ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (818)
  • American Meteorological Society  (818)
  • Blackwell Publishing Ltd
  • Springer Nature
  • Springer Science + Business Media
  • 2015-2019  (818)
  • 1960-1964
  • Journal of Applied Meteorology and Climatology. 2015; 54(1): 106-116. Published 2015 Jan 01. doi: 10.1175/jamc-d-14-0043.1.  (1)
  • Journal of Applied Meteorology and Climatology. 2015; 54(1): 117-136. Published 2015 Jan 01. doi: 10.1175/jamc-d-13-0359.1.  (1)
  • Journal of Applied Meteorology and Climatology. 2015; 54(1): 137-152. Published 2015 Jan 01. doi: 10.1175/jamc-d-14-0057.1.  (1)
  • Journal of Applied Meteorology and Climatology. 2015; 54(1): 15-41. Published 2015 Jan 01. doi: 10.1175/jamc-d-14-0072.1.  (1)
  • Journal of Applied Meteorology and Climatology. 2015; 54(1): 153-169. Published 2015 Jan 01. doi: 10.1175/jamc-d-14-0048.1.  (1)
  • Journal of Applied Meteorology and Climatology. 2015; 54(1): 170-188. Published 2015 Jan 01. doi: 10.1175/jamc-d-13-0346.1.  (1)
  • Journal of Applied Meteorology and Climatology. 2015; 54(1): 189-206. Published 2015 Jan 01. doi: 10.1175/jamc-d-14-0140.1.  (1)
  • Journal of Applied Meteorology and Climatology. 2015; 54(1): 207-224. Published 2015 Jan 01. doi: 10.1175/jamc-d-14-0144.1.  (1)
  • Journal of Applied Meteorology and Climatology. 2015; 54(1): 225-242. Published 2015 Jan 01. doi: 10.1175/jamc-d-14-0025.1.  (1)
  • Journal of Applied Meteorology and Climatology. 2015; 54(1): 243-255. Published 2015 Jan 01. doi: 10.1175/jamc-d-13-0210.1.  (1)
  • Journal of Applied Meteorology and Climatology. 2015; 54(1): 3-14. Published 2015 Jan 01. doi: 10.1175/jamc-d-14-0126.1.  (1)
  • 130405
  • Physics  (818)
  • Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
  • Energy, Environment Protection, Nuclear Power Engineering
Collection
  • Articles  (818)
Publisher
Years
Year
Journal
Topic
  • Physics  (818)
  • Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
  • Energy, Environment Protection, Nuclear Power Engineering
  • Geography  (818)
  • 1
    Publication Date: 2017-03-20
    Description: Drought is a typical disaster in the main soybean production area of northeast China. The spatiotemporal variations of drought related to soybean production based on a crop water deficit index (CWDI) and sensitivity to meteorological variables were investigated in northeast China using daily meteorological data from 87 weather stations from 1981 to 2010. Statistical analysis revealed that precipitation could not meet the water demands of soybeans during the seedling–branching, filling, and maturing stages, and excessive drought occurred more often in northeast China. The Mann–Kendall test indicated that the soybean CWDI significantly increased during the filling stage. Kriging spatial analysis showed that the most drought-prone area was located in the west of northeast China. Explanations for the spatiotemporal variations of the drought for soybean production were explored in terms of meteorological variables. Statistical analysis showed that the crop evapotranspiration, air temperature, wind speed, and number of sunshine hours were significantly higher and the precipitation and relative humidity were significantly lower in the drought-prone area than in the dry area less prone to droughts. An explored method of sensitive analysis quantitatively revealed that precipitation and humidity negatively affected the CWDI, whereas temperature, wind speed, and number of sunshine hours positively affected the CWDI. The CWDI was most sensitive to precipitation. These results not only provide valuable information for soybean planning and management but also produce important background and physical evidence for the influence of climate on the drought related to soybean production in northeast China.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-03-01
    Description: Many data-merging studies of the Tropical Rainfall Measuring Mission (TRMM) satellite involve the integration of high-resolution Visible and Infrared Scanner (VIRS) signals (~2 km) with low-resolution Precipitation Radar (PR) footprint (~5 km) to obtain comprehensive information from observations. Based on the merged dataset, “warm rain” is generally identified as having averaging 10.8-μm brightness temperatures (TB10.8) exceeding 273 K and the existence of surface rainfall. However, this integration may lead to the misidentification of warm rain because the beam-filling problem (nonuniform TB10.8 in PR pixels) is not fully considered through the method using high-resolution TB10.8 to match low-resolution rainfall. To assess the bias that is associated with identifying warm rain, a new dataset that includes all VIRS signals within the PR resolution is established, and the characteristics of this warm rain in the summers of 1998–2012 are analyzed. The results show that clear-sky pixels and “cold” pixels probably exist in some apparent warm-rain cases (60.5% and 11.2% of the time, respectively). According to this finding, warm-rain pixels are divided into pixels with and without clear sky. Statistical analysis shows that the existence of clear-sky pixels has a huge influence on the characteristics of the warm-rain pixels. The implications of this study are that many of the warm-rain cases are in fact not warm rain. When studying warm rain, the situation whereby the edges of pixels are clear sky should be fully considered. Also, when computing the weighted average brightness temperature and other characteristics of warm-rain pixels, parts that are clear-sky or cold pixels should be expelled to mitigate beam-filling problems.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-03-16
