lower crust. The recovery of these strong heterogeneous structures is facilitated by the use of full wave equation solvers and WETST and verifies their ability in generating high-resolution tomographic models.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2014-11-27
    Description: Wave-equation-based travel-time seismic tomography – Part 1: Method Solid Earth, 5, 1151-1168, 2014 Author(s): P. Tong, D. Zhao, D. Yang, X. Yang, J. Chen, and Q. Liu In this paper, we propose a wave-equation-based travel-time seismic tomography method with a detailed description of its step-by-step process. First, a linear relationship between the travel-time residual Δ t = T obs –T syn and the relative velocity perturbation δ c( x )/c( x ) connected by a finite-frequency travel-time sensitivity kernel K ( x ) is theoretically derived using the adjoint method. To accurately calculate the travel-time residual Δ t , two automatic arrival-time picking techniques including the envelop energy ratio method and the combined ray and cross-correlation method are then developed to compute the arrival times T syn for synthetic seismograms. The arrival times T obs of observed seismograms are usually determined by manual hand picking in real applications. Travel-time sensitivity kernel K ( x ) is constructed by convolving a~forward wavefield u ( t , x ) with an adjoint wavefield q ( t , x ). The calculations of synthetic seismograms and sensitivity kernels rely on forward modeling. To make it computationally feasible for tomographic problems involving a large number of seismic records, the forward problem is solved in the two-dimensional (2-D) vertical plane passing through the source and the receiver by a high-order central difference method. The final model is parameterized on 3-D regular grid (inversion) nodes with variable spacings, while model values on each 2-D forward modeling node are linearly interpolated by the values at its eight surrounding 3-D inversion grid nodes. Finally, the tomographic inverse problem is formulated as a regularized optimization problem, which can be iteratively solved by either the LSQR solver or a~nonlinear conjugate-gradient method. To provide some insights into future 3-D tomographic inversions, Fréchet kernels for different seismic phases are also demonstrated in this study.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    facet.materialart.
    Unknown
    Copernicus
    Publication Date: 2014-12-02
    Description: Preface: Soil processes in cold-climate environments Solid Earth, 5, 1205-1208, 2014 Author(s): M. Oliva, P. Pereira, J. Bockheim, and A. Navas
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2014-12-04
    Description: Thermal conditions during deformation of partially molten crust from TitaniQ geothermometry: rheological implications for the anatectic domain of the Araçuaí belt, eastern Brazil Solid Earth, 5, 1223-1242, 2014 Author(s): G. C. G. Cavalcante, A. Vauchez, C. Merlet, M. Egydio-Silva, M. H. Bezerra de Holanda, and B. Boyer During the Neoproterozoic orogeny, the middle crust of the Araçuaí belt underwent widespread partial melting. At the regional scale, this anatectic domain is characterized by a progressive rotation of the flow direction from south to north, suggesting a 3-D deformation of the anatectic middle crust. To better determine whether melt volumes present in the anatectic middle crust of the Araçuaí orogen were large enough to allow a combination of gravity-driven and convergence-driven deformation, we used the titanium-in-quartz (TitaniQ) geothermometer to estimate the crystallization temperatures of quartz grains in the anatectic rocks. When possible, we compared these estimates with thermobarometric estimates from traditional exchange geothermobarometers applied to neighboring migmatitic kinzigites. TitaniQ temperatures range from 750 to 900 °C, suggesting that quartz starts crystallizing at minimum temperatures of ≥ 800 °C. These results, combined with the bulk-rock chemical composition of diatexites, allows the estimation of a minimum of ~ 30% melt and a corresponding viscosity of ~ 10 9 –10 10 Pa s. Such a minimum melt content and low viscosity are in agreement with interconnected melt networks observed in the field. Considering that these characteristics are homogeneous over a wide area, this supports the finding that the strength of the middle crust was severely weakened by extensive partial melting, making it prone to gravity-driven flow and lateral extrusion.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2014-12-05
    Description: Relative tectonic activity classification in the Kermanshah area, western Iran Solid Earth, 5, 1277-1291, 2014 Author(s): M. Arian and Z. Aram Due to the closing of the subduction zone and the collision of the Arabian and Eurasian plates, the High Zagros region has always been affected by a wide range of tectonic variations. In this research, the Gharasu River basin, which is located in the Kermanshah area, was selected as the study area, six geomorphic indices were calculated, and the results of each one were divided into three classes. Then, using the indices, relative tectonic activity was calculated, and their values were classified and analysed in four groups. Regions were identified as very high, high, moderate and low. In analysing the results and combining them with field observations and regional geology, the results were often associated and justified with field evidence. The highest value is located on the Dokeral anticline in the crush zone in Zagros. Most of the areas with high and moderate values of Index of Active Tectonics (IAT) are also located in the crush zone in Zagros. Crushing in this zone is because of the main fault mechanism of the Zagros region. The result in this paper confirms previous research in this region. At the eastern end of the study area, the value of Iat is high, which could be the result of the Sarab and Koh-e Sefid fault mechanisms.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2014-09-03
    Description: Picroilmenites in Yakutian kimberlites: variations and genetic models Solid Earth, 5, 915-938, 2014 Author(s): I. V. Ashchepkov, N. V. Alymova, A. M. Logvinova, N. V. Vladykin, S. S. Kuligin, S. I. Mityukhin, H. Downes, Yu. B. Stegnitsky, S. A. Prokopiev, R. F. Salikhov, V. S. Palessky, and O. S. Khmel'nikova Major and trace element variations in picroilmenites from Late Devonian kimberlite pipes in Siberia reveal similarities within the region in general, but show individual features for ilmenites from different fields and pipes. Empirical ilmenite thermobarometry (Ashchepkov et al., 2010), as well as common methods of mantle thermobarometry and trace element geochemical modeling, shows long compositional trends for the ilmenites. These are a result of complex processes of polybaric fractionation of protokimberlite melts, accompanied by the interaction with mantle wall rocks and dissolution of previous wall rock and metasomatic associations. Evolution of the parental magmas for the picroilmenites was determined for the three distinct phases of kimberlite activity from Yubileynaya and nearby Aprelskaya pipes, showing heating and an increase of Fe# (Fe# = Fe / (Fe + Mg) a.u.) of mantle peridotite minerals from stage to stage and splitting of the magmatic system in the final stages. High-pressure (5.5–7.0 GPa) Cr-bearing Mg-rich ilmenites (group 1) reflect the conditions of high-temperature metasomatic rocks at the base of the mantle lithosphere. Trace element patterns are enriched to 0.1–10/relative to primitive mantle (PM) and have flattened, spoon-like or S- or W-shaped rare earth element (REE) patterns with Pb 〉 1. These result from melting and crystallization in melt-feeding channels in the base of the lithosphere, where high-temperature dunites, harzburgites and pyroxenites were formed. Cr-poor ilmenite megacrysts (group 2) trace the high-temperature path of protokimberlites developed as result of fractional crystallization and wall rock assimilation during the creation of the feeder systems prior to the main kimberlite eruption. Inflections in ilmenite compositional trends probably reflect the mantle layering and pulsing melt intrusion during melt migration within the channels. Group 2 ilmenites have inclined REE enriched patterns (10–100)/PM with La / Yb n ~ 10–25, similar to those derived from kimberlites, with high-field-strength elements (HFSE) peaks (typical megacrysts). A series of similar patterns results from polybaric Assimilation + fractional crystallization (AFC) crystallization of protokimberlite melts which also precipitated sulfides (Pb 〈 1) and mixed with partial melts from garnet peridotites. Relatively low-Ti ilmenites with high-Cr content (group 3) probably crystallized in the metasomatic front under the rising protokimberlite source and represent the product of crystallization of segregated partial melts from metasomatic rocks. Cr-rich ilmenites are typical of veins and veinlets in peridotites crystallized from highly contaminated magma intruded into wall rocks in different levels within the mantle columns. Ilmenites which have the highest trace element contents (1000/PM) have REE patterns similar to those of perovskites. Low Cr contents suggest relatively closed system fractionation which occurred from the base of the lithosphere up to the garnet–spinel transition, according to monomineral thermobarometry for Mir and Dachnaya pipes. Restricted trends were detected for ilmenites from Udachnaya and most other pipes from the Daldyn–Alakit fields and other regions (Nakyn, Upper Muna and Prianabarie), where ilmenite trends extend from the base of the lithosphere mainly up to 4.0 GPa. Interaction of the megacryst forming melts with the mantle lithosphere caused heating and HFSE metasomatism prior to kimberlite eruption.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2014-09-04
    Description: Biochar increases plant-available water in a sandy loam soil under an aerobic rice crop system Solid Earth, 5, 939-952, 2014 Author(s): M. T. de Melo Carvalho, A. de Holanda Nunes Maia, B. E. Madari, L. Bastiaans, P. A. J. van Oort, A. B. Heinemann, M. A. Soler da Silva, F. A. Petter, B. H. Marimon Jr., and H. Meinke The main objective of this study was to assess the impact of biochar rate (0, 8, 16 and 32 Mg ha −1 ) on the water retention capacity (WRC) of a sandy loam Dystric Plinthosol. The applied biochar was a by-product of slow pyrolysis (∼450 °C) of eucalyptus wood, milled to pass through a 2000 μm sieve that resulted in a material with an intrinsic porosity ≤10 μm and a specific surface area of ∼3.2 m 2 g −1 . The biochar was incorporated into the top 15 cm of the soil under an aerobic rice system. Our study focused on both the effects on WRC and rice yields 2 and 3 years after its application. Undisturbed soil samples were collected from 16 plots in two soil layers (5–10 and 15–20 cm). Soil water retention curves were modelled using a nonlinear mixed model which appropriately accounts for uncertainties inherent of spatial variability and repeated measurements taken within a specific soil sample. We found an increase in plant-available water in the upper soil layer proportional to the rate of biochar, with about 0.8% for each Mg ha −1 biochar amendment 2 and 3 years after its application. The impact of biochar on soil WRC was most likely related to an effect in overall porosity of the sandy loam soil, which was evident from an increase in saturated soil moisture and macro porosity with 0.5 and 1.6% for each Mg ha −1 of biochar applied, respectively. The increment in soil WRC did not translate into an increase in rice yield, essentially because in both seasons the amount of rainfall during the critical period for rice production exceeded 650 mm. The use of biochar as a soil amendment can be a worthy strategy to guarantee yield stability under short-term water-limited conditions. Our findings raise the importance of assessing the feasibility of very high application rates of biochar and the inclusion of a detailed analysis of its physical and chemical properties as part of future investigations.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2014-09-09
    Description: Biochar can be used to capture essential nutrients from dairy wastewater and improve soil physico-chemical properties Solid Earth, 5, 953-962, 2014 Author(s): T. A. Ghezzehei, D. V. Sarkhot, and A. A. Berhe Recently, the potential for biochar use to recapture excess nutrients from dairy wastewater has been a focus of a growing number of studies. It is suggested that biochar produced from locally available excess biomass can be important in reducing release of excess nutrient elements from agricultural runoff, improving soil productivity, and long-term carbon (C) sequestration. Here we present a review of a new approach that is showing promise for the use of biochar for nutrient capture. Using batch sorption experiments, it has been shown that biochar can adsorb up to 20–43% of ammonium and 19–65% of the phosphate in flushed dairy manure in 24 h. These results suggest a potential of biochar for recovering essential nutrients from dairy wastewater and improving soil fertility if the enriched biochar is returned to soil. Based on the sorption capacity of 2.86 and 0.23 mg ammonium and phosphate, respectively, per gram of biochar and 10–50% utilization of available excess biomass, in the state of California (US) alone, 11 440 to 57 200 tonnes of ammonium-N and 920–4600 tonnes of phosphate can be captured from dairy waste each year while at the same time disposing up to 8–40 million tons of excess biomass.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2014-09-09
    Description: Evaluating the importance of surface soil contributions to reservoir sediment in alpine environments: a combined modelling and fingerprinting approach in the Posets-Maladeta Natural Park Solid Earth, 5, 963-978, 2014 Author(s): L. Palazón, L. Gaspar, B. Latorre, W. H. Blake, and A. Navas Soil in alpine environments plays a key role in the development of ecosystem services and in order to maintain and preserve this important resource, information is required on processes that lead to soil erosion. Similar to other mountain alpine environments, the Benasque catchment is characterised by temperatures below freezing that can last from November to April, intense rainfall events, typically in spring and autumn, and rugged topography which makes assessment of erosion challenging. Indirect approaches to soil erosion assessment, such as combined model approaches, offer an opportunity to evaluate soil erosion in such areas. In this study (i) the SWAT (Soil and Water Assessment Tool) hydrological and erosion model and (ii) sediment fingerprinting procedures were used in parallel to assess the viability of a combined modelling and tracing approach to evaluate soil erosion processes in the area of the Posets-Maladeta Natural Park (central Spanish Pyrenees). Soil erosion rates and sediment contribution of potential sediment sources defined by soil type (Kastanozems/Phaeozems; Fluvisols and Cambisols) were assessed. The SWAT model suggested that, with the highest specific sediment yields, Cambisols are the main source of sediment in the Benasque catchment and Phaeozems and Fluvisols were identified as the lowest sediment contributors. Spring and winter model runs gave the highest and lowest specific sediment yield, respectively. In contrast, sediment fingerprinting analysis identified Fluvisols, which dominate the riparian zone, as the main sediment source at the time of sampling. This indicates the importance of connectivity as well as potential differences in the source dynamic of material in storage versus that transported efficiently from the system at times of high flow. The combined approach enabled us to better understand soil erosion processes in the Benasque alpine catchment, wherein SWAT identified areas of potential high sediment yield in large flood events but sediment fingerprinting identified areas that, due to high connectivity, contribute more to channel-stored sediment deposits.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2014-09-11
    Description: Degradation of buried ice and permafrost in the Veleta cirque (Sierra Nevada, Spain) from 2006 to 2013 as a response to recent climate trends Solid Earth, 5, 979-993, 2014 Author(s): A. Gómez-Ortiz, M. Oliva, F. Salvador-Franch, M. Salvà-Catarineu, D. Palacios, J. J. de Sanjosé-Blasco, L. M. Tanarro-García, J. Galindo-Zaldívar, and C. Sanz de Galdeano The Veleta cirque is located at the foot of the Veleta peak, one of the highest summits of the Sierra Nevada National Park (southern Spain). This cirque was the source of a glacier valley during the Quaternary cold periods. During the Little Ice Age it sheltered a small glacier, the most southerly in Europe, about which we have possessed written records since the 17th century. This glacier still had ice residues until the mid-20th century. This ice is no longer visible, but a residue persists along with discontinuous permafrost trapped under strata of rock blocks that make up an incipient rock glacier. From 2006 to 2013, this rock glacier was monitored by measurement of the temperature of the active layer, the degree of snow cover on the ground, movements of the body of the rock glacier and geophysical prospection inside it. The results show that the relict ice and trapped permafrost have been steadily declining. The processes that explain this degradation occur in chain, starting from the external radiation that affects the ground in summer, which is when the temperatures are higher. In effect, when this radiation steadily melts the snow on the ground, the thermal expansive wave advances into the heart of the active layer, reaching the ceiling of the frozen mass, which it then degrades and melts. In this entire linked process, the circulation of meltwaters fulfils a highly significant function, as they act as heat transmitters. The complementary nature of these processes explains the subsidence and continuous changes in the entire clastic pack and the melting of the frozen ceiling on which it rests. This happens in summer in just a few weeks. All these events, in particular the geomorphological ones, take place on the Sierra Nevada peaks within certain climate conditions that are at present unfavourable to the maintenance of snow on the ground in summer. These conditions could be related to recent variations in the climate, starting in the mid-19th century and most markedly since the second half of the 20th century. The work and results highlight the climate sensitivity of the peaks of the Sierra Nevada to the effect of climate change and its impact on the dynamics of ecosystems, which is a benchmark for evaluating the current evolution of landscapes of Mediterranean high mountains.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2014-12-05
    Description: Future accreted terranes: a compilation of island arcs, oceanic plateaus, submarine ridges, seamounts, and continental fragments Solid Earth, 5, 1243-1275, 2014 Author(s): J. L. Tetreault and S. J. H. Buiter Allochthonous accreted terranes are exotic geologic units that originated from anomalous crustal regions on a subducting oceanic plate and were transferred to the overriding plate by accretionary processes during subduction. The geographical regions that eventually become accreted allochthonous terranes include island arcs, oceanic plateaus, submarine ridges, seamounts, continental fragments, and microcontinents. These future allochthonous terranes (FATs) contribute to continental crustal growth, subduction dynamics, and crustal recycling in the mantle. We present a review of modern FATs and their accreted counterparts based on available geological, seismic, and gravity studies and discuss their crustal structure, geological origin, and bulk crustal density. Island arcs have an average crustal thickness of 26 km, average bulk crustal density of 2.79 g cm −3 , and three distinct crustal units overlying a crust–mantle transition zone. Oceanic plateaus and submarine ridges have an average crustal thickness of 21 km and average bulk crustal density of 2.84 g cm −3 . Continental fragments presently on the ocean floor have an average crustal thickness of 25 km and bulk crustal density of 2.81 g cm −3 . Accreted allochthonous terranes can be compared to these crustal compilations to better understand which units of crust are accreted or subducted. In general, most accreted terranes are thin crustal units sheared off of FATs and added onto the accretionary prism, with thicknesses on the order of hundreds of meters to a few kilometers. However, many island arcs, oceanic plateaus, and submarine ridges were sheared off in the subduction interface and underplated onto the overlying continent. Other times we find evidence of terrane–continent collision leaving behind accreted terranes 25–40 km thick. We posit that rheologically weak crustal layers or shear zones that were formed when the FATs were produced can be activated as detachments during subduction, allowing parts of the FAT crust to accrete and others to subduct. In many modern FATs on the ocean floor, a sub-crustal layer of high seismic velocities, interpreted as ultramafic material, could serve as a detachment or delaminate during subduction.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2014-12-17
    Description: Polycyclic aromatic hydrocarbons in post-fire soils of drained peatlands in western Meshchera (Moscow region, Russia) Solid Earth, 5, 1305-1317, 2014 Author(s): A. Tsibart, A. Gennadiev, T. Koshovskii, and A. Watts Polycyclic aromatic hydrocarbons (PAHs) are priority pollutants that arrive in the environment from numerous anthropogenic and natural sources, but the data on their natural sources including wildfires remain insufficient. The level of contamination and the composition of PAHs in soils of the areas affected by wildfires were studied in this work. The study was conducted in the Moscow region (Russia) in areas occupied by drained peatland and strongly damaged by fires in 2002, 2010 and 2012. The features of PAH accumulation and the profile distributions in histosols and histic podzols after the fires of different times were analyzed. It was shown that new soil horizons formed after the fires – Cpir, Hpir and incipient O horizons – and that these horizons differ in PAH accumulation rate. Maximal total concentrations of 14 PAHs were detected in charred peat horizons Hpir (up to 330 ng g −1 ) and in post-fire incipient O horizons (up to 180 ng g −1 ), but the high-molecular-weight PAHs (benz(ghi)perylene, benz(a)pyrene, benz(k)fluoranthene) were revealed only in charry peat horizons. The trends of higher PAH concentrations were found in cases when smoldering combustion resulted in rather thick residual peat horizons. In cases of almost complete pyrogenic destruction of He horizons, total PAH concentrations were no more than 50 ng g −1 . Also, PAH accumulation in upper horizons of soils near the sites of the latest fires was observed.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2014-12-17
    Description: Characterization and interaction of driving factors in karst rocky desertification: a case study from Changshun, China Solid Earth, 5, 1329-1340, 2014 Author(s): E. Q. Xu and H. Q. Zhang As the most severe ecological issue in southwest China, karst rocky desertification (KRD) has both threatened and constrained regional sustainable development. Comprehensively understanding the relationship between the evolution of KRD and relevant driving data would provide more information to combat KRD in such complex karst environments. Past studies have been limited in quantifying the relative importance of driving factors influencing fine-scale KRD evolution, and have also lacked insight into their interactive impacts. To address these issues, we have used geographical information system techniques and a geographical detector model to explore the spatial consistency of driving factors and their interactions in relation to the evolution of KRD. Changshun County in China was selected as a representative area for the study. Nine relevant driving factors, including both natural and anthropogenic factors, were studied in regard to their relationships with KRD transformation between 2000 and 2010. Our results demonstrate the relative importance of driving data in influencing the improvement and deterioration of KRD. Lithology, soil type and road influence are identified as the leading factors. Interestingly, to our study at least, there is no significant difference between the impacts of natural and anthropogenic factors influencing KRD improvement, and even natural factors have a higher impact on KRD deterioration. Factors were found to enhance the influence of each other for KRD transformation. In particular, the results show a non-linearly enhanced effect between driving factors, which significantly aggravates KRD. New information found in our study helps to effectively control and restore areas afflicted by KRD.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2014-12-17
    Description: Microscale strain partitioning? Differential quartz crystallographic fabric development in Phyllite, Hindu Kush, Northwestern Pakistan Solid Earth, 5, 1319-1327, 2014 Author(s): K. P. Larson, J. L. Lamming, and S. Faisal Spatially referenced quartz c axis fabrics demonstrate the preservation of multiple, distinct fabrics in a specimen collected from northwestern Pakistan. The overall fabric yielded by the specimen is dominated by a single population of quartz grains, while the fabric signatures of two other unique, spatially distinct populations are overwhelmed. It is these minor fabrics, however, that provide information on temperature of deformation (403 ± 50 °C), differential stress (8.6 + 2.6/−1.5 MPa to 15.0 +3.8/−2.5 MPa), strain rate (10 −16 s −1 to 10 −15 s −1 ), and strain partitioning recorded by the specimen.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2014-12-11
    Description: Features of the Earth surface deformations in the Kamchatka peninsula and their relation to geoacoustic emission Solid Earth, 5, 1293-1300, 2014 Author(s): I. A. Larionov, Y. V. Marapulets, and B. M. Shevtsov The paper presents the results of investigations of deformation processes in the near-surface sedimentary rocks, which have been carried out in a seismically active region of the Kamchatka peninsula since 2007. The peculiarity of the experiments on registration of geodeformations is the application of a laser strainmeter–interferometer constructed according to the Michelson interferometer scheme. Besides rock deformations, geoacoustic emission in the frequency range from several hertz to the first tens of kilohertz is under investigation. Piezoceramic hydrophones installed in artificial water reservoirs are applied. It is shown that periods of primary rock compression and tension with a duration of up to several months are distinguished in the geodeformation process at the observation site. During the direction change in the deformations, when the geodeformation process rate grows, an increase in geoacoustic radiation is observed.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2014-05-17
    Description: Morphology and surface features of olivine in kimberlite: implications for ascent processes Solid Earth, 5, 313-326, 2014 Author(s): T. J. Jones, J. K. Russell, L. A. Porritt, and R. J. Brown Most kimberlite rocks contain large proportions of ellipsoidal-shaped xenocrystic olivine grains that are derived mainly from disaggregation of peridotite. Here, we describe the shapes, sizes and surfaces of olivine grains recovered from kimberlite lavas erupted from the Quaternary Igwisi Hills volcano, Tanzania. The Igwisi Hills kimberlitic olivine grains are compared to phenocrystic olivine, liberated from picritic lavas, and mantle olivine, liberated from a fresh peridotite xenolith. Image analysis, scanning electron microscopy imagery and laser microscopy reveal significant differences in the morphologies and surface features of the three crystal populations. The kimberlitic olivine grains form smooth, rounded to ellipsoidal shapes and have rough flaky micro-surfaces that are populated by impact pits. Mantle olivine grains are characterised by flaked surfaces and indented shapes consistent with growth as a crystal aggregate. Phenocrystic olivine exhibit faceted, smooth-surfaced crystal faces. We suggest that the unique shape and surface properties of the Igwisi Hills kimberlitic olivine grains are products of the transport processes attending kimberlite ascent from mantle source to surface. We infer that the unique shapes and surfaces of kimberlitic olivine grains result from three distinct mechanical processes attending their rapid transport through the thick cratonic mantle lithosphere: (1) penetrative flaking from micro-tensile failure induced by rapid decompression; (2) sustained abrasion and attrition driven by particle–particle collisions between grains within a turbulent, volatile-rich flow regime; and (3) higher-energy particle–particle collisions producing impact cavities superimposed on decompression structures. The combination of these processes during the rapid ascent of kimberlite magmas is responsible for the distinctive ellipsoidal shape of olivine xenocrysts found in kimberlites worldwide.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2014-05-27
    Description: Comparing a thermo-mechanical Weichselian Ice Sheet reconstruction to reconstructions based on the sea level equation: aspects of ice configurations and glacial isostatic adjustment Solid Earth, 5, 371-388, 2014 Author(s): P. Schmidt, B. Lund, J-O. Näslund, and J. Fastook In this study we compare a recent reconstruction of the Weichselian Ice Sheet as simulated by the University of Maine ice sheet model (UMISM) to two reconstructions commonly used in glacial isostatic adjustment (GIA) modelling: ICE-5G and ANU (Australian National University, also known as RSES). The UMISM reconstruction is carried out on a regional scale based on thermo-mechanical modelling, whereas ANU and ICE-5G are global models based on the sea level equation. The three models of the Weichselian Ice Sheet are compared directly in terms of ice volume, extent and thickness, as well as in terms of predicted glacial isostatic adjustment in Fennoscandia. The three reconstructions display significant differences. Whereas UMISM and ANU includes phases of pronounced advance and retreat prior to the last glacial maximum (LGM), the thickness and areal extent of the ICE-5G ice sheet is more or less constant up until the LGM. During the post-LGM deglaciation phase ANU and ICE-5G melt relatively uniformly over the entire ice sheet in contrast to UMISM, which melts preferentially from the edges, thus reflecting the fundamental difference in the reconstruction scheme. We find that all three reconstructions fit the present-day uplift rates over Fennoscandia equally well, albeit with different optimal earth model parameters. Given identical earth models, ICE-5G predicts the fastest present-day uplift rates, and ANU the slowest. Moreover, only for ANU can a unique best-fit model be determined. For UMISM and ICE-5G there is a range of earth models that can reproduce the present-day uplift rates equally well. This is understood from the higher present-day uplift rates predicted by ICE-5G and UMISM, which result in bifurcations in the best-fit upper- and lower-mantle viscosities. We study the areal distributions of present-day residual surface velocities in Fennoscandia and show that all three reconstructions generally over-predict velocities in southwestern Fennoscandia and that there are large differences in the fit to the observational data in Finland and northernmost Sweden and Norway. These difference may provide input to further enhancements of the ice sheet reconstructions.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2014-05-29
    Description: On the complexity of surface ruptures during normal faulting earthquakes: excerpts from the 6 April 2009 L'Aquila (central Italy) earthquake ( M w 6.3) Solid Earth, 5, 389-408, 2014 Author(s): L. Bonini, D. Di Bucci, G. Toscani, S. Seno, and G. Valensise Over the past few years the assessment of the earthquake potential of large continental faults has increasingly relied on field investigations. State-of-the-art seismic hazard models are progressively complementing the information derived from earthquake catalogs with geological observations of active faulting. Using these observations, however, requires full understanding of the relationships between seismogenic slip at depth and surface deformation, such that the evidence indicating the presence of a large, potentially seismogenic fault can be singled out effectively and unambiguously. We used observations and models of the 6 April 2009, M w 6.3, L'Aquila, normal faulting earthquake to explore the relationships between the activity of a large fault at seismogenic depth and its surface evidence. This very well-documented earthquake is representative of mid-size yet damaging earthquakes that are frequent around the Mediterranean basin, and was chosen as a paradigm of the nature of the associated geological evidence, along with observational difficulties and ambiguities. Thanks to the available high-resolution geologic, geodetic and seismological data aided by analog modeling, we reconstructed the full geometry of the seismogenic source in relation to surface and sub-surface faults. We maintain that the earthquake was caused by seismogenic slip in the range 3–10 km depth, and that the slip distribution was strongly controlled by inherited discontinuities. We also contend that faulting was expressed at the surface by pseudo-primary breaks resulting from coseismic crustal bending and by sympathetic slip on secondary faults. Based on our results we propose a scheme of normal fault hierarchization through which all surface occurrences related to faulting at various depths can be interpreted in the framework of a single, mechanically coherent model. We stress that appreciating such complexity is crucial to avoiding severe over- or under-estimation of the local seismogenic potential.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    facet.materialart.