    Description: Accurate evaluations of incoming longwave radiation (Lin) parameterization have practical implications for glacier and river runoff changes in high-mountain regions of the Tibetan Plateau (TP). To identify potential means of accurately predicting spatiotemporal variations in Lin, 13 clear-sky parameterizations combined with 10 cloud corrections for all-sky atmospheric emissivity were evaluated at five sites in high-mountain regions of the TP through temporal and spatial parameter transfer tests. Most locally calibrated parameterizations for clear-sky and all-sky conditions performed well when applied to the calibration site. The best parameterization at five sites is Dilley and O’Brien’s A model combined with Sicart et al.’s A for cloud-correction-incorporated relative humidity. The performance of parameter transferability in time is better than that in space for the same all-sky parameterizations. The performance of parameter transferability in space presents spatial discrepancies. In addition, all all-sky parameterizations show a decrease in performance with increasing altitude regardless of whether the parameters of all-sky parameterizations were recalibrated by local conditions or transferred from other study sites. This may be attributable to the difference between screen-level air temperature and the effective atmospheric boundary layer temperature and to different cloud-base heights. Nevertheless, such worse performance at higher altitudes is likely to change because of terrain, underlying surfaces, and wind systems, among other factors. The study also describes possible spatial characteristics of Lin and its driving factors by reviewing the few studies about Lin for the mountain regions of the TP.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-03-20
    Description: Analysis of drop size distributions (DSD) measured by collocated Meteorological Particle Spectrometer (MPS) and a third-generation, low-profile, 2D-video disdrometer (2DVD) are presented. Two events from two different regions (Greeley, Colorado, and Huntsville, Alabama) are analyzed. While the MPS, with its 50-μm resolution, enabled measurements of small drops, typically for drop diameters below about 1.1 mm, the 2DVD provided accurate measurements for drop diameters above 0.7 mm. Drop concentrations in the 0.7–1.1-mm overlap region were found to be in excellent agreement between the two instruments. Examination of the combined spectra clearly reveals a drizzle mode and a precipitation mode. The combined spectra were analyzed in terms of the DSD parameters, namely, the normalized intercept parameter NW, the mass-weighted mean diameter Dm, and the standard deviation of mass spectrum σM. The inclusion of small drops significantly affected the NW and the ratio σM/Dm toward higher values relative to using the 2DVD-based spectra alone. For each of the two events, polarimetric radar data were used to characterize the variation of radar-measured reflectivity Zh and differential reflectivity Zdr with Dm from the combined spectra. In the Greeley event, this variation at S band was well captured for small values of Dm (
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-12-22
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-03-01
    Description: A simple numerical experiment was performed to investigate the result published in many papers that measurements indicate that aggregates may be well represented as oblate spheroids with mean aspect ratio (semiminor axis to semimajor axis length) of 0.6. The aspect ratio measurements are derived from two-dimensional projections of complex three-dimensional aggregates. Here, aggregates were modeled as ellipsoids with semiprincipal axes of length a, b, and c, which include oblate spheroids (a = b) as a class, and the projected aspect ratios of large numbers of two-dimensional projections of them were sampled. When sampling oblate spheroids with aspect ratio 0.6 over random orientations, the mean projected aspect ratio is 0.746. A mean projected aspect ratio of 0.6 is obtained for an oblate spheroid with aspect ratio of 0.33. When sampling randomly oriented ellipsoids with semiminor axes (b, c) varying from 0.10 to 1.00 in steps of 0.01, representing many complex shapes, the mean projected aspect ratio is 0.595, close to the measured mean projected aspect ratio of aggregates of 0.6. These experiments demonstrate that the conclusion one may safely draw from the projected aspect ratio measurements is that the mean aspect ratio of aggregates is lower than 0.6. Moreover, the projected aspect ratio distributions from measurements suggest a mixture of aggregate shapes, rather than only oblate spheroids as is often assumed.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-03-01
    Description: Surface air temperature is a basic meteorological variable to monitor the environment and assess climate change. Four remote sensing methods—the temperature–vegetation index (TVX), the univariate linear regression method, the multivariate linear regression method, and the advection-energy balance for surface air temperature (ADEBAT)—have been developed to acquire surface air temperature on a regional scale. To evaluate their utilities, they were applied to estimate the surface air temperature in northwestern China and were compared with each other through regressive analyses, t tests, estimation errors, and analyses on estimations of different underlying surfaces. Results can be summarized into three aspects: 1) The regressive analyses and t tests indicate that the multivariate linear regression method and the ADEBAT provide better accuracy than the other two methods. 2) Frequency histograms on estimation errors show that the multivariate linear regression method produces the minimum error range, and the univariate linear regression method produces the maximum error range. Errors of the multivariate linear regression method exhibit a nearly normal distribution and that of the ADEBAT exhibit a bimodal distribution, whereas the other two methods display negative skewness distributions. 3) Estimates on different underlying surfaces show that the TVX and the univariate linear regression method are significantly limited in regions with sparse vegetation cover. The multivariate linear regression method has estimation errors within 1°C and without high levels of errors, and the ADEBAT also produces high estimation errors on bare ground.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-03-01
    Description: The existence of strong easterly winds down the western slope of the south-central Andes in Chile, locally known as Puelche winds, has been known by the meteorological community since at least the mid-twentieth century. However, this is the first time that a climatological characterization of them is presented. The analysis is based on 36 yr of daily CFSR–NCEP reanalyzed data, validated by surface weather observations. Puelche winds are present all year round. The main synoptic-scale forcing of Puelche winds in south-central Chile is the passage of cold anticyclonic systems across the Andes Mountains. As these systems progress into the South American continent, a zonal surface circulation crossing from Argentina (upslope) to Chile (downslope) develops. Unlike terral and raco, other foehnlike winds at subtropical latitudes in Chile, the Puelche winds are forced by both meridional and zonal pressure gradients. Presumably, the smaller altitude of the Andes Mountains south of 35°S allows the air crossing from east to west in response to the presence of the migratory high pressure system over Argentina. As in other places where foehnlike winds develop, the warming extends far from places where the Puelche is actually observed, that is, to the west of the Andes into the surface at the coastal and the central depression areas. This “foehn clearance” is the result of cloudless sky and drier atmosphere that would allow an increase in the solar radiation reaching the surface and a subsequent warming of the near-surface air. The foehn clearance also drives an enhanced nighttime cooling, especially on the days after the onset of the Puelche event.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-03-01
    Description: The intermittency of solar power production is dependent on the evolution and advection of the nearby cloud field. A key problem related to solar energy integration is the improvement of 1-h-ahead forecasts to reduce the impact of intermittency on power systems operations. Many solar forecasts explicitly or implicitly assume Taylor’s hypothesis. While such advection-only forecasts can be presumed to be valid across sufficiently short time scales, it is not clear how rapidly the skill of such a forecast decays with increased lead time. As the goal is to improve the quality of 1-h-ahead forecasts, this work focuses on quantifying the skill of cloud-track wind-based cumulus-dominated cloud field forecasts with respect to lead time. No explicit connection is drawn to the quality of solar forecasts because of the importance of separating two potential sources of error: cloud field forecasting and radiative transfer estimation. It is found that the cumulus field forecast skill begins to asymptotically approach a minimum at lead times of beyond 30 min, suggesting that advection-only forecasts in a cumulus-dominated environment should not be relied upon for 1-h-ahead point forecasts used by radiative transfer methods to estimate solar power production. A first attempt at forming a probabilistic forecast that can quantify this increasing uncertainty when using advection-only methods is presented.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-03-16
    Description: Cities are home to the majority of humanity. Therefore, understanding the mechanisms that control urban climates has substantial societal importance to a variety of sectors, including public health and energy management. In this study, data from an urban sensor network (25 stations) and moderate-resolution remote sensing were used to explore how spatial variation in near-surface air temperature Ta, vapor pressure deficit (VPD), and land surface temperature (LST) depend on local variations in urban land use, both diurnally and seasonally, in the Boston, Massachusetts, metropolitan area. Positive correlations were observed between the amount of local impervious surface area (ISA) and both Ta and VPD. Heat-island effects peaked during the growing-season nighttime, when mean Ta and VPD increased by up to 0.02°C and 0.008 kPa, respectively, per unit ISA. Air temperature and VPD were strongly coupled, but their relationship exhibited significant diurnal hysteresis during the growing season, with changes in VPD generally preceding changes in Ta. Over 79% of the urban–rural difference in VPD was explained by differences in near-surface atmospheric water content, which the authors attribute to reduced evapotranspiration from lower canopy cover in Boston’s urban core. Changes in daytime heat-island intensity were mediated by seasonal feedbacks between vegetation transpiration and VPD forcing. Differences between LST and Ta showed weaker coupling in highly urbanized areas than in rural areas, with summertime surface-urban-heat-island intensity (based on LST) being up to 14°C higher than corresponding urban–rural differences in Ta.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...