    Unknown
    Copernicus
    Publication Date: 2014-06-05
    Description: AxiSEM: broadband 3-D seismic wavefields in axisymmetric media Solid Earth, 5, 425-445, 2014 Author(s): T. Nissen-Meyer, M. van Driel, S. C. Stähler, K. Hosseini, S. Hempel, L. Auer, A. Colombi, and A. Fournier We present a methodology to compute 3-D global seismic wavefields for realistic earthquake sources in visco-elastic anisotropic media, covering applications across the observable seismic frequency band with moderate computational resources. This is accommodated by mandating axisymmetric background models that allow for a multipole expansion such that only a 2-D computational domain is needed, whereas the azimuthal third dimension is computed analytically on the fly. This dimensional collapse opens doors for storing space–time wavefields on disk that can be used to compute Fréchet sensitivity kernels for waveform tomography. We use the corresponding publicly available AxiSEM ( www.axisem.info ) open-source spectral-element code, demonstrate its excellent scalability on supercomputers, a diverse range of applications ranging from normal modes to small-scale lowermost mantle structures, tomographic models, and comparison with observed data, and discuss further avenues to pursue with this methodology.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2014-06-05
    Description: BrO/SO 2 molar ratios from scanning DOAS measurements in the NOVAC network Solid Earth, 5, 409-424, 2014 Author(s): P. Lübcke, N. Bobrowski, S. Arellano, B. Galle, G. Garzón, L. Vogel, and U. Platt The molar ratio of BrO to SO 2 is, like other halogen/sulfur ratios, a possible precursor for dynamic changes in the shallow part of a volcanic system. While the predictive significance of the BrO/SO 2 ratio has not been well constrained yet, it has the major advantage that this ratio can be readily measured using the remote-sensing technique differential optical absorption spectroscopy (DOAS) in the UV. While BrO/SO 2 ratios have been measured during several short-term field campaigns, this article presents an algorithm that can be used to obtain long-term time series of BrO/SO 2 ratios from the scanning DOAS instruments of the Network for Observation of Volcanic and Atmospheric Change (NOVAC) or comparable networks. Parameters of the DOAS retrieval of both trace gases are given. The influence of co-adding spectra on the retrieval error and influences of radiative transfer will be investigated. Difficulties in the evaluation of spectroscopic data from monitoring instruments in volcanic environments and possible solutions are discussed. The new algorithm is demonstrated by evaluating data from the NOVAC scanning DOAS systems at Nevado del Ruiz, Colombia, encompassing almost 4 years of measurements between November 2009 and end of June 2013. This data set shows variations of the BrO/SO 2 ratio several weeks prior to the eruption on 30 June 2012.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2014-07-11
    Description: Factors controlling the geochemical composition of Limnopolar Lake sediments (Byers Peninsula, Livingston Island, South Shetland Island, Antarctica) during the last ca. 1600 years Solid Earth, 5, 651-663, 2014 Author(s): A. Martínez Cortizas, I. Rozas Muñiz, T. Taboada, M. Toro, I. Granados, S. Giralt, and S. Pla-Rabés We sampled a short (57 cm) sediment core in Limnopolar Lake (Byers Peninsula, Livingston Island, South Shetland Islands), which spans the last ca. 1600 years. The core was sectioned at high resolution and analyzed for elemental and mineralogical composition, and scanning electron microscope and energy dispersive X-ray spectrometer (SEM-EDS) analysis of glass mineral particles in selected samples. The chemical record was characterized by a contrasted pattern of layers with high Ca, Ti, Zr, and Sr concentrations and layers with higher concentrations of K and Rb. The former were also enriched in plagioclase and, occasionally, in zeolites, while the latter were relatively enriched in 2 : 1 phyllosilicates and quartz. This was interpreted as reflecting the abundance of volcaniclastic material (Ca rich) versus Jurassic–Lower Cretaceous marine sediments (K rich) – the dominant geological material in the lake catchment. SEM-EDS analysis revealed the presence of abundant volcanic shards in the Ca-rich layers, pointing to tephras most probably related to the activity of Deception Island volcano (located 30 km to the SE). The ages of four main peaks of volcanic-rich material (AD ca. 1840–1860 for L1, AD ca. 1570–1650 for L2, AD ca. 1450–1470 for L3, and AD ca. 1300 for L4) matched reasonably well the age of tephra layers (AP1 to AP3) previously identified in lakes of Byers Peninsula. Some of the analyzed metals (Fe, Mn, Cu, and Cr) showed enrichments in the most recent tephra layer (L1), suggesting relative changes in the composition of the tephras as found in previous investigations. No evidence of significant human impact on the cycles of most trace metals (Cu, Zn, Pb) was found, probably due to the remote location of Livingston Island and the modest research infrastructures; local contamination was found by other researchers in soils, waters and marine sediments on areas with large, permanent research stations. Chromium is the only metal showing a steady enrichment in the last 200 years, but this cannot be directly attributed to anthropogenic pollution since recent research supports the interpretation that climatic variability (reduced moisture content and increased wind intensity) may have resulted in enhanced fluxes of mineral dust and trace elements (Cr among them) to Antarctica. At the same time, some features of the chemical record suggest that climate may have also played a role in the cycling of the elements, but further research is needed to identify the underlying mechanisms.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2014-02-20
    Description: Jurassic–Paleogene intraoceanic magmatic evolution of the Ankara Mélange, north-central Anatolia, Turkey Solid Earth, 5, 77-108, 2014 Author(s): E. Sarifakioglu, Y. Dilek, and M. Sevin Oceanic rocks in the Ankara Mélange along the Izmir–Ankara–Erzincan suture zone (IAESZ) in north-central Anatolia include locally coherent ophiolite complexes ( ∼  179 Ma and ∼  80 Ma), seamount or oceanic plateau volcanic units with pelagic and reefal limestones (96.6  ±  1.8 Ma), metamorphic rocks with ages of 256.9  ±  8.0 Ma, 187.4  ±  3.7 Ma, 158.4  ±  4.2 Ma, and 83.5  ±  1.2 Ma indicating northern Tethys during the late Paleozoic through Cretaceous, and subalkaline to alkaline volcanic and plutonic rocks of an island arc origin ( ∼  67–63 Ma). All but the arc rocks occur in a shale–graywacke and/or serpentinite matrix, and are deformed by south-vergent thrust faults and folds that developed in the middle to late Eocene due to continental collisions in the region. Ophiolitic volcanic rocks have mid-ocean ridge (MORB) and island arc tholeiite (IAT) affinities showing moderate to significant large ion lithophile elements (LILE) enrichment and depletion in Nb, Hf, Ti, Y and Yb, which indicate the influence of subduction-derived fluids in their melt evolution. Seamount/oceanic plateau basalts show ocean island basalt (OIB) affinities. The arc-related volcanic rocks, lamprophyric dikes and syenodioritic plutons exhibit high-K shoshonitic to medium- to high-K calc-alkaline compositions with strong enrichment in LILE, rare earth elements (REE) and Pb, and initial ε Nd values between + 1.3 and + 1.7. Subalkaline arc volcanic units occur in the northern part of the mélange, whereas the younger alkaline volcanic rocks and intrusions (lamprophyre dikes and syenodioritic plutons) in the southern part. The late Permian, Early to Late Jurassic, and Late Cretaceous amphibole-epidote schist, epidote-actinolite, epidote-chlorite and epidote-glaucophane schists represent the metamorphic units formed in a subduction channel in the northern Neotethys. The Middle to Upper Triassic neritic limestones spatially associated with the seamount volcanic rocks indicate that the northern Neotethys was an open ocean with its MORB-type oceanic lithosphere by the early Triassic (or earlier). The latest Cretaceous–early Paleocene island arc volcanic, dike and plutonic rocks with subalkaline to alkaline geochemical affinities represent intraoceanic magmatism that developed on and across the subduction–accretion complex above a N-dipping, southward-rolling subducted lithospheric slab within the northern Neotethys. The Ankara Mélange thus exhibits the record of ∼  120–130 million years of oceanic magmatism in geological history of the northern Neotethys.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    facet.materialart.
    Unknown
    Copernicus
    Publication Date: 2014-04-30
    Description: The Cretaceous and Cenozoic tectonic evolution of Southeast Asia Solid Earth, 5, 227-273, 2014 Author(s): S. Zahirovic, M. Seton, and R. D. Müller Tectonic reconstructions of Southeast Asia have given rise to numerous controversies that include the accretionary history of Sundaland and the enigmatic tectonic origin of the proto-South China Sea. We assimilate a diversity of geological and geophysical observations into a new regional plate model, coupled to a global model, to address these debates. Our approach takes into account terrane suturing and accretion histories, the location of subducted slabs imaged in mantle tomography in order to constrain the evolution of regional subduction zones, as well as plausible absolute and relative plate velocities and tectonic driving mechanisms. We propose a scenario of rifting from northern Gondwana in the latest Jurassic, driven by northward slab pull from north-dipping subduction of Tethyan crust beneath Eurasia, to detach East Java, Mangkalihat, southeast Borneo and West Sulawesi blocks that collided with a Tethyan intra-oceanic subduction zone in the mid-Cretaceous and subsequently accreted to the Sunda margin (i.e., southwest Borneo core) in the Late Cretaceous. In accounting for the evolution of plate boundaries, we propose that the Philippine Sea plate originated on the periphery of Tethyan crust forming this northward conveyor. We implement a revised model for the Tethyan intra-oceanic subduction zones to reconcile convergence rates, changes in volcanism and the obduction of ophiolites. In our model the northward margin of Greater India collides with the Kohistan–Ladakh intra-oceanic arc at ∼53 Ma, followed by continent–continent collision closing the Shyok and Indus–Tsangpo suture zones between ∼42 and 34 Ma. We also account for the back-arc opening of the proto-South China Sea from ∼65 Ma, consistent with extension along east Asia and the formation of supra-subduction zone ophiolites presently found on the island of Mindoro. The related rifting likely detached the Semitau continental fragment from South China, which accreted to northern Borneo in the mid-Eocene, to account for the Sarawak Orogeny. Rifting then re-initiated along southeast China by 37 Ma to open the South China Sea, resulting in the complete consumption of proto-South China Sea by ∼17 Ma when the collision of the Dangerous Grounds and northern Palawan blocks with northern Borneo choked the subduction zone to result in the Sabah Orogeny and the obduction of ophiolites in Palawan and Mindoro. We conclude that the counterclockwise rotation of Borneo was accommodated by oroclinal bending consistent with paleomagnetic constraints, the curved lithospheric lineaments observed in gravity anomalies of the Java Sea and the curvature of the Cretaceous Natuna paleo-subduction zone. We complete our model by constructing a time-dependent network of topological plate boundaries and gridded paleo-ages of oceanic basins, allowing us to compare our plate model evolution to seismic tomography. In particular, slabs observed at depths shallower than ∼1000 km beneath northern Borneo and the South China Sea are likely to be remnants of the proto-South China Sea basin.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2014-07-01
    Description: The sensitivity of GNSS measurements in Fennoscandia to distinct three-dimensional upper-mantle structures Solid Earth, 5, 557-567, 2014 Author(s): H. Steffen and P. Wu The sensitivity of global navigation satellite system (GNSS) measurements in Fennoscandia to nearby viscosity variations in the upper mantle is investigated using a 3-D finite element model of glacial isostatic adjustment (GIA). Based on the lateral viscosity structure inferred from seismic tomography and the location of the ice margin at the last glacial maximum (LGM), the GIA earth model is subdivided into four layers, where each of them contains an amalgamation of about 20 blocks of different shapes in the central area. The sensitivity kernels of the three velocity components at 10 selected GNSS stations are then computed for all the blocks. We find that GNSS stations within the formerly glaciated area are most sensitive to mantle viscosities below and in its near proximity, i.e., within about 250 km in general. However, this can be as large as 1000 km if the stations lie near the center of uplift. The sensitivity of all stations to regions outside the ice margin during the LGM is generally negligible. In addition, it is shown that prominent structures in the second (250–450 km depth) and third layers (450–550 km depth) of the upper mantle may be readily detected by GNSS measurements, while the viscosity in the first mantle layer below the lithosphere (70–250 km depth) along the Norwegian coast, which is related to lateral lithospheric thickness variation there, can also be detected but with limited sensitivity. For future investigations on the lateral viscosity structure, preference should be on GNSS stations within the LGM ice margin. But these stations can be grouped into clusters to improve the inference of viscosity in a specific area. However, the GNSS measurements used in such inversion should be weighted according to their sensitivity. Such weighting should also be applied when they are used in combination with other GIA data (e.g., relative sea-level and gravity data) for the inference of mantle viscosity.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2014-07-02
    Description: Permafrost-affected soils and their carbon pools with a focus on the Russian Arctic Solid Earth, 5, 595-609, 2014 Author(s): S. Zubrzycki, L. Kutzbach, and E.-M. Pfeiffer Permafrost-affected soils have accumulated enormous pools of organic matter during the Quaternary period. The area occupied by these soils amounts to more than 8.6 million km 2 , which is about 27% of all land areas north of 50° N. Therefore, permafrost-affected soils are considered to be one of the important cryosphere elements within the climate system. Due to the cryopedogenic processes that form these particular soils and the overlying vegetation that is adapted to the arctic climate, organic matter has accumulated to the present extent of up to 1024 Pg (1 Pg = 10 15 g = 1 Gt) of soil organic carbon stored within the uppermost 3 m of ground. Considering the observed progressive climate change and the projected polar amplification, permafrost-affected soils will undergo fundamental property changes. Higher turnover and mineralisation rates of the organic matter are consequences of these changes, which are expected to result in an increased release of climate-relevant trace gases into the atmosphere. The controversy of whether permafrost regions continue accumulating carbon or already function as a carbon source remains open until today. An increased focus on this subject matter, especially in underrepresented Siberian regions, could contribute to a more robust estimation of the soil organic carbon pool of permafrost regions and at the same time improve the understanding of the carbon sink and source functions of permafrost-affected soils.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2014-07-01
    Description: Future Antarctic bed topography and its implications for ice sheet dynamics Solid Earth, 5, 569-584, 2014 Author(s): S. Adhikari, E. R. Ivins, E. Larour, H. Seroussi, M. Morlighem, and S. Nowicki The Antarctic bedrock is evolving as the solid Earth responds to the past and ongoing evolution of the ice sheet. A recently improved ice loading history suggests that the Antarctic Ice Sheet (AIS) has generally been losing its mass since the Last Glacial Maximum. In a sustained warming climate, the AIS is predicted to retreat at a greater pace, primarily via melting beneath the ice shelves. We employ the glacial isostatic adjustment (GIA) capability of the Ice Sheet System Model (ISSM) to combine these past and future ice loadings and provide the new solid Earth computations for the AIS. We find that past loading is relatively less important than future loading for the evolution of the future bed topography. Our computations predict that the West Antarctic Ice Sheet (WAIS) may uplift by a few meters and a few tens of meters at years AD 2100 and 2500, respectively, and that the East Antarctic Ice Sheet is likely to remain unchanged or subside minimally except around the Amery Ice Shelf. The Amundsen Sea Sector in particular is predicted to rise at the greatest rate; one hundred years of ice evolution in this region, for example, predicts that the coastline of Pine Island Bay will approach roughly 45 mm yr −1 in viscoelastic vertical motion. Of particular importance, we systematically demonstrate that the effect of a pervasive and large GIA uplift in the WAIS is generally associated with the flattening of reverse bed slope, reduction of local sea depth, and thus the extension of grounding line (GL) towards the continental shelf. Using the 3-D higher-order ice flow capability of ISSM, such a migration of GL is shown to inhibit the ice flow. This negative feedback between the ice sheet and the solid Earth may promote stability in marine portions of the ice sheet in the future.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2014-07-01
    Description: Factors driving the carbon mineralization priming effect in a sandy loam soil amended with different types of biochar Solid Earth, 5, 585-594, 2014 Author(s): P. Cely, A. M. Tarquis, J. Paz-Ferreiro, A. Méndez, and G. Gascó The effect of biochar on the soil carbon mineralization priming effect depends on the characteristics of the raw materials, production method and pyrolysis conditions. The goal of the present study is to evaluate the impact of three different types of biochar on physicochemical properties and CO 2 emissions of a sandy loam soil. For this purpose, soil was amended with three different biochars (BI, BII and BIII) at a rate of 8 wt% and soil CO 2 emissions were measured for 45 days. BI is produced from a mixed wood sieving from wood chip production, BII from a mixture of paper sludge and wheat husks and BIII from sewage sludge. Cumulative CO 2 emissions of biochars, soil and amended soil were well fit to a simple first-order kinetic model with correlation coefficients ( r 2 ) greater than 0.97. Results show a negative priming effect in the soil after addition of BI and a positive priming effect in the case of soil amended with BII and BIII. These results can be related to different biochar properties such as carbon content, carbon aromaticity, volatile matter, fixed carbon, easily oxidized organic carbon or metal and phenolic substance content in addition to surface biochar properties. Three biochars increased the values of soil field capacity and wilting point, while effects over pH and cation exchange capacity were not observed.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    facet.materialart.
    Unknown
    Copernicus
    Publication Date: 2014-07-03
    Description: Did Adria rotate relative to Africa? Solid Earth, 5, 611-629, 2014 Author(s): D. J. J. van Hinsbergen, M. Mensink, C. G. Langereis, M. Maffione, L. Spalluto, M. Tropeano, and L. Sabato The first and foremost boundary condition for kinematic reconstructions of the Mediterranean region is the relative motion between Africa and Eurasia, constrained through reconstructions of the Atlantic Ocean. The Adria continental block is in a downgoing plate position relative to the strongly curved central Mediterranean subduction-related orogens, and forms the foreland of the Apennines, Alps, Dinarides, and Albanides–Hellenides. It is connected to the African plate through the Ionian Basin, likely with Lower Mesozoic oceanic lithosphere. If the relative motion of Adria versus Africa is known, its position relative to Eurasia can be constrained through a plate circuit, thus allowing robust boundary conditions for the reconstruction of the complex kinematic history of the Mediterranean region. Based on kinematic reconstructions for the Neogene motion of Adria versus Africa, as interpreted from the Alps and from Ionian Basin and its surrounding areas, it has been suggested that Adria underwent counterclockwise (ccw) vertical axis rotations ranging from ~ 0 to 20°. Here, we provide six new paleomagnetic poles from Adria, derived from the Lower Cretaceous to Upper Miocene carbonatic units of the Apulian peninsula (southern Italy). These, in combination with published poles from the Po Plain (Italy), the Istrian peninsula (Croatia), and the Gargano promontory (Italy), document a post-Eocene 9.8 ± 9.5° counterclockwise vertical axis rotation of Adria. Our results do not show evidence of significant Africa–Adria rotation between the Early Cretaceous and Eocene. Models based on reconstructions of the Alps, invoking 17° ccw rotation, and based on the Ionian Basin, invoking 2° ccw rotation, are both permitted within the documented rotation range, yet are mutually exclusive. This apparent enigma could possibly be solved only if one or more of the following conditions are satisfied: (i) Neogene shortening in the western Alps has been significantly underestimated (by as much as 150 km); (ii) Neogene extension in the Ionian Basin has been significantly underestimated (by as much as 420 km); and/or (iii) a major sinistral strike-slip zone has decoupled northern and southern Adria in Neogene time. Here we present five alternative reconstructions of Adria at 20 Ma, highlighting the kinematic uncertainties, and satisfying the inferred rotation pattern from this study and/or from previously proposed kinematic reconstructions.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    facet.materialart.
    Unknown
    Copernicus
    Publication Date: 2014-04-10
    Description: Seismogenic frictional melting in the magmatic column Solid Earth, 5, 199-208, 2014 Author(s): J. E. Kendrick, Y. Lavallée, K.-U. Hess, S. De Angelis, A. Ferk, H. E. Gaunt, P. G. Meredith, D. B. Dingwell, and R. Leonhardt Lava dome eruptions subjected to high extrusion rates commonly evolve from endogenous to exogenous growth and limits to their structural stability hold catastrophic potential as explosive eruption triggers. In the conduit, strain localisation in magma, accompanied by seismogenic failure, marks the onset of brittle magma ascent dynamics. The rock record of exogenous dome structures preserves vestiges of cataclastic processes and thermal anomalies, key to unravelling subsurface processes. Here, a combined structural, thermal and magnetic investigation of a shear band crosscutting a large block erupted in 2010 at Soufrière Hills volcano (SHV) reveals evidence of faulting and frictional melting within the magmatic column. The mineralogy of this pseudotachylyte vein offers confirmation of complete recrystallisation, altering the structure, porosity and permeability of the material, and the magnetic signature typifies local electric currents in faults. Such melting events may be linked to the step-wise extrusion of magma accompanied by repetitive long-period (LP) drumbeat seismicity at SHV. Frictional melting of Soufrière Hills andesite in a high velocity rotary shear apparatus highlights the small slip distances ( 〈 15 cm) thought to be required to bring 800 °C magma to melting point at upper conduit stress conditions (10 MPa). We conclude that frictional melting is a common consequence of seismogenic magma fracture during dome building eruptions and that it may govern the ascent of magma in the upper conduit.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2014-04-12
    Description: Short-term changes in soil Munsell colour value, organic matter content and soil water repellency after a spring grassland fire in Lithuania Solid Earth, 5, 209-225, 2014 Author(s): P. Pereira, X. Úbeda, J. Mataix-Solera, M. Oliva, and A. Novara Fire is a natural phenomenon with important implications on soil properties. The degree of this impact depends upon fire severity, the ecosystem affected, topography of the burned area and post-fire meteorological conditions. The study of fire effects on soil properties is fundamental to understand the impacts of this disturbance on ecosystems. The aim of this work was to study the short-term effects immediately after the fire (IAF), 2, 5, 7 and 9 months after a low-severity spring boreal grassland fire on soil colour value (assessed with the Munsell colour chart), soil organic matter content (SOM) and soil water repellency (SWR) in Lithuania. Four days after the fire a 400 m 2 plot was delineated in an unburned and burned area with the same topographical characteristics. Soil samples were collected at 0–5 cm depth in a 20 m × 20 m grid, with 5 m space between sampling points. In each plot 25 samples were collected (50 each sampling date) for a total of 250 samples for the whole study. SWR was assessed in fine earth ( 〈 2 mm) and sieve fractions of 2–1, 1–0.5, 0.5–0.25 and 〈 0.25 mm from the 250 soil samples using the water drop penetration time (WDPT) method. The results showed that significant differences were only identified in the burned area. Fire darkened the soil significantly during the entire study period due to the incorporation of ash/charcoal into the topsoil (significant differences were found among plots for all sampling dates). SOM was only significantly different among samples from the unburned area. The comparison between plots revealed that SOM was significantly higher in the first 2 months after the fire in the burned plot, compared to the unburned plot. SWR of the fine earth was significantly different in the burned and unburned plot among all sampling dates. SWR was significantly more severe only IAF and 2 months after the fire. In the unburned area SWR was significantly higher IAF, 2, 5 and 7 months later after than 9 months later. The comparison between plots showed that SWR was more severe in the burned plot during the first 2 months after the fire in relation to the unburned plot. Considering the different sieve fractions studied, in the burned plot SWR was significantly more severe in the first 7 months after the fire in the coarser fractions (2–1 and 1–0.5 mm) and 9 months after in the finer fractions (0.5–0.25 and 〈 0.25 mm). In relation to the unburned plot, SWR was significantly more severe in the size fractions 2–1 and 〈 0.25 mm, IAF, 5 and 7 months after the fire than 2 and 9 months later. In the 1–0.5- and 0.5–0.25 mm-size fractions, SWR was significantly higher IAF, 2, 5 and 7 months after the fire than in the last sampling date. Significant differences in SWR were observed among the different sieve fractions in each plot, with exception of 2 and 9 months after the fire in the unburned plot. In most cases the finer fraction ( 〈 0.25 mm) was more water repellent than the others. The comparison between plots for each sieve fraction showed significant differences in all cases IAF, 2 and 5 months after the fire. Seven months after the fire significant differences were only observed in the finer fractions (0.5–0.25 and 〈 0.25 mm) and after 9 months no significant differences were identified. The correlations between soil Munsell colour value and SOM were negatively significant in the burned and unburned areas. The correlations between Munsell colour value and SWR were only significant in the burned plot IAF, 2 and 7 months after the fire. In the case of the correlations between SOM and SWR, significant differences were only identified IAF and 2 months after the fire. The partial correlations (controlling for the effect of SOM) revealed that SOM had an important influence on the correlation between soil Munsell colour value and SWR in the burned plot IAF, 2 and 7 months after the fire.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2014-11-18
    Description: Fully probabilistic seismic source inversion – Part 1: Efficient parameterisation Solid Earth, 5, 1055-1069, 2014 Author(s): S. C. Stähler and K. Sigloch Seismic source inversion is a non-linear problem in seismology where not just the earthquake parameters themselves but also estimates of their uncertainties are of great practical importance. Probabilistic source inversion (Bayesian inference) is very adapted to this challenge, provided that the parameter space can be chosen small enough to make Bayesian sampling computationally feasible. We propose a framework for PRobabilistic Inference of Seismic source Mechanisms ( PRISM ) that parameterises and samples earthquake depth, moment tensor, and source time function efficiently by using information from previous non-Bayesian inversions. The source time function is expressed as a weighted sum of a small number of empirical orthogonal functions, which were derived from a catalogue of 〉1000 source time functions (STFs) by a principal component analysis. We use a likelihood model based on the cross-correlation misfit between observed and predicted waveforms. The resulting ensemble of solutions provides full uncertainty and covariance information for the source parameters, and permits propagating these source uncertainties into travel time estimates used for seismic tomography. The computational effort is such that routine, global estimation of earthquake mechanisms and source time functions from teleseismic broadband waveforms is feasible.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2014-11-19
    Description: Analysis of land cover change and its driving forces in a desert oasis landscape of Xinjiang, northwest China Solid Earth, 5, 1071-1085, 2014 Author(s): T. Amuti and G. Luo The combined effects of drought, warming and the changes in land cover have caused severe land degradation for several decades in the extremely arid desert oases of southern Xinjiang, northwest China. Land cover classifications of Landsat images in 1990, 2000 and 2008 were performed based on the multistage supervised classification scheme using the maximum likelihood classifier integrated with conventional vegetation and soil indexes, which improved overall accuracies by 4–5% compared to the standard classification method. Based on the detection of changes in land cover during 1990–2008 using remote sensing (RS) and a geographic information system (GIS), it can be found that the oasis significantly (+35%) increased, while the area of ecotone decreased (−43%). The major trends of the land cover changes were the notable growth of the oasis and the reduction of the desert–oasis ecotone. These changes were mainly a result of the intensified human activities such as land and water exploitation as well as overgrazing. The results of this study indicate that the oasis environment will be deteriorated by increase in potential areas of land degradation if the trend of desert moving further inward and the shrinking of the ecotone continues over the next decades.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2014-11-19
    Description: Finite lattice distortion patterns in plastically deformed zircon grains Solid Earth, 5, 1099-1122, 2014 Author(s): E. Kovaleva, U. Klötzli, G. Habler, and E. Libowitzky This study examines finite deformation patterns of zircon grains from high-temperature natural shear zones. Various zircon-bearing rocks were collected in the Western Tauern Window, eastern Alps, where they were deformed under amphibolite facies conditions, and in the Ivrea–Verbano Zone (IVZ), southern Alps, where deformation is related with granulite-facies metamorphism. Among the sampled rocks are granitic orthogneisses, metalamprophyres and paragneisses, all of which are strongly deformed. The investigated zircon grains ranging from 10 to 50 μm were studied in situ using a combination of scanning electron microscope (SEM) techniques, backscattered electron (BSE) imaging, forward-scattered electron (FSE) imaging, cathodoluminescence (CL) imaging, and crystallographic orientation mapping by electron backscatter diffraction (EBSD), as well as micro-Raman spectroscopy. Energy-dispersive X-ray spectrometry (EDS) was applied to host phases. Microstructural analysis of crystal-plastically deformed zircon grains was based on high-resolution EBSD maps. Three general types of finite lattice distortion patterns were detected: type (I) is defined by gradual bending of the zircon lattice with orientation changes of about 0.6–1.8° per micrometer without subgrain boundary formation. Cumulative grain-internal orientation variations range from 7 to 25° within single grains. Type (II) represents local gradual bending of the crystal lattice accompanied by the formation of subgrain boundaries that have concentric semicircular shapes in 2-D sections. Cumulative grain-internal orientation variations range from 15 to 40° within single grains. Type (III) is characterized by formation of subgrains separated by a well-defined subgrain boundary network, where subgrain boundaries show a characteristic angular closed contour. The cumulative orientation variation within a single grain ranges from 3 to 10°. Types (I) and (II) predominate in granulite facies rocks, whereas type (III) is restricted to the amphibolite facies rocks. The difference in distortion patterns is controlled by strain rate and by ratio between dislocation formation and dislocation motion rates, conditioned by the amount of differential stress. Investigated microstructures demonstrate that misorientation axes are usually parallel to the 〈 001 〉 and 〈 100 〉 crystallographic directions; dominant slips are 〈 010 〉 {001}, 〈 010 〉 {100} and 〈 001 〉 {010}, whereas in some grains cross-slip takes place. This study demonstrates that activation of energetically preferable slip systems is facilitated if zircon grain is decoupled from the host matrix and/or hosted by a soft phase.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2014-11-19
    Description: Using the level set method in geodynamical modeling of multi-material flows and Earth's free surface Solid Earth, 5, 1087-1098, 2014 Author(s): B. Hillebrand, C. Thieulot, T. Geenen, A. P. van den Berg, and W. Spakman The level set method allows for tracking material surfaces in 2-D and 3-D flow modeling and is well suited for applications of multi-material flow modeling. The level set method utilizes smooth level set functions to define material interfaces, which makes the method stable and free of oscillations that are typically observed in case step-like functions parameterize interfaces. By design the level set function is a signed distance function and gives for each point in the domain the exact distance to the interface as well as on which side it is located. In this paper we present four benchmarks which show the validity, accuracy and simplicity of using the level set method for multi-material flow modeling. The benchmarks are simplified setups of dynamical geophysical processes such as the Rayleigh–Taylor instability, post-glacial rebound, subduction and slab detachment. We also demonstrate the benefit of using the level set method for modeling a free surface with the sticky air approach. Our results show that the level set method allows for accurate material flow modeling and that the combination with the sticky air approach works well in mimicking Earth's free surface. Since the level set method tracks material interfaces instead of materials themselves, it has the advantage that the location of these interfaces is accurately known and that it represents a viable alternative to the more commonly used tracer method.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2014-12-21
    Description: Characterisation of the magmatic signature in gas emissions from Turrialba Volcano, Costa Rica Solid Earth, 5, 1341-1350, 2014 Author(s): Y. Moussallam, N. Peters, C. Ramírez, C. Oppenheimer, A. Aiuppa, and G. Giudice The equilibrium composition of volcanic gases with their magma is often overprinted by interaction with a shallow hydrothermal system. Identifying the magmatic signature of volcanic gases is critical to relate their composition to properties of the magma (temperature, f O 2 , gas-melt segregation depth). We report measurements of the chemical composition and flux of the major gas species emitted from Turrialba Volcano during March 2013. Measurements were made of two vents in the summit region, one of which opened in 2010 and the other in 2012. We determined an average SO 2 flux of 5.2 ± 1.9 kg s -1 using scanning ultraviolet spectroscopy, and molar proportions of H 2 O, CO 2 , SO 2 , HCl, CO and H 2 gases of 94.16, 4.03, 1.56, 0.23, 0.003 and 0.009% respectively by open-path Fourier transform infrared (FTIR) spectrometry and a multi-species gas-sensing system. Together, these data imply fluxes of 88, 8, 0.44, 5 × 10 -3 and 1 × 10 -3 kg s -1 for H 2 O, CO 2 , HCl, CO and H 2 respectively. Although H 2 S was detected, its concentration could not be resolved. HF was not detected. The chemical signature of the gas from both vents was found to be broadly similar. Following the opening of the 2010 and 2012 vents we found limited to negligible interaction of the magmatic gas with the hydrothermal system has occurred and the gas composition of the volcanic plume is broadly representative of equilibrium with the magma. The time evolution of the gas composition, the continuous emission of large quantities of SO 2 , and the physical evolution of the summit area with new vent openings and more frequent eruptions all point towards a continuous drying of the hydrothermal system at Turrialba's summit at an apparently increasing rate.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2014-12-22
    Description: Active-layer thermal monitoring on the Fildes Peninsula, King George Island, maritime Antarctica Solid Earth, 5, 1361-1374, 2014 Author(s): R. F. M. Michel, C. E. G. R. Schaefer, F. M. B. Simas, M. R. Francelino, E. I. Fernandes-Filho, G. B. Lyra, and J. G. Bockheim International attention to climate change phenomena has grown in the last decade; the active layer and permafrost are of great importance in understanding processes and future trends due to their role in energy flux regulation. The objective of this paper is to present active-layer temperature data for one Circumpolar Active Layer Monitoring South hemisphere (CALM-S) site located on the Fildes Peninsula, King George Island, maritime Antarctica over an 57-month period (2008–2012). The monitoring site was installed during the summer of 2008 and consists of thermistors (accuracy of ±0.2 °C), arranged vertically with probes at different depths, recording data at hourly intervals in a high-capacity data logger. A series of statistical analyses was performed to describe the soil temperature time series, including a linear fit in order to identify global trends, and a series of autoregressive integrated moving average (ARIMA) models was tested in order to define the best fit for the data. The affects of weather on the thermal regime of the active layer have been identified, providing insights into the influence of climate change on permafrost. The active-layer thermal regime in the studied period was typical of periglacial environments, with extreme variation in surface during the summer resulting in frequent freeze and thaw cycles. The active-layer thickness (ALT) over the studied period shows a degree of variability related to different annual weather conditions, reaching a maximum of 117.5 cm in 2009. The ARIMA model could describe the data adequately and is an important tool for more conclusive analysis and predictions when longer data sets are available. Despite the variability when comparing temperature readings and ACT over the studied period, no trend can be identified.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2014-12-22
    Description: Nitrogen, phosphorus, potassium, calcium and magnesium release from two compressed fertilizers: column experiments Solid Earth, 5, 1351-1360, 2014 Author(s): M. J. Fernández-Sanjurjo, E. Alvarez-Rodríguez, A. Núñez-Delgado, M. L. Fernández-Marcos, and A. Romar-Gasalla The objective of this work was to study nutrients release from two compressed nitrogen–potassium–phosphorous (NPK) fertilizers. In the Lourizán Forest Center, tablet-type controlled-release fertilizers (CRF) were prepared by compressing various mixtures of fertilizers without covers or binders. We used soil columns (50 cm long and 7.3 cm inner diameter) that were filled with soil from the surface layer (0–20 cm) of an A horizon corresponding to a Cambic Umbrisol. Tablets of two slow-release NPK fertilizers (11–18–11 or 8–8–16) were placed into the soil (within the first 3 cm), and then water was percolated through the columns in a saturated regime for 80 days. Percolates were analyzed for N, P, K + , Ca 2+ and Mg 2+ . These elements were also determined in soil and fertilizer tablets at the end of the trials. Nutrient concentrations were high in the first leachates and reached a steady state when 1426 mm of water had been percolated, which is equivalent to approximately 1.5 years of rainfall in this geographic area. In the whole trial, both tablets lost more than 80% of their initial N, P and K contents. However, K + , Ca 2+ and Mg 2+ were the most leached, whereas N and P were lost in leachates to a lesser extent. Nutrient release was slower from the tablet with a composition of 8–8–16 than from the 11–18–11 fertilizer. In view of that, the 8–8–16 tablet can be considered more adequate for crops with a nutrient demand sustained over time. At the end of the trial, the effects of these fertilizers on soil chemical parameters were still evident, with a significant increase of pH, available Ca 2+ , Mg 2+ , K + , P and effective cation exchange capacity (eCEC) in the fertilized columns, as well as a significant decrease in exchangeable Al 3+ , reaching values 〈 0.08 cmol (+) kg −1 .
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2014-09-02
    Description: Sedimentological characteristics of ice-wedge polygon terrain in Adventdalen (Svalbard) – environmental and climatic implications for the late Holocene Solid Earth, 5, 901-914, 2014 Author(s): M. Oliva, G. Vieira, P. Pina, P. Pereira, M. Neves, and M. C. Freitas Ice wedges are widespread periglacial features in the landscape of Adventdalen, Svalbard. The networks of ice wedges have created areas with well-developed polygonal terrains in the lowest fluvial terraces in this valley. We have examined the sedimentological characteristics of the northern and southern banks of the Advent river for palaeoenvironmental purposes. The base of two sedimentary sections reported radiocarbon dates of 3.3 and 3.9 ka BP, respectively. The northern site is constituted by three very different lithostratigraphical units, which suggests that their formation should be related to different environmental and climate conditions. By contrast, the southern section shows a rather homogeneous composition, with no significant variations in grain size and organic matter content. In both cases the uppermost sediments are constituted by a thick aeolian deposit. According to our data, warmer climate conditions may have prevailed during the mid Holocene until 3.3 ka BP with widespread peat formation in the valley bottom. Subsequently, a period with alternating soil formation and aeolian sedimentation took place from 3 to 2.5 ka BP, probably due to increasing climatic severity. During the last millennium a long-term cooling trend has favoured aeolian deposition in the lowest part of Adventdalen.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    facet.materialart.
    Unknown
    Copernicus
    Publication Date: 2014-09-23
    Description: Biochar as a growing media additive and peat substitute Solid Earth, 5, 995-999, 2014 Author(s): C. Steiner and T. Harttung Environmental concerns raised the demand for alternative growing media substituting Sphagnum peat. However growing media formulations still depend on peat and alternatives are limited. Biochar is carbonized plant material and could be an appropriate additive or even substitute for Sphagnum peat. Freshly produced, it is free from pathogens, has a low nutrient content (if produced from nutrient-poor feedstock), a very high structural stability and likely other favourable properties such as air capacity and water-holding capacity. Preliminary tests were conducted to compare biochar with other growing media and growing media additives. The growth of a miniature sunflower, pH and electrical conductivity (EC) was measured in different growing media such as biochar, perlite, clay granules, Sphagnum peat and peat mixed with biochar in the ratios 1 : 4, 1 : 1 and 4 : 1 (25, 50 and 75%, by volume). Fresh biochar has a similar EC to peat which is even lower after rinsing with water. Due to the relatively high pH of biochar, it could be added to peat instead of lime in a concentration of up to 75%. The growth of the sunflower was similar in all growing media. Only the plant weight was slightly higher of plants that grew in perlite or peat. There is a large potential for optimization such as selection of particle size and feedstock for biochar production and growing media formulations for specific plant requirements.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2014-08-16
    Description: Traces of the crustal units and the upper-mantle structure in the southwestern part of the East European Craton Solid Earth, 5, 821-836, 2014 Author(s): I. Janutyte, E. Kozlovskaya, M. Majdanski, P. H. Voss, M. Budraitis, and PASSEQWorking Group The presented study is a part of the passive seismic experiment PASSEQ 2006–2008, which took place around the Trans-European Suture Zone (TESZ) from May 2006 to June 2008. The data set of 4195 manually picked arrivals of teleseismic P waves of 101 earthquakes (EQs) recorded in the seismic stations deployed to the east of the TESZ was inverted using the non-linear teleseismic tomography algorithm TELINV. Two 3-D crustal models were used to estimate the crustal travel time (TT) corrections. As a result, we obtain a model of P -wave velocity variations in the upper mantle beneath the TESZ and the East European Craton (EEC). In the study area beneath the craton, we observe up to 3% higher and beneath the TESZ about 2–3% lower seismic velocities compared to the IASP91 velocity model. We find the seismic lithosphere–asthenosphere boundary (LAB) beneath the TESZ at a depth of about 180 km, while we observe no seismic LAB beneath the EEC. The inversion results obtained with the real and the synthetic data sets indicate a ramp shape of the LAB in the northern TESZ, where we observe values of seismic velocities close to those of the craton down to about 150 km. The lithosphere thickness in the EEC increases going from the TESZ to the NE from about 180 km beneath Poland to 300 km or more beneath Lithuania. Moreover, in western Lithuania we find an indication of an upper-mantle dome. In our results, the crustal units are not well resolved. There are no clear indications of the features in the upper mantle which could be related to the crustal units in the study area. On the other hand, at a depth of 120–150 km we indicate a trace of a boundary of proposed palaeosubduction zone between the East Lithuanian Domain (EL) and the West Lithuanian Granulite Domain (WLG). Also, in our results, we may have identified two anorogenic granitoid plutons.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2014-08-07
    Description: Record of Early Toarcian carbon cycle perturbations in a nearshore environment: the Bascharage section (easternmost Paris Basin) Solid Earth, 5, 793-804, 2014 Author(s): M. Hermoso, D. Delsate, F. Baudin, L. Le Callonnec, F. Minoletti, M. Renard, and A. Faber In order to understand the significance of the worldwide deposition of black shale facies in the Early Toarcian (~ 183 Ma), considerable attention has been drawn to this Early Jurassic sub-stage over the last 3 decades. The discovery of a pronounced negative carbon isotope excursion (CIE) within the black shales disrupting the generally positive trend in carbon isotopes has stimulated many studies, particularly with a view to establish the local versus global nature of this major geochemical phenomenon. Here we document the sedimentological and chemostratigraphic evolution of a proximal environment in the Luxembourgian sedimentary area. At Bascharage, Lower Toarcian sediments record the isotopic signature of the Early Toarcian oceanic anoxic event (OAE) by a pronounced positive trend that testifies for widespread anoxia. The expression of the carbon isotope perturbation in this section, however, is unusual compared to adjacent NW European sections. A first −7‰ negative CIE, whose onset is recorded at the top of the tenuicostatum zone, can be assigned to the well-documented and potentially global Toarcian carbon isotope excursion (T-CIE) with confidence using the well-constrained ammonite biostratigraphic framework for this section. In this interval, facies contain only a limited amount of carbonate as a result of intense detrital supply in such a proximal and shallow environment. Stratigraphically higher in the section, the serpentinum zone records a subsequent CIE (−6‰) expressed as four negative steps, each being accompanied by positive shifts in the oxygen isotopic composition of carbonate. The preservation state of coccoliths and calcareous dinoflagellates in the second CIE is excellent and comparable to that observed in under- and overlying strata, so this cannot be an artefact of diagenesis. Considering the nature of this record, and the lack of such a pronounced event in the serpentinum zone in coeval sections in Europe, we hypothesise that this second CIE was caused by local factors. The geochemical record of carbonate with a relatively light carbon and relatively heavy oxygen isotopic composition is compatible with the so-called Küspert model, by which a CIE can be explained by an influx of 12 C-rich and cold waters due to upwelling bottom water masses.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2014-08-07
    Description: Mantle lithosphere transition from the East European Craton to the Variscan Bohemian Massif imaged by shear-wave splitting Solid Earth, 5, 779-792, 2014 Author(s): L. Vecsey, J. Plomerová, and V. Babuška We analyse splitting of teleseismic shear waves recorded during the PASSEQ passive experiment (2006–2008) focused on the upper mantle structure across and around the Trans-European Suture Zone (TESZ). Altogether 1009 pairs of the delay times of the slow split shear waves and orientations of the polarized fast shear waves exhibit lateral variations across the array, as well as back-azimuth dependences of measurements at individual stations. Variable components of the splitting parameters can be associated with fabrics of the mantle lithosphere of tectonic units. In comparison with a distinct regionalization of the splitting parameters in the Phanerozoic part of Europe that particularly in the Bohemian Massif (BM) correlate with the large-scale tectonics, variations of anisotropic parameters around the TESZ and in the East European Craton (EEC) are smooth and of a transitional character. No general and abrupt change in the splitting parameters (anisotropic structure) can be related to the Teisseyre–Tornquist Zone (TTZ), marking the edge of the Precambrian province on the surface. Instead, regional variations of anisotropic structure were found along the TESZ/TTZ. The coherence of anisotropic signals evaluated beneath the northern part of the Brunovistulian in the eastern rim of the BM and the pattern continuation to the NE towards the TTZ, support the idea of a common origin of the lithosphere micro-plates, most probably related to Baltica. Smooth changes in polarizations of the core-mantle boundary refracted shear waves (SKS), polarizations, or even a large number of null splits northward of the BM and further across the TESZ towards the EEC indicate less coherent fabrics and a transitional character of structural changes in the mantle beneath the surface trace of the TESZ/TTZ. The narrow and near-vertical TTZ in the crust does not seem to have a steep continuation in the mantle lithosphere. The mantle part of the TESZ, whose crust was formed by an assemblage of suspect terranes adjoining the EEC edge from the southwest, appears in our measurements of anisotropy as a relatively broad transitional zone in between the two lithospheric segments of different ages. We suggest a southwestward continuation of the Precambrian mantle lithosphere beneath the TESZ and the adjacent Phanerozoic part of Europe, probably as far as towards the Bohemian Massif.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2014-08-07
    Description: Pacific plate slab pull and intraplate deformation in the early Cenozoic Solid Earth, 5, 757-777, 2014 Author(s): N. P. Butterworth, R. D. Müller, L. Quevedo, J. M. O'Connor, K. Hoernle, and G. Morra Large tectonic plates are known to be susceptible to internal deformation, leading to a~range of phenomena including intraplate volcanism. However, the space and time dependence of intraplate deformation and its relationship with changing plate boundary configurations, subducting slab geometries, and absolute plate motion is poorly understood. We utilise a buoyancy-driven Stokes flow solver, BEM-Earth, to investigate the contribution of subducting slabs through time on Pacific plate motion and plate-scale deformation, and how this is linked to intraplate volcanism. We produce a series of geodynamic models from 62 to 42 Ma in which the plates are driven by the attached subducting slabs and mantle drag/suction forces. We compare our modelled intraplate deformation history with those types of intraplate volcanism that lack a clear age progression. Our models suggest that changes in Cenozoic subduction zone topology caused intraplate deformation to trigger volcanism along several linear seafloor structures, mostly by reactivation of existing seamount chains, but occasionally creating new volcanic chains on crust weakened by fracture zones and extinct ridges. Around 55 Ma, subduction of the Pacific-Izanagi ridge reconfigured the major tectonic forces acting on the plate by replacing ridge push with slab pull along its northwestern perimeter, causing lithospheric extension along pre-existing weaknesses. Large-scale deformation observed in the models coincides with the seamount chains of Hawaii, Louisville, Tokelau and Gilbert during our modelled time period of 62 to 42 Ma. We suggest that extensional stresses between 72 and 52 Ma are the likely cause of large parts of the formation of the Gilbert chain and that localised extension between 62 and 42 Ma could cause late-stage volcanism along the Musicians volcanic ridges. Our models demonstrate that early Cenozoic changes in Pacific plate driving forces only cause relatively minor changes in Pacific absolute plate motion directions, and cannot be responsible for the Hawaiian–Emperor bend (HEB), confirming previous interpretations that the 47 Ma HEB does not primarily reflect an absolute plate motion event.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2014-08-13
    Description: High temperature indentation creep tests on anhydrite – a promising first look Solid Earth, 5, 805-819, 2014 Author(s): D. Dorner, K. Röller, and B. Stöckhert Indentation creep tests are established in materials engineering, providing information on rheology, deformation mechanisms, and related microstructures of materials. Here we explore the potential of this method on natural, polycrystalline anhydrite. The tests are run at atmospheric pressure, temperatures between 700 and 920 °C, and reference stresses between 7 and 30 MPa. An activation energy Q of 338 kJ mol −1 and a stress exponent n of 3.9 are derived. Deformation is localized into shear zones bounding a less deformed approximately conical plug underneath the indenter. Shear zone microstructures reveal inhomogeneous crystal–plastic deformation, subgrains, and extensive strain-induced grain boundary migration, while mechanical twinning appears not to be activated. Microstructure and mechanical data are consistent with deformation by dislocation creep.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2014-07-31
    Description: Thermal characterization of the active layer at the Limnopolar Lake CALM-S site on Byers Peninsula (Livingston Island), Antarctica Solid Earth, 5, 721-739, 2014 Author(s): M. A. de Pablo, M. Ramos, and A. Molina The Limnopolar Lake site (A25), of the Circumpolar Active Layer Monitoring-South network (CALM-S), is located on Byers Peninsula, where the active layer thickness is monitored systematically (by mechanical probing during the thawing season and by temperature devices continuously since 2009). Air, surface, snow and ground temperature devices have been installed to monitor ground thermal behavior, which is presented and characterized here. We use the air and ground mean daily temperature values to define the following parameters: maximum, minimum and mean temperatures, the zero annual thermal amplitude, and the depth and position of the top of the permafrost table. The freezing and thawing seasons (defining their starting dates as well as their length) and the existence of zero curtain periods have also been established. We also derive apparent thermal diffusivity and plot thermograms to study the thermal behavior of the ground at different depths and seasons. After this complete thermal characterization of the active layer, we propose the potential existence of a permafrost table at approximately 130 cm in depth as well as a former transitional layer above it, and discuss the role of water in connection with the thermal behavior of the ground during the study period.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    facet.materialart.
    Unknown
    Copernicus
    Publication Date: 2014-08-02
    Description: Plate tectonic raster reconstruction in GPlates Solid Earth, 5, 741-755, 2014 Author(s): J. Cannon, E. Lau, and R. D. Müller We describe a novel method implemented in the GPlates plate tectonic reconstruction software to interactively reconstruct arbitrarily high-resolution raster data to past geological times using a rotation model. The approach is based on the projection of geo-referenced raster data into a cube map followed by a reverse projection onto rotated tectonic plates on the surface of the globe. This decouples the rendering of a geo-referenced raster from its reconstruction, providing a number of benefits including a simple implementation and the ability to combine rasters with different geo-referencing or inbuilt raster projections. The cube map projection is accelerated by graphics hardware in a wide variety of computer systems manufactured over the last decade. Furthermore, by integrating a multi-resolution tile partitioning into the cube map we can provide on-demand tile streaming, level-of-detail rendering and hierarchical visibility culling, enabling researchers to visually explore essentially unlimited resolution geophysical raster data attached to tectonic plates and reconstructed through geological time. This capability forms the basis for interactively building and improving plate reconstructions in an iterative fashion, particularly for tectonically complex regions.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2014-05-20
    Description: Seismic structure of the lithosphere and upper mantle beneath the ocean islands near mid-oceanic ridges Solid Earth, 5, 327-337, 2014 Author(s): C. Haldar, P. Kumar, and M. Ravi Kumar Deciphering the seismic character of the young lithosphere near mid-oceanic ridges (MORs) is a challenging endeavor. In this study, we determine the seismic structure of the oceanic plate near the MORs using the P -to- S conversions isolated from quality data recorded at five broadband seismological stations situated on ocean islands in their vicinity. Estimates of the crustal and lithospheric thickness values from waveform inversion of the P -receiver function stacks at individual stations reveal that the Moho depth varies between ~ 10 ± 1 km and ~ 20 ± 1 km with the depths of the lithosphere–asthenosphere boundary (LAB) varying between ~ 40 ± 4 and ~ 65 ± 7 km. We found evidence for an additional low-velocity layer below the expected LAB depths at stations on Ascension, São Jorge and Easter islands. The layer probably relates to the presence of a hot spot corresponding to a magma chamber. Further, thinning of the upper mantle transition zone suggests a hotter mantle transition zone due to the possible presence of plumes in the mantle beneath the stations.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2014-05-20
    Description: Magnetic signature of large exhumed mantle domains of the Southwest Indian Ridge – results from a deep-tow geophysical survey over 0 to 11 Ma old seafloor Solid Earth, 5, 339-354, 2014 Author(s): A. Bronner, D. Sauter, M. Munschy, J. Carlut, R. Searle, M. Cannat, and G. Manatschal We investigate the magnetic signature of ultramafic seafloor in the eastern part of the Southwest Indian Ridge (SWIR). There, detachment faulting, continuous over 11 Myr, exhumed large areas of mantle-derived rocks. These exhumed mantle domains occur in the form of a smooth rounded topography with broad ridges locally covered by a thin highly discontinuous volcanic carapace. We present high-resolution data combining deep-tow magnetics, side-scan sonar images and dredged samples collected within two exhumed mantle domains between 62° E and 65° E. We show that, despite an ultra-slow spreading rate, volcanic areas within robust magmatic segments are characterized by well-defined seafloor spreading anomalies. By contrast, the exhumed mantle domains, including a few thin volcanic patches, reveal a weak and highly variable magnetic pattern. The analysis of the magnetic properties of the dredged samples and careful comparison between the nature of the seafloor, the deep-tow magnetic anomalies and the seafloor equivalent magnetization suggest that the serpentinized peridotites do not carry a sufficiently stable remanent magnetization to produce seafloor spreading magnetic anomalies in exhumed mantle domains.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2014-06-20
    Description: Optimal locations of sea-level indicators in glacial isostatic adjustment investigations Solid Earth, 5, 511-521, 2014 Author(s): H. Steffen, P. Wu, and H. Wang Fréchet (sensitivity) kernels are an important tool in glacial isostatic adjustment (GIA) investigations to understand lithospheric thickness, mantle viscosity and ice-load model variations. These parameters influence the interpretation of geologic, geophysical and geodetic data, which contribute to our understanding of global change. We discuss global sensitivities of relative sea-level (RSL) data of the last 18 000 years. This also includes indicative RSL-like data (e.g., lake levels) on the continents far off the coasts. We present detailed sensitivity maps for four parameters important in GIA investigations (ice-load history, lithospheric thickness, background viscosity, lateral viscosity variations) for up to nine dedicated times. Assuming an accuracy of 2 m of RSL data of all ages (based on analysis of currently available data), we highlight areas around the world where, if the environmental conditions allowed its deposition and survival until today, RSL data of at least this accuracy may help to quantify the GIA modeling parameters above. The sensitivity to ice-load history variations is the dominating pattern covering almost the whole world before about 13 ka (calendar years before 1950). The other three parameters show distinct patterns, but are almost everywhere overlapped by the ice-load history pattern. The more recent the data are, the smaller the area of possible RSL locations that could provide enough information to a parameter. Such an area is mainly limited to the area of former glaciation, but we also note that when the accuracy of RSL data can be improved, e.g., from 2 m to 1 m, these areas become larger, allowing better inference of background viscosity and lateral heterogeneity. Although the patterns depend on the chosen models and error limit, our results are indicative enough to outline areas where one should look for helpful RSL data of a certain time period. Our results also indicate that as long as the ice-load history is not sufficiently known, the inference of lateral heterogeneities in mantle viscosity or lithospheric thickness will be interfered by the uncertainty of the ice model.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2014-06-11
    Description: Practical analytical solutions for benchmarking of 2-D and 3-D geodynamic Stokes problems with variable viscosity Solid Earth, 5, 461-476, 2014 Author(s): I. Yu. Popov, I. S. Lobanov, S. I. Popov, A. I. Popov, and T. V. Gerya Geodynamic modeling is often related with challenging computations involving solution of the Stokes and continuity equations under the condition of highly variable viscosity. Based on a new analytical approach we have developed particular analytical solutions for 2-D and 3-D incompressible Stokes flows with both linearly and exponentially variable viscosity. We demonstrate how these particular solutions can be converted into 2-D and 3-D test problems suitable for benchmarking numerical codes aimed at modeling various mantle convection and lithospheric dynamics problems. The Main advantage of this new generalized approach is that a large variety of benchmark solutions can be generated, including relatively complex cases with open model boundaries, non-vertical gravity and variable gradients of the viscosity and density fields, which are not parallel to the Cartesian axes. Examples of respective 2-D and 3-D MatLab codes are provided with this paper.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2014-06-11
    Description: Lithosphere and upper-mantle structure of the southern Baltic Sea estimated from modelling relative sea-level data with glacial isostatic adjustment Solid Earth, 5, 447-459, 2014 Author(s): H. Steffen, G. Kaufmann, and R. Lampe During the last glacial maximum, a large ice sheet covered Scandinavia, which depressed the earth's surface by several 100 m. In northern central Europe, mass redistribution in the upper mantle led to the development of a peripheral bulge. It has been subsiding since the begin of deglaciation due to the viscoelastic behaviour of the mantle. We analyse relative sea-level (RSL) data of southern Sweden, Denmark, Germany, Poland and Lithuania to determine the lithospheric thickness and radial mantle viscosity structure for distinct regional RSL subsets. We load a 1-D Maxwell-viscoelastic earth model with a global ice-load history model of the last glaciation. We test two commonly used ice histories, RSES from the Australian National University and ICE-5G from the University of Toronto. Our results indicate that the lithospheric thickness varies, depending on the ice model used, between 60 and 160 km. The lowest values are found in the Oslo Graben area and the western German Baltic Sea coast. In between, thickness increases by at least 30 km tracing the Ringkøbing-Fyn High. In Poland and Lithuania, lithospheric thickness reaches up to 160 km. However, the latter values are not well constrained as the confidence regions are large. Upper-mantle viscosity is found to bracket [2–7] × 10 20 Pa s when using ICE-5G. Employing RSES much higher values of 2 × 10 21 Pa s are obtained for the southern Baltic Sea. Further investigations should evaluate whether this ice-model version and/or the RSL data need revision. We confirm that the lower-mantle viscosity in Fennoscandia can only be poorly resolved. The lithospheric structure inferred from RSES partly supports structural features of regional and global lithosphere models based on thermal or seismological data. While there is agreement in eastern Europe and southwest Sweden, the structure in an area from south of Norway to northern Germany shows large discrepancies for two of the tested lithosphere models. The lithospheric thickness as determined with ICE-5G does not agree with the lithosphere models. Hence, more investigations have to be undertaken to sufficiently determine structures such as the Ringkøbing-Fyn High as seen with seismics with the help of glacial isostatic adjustment modelling.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2014-05-23
    Description: Observation of a local gravity potential isosurface by airborne lidar of Lake Balaton, Hungary Solid Earth, 5, 355-369, 2014 Author(s): A. Zlinszky, G. Timár, R. Weber, B. Székely, C. Briese, C. Ressl, and N. Pfeifer Airborne lidar is a remote sensing method commonly used for mapping surface topography in high resolution. A water surface in hydrostatic equilibrium theoretically represents a gravity potential isosurface. Here we compare lidar-based ellipsoidal water surface height measurements all around the shore of a major lake with a local high-resolution quasi-geoid model. The ellipsoidal heights of the 87 km 2 we sampled all around the shore of the 597 km 2 lake surface vary by 0.8 m and strong spatial correlation with the quasi-geoid undulation was calculated ( R 2 = 0.91). After subtraction of the local geoid undulation from the measured ellipsoidal water surface heights, their variation was considerably reduced. Based on a network of water gauge measurements, dynamic water surface heights were also successfully corrected for. This demonstrates that the water surface heights of the lake were truly determined by the local gravity potential. We conclude that both the level of hydrostatic equilibrium of the lake and the accuracy of airborne lidar were sufficient for identifying the spatial variations of gravity potential.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2014-05-16
    Description: Conventional tillage versus organic farming in relation to soil organic carbon stock in olive groves in Mediterranean rangelands (southern Spain) Solid Earth, 5, 299-311, 2014 Author(s): L. Parras-Alcántara and B. Lozano-García Soil organic carbon (SOC) concentration is a soil variable subject to changes. The management system is a key factor that influences these changes. To determine the long-term effects of the management system on SOC stocks (SOCS) in olive groves, 114 soil profiles were studied in the Los Pedroches Valley (Mediterranean rangelands – southern Spain) for 20 years. The management practices were conventional tillage (CT) and organic farming (OF) in four soil types: Cambisols (CMs), Regosols (RGs), Luvisols (LVs) and Leptosols (LPs). Soil properties were statistically analysed by management techniques, soil types and horizons. Significant differences ( p 〈 0.05) were found between soil types and management practices. It was equally observed that the management system affected SOCS. In addition, the total SOCS during the 20-year experiment increased in OF with respect to CT by 72 and 66% in CMs and LVs respectively. SOC showed significant differences for horizons ( p 〈 0.05) in relation to the management type. The stratification ratio (SR) was used as an indicator of soil quality based on the influence of surface SOC levels on erosion control, water infiltration and nutrient conservation with respect to deep layers. The SR of SOC from the surface to depth was greater in CT compared to OF with the exception of RGs. In all cases, the SR of SOC was 〉2. These results indicate high soil quality and that management practices affect SOC storage in the Los Pedroches Valley.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2014-05-10
    Description: Focal mechanisms in the southern Aegean from temporary seismic networks – implications for the regional stress field and ongoing deformation processes Solid Earth, 5, 275-297, 2014 Author(s): W. Friederich, A. Brüstle, L. Küperkoch, T. Meier, S. Lamara, and Egelados Working Group The lateral variation of the stress field in the southern Aegean plate and the subducting Hellenic slab is determined from recordings of seismicity obtained with the CYCNET and EGELADOS networks in the years from 2002 to 2007. First motions from 7000 well-located microearthquakes were analysed to produce 540 well-constrained focal mechanisms. They were complemented by another 140 derived by waveform matching of records from larger events. Most of these earthquakes fall into 16 distinct spatial clusters distributed over the southern Aegean region. For each cluster, a stress inversion could be carried out yielding consistent estimates of the stress field and its spatial variation. At crustal levels, the stress field is generally dominated by a steeply dipping compressional principal stress direction except in places where coupling of the subducting slab and overlying plate come into play. Tensional principal stresses are generally subhorizontal. Just behind the forearc, the crust is under arc-parallel tension whereas in the volcanic areas around Kos, Columbo and Astypalea tensional and intermediate stresses are nearly degenerate. Further west and north, in the Santorini–Amorgos graben and in the area of the islands of Mykonos, Andros and Tinos, tensional stresses are significant and point around the NW–SE direction. Very similar stress fields are observed in western Turkey with the tensional axis rotated to NNE–SSW. Intermediate-depth earthquakes below 100 km in the Nisyros region indicate that the Hellenic slab experiences slab-parallel tension at these depths. The direction of tension is close to east–west and thus deviates from the local NW-oriented slab dip presumably owing to the segmentation of the slab. Beneath the Cretan sea, at shallower levels, the slab is under NW–SE compression. Tensional principal stresses in the crust exhibit very good alignment with extensional strain rate principal axes derived from GPS velocities except in volcanic areas, where both appear to be unrelated, and in the forearc where compressional principal stresses are very well aligned with compressional principal strain rates. This finding indicates that, except for volcanic areas, microseismic activity in the southern Aegean is not controlled by small-scale local stresses but rather reflects the regional stress field. The lateral and depth variations of the stress field reflect the various agents that influence tectonics in the Aegean: subduction of the Hellenic slab, incipient collision with continental African lithosphere, roll back of the slab in the southeast, segmentation of the slab, arc volcanism and extension of the Aegean crust.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2014-06-12
    Description: Characterization of hydrochars produced by hydrothermal carbonization of rice husk Solid Earth, 5, 477-483, 2014 Author(s): D. Kalderis, M. S. Kotti, A. Méndez, and G. Gascó Biochar is the carbon-rich product obtained when biomass, such as wood, manure or leaves, is heated in a closed container with little or no available air. In more technical terms, biochar is produced by so-called thermal decomposition of organic material under limited supply of oxygen (O 2 ), and at relatively low temperatures ( 〈 700 °C). Hydrochar differentiates from biochar because it is produced in an aqueous environment, at lower temperatures and longer retention times. This work describes the production of hydrochar from rice husks using a simple, safe and environmentally friendly experimental set-up, previously used for degradation of various wastewaters. Hydrochars were obtained at 200 °C and 300 °C and at residence times ranging from 2 to 16 h. All samples were then characterized in terms of yield, surface area, pH, conductivity and elemental analysis, and two of them were selected for further testing with respect to heating values and heavy metal content. The surface area was low for all hydrochars, indicating that porous structure was not developed during treatment. The hydrochar obtained at 300 °C and 6 h residence times showed a predicted higher heating value of 17.8 MJ kg −1 , a fixed carbon content of 46.5% and a fixed carbon recovery of 113%, indicating a promising behaviour as a fuel.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2014-06-12
    Description: Variations of soil profile characteristics due to varying time spans since ice retreat in the inner Nordfjord, western Norway Solid Earth, 5, 485-498, 2014 Author(s): A. Navas, K. Laute, A. A. Beylich, and L. Gaspar In the Erdalen and Bødalen drainage basins located in the inner Nordfjord in western Norway the soils were formed after deglaciation. The climate in the uppermost valley areas is sub-arctic oceanic, and the lithology consists of Precambrian granitic orthogneisses on which Leptosols and Regosols are the most common soils. The Little Ice Age glacier advance affected parts of the valleys with the maximum glacier extent around AD 1750. In this study five sites on moraine and colluvium materials were selected to examine main soil properties, grain size distribution, soil organic carbon and pH to assess if soil profile characteristics and patterns of fallout radionuclides (FRNs) and environmental radionuclides (ERNs) are affected by different stages of ice retreat. The Leptosols on the moraines are shallow, poorly developed and vegetated with moss and small birches. The two selected profiles show different radionuclide activities and grain size distribution. The sampled soils on the colluviums outside the LIA glacier limit became ice-free during the Preboral. The Regosols present better-developed profiles, thicker organic horizons and are fully covered by grasses. Activity of 137 Cs and 210 Pb ex concentrate at the topsoil and decrease sharply with depth. The grain size distribution of these soils also reflects the difference in geomorphic processes that have affected the colluvium sites. Significantly lower mass activities of FRNs were found in soils on the moraines than on colluviums. Variations of ERN activities in the valleys were related to characteristics of soil mineralogical composition. These results indicate differences in soil development that are consistent with the age of ice retreat. In addition, the pattern distribution of 137 Cs and 210 Pb ex activities differs in the soils related to the LIA glacier limits in the drainage basins.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    facet.materialart.
    Unknown
    Copernicus
    Publication Date: 2014-06-12
    Description: Crop residue decomposition in Minnesota biochar-amended plots Solid Earth, 5, 499-507, 2014 Author(s): S. L. Weyers and K. A. Spokas Impacts of biochar application at laboratory scales are routinely studied, but impacts of biochar application on decomposition of crop residues at field scales have not been widely addressed. The priming or hindrance of crop residue decomposition could have a cascading impact on soil processes, particularly those influencing nutrient availability. Our objectives were to evaluate biochar effects on field decomposition of crop residue, using plots that were amended with biochars made from different plant-based feedstocks and pyrolysis platforms in the fall of 2008. Litterbags containing wheat straw material were buried in July of 2011 below the soil surface in a continuous-corn cropped field in plots that had received one of seven different biochar amendments or a uncharred wood-pellet amendment 2.5 yr prior to start of this study. Litterbags were collected over the course of 14 weeks. Microbial biomass was assessed in treatment plots the previous fall. Though first-order decomposition rate constants were positively correlated to microbial biomass, neither parameter was statistically affected by biochar or wood-pellet treatments. The findings indicated only a residual of potentially positive and negative initial impacts of biochars on residue decomposition, which fit in line with established feedstock and pyrolysis influences. Overall, these findings indicate that no significant alteration in the microbial dynamics of the soil decomposer communities occurred as a consequence of the application of plant-based biochars evaluated here.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2014-06-12
    Description: Corrigendum to "A database of plagioclase crystal preferred orientations (CPO) and microstructures – implications for CPO origin, strength, symmetry and seismic anisotropy in gabbroic rocks" published in Solid Earth, 4, 511–542, 2013 Solid Earth, 5, 509-509, 2014 Author(s): T. Satsukawa, B. Ildefonse, D. Mainprice, L. F. G. Morales, K. Michibayashi, and F. Barou No abstract available.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2014-07-22
    Description: Maskevarri Ráhppát in Finnmark, northern Norway – is it an earthquake-induced landform complex? Solid Earth, 5, 683-691, 2014 Author(s): R. Sutinen, I. Aro, P. Närhi, M. Piekkari, and M. Middleton The Sami word ráhppát means rough bouldery/stony terrain with sharp-relief topography in Finnmark, northern Norway. Ráhppát is a common name in the region of the Younger Dryas landforms, yet the origin of ráhppát has remained obscure. The timing of the Younger Dryas is concomitant with the maximum neotectonic fault instability in Fennoscandia. Hence, earthquake activity may have been one of the contributing factors for the Younger Dryas morphologies. Ráhppát on the Maskevarri fell, classified as a part of Tromsø-Lyngen sub-stage of the Younger Dryas, was studied by means of geomorphology and measurements of electrical-sedimentary anisotropy. Ráhppát was found to be built up of an anastomosing network of stony esker-like ridges and mounds bordered with arch-shaped and sinusoidal ridges. These bordering ridges exhibit sedimentary (azimuthal soil electrical conductivity) anisotropy parallel-to-ridge trends and were interconnected to meltwater gullies suggesting generation through short-lived conduit infills. We did not find electrical-sedimentary evidence to support the concept of englacial thrusting and/or compression, often described for Younger Dryas moraines. Maskevarri Ráhppát is typified by ~ 500 ponds and small lakes on three different elevations descending in an up-ice direction. These may have generated through late glacial earthquake(s) also contributing to subglacial deformation of Maskevarri Ráhppát.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2014-07-18
    Description: Furfural and its biochar improve the general properties of a saline soil Solid Earth, 5, 665-671, 2014 Author(s): Y. Wu, G. Xu, and H. B. Shao Organic materials (e.g., furfural residue) are generally believed to improve the physical and chemical properties of saline soils with low fertility. Recently, biochar has been received more attention as a possible measure to improve the carbon balance and improve soil quality in some degraded soils. However, little is known about their different amelioration of a sandy saline soil. In this study, 56 d incubation experiment was conducted to evaluate the influence of furfural and its biochar on the properties of saline soil. The results showed that both furfural and biochar greatly reduced pH, increased soil organic carbon (SOC) content and cation exchange capacity (CEC), and enhanced the available phosphorus (P) in the soil. Furfural is more efficient than biochar in reducing pH: 5% furfural lowered the soil pH by 0.5–0.8 (soil pH: 8.3–8.6), while 5% biochar decreased by 0.25–0.4 due to the loss of acidity in pyrolysis process. With respect to available P, furfural addition at a rate of 5% increased available P content by 4–6 times in comparison to 2–5 times with biochar application. In reducing soil exchangeable sodium percentage (ESP), biochar is slightly superior to furfural because soil ESP reduced by 51% and 43% with 5% furfural and 5% biochar at the end of incubation. In addition, no significant differences were observed between furfural and biochar about their capacity to retain N, P in leaching solution and to increase CEC in soil. These facts may be caused by the relatively short incubation time. In general, furfural and biochar exhibited a different effect depending on the property: furfural was more effective in decreasing pH and increasing available P, whereas biochar played a more important role in increasing SOC and reducing ESP of saline soil.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2014-07-24
    Description: Physicochemical changes in pyrogenic organic matter (biochar) after 15 months of field aging Solid Earth, 5, 693-704, 2014 Author(s): A. Mukherjee, A. R. Zimmerman, R. Hamdan, and W. T. Cooper Predicting the effects of pyrogenic organic matter (OM) addition (either natural or intentional as in the case of biochar amendment) on soil chemistry and crop yields has been hampered by a lack of understanding of how pyrogenic OM evolves in the environment over time. This work compared the physicochemical characteristics of newly made and 15-month-field-aged biochars and biochar–soil mixtures. After aging, biochars made by pyrolysis of wood and grass at 250, 400 and 650 °C exhibited 5-fold increases in cation exchange capacity (CEC), on average; appearance of anion exchange capacity (AEC); and significant decreases in pH, ash content and nanopore surface area. Cross polarization 13 C nuclear magnetic resonance (NMR) analyses indicated relative increases in O-containing functional groups, including substituted aryl, carboxyl and carbonyl C, and losses of O-alkyl groups. Similar chemical trends were observed for soil–biochar mixtures, suggesting the same biochar aging processes occurred in the soil environment. However, there was evidence for a role of soil OM–microbe–biochar interaction during aging. Field aging of soil with biochar resulted in large increases in C and N content (up to 124 and 143%, respectively) and exchange capacity (up to 43%) beyond that calculated by the weighted addition of the properties of biochar and soil aged separately. These beneficial interactive effects varied with soil and biochar type. Scanning electronic microscopy (SEM) images of biochar particles aged with soil showed colonization by microbes and widespread OM coatings. Thus, sorption of both microbially produced and soil OM are likely processes that enhanced biochar aging. Thus, biochar's full beneficial effects on soil properties likely increase over time, and proper assignment of C sequestration credits to biochar users will require consideration of soil–biochar interactions.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2014-07-30
    Description: Microbial biomass and basal respiration of selected Sub-Antarctic and Antarctic soils in the areas of some Russian polar stations Solid Earth, 5, 705-712, 2014 Author(s): E. Abakumov and N. Mukhametova Antarctica is a unique place for soil, biological, and ecological investigations. Soils of Antarctica have been studied intensively during the last century, when different national Antarctic expeditions visited the sixth continent with the aim of investigating nature and the environment. Antarctic investigations are comprised of field surveys mainly in the terrestrial landscapes, where the polar stations of different countries are situated. That is why the main and most detailed soil surveys were conducted in the McMurdo Valleys, Transantarctic Mountains, South Shetland Islands, Larsemann Hills and the Schirmacher Oasis. Our investigations were conducted during the 53rd and 55th Russian Antarctic expeditions in the base of soil pits, and samples were collected in Sub-Antarctic and Antarctic regions. Sub-Antarctic or maritime landscapes are considered to be very different from Antarctic landscapes due to differing climatic and geogenic conditions. Soils of diverse zonal landscapes were studied with the aim of assessing the microbial biomass level, basal respiration rates and metabolic activity of microbial communities. This investigation shows that Antarctic soils are quite diverse in profile organization and carbon content. In general, Sub-Antarctic soils are characterized by more developed humus (sod) organo-mineral horizons as well as by an upper organic layer. The most developed organic layers were revealed in peat soils of King George Island, where its thickness reach, in some cases, was 80 cm. These soils as well as soils formed under guano are characterized by the highest amount of total organic carbon (TOC), between 7.22 and 33.70%. Coastal and continental Antarctic soils exhibit less developed Leptosols, Gleysols, Regolith and rare Ornhitosol, with TOC levels between 0.37 and 4.67%. The metabolic ratios and basal respiration were higher in Sub-Antarctic soils than in Antarctic ones, which can be interpreted as a result of higher amounts of fresh organic remnants in organic and organo-mineral horizons. The soils of King George Island also have higher portions of microbial biomass (max 1.54 mg g −1 ) compared to coastal (max 0.26 mg g −1 ) and continental (max 0.22 mg g −1 ) Antarctic soils. Sub-Antarctic soils differ from Antarctic ones mainly by having increased organic layer thickness and total organic carbon content, higher microbial biomass carbon content, basal respiration, and metabolic activity levels.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2014-07-30
    Description: Methodological interference of biochar in the determination of extracellular enzyme activities in composting samples Solid Earth, 5, 713-719, 2014 Author(s): K. Jindo, K. Matsumoto, C. García Izquierdo, T. Sonoki, and M. A. Sanchez-Monedero Biochar application has received increasing attention as a means to trap recalcitrant carbon and enhance soil fertility. Hydrolytic enzymatic assays, such as β-glucosidase and phosphatase activities, are used for the assessment of soil quality and composting process, which are based on use of p -nitrophenol (PNP) derivatives as substrate. However, sorption capacity of biochar can interfere with colorimetric determination of the hydrolysed PNP, either by the sorption of the substrate or the reaction product of hydrolysis into biochar surface. The aim of the present work is to study the biochar sorption capacity for PNP in biochar-blended composting mixtures in order to assess its impact on the estimation of the colorimetric-based enzymatic assays. A retention test was conducted by adding a solution of known amounts of PNP in universal buffer solution (pH = 5, 6.5 and 11, corresponding to the β-glucosidase, acid and alkaline phosphatase activity assays, respectively), in samples taken at the initial stage and after maturation stage from four different composting piles (two manure composting piles; PM: poultry manure, CM: cow manure and two other similar piles containing 10% of additional biochar (PM + B, CM + B)). The results show that biochar-blended composts (PM + B, CM + B) generally exhibited low enzymatic activities, compared to manure compost without biochar (PM, CM). In terms of the difference between the initial and maturation stage of composting process, the PNP retention in biochar was shown higher at maturation stage, caused most probably by an enlarged proportion of biochar inside compost mixture after the selective degradation of easily decomposable organic matter. TThe retention of PNP on biochar was influenced by pH dependency of sorption capacity of biochar and/or PNP solubility, since PNP was more efficiently retained by biochar at low pH values (5 and 6.5) than at high pH values (11).
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2014-07-18
    Description: Using the Nordic Geodetic Observing System for land uplift studies Solid Earth, 5, 673-681, 2014 Author(s): M. Nordman, M. Poutanen, A. Kairus, and J. Virtanen Geodetic observing systems have been planned and developed during the last decade. An ideal observing system consists of a network of geodetic observing stations with several techniques at the same site, publicly accessible databases, and as a product delivers data time series, combination of techniques or some other results obtained from the data sets. Globally, there is the International Association of Geodesy (IAG) Global Geodetic Observing System (GGOS), and there are ongoing attempts to create also regional observing systems. In this paper we introduce one regional system, the Nordic Geodetic Observing System (NGOS) hosted by the Nordic Geodetic Commission (NKG). Data availability and accessibility are one of the major issues today. We discuss in general data-related topics, and introduce a pilot database project of NGOS. As a demonstration of the use of such a database, we apply it for postglacial rebound studies in the Fennoscandian area. We compare land uplift values from three techniques, GNSS, tide gauges and absolute gravity, with the Nordic Geodetic Commission NKG2005LU land uplift model for Fennoscandia. The purpose is to evaluate the data obtained from different techniques and different sources and get the most reliable values for the uplift using publicly available data. The primary aim of observing systems will be to produce data and other products needed by multidisciplinary projects, such as Upper Mantle Dynamics and Quaternary Climate in Cratonic Areas (DynaQlim) or the European Plate Observing System (EPOS), but their needs may currently exceed the scope of an existing observing system. We discuss what requirements the projects pose to observing systems and their development. To make comparisons between different studies possible and reliable, the researcher should document what they have in detail, either in appendixes, supplementary material or some other available format.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2014-07-05
    Description: Modelling complex geological circular data with the projected normal distribution and mixtures of von Mises distributions Solid Earth, 5, 631-639, 2014 Author(s): R. M. Lark, D. Clifford, and C. N. Waters Circular data are commonly encountered in the earth sciences and statistical descriptions and inferences about such data are necessary in structural geology. In this paper we compare two statistical distributions appropriate for complex circular data sets: the mixture of von Mises and the projected normal distribution. We show how the number of components in a mixture of von Mises distribution may be chosen, and how one may choose between the projected normal distribution and the mixture of von Mises for a particular data set. We illustrate these methods with a few structural geological data, showing how the fitted models can complement geological interpretation and permit statistical inference. One of our data sets suggests a special case of the projected normal distribution which we discuss briefly.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2014-06-27
    Description: A new model of the upper mantle structure beneath the western rim of the East European Craton Solid Earth, 5, 523-535, 2014 Author(s): M. Dec, M. Malinowski, and E. Perchuc We present a new 1-D P wave seismic velocity model (called MP1-SUW) of the upper mantle structure beneath the western rim of the East European Craton (EEC) based on the analysis of the earthquakes recorded at the Suwałki (SUW) seismic station located in NE Poland which belongs to the Polish Seismological Network (PLSN). Motivation for this study arises from the observation of a group of reflected waves after expected P 410 P at epicentral distances 2300–2800 km from the SUW station. Although the existing global models represent the first-arrival traveltimes, they do not represent the full wavefield with all reflected waves because they do not take into account the structural features occurring regionally such as 300 km discontinuity. We perform P wave traveltime analysis using 1-D and 2-D forward ray-tracing modelling for the distances of up to 3000 km. We analysed 249 natural seismic events from four azimuthal spans with epicentres in the western Mediterranean Sea region (WMSR), the Greece and Turkey region (GTR), the Caucasus region (CR) and the part of the northern Mid-Atlantic Ridge near the Jan Mayen Island (JMR). For all chosen regions, except the JMR group for which 2-D modelling was performed, we estimate a 1-D average velocity model which will characterize the main seismic discontinuities. It appears that a single 1-D model (MP1-SUW model) explains well the observed traveltimes for the analysed groups of events. Differences resulting from the different azimuth range of earthquakes are close to the assumed picking uncertainty. The MP1-SUW model documents the bottom of the asthenospheric low-velocity zone (LVZ) at the depth of 220 km, 335 km discontinuity and the zone with the reduction of P wave velocity atop 410 km discontinuity which is depressed to 440 km depth. The nature of the regionally occurring 300 km boundary is explained here by tracing the ancient subduction regime related to the closure of the Iapetus Ocean, the Rheic Ocean and the Tornquist Sea.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2014-06-27
    Description: Testing the effects of basic numerical implementations of water migration on models of subduction dynamics Solid Earth, 5, 537-555, 2014 Author(s): M. E. T. Quinquis and S. J. H. Buiter Subduction of oceanic lithosphere brings water into the Earth's upper mantle. Previous numerical studies have shown how slab dehydration and mantle hydration can impact the dynamics of a subduction system by allowing a more vigorous mantle flow and promoting localisation of deformation in the lithosphere and mantle. The depths at which dehydration reactions occur in the hydrated portions of the slab are well constrained in these models by thermodynamic calculations. However, computational models use different numerical schemes to simulate the migration of free water. We aim to show the influence of the numerical scheme of free water migration on the dynamics of the upper mantle and more specifically the mantle wedge. We investigate the following three simple migration schemes with a finite-element model: (1) element-wise vertical migration of free water, occurring independent of the flow of the solid phase; (2) an imposed vertical free water velocity; and (3) a Darcy velocity, where the free water velocity is a function of the pressure gradient caused by the difference in density between water and the surrounding rocks. In addition, the flow of the solid material field also moves the free water in the imposed vertical velocity and Darcy schemes. We first test the influence of the water migration scheme using a simple model that simulates the sinking of a cold, hydrated cylinder into a dry, warm mantle. We find that the free water migration scheme has only a limited impact on the water distribution after 1 Myr in these models. We next investigate slab dehydration and mantle hydration with a thermomechanical subduction model that includes brittle behaviour and viscous water-dependent creep flow laws. Our models demonstrate that the bound water distribution is not greatly influenced by the water migration scheme whereas the free water distribution is. We find that a bound water-dependent creep flow law results in a broader area of hydration in the mantle wedge, which feeds back to the dynamics of the system by the associated weakening. This finding underlines the importance of using dynamic time evolution models to investigate the effects of (de)hydration. We also show that hydrated material can be transported down to the base of the upper mantle at 670 km. Although (de)hydration processes influence subduction dynamics, we find that the exact numerical implementation of free water migration is not important in the basic schemes we investigated. A simple implementation of water migration could be sufficient for a first-order impression of the effects of water for studies that focus on large-scale features of subduction dynamics.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2014-07-10
    Description: An experimental study of pyroxene crystallization during rapid cooling in a thermal gradient: application to komatiites Solid Earth, 5, 641-650, 2014 Author(s): S. Bouquain, N. T. Arndt, F. Faure, and G. Libourel To investigate the crystallization of pyroxene in spinifex-textured komatiites, we undertook a series of experiments in which compositions in the CaO-MgO-Al 2 O 3 -SiO 2 CMAS system were cooled rapidly in a thermal gradient. Cooling rates were generally between 5 and 10 °C h −1 , but some runs were made at 100–200 °C h −1 ; thermal gradients were between 10 and 20 °C cm −1 . These conditions reproduced those at various depths in the crust of komatiite lava flow. The starting composition was chosen to have pigeonite on the liquidus, and most of the experimental charges crystallized zoned pigeonite–diopside crystals like those in komatiite lavas. An intriguing aspect of the experimental results was their lack of reproducibility. Some experiments crystallized forsterite, whereas others that were run under similar conditions crystallized two pyroxenes and no forsterite; some experiments were totally glassy, but others crystallized entirely to pyroxene. The degree of supercooling at the onset of pyroxene crystallization was variable, from less than 25 °C to more than 110 °C. We attribute these results to the difficulty of nucleation of pyroxene under the conditions of the experiments. In some cases forsterite crystallized metastably and modified the liquid composition to inhibit pyroxene crystallization; in others no nucleation took place until a large degree of supercooling was achieved, and then pyroxene crystallized rapidly. Pigeonite crystallized under a wide range of conditions, at cooling rates from 3 to 100 °C h −1 . The notion that this mineral only forms at low cooling rates is not correct.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2014-01-30
    Description: Petrophysical constraints on the seismic properties of the Kaapvaal craton mantle root Solid Earth, 5, 45-63, 2014 Author(s): V. Baptiste and A. Tommasi We calculated the seismic properties of 47 mantle xenoliths from 9 kimberlitic pipes in the Kaapvaal craton based on their modal composition, the crystal-preferred orientations (CPO) of olivine, ortho- and clinopyroxene, and garnet, the Fe content of olivine, and the pressures and temperatures at which the rocks were equilibrated. These data allow constraining the variation of seismic anisotropy and velocities within the cratonic mantle. The fastest P and S 2 wave propagation directions and the polarization of fast split shear waves ( S 1 ) are always subparallel to olivine [100] axes of maximum concentration, which marks the lineation (fossil flow direction). Seismic anisotropy is higher for high olivine contents and stronger CPO. Maximum P wave azimuthal anisotropy (AV p ) ranges between 2.5 and 10.2% and the maximum S wave polarization anisotropy (AV s ), between 2.7 and 8%. Changes in olivine CPO symmetry result in minor variations in the seismic anisotropy patterns, mainly in the apparent isotropy directions for shear wave splitting. Seismic properties averaged over 20 km-thick depth sections are, therefore, very homogeneous. Based on these data, we predict the anisotropy that would be measured by SKS, Rayleigh ( S V ) and Love ( S H ) waves for five endmember orientations of the foliation and lineation. Comparison to seismic anisotropy data from the Kaapvaal shows that the coherent fast directions, but low delay times imaged by SKS studies, and the low azimuthal anisotropy with with the horizontally polarized S waves ( S H ) faster than the vertically polarized S wave ( S V ) measured using surface waves are best explained by homogeneously dipping (45°) foliations and lineations in the cratonic mantle lithosphere. Laterally or vertically varying foliation and lineation orientations with a dominantly NW–SE trend might also explain the low measured anisotropies, but this model should also result in backazimuthal variability of the SKS splitting data, not reported in the seismological data. The strong compositional heterogeneity of the Kaapvaal peridotite xenoliths results in up to 3% variation in density and in up to 2.3% variation of V p , V s , and V p / V s ratio. Fe depletion by melt extraction increases V p and V s , but decreases the V p / V s ratio and density. Orthopyroxene enrichment due to metasomatism decreases the density and V p , strongly reducing the V p / V s ratio. Garnet enrichment, which was also attributed to metasomatism, increases the density, and in a lesser extent V p and the V p / V s ratio. Comparison of density and seismic velocity profiles calculated using the xenoliths' compositions and equilibration conditions to seismological data in the Kaapvaal highlights that (i) the thickness of the craton is underestimated in some seismic studies and reaches at least 180 km, (ii) the deep sheared peridotites represent very local modifications caused and oversampled by kimberlites, and (iii) seismological models probably underestimate the compositional heterogeneity in the Kaapvaal mantle root, which occurs at a scale much smaller than the one that may be sampled seismologically.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2014-01-03
    Description: Assessing accuracy of gas-driven permeability measurements: a comparative study of diverse Hassler-cell and probe permeameter devices Solid Earth, 5, 1-11, 2014 Author(s): C. M. Filomena, J. Hornung, and H. Stollhofen Permeability is one of the most important petrophysical parameters to describe the reservoir properties of sedimentary rocks, pertaining to problems in hydrology, geothermics, and hydrocarbon reservoir analysis. Outcrop analogue studies, well core measurements, and individual sample analysis take advantage of a variety of commercially available devices for permeability measurements. Very often, permeability data derived from different devices need to be merged within one study (e.g. outcrop minipermeametry and lab-based core plug measurements). To enhance accuracy of different gas-driven permeability measurements, device-specific aberrations need to be taken into account. The application of simple one-to-one correlations may draw the wrong picture of permeability trends. For this purpose, transform equations need to be established. This study presents a detailed comparison of permeability data derived from a selection of commonly used Hassler cells and probe permeameters. As a result of individual cross-plots, typical aberrations and transform equations are elaborated, which enable corrections for the specific permeameters. Permeability measurements of the commercially available ErgoTech gas permeameter and the TinyPerm II probe permeameter are well-comparable over the entire range of permeability, with R 2 = 0.955. Aberrations are mostly identified in the permeability range 〈 10 mD, regarding the TinyPerm II and the minipermeameter/Hassler-cell combination at Darmstadt University, which need to be corrected and standardized. Applying standardizations which consider these aberration intervals strongly improves the comparability of permeability data sets and facilitates the combination of measurement principles. Therefore, the utilization of such correlation tests is highly recommended for all kinds of reservoir studies using integrated permeability databases.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2014-01-07
    Description: Short-lived tectonic switch mechanism for long-term pulses of volcanic activity after mega-thrust earthquakes Solid Earth, 5, 13-24, 2014 Author(s): M. Lupi and S. A. Miller Eruptive rates in volcanic arcs increase significantly after subduction mega-thrust earthquakes. Over short to intermediate time periods the link between mega-thrust earthquakes and arc response can be attributed to dynamic triggering processes or static stress changes, but a fundamental mechanism that controls long-term pulses of volcanic activity after mega-thrust earthquakes has not been proposed yet. Using geomechanical, geological, and geophysical arguments, we propose that increased eruption rates over longer timescales are due to the relaxation of the compressional regime that accompanies mega-thrust subduction zone earthquakes. More specifically, the reduction of the horizontal stress σ h promotes the occurrence of short-lived strike-slip kinematics rather than reverse faulting in the volcanic arc. The relaxation of the pre-earthquake compressional regime facilitates magma mobilisation by providing a short-circuit pathway to shallow depths by significantly increasing the hydraulic properties of the system. The timescale for the onset of strike-slip faulting depends on the degree of shear stress accumulated in the arc during inter-seismic periods, which in turn is connected to the degree of strain-partitioning at convergent margins. We performed Coulomb stress transfer analysis to determine the order of magnitude of the stress perturbations in present-day volcanic arcs in response to five recent mega-thrust earthquakes; the 2005 M8.6, 2007 M8.5, and 2007 M7.9 Sumatra earthquakes; the 2010 M8.8 Maule, Chile earthquake; and the 2011 M9.0 Tohoku, Japan earthquake. We find that all but one the shallow earthquakes that occurred in the arcs of Sumatra, Chile and Japan show a marked lateral component. We suggests that the long-term response of volcanic arcs to subduction zone mega-thrust earthquakes will be manifested as predominantly strike-slip seismic events, and that these future earthquakes may be followed closely by indications of rising magma to shallower depths, e.g. surface inflation and seismic swarms.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2014-03-07
    Description: Corrigendum to "Review of some significant claimed irregularities in Scandinavian postglacial uplift on timescales of tens to thousands of years – earthquakes in Denmark?" published in Solid Earth, 5, 109–118, 2014 Solid Earth, 5, 119-119, 2014 Author(s): S. Gregersen and P. H. Voss No abstract available.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2014-12-04
    Description: Allochthonous accreted terranes are exotic geologic units that originated from anomalous crustal regions on a subducting oceanic plate and were transferred to the overriding plate by accretionary processes during subduction. The geographical regions that eventually become accreted allochthonous terranes include island arcs, oceanic plateaus, submarine ridges, seamounts, continental fragments, and microcontinents. These future allochthonous terranes (FATs) contribute to continental crustal growth, subduction dynamics, and crustal recycling in the mantle. We present a review of modern FATs and their accreted counterparts based on available geological, seismic, and gravity studies and discuss their crustal structure, geological origin, and bulk crustal density. Island arcs have an average crustal thickness of 26 km, average bulk crustal density of 2.79 g cm−3, and three distinct crustal units overlying a crust–mantle transition zone. Oceanic plateaus and submarine ridges have an average crustal thickness of 21 km and average bulk crustal density of 2.84 g cm−3. Continental fragments presently on the ocean floor have an average crustal thickness of 25 km and bulk crustal density of 2.81 g cm−3. Accreted allochthonous terranes can be compared to these crustal compilations to better understand which units of crust are accreted or subducted. In general, most accreted terranes are thin crustal units sheared off of FATs and added onto the accretionary prism, with thicknesses on the order of hundreds of meters to a few kilometers. However, many island arcs, oceanic plateaus, and submarine ridges were sheared off in the subduction interface and underplated onto the overlying continent. Other times we find evidence of terrane–continent collision leaving behind accreted terranes 25–40 km thick. We posit that rheologically weak crustal layers or shear zones that were formed when the FATs were produced can be activated as detachments during subduction, allowing parts of the FAT crust to accrete and others to subduct. In many modern FATs on the ocean floor, a sub-crustal layer of high seismic velocities, interpreted as ultramafic material, could serve as a detachment or delaminate during subduction.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2014-12-04
    Description: Due to the closing of the subduction zone and the collision of the Arabian and Eurasian plates, the High Zagros region has always been affected by a wide range of tectonic variations. In this research, the Gharasu River basin, which is located in the Kermanshah area, was selected as the study area, six geomorphic indices were calculated, and the results of each one were divided into three classes. Then, using the indices, relative tectonic activity was calculated, and their values were classified and analysed in four groups. Regions were identified as very high, high, moderate and low. In analysing the results and combining them with field observations and regional geology, the results were often associated and justified with field evidence. The highest value is located on the Dokeral anticline in the crush zone in Zagros. Most of the areas with high and moderate values of Index of Active Tectonics (IAT) are also located in the crush zone in Zagros. Crushing in this zone is because of the main fault mechanism of the Zagros region. The result in this paper confirms previous research in this region. At the eastern end of the study area, the value of Iat is high, which could be the result of the Sarab and Koh-e Sefid fault mechanisms.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2014-12-10
    Description: The paper presents the results of investigations of deformation processes in the near-surface sedimentary rocks, which have been carried out in a seismically active region of the Kamchatka peninsula since 2007. The peculiarity of the experiments on registration of geodeformations is the application of a laser strainmeter–interferometer constructed according to the Michelson interferometer scheme. Besides rock deformations, geoacoustic emission in the frequency range from several hertz to the first tens of kilohertz is under investigation. Piezoceramic hydrophones installed in artificial water reservoirs are applied. It is shown that periods of primary rock compression and tension with a duration of up to several months are distinguished in the geodeformation process at the observation site. During the direction change in the deformations, when the geodeformation process rate grows, an increase in geoacoustic radiation is observed.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2014-07-29
    Description: Antarctica is a unique place for soil, biological, and ecological investigations. Soils of Antarctica have been studied intensively during the last century, when different national Antarctic expeditions visited the sixth continent with the aim of investigating nature and the environment. Antarctic investigations are comprised of field surveys mainly in the terrestrial landscapes, where the polar stations of different countries are situated. That is why the main and most detailed soil surveys were conducted in the McMurdo Valleys, Transantarctic Mountains, South Shetland Islands, Larsemann Hills and the Schirmacher Oasis. Our investigations were conducted during the 53rd and 55th Russian Antarctic expeditions in the base of soil pits, and samples were collected in Sub-Antarctic and Antarctic regions. Sub-Antarctic or maritime landscapes are considered to be very different from Antarctic landscapes due to differing climatic and geogenic conditions. Soils of diverse zonal landscapes were studied with the aim of assessing the microbial biomass level, basal respiration rates and metabolic activity of microbial communities. This investigation shows that Antarctic soils are quite diverse in profile organization and carbon content. In general, Sub-Antarctic soils are characterized by more developed humus (sod) organo-mineral horizons as well as by an upper organic layer. The most developed organic layers were revealed in peat soils of King George Island, where its thickness reach, in some cases, was 80 cm. These soils as well as soils formed under guano are characterized by the highest amount of total organic carbon (TOC), between 7.22 and 33.70%. Coastal and continental Antarctic soils exhibit less developed Leptosols, Gleysols, Regolith and rare Ornhitosol, with TOC levels between 0.37 and 4.67%. The metabolic ratios and basal respiration were higher in Sub-Antarctic soils than in Antarctic ones, which can be interpreted as a result of higher amounts of fresh organic remnants in organic and organo-mineral horizons. The soils of King George Island also have higher portions of microbial biomass (max 1.54 mg g−1) compared to coastal (max 0.26 mg g−1) and continental (max 0.22 mg g−1) Antarctic soils. Sub-Antarctic soils differ from Antarctic ones mainly by having increased organic layer thickness and total organic carbon content, higher microbial biomass carbon content, basal respiration, and metabolic activity levels.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2014-09-22
    Description: Environmental concerns raised the demand for alternative growing media substituting Sphagnum peat. However growing media formulations still depend on peat and alternatives are limited. Biochar is carbonized plant material and could be an appropriate additive or even substitute for Sphagnum peat. Freshly produced, it is free from pathogens, has a low nutrient content (if produced from nutrient-poor feedstock), a very high structural stability and likely other favourable properties such as air capacity and water-holding capacity. Preliminary tests were conducted to compare biochar with other growing media and growing media additives. The growth of a miniature sunflower, pH and electrical conductivity (EC) was measured in different growing media such as biochar, perlite, clay granules, Sphagnum peat and peat mixed with biochar in the ratios 1 : 4, 1 : 1 and 4 : 1 (25, 50 and 75%, by volume). Fresh biochar has a similar EC to peat which is even lower after rinsing with water. Due to the relatively high pH of biochar, it could be added to peat instead of lime in a concentration of up to 75%. The growth of the sunflower was similar in all growing media. Only the plant weight was slightly higher of plants that grew in perlite or peat. There is a large potential for optimization such as selection of particle size and feedstock for biochar production and growing media formulations for specific plant requirements.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...